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Quasi-isometric classification of right-angled Artin
groups II: Several infinite out cases

Jingyin Huang

Abstract. We are motivated by the question that for which class of right-angled Artin groups
(RAAGs), the quasi-isometric classification coincides with commensurability classification. This
is previously known to hold for RAAGs with finite outer automorphism groups. In this paper, we
identify two classes of RAAGs, where their outer automorphism groups are allowed to contain adja-
cent transvections and partial conjugations, hence are infinite. If G belongs to one of these classes,
then any other RAAG G0 is quasi-isometric to G if and only if G0 is commensurable with G. We
also show that in such cases, there exists an algorithm to determine whether two RAAGs are quasi-
isometric by looking at their defining graphs. Compared to the finite out case, the main issue we
need to deal with here is that one may not be able to straighten the quasi-isometries in a canonical
way. We introduce a deformation argument, as well as techniques from cubulation to deal with this
issue.
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1. Introduction

1.1. Motivation and background

Recall that a quasi-isometry q W X ! Y between two metric spaces X and Y is a map
such that there exist constants L;A > 0 with the following properties:

(1) L�1d.x; y/ � A � d.f .x/; f .y// � Ld.x; y/C A for any x; y 2 X .
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(2) Each point in Y is at most distance A from a point in q.X/.

Given a quasi-isometry q W X ! Y between two metric spaces, one common scheme
of understanding q is the following. In step (1), we specify a collection of subspaces of X
and Y such that they are stable under q and encode the coarse intersection pattern of these
subspaces of X (or Y ) in a combinatorial object CX (or CY ). Then q induces an “isomor-
phism” q� W CX ! CY . In step (2), we understand whether an isomorphism between CX
and CY implies if X and Y are isometric or at least share some interesting geometric
feature. Here are two examples of this scheme:

• When X D Y D SL.n;R/=SO.n/ for n � 3, in step (1), one shows that q preserves
the intersection pattern of maximal flats in X , hence induces an automorphism of the
spherical building at infinity, which is a simplicial complex encoding the intersecting
pattern of these flats. Moreover, this automorphism is continuous with respect to the
cone topology. In step (2), we use the fundamental theorem of projective geometry
to deduce that such automorphism of the building actually comes from a homothety
of X . Then one deduces that every such q is of bounded distance from a homothety.
This is a special case of the results in [13, 25].

• When X and Y are the mapping class groups of oriented closed surfaces of
genus�2, q preserves the intersection pattern of Dehn twist flats [1,19], hence induces
an automorphism of the curve complex, which is a simplicial complex encoding the
intersecting pattern of the Dehn twist flats. However, Ivanov’s theorem tells us that
any automorphism of the curve complex is induced by a mapping class, hence q is of
bounded distance from a left multiplication.

While for several other classes of groups and spaces, it is tempting to follow such
a scheme to study quasi-isometric classification and rigidity, one cannot expect we are
always as lucky in step (2) where some analogue of fundamental theorem of projective
geometry or Ivanov’s theorem would hold.

Now we look at the class of right-angled Artin groups (RAAGs). Given a finite simpli-
cial graph � with vertex set ¹viºi2I , the RAAG with defining graph � , denoted by G.�/,
is given by the following presentation:

¹vi ; for i 2 I j Œvi ; vj � D 1 if vi and vj are joined by an edgeº:

For RAAGs, there are no combinatorial objects as in the above two cases such that on
one hand they are quasi-isometry invariants, and on the other hand they satisfy a strong
analogue of Ivanov’s theorem; as if such objects exist, it would imply the quasi-isometry
groups of RAAGs are rather small. However, even for the most rigid class of RAAGs,
their quasi-isometry groups are quite large [21].

Under certain conditions, quasi-isometries between RAAGs preserve a collection of
subspaces, called standard flats. Kim and Koberda [23] introduced the notion of exten-
sion complexes, which is a simplicial complex encoding the coarse intersecting pattern of
standard flats in RAAGs. They are quasi-isometry invariants for large class of RAAGs.
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For RAAGs with finite outer automorphism groups considered in [4, 21], it is proved
that any automorphism ˛ of the extension complex induces a canonically defined bijec-
tion ˛0 of the underlying RAAG which preserves enough structure for application to
quasi-isometric classification. We will refer the map ˛0 as the “reconstruction map”, as
the map is closely related to reconstructing the RAAG from intrinsic combinatorial struc-
ture of its extension complex (the precise definition of ˛0 is in Section 2.6). This is also
a natural extension of classical reconstruction problems (e.g., a theorem of Darboux says
that any straight line-preserving bijection of Euclidean spaces must be affine) to the con-
text of RAAGs. Note however the map ˛0 is typically very far away from being a left
multiplication or an isometry, so this can be viewed as a weak analogue of what happens
in step (2) of the two cases discussed above.

For RAAGs with infinite outer automorphism, the situation could be much worse:

(1) It is possible that there are no well-defined reconstruction maps (in the sense of
Section 2.6).

(2) Even if the reconstruction map exists, it may not preserve as much structure as
before. This is due to the fact that RAAGs may not “branch” as much as symmet-
ric spaces, thick Euclidean buildings or mapping class groups. Extra conditions
are needed to make the reconstruction map “nice”, and such cases are studied
in [4, 21].

In this paper, we show that quasi-isometric classification results could still be obtained
despite these two challenges. We study two classes of RAAGs in this paper. The first class
is the largest class of RAAGs such that the reconstruction map exists with respect to
automorphisms of extension complexes. Then we will introduce another class of RAAGs,
where the reconstruction map fails to exist, and indicate how to get around this issue. It
turns out that ideas from cubulation theory are relevant.

The previous quasi-isometric classification results of RAAGs fall into two classes with
strong contrast in their conclusions. The study [3] identifies a class of RAAGs whose
quasi-isometry types do not depend on the defining graphs, while [4] identifies another
class of RAAGs such that two RAAGs in this class are quasi-isometric if and only if they
are isomorphic. Higher-dimensional generalizations of these two cases are in [2] and [21],
respectively. We intend to understand this strong contrast by “interpolating” between these
two cases. The classes of RAAGs discussed in this paper serve as an initial step toward
this goal.

1.2. Main results and open questions

We denote the RAAG with defining graph � by G.�/. Our search for appropriate classes
of RAAGs is roughly guided by the outer automorphism group Out.G.�//. Namely, if a
property is true for all elements in Out.G.�//, then we ask whether it is also true for all
quasi-isometries ofG.�/. See Section 2.3 for a review of Out.G.�//. Since we are mainly
interested in the case where Out.G.�// is infinite, we need to focus on the three types of
generators of Out.G.�// which are of infinite order, namely the adjacent transvections,



J. Huang 1168

non-adjacent transvections and partial conjugations. Adjacent transvections happen inside
free abelian subgroups, so they have relatively nice behavior compared other types. We
deal with it first.

Definition 1.1. The group G.�/f is of weak type I if

(1) � is connected and does not contain any separating closed star.

(2) There do not exist vertices v;w 2 � such that d.v;w/D 2 and � D St.v/[ St.w/.

We caution the reader that in this paper, the closed star of a vertex v, which we denote
by St.v/, is defined to be the full subgraph spanned by v and vertices adjacent to v. This
definition is slightly different from the usual one. Similarly, lk.v/ is defined to be the full
subgraph spanned by vertices adjacent to v.

It turns out thatG.�/ is of weak type I if and only if one can always reconstruct a map
from G.�/ to itself from a given isomorphism of its extension complex in the sense of
Definition 2.27 (see Theorem 3.23 for a precise statement). In particular, all RAAGs with
finite outer automorphism group are of weak type I.

If G.�/ is of weak type I, then Out.G.�// does not contain non-adjacent transvec-
tions and partial conjugations; however, Out.G.�// may contain adjacent transvections.
For example, we can take � to be the graph which is made of a 5-cycle and a 3-cycle glued
along an edge.

Theorem 1.2 (=Theorem 3.22). If G.�/ and G.� 0/ are of weak type I, then they are
quasi-isometric if and only if they are isomorphic.

Having weak type I is not a quasi-isometry invariant (cf. [4, Example 1.4]). However,
the following weaker version of Theorem 1.2 is true when only G.�1/ is of weak type I.

Theorem 1.3 (=Theorem 5.10). Suppose G.�1/ is of weak type I. Then the following are
equivalent:

(1) G.�2/ is quasi-isometric to G.�1/.

(2) G.�2/ is isomorphic to a subgroup of finite index in G.�1/.

(3) G.�2/ is isomorphic to a special subgroup of G.�1/.

We refer to Section 2.4 for the definition of special subgroups.

Remark 1.4. We now make some comparison with the finite out case.

(1) As we will see later, in general the collection of special subgroups of G.�/
depends on the choice of standard generators ofG.�/. However, the isomorphism
types of the special subgroups do not depend on the choice of standard generators
(by [21, Section 6], all special subgroups are RAAGs and the isomorphism types
of their defining graphs only depend on �). For example, let G.�/ Š Z ˚ Z.
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Given a base e1; e2 2 Z ˚ Z, then special subgroups with such choice of stan-
dard generators are of form ¹ne1 C me2ºn;m2Z. However, no matter what base
we choose, all special subgroups are isomorphic to nZ˚mZ. However, we have
more rigidity when Out.G.�// is finite. In this case, the definition of special sub-
group does not depend on the choice of standard generators, and all finite index
RAAG subgroups of G.�/ are special subgroups [21, Theorem 1.4].

(2) By [21, Theorem 1.3],G.�2/ is quasi-isometric toG.�1/ if and only if their exten-
sion complexes (Section 2.3) are isomorphic, given Out.G.�1// is finite. The if
only direction is still true in the case of weak type I group, but the other direction
is not clear.

Next we deal with partial conjugations. Since if Out.G.�// contains partial conjuga-
tions, then � contains separating closed stars, one may want to cut � into good pieces
along separating closed stars. However, this is not well defined in general. Then one may
try the opposite way and look at graphs obtained by gluing good pieces along vertex stars
in a nice way. By studying such examples, we identify the following class of RAAGs.

Definition 1.5. The group G.�/ is of type II if � is connected, and for every pair of
distinct vertices v;w 2 � , lk.v/ \ lk.w/ does not separate � .

This condition has a geometric interpretation. Note that lk.v/ corresponds to hyper-
planes in the universal covering of the Salvetti complex, as these hyperplanes are invariant
under a conjugate of subgroups of G.�/ generated by vertices in lk.v/. So lk.v/ \ lk.w/
corresponds to the intersection of hyperplanes. Definition 1.5 can be roughly interpreted
as “hyperplanes of codimension 2 do not coarsely separate”.

A model example is taking � to be the union of a 5-cycle and a 6-cycle identified along
a closed vertex star. IfG.�/ is of type II, then Out.G.�//may contain partial conjugations
and adjacent transvections, but not non-adjacent transvections.

A similar but different condition, called SIL, has been studied in [8]. The SIL condition
also plays a role in the study of right-angled Coxeter groups [10, 11].

Theorem 1.6 (=Theorem 6.36). If G.�1/ is a RAAG of type II, then G.�2/ is quasi-
isometric to G.�1/ if and only if G.�2/ is commensurable with G.�1/. Moreover, there
exists a RAAG G.�/ such that G.�1/ and G.�2/ are isomorphic to special subgroups in
G.�/.

The following is a consequence of Theorems 1.3 and 1.6 and [21, Section 6.3].

Corollary 1.7. Let G.�/ be a RAAG of type II or weak type I. Then there is an algorithm
to determine whether a given RAAG G.� 0/ is quasi-isometric to G.�/ or not.

We close this section with several comments and open questions. A RAAG of weak
type I is not necessarily of type II. The following class contains RAAGs of both weak
type I and type II (see Lemma 3.20).
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Definition 1.8. The group G.�/ is said to have weak type II if � is connected and for
vertices v;w 2 � such that d.v;w/ D 2, � n .lk.v/ \ lk.w// is connected.

It turns out that weak type II is a quasi-isometry invariant for RAAGs (see Corol-
lary 3.18). Though a large portion of our discussion also generalizes to RAAGs of weak
type II, the following question remains open.

Question 1.9. Suppose G.�/ is of weak type II and G.� 0/ is quasi-isometric to G.�/.
Is G.� 0/ commensurable with G.�/?

The techniques in this paper do not seem to apply effectively to the case when there
are non-adjacent transvections in the outer automorphism group. Indeed, in this case, there
is serious breakdown of the above form of rigidity. For example, there exist two tree
RAAGs which are quasi-isometric but not commensurable [3]. This leads to the following
question.

Question 1.10. Suppose � is connected and does not admit a non-trivial join decom-
position. Suppose Out.G.�// contains non-trivial non-adjacent transvection. Does there
exist � 0 such that G.�/ and G.� 0/ are quasi-isometric, but not commensurable?

1.3. Comments on the proof

We refer to Section 2.3 for definitions of relevant terms. The Salvetti complex of G.�/ is
denoted by S.�/, the universal covering of S.�/ is denoted byX.�/ and flats inX.�/ that
cover standard tori in S.�/ are called standard flats. Two standard flats are coarsely equiv-
alent if they have finite Hausdorff distance. Let P .�/ be the extension complex of X.�/.
The k-dimensional simplices in P .�/ are in 1-1 correspondence with coarse equivalent
classes of .k C 1/-dimensional standard flats in X.�/. Thus P .�/ captures the coarse
intersection pattern of standard flats in X.�/. It turns out to be a quasi-isometry invariant
for a large class of RAAGs.

Theorem 1.11. Let q W G.�1/! G.�2/ be a quasi-isometry. Suppose Out.G.�i // does
not contain any non-adjacent transvection for i D 1; 2. Then q preserves maximal stan-
dard flats up to finite Hausdorff distance. Moreover, it induces a simplicial isomorphism
q� W P .�1/! P .�2/.

The assumption of Theorem 1.11 is motivated by the observation that any automor-
phism of G.�/ preserves maximal standard flats up to finite Hausdorff distance if and
only if there is no non-adjacent transvection in Out.G.�//. This observation can be easily
checked by going through the list at the end of Section 2.3 (note that maximal standard
flats are in 1-1 correspondence to maximal standard abelian groups in G.�/).

It is natural to ask whether P .�1/ and P .�2/ are isomorphic implies that G.�1/
and G.�2/ are isomorphic or commensurable. In Example 6.38, we give a pair G.�1/
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and G.�2/ such that their outer automorphism groups do not contain non-adjacent
transvections such that P .�1/ and P .�2/ are isomorphic, but G.�1/ and G.�2/ are not
quasi-isometric, hence are not commensurable. In particular, the converse to Theorem 1.11
is not true.

One can try to reconstruct a “straightening” of q from q� as follows. Pick vertex
x 2X.�1/, and let ¹Fiºi2I be the collection of maximal standard flats containing x. Under
a mild condition on � , we have x D

T
i2I Fi . Each Fi is associated with a maximal stan-

dard flat F 0i � X.�2/ by Theorem 1.11. It is natural to define xq W G.�1/! G.�2/ such
that xq.x/ D

T
i2I F

0
i . However, it is possible that

T
i2I F

0
i D ;.

1.3.1. The weak type I case. It turns out that this is exactly the case that we always haveT
i2I F

0
i ¤ ;. Under an extra mild condition, we can deduce

T
i2I F

0
i is actually a point.

Then the map xq is well defined, and it preserves all the maximal standard flats. A priori, xq
may not preserve standard flats which are not maximal, and the key to prove Theorem 1.3
is to deform xq such that it preserves all standard flats.

A standard flat is rigid if xq sends its vertex set to the vertex set of another standard
flat, otherwise it is non-rigid. For example, all intersections of maximal standard flats are
rigid, but the converse may not be true.

We will deform xq in an inductive way. The first step is to show one can deform with
respect to minimal rigid flats such that any standard flat contained in a minimal rigid flat
is preserved by xq. To continue the induction argument, note that inside a (not necessar-
ily minimal) rigid flat, there are directions which are rigid and directions which are not
rigid. So we need to perform the deformation such that each move does not undo the
previous moves and does not place obstructions to the moves after. The second point is
non-trivial, since rigid flats may intersect each other in a complicated pattern. To describe
the deformation, we introduce an atlas for G.�/, where the vertex sets of standard flats
are consistently labeled by free abelian groups. The detail is discussed in Section 5.

1.3.2. The type II case. In this case, the map xq may fail to exist. For example, one can
take q to be a partial conjugation.

Instead of reconstructing maps, we ask whether one can reconstruct the space X.�/
from P .�/. Note that X.�/ is a CAT.0/ cube complex. In general, the collection of
halfspaces in a CAT.0/ cube complex, and their intersection pattern contains the com-
plete information needed to reconstruct the complex itself. This can be formalized in the
language of pocset (see Definition 2.6 and Theorem 2.8).

Then we ask whether we can put a pocset structure on P .�/ such that it is the right
pocset structure to recover X.�/. This can always be done. Roughly speaking, one can
embed P .�/ into the Tits boundary ofX.�/. Moreover, the collection of subsets of P .�/

which are the intersections of P .�/ and the Tits boundary of halfspaces of X.�/ has a
natural pocset structure.

Briefly speaking,X.�/ is equivalent to P .�/with some decorations on P .�/. In gen-
eral, these decorations depend on how one embeds P .�/ into the Tits boundary, so they
do not come from intrinsic properties of P .�/. Thus the rigidity of X.�/ depends on the
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amount of non-intrinsic decorations we need to put on P .�/. For example, in the most
rigid case when G.�/ has finite outer automorphism group, the amount of decorations
needed is minimal. The worst case is when X.�/ is tree, then P .�/ is just a discrete set.

If G.�/ is of type II, then the amount of extra decorations is reasonably small (see
Corollary 3.13 (1) for a precise statement). We prove Theorem 1.6 in two steps. The poc-
set structure on P .�/ is defined in terms of a certain partition of P .�/. First we show it is
possible to refine this partition to obtain a new pocset which does not admit any reasonable
further refinement. It turns out the new pocset gives rise to another RAAG which is com-
mensurable with the original one. Such RAAGs are called prime RAAGs (Definition 6.7).
Then we show two prime RAAGs are quasi-isometric if and only if they are isomorphic,
which finishes the proof of Theorem 1.6. We caution the reader that in order to avoid some
technicality, we work with pocset on � rather than P .�/ in Section 6. However, the idea
is similar.

1.4. Organization of the paper

In Section 2, we summarize and generalize several results from [21] about CAT.0/ cube
complexes, RAAGs and extension complexes. In particular, Theorem 1.11 will be proved
in Section 2.2.

In Section 3, we study the structure of the extension complex P .�/ and prove Theo-
rem 1.2 at the end of Section 3. In Section 4, we prove some extra properties for extension
complex for later use in Section 6.

The goal of Section 5 is to prove Theorem 1.3. We will introduce a notion of atlas for
RAAG in Section 5.1 and use this in Section 5.2 as an effective language to describe the
deformation argument mentioned above.

We prove Theorem 1.6 in Section 6. Section 6 does not depend on Section 5.

1.5. Index of notation

• St.v;K/: the closed star of v in K, or St.v/ if K is clear (Section 2.1).

• Lk.x; X/ or Lk.c; X/: the link of a vertex x or a cell c in a polyhedral complex X
(Section 2.1).

• �1 ı �2: the join of two graphs (Section 2.1).

• K1 �K2: the join of two simplicial complexes (Section 2.1).

• V ?: collection of vertices which are adjacent to each vertex in V (Section 2.1).

• G.�/ the RAAG with defining graph � (Section 2.3).

• F.�/: the flag complex of a simplicial graph � .

• X.�/! S.�/ the universal covering of the Salvetti complex (Section 2.3).

• �K : the support of a subcomplex K in X.�/ (Definition 2.9).

• VK : vertex set of �K (Definition 2.9).
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• 	.C1;C2/D .Y1; Y2/: nearest point sets between Y1 and Y2 defined in Lemma 2.4 and
the paragraph after.

• P .�/: the extension complex (Section 2.3).

• �.K/: for each subcomplex K � X.�/, �.K/ is a subcomplex of P .�/ defined in
the paragraph before Lemma 2.13.

• For a vertex p of X.�/, the map ip W F.�/ ! P .�/ is defined right before
Lemma 2.14.

• .F.�//p: the image of ip (see the paragraph before Lemma 2.14).

• � W P .�/ ! F.�/: label-preserving canonical projection defined in the third para-
graph after Lemma 2.12.

• v.M/: the set of vertices in a subset M of a complex.

• �v or ��.`/, where ` is a standard line with �.`/ D v: a projection map defined in
Definition 3.2.

• �` W X.�/! `: CAT.0/ projection from X.�/ to a standard geodesic ` (Section 3.1).

• Pv: the parallel set of a standard geodesic ` with �.`/ D v (see the paragraph after
Example 3.5).

• @B: boundary of a subcomplex B , defined in the paragraph after Lemma 3.9.

• xB: the full subcomplex spanned by B and @B (Section 4.2).

• …: this is a map which associated a component of P .�/ n St.v/ with a component of
F.�/ n St.xv/, explained in the paragraph before Definition 6.4.

2. Preliminaries

2.1. Notations and conventions

Notations here are consistent with [21, Section 2.1]. All graphs in this paper are simplicial.
The flag complex of a graph � is denoted by F.�/, that is, F.�/ is a flag complex such
that its 1-skeleton is � .

Let K be a polyhedral complex.

(1) By viewing the 1-skeleton of K as a metric graph with edge lengths 1, we obtain
a metric defined on the 0-skeleton of K, which we denote by d .

(2) A subcomplex K 0 � K is full if K 0 contains all the subcomplexes of K which
have the same vertex set as K 0. If K is 1-dimensional, then we also call K 0 a full
subgraph.

(3) We use ı to denote the join of two graphs, namely �1 ı �2 is a graph obtained by
adding to �1 t �2 an edge between each vertex of � and each vertex of �2 and �
to denote the join of two polyhedral complexes.
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(4) For a set of vertices V � K, V ? is defined to be collection of vertices which are
adjacent to each vertex in V .

(5) Let v 2 K be a vertex. The link of v in K, denoted by lk.v; K/ or lk.v/ when K
is clear, is defined to be the full subcomplex spanned by v?. The closed star of v
in K, denoted by St.v; K/ or St.v/ when K is clear, is defined to be the full
subcomplex spanned by ¹v; v?º.

(6) Let M � K be an arbitrary subset. We denote the collection of vertices inside M
by v.M/.

We will be using the following simple observation repeatedly.

Lemma 2.1. Let K be a simplicial complex, and let K.1/ be the 1-skeleton of K. Sup-
pose L � K is a full subcomplex. Then there is a 1-1 correspondence between connected
components of K n L and of K.1/ n L.1/. Moreover, the intersection of each component
of K n L with K.1/ is a component of K.1/ n L.1/.

Let X be a metric space. We use dH to denote the Hausdorff distance and use NR.Y /
to denote the open R-neighborhood of a subspace Y � X . Two subspaces A and B are
coarsely equivalent if they have finite Hausdorff distance. The subpace A is coarsely con-
tained in B if A is contained in the R-neighborhood of B for some R > 0. A subspace
V �X is the coarse intersection of subspaces Y1 and Y2 if V is at finite Hausdorff distance
from NR.Y1/ \ NR.Y2/ for all sufficiently large R. In general, the coarse intersection of
two subspaces might not exist.

2.2. CAT.0/ spaces and CAT.0/ cube complexes

We mention several relevant facts here and refer to [5] and [30] for more background on
CAT.0/ spaces and CAT.0/ cube complexes. The reader can also check [21, Section 2.2].

Let .X; d/ be a CAT.0/ space, and let C � X be a convex subset. We denote the near-
est point projection fromX to C by �C WX!C . Denote the Tits boundary ofX by @TX .
If C 0 � X be another convex set, then C 0 is parallel to C if d.�; C /jC 0 and d.�; C 0/jC are
constant functions. We define the parallel set of C , denoted by PC , to be the union of all
convex subsets of X parallel to C .

Now we turn to CAT.0/ cube complexes. All cube complexes in this paper are assumed
to be finite-dimensional. There are two common metrics on a CAT.0/ cube complex X ,
namely the CAT.0/metric and the `1-metric. In this paper, we will mainly use the CAT.0/
metric unless otherwise specified.

A geodesic segment, geodesic ray or geodesic in a CAT.0/ cube complex X is an
isometric embedding of Œa; b�, Œ0;1/ or R into X with respect to the CAT.0/ metric. A
combinatorial geodesic segment, combinatorial geodesic ray or combinatorial geodesic
is an `1-isometric embedding of Œa; b�, Œ0;1/ or R into X .1/ such that its image is a
subcomplex.
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The collection of convex subcomplexes in a CAT.0/ cube complex enjoys the
following version of Helly’s property [14].

Lemma 2.2. Let X be a finite-dimensional CAT.0/ cube complex, and let ¹CiºkiD1 be
a collection of convex subcomplexes. If Ci \ Cj ¤ ; for any 1 � i ¤ j � k, thenTk
iD1 Ci ¤ ;.

Lemma 2.3 ([16]). LetX be a CAT.0/ cube complex, and let Y �X be a convex subcom-
plex. Then Y is also combinatorially convex in the sense that any combinatorial geodesic
segment joining two vertices in Y is contained in Y .

Lemma 2.4 ([22, Lemma 2.10]). LetX be a CAT.0/ cube complex of dimension n, and let
C1;C2 be convex subcomplexes. Denote4Dd.C1;C2/. Put Y1D¹y2C1 jd.y;C2/D4º
and Y2 D ¹y 2 C2 j d.y; C1/ D 4º. Then

(1) Y1 and Y2 are not empty.

(2) Y1 and Y2 are convex; �C1 maps Y2 isometrically onto Y1, and �C2 maps Y1
isometrically onto Y2; the convex hull of Y1 [ Y2 is isometric to Y1 � Œ0;4�.

(3) Y1 and Y2 are subcomplexes, and �C2 jY1 is a cubical isomorphism with its inverse
given by �C1 jY2 .

(4) There exists AD A.�;n; "/ such that if p1 2 C1, p2 2 C2 and d.p1; Y1/ � " > 0,
d.p2; Y2/ � " > 0, then

d.p1; C2/ � 4C A � d.p1; Y1/I d.p2; C1/ � 4C A � d.p2; Y2/: (2.1)

The above lemma implies Y1 and Y2 are coarsely equivalent, and Y1 (or Y2) is the
coarse intersection of C1 and C2. We use 	.C1; C2/ D .Y1; Y2/ to describe this situation,
where 	 stands for “intersect”.

Pick edge e � X . It turns out the parallel set Pe is a convex subcomplex (actu-
ally Pe is made of cubes which contain an edge parallel to e). There is a natural splitting
Pe D e � he . The hyperplane dual to e is defined to be the subset of Pe of form ¹mº � he ,
wherem is the middle point of e. Each hyperplane separatesX into exactly two connected
components. The closure of these components is called halfspaces. The sets Y1 and Y2 in
Lemma 2.4 can be characterized in terms of hyperplanes.

Lemma 2.5 ([21, Lemma 2.6]). Let X , C1, C2, Y1 and Y2 be as in Lemma 2.4. Pick an
edge e in Y1 (or Y2), and let h be the hyperplane dual to e. Then h\ Ci ¤ ; for i D 1; 2.
Conversely, if a hyperplane h0 satisfies h0 \ Ci ¤ ; for i D 1; 2, then

	.h0 \ C1; h
0
\ C2/ D .h

0
\ Y1; h

0
\ Y2/

and h0 comes from the dual hyperplane of some edge e0 in Y1 (or Y2).
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The collection of halfspaces in X contains enough information to recover X . More
generally, we can view X as a space with walls, and [17, 29] introduce a way to construct
a CAT.0/ cube complex from a given space with walls. There are several variations and
developments of this construction [9, 20, 27, 28]. Here we follow the construction in [28]
(see Sageev’s notes [30]).

Definition 2.6 ([30, Definition 1.5]). A pocset is a partially ordered set with an involution
A! Ac such that

(1) A ¤ Ac and A and Ac are incomparable.

(2) A � B implies Bc � Ac .

Note that the collection of all closed halfspaces in a CAT.0/ cube complex forms a
pocset. The partial order comes from inclusion of sets, and the involution is defined by
mapping a halfspace h to the unique halfspace which intersects h along a hyperplane.

Definition 2.7 ([30, Definition 2.1]). Let P be a pocset. An ultrafilter U is a subset of P
such that

(1) For all pairs ¹A;Acº in P , precisely one of them is in U .

(2) If A 2 U and A � B , then B 2 U .

For example, pick a vertex p in a CAT.0/ cube complex X , then the collection of
closed halfspaces in X that contains p forms an ultrafilter. Note that if U is an ultrafilter
and A is minimal in U with respect to the partial order on P , then .U n ¹Aº/ [ ¹Acº is
also an ultrafilter.

Theorem 2.8 ([28]). If P is a finite pocset, then there is a CAT.0/ cube complex X such
that its vertices are in 1-1 correspondence with ultrafilters of P and two verticesU andU 0

are connected by an edge if and only if

U 0 D .U n ¹Aº/ [ ¹Acº

for some A minimal in U . Moreover, there is a natural pocset isomorphism from P to the
pocset of halfspaces in X .

If P is infinite, then similar conclusions hold under the additional assumptions that P
is discrete and of finite width (see [28, 30]). However, in this paper we only need the case
when P is finite.

2.3. Basics about RAAGs

Pick a finite simplicial graph � , and let G.�/ be the RAAG with defining graph � . Let
S.�/ be the Salvetti complex [7, Section 2.6] of G.�/, which is a non-positively curved
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cube complex whose 2-skeleton is the presentation complex of G.�/. Denote the uni-
versal cover of S.�/ by X.�/. Pick a standard generating set S for G.�/, label the
1-cells in S.�/ by elements in S and choose an orientation for each 1-cell in S.�/. This
lifts to orientation and labeling of edges in X.�/ which are invariant under the action
G.�/ Õ X.�/. As S.�/ only has one vertex, we can identify G.�/ as the 0-skeleton of
X.�/.

Let � 0 � � be a full subgraph. Then the images of the embeddings G.� 0/! G.�/

and S.� 0/! S.�/ are called standard subgroup (of type � 0) and standard subcomplex
(of type � 0), respectively. Standard subcomplexes of X.�/ are lifts of standard subcom-
plexes of S.�/. When � 0 is a complete subgraph, G.� 0/ is called a standard abelian
subgroup, S.� 0/ is called a standard torus and lifts of S.� 0/ are called standard flats. One-
dimensional standard flats are also called standard geodesics. As we are identifying G.�/
as the 0-skeleton of X.�/, sometimes we will slightly abuse the notation by referring
to a left coset of a standard abelian subgroup (resp. standard Z subgroup) of G.�/ as a
standard flat (resp. standard geodesic).

Definition 2.9. For every edge e 2 X.�/, there is a vertex in � which shares the same
label as e. We denote this vertex by Ve . IfK � X.�/ is a subcomplex (K does not need to
be a standard subcomplex), we define VK to be ¹Ve j e is an edge in Kº and �K to be the
full subgraph spanned by VK . The subgraph �K is called the support of K. Pick a vertex
v 2 X.�/ and a full subgraph � 0 � � and denote the unique standard subcomplex with
support � 0 that contains v by K.v; � 0/.

The following two results are strengthened versions of Lemmas 2.4 and 2.5 in the case
of coarse intersection of two standard subcomplexes.

Lemma 2.10 ([21, Lemma 3.1]). Let � be a finite simplicial graph, and let K1, K2 be
two standard subcomplexes of X.�/. If .Y1; Y2/ D 	.K1; K2/, then Y1 and Y2 are also
standard subcomplexes.

We can compute the supports of Y1 and Y2 as follows.

Lemma 2.11 ([21, Corollary 3.2]). Let K1; K2; Y1 and Y2 be as above.

(1) Let h be a hyperplane separatingK1 andK2, and let e be an edge dual to h. Then
Ve 2 V

?
Y1
D V ?Y2 (see Definition 2.9 for relevant notations).

(2) A vertex v 2 � satisfies v 2 VY1 if and only if

(a) v 2 VK1 \ VK2 .

(b) For any hyperplane h0 separating K1 from K2 and any edge e0 dual to h0, we
have d.v; Ve0/ D 1.

The proof roughly goes as follows. Pick vertex x 2 K1, and let y be the vertex in K2
closest to x. Let ` be a combinatorial geodesic joining x and y. Then there is a combina-
torial embedding Y1 � ` ,! X . Note that parallel edges have the same label. Two edges
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span a square if and only if their labels are adjacent in � . Thus the label of each edge in `
is adjacent to the label of every edge in Y1. If h separates K1 and K2, then h must inter-
sect `. Then (1) follows. Suppose v 2 VY1 . Since Y1 and Y2 are parallel, then VY1 D VY2 ,
thus (2a) follows. Lemma 2.11 (2b) is a consequence of (1).

Lemma 2.12. Let K1 and K2 be two standard subcomplexes of X.�/. Then

(1) K1 is coarsely contained in K2 (cf. Section 2.1) if and only if there is a standard
subcomplex K 02 � K2 such that K1 and K 02 are parallel.

(2) K1 is coarsely equivalent to K2 if and only if K1 and K2 are parallel.

Proof. We only prove (1). (2) is similar. It suffices to prove the only if direction of (1).
Let 	.K1; K2/ D .J1; J2/. It suffices to prove J1 D K1. By Lemma 2.4 (4), J1 and K1
have finite Hausdorff distance; moreover, Lemma 2.10 implies J1 is a standard subcom-
plex ofK1. If J1 ¨ K1, then their supports satisfy �J1 ¨ �K1 . Pick vertex xv 2 �K1 n �J1 ,
and let ` � K1 be a standard geodesic line with its support D¹xvº. Then Lemma 2.11 (2a)
implies 	.J1; `/ is a pair of points, which implies ` is not contained in a bounded neigh-
borhood of K1 by Lemma 2.4 (4). This contradicts that J1 and K1 have finite Hausdorff
distance. So we must have J1 D K1.

Let us now recall extension graph and extension complex defined by Kim and
Koberda [23], which will be the key quasi-isometry invariants used in this paper. The com-
binatorial structure of extension complexes is instrumental for studying quasi-isometries
between RAAGs. It is worth mentioning that it was known before that the extension graph
is a commensurability invariant in certain classes of RAAGs [24]. There is also a related
graph called contact graph [15] which is quasi-isometric to the extension graph as proved
in [24], but with a quite different combinatorial structure.

Let P .�/ be the extension complex of � , which is the flag complex of the extension
graph introduced in [23]. We give an alternative but equivalent definition here. The vertices
of P .�/ are in 1-1 correspondence with the parallel classes of standard geodesics inX.�/
(two standard flats are in the same parallel class if they are parallel). Two distinct vertices
v1; v2 2 P .�/ are connected by an edge if for i D 1; 2, there is a standard geodesic `i
in the parallel class associated with vi such that `1 and `2 span a standard 2-flat. This
definition is equivalent to the definition in [23] as explained in [21, Lemma 4.2].

Note that edges in the same standard geodesics of X.�/ have the same label, and
edges in parallel standard geodesics also have the same label. This induces a well-defined
labeling of vertices in P .�/ by vertices of � . There is a label-preserving simplicial map
� W P .�/! F.�/, where F.�/ is the flag complex of � . Moreover, sinceG.�/Õ X.�/

by label-preserving cubical isomorphisms, we obtain an induced actionG.�/Õ P .�/ by
label-preserving simplicial isomorphisms.

Note that each complete subgraph in the 1-skeleton of P .�/ gives rise to a collec-
tion of mutually orthogonal standard geodesic lines. Thus there is a 1-1 correspondence
between the .k � 1/-simplexes in P .�/ and parallel classes of standard k-flats in X.�/
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[21, Section 4.1]. For standard flat F � X.�/, we denote the simplex in P .�/ associated
with the parallel class containing F by �.F /. For a standard subcomplex K � X.�/,
define �.K/ WD

S
�2ƒ�.F�/, where ¹F�º�2ƒ is the collection of standard flats in K.

Lemma 2.13. Let K1 and K2 be two standard subcomplexes. Then

(1) �.K1/ D �.K2/ if and only if K1 and K2 are parallel.

(2) �.K1/ � �.K2/ if and only if K1 is coarsely contained in K2.

Proof. It suffices to prove (1). As (2) follows from (1) and Lemma 2.12 (1). Suppose K1
and K2 are parallel. Let F � K1 be a standard flat. Then F1 is coarsely contained in K2;
hence by Lemma 2.12, there exists a standard flat F2 � K2 which is parallel to F1. Thus

�.F1/ D �.F2/ � �.K2/;

and we deduce that �.K1/ � �.K2/. Similarly, we know the inclusion on the other
direction, hence �.K1/ D �.K2/.

Now we assume�.K1/D�.K2/. Then each standard flat ofK1 is coarsely contained
inK2. Let 	.K1;K2/D .J1;J2/. Then each standard flat ofK1 is coarsely contained in J1
by Lemma 2.4 (4). By the same proof as Lemma 2.12, we know that if J1 ¨K1, then there
is a standard geodesic line in K1 which is not coarsely contained in J1. Thus K1 D J1.
Similarly, we can prove K2 D J2. Hence K1 and K2 are parallel.

Given arbitrary vertex p 2 X.�/, one can obtain a simplicial embedding

ip W F.�/! P .�/

by considering the collection of standard flats passing through p (where F.�/ denotes the
flag complex of �). We will denote the image of ip by .F.�//p . Note that � ı ip is the
identity map, which implies the following lemma.

Lemma 2.14. The map ip is an isometric embedding with respect to the combinatorial
distance between vertices of F.�/.

Now we look at the outer automorphism group Out.G.�// of G.�/. By [26, 31],
Out.G.�// is generated by the following four types of elements (we identify the vertex
set of � with a standard generating set of G.�/):

(1) Given vertex v 2 � , sending v ! v�1 and fixing all other vertices.

(2) Graph automorphisms of � .

(3) If lk.w/ � St.v/ for vertices w; v 2 � , sending w ! wv and fixing all other ver-
tices induce a group automorphism. It is called a transvection. When d.v;w/D 1,
it is an adjacent transvection, otherwise it is a non-adjacent transvection.

(4) Suppose � n St.v/ is disconnected. Then one obtains a group automorphism by
picking a connected component C and sending w ! vwv�1 for each vertex
w 2 C . It is called a partial conjugation.
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2.4. Special subgroups of RAAGs

We first consider the special case G.�/ Š Zn. Pick a finite rectangle K � Zn. Then
the finite index subgroup H D

Ln
iD1 niZ, where ni ’s are the number of vertices along

the edges of the rectangle, has K as its fundamental domain. This can be generalized
to all RAAGs in the following way. Let K � X.�/ be a compact convex subcomplex.
Let ¹`iºsiD1 be a maximal collection of standard geodesics such that `i \K ¤ ; for all i
and �.`i / ¤ �. j̀ / for any i ¤ j . We consider the left action G.�/ Õ X.�/. For each i ,
let gi 2 G.�/ be the unique element that translates `i toward the positive direction with
translation length D1 (recall that we have oriented edges of X.�/ in a G.�/-invariant
way). Let ni D jv.K \ `i /j.

Theorem 2.15 ([21, Section 6.1]). LetG �G.�/ be the subgroup generated by ¹gnii º
s
iD1.

Then the following hold:

(1) The subcomplex K is a “fundamental domain” for G in the sense that for
g1; g2 2 G, g1K \ g2K ¤ ; if and only if g1 D g2. Moreover, the G-orbit of K
covers the 0-skeleton of X.�/. Thus jG.�/ W Gj D the number of vertices in K.

(2) Let � 0 be the 1-skeleton of the full subcomplex of P .�/ spanned by ¹�.`i /ºsiD1.
Then G is isomorphic to the RAAG G.� 0/.

Such a group G is called a special subgroup of G.�/ (associated with K). Note that
the definition of special subgroups implicitly depends on the choice of standard generators
of G.�/ (we can think G.�/ as a fixed set, and different choices of standard generators
give different ways of building X.�/ from G.�/). A subgroup is S -special if it is special
with respect to the standard generating set S . In most parts of the paper, we fix a standard
generating set, so there will be no confusion.

Alternatively, G can be characterized as the fundamental group of the canonical com-
pletion [18] of the local isometry K ,! X.�/! S.�/. However, we will not need this
fact.

LetG.�/Š F2, the free group with two generators. We takeK to be an edge inX.�/.
Then the associated special subgroup G is isomorphic to F3. In this case, if we collapse
all the G-translations of K in X.�/, then the resulting space is isomorphic to the Cayley
graph for F3. Note that F3 is a special subgroup of F2 in the sense defined above. This
specific example can be generalized to all RAAGs in the following way.

Recall that a cellular map between cube complexes is cubical (see [6]) if its restric-
tion � ! � between cubes factors as � ! �! � , where the first map � ! � is a natural
projection onto a face of � and the second map �! � is an isometry.

Theorem 2.16 ([21, Lemma 6.18]). Let G, � and � 0 be as in Theorem 2.15. There is a
surjective cubical map q W X.�/! X.� 0/ such that

(1) The map q sends standard flats onto standard flats. Moreover, each standard flat
in X.� 0/ is the q-image of some standard flat in X.�/.
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(2) Pick a vertex x0 2 X.� 0/, then q�1.x0/ D g �K for some element g 2 G (where
K is the compact convex subcomplex of X.�/ defined above).

(3) The map q is G-equivariant. In particular, q is a quasi-isometry.

If we identify each left coset of standard Z subgroup of G.�/ and G.� 0/ with a copy
of Z (the identification is well defined up to a translation of Z), then Theorem 2.16 implies
that the restriction of q to a left coset of standard Z subgroup takes form

q.x/ D bx=dc C r

for some integers d and r which depends on the Z-coset. To see, denote the Z-coset
by `, and let `0 D q.`/. Theorem 2.16 (3) implies qj` is H -equivariant, where H is the
G-stabilizer of `0. AsH acts transitively on `0 and .qj`/�1.y/ is an interval for any y 2 `0,
the formula

qj`.x/ D bx=dc C r

follows.
We claim the map q in Theorem 2.16 maps parallel standard geodesics to parallel

standard geodesics. Indeed, this follows from that q is cubical if two parallel geodesics
are contained in the same standard flat. In general, we can interpolate any two parallel
standard geodesics in X.�/ with a chain of parallel standard geodesics in X.�/ such that
adjacent members in the chain are contained in the same standard flats. Then the claim
follows from Theorem 2.16 (1).

Thus q induces a map

q� W .P .�//
.0/
! .P .� 0//.0/:

Moreover, as q is quasi-isometry, it cannot map a pair of standard geodesics without finite
Hausdorff distance to a pair of standard geodesics with finite Hausdorff distance. Thus q�
is injective. From Theorem 2.16 (1) and the definition of P .�/, we also know that q� sends
adjacent vertices to adjacent vertices. Now the moreover part of Theorem 2.16 (1) implies
that q� is actually a bijection and extends to a simplicial isomorphism q� WP .�/!P .� 0/.

The following lemma can be viewed as a form of converse to Theorem 2.16.

Lemma 2.17. Suppose G.�/ and G.� 0/ are two RAAGs with a homomorphism i W

G.� 0/! G.�/. Suppose there exists a surjective cubical map q W X.�/! X.� 0/ such
that

(1) q is aG.� 0/-equivariant, where the actionG.� 0/Õ X.�/ is induced by i and the
left action G.�/ Õ X.�/.

(2) The q-image of a standard flat in X.�/ is a standard flat in X.� 0/ and the
restriction of q to a left coset of standard Z subgroup takes form

q.x/ D bx=dc C r

for some integers d � 1 and r which depends on the Z-coset.
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(3) q induces a simplicial isomorphism q� W P .�/! P .� 0/.

(4) q�1.x0/ is bounded for some vertex x0 2 X.� 0/.

Then i is injective, and i.G.� 0// is a special subgroup of G.�/.

Proof. Take a vertex x0 2 X.� 0/ representing the identity element of G.� 0/. It follows
from the proof of Theorem 5.12 (2) of [21] that K D q�1.x0/ is a convex subcomplex
(assumptions (2) and (3) as above are used here). As G.� 0/ acts transitively on the ver-
tex set of X.� 0/, by (1) and (4), q�1.y/ is bounded for any vertex y 2 X.� 0/. Thus K
is bounded, hence compact. Let ¹`iºsiD1, gi 2 G.�/ and ni D jv.K \ `i /j be as in the
beginning of Section 2.4. Let `0i D q.`i /, and let vi be the generator of G.� 0/ which
acts on `0i by translation. Note that vi ¤ vj if i ¤ j (as �.`i / ¤ �. j̀ / for any i ¤ j

and q� is an isomorphism). By assumption (1), i.vi / D g
ni
i . Let H be the standard sub-

group of G.� 0/ generated by ¹viºsiD1. By [21, Lemmas 6.3 and 6.4], i jH is injective with
finite index image. The lemma would follow if we know H D G.� 0/. If this is not true,
thenH is of infinite index inG.� 0/. Take point x0 2 X.� 0/ and x 2 X.�/ with q.x/D x0.
On one hand, as i.H/ is finite index in G.�/, the orbit i.H/ � x is cobounded in X.�/
(i.e., X.�/ is contained in a finite neighborhood of i.H/ � x), then we deduce from that q
is equivariant and Lipschitz that H � x0 is cobounded in X.� 0/. On the other hand, this
is impossible as H is of infinite index in G.�/. Thus we must have H D G.� 0/ and the
lemma is proved.

2.5. Coarse invariants for RAAGs

Here we summarize and generalize some results from [21].
Note that every join decomposition � D �1 ı �2 induces a direct sum decomposi-

tion G.�/ D G.�1/ ˚ G.�2/. The group G.�/ or the graph � is called irreducible if
� does not allow a non-trivial join decomposition. There is a well-defined de Rham
decomposition of X.�/ induced by the join decomposition of � , which is stable under
quasi-isometries.

Theorem 2.18 ([21, Theorem 2.9]). Given X D X.�/ and X 0 D X.� 0/, let

X D Rn �
kY
iD1

X.�i /

and

X 0 D Rn
0

�

k0Y
jD1

X.� 0j /

be the corresponding de Rham decomposition. If � W X ! X 0 is an .L;A/ quasi-isometry,
then n D n0, k D k0, and there exist constants

L0 D L0.L;A/; A0 D A0.L;A/; D D D.L;A/
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such that after re-indexing the factors in X 0, we have .L0; A0/ quasi-isometry

�i W X.�i /! X.� 0i /

so that

d

�
p0 ı �;

kY
iD1

�i ı p

�
< D;

where

p W X !

kY
iD1

X.�i /

and

p0 W X 0 !

kY
iD1

X.� 0i /

are the projections.

Note that when there is no Euclidean de Rham factor, the above theorem basically says
that any quasi-isometry between X and X 0 is a product of quasi-isometries between their
factors.

We are particularly interested in those standard subcomplexes that are stable under
quasi-isometries.

Definition 2.19. A subgraph �1�� is stable in � if �1 is a full subgraph and for any stan-
dard subcomplexK �X.�/with �K D �1 and .L;A/-quasi-isometry q WX.�/!X.� 0/,
there exists D D D.L;A;�1; �/ > 0 and standard subcomplexK 0 � X.� 0/ such that the
Hausdorff distance

dH .q.K/;K
0/ < D:

A standard subcomplex K � X.�/ is stable if its support is a stable subgraph of � .

Remark 2.20. We caution the reader that the above definition of stable standard sub-
complex is different from “stable subgroups” defined in [12]. In particular, a stable
subcomplex in the sense of Definition 2.19 does not have to be Gromov hyperbolic, and
quasi-geodesics connecting points inside a stable standard subcomplex Y with uniform
quasi-isometric constants do not have to stay in a uniform neighborhood of Y .

It is clear that the intersection of two stable subgraphs is still a stable subgraph.
See [21, Section 3.2] for more properties about stable subgraphs. In this paper, we will
use the following two properties repeatedly.

Lemma 2.21 ([21, Lemma 3.24]). Let � be a finite simplicial graph and pick stable sub-
graphs �1; �2 of � . Let x� be the full subgraph spanned by V and V ?, where V is the
vertex set of �1. If �2 � x� , then the full subgraph spanned by the vertices in �1 [ �2 is
stable in � .
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Lemma 2.22. Suppose there is no non-adjacent transvection in Out.G.�//. Then every
maximal clique subgraph of � is stable.

A slightly weaker reformulation of the above lemma is the following. If each automor-
phism of G.�/ preserves maximal standard flats up to finite Hausdorff distance, then so
does each quasi-isometry of G.�/.

Proof. Let �1 � � be a maximal clique. By [21, Theorem 3.35], it suffices to prove for
any vertices v 2 �1 and w 2 � , v? 2 St.w/ implies w 2 �1. Note that v? 2 St.w/ implies
w 2 v? since there is no non-adjacent transvection. Then w and vertices of �1 span a
clique in � , thus w 2 �1 by the maximality of �1.

Let� be the map sending standard subcomplexes ofX.�i / to subcomplexes of P .�i /

defined in Section 2.3. Let �.P .�// be the collection of subcomplexes of P .�/ which
are �-images of stable standard subcomplexes in X.�/ (we assume the empty set is also
in �.P .�//).

Lemma 2.23. Any quasi-isometry q W X.�1/! X.�2/ induces a well-defined bijection
zq� W �.P .�1//! �.P .�2//.

Proof. Pick elementM 2 �.P .�1//, and letK1 � X.�1/ be a standard subcomplex such
that �.K1/ DM . Then we define zq� to be �.K2/, where K2 � X.�2/ is a standard sub-
complex which is at finite Hausdorff distance from q.K1/. Note that K2 is also stable,
so

�.K2/ 2 �.P.�2//:

If we choose another standard subcomplex K 01 � X.�1/ such that �.K 01/ D M and
choose another standard subcomplex K 02 � X.�/ which is at finite Hausdorff distance
from q.K 01/, then Lemma 2.13 implies K1 and K 01 are parallel. Hence K2 and K 02 are
coarsely equivalent. Then Lemma 2.12 implies K2 and K 02 are parallel, and Lemma 2.13
implies �.K2/ D �.K 02/. Thus zq� is well defined. By considering the quasi-isometry
inverse of q, we know zq� is a bijection.

Lemma 2.24. The set �.P .�1// is closed under intersection. Moreover, for M;M 0 2
�.P .�1//, we have

(1) zq�.M/ \ zq�.M
0/ D zq�.M \M

0/.

(2) M �M 0 if and only if zq�.M/ � zq�.M
0/.

Proof. First we show M \M 0 2 �.P.�1//. For i D 1; 2, let K1 and K 01 be stable stan-
dard subcomplexes of X.�1/ such that�.K1/DM and�.K 01/DM

0. Let 	.K1;K
0
1/D

.J1; J
0
1/. Since we already know J1 is a standard subcomplex by Lemma 2.10, it remains

to show �.J1/ DM \M
0 and J1 is stable.

Since J1 is coarsely contained in K 01 and K1, it follows from Lemma 2.13 (2) that
�.J1/�M \M

0. Now pick simplex s �M \M 0, and let Fs be a standard flat inX.�1/
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with �.Fs/ D s. Then Fs is coarsely contained in K1 and K 01. By Lemma 2.4 (4), for R
large enough, we have

dH .J1; NR.K1/ \NR.K
0
1// <1; (2.2)

where dH is the Hausdorff distance. By taking R large enough, we conclude that Fs is
coarsely contained in J1, thus s � �.J1/ by Lemma 2.13 (2) and

M \M 0 � �.J1/:

Now we show J1 is stable. Let K 02 and K2 be standard subcomplexes in X.�2/ which are
Hausdorff close to q.K 01/ and q.K1/, respectively. Let

	.K2; K
0
2/ D .J2; J

0
2/:

Then
dH .J2; NR.K2/ \NR.K

0
2// <1

by Lemma 2.4 (4). This, together with (2.2), implies

dH .q.J1/; J2/ <1:

Since J2 is a standard subcomplex by Lemma 2.10, we know J1 is a stable standard
subcomplex. Moreover,

zq�.M/ \ zq�.M
0/ D �.K2/ \�.K

0
2/ D �.J2/ D zq�.�.J1// D zq�.M \M

0/:

It remains to prove (2). The only if direction follows from (1) and the if direction
follows by considering the quasi-isometry inverse of q.

A subcomplex of P .�1/ (or P .�2/) is stable if it is a member of �.P .�1// (or
�.P .�2//). Then the map zq� defined in Lemma 2.23 induces a 1-1 correspondence
between stable k-simplexes in P .�1/ and stable k-simplexes in P .�2/.

The following result is the starting point of this paper.

Theorem 2.25. Let q W X.�1/! X.�2/ be a quasi-isometry. Suppose Out.G.�1// does
not contain any non-adjacent transvection. Then there exists a simplicial embedding
q� W P .�1/! P .�2/ such that for any stable simplex s � P .�/, we have

q�.s/ D zq�.s/: (2.3)

If we also assume Out.G.�2// does not contain any non-adjacent transvection, then q� is
a simplicial isomorphism.

Proof. For i D 1; 2, let Vk
i be the collection of vertices of P .�i / which are inside some

stablem-simplex of P .�/ for 0�m� k. By Lemma 2.22, Vn�1
1 is exactly the 0-skeleton

of P .�1/, where n D dim.X.�1// D dim.X.�2//.
We first construct q� from the 0-skeleton of P .�1/ to the 0-skeleton of P .�2/ induc-

tively as follows: define q�.v/D zq�.v/ for v 2V0
1 and suppose we have already defined q�

on Vk
1 such that
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(�) For any stable simplex s � P .�1/, q� is a bijection from Vk
1 \ s to Vk

2 \ zq�.s/.

By Lemmas 2.23 and 2.24, q� restricted on V0
1 satisfies (�) for k D 0.

Now we define q� on VkC1
1 . Pick a stable .k C 1/-simplex skC1 � P .�1/. If all ver-

tices of skC1 belong to Vk
1 , then we do not need to do anything. Otherwise, we pick

vertex v 2 skC1 n Vk
1 . Note that skC1 is the only stable .k C 1/-simplex of P .�1/ that

contains v (if there is a distinct stable .k C 1/-simplex skC11 � P .�1/ with v 2 skC11 ,
then v 2 skC11 \ skC1, which is a stable simplex of dimension �k by Lemma 2.24. This
implies v 2 Vk

1 , which is a contradiction). By inductive assumption, vertices in skC1 nVk
1

and vertices in zq�.skC1/ n Vk
2 have the same cardinality, so we can choose an arbitrary

bijection between them.
Now we have q� defined on VkC1

1 , and it remains to verify (�). Given a stable
simplex s � P .�/, let ¹siºdiD1 be the collection of stable .k C 1/-simplexes of P .�1/

such that si � s. By Lemma 2.24 (2), ¹zq�.si /ºdiD1 is exactly the collection of stable
.k C 1/-simplexes of P .�2/ contained in zq�.s/. Then VkC1

1 \ s is the vertex set of

.Vk
1 \ s/ [

� d[
iD1

si

�
;

and
VkC1
2 \ zq�.s/

is the vertex set of

.Vk
1 \ zq�.s// [

� d[
iD1

zq�.si /

�
:

By our construction of q�, it maps vertices in si bijectively to vertices in zq�.si /. Thus q�
maps VkC1

1 \ s surjectively to VkC1
2 \ zq�.s/. It remains to check injectivity. Pick two

points v; v0 2 VkC1
1 \ s. The case v; v0 2 Vk

1 follows from induction. Now we consider
the case v; v0 … Vk

1 , and they are contained in different si ’s (for simplicity we assume
v 2 s1 and v0 2 s2). By construction of q�, we have

q�.v/ 2 zq�.s1/ n Vk
2

and
q�.v

0/ 2 zq�.s2/ n Vk
2 :

If q�.v/ D q�.v0/, then zq�.s1/ \ zq�.s2/ contains a point outside Vk
2 . On the other hand,

by Lemma 2.24 (1),
zq�.s1/ \ zq�.s2/ D zq�.s1 \ s2/;

which is a stable simplex of dimension �k. Thus every vertex of

zq�.s1/ \ zq�.s2/

is in Vk
2 , which is a contradiction. Thus we must have q�.v/ ¤ q�.v0/ in this case. The

other cases are actually simpler and can be handled similarly.
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Up to now, we have defined q� on the 0-skeleton such that for each stable simplex
s � P .�/, q� maps vertices in s bijectively to vertices in zq�.s/. Next we show such q�
is injective. Pick distinct vertices v1; v2 in P .�1/; if d.v1; v2/ D 1, then by applying (�)
to the maximal simplex containing v1 and v2 (recall that each maximal simplex is stable
by our assumption), we have d.q�.v1/; q�.v2// D 1. If d.v1; v2/ � 2, let si be a maximal
simplex containing vi for i D 1; 2. Then

zq�.s1/ \ zq�.s2/ D zq�.s1 \ s2/

by Lemma 2.24 (1). By (�), q� maps vertices in s1 \ s2 bijectively to vertices of
zq�.s1 \ s2/. Since v1 … s1 \ s2, we apply (�) to s1 to deduce that

q�.v1/ 2 zq�.s1/ n zq�.s1 \ s2/ D zq�.s1/ n .zq�.s1/ \ zq�.s2// D zq�.s1/ n zq�.s2/:

On the other hand, applying (�) to s2 implies q�.v2/ 2 zq�.s2/. Thus

q�.v1/ ¤ q�.v2/:

We have already seen if d.v1; v2/D 1, then d.q�.v1/; q�.v2//D 1. Thus q� naturally
extends to an injective map on the 1-skeleton. Since P .�1/ and P .�2/ are flag complexes,
we can further extend q� to obtain the required simplicial embedding.

Now we assume Out.G.�2// does not contain non-adjacent transvection. Then Vn�1
2

is the 0-skeleton of P .�2/. Thus q� is surjective on 0-skeleton. We claim q� is an iso-
morphism between the 1-skeleton of P .�1/ and the 1-skeleton of P .�2/. It suffices to
show if d.q�.v1/; q�.v2// D 1, then d.v1; v2/ D 1. However, this follows by consider-
ing a maximal simplex in P .�2/ (which is also stable) containing q�.v1/ and q�.v2/
and applying (�). Now we know q� is a simplicial isomorphism on the whole complex
since P .�1/ and P .�2/ are flag complexes.

Corollary 2.26. Let q W X.�1/! X.�2/ be a quasi-isometry. Suppose Out.G.�1// does
not contain any non-adjacent transvection, and let q� be the map defined in Theorem 2.25.
Then for any subcomplex M 2 �.P .�1//,

q�.M/ � zq�.M/ and M D q�1� .zq�.M//: (2.4)

If we also assume Out.G.�2// does not contain any non-adjacent transvection, then

q�.M/ D zq�.M/ (2.5)

for any subcomplex M 2 �.P .�1//.

Proof. Since each maximal simplex in P .�1/ is stable, the intersection of such simplex
with M is also stable by Lemma 2.24. Since P .�1/ is a union of its maximal sim-
plexes, M is a union of stable simplexes. Now the first inclusion of (2.4) follows from
Lemma 2.24 (2) and (2.3).
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Now we prove the second equality of (2.4). Suppose there exists vertex v … M such
that q�.v/2 zq�.M/. Let sv be the minimal stable simplex of P .�1/ such that v 2 sv (recall
that the collection of stable simplexes is closed under intersection by Lemma 2.24, and
any maximal simplex which contains v is stable, so sv is well defined). By (2.3), q�.v/ 2
zq�.sv/. By Lemma 2.24 (2) and (2.3), zq�.sv/ is the minimal stable simplex in P .�2/ that
contains q�.v/. Since zq�.sv/ \ zq�.M/ is also a stable simplex containing q�.v/, we have

zq�.sv/ � zq�.M/:

Thus sv �M by Lemma 2.24 (2), which is contradictory to v 2M .
Now we assume Out.G.�2// does not contain non-adjacent transvection. Then zq�.M/

is a union of stable simplexes by the same argument as before. By Lemma 2.24 (2), there
is a 1-1 correspondence between stable simplexes in M and stable simplexes in zq�.M/.
Thus (2.5) follows from (2.3).

2.6. Visible isomorphisms between extension complexes

It is natural to ask to what extent the converse of Theorem 2.25 is true, namely, suppose ˛ W
P .�/! P .� 0/ is a simplicial isomorphism, does ˛ induce a map from G.�/! G.� 0/?
Here is a natural construction. We identify G.�/ and G.� 0/ with the 0-skeleton of X.�/
and X.� 0/, respectively. Pick vertex p 2 G.�/, let ¹FiºniD1 be the collection of maximal
standard flats containing p. For each i , let F 0i � X.�

0/ be the unique maximal standard
flat such that �.F 0i / D ˛.�.Fi //. One may wish to map p to

Tn
iD1 F

0
i , which motivates

the following definition.

Definition 2.27. The simplicial isomorphism ˛ W P .�/! P .� 0/ is defined to be visible
if
Tn
iD1 F

0
i ¤ ; for any p 2 G.�/.

IfG.�/ has trivial center and ˛ is visible, then it is easy to see ˛ induces a unique map
˛� W G.�/! G.� 0/. To see this, recall that by [31], G.�/ has trivial center if and only
if � is not contained in the closed star of one of its vertices. Let ¹FiºniD1 and ¹F 0i º

n
iD1 be

as in the above discussion. Since the intersection of all maximal cliques in � is empty, we
have

Tn
iD1�.Fi / D ;, hence

Tn
iD1�.F

0
i / D ;. Thus p is the only point in

Tn
iD1 Fi andTn

iD1 F
0
i contains at most one point. However, the visibility implies

Tn
iD1 F

0
i is exactly

one point. We define this point to be ˛�.p/.
If G.�/ has non-trivial center, then

Tn
iD1 Fi and

Tn
iD1 F

0
i correspond to cosets of

centralizers of G.�/ and G.� 0/, respectively. The map ˛ only tells us which coset go to
which coset. In order to define ˛� W G.�/! G.� 0/, we need to choose a map for each
coset. Thus ˛� is not uniquely defined.

A sufficient condition for ˛ to be visible has been provided previously in [21,
Lemma 4.10]. Here we will find a necessary and sufficient condition for the visibility
of ˛.
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3. The structure of extension complex

In this section, we introduce the classes of RAAGs we want to investigate, namely weak
type II and type II (Definition 3.4), and weak type I (Definition 3.19). The bulk of this
section is on the structure of extension complexes for RAAGs of (weak) type II and
quasi-isometries invariance of (weak) type II. The application of this to quasi-isometric
classification of RAAGs of weak type I will be discussed at the end of the section. In
particular, Theorem 1.2 is proved in Section 3.3.

Throughout this section, we identify � with the 1-skeleton of F.�/, and we will
implicitly use Lemma 2.1 in various places.

3.1. Tiers and branches of the extension complex

Let � W P .�/! F.�/ be the label-preserving simplicial map in Section 2.3.
Pick a standard geodesic ` � X.�/, and let �` W X.�/! ` be the CAT.0/ projection

onto `. Suppose `1 � X.�/ is a standard geodesic such that d.�.`1/; �.`// � 2. Then
�`.`1/ is a vertex in ` by Lemmas 2.10 and 2.11. Moreover, if `2 is a standard geodesic
parallel to `1, then �`.`1/D�`.`2/ (see [21, Lemma 6.2]). Thus �` induces a well-defined
map ��.`/ from the v.P .�/ n St.�.`///, the set of vertices in P .�/ n St.�.`//, to v.`/.

Lemma 3.1 ([21, Lemma 6.2]). If v1 and v2 are in the same connected component of
P .�/ n St.�.`//, then ��.`/.v1/ D ��.`/.v2/.

The following definition plays a central role in our understanding of the extension
complex.

Definition 3.2. Pick v 2 P .�/, and let ` � X.�/ be a standard geodesic such that
�.`/ D v. Let

��.`/ W v.P .�/ n St.v//! v.`/

be the map in Lemma 3.1. A v-tier is the full subcomplex spanned by ��1
�.`/

.x/, where x
is a vertex in ` and x is called the height of the v-tier. A v-branch is the full subcomplex
spanned by vertices in one connected component of P .�/ n St.v/.

By Lemma 3.1, a v-branch has non-empty intersection with a v-tier if and only if it
belongs to the v-tier, thus a v-tier consists of disjoint union of v-branches. Note that a
simplicial isomorphism ˛ W P .�1/! P .�2/ will map branches to branches. However, as
we will see later (in Section 6.1), ˛ may not map tiers to tiers.

Lemma 3.3. Suppose ˛ W P .�1/! P .�2/ is a simplicial isomorphism. If the ˛-image of
any v-tier of P .�1/ is inside a single ˛.v/-tier of P .�2/, then ˛ is visible.

Proof. Let p, ¹FiºniD1 and ¹F 0i º
n
iD1 be as in Definition 2.27. By Lemma 2.2, it suffices

to show F 0i \ F
0
j ¤ ; for any i ¤ j . Suppose ˛ is not visible. Then there exists a hyper-

plane h separating F 0i and F 0j . Let `0 be a standard geodesic dual to h, and let v0 D �.`0/.
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Note that F 0i does not contain any line which is parallel to `0, otherwise h would have
non-trivial intersection with F 0i . Let �`0.F 0i / be the CAT.0/ projection of F 0i to `0. Then
�`0.F

0
i / is a point. Similarly, �`0.F 0j / is a point. Since h separates F 0i and F 0j , we have

�`0.F
0
i / ¤ �`0.F

0
j /:

The maximality of F 0i and F 0j implies there exist vertices v01 2�.F
0
i / and v02 2�.F

0
j / such

that v0i … St.v0/ for i D 1;2. Since �`0.F 0i /¤�`0.F
0
j /, v

0
1 and v02 are in different v0-tiers. On

the other hand, we claim ˛�1.v01/ and ˛�1.v02/ are in the same ˛�1.v0/-tier, which would
give a contraction. To see the claim, note that ˛�1.v0i / can be represented by a standard
geodesic `i � Fi for i D 1;2. Since both Fi and Fj contain p, we can assume p 2 `1 \ `2.
Then the CAT.0/-projection of `1 and `2 to any standard geodesic representing ˛�1.v0/
is the same. Thus ˛�1.v01/ and ˛�1.v02/ are in the same ˛�1.v0/-tier.

The main goal of this subsection is Corollary 3.13, where we characterize v-branches
in a v-tier for a certain class of � defined as follows.

Definition 3.4. A graph � is of type II if � is connected and for every pair of distinct ver-
tices v;w 2 � , � n .lk.v/\ lk.w// is connected. The graph � is said to have weak type II
if � is connected and for vertices v;w 2 � such that d.v; w/ D 2, � n .lk.v/ \ lk.w// is
connected.

We say P .�/ is of type II if P .�/ is connected and for every pair of distinct vertices
v; w 2 P .�/, we know .P .�//.1/ n .lk.v/ \ lk.w// is connected. We define P .�/ as
being weak type II in a similar way.

We say G.�/ or F.�/ is of (weak) type II if � is of (weak) type II.

Note that � is connected if it is of (weak) type II.

Example 3.5. A pentagon is a graph of type II. A slightly more complicated example of
graph of type II is a 5-cycle and a 6-cycle identified along a closed star. However, a path
of length 3 (or more generally a tree of diameter �3) is not of weak type II. In the follow-
ing discussions and proofs, it would be helpful to have these basic examples in mind and
compare them.

Let v 2P .�/ be a vertex, and let `�X.�/ be a standard geodesic such that�.`/D v.
Define Pv to be the parallel set P` of `. Note that Pv does not depend on the choice of
the standard geodesic ` with�.`/D v. A subsetK � Pv is horizontal if �`.K/ is a point
(where �` W X.�/! ` is the CAT.0/ projection) and �`.K/ is called the height of K.

Let xv 2 � be the label of v 2 P .�/. Then Pv is a standard subcomplex whose support
(Definition 2.9) is St.xv/.

Lemma 3.6. Suppose that � is of weak type II. Pick vertices v; w 2 P .�/ such that
d.v;w/ D 2. Let u 2 v? \ w?. Then there exists a vertex w0 such that
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(1) d.v;w0/ D 2 and d.u;w0/ D 1.

(2) w0 and w are in the same v-branch.

(3) Pv \ Pw 0 ¤ ;.

In particular, every v-branch contains a vertex w0 such that Pw 0 \ Pv ¤ ;.

Proof. Let B be a v-branch containing w. Pick vertex x 2 Pw \ Pu, and let y 2 Pv
be the nearest vertex to x with respect to the `1-metric. The existence and uniqueness
of such vertex follow from [18, Lemma 13.8]. Let us assume x ¤ y, otherwise we are
done by putting w0 D w. Let ! be a combinatorial geodesic connecting x and y. We
claim ! � Pu. By Lemma 2.3, it suffices to show y 2 Pu. However, this follows by
applying [18, Lemma 13.8] with C 0 D Pv and C D Pu.

Let ¹xiºniD0 be vertices in ! such that for 0 � i � n � 1, Œxi ; xiC1� is a maximal
sub-segment of ! that is contained in a standard geodesic (x0 D x and xn D y). Denote
the standard geodesic containing Œxi ; xiC1� by `i , and let vi D �.`i / for 0 � i � n � 1.
Since ! is the shortest combinatorial geodesic connecting x and some vertex in Pv , every
dual hyperplane of some edge in ! must separate x and Pv . Thus for each i , there exists
a hyperplane dual to `i which does not intersect Pv . It follows that

d.vi ; v/ � 2 (3.1)

for all i . Since `i � Pu, we also have

d.vi ; u/ D 1: (3.2)

Let � W P .�/! F.�/ be the projection mentioned at the beginning of this section. Since
`n�1 \ Pv ¤ ;, it follows from (3.1) and (3.2) that

d.�.vn�1/; �.v// D 2: (3.3)

We claim v0 2 B . Let Kx0 D .F.�//x0 (i.e., Kx0 is the subcomplex of P .�/ made
of simplexes which come from standard flats passing x0, see the paragraph before
Lemma 2.14). First we show Kx0 \ St.v/ is contained in the intersection of the links
of two vertices. Pick vertex s 2 Kx0 \ St.v/, and let `s be the standard geodesic such
that x0 2 `s and �.`s/ D s. Let h be a hyperplane dual to `n�1 such that it separates x0
from Pv . Then h \ `s D ; by (3.1) (note that if h \ `s ¤ ;, then s D vn�1), hence h
separates `s from Pv . It follows from Lemmas 2.10 and 2.11 that

�.s/ 2 .�.vn�1//
?
\ .�.v//?:

Let K be the full subgraph of � spanned by .�.vn�1//? \ .�.v//?. Then t … St.v/ for
any vertex t 2 Kx0 such that �.t/ … K.

By (3.3),K does not separate � , so if �.w/ …K and �.v0/ …K, then they can be con-
nected by an edge path outsideK, which lifts to a path inKx0 connectingw and v0 outside
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St.v/, thus v0 2 B . If �.w/ … K and �.v0/ 2 K, then we connect �.w/ and �.vn�1/ by
an edge path outside K, and then connect �.vn�1/ and �.v0/ by an edge; this path also
lifts to a path inKx0 connecting w and v0 outside St.v/. The other cases can be dealt with
in a similar way. We can repeat this process and argue inductively that actually vi 2 B for
0 � i � n � 1, then the lemma follows by taking w0 D vn�1.

Lemma 3.7. Suppose � is of weak type II. Take vertices v 2 P .�/ and x 2 X.�/. If
there exist two vertices v1; v2 2 .F.�//x such that they are in different v-branches, then
v 2 .F.�//x .

Proof. If this is not true, then x … Pv . We take a combinatorial geodesic of the shortest
length from x to a vertex in Pv and repeat the above argument to see that .F.�//x n St.v/
is connected, which contradicts that v1 and v2 are in different v-branches.

Lemma 3.8. Suppose � is an arbitrary finite simplicial graph. Let v 2 P .�/ be a vertex,
and let v1; v2 2 P .�/ n St.v/ be two vertices such that Pvi \ Pv ¤ ; for i D 1; 2. Sup-
pose xvD �.v/. If �.v1/ and �.v2/ are in different connected components of F.�/ n St.xv/,
then v1 and v2 are in different v-branches.

Proof. For i D 1; 2, let `i be a standard geodesic such that �.`i / D vi and `i \ Pv ¤ ;.
We prove the lemma in two steps. In the first step, we will show that if we assume v1
and v2 are in the same v-branch, then there exist vertices x 2 `1 n Pv and y 2 `2 n Pv
such that they can be connected by an edge path outside Pv . In the second step, we will
show x and y cannot be connected by an edge path outside Pv . Such contradiction will
finish the proof.

Step 1. Note that `1 \ Pv and `2 \ Pv are of the same height, otherwise v1 and v2 are
in different v-tiers, hence are in different v-branches. Let ¹wiºniD1 � P .�/ n St.v/ be
vertices such that d.wi ; wiC1/ D 1, w1 D v1 and wn D v2. Pick x D x1 to be any ver-
tex in `1 n Pv . For 1 � i � n � 1, let r 0i be a standard geodesic with �.r 0i / D wi and
r 0i \ PwiC1 ¤ ; (set r 0n D `2). Let !1 be horizontal edge path in Pw1 connecting x1 and a
vertex x2 2 r 01. Note that !1 \Pv D; sincePv \Pw1 is either empty or horizontal inPw1 .
Let r2 be the standard geodesic such that x2 2 r2 and �.r2/ D w2. If Pw2 \ Pv D ; or
Pw2 \ Pv and x2 have different heights in Pw2 , then let !2 be a horizontal edge path
joining x2 and a vertex x3 2 r 02. If Pw2 \ Pv and x2 have the same height in Pw2 , then
let !02 be an edge in r2 joining x2 and another vertex x02, and let !002 be a horizontal edge
path joining x02 and a vertex x3 2 r 02. Set !2 D !02 [ !

00
2 ; it is clear that !2 \ Pv D ; in

both cases. We can define !i and xiC1 for 3 � i � n in the same way. Let y D xnC1 and
the first step follows.

Step 2. Let C1 be the component of F.�/ n St.xv/ that contains �.v1/ and C2 be the union
of all other components. For i D 1; 2, let �i be the full subgraph spanned by vertices in
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Ci [ St.xv/. Then St.xv/ D �1 \ �2. Let S.St.xv// and S.lk.xv// be the Salvetti complexes
with defining graphs St.xv/ and lk.xv/, respectively. Note that

S.St.xv// Š S.lk.xv// � S1:

Note that S.St.xv// sits naturally in S.�1/ and S.�2/, we can obtain S.�/ by gluing S.�1/
and S.�2/ along S.St.xv//.

Now we glue S.�1/ and S.�2/ in a different way to obtain a new space xS.�/ as fol-
lows. For a reason which will be clear shortly, we assume the �1 factor in S.St.xv// has
lengthD 4� . Let h be an isometry of S.St.xv//which is identity on the S.lk.xv// factor and
is a rotation of degree D 2� on the S1 factor. Now we glue S.�1/ and S.�2/ using the
isometry h to obtain xS.�/. Note that there is a homotopy equivalence g W xS.�/! S.�/

induced by collapsing the interval Œei0; ei2� � in the S1 factor of S.St.xv// to one point
(see the following picture, where the black part is collapsed). It lifts to a cubical map
zg W xX.�/! X.�/.

Let M � Pv be the standard subcomplex such that `1 \ Pv � M and the support
of M satisfies �M D lk.xv/. Then there exists a unique hyperplane xh � xX.�/ such that
zg.xh/ D M . For i D 1; 2, let x̀i � xX.�/ be the unique geodesic such that zg. x̀i / D `i .
Then x̀1 and x̀2 have non-empty intersection with zg�1.Pv/. Since zg�1.Pv/ is a lift of
S.St.xv// in xX.�/, and �.�.`i // 2 Ci for i D 1; 2, we know that x̀1 and x̀2 are sepa-
rated by xh. Let ! D

Sn
iD1 !i be the edge path connecting x and y in the previous step.

Note that the inverse image of each edge in X.�/ under zg is either an edge or a square;
the inverse image of each vertex is either a vertex or an edge. Then zg�1.!/ is a com-
pact connected subcomplex of X.x�/. Since ! \ Pv D ;, zg�1.!/\ zg�1.Pv/ D ;. Hence
zg�1.!/\ xhD;. Moreover, zg�1.!/\ x̀i ¤; for i D 1;2, which contradicts the separation
property of xh.

The following observation follows from Step 2 of the proof of Lemma 3.8.

Lemma 3.9. Let � be arbitrary. Let ! � X.�/ be an edge path joining vertices x1; x2 2
Pv , and suppose ! n ¹x1; x2º stays inside one component of X.�/ n Pv . Then

(1) x1 and x2 are of the same height in Pv .

(2) For i D 1; 2, let ei � ! be the edge containing xi , and let xvi 2 � be the label
of ei . Then xv1 and xv2 are in the same component of � n St.xv/.

Let v 2 P .�/ be a vertex, and let xv D �.v/ 2 � . Let C be a component of � n St.xv/.
We define @C to be the full subgraph spanned by vertices in xC n C , where xC is
the closure of C . Equivalently, @C is the full subgraph spanned by vertices in ¹u 2
� n C j there exists vertex w 2 C such that d.w; u/ D 1º. Similarly, for every v-branch
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B � P .�/, we define the boundary of B , denoted by @B , to be the full subcomplex
spanned by vertices in

¹u 2 P .�/ n B j there exists vertex w 2 B such that d.w; u/ D 1º:

Equivalently, @B is the full subcomplex spanned by

¹u 2 St.v/ j there exists vertex w 2 B such that d.w; u/ D 1º:

Such @B is called a v-peripheral subcomplex of P .�/. We caution the reader that B [ @B
may not be equal to the closure of B .

A subcomplexK � Pv is called a v-peripheral subcomplex (of type @C ) ifK is a stan-
dard subcomplex and �K D @C for some componentC of � n St.xv/. If the vertex set of @C
is properly contained in xv?, then there are infinitely many v-peripheral subcomplexes of
type @C which are of the same height.

Example 3.10. We give an example of v-peripheral subcomplex. Let � be a pentagon and
xv 2 � be a vertex. Pick a lift v 2 P .�/ of xv. Then Pv is isometric to R � T4, where T4
is the 4-valence tree. Note that � n St.xv/ only have one component C and @C D lk.xv/.
So any standard subcomplex of Pv whose support is lk.xv/ is a v-peripheral subcomplex
of type @C . In our case, v-peripheral subcomplexes are those T4-slices in R � T4. For a
given height, there is only one v-peripheral subcomplex of type @C .

Lemma 3.11. Let � be arbitrary. Let x1; x2; xv1; xv2; ! and Pv be as in Lemma 3.9, and
let C be the component of � n St.xv/ containing xv1 and xv2. Then x1 and x2 are in the same
v-peripheral subcomplex of type @C .

Proof. For i D 1; 2, let Ki be the v-peripheral subcomplex of type @C such that xi 2 Ki .
Note that K1 and K2 are horizontal subcomplexes of P .�/ of the same height. We argue
by contradiction and suppose K1 ¤ K2. Then K1 \ K2 D ;. We claim there exists an
edge e 2 Pv such that its label ve does not belong to @C and the hyperplane dual to e
separates K1 from K2. To see this, pick vertices x 2 K1 and y 2 K2 such that

d.x; y/ D d.K1; K2/:

Let !1 be a combinatorial geodesic joining x and y. Then !1 � Pv by Lemma 2.3. More-
over, every hyperplane dual to some edge in !1 separatesK1 andK2. Thus there exists an
edge e 2 !1 such that ve … @C , otherwise we would have !1 � K1.

Let he be the hyperplane dual to e, and let Nhe be the carrier of he . Then he sepa-
rates x1; x2, and there exists an edge e0 � ! parallel to e (! is the path in Lemma 3.9).
Pick endpoint y 2 e0, and let !2 � Nhe be an edge path of the shortest combinatorial
length connecting y and Pv \Nhe . Let x3 be the other endpoint of !2, and let e00 � !2 be
the edge containing x3. Then d.ve00 ; ve/ D 1 (ve00 is the label of e00), and it follows from
ve … @C that

ve00 … C: (3.4)
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Let !3 be an edge path connecting x1 and x3 obtained by first following ! from x1
to y, then following !2 until x3. Then applying Lemma 3.9 to !3 yields a contradiction
to (3.4).

Corollary 3.12. Suppose � is connected. Let v and xv be as in Lemma 3.8, and pick a
component C of � n St.xv/. Suppose K1 and K2 are two distinct v-peripheral subcom-
plexes of type @C and they have the same height. Let w1; w2 2 P .�/ n St.v/ be vertices
such that �.wi / 2 C for i D 1; 2. Suppose Pwi \Ki ¤ ; for i D 1; 2. Then w1 and w2
are in different v-branches.

Proof. For i D 1; 2, let `i be a standard geodesic such that `i \Ki ¤ ; and �.`i / D wi .
If w1 and w2 are in the same v-branch, then the argument in the second paragraph of the
proof of Lemma 3.8 implies there exists an edge path ! � X.�/ n Pv connecting a vertex
in `1 n Pv to a vertex in `2 n Pv . Then it follows from Lemma 3.11 that K1 D K2, which
is a contradiction.

Corollary 3.13. Suppose � is of weak type II. Let v and xv be as before, and let ` � X.�/
be a standard geodesic such that �.`/ D v. Pick vertex x 2 `, then

(1) There is a 1-1 correspondence between v-branches in the v-tier of height x and
pairs .C; K/, where C is a component in � n St.xv/ and K is a v-peripheral
subcomplexes in X.�/ of height x such that �K D @C . Moreover, let B be the
v-branch corresponding to .C;K/. Then @B D �.K/.

Now we assume � is of type II, then the following hold:

(2) For every v-peripheral subcomplex A � P .�/, there exists a unique v-peripheral
subcomplex K � X.�/ of height x such that �.K/ D A.

(3) Let A be as in (2). Then there are only finitely many v-branches with boundary
equal to A in a v-tier.

(4) Let v1; v2 2 P .�/ be two different vertices and Bi � P .�/ be a vi -branch for
i D 1; 2. Then B1 ¤ B2.

(5) Let v1; v2 be as above. Then P .�/ n .lk.v1/ \ lk.v2// is connected.

Proof. For i D 1; 2, pick pairs .Ci ; Ki / as above, let wi 2 P .�/ be a vertex such that
�.wi / 2 Ci and Pwi \ Ki ¤ ;; we claim w1 and w2 are in the same v-branch if and
only if C1 D C2 and K1 D K2. Assuming the claim, then the first part of (1) follows
from Lemma 3.6. The only if direction follows from Lemma 3.8 and Corollary 3.12. For
the other direction, pick vertex xi 2 Pwi \ Ki ; it suffices to consider the case when x1
and x2 are joined by an edge e � K1. Let `e be the standard geodesic containing e, and
let ve D �.`e/. Then �.ve/ 2 @C1, and there exists xu 2 C1 such that

d.xu; �.ve// D 1: (3.5)
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For i D 1; 2, let x!i � C1 be the edge path connecting xu and �.wi /. Then we lift x!i to an
edge path !i � .F.�//xi . Equation (3.5) implies we can concatenate !1 and !2 to obtain
a path connecting w1 and w2 outside St.v/.

Now we prove the second statement of (1). Pick pair .C; K/ as above and B be the
associated v-branch. Since �K D @C , for each standard geodesic ` � K, there exists a
standard geodesic `0 such that

(1) �.�.`0// 2 C .

(2) `0 and ` span a 2-flat.

Thus �.`0/ 2 B and �.`/ 2 @B . Hence �.K/ � @B . Now we prove the other direction.
Pick u2 @B . By Lemma 3.6, we can assume there existsw0 2B such that d.w0;u/D 1 and
Pw 0 \Pv ¤;. Then �.w0/2C by Lemma 3.8, hence �.u/2 @C . Note thatPw 0 \Pu¤;
and Pv \ Pu ¤ ;. Thus Pv \ Pu \ Pw 0 ¤ ; by Lemma 2.2. Pick vertex z in this triple
intersection. Then z 2K by Corollary 3.12. Let `z be a standard geodesic such that z 2 `z
and �.`z/ D u. Since �.u/ 2 @C D �K , we have `z � K. Thus u 2 �.K/.

The existence in (2) follows from Lemma 3.6 and the above discussion. LetK1 andK2
be two v-peripheral subcomplexes of the same height such that �.K1/ D �.K2/ D A.
Then the Hausdorff distance dH .K1; K2/ <1 by Lemma 2.10. If K1 \ K2 ¤ ;, then
K1 DK2 since �K1 D �K2 . Otherwise, there exists a horizontal edge e � Pv such that the
hyperplane dual to e separatesK1 fromK2 (note thatK1 andK2 are horizontal). Suppose
xw 2 � is the label of e. Then d. xw; xv/ D 1 and �K1 � St. xw/ n ¹ xwº by Lemma 2.10. It
follows that lk. xw/ \ lk.xv/ contains �K1 , thus lk. xw/ \ lk.xv/ separates xv from a vertex in
a component of � n St.xv/. This contradicts that � has type II. Corollary 3.13 (3) follows
from (1) and (2).

To see (4), suppose B1 D B2. By (1), there exist standard subcomplexesKi � Pvi for
i D 1; 2 such that �.Ki / D @Bi . Then K1 and K2 are parallel, hence �K1 D �K2 . Let
xvi D �.vi / for i D 1; 2. Then

�K1 � lk.xv1/ \ lk.xv2/:

By Lemma 3.6, there exists vertex w 2 B1 such that xw D �.w/ 2 C , where C is a
component of � n St.v1/ with @C D �K1 . Therefore, �K1 separates xv1 from xw, so does
lk.xv1/ \ lk.xv2/. This leads to a contradiction in the case xv1 ¤ xv2. Suppose xv1 D xv2.
Then Pv1 and Pv2 are standard complexes with the same support. Thus Pv1 \ Pv2 D ;,
otherwise we would have Pv1 D Pv2 and v1 D v2. Let h be a hyperplane separating Pv1
and Pv2 such that the carrier of h intersects Pv1 . Then the label of edges dual to h,
denoted by xvh, satisfies d.xvh; xv1/ � 2. It follows from Lemma 2.11 that �K1 � lk.xvh/.
Thus lk.xv1/ \ lk.xvh/ separates � , which is a contradiction.

To see (5), first we assume d.xv1; xv2/ ¤ 0. Since � is of type II, for any component C
of � n St.xv1/,

@C n .lk.xv1/ \ lk.xv2// ¤ ;: (3.6)

Let B be a v1-branch. Then (1) and (2) imply there exist a standard subcomplexK � Pv1
and a component C 0 of � n St.xv1/ such that @B D �.K/ and �K D @C 0. Hence @C 0 D
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�.@B/ \ � (recall that we have identified � with the 1-skeleton of F.�/). It follows
from (3.6) that

@B n .lk.v1/ \ lk.v2// ¤ ;;

otherwise we would have

@C 0 � �.@B/ � �.lk.v1/ \ lk.v2// � lk.xv1/ \ lk.xv2/:

Then every vertex in B can be connected to v1 outside lk.v1/ \ lk.v2/ and (5) follows.
If xv1 D xv2, then Pv1 \ Pv2 D ;. Hence d.v1; v2/ � 2 and

lk.v1/ \ lk.v2/ D St.v1/ \ St.v2/:

Let h and xhv be as in the proof of (4). Let `h be a standard geodesic dual to `, and let
vh D �.`h/. Note that d.vh; v1/ � 2 and �.vh/ D xvh ¤ xv1. It suffices to prove

St.v1/ \ St.v2/ � St.v1/ \ St.vh/;

since this reduces the current case to the previous case. Let k be a vertex in St.v1/ \
St.v2/. Then Pk has non-trivial intersection with both Pv1 and Pv2 . Since h separates Pv1
and Pv2 , we have Pk \ h ¤ ;. Hence `h � Pk and d.k; vh/ � 1.

3.2. Quasi-isometry invariance of type II and weak type II

The main goal of this subsection is Corollary 3.18, where it is shown that weak type II
and type II are quasi-isometry invariants for RAAGs.

Lemma 3.14. If � is of weak type II, then

(1) There is no non-adjacent transvection in Out.G.�//.

(2) P .�/ is of weak type II.

Proof. (1) follows directly from the definition. To see (2), pick distinct vertices v1; v2 2
P .�/ such that d.v1; v2/ D 2. For i D 1; 2, let xvi D �.vi /. The case d.xv1; xv2/ D 2

and xv1 D xv2 has been dealt with in Corollary 3.13 (5). Now we assume d.xv1; xv2/ D 1.
If Pv1 \ Pv2 ¤ ;, then it is a standard complex whose support is the intersection of
the supports of Pv1 and Pv2 , which is St.xv1/ \ St.xv2/. Thus d.v1; v2/ D 1, which
yields a contradiction. So Pv1 \ Pv2 D ;, and we have reduced to second case of
Corollary 3.13 (5).

Lemma 3.15 ([21, Lemma 5.1]). Let � be a finite simplicial graph. Pick a vertex xw 2 � ,
and let � xw be the minimal stable subgraph containing xw. Denote �1 D lk. xw/ and
�2 D lk.�1/ (see Section 2.1 for definition of links), then either of the following is true:

(1) � xw is a clique. In this case, St. xw/ is a stable subgraph.

(2) Both �1 and the join �1 ı�2 of �1 and �2 are stable subgraphs of � . Moreover, �2
is disconnected.
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Lemma 3.16. Suppose P .�/ is of weak type II. Let q W G.�/ ! G.� 0/ be a quasi-
isometry. Then q induces a simplicial isomorphism q� W P .�/! P .� 0/.

The proof is a variation of [21, Theorem 5.3].

Proof. Let � D �1 ı �2 be any join decomposition. Then � is of weak type II if and only
if each �i is of weak type II. So in light of Theorem 2.18, we only need to focus on the
case when � is irreducible and is not a clique. In this case, � 0 is also irreducible and is not
a clique, hence diam.P .�// D1 and diam.P .� 0// D1 [23, Lemma 26 (5)].

Let q� W P .�/! P .� 0/ be the simplicial embedding in Theorem 2.25. Suppose q�
is not surjective. Then there exists a vertex w0 2 P .� 0/ which is not in the image of q�.
Let xw0 D �.w0/, and let `0 be a standard geodesic �.`0/ D w0. We apply Lemma 3.15
to xw0 2 � 0. If case (1) is true, let F 0 be the standard flat in X.� 0/ such that `0 � F 0 and
�F 0 D �w 0 . Since �w 0 is stable,

w0 2 �.F 0/ � q�.P .�
0//;

which is a contradiction.
If case (2) is true, let � 01 D lk. xw0/ and � 02 D lk.� 01/. Take K 01 and K 0 to be the stan-

dard subcomplexes in X.� 0/ such that (1) �K01 D �
0
1 and �K0 D � 01 ı �

0
2; (2) `0 � K 0 and

K 01 �K
0. SetM 01D�.K

0
1/ andM 0D�.K 0/. LetK 02 be an orthogonal complement ofK 01

inK 0, that is,K 02 is a standard subcomplex such that �K02 D �
0
2 andK 0 DK 01 �K

0
2. It fol-

lows thatM 0 has a join decompositionM 0DM 01 �M
0
2 forM 02D�.K

0
2/. By construction,

w0 2M 0 and lk.w0/ DM 01.
Since K 0 and K 01 are stable, then there exist stable standard subcomplexes K

and K1 in X.�/ such that the Hausdorff distances satisfy dH .q.K/; K
0/ < 1 and

dH .q.K1/; K
0
1/ < 1. Moreover, by applying Theorem 2.18 to the quasi-isometry

between K and K 0, there exists standard subcomplex K2 2 K such that K D K1 � K2
andK2 is quasi-isometric toK 02, thus �K2 is also disconnected. LetMi D�.Ki /�P .�/

for i D 1; 2 andM DM1 �M2 D �.K/. Then q�1� .M
0
1/ DM1 by (2.5) and (2.4). Since

lk.w0/ DM 01 and w0 … q�.P .�//,

q�1� .St.w0// DM1: (3.7)

Let I D q�.P .�//. Then I is D-dense in P .� 0/ for some constant D > 0, that is,
each vertex of P .�/ is at combinatorial distance �D from a vertex in I . To see this, it
suffices to show � 0 contains a stable clique, but this follows from the existence of stable
clique in � .

We claim every w0-tier contains vertices arbitrarily far from w0. To see this, let `0 be a
standard geodesic such that �.`0/ D w0. We consider the action G.�/ Õ X.�/ by deck
transformations and the induced actionG.�/Õ P .�/. Then the stabilizer of `0 is isomor-
phic to Z. Moreover, this copy of Z acts transitively on the collection of w0-tiers. Now the
claim follows from diam.P .� 0// D1.
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We pick vertices w01; w
0
2 2 P .� 0/ such that they are not in the same w0-tier and

d.w0i ;w
0/ > D C 5 for i D 1; 2. Let u0i 2 I be a vertex such that d.u0i ;w

0
i / �D. Then u01

and u02 are separated by St.w0/ and

d.u0i ; I \ St.w0// > 4:

Define ui D q�1� .u
0
i /, then u1 and u2 are in different components of

P .�/ n q�1� .St.w0// D P .�/ nM1;

and
d.ui ;M1/ > 4: (3.8)

Since �K2 is disconnected, there exist vertices v1; v2 2 M2 such that d.v1; v2/ D 2.
Recall that M DM1 �M2 � P .�/, so

M1 � lk.v1/ \ lk.v2/:

Moreover,
d.ui ; lk.v1/ \ lk.v2// > 0

by (3.8), so u1 and u2 are separated by lk.v1/ \ lk.v2/, which is contradictory to our
assumption on P .�/. So q� must be surjective.

Lemma 3.17. If P .�/ is of weak type II, then � is of weak type II.

Proof. Suppose � is not of weak type II. Then there exist vertices xv1; xv2 2 � such that
d.xv1; xv2/ D 2 and

� n lk.xv1/ \ lk.xv2/

is disconnected. Then we can find component C of � n St.xv1/ such that

@C � lk.xv1/ \ lk.xv2/:

Pick vertex x0 2 Pv1 , and let K � Pv1 be the standard subcomplex with support D@C
that contains x0. Pick vertex xv3 2 C (it is possible that xv3 D xv2). For i D 1; 2; 3, let
vi 2 .F.�//x0 be the lift of xvi . Then

�.K/ � St.v1/ \ St.v2/ D lk.v1/ \ lk.v2/:

Let B be the v1-branch that contains v3. We claim @B D �.K/, which then implies v1
and B are in different components of P .�/ n .lk.v1/ \ lk.v2//.

Note that �.K/ � @B follows from the argument in (1) of Corollary 3.13. To see the
other direction, pickw1 2 @B andw2 2B such that d.w1;w2/D 1. Let `3 be the geodesic
such that x0 2 `3 and�.`3/D v3. If Pw2 \Pv1 D ;, then by the argument in Lemma 3.8,
we can find an edge path ! 2 X.�/ n Pv1 connecting x 2 `3 n ¹x0º and y 2 Pw2 \ Pw1 .
Let !1 � Pw1 be a horizontal edge path connecting y and some vertex z 2 Pw1 \ Pv1 .
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Such path exists since Pw1 \ Pv1 contains a standard geodesic ` with�.`/D w1. We can
also assume !1 \Pv1 D ¹zº. Let e � !1 be the edge containing z and xve be the label of e.
Since !1 is horizontal in Pw1 ,

d.xve; �.w1// D 1: (3.9)

Let !0 be the edge path obtained by (1) going from x0 to x along `3; (2) going from x

to y along !; (3) going from y to z along !1. By applying Lemmas 3.9 and 3.11 to !0,
we have xve 2 C and z 2K. Hence �.w1/ 2 @C by (3.9). This, together with z 2 Pw1 and
z 2 K, implies w1 2 �.K/. If Pw2 \ Pv1 ¤ ;, we still have w1 2 �.K/ by the proof of
the second statement of Corollary 3.13 (1). Thus @B � �.K/.

Actually, the above argument also shows that if P .�/ is of type II, then � is of
type II. The following corollary follows from (5) of Corollary 3.13 and Lemmas 3.14, 3.16
and 3.17.

Corollary 3.18. The graph � is of (weak) type II if and only if P .�/ is of (weak) type II.
If G.� 0/ is quasi-isometric to G.�/, then � 0 is also of (weak) type II.

3.3. RAAGs of weak type I

In this subsection, we introduce the notion of RAAGs of weak type I and prove
quasi-isometric classification results for them.

Definition 3.19. A finite simplicial graph � is of weak type I if

(1) � is of weak type II.

(2) � does not contain any separating closed star.

The group G.�/ is of weak type I if � is of weak type I.

It is immediate from the definition that if � D �1 ı �2, then � is of weak type I if and
only if �1 and �2 are of weak type I.

Lemma 3.20. The group G.�/ is of weak type I if and only if

(1) � does not contain any separating closed star.

(2) There do not exist vertices xv; xw 2 � such that d.xv; xw/D 2 and � D St.xv/[ St. xw/.

Thus Definitions 1.1 and 3.19 are consistent.

Proof. For the only if direction, note that if � D St.xv/ [ St. xw/ with d.xv; xw/ D 2, then
lk.xv/ \ lk. xw/ separates � . For the if direction, we follow the argument in [21, Theo-
rem 5.3]. Suppose there exist vertices xv1 and xv2 such that lk.xv1/ \ lk.xv2/ separates � .
Let ¹Cj ºdjD1 be the connected components of F.�/ n lk.xv1/ \ lk.xv2/. Then at most one
of Cj is contained in St.xv1/. If d � 3, St.xv1/would separate F.�/, contradiction. Suppose
d D 2. At least one of C1 and C2 is inside St.xv1/, otherwise St.xv1/will separate F.�/. We
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assume C1 � St.xv1/. Thus xv2 2 C2. Similarly, at least one of C1 and C2 is inside St.xv2/.
So we must have C2 � St.xv2/. Hence F.�/ D St.xv1/ [ St.xv2/, contradiction again.

Theorem 3.21. Let �1 be of weak type I. Then any simplicial isomorphism s W P .�1/!

P .�2/ is visible. In particular, if q W G.�1/ ! G.�2/ is a quasi-isometry, then q will
induce a visible map q� W P .�1/ ! P .�2/. In this case, �2 is of weak type II, hence
Out.�2/ does not contain non-adjacent transvections.

Proof. Let p, ¹FiºniD1 and ¹F 0i º
n
iD1 be as in Definition 2.27. Suppose s is not visible. Then

there exist i ¤ j and a hyperplane h separating F 0i and F 0j . Let `0 be a standard geodesic
dual to h, and let v0 D �.`0/. Then there exist v01 2 �.F

0
i / and v02 2 �.F

0
j / such that they

are in different v0-tiers. Thus St.v0/ separates v01 from v02 by Lemma 3.1. Let v D s�1.v0/.
Then

.F.�//p n St.v/

is disconnected, hence v 2 .F.�//p by Lemma 3.7. This would imply F.�/ has a
separating closed star, which is a contradiction. The second statement follows from
Lemma 3.16.

Theorem 3.22. Suppose G.�1/ and G.�2/ are groups of weak type I. Then they are
quasi-isometric if and only if they are isomorphic.

Proof. Let q WG.�1/!G.�2/ be a quasi-isometry. By Theorem 3.21, q induces a visible
simplicial isomorphism q� W P .�/! P .�/. Pick vertex x1 2 X.�1/. Then the visibility
implies

q�..F.�1//x1/ � .F.�2//x2

for some vertex x2 2 X.�2/. This induces a graph embedding �1 ! �2. By considering
the quasi-isometry inverse of q, we obtain another graph embedding �2 ! �1. Hence
�1 Š �2 and G.�1/ Š G.�2/.

Though the definition of weak type I looks technical, it is actually a natural condition
to consider for the following reason.

Theorem 3.23. The following are equivalent:

(1) G.�/ is of weak type I.

(2) There do not exist vertex x 2X.�/ and vertex v 2P .�/ such that St.v/ separates
.F.�//x .

(3) Every element in Aut.P .�// is visible.

We will not need (3)) (2) in the rest of the paper.

Proof. (1), (2) follows from Lemma 3.24 and (2)) (3) follows from the proof of The-
orem 3.21. It suffices to prove (3)) (2). We argue by contradiction and suppose v1; v2 are
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vertices in different components of .F.�//x n St.v/. Then Lemma 3.8 implies v1 and v2
are in different v-branches. For i D 1; 2, let Bi be the v-branch that contains vi . Let ` be
a standard geodesic such that �.`/ D v and x 2 ` and pick ˛ 2 G.�/ to be a non-trivial
element such that ˛.`/ D ˛. Let ˛� W P .�/! P .�/ be the induced map. Then ˛� fixes
every point in St.v/. Thus there exists f 2 Aut.P .�// such that

(1) f fixes every vertex in P .�/ n .B1 [ ˛�.B1//.

(2) f jB1 D ˛�jB1 and f j˛�.B1/ D ˛
�1
� j˛�.B1/.

We claim f is not visible. To see this, for i D 1; 2, pick maximal standard flat Fi such
that x 2 Fi and vi 2 �.Fi /. Then

f .�.F1// D ˛�.�.F1//

and f .�.F2// D �.F2/, thus the maximal standard flats corresponding to f .�.F1// and
f .�.F2// are separated by a hyperplane dual to `, hence have empty intersection.

Lemma 3.24. The graph � is of weak type II if and only if there do not exist vertex
x 2 X.�/ and vertex v 2 P .�/ n .F.�//x such that .F.�//x n St.v/ is disconnected.

Proof. By Lemma 3.7, it suffices to prove the if direction. Suppose � is not of weak
type II. Let ¹xviº3iD1, ¹viº3iD1 and x0 2 X.�/ be as in Lemma 3.17. For i D 1; 2, let `i be
the standard geodesic such that x0 2 ` and �.`i / D vi . Pick vertex x00 ¤ x0 in `1, and
let `02 be the standard geodesic such that x00 2 `

0
2 and �.�.`02//D xv2. Then d.v02; v1/D 2,

where v02 D �.`
0
2/, in particular x0 … Pv02 , hence v02 … .F.�//x0 .

Since Pv02 and x0 are separated by some hyperplane dual to `1, thus by Lemma 2.11,

St.v02/ \ .F.�//x0 � St.v1/:

Recall that d.xv3; xv1/ � 2, then v3 2 .F.�//x0 n St.v1/. It follows that v3 … St.v02/.
We claim that v3 and v1 are in different components of P .�/ n St.v02/, which then

implies .F.�//x0 n St.v02/ is disconnected. Lemma 3.17 already implies v1 and v3 are
separated by lk.v1/ \ lk.v2/. Let ˛ 2 G.�/ be the left translation such that ˛.x0/ D x00.
Then ˛.`2/ D `02. Now we pass to the induced action G.�/ Õ P .�/, then ˛.v2/ D v02.
Since ˛ fixes St.v1/, we have

lk.v1/ \ lk.v2/ D ˛.lk.v1/ \ lk.v2// D lk.v1/ \ lk.v02/:

So lk.v1/ \ lk.v02/ separates v1 from v3 and the claim follows.

4. Quasi-isometric invariance of v-branches and peripheral
subcomplexes

In this section, we collect several observations on quasi-isometric invariance of v-branches
and v-peripheral subcomplexes. While the content of this section is closely related to
Section 3, it will not be used until Section 6.
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4.1. Quasi-isometric invariance of v-branches

Let G.�/ be a RAAG of weak type II, and let q W G.�/! G.� 0/ be a quasi-isometry.
Then G.� 0/ is of weak type II by Corollary 3.18. Then both Out.G.�// and Out.G.� 0//
do not admit non-adjacent transvections (Lemma 3.14). Thus Theorem 2.25 implies that q
induces a simplicial isomorphism q� W P .�/! P .� 0/. Take a vertex v of P .�/. Then q�
induces a bijection between v-branches and q�.v/-branches. Later in Section 6, we want
to use this bijection as a quasi-isometry invariant of q. However, a priori this is prob-
lematic as the simplicial isomorphism q� is not canonically determined by q (as in the
construction of the proof of Theorem 2.25), so strictly speaking, q�.v/ is not even well
defined. The goal of this subsection is to clarify this point.

Lemma 4.1. Suppose � is of weak type II. Let q W G.�/! G.� 0/ be a quasi-isometry,
and let zq� be as in Lemma 2.23. For i D 1; 2, let .qi /� W P .�/! P .� 0/ be a simplicial
isomorphism such that .qi /�.s/ D zq�.s/ for any stable simplex s � P .�/.

(1) For any vertex v 2 P .�/, we have .q1/�.St.v// D .q2/�.St.v//.

(2) For i D 1; 2, we know dH .q.Pv/; P.qi /�.v// <1.

(3) If � is of type II and G.�/ is centerless, then .q1/� D .q2/�.

Proof. Let xv 2 � be the label of v 2 P .�/. Then it follows from Lemmas 2.22, 3.14
and 3.15 that St.xv/ is a stable subgraph. Thus St.v/ is a stable subcomplex of P .�/.
By Corollary 3.18 and Lemma 3.14, both Out.G.�// and Out.G.� 0// do not admit
non-adjacent transvection. Thus Corollary 2.26 implies

.q1/�.St.v// D .q2/�.St.v// D zq�.St.v//:

Then assertion (1) follows. This also implies assertion (2) as �.Pv/ D St.v/ and
�.P.qi /�.v// D St..qi /�.v//.

Now we prove assertion (3). By Corollary 3.18, � 0 is of type II. As

.qi /�.St.v// D St..qi /�.v//;

we know
St.w1/ D St.w2/;

where wi is defined as .qi /�.v/. Then

St. xw1/ D St. xw2/:

We must have xw1 D xw2, otherwise lk. xw1/ \ lk. xw2/ separates xw1 from any vertex out-
side St. xw1/, which contradicts that � 0 is of type II (note that G.�/ is centerless implies
that G.� 0/ is centerless, so G.� 0/ contains at least one vertex outside St. xw1/). Thus
w1 D w2.
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Example 4.2. We give an example of Lemma 4.1 (1). Let � be the graph obtained by
gluing a pentagon and the 1-skeleton of a 3-simplex along an edge. Let a and b be the two
vertices of � which is outside the pentagon. Take a quasi-isometry q W G.�/! G.�/. Let
v 2 P .�/ be a vertex labeled by a, and let s be the maximal simplex of P .�/ contain-
ing v. Then s is a stable subcomplex. We know q�.a/ 2 zq�.s/. However, q�.a/ could be
either the vertex in zq�.s/ labeled by a or the vertex in zq�.s/ labeled by b. Note that the
star of these two possible values of q�.a/ is equal.

We now give an example of Lemma 4.1 (3). Let � be the graph obtained by gluing
a pentagon and a triangle along an edge. Let a be the vertex of � outside the pentagon.
Take a quasi-isometry q W G.�/! G.�/. Let v 2 P .�/ and s � P .�/ be as before. Then
q�.a/2 zq�.s/. Then q�.a/ can only be the vertex in zq�.s/ labeled by a. Note that if v is not
labeled by a, then ¹vº is a stable subcomplex of P .�/. Then for any standard line ` with
�.`/ D v, q.`/ is at finite Hausdorff distance to a standard line `0 with �.`0/ D q�.v/.
However, if v is labeled by a, in general q.`/ might not be at finite Hausdorff distance
from any standard line, due to the transvection at a, yet q�.v/ is canonically defined.

Returning to the discussion before Lemma 4.1, even though q�.v/ depends on the
choices in the proof of Theorem 2.25, Lemma 4.1 implies that the set St.q�.v// does not
depend on these choices, so is the set of q�.v/-branches.

Corollary 4.3. Suppose � is of type II and G.�/ is centerless. Let q W G.�/! G.� 0/

be a quasi-isometry, and let zq� be as in Lemma 2.23. Then there is a unique simpli-
cial isomorphism q� W P .�/! P .� 0/ such that .qi /�.s/ D zq�.s/ for any stable simplex
s � P .�/. In particular, for any quasi-isometric inverse q�1 W G.� 0/! G.�/, we have
.q�1/� D .q�/

�1.

Proof. The first statement of the corollary is an immediate consequence of Lemma 4.1 (3).
For the in particular part, note that eq�1� ı zq�.s/ D s. Then q�1� ı q� must be the identity
map by Lemma 4.1 (3) again. Similarly, q� ı q�1� is identity.

4.2. Correspondence between v-branches and subcomplexes of X.�/

The main goal of this subsection is Proposition 4.6, where we establish 1-1 correspon-
dence between v-branches and components of X.�/ n Pv and prove a quasi-isometric
invariance result.

Let � be an arbitrary simplicial graph (not necessarily of weak type II). Take vertex
v 2 P .�/. For any v-branch B , we denote the full subcomplex of P .�/ spanned by ver-
tices in B and @B by xB . For any component L of X.�/ n Pv , we use @L to denote the
full subcomplex of X.�/ spanned by vertices outside L which are adjacent to some ver-
tex in L and use xL to denote the full subcomplex spanned by vertices in L and @L. Note
that xB may not be the closure of B and xL may not be the closure of L.

For any subcomplex K � X.�/, let ¹F�º�2ƒ be the collection of standard flats in K
and define �.K/ D

S
�2ƒ�.F�/.
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Lemma 4.4. If K is a convex subcomplex, then �.K/ is a full subcomplex of P .�/.

Proof. Let F � X.�/ be a standard flat such that vertices of�.F / are in�.K/. Suppose
.F 0; K 0/ D 	.F; K/. Lemma 2.4 (4) implies that every standard geodesic of F is con-
tained in an R-neighborhood of F 0 for some R > 0. However, F 0 is a convex subcomplex
of F , so actually F D F 0. Hence �.F / � �.K/.

Lemma 4.5. Let � be arbitrary. Pick vertex v 2 P .�/, and let xv D �.v/. Let L be a
component of X.�/ n Pv . Then

(1) @L is a v-peripheral subcomplex of X.�/. Moreover, the topological boundary
@TopL of L (i.e., @TopL is the closure of L in X.�/ minus L) is contained in @L,
and @TopL contains the 1-skeleton of @L.

(2) xL D L [ @L, and xL is a convex subcomplex of X.�/.

Proof. To see (1), note that Lemma 3.9 implies there exists a component C of � n St.xv/
such that the label of any edge which connects a vertex in L and a vertex outside L is
inside C . Pick a vertex in X.�/ n L which is adjacent to some vertex in L, and let K
be the v-peripheral subcomplex of type @C that contains this vertex. Then Lemma 3.11
implies vertex set of @L is contained in K, hence @L � K. Note that @TopL is a subcom-
plex whose vertex set is the same as @L, hence @TopL � @L. On the other hand, the proof
of the first statement of Corollary 3.13 (1) implies every edge of K is contained in @TopL.
Thus (1) follows.

To see (2), note that L [ @L is a subcomplex. We claim for a vertex x 2 L [ @L, if a
collection of mutual orthogonal edges emanating from x are contained inL[ @L, then the
cube spanned by these edges is contained in L [ @L. This is clear when x 2 L. The case
when x 2 @L follows from the fact that the labels of these edges are either vertices in C or
vertices in @C . From the claim we know L[ @L is a locally convex subcomplex of X.�/,
in particular it is a full subcomplex, hence (2) follows as locally convex subcomplexes of
CAT.0/ cube complexes are convex.

Proposition 4.6. Suppose � is of weak type II. Pick vertex v 2 P .�/, and let xv D �.v/.
Let L be a component ofX.�/ nPv . Let q W X.�/! X.� 0/ be a quasi-isometry. Then the
following hold true:

(1) There is a 1-1 correspondence between v-branches and components ofX.�/ nPv .
In particular, there is a unique v-branch B with �.xL/ D xB and �.@L/ D @B .

(2) There is a component L0 of X.� 0/ n Pq�.v/ such that

dH .q.L/; L
0/ <1:

(3) For any component C of � n St.xv/, @C is a stable subgraph of � .

Proof. We first prove assertion (1). For i D 1; 2, let ei � X.�/ be an edge such that one
of its endpoints xi1 2 X.�/ n Pv and another endpoint xi2 2 Pv . Let xvi 2 � be the label



J. Huang 1206

of ei , and let Ci be the component of � n St.xv/ that contains xvi . We claim x11 and x21 are
in the same component of X.�/ n Pv if and only if C1 D C2 and x21 and x22 belong to
the same v-peripheral subcomplex of @C1. Then we have a 1-1 correspondence between
components of X.�/ n Pv and the pair .C; K/ as in Corollary 3.13 (1) and the first part
of assertion (1) follows. The only if part of the claim follows from Lemmas 3.9 and 3.11.
Note that C1 contains more than one point (otherwise, � will not be of weak type II), so
the if direction holds in the special case when xv1 D xv2, x21 D x22 and x11 ¤ x12. The
general case follows from the argument in the proof of Corollary 3.13 (1).

Suppose .C;K/ is the pair as above corresponding to L. Then the above claim implies
@L D K. Let B be the v-branch corresponding to .C; K/. Then @B D �.K/ D �.@L/.
Now we prove �.xL/ � xB . Let ` � xL be a standard geodesic. If d.�.`/; v/ � 2, by
Lemma 3.6, there exists standard geodesic `1 such that �.`1/ and �.`/ are in the same
v-branch and `1 \ Pv ¤ ;. The argument in Lemma 3.8 implies that there exists an edge
path ! � X.�/ n Pv connecting a vertex in ` and a vertex in `1, thus

`1 � xL:

It follows that `1 \K ¤ ; and �.�.`1// � C , so

�.`1/ 2 B

by Corollary 3.13 (1). Hence
�.`/ 2 B:

If d.�.`/; v/D 1, since xL\Pv DK, we apply Lemma 2.4 (4) with C1 D xL and C2 D Pv
to deduce that ` stays in the R-neighborhood of K for some R > 0, thus

�.`/ 2 �.K/ D @B:

Note that �.`/ 2 xB in both cases, so �.xL/ � xB . Now we prove xB � �.xL/. Pick vertex
w 2 xB . If w 2 @B , then we are done by @B D �.@L/ � �.xL/. Suppose w 2 B . Pick
an edge e � X.�/ which connects a point in L and a point outside L, and let `e be the
standard geodesic containing e. Then `e � xL by the discussion in the previous paragraph.
Then

�.`e/ 2 xL � xB:

However, �.`e/ … @B , hence
�.`e/ 2 B:

The argument in Lemma 3.8 implies that there exists an edge path outside Pv connecting a
vertex in `e and a vertex in Pw . Thusw 2�.xL/. In summary, each vertex of xB is in�.xL/.
Since xL is convex, �.xL/ is a full subcomplex by Lemma 4.4, then xB � �.xL/.

To see (2), let ¹��º�2ƒ be the collection of maximal simplexes in P .�/ such that
�� \ B ¤ ;, and let ¹F�º�2ƒ be the collection of maximal standard flats such that
�.F�/ D ��. We claim

dH

�
L;
[
�2ƒ

F�

�
<1;
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where dH denotes the Hausdorff distance. Note that �� � xB , hence F� � xL by asser-
tion (1) and the maximality of F�. Pick an arbitrary vertex x 2 L, and let `x be a standard
geodesic such that d.�.�.`x//; xv/ � 2 and x 2 `x . Then

d.�.`x/; v/ � 2:

Hence `x \ Pv is at most one point. It follows from the proof of assertion (1) that `x � xL
and �.`x/ � B . Thus there exists �0 2 ƒ such that

x 2 `x � F�0 :

Thus L is contained in some neighborhood of
S
�2ƒ F�. However,

dH .L; xL/ <1

by Lemma 4.5, hence the claim follows. Let B 0 D q�.B/ and L0 be the component of
X.� 0/ nPq�.v/ corresponding toB 0 (note that � 0 is also of weak type II by Corollary 3.18).
By Lemma 2.22, for each � 2 ƒ, there exists a unique maximal standard flat F 0

�
� X.� 0/

such that
dH .q.F�/; F

0
�/ < C

(C is independent of �). Note that ¹�.F 0
�
/º�2ƒ is the collection of maximal simplexes

of P .�/ which have non-empty intersection with B 0. We argue as before to deduce

dH

�
L0;

[
�2ƒ

F 0�

�
<1:

Then
dH .q.L/; L

0/ <1:

Now we prove (3). By Lemma 4.1, dH .Pv; Pq�.v// <1. Let

K 0 D Pq�.v/ \
xL0:

Then K 0 is a q�.v/-peripheral subcomplex by Lemma 4.5, hence is a standard subcom-
plex. Recall that K D Pv \ L, so dH .q.K/;K 0/ <1 by Lemma 2.4 (4).

5. Rigidity and flexibility of RAAG of weak type I

5.1. Motivating discussion and overview

The goal of this section is to understand RAAGs that are quasi-isometric to a given RAAG
of weak type I. We will start with a discussion of motivating examples.

We start with the case when � is a pentagon. Let G.� 0/ be a RAAG quasi-isometric
to G.�/. This gives a simplicial isomorphism P .�/ ! P .� 0/ (cf. Theorem 2.25).
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We can use this to conjugate the natural action of G.� 0/ on P .� 0/ to another action
G.� 0/ Õ P .�/. However, each automorphism of P .�/ is visible, as for each vertex
v 2 P .�/, each v-tier only contains one v-branches. This follows from Corollary 3.13
and Lemma 3.3. Thus each automorphism of P .�/ gives a bijection of G.�/ that pre-
serves maximal standard flats (recall that we identify G.�/ as the vertex set of X.�/, and
we will refer maximal standard flats in G.�/ as the intersections of maximal standard
flats in X.�/ with G.�/). As a special feature of the pentagon graph, we know each stan-
dard flat in G.�/ is an intersection of maximal standard flats. Thus each automorphism
of P .�/ gives a bijection of G.�/ that sends standard flats to standard flats. We refer
to this kind of bijection as flat-preserving bijections. The action G.� 0/ Õ P .�/ gives
an action G.� 0/ Õ G.�/ by flat-preserving bijections. If each flat-preserving bijection
of G.�/ were left translations of G.�/, then we can conclude immediately that G.� 0/ is
isomorphic to a finite index subgroup of G.�/. However, this is not the case in general.

Recall that each standard line in G.�/ is a left coset of a standard Z subgroup. Thus
each standard line is labeled by a generator of G.�/, and inherits an order from Z. A
flat-preserving bijection of G.�/ is a left translation if and only if it respects the order on
each standard line, and respects the labels of standard lines. Thus it is too much to hope
that the action G.� 0/ Õ G.�/ is by left translations of G.�/. However, if we are able to
find a different labeling and ordering of the standard lines of G.�/ such that both of them
are invariant G.� 0/ Õ G.�/, then the action of G.� 0/ Õ G.�/ is conjugate to an action
by left translations, which will imply G.� 0/ is a finite index subgroup of G.�/. The new
labeling and ordering need to satisfy some natural consistency conditions for this to work,
and the conjugation is via a flat-preserving bijection which connects the new labeling and
ordering of standard lines to the old ones.

The way to produceG.� 0/-invariant labeling and ordering of standard lines ofG.�/ is
as follows. As the map P .�/!P .� 0/ coming from the quasi-isometry is visible, it gives
a map f W G.�/! G.� 0/ which is G.� 0/-invariant, where the action G.� 0/ Õ G.� 0/ is
by left translation. Very roughly speaking, we want to pull back the usual labeling and
ordering of standard lines in G.� 0/ to obtain a G.� 0/-invariant labeling and ordering of
standard lines of G.�/. However, this needs some work as f is not an injective map, so
pulling back does not make sense immediately. This gives a rough summary of the strategy
in [21] for handling the pentagon case.

Now we consider the general case of RAAGs of weak type I. The example to have
in mind is � being a pentagon and a triangle glued along an edge. Any quasi-isometry
q W G.�/! G.� 0/ still induces a visible simplicial isomorphism q� W P .�/! P .� 0/.
Thus as before we have an action � WG.� 0/ÕG.�/. The key difference from the previous
case is that the action is no longer by flat-preserving bijections. For an element g0 2G.� 0/,
we still know �.g0/ sends maximal standard flats to maximal standard flats. But standard
flats which are not maximal might not be preserved, as they are not necessarily intersec-
tions of maximal standard flats. For example, let xv be the vertex in � that is not inside the
pentagon. Then �.g0/ could send a standard line labeled by xv to something which is not a
standard line. More precisely, suppose the vertices of the triangle �1 in � are ¹xv; xv1; xv2º.



Quasi-isometric classification of right-angled Artin groups II: Several infinite out cases 1209

Then �.g0/ sends a standard flat F of type �1 to another 3-dimensional standard flat (as
this standard flat is maximal). Moreover, as standard lines of type xv1 and xv2 are intersec-
tions of maximal standard flats, they are sent to standard lines by �.g0/. As a consequence,
those 2-dimensional standard flats of type ¹xv1; xv2º are also sent to standard flats by �.g0/.
We want to think F as being foliated by these 2-dimensional standard flats. The map �.g0/
sends the leaves to parallel standard flats in another 3-dimensional standard flats; however,
the �.g0/-images of standard lines of type xv in F (which are transverse to all the leaves)
could be rather arbitrary. So we can think �.g0/jF as a leave-preserving shearing map.

For more general � of weak type I, we will typically see that �.g0/ preserves some
standard flats, but there could also be different types of “shearing” of a family of lower-
dimensional standard flats inside a bigger standard flat. Such shearing could happen
whenever an adjacent transvection is possible (e.g., in the above example, there is an
adjacent transvection sending xv to xv1 or xv2), though the behavior of �.g0/ is generally
more complicated than adjacent transvections. Moreover, in general RAAGs of weak type
I could allow many adjacent transvections.

The strategy in the case of pentagon no longer works, due to the failure of preser-
vation of standard lines. In the case of weak type I, we will use an atlas system which
encodes how various shearing is happening. More precisely, an atlas on G.�/ is a col-
lection of bijections between stable (cf. Definition 2.19) standard flats in G.�/ and Zn

with suitable n such that these bijections satisfy some natural consistency condition (see
Definition 5.2). This generalizes the pentagon case, as each standard line is stable in this
case, and we will have bijections between standard lines and Zs, which correspond to the
order on standard lines as discussed before.

Now the main point is to construct an atlas onG.�/which is invariant under the action
of G.� 0/ (cf. Proposition 5.13). Once this is established, we can conclude that the action
of G.� 0/ on G.�/ is conjugated to an action by left translation, which implies that G.� 0/
is a finite index subgroup of G.�/.

5.2. An atlas for RAAG

Let G.�/ be a RAAG of weak type I with trivial center. We identify G.�/ with the
1-skeleton of X.�/ and define a standard flat in G.�/ to be the vertex set of some
standard flat in X.�/.

Theorem 3.21 implies there is a homomorphism s WAut.P.�//! Perm.G.�//, where
Perm.G.�// is the permutation group of elements inG.�/. Note that images of s preserve
maximal standard flats. However, this may not be true for all standard flats, since adjacent
transvections are allowed in Out.G.�//.

Let P .�/ be the extension complex, and let � W P .�/! F.�/ be label-preserving
simplicial map defined in Section 2.3. Note that for any vertex x 2 X.�/, � induces an
isomorphism .F.�//x ! F.�/. This motivates the following definition.
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Definition 5.1 (Coherent labeling). A coherent labeling of G.�/ is a simplicial map
L WP .�/!F.�/ such thatL induces an isomorphism .F.�//x!F.�/ for every vertex
x 2 X.�/.

Assume n D dim.X.�//. Let F .�/ be the collection of stable standard flats in X.�/,
and let Fk.�/ be the collection of k-flats in F .�/. Define F<k.�/ WD

Sk�1
iD1 Fi .�/. Here

we are considering the set itself, not the coarse equivalent classes of the sets (compared
to Theorem 2.25). Recall that we use v.K/ to denote the set of vertices in a subset K of
some polyhedral complex.

Definition 5.2 (L-atlas). An L-atlas is a coherent labeling L W P .�/! F.�/ together
with a collection of bijections

¹v.F /! Zv.L.�.F ///ºF 2Fk.�/;1�k�n

with the following compatibility condition: pick F1 2 Fm.�/ and F2 2 F`.�/ with
F1 � F2, let f W v.F2/! Zv.L.�.F2/// and g W v.F1/! Zv.L.�.F1/// be the associated
bijections. Suppose p W Zv.L.�.F2/// ! Zv.L.�.F1/// is the natural projection. Then

(1) f .v.F1// is a coset of Zv.L.�.F1/// in Zv.L.�.F2///.

(2) The following diagram commutes up to translation:

v.F1/
g

�����! Zv.L.�.F1///??yi x??p
v.F2/

f
�����! Zv.L.�.F2///

Here i is the inclusion map.

Definition 5.3 (Equivalence and pullback). We sayL-atlas AL andL0-atlas AL0 are equal
up to translations if L D L0 and the bijections in AL and AL0 agree up to translation. We
will write AL

e
DAL0 in this case. Pick ˛ 2 Aut.P .�//, and let ˛� W G.�/! G.�/ be the

bijection induced by ˛ (cf. Section 2.6 and Theorem 3.23). Recall that ˛� preserves stable
standard flats. The pullback of an L-atlas AL under ˛, denoted by ˛�.AL/, is defined to
be the .L ı ˛/-atlas with its charts being the pullbacks of charts of AL under ˛�. More
precisely, charts of ˛�.AL/ are compositions:

¹v.F /
˛�
�! ˛�.v.F //! Zv.L.�.˛�.F //// D Zv.Lı˛.�.F ///ºF 2Fk.�/;1�k�n:

Note that L.�.˛�.F /// and L ı ˛.�.F // are the same subset of F.�/.

Remark 5.4. Note that the construction of ˛� from ˛ in Section 2.6 only uses the infor-
mation of what are ˛-images of maximal simplexes in P .�/. Thus a priori it could happen
that two different elements ˛1 and ˛2 in Aut.P .�// give the same ˛� W G.�/! G.�/. It
is natural to ask how different is ˛�1 .AL/ from ˛�2 .AL/.
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We now clarify this point via the following example. Suppose � is obtained by gluing
a pentagon and the 1-skeleton of a 3-simplex along an edge. Let a and b be the two ver-
tices of � which are outside the pentagon. Let e be an edge in P .�/ which maps to the
edge ab � � under the map P .�/! F.�/. We take ˛1 2 Aut.P .�// to be the identity
map. Take ˛2 2 Aut.P .�// to be the automorphism which exchanges the two endpoints
of e and fixes all other vertices of P .�/ pointwise. Then .˛1/� D .˛2/� is the identity
map and ˛1.�.F // D ˛2.�.F // D �.F / for any F 2 F .�/. Thus all charts in ˛�1 .AL/

and ˛�2 .AL/ are exactly the same. However, L ı ˛1 and L ı ˛2 are different maps. So

˛�1 .AL/
e

¤ ˛�2 .AL/:

Recall that we label each circle in S.�/ by a generator of G.�/ and fix an orientation
for each circle. This lifts to G.�/-invariant labeling and orientation of edges in X.�/.
Moreover, we have induced action G.�/ Õ P .�/ and induced G.�/-invariant labeling
of vertices in P .�/. This leads to a naturally defined L-atlas as follows.

Definition 5.5 (Reference atlas). Let L be the label-preserving map � W P .�/! F.�/.
For each vertex u 2 P .�/, we pick a standard geodesic ` � X.�/ such that �.`/ D u

and identify vertices of ` with Zu in an orientation-preserving way. Let pu W G.�/! Zu

be the map induced by the CAT.0/ projection from G.�/ to ` (recall that we have iden-
tified G.�/ with vertices of X.�/, and Lemma 2.4 implies that the image of each vertex
of X.�/ under the CAT.0/ projection is a vertex in `). For each standard flat F � X.�/,
pu.v.F // is surjective if u 2 �.F /, otherwise pu.v.F // is a point. This induces a bijec-
tion

Q
u2�.F / pu W v.F /! Zv.�.F //, and we define the chart for F to be

Q
u2�.F / pu

post-composed with Zv.�.F // ! Zv.L.�.F ///. One readily verifies that this atlas AL sat-
isfies the above definition of L-atlas; moreover, the diagram in (2) commutes exactly, not
up to translations. The following properties are immediate:

(1) AL is G.�/-invariant up to translations in the sense that g�.AL/
e
D AL for all

g 2G.�/. Conversely, if ˛ 2Aut.P .�// satisfies ˛�.AL/
e
DAL, then the induced

map ˛� W G.�/! G.�/ is a left translation.

(2) AL is unique up to translations. Since the only ambiguity in the definition of AL

is the orientation-preserving identification of v.`/ with Zu, which is unique up to
translations.

The atlas AL is called the reference atlas.

Lemma 5.6. Let G.�/ be of weak type I, and pick F 2 F .�/. Then there exist stan-
dard flats ¹FiºkiD1 in F such that F is the convex hull of these flats and each Fi is the
intersection of maximal standard flats.

Proof. Pick vertex w 2 � . Let �w be the minimal stable subgraph containing w, and
let � 0w be the intersection of maximal cliques that containsw. It suffices to show �w D� 0w .
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Since each maximal clique is stable (Lemmas 2.22 and 3.14), �w � � 0w . Pick vertex
v 2 � 0w , thenw? � St.v/, thus v 2 �w by [21, Lemma 3.32]. It follows that � 0w � �w .

Suppose G.�/ has weak type I, and it has trivial center. Let q W G.�/! G.� 0/ be
a quasi-isometry, and let s W P .�/! P .� 0/ be an induced simplicial isomorphism (cf.
Definition 3.19 and Lemma 3.16). By Theorem 3.21 and Section 2.6, s induces a map
� W G.�/! G.� 0/.

Lemma 5.7. There existsD0 > 0 such that d.q.x/;�.x// <D0 for any x 2G.�/. Thus �
is a quasi-isometry.

Proof. By Lemma 2.22, Definition 3.19 and Lemma 3.14, each maximal clique subgraph
of � is stable. Thus there existsD1 > 0 such that for any maximal standard flat F �X.�/,
there exists a maximal standard flat F 0 � X.� 0/ such that dH .q.F /; F 0/ < D1. Let
¹Fiº

n
iD1 and ¹F 0i º

n
iD1 be as in Section 2.6. Then d

�
q
�Tn

iD1 Fi
�
;
Tn
iD1 F

0
i

�
is uniformly

upper bounded, which implies the lemma.

For every g0 2 G.� 0/, there is left translation x�g 0 W G.� 0/! G.� 0/, which gives rise
to a simplicial isomorphism xsg 0 W P .� 0/! P .� 0/. Let

sg 0 D s
�1
ı xsg 0 ı s:

Then sg 0 induces a unique bijection �g 0 W G.�/! G.�/ by Theorem 3.21; moreover,

x�g 0 ı � D � ı �g 0 : (5.1)

In summary, we have G.� 0/ that acts on G.� 0/, P .� 0/, G.�/ and P .�/.

Lemma 5.8. The map � satisfies the following properties:

(1) The map � is surjective. For any y; y0 2 G.� 0/, j��1.y/j D j��1.y0/j <1.

(2) For any k and F 2 Fk.�/, there is unique F 0 2 Fk.�
0/ with �.v.F // D v.F 0/.

Moreover, let Stab.v.F 0// and Stab.v.F // be the stabilizer of v.F 0/ and v.F /
with respect to the action G.� 0/Õ G.� 0/ and G.� 0/Õ G.�/, respectively. Then
Stab.v.F 0// D Stab.v.F //. In this case, we will write F 0 D �.F / for simplicity.

(3) Let F1; F2 2 Fk.�/ be parallel standard flats. Then for vertices x1 2 F1 and
x2 2 F2,

j��1.�.x1// \ F1j D j�
�1.�.x2// \ F2j:

Proof. Pick a reference point q 2 Im �, and let Kq D .F.� 0//q . Denote the points
in ��1.q/ by ¹p�º�2ƒ, and let Kp� D .F.�//p� . Since ¹�.Kp�/º�2ƒ are distinct
subcomplexes of Kq , ƒ is a finite set. The other parts of (1) follow from (5.1).

Now we prove (2). It is clear if F is a maximal standard flat. Next we look at the
case when F D

Th
iD1 Fi , where each Fi is a maximal standard flat. Let F 0i be maximal
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standard flat in X.� 0/ such that �.F 0i / D s.�.Fi // for 1 � i � h, and let F 0 D
Th
iD1 F

0
i .

Then
�.v.F // � v.F 0/:

Note that Stab.v.F 0// (resp. Stab.v.F 0i //) is a conjugate of a standard subgroup of
type � 0F 0 (resp. � 0

F 0i
). Thus

Stab.v.F 0// � Stab.v.Fi //:

Then the stabilizer Stab.v.F 0// fixes �.F 0i / for all i , hence it fixes �i for all i and
Stab.v.F 0// � Stab.v.F //. Since Stab.v.F 0// acts on v.F 0/ transitively, (5.1) implies

�.v.F // D v.F 0/

and
Stab.v.F // � Stab.v.F 0//:

Thus Stab.v.F 0// D Stab.v.F //.
In general, by Lemma 5.6, we can assume F is the convex hull of F1;F2 2 F .�/ such

that (2) is true for flats in F which are parallel to F1 or F2. Let F 0i D �.Fi / for i D 1; 2.
Then F 01 \ F

0
2 ¤ ; and the convex hull of F 01 and F 02 is a flat F 0 (since F is contained in

a maximal standard flat, whose image under � is a maximal standard flat containing F 01
and F 02). It follows from Lemma 2.21 that F 0 2 F .� 0/. Note that any standard flat that is
parallel to F1 and intersects F2 is mapped by � to a standard flat that is parallel to F 01 and
intersects F 02, thus �.v.F // � v.F 0/. Let F3 � F be a standard flat parallel to F1, and let
F 03 D �.F3/. Since parallel standard flats in X.� 0/ have the same stabilizer, we have

Stab.v.F1// D Stab.v.F 01// D Stab.v.F 03// D Stab.v.F3//:

By considering all such F3’s in F , we have

Stab.v.F1// � Stab.v.F //:

Similarly, Stab.v.F2// � Stab.v.F //, thus

Stab.v.F 0// D hStab.v.F 01//; Stab.v.F 02//i

D hStab.v.F1//; Stab.v.F2//i � Stab.v.F //:

Now we can conclude �.v.F // D v.F 0/ as before. It also follows that Stab.v.F // �
Stab.v.F 0//, thus

Stab.v.F 0// D Stab.v.F //: (5.2)

Now we prove (3). Note that for a pair of parallel standard flats F 01 and F 02 in X.� 0/,
there exists g0 2 G.� 0/ such that g0.v.F 01// D v.F

0
2/, so by (5.1), it suffices to prove (3)

in the case where
�.v.F1// D �.v.F2// D v.F

0/:
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Note that F1 and F2 are parallel, and there is an isometry p W F1 ! F2 induced by the
nearest point projection in the ambient CAT.0/ cube complex. The map p sends vertices
to vertices, hence restricts to a bijection p W v.F1/! v.F2/, which we call the parallelism
map between v.F1/ and v.F2/. Denote

p1 D �jv.F1/ W v.F1/! v.F 0/

and
p2 D �jv.F2/ ı p W v.F1/! v.F 0/:

Then there exist L and A such that p1 and p2 are .L;A/-quasi-isometries and

d.p1.x/; p2.x// < A (5.3)

for any x 2 v.F1/. Pick y 2 v.F 0/, and let ri be the number of points jp�1i .y/j in p�1i .y/

for i D 1; 2 (ri does not depend on y by previous discussion). We argue by contradiction
and assume r1 < r2. Pick base point x0 2 v.F1/, let m D dim.F1/,

BR D B.x0; R/

and
Ki;R D pi .BR/

for i D 1; 2. Then it follows from (5.3) that

jK1;Rj � jNA.K2;R/j D jK2;Rj C jNA.K2;R/ nK2;Rj

� jK2;Rj C jp
�1
2 .NA.K2;R/ nK2;R/j � jK2;Rj C jBLACACR n BRj

� jK2;Rj C CR
m�1.LAC A/;

where C is some constant independent of R. Thus by symmetry, we have

jjK1;Rj � jK2;Rjj � CR
m�1.LAC A/: (5.4)

On the other hand, BR � p�1i .Ki;R/ � BRCA for i D 1; 2, thus

CRm � jp�1i .Ki;R/j D ri jKi;Rj � C.RC A/
m (5.5)

for i D 1; 2. Now (5.4) and (5.5) imply

CRm=r1 � C.RC A/
m=r2 � jK1;Rj � jK2;Rj

� jjK1;Rj � jK2;Rjj � CR
m�1.LAC A/:

Since r1 < r2, we will get a contradiction when R!1.

Lemma 5.9. Suppose G.�/ has weak type I and trivial center. Given L-atlas AL and
L0-atlas AL0 , there exists ˛ 2 Aut.P .�// such that ˛�.AL0/

e
D AL.
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The proof is a variation of [21, Lemma 5.7].

Proof. We prove the first part of the lemma. Pick v 2 G.�/, set ˛0.e/D v. For u 2 G.�/,
pick a wordwuD a1a2 � � �an representing u, let ui D a1a2 � � �ai for 1� i � n and u0D e.
We define qi D ˛0.a1a2 � � � ai / 2 G.�/ inductively as follows: set q0 D v, and suppose
qi�1 D ˛

0.a1a2 � � � ai�1/ is already defined. Let Fi 2 F .�/ be a standard flat containing
ui�1 and ui , and let F 0i be the unique standard flat such that qi�1 2 F 0i and

L0.�.F 0i // D L.�.Fi //:

There is a natural identification of gi W Fi ! F 0i via the charts

f W Fi ! Zv.L.�.Fi ///

and
f 0 W F 0i ! Zv.L

0.�.F 0i /// D Zv.L.�.Fi ///

such that gi D .f 0/�1 ı f . Up to post-composing f and f 0 by translations, we can
assume fi .ui�1/ D qi�1. Then we define qi D fi .ui /. Note that the definition of qi D
˛0.a1a2 � � � ai / does not depend on the choice of Fi by the compatibility condition (2).

We now claim for any other wordw0u representing u, ˛0.wu/D ˛0.w0u/, hence we have
a well-defined map ˛0 W G.�/! G.�/. To see this, recall that one can obtain wu from w0u
by performing the following two basic moves:

(1) w1aa�1w2 ! w1w2.

(2) w1abw2 ! w1baw2 when a and b commute.

It is clear that ˛0.w1aa�1w2/ D ˛0.w1w2/, and it suffices to show ˛0.ab/ D ˛0.ba/,
where a and b are mutually commuting generators. Let F be a maximal standard flat
that contains e; a and b; we could always choose F in the definition of ˛0.ab/ or ˛0.ba/,
thus they are equal.

By switching the role of AL and AL0 , we can define ˛00 WG.�/!G.�/which maps v
to e in a similar way. It is not hard to check if ˛0 and ˛00 are inverses of each other.
Thus ˛0 is bijective; moreover, ˛0 preserves F .�/. To define ˛, pick vertex w 2 P .�/,
let � be a maximal simplex containing w. Take F � X.�/ to be the flat such that
�.F / D �, and take F 0 to be the maximal standard flat such that ˛.v.F // D v.F 0/;
we set ˛.w/ to be the unique point such that ˛.w/ 2 �.F 0/ and L.w/ D L0.˛.w//. One
readily verifies that L D L0 ı ˛, ˛0 is induced by ˛, and ˛0 pulls back the charts up to
translations, so ˛�.AL0/

e
D AL.

5.3. Shearing standard flats

In this subsection, we prove the following theorem.

Theorem 5.10. Let G.�/ be a group of weak type I. Then the following are equivalent:

(1) G.� 0/ is quasi-isometric to G.�/.
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(2) G.� 0/ is isomorphic to a finite index subgroup of G.�/.

(3) G.� 0/ is isomorphic to a special subgroup (Section 2.4) of G.�/.

Remark 5.11. From Theorem 5.10, we know in particular that a finite index RAAG sub-
groupH ofG.�/ is isomorphic to a special subgroup. However,H might not be a special
subgroup of G.�/. Interestingly, under the strong condition that Out.G.�// is finite, any
finite index RAAG subgroup will automatically be a special subgroup [21, Section 6].

The following is a consequence of Theorem 5.10 and [21, Section 6.3].

Corollary 5.12. Let G.�/ be a group of weak type I. Then there is an algorithm to
determine whether G.� 0/ and G.�/ are quasi-isometric.

In the rest of this subsection, we prove Theorem 5.10. Note that it suffices to prove
the case when G.�/ has trivial center. Thus from now on, G.�/ is a RAAG of weak
type I with trivial center. Let AL0 be the reference atlas for G.� 0/. Let q; s; sg 0 ;xsg 0 ; �, �g 0
and x�g 0 be as in the discussion before Lemma 5.8. We will also be using actions of G.� 0/
on P .� 0/;G.� 0/;P .�/ and G.�/ discussed over there. A main ingredient of the proof is
the following.

Proposition 5.13. Under the aforementioned setting, there exists a coherent labeling
L W P .�/ ! F.�/ for G.�/ which is invariant under the action G.� 0/ Õ P .�/ and
an L-atlas xAL for G.�/ such that

(1) xAL
e
D .�g 0/

�. xAL/ for any g0 2 G.� 0/.

(2) (Inverse images are boxes) Given F 2 F .�/, let F 0 D �.F /, and let

s0 W v.L.�.F ///! v.L0.�.F 0///

be the bijection induced by s. Suppose xh and h0 are charts for F and F 0 with
respect to xAL and AL0 , respectively. Then ' D h0 ı � ı xh admits splitting

' D
Y

w2v.L.�.F ///

'w ;

where
'w W Z

w
! Zs0.w/

(where Zw denotes the copy of Z associated with vertex w) is of form

'w.a/ D ba=dwc C rw

for some integers rw and dw (dw > 0).

Now we prove Theorem 5.10, assuming Proposition 5.13.



Quasi-isometric classification of right-angled Artin groups II: Several infinite out cases 1217

Proof of Theorem 5.10. (3)) (1) and (2)) (1) are trivial. Now we look at (1)) (2).
By Theorem 2.18, we can assume G.�/ has trivial center. Let Aref be the reference atlas
for G.�/, and let xAL be as in Proposition 5.13. By Lemma 5.9, there exists simplicial
isomorphism r W P .�/! P .�/ such that r�. xAL/

e
D Aref. The G.� 0/-invariance of xAL

implies
.r�1 ı sg 0 ı r/

�.Aref/
e
D Aref:

Let �r WG.�/!G.�/ be the map induced by r . Then by Definition 5.5 (1), ��1r ı�g 0 ı�r
is a left translation of G.�/. Hence we have obtained a faithful action of G.� 0/ on G.�/
via left translations with finitely many orbits. Thus (2) follows.

(1) ) (3). Since the atlas xAL satisfies Proposition 5.13 (2), we deduce that for
F 2 F .�/, there is F 0 2 F .� 0/ such that the map � ı �r jv.F / W v.F /! v.F 0/ is sur-
jective, and it maps a collection of boxes in v.F / to single points in v.F 0/. As Stab.F 0/
acts transitively on v.F 0/, it follows from Proposition 5.13 (1) that all these boxes have
the same dimension. As each standard flat is contained in a stable standard flat, we know
from Proposition 5.13 (2) that � ı �r sends standard flats to standard flats. Moreover,

• if two elements of G.�/ are adjacent in X.�/, then their � ı �r -images are either the
same or adjacent;

• given a pair of parallel edges e1; e2 � X.�/ is parallel, if the � ı �r .@e1/ is a sin-
gle point (@e1 denotes the collection of two endpoints of e1), then the same holds for
� ı �r .@e2/; if the � ı �r .@e1/D @e01 for an edge e01 �X.�

0/, then � ı �r .@e2/D @e02
for an edge e02 � X.�

0/ with e02 parallel to e01.

Now it is clear that � ı �r extends to a cubical mapX.�/!X.� 0/. The inverse image of a
vertex under this cubical map is a compact subcomplex by Lemma 5.8 (1). Note that � ı�r
is G.� 0/-equivariant, where the G.� 0/ action on X.�/ is given by g0 ! ��1r ı �g 0 ı �r .
As � gives a 1-1 correspondence between maximal standard flats in X.�/ and maximal
standard flats in X.� 0/, and �r gives a bijection on the set of maximal standard flats
in X.�/, we know � ı �r induces an isomorphism of the associated extension complexes
in the sense explained after Theorem 2.16. Then Lemma 2.17 impliesG.� 0/ is isomorphic
to a special subgroup (note that Lemma 2.17 (2) follows from Proposition 5.13 (2)).

In the rest of this subsection, we prove Proposition 5.13. We first arrange the coherent
labeling L.

Lemma 5.14. There exists a coherent labeling L W P .�/ ! F.�/ for G.�/ which is
invariant under the action G.� 0/ Õ P .�/.

This proof of this lemma is part of the proof of Lemma 5.9 of [21]. We extract here
for the convenience of the reader.

Proof. Recall that each vertex of P .�/ is labeled by a vertex in � (cf. Section 2.3), which
induces a simplicial map L0 W P .�/! F.�/. Similarly, we define L00 W P .�

0/! F.� 0/.
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Take g0 2G.�/, and let ig 0 W F.� 0/!P .� 0/ be the embedding as in Lemma 2.14. Define

L D L0 ı s
�1
ı ig 0 ı L

0
0 ı s;

which is a simplicial map from P .�/ to F.�/. Pick arbitrary g 2 G.�/. We need to show
L ı ig is a simplicial isomorphism. Let Kg D ig.F.�//, and let g01 2 G.�

0/ such that
g01 � �.g/ D g

0. Then ig 0 ı L00js.Kg / D xsg 01 js.Kg /. Thus

L ı ig D L0 ı s
�1
ı ig 0 ı L

0
0 ı s ı ig D L0 ı s

�1
ı xsg 01 ı s ı ig D L0 ı sg

0
1
ı ig ;

which is a simplicial isomorphism by Lemma 2.5. It follows that L is a coherent labeling;
moreover,

.sg 0/
�L D .L0 ı s

�1
ı iq ı L

0
0 ı s/ ı .s

�1
ı xsg 0 ı s/ D L0 ı s

�1
ı iq ı L

0
0 ı xsg 0 ı s

D L0 ı s
�1
ı iq ı L

0
0 ı s D L

for any g0 2 G.� 0/, where the third equality follows from G.� 0/-invariance of L00. So L
is the required coherent labeling.

It remains to construct an L-atlas xAL for G.�/ satisfying all the requirements. This
is the main part of the proof of Proposition 5.13. Note that in light of Lemma 5.14, for
verifying Proposition 5.13 (1), it suffices to show charts of xAL are G.� 0/-invariant up to
translations. We will construct xAL by induction on the dimension of charts.

By induction, we assume the charts are already defined for standard flats in F .�/ of
dimension �k � 1 such that the following inductive assumptions hold true:

(1) The charts are compatible and G.� 0/-invariant up to translations.

(2) (Inverse images are boxes) Given F 2 F<k.�/, let F 0 D �.F /, and let

s0 W v.L.�.F ///! v.L0.�.F 0///

be the bijection induced by s. Suppose xh and h0 are charts for F and F 0,
respectively. Then ' D h0 ı � ı xh admits splitting

' D
Y

w2v.L.�.F ///

'w ;

where
'w W Z

w
! Zs0.w/

is of form
'w.a/ D ba=dwc C rw .a 2 Zw/

for some integers rw and dw (dw > 0).

(3) (Extension condition) For F1; F2 2 F<k.�/ such that

�.v.F1// D �.v.F2// D v.F
0/;

there is a bijection f W v.F1/! v.F2/ such that
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(a) �.x/ D � ı f .x/ for any x 2 v.F1/.

(b) xh2 ı f ı xh�11 is a translation (where xhi W v.Fi /! Zv.L.�.Fi /// are charts).

(c) Let F 2 F .�/ such that F1 \ F ¤ ;, F2 \ F ¤ ; and the convex hull of F1
and F is a flat. Then f .v.F1 \ F // D v.F2 \ F /.

Remark 5.15. Note that only requiring condition (1) is not enough since the compatibil-
ity of existing charts does not imply that we can add more charts in a compatible way to
obtain an atlas, thus we need condition (3).

For i D 1; 2, let 'i D h0 ı � ı xh�1i . Then (2) and (3) imply that '�11 .y/ and '�12 .y/ are
boxes of the same size for any y 2 Zv.L.�.F

0///. Thus (3a) and (3b) uniquely determine
the map f , and we call f a chart-induced identification (CII) between v.F1/ and v.F2/.

In order to define charts for standard flats in F�k.�/, we need a way to “connect”
parallel copies of lower-dimensional standard flats in a k-dimensional stable standard flat.
For this purpose, we will define CII between parallel standard flats in F�k�1.�/ and prove
some basic properties via a sequence of lemmas (Lemmas 5.16–5.20). We will define
charts after these preparatory lemmas.

Lemma 5.16. The map f is Stab.v.F 0//-equivariant.

Proof. Recall that Stab.v.F 0//D Stab.v.F1//D Stab.v.F2// by Lemma 5.8. By (1), the
induced action of Stab.v.F 0// on the range of xh1 (or xh2) is an action by translations; more-
over, this action is completely determined by the size of the box '�11 .y/ (or '�12 .y/). It
follows from (3a) and (3b) that xh2 ı f ı xh�11 is Stab.v.F 0//-equivariant. Then the lemma
follows.

Let F1; F2 2 F<k.�/ be two parallel elements. If F 01 D �.F1/ and F 02 D �.F1/,
then F 01 and F 02 are parallel. Let p W v.F 01/! v.F 02/ be the map induced by parallelism,
that is, p sends a vertex in F 01 to the nearest point in F 02 (which is a vertex) with respect to
the metric on the ambient CAT.0/ cube complex. Let g0 be the unique element in G.� 0/
such that x�g 0 jv.F 01/ D p. Suppose F21 D �g 0.F1/. Then

�.F21/ D �.F2/

by (5.1). We define the chart-induced identification (CII)

f W v.F1/! v.F2/

between v.F1/ and v.F2/ by
f D f1 ı �g 0 ;

where f1 is the CII between v.F21/ and v.F2/.

Lemma 5.17. The CII map f is Stab.v.F1//-equivariant.
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Proof. Note that Stab.v.F1// D Stab.v.F2// D Stab.v.F 01// D Stab.v.F 02//. Since g0

commutes with any element in Stab.v.F1//, �g 0 is Stab.v.F1//-equivariant. According
to Lemma 5.16, f1 is Stab.v.F1//-equivariant. Thus the lemma follows.

Lemma 5.18. The following properties of f are true:

(1) The map f satisfies all the properties in inductive assumption (3) with (3a)
replaced by x�g 0 ı � D � ı f .

(2) The map f is uniquely characterized by the following two properties:

• xh2 ı f ı xh
�1
1 is a translation.

• � ı f .x/ D p ı �.x/ for any x 2 v.F1/, where p W v.F 01/ ! v.F 02/ is the
parallelism map.

Proof. We prove the first assertion of the lemma. Conditions (3a) and (3b) follow from
inductive assumption (1). It suffices to check (3c). Let F 0 D �.F /. Then the convex
hull of F 0 and F 01 (or F 02) is also a flat, thus x�g 0.v.F 0// D v.F 0/, and (5.2) implies
�g 0.v.F // D v.F /. It follows that

�g 0.v.F \ F1// D v.F \ F21/:

Note that F21 and F2 are in the convex hull of F1 and F , thus

f1.v.F \ F21// D v.F \ F2/

by (3c), which implies
f .v.F \ F1// D v.F \ F2/:

The second assertion of the lemma follows from the first assertion and inductive
assumption (2).

Lemma 5.19. Let ¹Fiº4iD1 � F<k.�/ such that F1, F2 and F3 are parallel. Suppose fij
is the CII between v.Fi / and v.Fj / and xhi is the chart for Fi . Then

(1) f13 D f23 ı f12.

(2) If F4 � F1, then f12.v.F4// is the vertex set of some standard flat and f12jF4 is
the CII between v.F4/ and f12.v.F4//.

(3) If Fi � F4 for i D 1; 2, then f12 coincides with the map induced by parallelism
between xh4.v.F1// and xh4.v.F2// in Zv.L.�.F4/// (note: for the definition of par-
allelism map, we treat Zv.L.�.F4/// as an integer lattice in a Euclidean space and
send a point in xh4.v.F1// to the nearest point in xh4.v.F2// with respect to the
Euclidean metric).

(4) CIIs are G.� 0/-invariant. Namely, for any g0 2 G.� 0/, the CII between �g 0.F1/
and �g 0.F2/ is given by �g 0 ı f12 ı ��1g 0 .
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Proof. The first assertion is a consequence of Lemma 5.18 (2). To see (2), by the compati-
bility of charts, there is a 1-1 correspondence between standard flats in F2 that are parallel
to F4 and cosets of Zv.L.�.F4/// in Zv.L.�.F2///, but xh2.f12.v.F4/// is such a coset by
the first item of Lemma 5.18 (2), thus f12.v.F4// is the vertex set of some standard flat.
Lemma 5.18 (2) also implies that f12jF4 is a CII. Assertion (3) follows from inductive
assumption (2) and Lemma 5.18 (2). Assertion (4) follows from inductive assumption (1)
and Lemma 5.18 (2).

TakeF1;F 2F .�/with dim.F1/<k andF1�F , and define a map �1 Wv.F /!v.F1/

as follows. For standard flat K � F with K parallel to F1, we set �jv.K/ D fK , where
fK W v.K/ ! v.F1/ is the CII between v.K/ and v.F1/. We call �1 a chart-induced
projection (CIP).

Lemma 5.20. Let F 01 D �.F1/ and F 0 D �.F /. Suppose F 02 is an orthogonal complement
of F 01 in F 0 and xh1 is the chart for F1. Then

(1) �1 ı xh1 is Stab.v.F 02//-invariant and Stab.v.F 01//-invariant up to translation,
hence is Stab.v.F 0//-invariant up to translation.

(2) Pick F3 2 F .�/ such that F3 � F1. Let �3 W v.F /! v.F3/ and �13 W v.F1/!
v.F3/ be CIPs. Then �3 D �13 ı �1.

(3) Assume dim.F / < k, and let xh be the chart for F . Then �1 coincides with the map
induced by the natural projection from xh.F / to xh.F1/ in Zv.L.�.F ///.

(4) Suppose � 01 is the orthogonal projection v.F 0/! v.F 01/. Then

� ı �1.x/ D �
0
1 ı �.x/

for any x 2 v.F /.

(5) Let F3 2 F .�/ be a standard flat in F . Then there exists stable standard flat
F4 2 F1 such that �1.v.F3// D v.F4/ (F4 could be a point). Moreover, let
�4 W F ! F4 be the CIP. Then

�1jv.F3/ D �4jv.F3/:

Proof. To see (1), note that any element in Stab.v.F 02// maps F 01 to a flat parallel to F 01,
and this map is exactly the parallelism map. It follows from Lemma 5.18 (2) that �1 ı xh1
is Stab.v.F 02//-invariant. Lemma 5.17 and inductive assumption (1) imply �1 ı xh1 is
Stab.v.F 01//-invariant up to translation. Assertion (2) follows from assertion (1) and
Lemma 5.19 (2). Assertion (3) follows from Lemma 5.19 (3). Assertion (4) follows from
Lemma 5.18 (2). To see (5), we first assume F3 \ F1 ¤ ; and take F4 D F1 \ F3, then

�1.v.F3// D v.F4/

by Lemma 5.18 (1). In general, we pick a standard flat zF1 parallel to F1 such that
zF1 \ F3 ¤ ;. Let f1 W zF1 ! F1 be the CII, and let z�1 W F ! zF1 be the CIP. Then
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f1 ı z�1 D �1, which reduces the problem to the previous case. The second assertion in (5)
follows from (2).

We will construct charts for elements in Fk.�/ in three steps.

Step 1: We construct charts for a single element in Fk.�/. Pick a standard k-flat
F 2 F .�/ and vertex p 2 F . Let Fm be the convex hull of all standard flats that are
properly contained in F , pass through p and belong to F .�/. Then Fm 2 F .�/ by
Lemma 2.21. We divide the construction into three cases depending on the size of Fm.
In each case, we will construct a chart xh W v.F /! Zv.L.�.F /// for F and shall verify

(1) xh is compatible with charts of elements in F<k.�/.

(2) xh is Stab.v.F 0//-invariant up to translation.

(3) Inductive assumption (2) holds for xh.

Case 1. The flat Fm is a point. Let F 0 D �.F /, and let

h0 W v.F 0/! Zv.L
0.�.F 0///

be the chart for F 0. Define

h D h0 ı � W v.F /! Zv.L
0.�.F 0///:

We assign an arbitrary bijection between v.L0.�.F 0/// and ¹1; 2; : : : ; kº with

k D jv.L0.�.F 0///j;

which leads to an identification of Zv.L
0.�.F 0/// with Zk . As h is a map from v.F / to Zk ,

we can write
h D .h1; h2; : : : ; hk/;

where each hi is a coordinate component of h. Denote the identity element in Zv.L
0.�.F 0///

by 0, and let r D jh�1.0/j. Since elements in h�1.0/ are representatives of the orbits of the
action Stab.v.F 0// Õ v.F /, there is a natural map v.F /! h�1.0/. By post-composing
this map with a bijection

h�1.0/! ¹0; 1; : : : ; r � 1º;

we obtain a Stab.v.F 0//-invariant map

� W v.F /! ¹0; 1; : : : ; r � 1º:

Now define
zh W v.F /! Zv.L

0.�.F 0///

by sending x 2 v.F / to

.rh1.x/C �.x/; h2.x/; : : : ; hk.x//;

then zh is a bijection, and we have the following commutative diagram:
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v.F / v.F 0/

Zv.L
0.�.F 0/// Zv.L

0.�.F 0///Zv.L.�.F ///

�

zh h0

�0

hxh

s0

Here �0 is the map induced by �, s0 is the bijection induced by s W �.F /! �.F 0/ and
xh D s0�1 ı zh. By construction, xh is Stab.v.F 0//-invariant up to translation and satisfies
inductive assumption (2). We choose xh to be the chart for F , which is trivially compatible
with the charts already defined.

Case 2. p ¨ Fm ¨ F . Let F 0 and h be as before, and let F 0m D �.Fm/. Suppose Fc
(or F 0c) is a standard flat which is the orthogonal complement of Fm (or F 0m) in F (or F 0).
Then we have the following commuting diagram:

v.F /
h

�����! Zv.L
0.�.F 0///??y� ??y� 0c

v.Fc/
hc

�����! Zv.L
0.�.F 0c///

Here � and � 0c are the natural projections. Note that h maps fibers of � to fibers of � 0c ,
which induces hc . The action of Stab.v.F 0c// permutes the fibers of � , which induces an
action

Stab.v.F 0c// Õ v.Fc/:

As in Case 1, we can obtain from hc a bijection

xhc W v.Fc/! Zv.L.�.Fc///

which is Stab.v.F 0c//-invariant up to translation. Then xhc ı � is Stab.v.F 0m//-invariant
(since Stab.v.F 0m// stabilizes each fiber of � by (5.2)) and Stab.v.F 0c//-invariant up to
translation.

Let xhm be the composition

v.F /! v.Fm/! Zv.L.�.Fm///

of a CIP with a chart map. Then the map xhm is Stab.v.F 0m//-invariant up to transla-
tion and Stab.v.F 0c//-invariant by (1) of Lemma 5.20. Now we identify Zv.L.�.Fm/// and
Zv.L.�.Fc/// as subgroups of Zv.L.�.F /// and define

xh W v.F /! Zv.L.�.F ///

by
xh D xhc ı � C xhm:

It is clear that the bijection xh is Stab.v.F 0//-invariant up to translation. We choose xh to be
the chart for F , and the compatibility follows from our construction.
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Let s0 and ' be as in inductive assumption (2). We claim cosets of Zw are mapped to
cosets of Zs0.w/ under ' for any w 2 v.L.�.F ///. If w 2 v.L.�.Fm///, then the claim
follows from Lemma 5.18 (2) and inductive assumption (2) for Fm. If w 2 v.L.�.Fc///,
then by Lemma 5.20 (4), xhm maps Zw -cosets to points. The claim follows from the
construction of xhc . Thus ' splits into products and xh satisfies inductive assumption (2).

Case 3. Fm D F . Then there exist standard flats F1; F2 2 F<k.�/ such that F is the
convex hull of F1 and F2 (a basic case to bear in mind is that F1 \ F2 is a single point).
Let F3 D F1 \ F2. Suppose F 0 D �.F / and F 0i D �.Fi /. Take xhi to be the charts for Fi
for 1 � i � 3, and take x�i W F ! Fi to be the CIP for 1 � i � 3. Define

xh W F ! Zv.L.�.F ///

by
xh D xh1 ı x�1 C xh2 ı x�2 � xh3 ı x�3:

Then by Lemma 5.20 (1), xh is Stab.v.F 0//-invariant up to translation.

Lemma 5.21. The following hold true:

(1) The map xh is a bijection.

(2) The map xh is compatible with charts of elements in F<k.�/.

(3) The map xh satisfies inductive assumption (2).

Proof. For assertion (1), note that xh induces a bijection between standard flats in F which
are parallel to F3 and cosets of Zv.L.�.F3/// in Zv.L.�.F ///. It suffices to show for any
standard flat zF3 � F parallel to F3, xhmaps zF3 bijectively to a coset of Zv.L.�.F3///. Note
that by Lemma 5.18 (2), if we change the standard flats F1 and F2 in the definition of xh to
some other flats parallel to them, then xh would differ by translation, thus we can assume
zF3 D F3. But xh restricted to F3 is of form xh1 C xh2 � xh3, so what we need to prove is

implied by the compatibility condition.
Now we prove assertion (2). Let F4 � F be an element in F<k.�/, and let xh4 be its

chart. We can assume Fi \ F4 ¤ ; by moving F1 and F2 appropriately as before. For
1 � i � 3, let F4i D F4 \ Fi , let x�4i W F ! F4i be the CIP and let xh4i be the chart
for F4i . By (5) of Lemma 5.20, �i .F4/ D F4i for 1 � i � 3 and

xh D xh1 ı x�41 C xh2 ı x�42 � xh3 ı x�43

when restricted on F4. On the other hand, (3) of Lemma 5.20 and the compatibility
condition imply

xh4 D xh41 ı x�41 C xh42 ı x�42 � xh43 ı x�43

up to translation. Now the compatibility of xh4 and xh follows from the compatibility of xhi
and xh4i (1 � i � 3).

For assertion (3), it suffices to show xh restricted on each Z-coset has the desired prop-
erty. Let w 2 v.L.�.F ///, and let K be a Zw coset. Then K is contained in either a
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Zv.L.�.F1/// coset or a Zv.L.�.F2/// coset. Since xh is compatible with other charts, there
exists a standard flat F5 � F which is parallel to either F1 or F2 such thatK � xh.v.F5//.
Moreover, if xh5 is the chart for F5, then xh5 ı xh�1.K/ is again a Zw coset. By applying
the inductive assumption to xh5, we know xhjK has the desired behavior.

Lemma 5.22. If we choose different F1 and F2 in the definition of xh, then the resulting
chart remains the same up to translation.

Proof. Let xh be the chart defined above using F1 and F2. The lemma follows if we
know that for any F3 2 F<k.�/, the CIP from v.F / to v.F3/ coincides with the map
induced by the natural projection from xh.F / to xh.F3/ in Zv.L.�.F ///. To show this prop-
erty of CIP holds, it suffices to show that for any pair of parallel elements F4; F5 � F in
F<k.�/, the CII between v.F4/ and v.F5/ coincides with the map induced by parallelism
between xh.v.F4// and xh.v.F5// in Zv.L.�.F ///. This can be proved in the same way as
Lemma 5.19 (3), using Lemma 5.21 (2).

Step 2: We construct charts for flats with the same �-image as F . We define a
graph ƒ.F /. Its vertices are in 1-1 correspondence to standard flats that have the same
�-image as F and two vertices are joined by an edge if and only if the corresponding flats
are bolted, defined as follows.

Definition 5.23. Two parallel elements H1;H2 2 F .�/ are bolted if there is H 2 F .�/

such that for i D 1; 2, H \Hi ¤ ;, H \Hi ¨ Hi and the convex hull of H and H1 is a
flat. The standard flatH is called an .H1;H2/-bolt; we will omit .H1;H2/ when they are
clear.

The main goal of Step 2 is the following.

Lemma 5.24. Let F 0 D �.F /. There exists a collection of charts, one for each vertex
in ƒ.F / such that

(1) Each chart is compatible with charts of elements in F<k.�/.

(2) Each chart is Stab.v.F 0//-invariant up to translation.

(3) Inductive assumption (2) holds for each chart.

(4) Inductive assumption (3) is satisfied for each pair of charts.

We choose a representative in each connected component of ƒ.F / (the representative
in the component containing F is chosen to be F ), which gives a collection ¹F�º�2ƒ. We
build a chart xh� for each F� as in Step 1. By Step 1, Lemma 5.24 (1)–(3) hold for each xh�.
Now we arrange Lemma 5.24 (4) for each pair of charts in ¹xh�º�2ƒ.

Lemma 5.25. Take ¹H1; H2º � ¹F�º�2ƒ with their charts xh1 and xh2. Then for any
y 2 v.F 0/, .� ı xh�11 /

�1.y/ and .� ı xh�12 /
�1.y/ are boxes of the same dimension.
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Proof. Note that H1 and H2 must be in the same case of Step 1, so the lemma follows
from Lemma 5.8 (3) in Case 1 of Step 1. In Case 2 of Step 1, the lemma is a consequence
of Lemma 5.8 (3), and the following observation follows from Lemma 5.18 (2): for any
two parallel standard flats F3; F4 � Fk�1.�/ with charts xh3 and xh4, .� ı xh�13 /

�1.y3/ and
.� ı xh�14 /

�1.y4/ are boxes of the same dimension where yi is a point in the image of
� ı xh�1i for i D 3; 4. In Case 3 of Step 1, by Lemma 5.22 (up to a translation) the defini-
tion of xhi does not depend on the choice of the pair of stable flats inHi . So we can choose
them such that they are parallel to F1; F2 � F as in Case 3 of Step 1. This, together with
the previous observation, implies the lemma.

By Lemma 5.25, there exists a unique identification f W v.H1/! v.H2/ character-
ized by (3a) and (3b) of the inductive assumption. Assumption (3c) is trivially true for f ,
and f is Stab.v.F 0//-equivariant since both xh1 and xh2 are Stab.v.F 0//-invariant up to
translation. Thus Lemma 5.24 (4) holds for each pair of charts in ¹xh�º�2ƒ.

It remains to define charts for flats inside one connected component of ƒ.F /, so we
assume now ƒ.F / is connected.

Lemma 5.26. There is a collection of bijections between each pair of flats inƒ.F /, which
is also called CIIs such that

(1) These CIIs are compatible under compositions.

(2) Each CII is Stab.v.F 0//-equivariant and satisfies inductive assumptions (3a)
and (3c).

(3) Let f W H1 ! H2 be a CII between flats H1 and H2 in ƒ.F /. Suppose S1 2
F<k.�/ be a standard flat in H1. Then there exists S2 2 F<k.�/ parallel to S1
such that f .v.S1// D v.S2/ and f jv.S1/ is the CII between v.S1/ and v.S2/.

Assuming Lemma 5.26, we can finish the proof of Lemma 5.24 as follows. For any
flat H in ƒ.F /, we define the chart of H to be the composition of the CII between H
and F , and the chart map of F . This chart satisfies inductive assumption (2) since F also
satisfies this condition and the CII satisfies (3a). Recall that the chart of F is compatible
with the charts for flats in F<k.�/, so is the chart ofH by Lemma 5.26 (3). Moreover, this
chart is Stab.v.F 0//-invariant up to translation by Lemma 5.26 (2). Under such definition
of charts, the CII between F and another flat in ƒ.F / trivially satisfies inductive assump-
tion (3b), hence the CII between any two flats inƒ.F / satisfies inductive assumption (3b)
by Lemma 5.26 (1).

Proof of Lemma 5.26. We will again follow the three cases of how large is Fm in F as in
Step 1. In Case 1, we define the CII between any two flats in ƒ.F / to be the map induced
by parallelism, then (1) of Lemma 5.26 is true. Let F1 and F2 be a pair of bolted flats,
and let H be a bolt. Suppose f12 W v.F1/! v.F2/ is the CII. Then for i D 1; 2, H \ Fi
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must be one point, and we denote it by pi . It is clear that f12.p1/ D p2, thus inductive
assumption (3c) follows. Moreover,

�.p1/ D �.v.H/ \ v.F1// D �.v.H// \ �.v.F1// D �.v.H// \ �.v.F2//

D �.v.H/ \ v.F2// D �.p2/ D � ı f12.p1/:

The second and fourth equalities follow from Lemma 5.8 (2). Thus (3a) is true for bolted
pair of flats. By moving the bolt H around using the action of Stab.F 0/, we know f12 is
Stab.F 0/-equivariant. The connectivity ofƒ.F / implies that (3a) and the equivariance are
true for all pairs of flats in ƒ.F /. This finishes Case 1.

We need the following terminology before Case 2. Let H be a standard flat. An
H -fiber is a standard flat parallel to H . Let H1; H2 2 F .�/ be parallel elements that
contain H -fibers, and let p W v.H1/! v.H2/ be the map induced by parallelism. We say
a bijection f W v.H1/! v.H2/ is parallel modH -fibers if f .v.H 0//D p.v.H 0// for any
H -fiber H 0. For standard flat Si 2 Hi , we will write f .S1/ D S2 if f .v.S1// D v.S2/.

In Case 2, for flats H1 and H2 in ƒ.F /, we define the CII f W v.H1/ ! v.H2/

such that f is parallel mod Fm-fibers, and for each Fm-fiber T � H1, f jv.T / is
the CII between v.T / and f .v.T //. Lemma 5.26 (1) follows from parallelism and
Lemma 5.19 (1) for CIIs between Fm-fibers. Let F1, F2, f12 and H be as in Case 1.
Then for i D 1; 2, there exist Fm-fibers Fim � Fi such that Fi \H � Fim. Note that

f12.v.F1m// D v.F2m/;

and H is also a bolt for F1m and F2m when F1 \ H ¨ F1m, thus inductive assump-
tion (3c) follows. By Lemma 2.21, we can assume H \ Fi is actually an Fm-fiber for
i D 1; 2, then the argument in the previous case implies that the image of any Fm-fiber in
F1 under � and � ı f12 is the same. Then (3a) follows since we already know it is true for
CIIs between Fm-fibers. The Stab.F 0/-equivariance follows by applying Lemma 5.19 (4)
to CIIs between Fm-fibers. Note that any element of F<k.�/ that lies in F1 must stay
inside an Fm-fiber, then Lemma 5.26 (3) follows from Lemma 5.19 (2).

In Case 3, let H1 and H2 be a bolted pair in ƒ.F /. Pick a vertex p0 2 H1, and let H
be the intersection of all .H1;H2/-bolts that contains p0. ThenH is also a bolt. We define
the CII

f W v.H1/! v.H2/

as in Case 2 with Fm-fibers replaced by H \H1-fibers. The inductive assumption (3c)
for f follows from the minimality of H , and we can prove (3a) and the Stab.v.F 0//-
equivariance as before.

Now we prove Lemma 5.26 (3) for f . It is clear that S1 stays inside anH \H1-fiber.
In general, pick an H \H1-fiber T1 such that

T1 \ S1 D S11 ¤ ;
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and a standard flat S12 which is an orthogonal complement of S11 in S1. Since f is paral-
lel mod T1-fibers, f .v.S1// belongs to a .T1 � S12/-fiber R. Suppose S21 D f .S11/ and
T2 D f .T1/. Let �i W Hi ! Ti be the CIP for i D 1; 2. Then

�1.v.S1// D S11

by Lemma 5.20 (5), hence
�2.f .v.S1/// D S21

by Lemma 5.19 (1). But every two T1-fibers in R are bolted by S1-fibers, then the CII
between these two T1-fibers is parallel mod S11-fibers, which implies f .v.S1// actually
stays inside an .S11 � S12/-fiber. To see the second part of Lemma 5.26 (3), note that S1
and S2 are bolted byH \H1-fibers, then the CII between them is parallel mod S11-fibers
by inductive assumption (3c). Thus the CII coincides with f by Lemma 5.19 (2).

For arbitrary pair H1 and H2 in ƒ.F /, we choose an edge path in ƒ.F / connect-
ing H1 and H2, which would induce a CII from H1 to H2. This CII will automatically
satisfy Stab.v.F 0//-equivariance, inductive assumption (3a) and Lemma 5.26 (3), since
these properties are true under compositions. For this CII to be well defined, we need to
show every edge loop inƒ.F / induces the identity map. Let F be a base point in the edge
loop, and let

f W v.F /! v.F /

be the bijection induced by the edge loop. Pick F1;F2 2 F<k inside F such that their con-
vex hull is F , then it follows from (3c) that for i D 1; 2, every CII between two Fi -fibers
in F is parallel mod F1 \ F2-fibers. We first assume F1 \ F2 is a point. By previous
discussion, f maps Fi -fiber to Fi -fiber, thus f splits into product f D f1 � f2, where
fi W Fi ! Fi are bijections. Moreover, if g W f .v.F1//! v.F1/ is the CII, then

g ı f jv.F1/ D Id

by (1) of Lemma 5.19, thus f jv.F1/ is induced by parallelism and f2 D Id. Similarly, we
can prove f1 D Id, thus f D Id. In general, we can run the same argument mod F1 \ F2-
fibers to show that f sends every F1 \ F2-fiber to itself, then f D Id follows by applying
Lemma 5.19 (1) to F1 \ F2-fibers.

Step 3: We define charts for any element in Fk.�/. Let F and F 0 D �.F / be as in
the previous steps. Let H be an element in Fk.�/ such that �.H/ is in the G.� 0/-orbit
of F 0. Note that this is equivalent to L0.�.�.H/// D L0.�.F 0//. Pick g0 2 G.� 0/ with
x�g 0.�.H// D F

0, then �g 0.H/ is an element in ƒ.F /. We define the chart of H to be the
composition of the chart map of �g 0.H/ and �g 0 . If we choose a different g0, the result-
ing chart would differ by a translation, since xh is Stab.v.F 0//-invariant up to translation.
By (5.1), this chart satisfies inductive assumption (2). Moreover, it is compatible with
charts of elements in F<k.�/, since these charts are G.� 0/-invariant up to translations,
and they are compatible with charts of flats in ƒ.F / by the previous step.
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By now, we have defined a G.� 0/-invariant (up to translations) collection of charts for
flats that are G.� 0/ orbits of flats in ƒ.F /. This collection corresponds to a stable clique
of k vertices in � 0, namely the 1-skeleton ofL0.�.F 0//. For each stable k-clique in � 0, we
run the same argument to define charts for the corresponding collection of k-flats inG.�/.
This gives rise to charts defined for all elements in Fk.�/ that satisfy all the requirements,
hence finishes the induction step. In summary, we have constructed a G.� 0/-invariant (up
to translations) L-atlas xAL such that inductive assumption (2) is true for all charts in this
atlas. This finishes the proof of Proposition 5.13.

6. Shuffling tiers and branches

6.1. Motivating discussion and overview

Let G.�1/ be a RAAG of type II. The goal of this section is to understand the class of
RAAGs that are quasi-isometric to G.�1/. The first motivating example to consider is �1
being a pentagon. In this case, it is known before that any RAAG quasi-isometric toG.�1/
is isomorphic to a special subgroup of G.�1/ in the sense of Section 2.4 [21]. A key point
in the proof is that any quasi-isometry q W G.�1/! G.�2/ induces a simplicial isomor-
phism ˛ W P .�1/! P .�2/ that is visible, as for each vertex v 2 P .�1/, each v-tier only
contains one v-branches. This follows from Corollary 3.13 and Lemma 3.3.

Here is a more interesting example. Suppose ƒm;n is obtained by gluing m copies of
pentagon and n copies of hexagon along a common closed vertex star. Let xv be the central
vertex of the common vertex star (see the figure below for ƒ3;2). Let v 2 P .�/ be a lift
of xv. In this case, each v-tier contains .mC n/ v-branches, corresponding to the .mC n/
connected components of �1 n St.xv/ (cf. Corollary 3.13). Thus a simplicial isomorphism
˛ W P .�1/! P .�2/ does not necessarily send a v-tier to an ˛.v/-tier. However, the hope
is that if we post-compose ˛ by a suitable permutation of the ˛.v/-tiers, then it might be
possible for modified ˛ to send v-tiers to ˛.v/-tiers, and we could still obtain a visible
map.

xv

However, there is an obstruction for this. For example, G.ƒ2;4/ is an index 2 special
subgroup of G.ƒ1;2/ (Section 2.4). If ˛ goes from P .ƒ1;2/ to P .ƒ2;4/, then it is possi-
ble to arrange as above such that it sends a v-tier to an ˛.v/-tier. But this is impossible if
the domain and range of ˛ are exchanged, simply because in the domain, a v-tier has 6
v-branches, but in range an ˛.v/-tier has 3 v-branches.

This is not the only obstruction. It turns out that as long as in the domain of ˛,m and n
are co-prime, then we can always modify ˛ such that it preserves tiers. We generalize this
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to define a subclass of type II RAAGs, called prime RAAGs. At this point, we would avoid
giving the full details of the definition of prime and simply say that it involves symmetries
of v-branches in the sense of Definition 6.1. Some of these symmetries of P .�/ are nor-
mal and expected, and they can be piecewisely defined using the action of G.�/ on P .�/

(as the map q and q� in the proof of Lemma 6.3). However, there are other unexpected
permutation of branches, which is the base for the definition of prime RAAGs.

The first step of the proof is to show that if two prime RAAGs are quasi-isometric,
then they are isomorphic. This is done in Section 6.2.

The second step is to show that any RAAG of type II can be realized as a special sub-
group of a prime RAAG. Putting these two steps together, we obtain the main theorem
that any RAAG which is quasi-isometric to a RAAG of type II is commensurable with
this RAAG. The second step is more involved and takes Sections 6.3–6.5.

Recall from Section 2.4 that if G.�/ were a special subgroup of G.� 0/, then � 0 is a
subgraph of � and � is obtained by gluing multiple copies of � 0 in a very specific way,
and the gluing pattern is encoded in a compact CAT.0/ cube complex. More precisely,
there is a compact convex subcomplex K � X.� 0/ such that F.�/ is isomorphic to the
full subcomplex of P .�/ spanned by vertices that correspond to standard geodesic lines
with non-trivial intersection with K. In particular, F.�/ is a union of subcomplexes of
form .F.� 0//x (the notation .F.� 0//x is defined before Lemma 2.14), where x ranges
over all vertices of K. Each of these subcomplexes is isomorphic to F.� 0/.

Suppose G.�/ is a RAAG of type II such that it is not prime. This ensures that the
branches of P .�/ have certain kind of unexpected symmetry (as remarked before). The
end game is how these symmetries of P .�/ actually imply that � has a very specific
structure explained in the previous paragraph. This is done in three sub-steps. First we
use the extra symmetries on P .�/ to build a wall space structure on F.�/. The dual cube
complex to this wall space will be the candidate compact cube complex as in the previous
paragraph. Moreover, each vertex of this cube complex gives a subcomplex of F.�/, and
F.�/ is a union of these subcomplexes (cf. Lemma 6.29). This is done in Section 6.3.
However, at this point, it is not clear what the relationship is between these subcomplexes.
This is analyzed in Section 6.4, where we also study in detail the pattern in which these
subcomplexes are assembled to give F.�/, and how this is related to the dual cube com-
plex. In the last step, namely Section 6.5, we conclude that we indeed construct a prime
RAAG such that G.�/ sits inside as a special subgroup.

6.2. Prime RAAG

From now on, we assume G.�/ is a centerless RAAG of type II. We also label and ori-
ent edges of X.�/ in a G.�/-invariant way as before (see Section 2.1). The goal of this
subsection is to introduce the notion of prime RAAGs and prove Theorem 6.10.

Let q WG.�/!G.� 0/ be a quasi-isometry, and let q� WP .�/!P .� 0/ be the canoni-
cal simplicial isomorphism induced by q (cf. Corollary 4.3). Pick vertex v 2P .�/, then q�



Quasi-isometric classification of right-angled Artin groups II: Several infinite out cases 1231

induces a 1-1 correspondence between v-branches in P .�/ and q�.v/-branches in P .� 0/.
This correspondence is the starting point to understand the quasi-isometry q.

Definition 6.1. Let v 2 P .�/ be a vertex. Two v-branches B1 and B2 are quasi-
isometrically indistinguishable (QII) if there exist a quasi-isometry f W X.�/ ! X.�/

and an induced simplicial isomorphism f� W P .�/! P .�/ such that

(1) f� fixes every vertex in P .�/ n .B1 [ B2/.

(2) f�.B1/ D B2 and f�.B2/ D B1.

Such f or f� will be called an elementary permutation.

Lemma 6.2. Suppose � is of type II. Let f;B1;B2 be as in Definition 6.1. Let q WG.�/!
G.� 0/ be a quasi-isometry.

(1) The map q� sends QII v-branches to QII q�.v/-branches.

(2) Let B1;B2;B3 be mutually different v-branches. If B1 and B2 are QII, B2 and B3
are QII, then B1 and B3 are QII.

Proof. For assertion (1), let g D q ı f ı q�1, where q�1 is a quasi-isometry inverse of q.
As q� and .q�1/� are inverses of each other by Corollary 4.3, we know that g� exchanges
q�.B1/ and q�.B2/ and fixes all other vertices.

For assertion (2), let h WG.�/!G.�/ be the quasi-isometry witnessing the QII of B2
and B3 with h�.B2/ D B3. Then h� sends ¹B1; B2º to ¹B1; B3º. Thus we are done by
assertion (1).

Lemma 6.3. Pick a v-tier T , then for any v-branch B such that B ª T , there exists a
v-branch B 0 � T such that B 0 and B are QII.

Proof. Pick standard geodesic ` � X.�/ such that �.`/ D v, and suppose ��.`/.B/ D x
and ��.`/.T / D x0 (��.`/ is the map in Lemma 3.1). Recall that we have an action
G.�/ Õ X.�/, let ˛ 2 G.�/ be the element such that ˛ acts by translation along ` and
˛.x/ D x0. As B ª T , we know x ¤ x0, hence ˛ is not the identity element. Note that ˛
induces a simplicial isomorphism ˛� W P .�/ ! P .�/; moreover, ˛� fixes every point
in St.v/. Define B 0 D ˛�.B/. Let L and L0 be the components of X.�/ n Pv correspond-
ing to B and B 0, respectively (Proposition 4.6). Then ˛.L/ D L0. Now we consider the
following map q W X.�/! X.�/ defined by

q.z/ D

8̂̂<̂
:̂
z if z 2 X.�/ n .L [ L0/;

˛.z/ if z 2 L;

˛�1.z/ if z 2 L0:

One readily verifies that q is a quasi-isometry, and Proposition 4.6 implies that q� satisfies
the conditions in Definition 6.1, so B and B 0 are QII.
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Let xv D �.v/. It follows from Corollary 3.13 (1) that each v-branch corresponds to a
pair .C;K/, where C is a component of F.�/ n St.xv/, and K is a v-peripheral subcom-
plex with support @C such that @B D �.K/. We will denote C D ….B/ in such case.
As � has type II, Corollary 3.13 implies that for each given height, there exists a unique
v-branch B 0 at this height such that @B D @B 0 and ….B 0/ D C .

Definition 6.4. We define two components C1 and C2 of F.�/ n St.xv/ are quasi-
isometrically indistinguishable (QII) if there exist v-branches B1 and B2 which are QII
such that ….Bi / D Ci for i D 1; 2.

This definition does not depend on the choice of B1 and B2 in the sense of the
following lemma.

Lemma 6.5. Suppose C1 and C2 are QII components of F.�/ n St.xv/. Then for any
pair B 01 and B 02 such that @B 01 D @B

0
2 and ….B 0i / D Ci , we know B 01 and B 02 are QII.

Proof. We first look at the case @B 01 D @B1. It follows from Corollary 3.13 that there is
g 2 G.�/ with its axis `g � X.�/ satisfying�.`g/D v such that g�.B1/D B 01. Thus B1
and B 01 are QII by Lemma 6.3. Similarly, B2 and B 02 are QII. Thus B 01 and B 02 are QII by
Lemma 6.2 (2). It remains to treat the case @B 01 ¤ @B1. LetK andK 0 be the standard sub-
complexes in Pv such that �.K 0/ D @B 01 and �.K/ D @B1. Then their supports satisfy
�K D �K0 by Corollary 3.13. Thus there exists ˛ 2 G.�/ such that its action on G.�/
satisfying

˛.K/ D K 0

and
˛.Pv/ D Pv:

Since ˛ is label preserving, we know

….˛�.B1// D ….B1/:

Also, ˛�.v/D v, so ˛�.B1/ and ˛�.B2/ is a pair of QII v-branches with @.˛�.B1//D @B 01.
Thus we can conclude the proof by using Lemma 6.2 (2) and the previous case.

Lemma 6.6. Let C1; C2; C3 be three mutually distinct components of F.�/ n St.xv/.
Suppose C1 and C2 are QII and C2 and C3 are QII. Then C1 and C3 are QII.

Proof. Let B1 and B2 be v-branches that are QII with ….Bi / D Ci for i D 1; 2. Let B 02
and B 03 be v-branches that are QII with ….B 0i / D Ci for i D 2; 3. As in the proof of
Lemma 6.5, we can find ˛ 2 G.�/ such that ˛.Pv/ D Pv , ˛�.v/ D v and ˛�.B 02/ D B2.
Thus by Lemma 6.2 (1), we can assume without loss of generality that B2 D B 02. Now the
lemma follows from Lemma 6.2 (2).
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Lemma 6.6 implies that being QII among components of F.�/ n St.xv/ is an equiva-
lence relation, hence we can divide these components into QII equivalent classes ¹CiºkiD1.
We associate xv with a k-tuple of positive integers

.n1; n2; : : : ; nk/;

where each ni is the number of components of F.�/ n St.xv/ in Ci . The vertex xv is prime
if

gcd.n1; n2; : : : ; nk/ D 1:

It follows from (1) of Corollary 3.13 that if C1 and C2 are QII, then @C1 D @C2, so
every QII class Ci has a well-defined boundary, which will be denoted by @Ci .

Definition 6.7. A RAAG G.�/ is prime if and only if F.�/ is of type II and all vertices
of F.�/ are prime.

Definition 6.8. For vertex v 2 P .�/, we define the stretch factor of q� at v as follows.
Take a v-branchB , and let ¹Bj ºj2J be the collection of v-branches that are QII toB . Let n
be the number of different elements in ¹….Bj /ºj2J . Let n0 be the number of different
elements in ¹….q�.Bj //ºj2J . Then the stretch factor of q� at v is defined to be n0=n.

Lemma 6.9. The following are true:

(1) The definition of stretch factor does not depend on the choice of B .
(2) If G.�/ is prime, then the stretch factor is an integer.

Proof. Let ` � X.�/ and `0 � X.� 0/ be standard geodesics such that �.`/ D v and
�.`0/ D q�.v/. Recall that the vertex set v.`/ has a natural ordering induced from the
orientation of edges in X.�/. We identify v.`/ with Z in an order-preserving way. Let B
and ¹Bj ºj2J be as in Definition 6.8. Suppose

….B/ 2 Ci :

Then by (1) and (2) of Corollary 3.13, there are exactly ni elements of ¹Bj ºj2J in a given
v-tier, where ni is the cardinality of Ci . Pick a total order on elements in Ci , and define a
total order on J by j1 < j2 if and only if

�v.Bj1/ < �v.Bj2/ .�v is the map in Lemma 3.1/

or
�v.Bj1/ D �v.Bj2/ and ….Bj1/ < ….Bj2/:

We identify J with Z in an order-preserving way, then there is a natural map gi W J ! v.`/

induced by �v . Note that
gi .a/ D ba=nic

up to translation.
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Let ¹B 0
k
ºk2K be the collection of q�.v/-branches such that B 0

k
and q�.B/ are QII.

Then
….¹B 0kºk2K/ D C 0i

for some QII class C 0i of
F.� 0/ n St.xv0/;

where xv0 D �.q�.v//. Note that q� induces a bijection fi W J ! K. We identify v.`0/
with Z and K with Z in the same way as before, and let

g0i W K ! v.`0/

be the natural map given by
g0i .a/ D ba=n

0
ic;

where n0i is the cardinality of C 0i .
We define another map hi W v.`/! v.`0/ as follows. For x 2 v.`/, pick a Bj such that

�v.Bj / D x and define
hi .x/ D ��.`0/.q�.Bj //:

Up to bounded distance, the definition of hi is independent of the choice of Bj . We
claim hi is a quasi-isometry. Pick Bj1 , Bj2 in ¹Bj ºj2J . For m D 1; 2, let Ljm be the
subset of X.�/ as in Proposition 4.6 such that �.xLjm/ D Bjm . Then

d.Lj1 ; Lj2/ D d.�v.Bj1/; �v.Bj2//:

Now it follows from assertions (1) and (3) of Proposition 4.6 that hi is a quasi-isometry.
Note that the following diagram commutes up to bounded distance:

J
fi

�����! K??ygi ??yg 0i
v.`/

hi
�����! v.`0/

thus fi is a bijective quasi-isometry from Z to Z, hence fi is bounded distance from an
isometry and

hi .x/ D .ni=n
0
i /x C b

up to bounded distance (b is some constant). Now we pick a different QII class of v-
branches which gives the QII class Ci 0 of F.�/ n St.xv/ and define hi 0 in similar way,
then

hi D hi 0

up to bounded distance, but we also have

hi 0.x/ D .ni 0=n
0
i 0/x C b

0

up to bounded distance, so ni=n0i D ni 0=n
0
i 0 .
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To see (2), note that the previous discussion implies that the multiplication of the
stretch factor with each ni (for 1 � i � k) is an integer. Thus the stretch factor must be an
integer when gcd.n1; : : : ; nk/ D 1.

In the rest of this subsection, we prove the following.

Theorem 6.10. IfG.�/ andG.� 0/ are prime RAAGs, then they are quasi-isometric if and
only if they are isomorphic.

Suppose G.�/ and G.� 0/ are prime RAAGs. Let q W G.�/ ! G.� 0/ be a quasi-
isometry and q� W P .�/ ! P .� 0/ be the induced simplicial isomorphism. Pick vertex
x 2 X.�/. Let K D .F.�//x and K 0 D q�.K/. Suppose ¹viºniD1 is the collection of ver-
tices in P .�/ such that K n St.vi / is disconnected, then vi 2 K for all i by Lemma 3.7.
Let v0i D q�.vi /. Then ¹v0iº

n
iD1 are exactly the vertices in P .� 0/ such that K 0 n St.v0i / is

disconnected.
Recall that � W P .� 0/! F.� 0/ is the canonical projection.

Lemma 6.11. If for any vertex v0 2 P .�/, all vertices in K 0 n St.v0/ are in the same
v0-tier, then �jK0 is injective. Moreover,

T
v2K0 Pv ¤ ;.

Proof. Since � maps simplexes to simplexes of the same dimension, it suffices to show
there do not exist vertices w1; w2 2 K 0 such that �.w1/ D �.w2/. Suppose the contrary
is true. Then

Pw1 \ Pw2 D ;:

Let h be a hyperplane separating Pw1 and Pw2 , and let ` be a standard geodesic dual to h.
Then

��.`/.w1/ ¤ ��.`/.w2/

(��.`/ is the map in Lemma 3.1), hence w1 and w2 are in different �.`/-tier, which
yields a contradiction. The second statement follows from Lemma 2.2 and the previous
argument.

The following is the main ingredient for Theorem 6.10.

Lemma 6.12. Under the assumption of Theorem 6.10, it is possible to modify q� by post-
composing q� with finitely many elementary permutations such that the assumption of
Lemma 6.11 is true.

Assuming Lemma 6.12, we can finish the proof of Theorem 6.10 as follows. Lem-
mas 6.11 and 6.12 give a simplicial embedding F.�/ ! F.� 0/. By considering the
quasi-isometry inverse, we have a simplicial embedding

s0 W F.� 0/! F.�/;
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thus F.�/ and F.� 0/ have the same number of vertices. Note that s.F.�// is a full sub-
complex of F.� 0/, so s is actually a simplicial isomorphism and Theorem 6.10 follows.
In the rest of this subsection, we prove Lemma 6.12.

Remark 6.13 (Informal discussion of the proof of Lemma 6.12.). We look at some simple
special cases of Lemma 6.12 before we discuss the proof in full detail.

The simplest case to consider is that ¹v0iº
n
iD1 has only one element. Let ¹Bj ºkjD1 be

the collection of v1-branches that have non-trivial intersection with K. Then ¹Bj ºkjD1
are in the same v1-tier (as they have the same height as x with respect to v1). By
Corollary 3.12, ¹Bj ºkjD1 are in 1-1 correspondence with connected components of

K n St.v1/ Š F.�/ n St.xv1/;

and the correspondence is given by sending Bj to ….Bj /. Let B 0j D q�.Bj /. As G.�/ is
prime, the stretch factor of q� at v1 is an integer �1. Thus there exists a quasi-isometry g
such that g� WP .�/!P .�/ is a composition of finitely many elementary permutations of
v01-branches with the property that ¹g�.B 0j /º

k
jD1 are in the same v01-tier. Thus Lemma 6.12

follows. We refer the procedure in this case as the basic move at v01.
The next case to consider is that ¹v0iº

n
iD1 has two elements, and their distance is �2.

One naturally wants to first preform the basic move at v01 and then perform the basic move
at v02. The second step will maintain the outcome of the first step by Lemma 6.14, as long
as in the second step we send the v02-branch that contains v01 to itself, but this is always
possible to arrange.

A slightly more complicated case to consider is that ¹v0iº
n
iD1 has mutual distance �2.

We need to pick the correct order to perform basic moves, namely when we perform the
basic move at v0i , we want to send the v0i -branch that contains ¹v01; : : : ; v

0
i�1º to itself to

maintain the outcome of previous moves. This is possible only if we can order ¹v0iº
n
iD1

such that ¹v01; : : : ; v
0
i�1º are in the same v0i -branch, which motivates the notion of tight

subset of ¹v0iº
n
iD1 as in the proof of Lemma 6.16.

Another case to consider is that ¹v0iº
n
iD1 has two elements, and their distance D1.

Again the key point is to make sure that doing the basic move at v02 maintains the outcome
of the basic move at v01. Take a v01-branch B . If v02 2 @B , then doing basic move at v02 will
send B to itself, as B contains a vertex in St.v02/, which is fixed pointwise under the basic
move at v02. Thus we need to handle the case when v02 … @B , which leads to the notion
of v02-non-crossing as in the proof of Lemma 6.17. This lemma gives a way to correct the
situation if doing basic move at v02 destroys the outcome of basic move at v01.

We start the proof of Lemma 6.12 with two simple observations.

Lemma 6.14. Assume d.v1; v2/ � 2, and let B be any v1-branch such that v2 … B .
Then B and v1 are in the same v2-branch; in particular, all such B are in the same
v2-branch.
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Proof. Note that B \ St.v2/ D ; (otherwise v2 2 B). We also have

@B ª lk.v1/ \ lk.v2/ D St.v1/ \ St.v2/;

otherwise B and v1 are in different connected components of P .�/ n .lk.v1/ \ lk.v2//,
which contradicts Corollary 3.13 (5). As

@B � St.v1/;

we know there is a vertex w0 2 @B with w0 … St.v2/, hence B can be connected to v1
via w0 outside St.v2/.

From now on, we will write vj jvi vk if vj and vk are in different vi -branches and write
vj vkjvi if vj and vk are in the same vi -branch.

Lemma 6.15. Suppose F.�/ is of type II. Let v1; v2; v3 be vertices in P .�/. If v1jv2v3,
then v1v2jv3 and v3v2jv1 .

Proof. Let B be the v2-branch that contains v3. Since P .�/ n .lk.v1/ \ lk.v2// is
connected, we have

@B ª lk.v1/ \ lk.v2/ D St.v1/ \ St.v2/:

Then there exists vertex w 2 @B with w … St.v1/, which implies that v2 and v3 can be
connected via w outside St.v1/.

Let En D ¹v0j º
n
jD1. For 1 � i � n, define Ei D ¹v0j º

i
jD1 and define E0 D ;.

Lemma 6.16. It is possible to order the elements ¹v0iº
n
iD1 of En such that for each

1 � i � n and any v0 2 En n Ei , we have all elements of Ei n St.v0/ contained in the
same v0-branch.

Proof. Pick E � ¹v0iº
n
iD1, and denote ¹v0iº

n
iD1 n E by Ec . We say E is tight if for any

v0i 2 E
c , E n St.v0i / is inside a v0i -branch. Pick v0i ; v

0
j 2 E

c , and define v0i <E v
0
j if and

only if there exists v0
k
2 E such that v0j and v0

k
are in different v0i -branches.

We claim that if E is tight, then �E is a partial order on Ec . Now we prove the claim.
If v0i <E v

0
j and v0j <E v

0
i , then there exist v0

k1
and v0

k2
in E such that

v0j jv0i v
0
k1

and v0i jv0j v
0
k2
:

By Lemma 6.15, we have
v0k2v

0
j jv0i

;

so
v0k2 jv

0
i
v0k1 ;
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which contradicts the tightness of E. Thus the relation �E is antisymmetric. It remains
to check the transitivity. Suppose v0i <E v

0
j and v0j <E v

0
k

for v0i ; v
0
j ; v
0
k
2 Ec . Then there

exist v0
`

and v0m in E such that

v0`jv0i v
0
j and v0mjv0j v

0
k :

Since
v0` … St.v0j / and v0m … St.v0j /;

then v0mv
0
`
jv0j

. We also have v0iv
0
`
jv0j

by Lemma 6.15, so v0mv
0
i jv
0
j
. This, together with

v0mjv0j v
0
k

, implies v0i jv0j v
0
k

, hence we have

v0kv
0
j jv0i

:

However, we also know v0
`
jv0i
v0j , so v0

`
jv0i
v0
k

and v0i <E v
0
k

.
IfE is tight, let v0i 2E

c be a minimal element inEc with respect to�E . ThenE [¹v0iº
is also tight. Let E1 D ¹v01º. E1 is clearly tight, so it is possible to add a vertex in Ec1
to E1 to obtain a tight set E2. By repeating this process for n � 1 times, we obtain a fil-
tration E1 ¨ E2 ¨ � � � ¨ En�1 ¨ En D ¹v

0
iº
n
iD1 such that the requirements of the lemma

are met.

Suppose we have already obtained a quasi-isometry q� such that for every vertex
v0 2 Ei , vertices ofK 0 n St.v0/ are in the same v0-tier. Suppose v0iC1 D EiC1 nEi , and let
B 0 be the v0iC1-branch that contains all points in Ei n St.v0iC1/ (if Ei n St.v0iC1/ D ;, we
pick an arbitrary v0iC1-branch). Let ¹Bj ºkjD1 be the collection of viC1-branches that have
non-trivial intersection with K. Then ¹Bj ºkjD1 are in the same viC1-tier (as they have the
same height as x with respect to viC1). By Corollary 3.12, ¹Bj ºkjD1 are in 1-1 correspon-
dence with connected components ofK n St.viC1/ŠF.�/ n St.xviC1/, and the correspon-
dence is given by sending Bj to ….Bj /. Let B 0j D q�.Bj /. Since both G.�/ and G.� 0/
are prime, the stretch factor of q� at viC1 is 1, then there exists g� W P .� 0/! P .� 0/ such
that

(1) g� is a composition of finitely many elementary permutations of v0iC1-branches,
hence g� fixes every point in St.v0iC1/.

(2) g� fixes every point in B 0.

(3) ¹g�.B 0j /º
k
jD1 are in the same v0iC1-tier.

By Lemma 6.17, we can assume additionally that

(4) For any v0 2 Ei \ St.v0iC1/ and any v0-branch D such that D \K 0 ¤ ;, g�.D/
and D are in the same v0-tier.

By (1) and (2), g� fixes every point in EiC1. We claim that vertices of g�.K 0/ n St.v0/
are in the same v0-tier for any v0 2 g�.EiC1/. There are three cases to consider as follows:

• The case v0 D v0iC1 follows from property (3) of g�.

• The case v0 2 Ei \ St.v0iC1/ follows from the inductive assumption and property (4)
of g�.
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• Let v0 2 Ei n St.v0iC1/ and D be a v0-branch. If v0iC1 … D, then g�.D/ D D by (2)
and Lemma 6.14; if v0iC1 2 D, g�.D/ D D is still true since g� fixes v0 and v0iC1.
Thus g� does not permute the v0-branches and the claim follows.

Let q0� D g� ı q�, K 00 D g�.K
0/ D q0�.K/, E

0
i D g�.Ei / and v00i D g�.v

0
i /. Then

¹v00i º
n
iD1 are exactly the vertices in P .� 0/ such that K 00 n St.v00i / is disconnected. Note

that
E 01 ¨ E 02 ¨ � � � ¨ E 0n

still satisfies Lemma 6.16. Moreover, vertices of K 00 n St.v00/ are in the same v00-tier for
any v00 2 E 0iC1. So we can repeat the previous process to deal with E 0iC2.

After finitely many steps, we can assume for every point v0 2 ¹v0iº
n
iD1, vertices of

K 0 n St.v0/ are in the same v0-tier, thus K 0 satisfies the assumption of Lemma 6.11 and
� ı q� induces a simplicial embedding s W F.�/ ! F.� 0/. This finishes the proof of
Lemma 6.12 modulo Lemma 6.17.

Lemma 6.17. Take F.�/ which is of type II. Let w 2 P .�/ be a vertex. Let ¹BiºniD1
be a collection such that each Bi is a vi -branch for some vertex vi 2 P .�/ satisfying
d.vi ;w/D 1. We assume Bi ¤ Bj for i ¤ j (however, vi D vj is allowed for i ¤ j ). Let
q W X.�/! X.�/ be a quasi-isometry such that q� fixes every point in St.w/. Then there
exists a quasi-isometry q0 W X.�/! X.�/ such that q0� satisfies the following:

(1) q0� fixes every point in St.w/.

(2) q0�.B/ D q�.B/ for any w-branch B .

(3) Bi and q0�.Bi / are in the same vi -tier.

(4) If q� fixes every point in a w-branch B , then q0� also fixes every point in B .

Proof. We start by introducing an auxiliary notion. Take vertices w; v 2 P .�/ and a v-
peripheral complex K � P .�/. The pair .v; K/ is w-non-crossing if d.v; w/ D 1 and
w … K. In this case, B \ St.w/ D ; for any v-branch B such that @B D K. Moreover,
for any other v-branch B 0 with @B 0 D K, B 0 and B are in the same w-branch. To see this,
note that

K D @B ª lk.v/ \ lk.w/;

otherwise B and v will be in different connected components of

P .�/ n .lk.v/ \ lk.w//;

which contradicts Corollary 3.13 (5). On the other hand, K � lk.v/. So K contains a ver-
tex w0 2 lk.v/ n St.w/ such that B 0 can be connected with B outside St.w/ via w0. We
refer to Remark 6.18 for a comment on the naming of “w-non-crossing”.

If Bi and q�.Bi / are not in the same vi -tier, we wish to post-composing q� with
elementary permutations to arrange Lemma 6.17 (3). Suppose in Step 1 we already
arranged B1 and q0�.B1/ to be in the same v1-tier. Then in Step 2 when arranging the
position of q0�.B2/, we want to maintain the outcome of Step 1. One ideal situation is
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that all the v2-branches upon which we want to perform elementary permutations are con-
tained in the same v1-branch. Then whatever happens in Step 2 only takes place within
one particular v1-branch, and each v1-branch is mapped to itself. This leads us to define
the following binary relation, which will guide us on the order of treating elements in
¹Biº

n
iD1.

We define a binary relation � on the set of w-non-crossing pairs by .v1; K1/ �
.v2; K2/ if there exist v1-branch B1 with @B1 D K1 and v2-branch B2 with @B2 D K2
such that B1 � B2. If .v1; K1/ < .v2; K2/, then d.v1; v2/ D 1. To see this, note that if
v1 D v2, we must have B1 D B2 and K1 D K2. Suppose d.v1; v2/ D 2. Since v2 … B1,
B1 must belong to the v2-branch that contains v1 by Lemma 6.14. Hence v1 2 B2 and
w 2 @B2 D K2, which yields a contradiction.

Now we show the relation < is a partial order. Suppose .v1; K1/ � .v2; K2/. Since
B1 � B2, we know B1 \ St.v2/ D ;, thus

.B1 [ @B1/ \ ¹v2º D ;;

in particular
v2 … @B1 D K1:

Thus .v1; K1/ is v2-non-crossing, and we deduce as before that B 01 � B2 for any v1-
branch B 01 with @B 01 D K1. Thus the relation � is transitive. If .v1; K1/ � .v2; K2/,
.v2; K2/ � .v1; K1/ and .v1; K1/ ¤ .v2; K2/, then it follows from previous discussion
that all v1-branches with boundary DK1 stay inside one particular v2-branch, and all
v2-branches with boundaryDK2 stay inside one particular v1-branch. This implies all v1-
branches with boundary DK1 stay inside one particular v1-branch, which is impossible.
So � is antisymmetric.

Now we begin to arrange all the requirements of Lemma 6.17. We only need to con-
sider the case when Bi � P .�/ n St.w/ for all i , otherwise Bi will contain a vertex fixed
by q� and (3) is automatic. LetKi D @Bi . Then .vi ;Ki / is aw-non-crossing pair. Suppose
.v1;K1/ is a maximal element in ¹.vi ;Ki /ºniD1 with respect to the order defined above and
suppose .v1;K1/ D .vi ;Ki / if and only if 1 � i � m. Let K 01 D q�.K1/, and let ¹Aiºi2Z

(or ¹A0iºi2Z) be the collection of v1-branches with boundaryK1 (orK 01). Then q� induces
a bijection between ¹Aiºi2Z and ¹A0iºi2Z. Since q� fixes v1, the stretch factor of q� at v1
is 1 by Lemma 6.9, so we can post-compose q� with a finite sequence of elementary per-
mutations of elements in ¹A0iºi2Z such that (3) is true for 1 � i � m. Note that .v1; K 01/
is also w-non-crossing, so ¹A0iºi2Z are in the same w-branch, and each of the elementary
permutations we post-compose before is supported on this particular w-branch (and is
identity outside this w-branch), hence (1) and (2) still hold.

Pick i0 > m, and let D1 and D2 be two QII vi0 -branches such that

@D1 D @D2 D q�.Ki0/:

Let f� be an elementary permutation of D1 and D2. We claim

f�.q�.Bi // D q�.Bi /
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for 1� i �m, then the lemma follows by induction on the number ofBi . To see the claim,
note that

.v1; K
0
1/ — .vi0 ; q�.Ki0//

(since .v1; K1/ — .vi0 ; Ki0/). Then for any v1-branch E such that @E D K 01, we know E

contains a vertex u 2 P .�/ n .D1 [D2/, otherwise we would have E � D1 or E � D2.
Recall that f�.u/ D u, so f�.E/ D E, in particular f�.q�.Bi // D q�.Bi / for 1 � i � m.

Property (4) is true since we only need to consider those Bi ’s that are not contained in
w-branches which are fixed by q� pointwise.

Remark 6.18. The naming of “w-non-crossing” comes from the fact that if .v;K/ is w-
non-crossing, then for any connected component L of X.�/ n Pv such that �.@L/ D K
(cf. Section 4.2), L does not cross any hyperplanes of X.�/ whose dual edge can extend
to a standard line ` with �.`/ D w. In other words, all components L of X.�/ n Pv with
�.@L/ D K are in the same height with respect to `. However, we will not need this fact
for the later part of the paper.

Remark 6.19. We record a direct consequence of the construction of Lemma 6.17 that
will be used later. The map q0 in Lemma 6.17 is obtained by post-composing q with a
finite sequence of elementary permutations such that each of these elementary permuta-
tion induces identity map on P .�/ n q�.B/, where B is the union of all w-branches that
contains at least one element from ¹BiºniD1.

6.3. Prime partition, sub-tiers, prime factors and dual cube complexes

Given RAAG G.�/ of type II (not necessarily prime), our goal in the next three subsec-
tions is to find a prime RAAG G.� 0/ which is quasi-isometric to G.�/. Such G.� 0/, if
exists, must be unique by Theorem 6.10. In this subsection, we introduce a wall space
structure on F.�/ and prove several basic properties of this wall space for later use.

Pick vertex xv 2 F.�/, let ¹CiºkiD1 be the collection of QII classes in F.�/ n St.xv/ and
let .n1; n2; : : : ; nk/ be the associated tuple. Let ¹Cij º

ni
jD1 be the components in Ci , and let

d D gcd.n1; n2; : : : ; nk/:

For each i , we choose a map

fi W ¹Cij º
ni
jD1 ! ¹1; 2; : : : ; dº

such that for each 1 � m � d , there are ni=d elements in f �1i .m/. For 1 � m � d , let

Cm D

k[
iD1

f �1i .m/:

This partition of components of F.�/ n St.xv/ into ¹CmºdmD1 is called a prime partition
at xv. Each Cm is called a prime factor at xv. The prime partition comes together with an
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order, namely we define Ci � Cj if i � j . Note that the prime partition is trivial if xv is
prime. Now we fix a prime partition for every non-prime vertex in F.�/.

Remark 6.20. Let ˛ W F.�/! F.�/ be a simplicial automorphism. By considering the
group automorphism of G.�/ induced by ˛, we deduce that the number of prime factors
at xv and the number of prime factors at ˛.xv/ are the same. However, ˛ may not map prime
factors at xv to prime factors at ˛.xv/.

Let v 2 P .�/ be a vertex such that �.v/ D xv, and let T be a v-tier. Recall that we
have a map … which maps v-branches to components of F.�/ n St.xv/. This gives rise to
a partition

¹…�1.Cm/ \ T º
d
mD1

of v-branches in T . Each element in the partition is called a v-sub-tier.
The following lemma follows directly from definition.

Lemma 6.21. Pick vertex x 2 X.�/, and let ix W F.�/! P .�/ be the natural embed-
ding. Then for vertices xu; xv; xw 2 F.�/, xu and xv are in different prime factors at xw if and
only if ix.xu/ and ix.xv/ are in different ix. xw/-sub-tiers.

Lemma 6.22. Let S1 and S2 be two v-sub-tiers. Then there exists a quasi-isometry
q W X.�/ ! X.�/ such that the induced simplicial isomorphism q� W P .�/ ! P .�/

satisfies

(1) q� fixes every vertex in P .�/ n .S1 [ S2/.

(2) q�.S1/ D S2 and q�.S2/ D S1.

(3) For every v-branch B � S1, q�.B/ and B are QII.

Proof. To see this, note that there exist unique v-tiers T1; T2 and 1 � m1; m2 � d such
that

Si D Ti \…
�1.Cmi /

for i D 1; 2. For each 1 � i � k, pick a bijection between f �1i .m1/ and f �1i .m2/, and
this induces a bijection xƒ from components in Cm1 to components in Cm2 . By Corol-
lary 3.13 (1), xƒ induces a bijection ƒ from v-branches in S1 to v-branches in S2 such
that B and ƒ.B/ are QII. We define q as follows. Set q.x/ D x if x 2 Pv . If x … Pv ,
let D be the component of X.�/ n Pv with x 2 D, and let B be the v-branch corre-
sponding to D (see Proposition 4.6). If B is not inside S1 [ S2, then set q.x/ D x.
Otherwise, we assume B � S1. Let B 0 D ƒ.B/, and let D0 be the associated compo-
nent of X.�/ n Pv . Let f be the elementary permutation (Definition 6.1) of B and B 0.
We can assume f .D/ D D0 (Proposition 4.6) and f is an .L; A/-quasi-isometry with L
and A independent of B � S1 (see the discussion after Lemma 6.3). Set q.x/ D f .x/ in
this case. Then q is a quasi-isometry and satisfies all the requirements.
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The reader may check that the same proof of Lemma 6.17 works to give the following
lemma.

Lemma 6.23. Lemma 6.17 is still true if we replace vi -tier by vi -sub-tier in (3).

In the rest of this subsection, we show the prime partitions on F.�/ give rise to a
pocset structure on F.�/ and construct the dual cube complex.

Definition 6.24. Pick non-prime vertex xv 2 F.�/, and let ¹Cj ºdjD1 be the prime factors
at xv. A xv-halfspace of F.�/ is a full subcomplex of form

St.xv/ [
� m[
jD1

Cj

�
or

St.xv/ [
� d[
jDmC1

Cj

�
with 1 � m < d . Let

H D St.xv/ [
� m[
jD1

Cj

� �
or St.xv/ [

� d[
jDmC1

Cj

��
:

We define the complement of H , denoted by H c , to be

St.xv/ [
� d[
jDmC1

Cj

� �
or St.xv/ [

� m[
jD1

Cj

��
:

A xv-wall of F.�/ is a pair of halfspaces .H;H c/.
Let H .�/ be the collection of pairs .xv; H/ such that xv is non-prime and H is a xv-

halfspace. If there is another pair .xv0; H 0/ 2 H .�/ such that H D H 0 and xv ¤ xv0, then
.xv0;H 0/ and .xv;H/ are viewed as different elements in H .�/.

Let W.�/ be the collection of triples .xv; H; H c/ such that .H; H c/ is a xv-wall.
Occasionally, we will omit xv when there is no ambiguity.

Definition 6.25. We say two halfspaces .xv1; H1/; .xv2; H2/ 2 H .�/ are compatible if
d.xv1; xv2/ D 1 or .H1 \H2/ ª St.xv1/.

Lemma 6.26. Suppose d.xv1; xv2/ � 2. Let C1 (or C2) be the component of F.�/ n St.xv1/
(or F.�/ n St.xv2/) that contains xv2 (or xv1). Then the following hold:

(1) .H1 \H2/ ª St.xv1/ implies .H1 \H2/ ª St.xv2/ and vice versa.

(2) Assuming .H1 \H2/ª St.xv1/, then exactly one of the following three possibilities
is true: (1) xv1 2 H2 and xv2 2 H1; (2) H2 ¨ H1; (3) H1 ¨ H2.
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(3) Assuming .H1 \H2/ ª St.xv1/, then

• Case .1/ holds if and only if Ci � Hi for i D 1; 2.

• Case .2/ holds if and only if C1 � H1 and C2 \H2 D ;.

• Case .3/ holds if and only if C2 � H2 and C1 \H1 D ;.

(4) In case .1/ of assertion (2), we have H1 ª H2 and H2 ª H1.

Proof. We will first prove assertions (2) and (3).
We claimC1 \H1DC2 \H2D; is impossible. Indeed, ifC1 \H1DC2 \H2D;,

then xv1 …H2. Lemma 6.14 implies that all the components ofF.�/ n St.xv2/ that are inH2,
as well as xv2, are contained in a single component of F.�/ n St.xv1/. Then H2 nE � C1,
where E is defined to be

St.xv1/ \ St.xv2/ D lk.xv1/ \ lk.xv2/:

Thus
H2 � C1 [ St.xv2/:

Hence
H1 \H2 � H1 \ .C1 [ St.xv2// D H1 \ St.xv2/:

As C1 \H1 D ;, we know C1 is disjoint from all components of F.�/ n St.xv1/ that are
in H1. Then

H1 \ St.xv2/ D St.xv1/ \ St.xv2/ � St.xv1/;

which contradicts
.H1 \H2/ ª St.xv1/:

Thus the claim is proved. Thus in order to prove assertion (2), it suffices to prove
assertion (3).

If Ci \Hi ¤ ; for i D 1; 2, then actually Ci � Hi and case (1) holds. The converse
is clear. If C1 � H1 and C2 \H2 D ;, then xv1 … H2 and H2 � C1 [ St.xv2/ as before.
Note that C1 � H1 and xv2 � C1 imply that

.C1 [ St.xv2// � H1:

Also, xv1 2H1 nH2, hence case (2) is true. Conversely, ifH2 ¨ H1, then xv2 2H2 �H1.
Thus C1 � H1. Now we prove C2 \H2 D ;. If this is not true, then C2 � H2. Let D
be a component of F.�/ n St.xv1/ such that D \ H1 D ;. Then D \ C1 D ;, hence
xv2 … D. Then Lemma 6.14 implies D and xv1 are in the same connected component of
F.�/ n St.xv2/. Thus D � C2 � H2. Then H2 contains vertices which are not in H1,
which contradicts H2 � H1. Thus C2 \H2 D ;. Similarly, we can prove C2 � H2 and
C1 \ H1 D ; iff case (3) holds. Thus assertion (3) holds. Assertion (1) follows, as in
cases (1) and (3) of assertion (2), we have xv1 2 H1 \H2 and xv1 … St.xv2/. In case (2),
H2 D H1 \ H2, thus .H1 \ H2/ ª St.xv2/ is clear. Assertion (4) also follows, as we
already showed that if Ci � Hi for i D 1; 2, then H2 contains vertices that are not in H1.
Similarly, H1 contains vertices that are not in H2.
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Lemma 6.27. We define .xv1;H1/� .xv2;H2/ if d.xv1; xv2/¤ 1 andH1 �H2. Then� gives
a partial order on H .�/. Moreover, .H .�/;�/ with the complement operation defined
before form a pocset.

Proof. If .xv1; H1/ � .xv2; H2/ and d.xv1; xv2/ � 2, then .H1 \ H2/ ª St.xv1/. Thus
Lemma 6.26 that implies that H1 ¨ H2, which means .xv1; H1/ � .xv2; H2/ is impos-
sible. Thus if .xv1; H1/ � .xv2; H2/ and .xv1; H1/ � .xv2; H2/, then xv1 D xv2. Thus the
relation � is antisymmetric. Now we show transitivity. Pick .xv3; H3/ 2 H .�/ such that
.xv2;H2/ � .xv3;H3/; if two of xv1; xv2; xv3 are the same, then

.xv1;H1/ � .xv3;H3/

by definition. If xv1; xv2; xv3 are pairwise distinct, let C1 and C2 be as in Lemma 6.26, and
let C 02 be the component of F.�/ n St.xv2/ that contains xv3. SinceH1 ¨H2 andH2 ¨H3,
then C1 \H1 D;, C2 �H2 and C 02 \H2 D; by Lemma 6.26. Thus xv1 and xv3 are in dif-
ferent components ofF.�/ n St.xv2/ and d.xv1;xv3/� 2, which implies .xv1;H1/� .xv3;H3/.
It follows that � is a partial order.

It remains to show .xv1;H1/� .xv2;H2/ implies .xv2;H c
2 /� .xv1;H

c
1 /. The case xv1D xv2

is clear. If d.xv1; xv2/� 2, thenH1 \C1D; andC2 �H2 by Lemma 6.26, henceC1 �H c
1

and C2 \H c
2 D ;, which implies .xv2;H c

2 / � .xv1;H
c
1 / by Lemma 6.26.

Lemma 6.28. A subset U � H .�/ is an ultrafilter in the sense of Definition 2.7 if and
only if U satisfies both of the following conditions:

(1) for each pair .xv;H/ and .xv;H c/, U contains exactly one of them;

(2) every pair of halfspaces in U is compatible.

Proof. We first claim the following are equivalent:

(1) .xv1;H1/ and .xv2;H2/ are not compatible.

(2) d.xv1; xv2/ ¤ 1 and .xv1;H1/ � .xv2;H c
2 /.

(3) d.xv1; xv2/ ¤ 1 and .xv2;H2/ � .xv1;H c
1 /.

To see the claim, let us assume d.xv1; xv2/ � 2. Let C1 and C2 be as in Lemma 6.26. Then
.xv1;H1/ and .xv2;H2/ are not compatible, C1 \H1 D C2 \H2 D ;, C1 \H1 D ;

and C2 � H c
2 , .xv1; H1/ � .xv2; H

c
2 /, where the first step and the last step follow from

Lemma 6.26. Similarly, we can establish the equivalence of (1) and (3) in the claim.
To prove the “if” direction of the lemma, we need to show if .xv1;H1/ � .xv2;H2/ and

.xv1;H1/ 2 U , then .xv2;H2/ 2 U . Indeed, if .xv2;H2/ … U , then .xv2;H c
2 / 2 U . Then

H1 \H
c
2 � H2 \H

c
2 � St.xv2/;

which contradicts that .xv1; H1/ and .xv2; H c
2 / are compatible. Now we prove the only

if direction. Suppose U is an ultrafilter. Then Lemma 6.28 (1) is clear. If U contains a
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pair of non-compatible halfspaces .xv1; H1/ and .xv2; H2/, then the claim in the previous
paragraph implies that

.xv1;H1/ � .xv2;H
c
2 /:

Now Definition 2.7 (2) implies that .xv2; H c
2 / 2 U , which contradicts Definition 2.7 (1).

This proves the only if direction of the lemma.

LetX be the CAT.0/ cube complex obtained from the pocset H .�/ as in Theorem 2.8.
Let ˆ be the pocset isomorphism from the collection of halfspaces in X to H .�/ as
in Theorem 2.8. Then ˆ induces a bijective map from hyperplanes of X to W.�/ (cf.
Definition 6.24), which is also denoted by ˆ.

Denote the collection of vertices in X by ¹xiºriD1, and let ¹U.xi /ºriD1 be the
corresponding ultrafilters.

Letˆ.xi / be the intersection of halfspaces in U.xi /. For each subcomplex A� X , we
define ˆ.A/ D

S
x2Aˆ.x/, where x ranges over vertices in A.

Lemma 6.29. The following are true:

(1) For any vertex xu 2 F.�/, ˆ.xi / n St.xu/ is contained in a prime factor at xu.

(2) For arbitrary simplex g � F.�/, there exists an ultrafilter U such that the
intersection of halfspaces in U contains g. In particular,

Sr
iD1ˆ.xi / D F.�/.

(3) ˆ.xi / ¤ ; for all i .

(4) If A is convex, then ˆ.A/ is a full subcomplex.

Proof. Assertion (1) is true as each xu wall has a xu-halfspace containing ˆ.xi /, and all
these xu-halfspaces are compatible. Now we prove assertion (2). Let E 0 be the collection
of non-prime vertices in F.�/, and let G be the collection of vertices in g. Let

E D E 0 [G D ¹xu1; xu2; : : : ; xunº:

For 1 � i � n, define Ei D ¹xu1; : : : ; xuiº. We order the elements in E such that for each
1 � i � n and any xuj 2 E n Eci , we have Ei n St.xuj / inside a single connected compo-
nent of F.�/ n St.xuj /. This can be arranged in the same way as in Lemma 6.16. We can
assume in addition that xui 2 G if and only if i � n1 and xui 2 E 0 if and only if i � n2.
For i � n2, if Ei�1 n St.xui / ¤ ;, let Ci be the component of F.�/ n St.xui / that contains
Ei�1 n St.xui / (this is possible by our choice of Ei ). If Ei�1 n St.xui / D ;, let Ci be an
arbitrary component. We define U by choosing the unique halfspace that contains Ci in
each xui -wall for i � n2. It is clear that the intersection of halfspaces in U contains g. It
remains to show two halfspaces

.xui ;H1/; .xuj ;H2/ 2 U

are compatible. The case d.xv1; xv2/� 1 is trivial. We assume d.xui ; xuj /� 2. Suppose i < j ,
then xui � Cj � H2, hence

xui 2 .H1 \H2/ n St.xuj /:
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It follows that U is an ultrafilter. This justifies (2).
We now prove assertion (3). Let U D ¹.xu�; H�/º�2ƒ be an ultrafilter, and let A DT

�2ƒH�. To prove assertion (3), it suffices to justify that if .xu�; H�/ is minimal in U ,
then xu� 2 A. Suppose the contrary is true, then there exists .xu�0 ; H�0/ 2 U such that
xu� … H�0 , in particular d.xu�0 ; xu�/ � 2. By Lemma 6.28, H� and H�0 are compatible.
Now Lemma 6.26 (2) and (3) imply that we must have H�0 ¨ H�, which contradicts the
minimality of .xu�;H�/.

It remains to prove (4). Let ¹hiºtiD1 be the collection of halfspaces in X with A � hi ,
and letˆ.hi /D . xwi ;h0i /. SupposeK D

Tt
iD1 h0i . Since each h0i is a full subcomplex, so

is K. It suffices to show ˆ.A/ D K. The inclusion ˆ.A/ � K is clear. Let W 0.�/ be the
ˆ-image of hyperplanes in X that intersect A, and let H 0.�/ be the corresponding col-
lection of halfspaces. Then H 0.�/ is a sub-pocset of H .�/. We claim U 0 � H 0.�/ is an
ultrafilter of H 0.�/ if and only if U 0 [ ¹h0iºtiD1 is an ultrafilter of H .�/. To see this, we
can use the pocset isomorphismˆ between the halfspaces ofX and H .�/ to translate this
statement to a statement about halfspaces of X , which becomes obvious. We also deduce
that U 0 [ ¹h0iºtiD1 corresponds to a vertex in A. Thus there is an isometric embedding
from the CAT.0/ cube complex associated with H 0.�/ to X , whose image is exactly A.
Let ¹U 0i º

`
iD1 be the collection of ultrafilters on H 0.�/, and let Ki be the intersection of

halfspaces in U 0i . Then we can prove

[̀
iD1

Ki D F.�/

as in assertion (2). It follows that

K D K \

� [̀
iD1

Ki

�
D

[̀
iD1

.K \Ki /;

but K \Ki D U.x/ for some vertex x 2 A, so K � ˆ.A/.

Recall that two distinct walls .xv1; H1; H c
1 /; .xv2; H2; H

c
2 / 2 W.�/ are transverse if

none of .xv1; H1/ < .xv2; H2/, .xv1; H1/ < .xv2; H c
2 /, .xv2; H2/ < .xv1; H1/ and .xv2; H2/ <

.xv1;H
c
1 / is true. Thus two such walls are transverse if and only if d.xv1; xv2/D 1 (note that

when d.xv1; xv2/ D 1, even if H1 � H2, we still have .xv1; H1/ — .xv2; H2/ by our defini-
tion). It follows that if h01 and h02 is a pair of crossing hyperplanes in X and ˆ.h0i / is a
xvi -wall for i D 1; 2, then d.xv1; xv2/ D 1.

6.4. A filtration for X and F.�/

In this subsection, our goal is to understand the relationship between different ˆ.x/,
with x ranging over the X , and how F.�/ is assembled from these ˆ.x/. The main result
of this subsection is Lemma 6.30. As the material in this subsection is comparably techni-
cal, the reader might want to assume Lemma 6.30 and go ahead to Section 6.5 to see how
it finishes the proof before coming back to this subsection.
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We now define a filtration for X as well as for F.�/. Such filtration is motivated by
the generalized star extension introduced in [21, Section 6.3].

We define a chain of convex subcomplexes inX by induction. Pick a vertex x 2X , and
set L1 D ¹xº. Suppose we have already defined Li . If Li D X , then we stop; if Li ¨ X ,
pick an edge ei such that ei \ Li is a vertex, and let LiC1 be the convex hull of Li [ ei .
Let ¹LiºsiD1 be the resulting collection of convex subcomplexes. Here is an alternative
way of describing LiC1. Suppose hi is the hyperplane dual to ei and Ni is the carrier
of hi . Then hi \Li D ; by the convexity of Li . LetMi be the copy of .Li \Ni / � Œ0; 1�
inside Ni . Then LiC1 D Li [Mi .

Now we look at the relation between ˆ.Li / and ˆ.LiC1/. For j D 1; 2, let Mij be
the subcomplex of Mi of form

.Li \Ni / � ¹j � 1º:

We assume Mi1 D Li \ Ni , and let p W Mi1 ! Mi2 be the map induced by paral-
lelism. Suppose .xv;Hi / 2 H .�/ is the element corresponding to the halfspace of hi that
contains Li . Then

ˆ.Mi1/ � ˆ.K/ � Hi

and ˆ.Mi2/ � H
c
i . For any vertex x 2 Mi1, .xv; Hi / is a minimal element in U.x/, so

xv 2 ˆ.x/ � ˆ.Mi1/. Similarly, xv 2 ˆ.Mi2/.

Lemma 6.30. The following are true:

(1) There is a simplicial isomorphism xh� W ˆ.Mi1/ ! ˆ.Mi2/ with xh�.ˆ.x// D
ˆ.p.x// for any vertex x 2 ˆ.Mi1/ and .xh�/�1.ˆ.x// D ˆ.p�1.x// for any
vertex x 2 ˆ.Mi2/.

(2) ˆ.Li / \ˆ.Mi1/ D ˆ.Li / \ˆ.Mi2/ D St.xv;ˆ.Mi1//.

Thus ˆ.LiC1/ can be obtained by taking ˆ.Li / and ˆ.Mi1/ Š ˆ.Mi2/ and gluing them
along St.xv;ˆ.Mi1//.

We extracted a technical part of the proof as Lemma 6.32. Now we prove Lemma 6.30,
assuming Lemma 6.32.

Proof. We claim there exist C1 and C2 which are prime factors at xv such that C1 � Hi ,
C2 �H

c
i andˆ.Mij / n St.xv/�Cj for j D 1;2. Pick adjacent vertices x1; x2 2Mi1, then

there exists .xv; H 0i / 2 U.x1/ such that .Hi \H 0i / n St.xv/ is a prime factor at xv. Denote
this prime factor by C1, then

ˆ.x1/ n St.xv/ � C1:

Let h be the hyperplane dual to the edge joining x1 and x2, and let ˆ.h/ D . xw;H;H c/.
Then

U.x2/ D .U.x1/ n ¹H º/ [ ¹H
c
º:
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Since h crosses hi , d. xw; xv/ D 1. Thus

.xv;Hi /; .xv;H
0
i / 2 U.x2/;

which impliesˆ.x2/ n St.xv/ � C1. Nowˆ.Mi1/ n St.xv/ � C1 follows from the connect-
edness of Mi1. We can choose C2 in a similar way.

The above argument also implies for any vertex xu such that d.xu; xv/ ¤ 1, ˆ.Mi1/ n

St.xu/ is contained in a prime factor at xu. Note that if Mi1 � St.xv/, then ˆ.x/ D ˆ.p.x//
for any vertex x 2 Mi1, hence Mi2 D Mi1. Now we assume Mi1 ª St.xv/, then we can
set up as in Lemma 6.32 with respect to K D Mi1, xv 2 K, C1 and C2. Note that K is a
full subcomplex of F.�/ by Lemma 6.29. Let h� and xh� be the maps in Lemma 6.32. We
claim xh�.Mi1/ DMi2.

Pick vertex x 2 Mi1. We claim for any vertex xu with d.xu; xv/ � 1, ˆ.x/ n St.xu/ ¤ ;
if and only if xh�.ˆ.x// n St.xu/ ¤ ;, and in this case ˆ.x/ n St.xu/ and xh�.ˆ.x// n St.xu/
are in the same prime factor at xu. The claim is a consequence of Lemma 6.32 (3b) when
d.xu; xv/D 1. When d.xu; xv/ > 1, note that xv 2 ˆ.x/ and xv 2 xh�.ˆ.x//, then the claim fol-
lows from Lemma 6.32 (3a). Thus for any .xu;H/2U.x/with d.xu;xv/� 1, xh�.ˆ.x//�H .
Moreover, (1) of Lemma 6.32 implies

xh�.ˆ.x// n St.xv/ � C2;

so
xh�.ˆ.x// � ˆ.p.x//

by our choice of C2 (recall that p WMi1!Mi2 is the parallelism map). Denote the number
of vertices in ˆ.x/ by jˆ.x/j, then

jˆ.x/j � jˆ.p.x//j:

By reversing the role of Mi1 and Mi2 and applying Lemma 6.32 with K DMi2, we have
jˆ.p.x//j � jˆ.x/j, hence

jˆ.x/j D jˆ.p.x//j:

But xh�.ˆ.x// and ˆ.p.x// are both full subcomplexes, so

xh�.ˆ.x// D ˆ.p.x//:

Thus xh�.ˆ.Mi1// D ˆ.Mi2/. This also implies .xh�/�1.ˆ.x// D ˆ.p�1.x//, which
finishes the proof of assertion (1).

Since ˆ.Mij / is a full subcomplex for j D 1; 2 (Lemma 6.29), we have

xh�.St.xv/ \ˆ.Mi1// D xh�.St.xv;ˆ.Mi1/// D St.xv;ˆ.Mi2// D St.xv/ \ˆ.Mi2/:

However, xh� fixes every point in St.xv/ \ˆ.Mi1/, so

St.xv/ \ˆ.Mi1/ D St.xv/ \ˆ.Mi2/:
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Recall that
ˆ.Li / \ˆ.Mi2/ � St.xv/;

so

ˆ.Mi1/ \ St.xv/ � ˆ.Mi1/ \ˆ.Mi2/ � ˆ.Li / \ˆ.Mi2/

� ˆ.Mi2/ \ St.xv/ D ˆ.Mi1/ \ St.xv/;

and all these sets are equal.

It remains to prove Lemma 6.32. We start with an auxiliary result needed in the proof
of Lemma 6.32.

Lemma 6.31. If G.�/ is of type II, then given any two vertices v1; v2 2 P .�/, there only
exist finitely many vertices w such that v1jwv2.

Proof. We first prove a preparatory claim as follows: pick vertex x 2 X.�/ and v 2
P .�/ n .F.�//x , let xw 2 � and let S xw � .F.�//x be the lift of St. xw/ � F.�/. Then
S xw n St.v/¤;. Now we prove this claim. Suppose the contrary is true. Put xvD�.v/. Then
St. xw/ � St.xv/, hence xv 2 St. xw/. Let v0 2 .F.�//x be the lift of xv. Then v0 2 S xw � St.v/.
Note that d.v0; v/D 1 is impossible since �.v0/D �.v/, so v0 D v, which is contradictory
to v … .F.�//x . Thus the claim is proved.

Now we prove the lemma. Pick an edge path ! which connects a vertex in Pv1 to
a vertex in Pv2 . Let ¹xiºniD0 be consecutive vertices in !, and let `i be the standard
geodesic containing xi�1 and xi . Let Ki D .F.�//xi and K D

Sn
iD0Ki . Then v1 2 K0

and v2 2 Kn. It suffices to show that for any vertex v … K, v1 and v2 are in the same
v-branch. To see this, note that

�.Ki�1 \Ki / D St.�.�.`i ///;

so for 1 � i � n, there exists vertex wi such that

wi 2 .Ki�1 \Ki / n St.v/

by the auxiliary result above. By Lemma 3.7, wiwiC1jv for 1 � i � n � 1, v1w1jv and
wnv2jv , so v1v2jv .

Lemma 6.32. Let xv 2 F.�/ be a non-prime vertex, and let K � F.�/ be a full subcom-
plex containing xv such that for any vertex xu 2 F.�/ n lk.xv/, K n St.xu/ is inside a prime
factor at xu. Suppose in addition that K n St.xv/ ¤ ;, and let C1 be the prime factor at xv
that contains K n St.xv/. Let C2 be a different prime factor at xv. Pick vertex x 2 X.�/,
and let K 0; v;C01 and C02 be the lift of K; xv;C1 and C2 in .F.�//x � P .�/, respectively.
For i D 1; 2, let Si be the v-sub-tier that contains C0i . Let q W X.�/! X.�/ be a quasi-
isometry such that q� permutes S1 and S2 and fixes every point in P .�/ n .S1 [ S2/

(Lemma 6.22).
There exists a quasi-isometry h W X.�/! X.�/ such that
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(1) h� permutes S1 and S2 and fixes every vertex in P .�/ n .S1 [ S2/.

(2) The projection map � W P .�/! F.�/ restricted on K 0 [ h�.K 0/ is injective.

(3) LetM D�.K 0 [ h�.K 0//. Let xh� WK!�.h�.K
0// be the simplicial isomorphism

induced by h�. Pick vertex xu 2 F.�/. Then

(a) If d.xu; xv/ � 2, then M n St.xu/ is contained in one prime factor at xu.

(b) If d.xu; xv/ D 1, then xr 2 K n St.xu/ if and only if xh�.xr/ 2 xh�.K/ n St.xu/. In
this case, xr and xh�.xr/ are in the same prime factor at xu.

(c) The subcomplex xh�.K/ is full.

Proof. We assumeK is a full subcomplex. The general case follows from this special case
by considering the full subcomplex spanned by K.

LetLDK 0 [ q�.K 0/. By Lemma 6.31, there are only finitely many verticesw 2P .�/

such that St.w/ separates two vertices in L. Denote these vertices by ¹wiºniD1. We claim
if St.w/ separates two vertices in K 0 and d.w; v/ � 2, then vertices of q�.K 0/ n St.w/
are in the same w-branch. To see this, suppose v1jwv2 for v1; v2 2 K 0, then either v1jwv
or v2jwv, so v1wjv or v2wjv by Lemma 6.15. Then the claim follows from Lemma 6.14.
Note that the claim is also true if we switch the role of K 0 and q�.K 0/.

By the above claim, we can reorder and divide ¹wiºniD1 into the following four groups:

(1) w1 D v.

(2) wi 2 lk.v/ for 2 � i � n1.

(3) St.wi / separates v from some vertex in K 0 for n1 C 1 � i � n2.

(4) St.wi / separates v from some vertex in q�.K 0/ for n2 C 1 � i � n.

Note that q� induces a bijection between ¹wiº
n2
iDn1C1

and ¹wiºnn2C1. Let

k D n2 � n1 D n � n2:

We also assume q�.wi / D wiCk for n1 C 1 � i � n2.
Let D D ¹wiº

n2
iD1. We claim D n St.wi / stays inside a wi -branch for i > n2. To see

this, let B be the wi -branch that contains v, and let wi0 2 D n St.wi /. It is clear that
wi0 2 B if i0 � n1. If n1 < i0 � n2, by above discussion, there exists u 2 K 0 such that
wi0ujv; similarly, there exists u0 2 q�.K 0/ such that wiu0jv . But ujvu0, so wi0 jvwi , and by
Lemma 6.15, we havewi0vjwi andwi0 2B . This discussion also implies ¹wiº

n2
iDn1C1

� S1
and ¹wiºniDn2C1 � S2.

Let ¹B�º�2ƒ be the collection of wi -branches that contain vertices of K 0, where i
ranges over all values between 2 and n1. By Lemma 6.17, we can post-compose q�
with a simplicial isomorphism f� to obtain a map q0� D f� ı q� that satisfies the con-
clusions of Lemma 6.17. By Lemma 6.23, we can assume that for vertex u 2 K 0 n St.wi /
(2 � i � n1), u and q0�.u/ are in the same wi -sub-tier. Let

L0 D K 0 [ q0�.K
0/:
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Note that ifB� �P .�/ n St.v/, thenB� � S1. So by Remark 6.19, f� is a composition of
elementary permutations that happen inside S2, hence f� fixes every point in S1, in partic-
ular, f�.K 0/ D K 0 and f�.L/ D L0. Let w0i D f�.wi /. Then ¹w0iº

n
iD1 is the collection of

vertices such that St.w/ separates two vertices in L0. We divide ¹w0iº
n
iD1 into four groups

as before, and this partition coincides with the partition induced by f�. Since wi 2 S1 for
n1 C 1 � i � n2, so w0i D wi for i � n2. Moreover, the claim in the previous paragraph
also holds for ¹w0iº

n
iD1.

We claim that for n1 < i � n2, vertices of L0 n St.w0i / are in the same w0i -sub-tier.
Actually, by Lemma 3.7, w0i 2 .F.�//x for n1 < i � n2. Recall that K n St.�.w0i // is
inside a prime factor at �.w0i /, so vertices of K 0 n St.w0i / are inside a w0i -sub-tier. We
know S2 contains vertices of q0�.K

0/ n St.v/, but w0i 2 S1, so vertices of q0�.K
0/ n St.v/

and v are in the same w0i -branch by Lemma 6.14. The claim follows.
Let E0 D ¹w0iº

n2
iD1 and E D ¹w0iº

n
1 . Then E0 is tight in E by previous discussion. Let

E0 ¨ E1 ¨ E2 ¨ � � � ¨ Ek D E be a filtration such that each Ei is tight in E (this can be
arranged as in Lemma 6.16). Up to reordering, we assumew0iCn2 DEi nEi�1 for 1� i �
k and q0�.w

0
i /Dw

0
iCk

for n1 < i � n2. Suppose there is an integerm (0�m� k) such that

(1) q0� permutes S1 and S2 and fixes every vertex in P .�/ n .S1 [ S2/.

(2) For 2� i � n1 and vertex u2K 0 n St.w0i /, u and q0�.u/ are in the samew0i -sub-tier.

(3) For n1 < i � n2 Cm, vertices of L0 n St.w0i / are contained in one w0i -sub-tier.

Such m always exists, since (1) and (2) are always true and (3) is true when m D 0. Our
goal is to modify the map q0� such that m D k. Now we assume m < k and argue by
induction.

Let a D n1 C m C 1 and b D n2 C m C 1. Since vertices of K 0 n St.w0a/ stay
inside a w0a-sub-tier and w0

b
D q0�.w

0
a/, there is a simplicial isomorphism g� which is

a composition of finitely many elementary permutations of w0
b
-branches such that

(a) Vertices in g�.q0�.K
0// n St.w0

b
/ are in the same w0

b
-sub-tier.

(b) Let B 0 be the w0
b
-branch that contains v, then g� fixes every point in B 0.

Lemma 6.14 implies vertices ofK 0 n St.w0
b
/ are inB 0, so g� fixes every point inK 0. More-

over, the tightness of Em implies g�.w0i / D w
0
i for 1 � i � b. By Lemmas 6.17 and 6.23,

we can assume in addition that g� satisfies

(c) For any vertex t 2 St.w0
b
/ \ Em and any t -branch A with A \ L0 ¤ ;, g�.A/

and A are in the same t -sub-tier.

Let
L00 D K 0 [ g�.q

0
�.K

0//:

Then g�.L0/ D L00. Let w00i D g�.w
0
i /. Then ¹w00i º

n
iD1 is the collection of vertices such

that St.w00i / separates two vertices in L00. Moreover, g�.E0/ ¨ g�.E1/ ¨ � � � ¨ g�.Ek/D

g�.E/ satisfies that each g�.Ei / is tight in g�.E/. Note that g�.Ei / D Ei for i � mC 1.
We claim

(i) g� ı q
0
� permutes S1 and S2 and fixes every vertex in P .�/ n .S1 [ S2/.
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(ii) For 2 � i � n1 and vertex u 2 K 0 n St.w00i /, u and g�.q0�.u// are in the same
w00i -sub-tier.

(iii) For n1 < i � b, vertices of L00 n St.w00i / are contained in one w00i -sub-tier.

Part (i) follows from property (b) of g� and Lemma 6.14.
We now verify (ii). Assume 2 � i � n1, then w00i D w0i . First we consider the case

d.w0i ; w
0
b
/ � 2. As g� fixes every point in B 0, we know g� induces trivial permutation of

w0i -branches (indeed, for aw0i -branchD, ifw0
b
…D, then g�.D/DD by Lemma 6.14 and

g�jB 0 D Id; if w0
b
2 D, then g�.D/ D D is still true since g� fixes w0

b
and w0i ). Now (2)

follows from the inductive assumption. If d.w0i ; w
0
b
/ D 1, since q0�.u/ 2 L

0, q0�.u/ and
g�.q

0
�.u// are in the same w0i -sub-tier by property (c) of g�. But u and q0�.u/ are in the

same w0i -sub-tier by induction, thus (ii) follows.
It remains to verify (iii). Suppose n1 < i � b. Then w00i D w

0
i and w00

b
D w0

b
. Since

g�.L
0/ D L00, the case i < b and d.w0i ; w

0
b
/ D 1 follows from inductive assumption and

property (c) of g�. If i < b and d.w0i ; w
0
b
/ D 2, then we argue as before to see that g�

induces trivial permutation of w0i -branches. Then (iii) follows from the inductive assump-
tion. If i D b, by Lemma 6.14, vertices of K 0 n St.w0

b
/ and v are in the same w0

b
-branch,

then (iii) follows from property (a) of g�.
After applying the above induction process for finitely many times, we obtain a sim-

plicial isomorphism h� W P .�/! P .�/ which satisfies (1) in Lemma 6.32. Moreover,
let

zL D K 0 [ h�.K
0/;

and let ¹ zwiºniD1 be the collection of vertices such that St. zwi / separates two vertices of zL.
Then

(1) For 2� i � n1 and vertex u2K 0 n St. zwi /, u and h�.u/ are in the same zwi -sub-tier.

(2) For n1 < i � n, vertices of zL n St. zwi / are contained in one zwi -sub-tier.

Let 2 � i � n1. Since h�. zwi / D zwi and vertices of K 0 n St. zwi / are contained in one zwi -
tier, (1) implies actually that vertices of zL n St. zwi / are contained in one zwi -tier. Thus zL
satisfies the assumption of Lemma 6.11, and (2) of Lemma 6.32 follows. Note that K 0 is
a full subcomplex, so is h�.K 0/, then

xh�.K/ D �.h�.K
0//

is a full subcomplex.
Pick vertex x0 2

T
w2zL Pw (x0 may not be equal to x), then zL � .F.�//x0 . Let

ix0 W F.�/! .F.�//x0 � P .�/

be the natural embedding. Then ix0.M/ D zL, and (3a) follows from property (2) of h�
and Lemma 6.21. Now we look at (3b). For vertex xk 2 K,

d.xk; xu/ D d.ix0.
xk/; ix0.xu// D d.h� ı ix0.

xk/; ix0.xu//

D d.� ı h� ı ix0.
xk/; � ı ix0.xu// D d.

xh�.xk/; xu/:
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The first and the third equalities follow from Lemma 2.14, and the second equality holds
since h� fixes ix0.xu/. Thus the first part of (3b) is true. The rest of (3b) follows from
property (1) of h�.

6.5. Recognizing special subgroups

Let L1 ¨ L2 ¨ � � � ¨ Ls D X be the filtration of X defined in Section 6.4. Let � 0 be
the 1-skeleton of ˆ.L1/. Note that L1 is a single vertex, and Lemma 6.30 implies that
the isomorphism type of � 0 does not depend on the choice of L1. The main goal of this
subsection is the following.

Proposition 6.33. The group G.� 0/ is a special subgroup of G.�/, and G.� 0/ is prime.

The following is an immediate consequence of this proposition.

Theorem 6.34. Let G.�/ be a RAAG of type II. Then there exists a prime RAAG G.� 0/

such that G.�/ is isomorphic to a special subgroup of finite index in G.� 0/.

Now we prove Proposition 6.33.

Proof. For convex subcomplex E � X.� 0/, let ¹`�º�2ƒ be the collection of standard
geodesics in X.� 0/ such that `� \ E ¤ ;. Denote the full subcomplex in P .� 0/ spanned
by ¹�.`�/º�2ƒ by yE. An edge e � X.� 0/ is called a v-edge for v 2 P .�/ if �.`e/ D v
(`e is the standard geodesic containing e). An edge e � X is called a xv-edge for xv 2 F.�/
if the ultrafilters corresponding to two vertices of e differ by a xv-halfspace.

We are going to define a sequence of simplicial embeddings fi W ˆ.Li /! P .� 0/ and
cubical embeddings gi W Li ! X.� 0/ with

fiC1jˆ.Li / D fi and giC1jLi D gi

which satisfy the following compatibility conditions:

(1) gi .Li / is a compact convex subcomplex of X.� 0/.

(2) For any vertex x 2 Li , fi .ˆ.x// D1gi .x/. In particular, fi .ˆ.Li // D2gi .Li /.
(3) gi sends a xv-edge to an fi .xv/-edge.

Note that the existence of the embedding when i D s will imply G.� 0/ is a special
subgroup of G.�/.

We need several observations before the construction of gi and fi . Pick vertex
v 2 P .� 0/, then the vertices of Pv are exactly those vertices x 2 X.� 0/ with v 2 yx. Let `v
be a standard geodesic such that �.`v/ D v, and let hv be a hyperplane dual to `v . We
identify Pv with `v � hv . Then e � X.� 0/ is a v-edge if and only if e 2 Pv and e has
trivial projection to the hv-factor. Actually, these statements have their analogues in X .

Let Wxv.�/ be the collection of xv0-walls with d.xv; xv0/ � 1, and let Hxv.�/ be cor-
responding collection of halfspaces. Denote the corresponding CAT.0/ cube complex
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by Xxv . Let † � H .�/ be the subset made of elements . xw; R/ such that d. xw; xv/ � 2
and xv 2 R. Pick an ultrafilter Uxv of Hxv.�/; it is easy to see every pair of halfspaces in
† [ Uxv is compatible, thus † [ Uxv is an ultrafilter of H .�/, and this induces a cubical
embedding

ixv W Xxv ! X:

Note that ixv.Xxv/ is convex in X since two walls in Wxv.�/ are transverse in Wxv.�/ if and
only if they are transverse in W.�/. Since every xv-wall is transverse to all xw-walls with
d. xw; xv/ D 1, Xxv admits a canonical splitting

Xxv D hxv � Œ0; dxv � 1�;

where hxv is isomorphic to the hyperplane in X corresponding to a xv-wall, and dxv is the
number of prime factors at xv. We will view Xxv as a convex subcomplex of X . Note that
vertices of Xxv are exactly those vertices x with xv � ˆ.x/. Moreover, e � X is a xv-edge
if and only if e 2 Xxv and e has trivial projection to the hxv-factor.

Suppose we have already constructed gi and fi . Let ei ; hi ; Ni and .xv; Hi ; H c
i / D

ˆ.hi / be as in Step 2, and let v D fi .xv/. Pick vertex x 2 Li . Then

x 2 Xxv , xv 2 ˆ.x/, v 2 fi .ˆ.x//, v 21gi .x/, gi .x/ 2 Pv:

Thus gi induces an isomorphism between Xxv \ Li and Pv \ gi .Li /. Let

Xxv \ Li D xKi � xIi ;

and
Pv \ gi .Li / D Ki � Ii

be the splitting induced from the splitting of Xxv and Pv as above ( xKi � hxv , Ki � hv ,
xIi � Œ0; dxv � 1� and Ii � `v). By (3), gi jXxv\Li D gi1 � gi2 with gi1 W xKi ! Ki and
gi2 W xIi ! Ii . Suppose xIi D Œ0; a�, we identify Ii with Œ0; a� via gi2 and consistently
identify `v with R.

Since ei is a xv-edge, ei � Xxv . We assume without loss of generality that

xi D ei \ Li 2 xKi � ¹aº:

Then
Mi1 D Li \Ni D xKi � ¹aº

and
Ni D xKi � Œa; aC 1�:

Similarly, gi .Mi1/DKi � ¹aº. Note that gi1 induces an isomorphism from xKi � Œa;aC1�
to Ki � Œa; aC 1�; this defines

giC1 W LiC1 D Li [Ni ! gi .Li / [ .Ki � Œa; aC 1�/:
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Moreover, hv � Œa; aC 1�, which is the carrier of the hyperplane hv � ¹aC 1=2º, satisfies

.hv � Œa; aC 1�/ \ gi .Li / D Ki � ¹aº;

so
gi .Li / [ .Ki � Œa; aC 1�/

is a compact convex subcomplex in X.� 0/.
We consider the left action G.� 0/ Õ X.� 0/, and let ˛ 2 G.� 0/ be the translation

along `v such that
˛.Ki � ¹aº/ D Ki � ¹aC 1º:

Then ˛ induces an isomorphism

˛� W 3Ki � ¹aº !6Ki � ¹aC 1º:

It is clear that ˛�.yx/ D b̨.x/ for vertex x 2 Ki � ¹aº and ˛ sends v-edge to ˛�.v/-edge.
We define fiC1 by

fiC1.z/ D

´
fi .z/ if z 2 ˆ.Li /;

.˛� ı fi ı .xh�/
�1/.z/ if z 2 ˆ.Mi2/:

Note that
fi .z/ D .˛� ı fi ı .xh�/

�1/.z/

for
z 2 ˆ.Li / \ˆ.Mi2/ D St.xv;ˆ.Mi1//

(cf. Lemma 6.30 (2)), so fiC1 is well defined. Now we show fiC1 and giC1 satisfy the
compatibility conditions (2) and (3). Since

giC1jMi2
D ˛ ı gi ı p

�1;

(where p�1 W Mi2 ! Mi1 is the parallelism map), it suffices to check p�1 and .xh�/�1

satisfy the corresponding compatibility conditions. However,

.xh�/
�1.ˆ.x// D ˆ.p�1.x//

for vertex x 2 Mi2 by Lemma 6.30 (1). Let e � Mi2 be a xw-edge. Then p�1.e/ is also
a xw-edge. We also deduce that d. xw; xv/ D 1, hence .xh�/�1. xw/ D xw. It follows that p�1

sends xw-edge to .xh�/�1. xw/-edge.
Let f W F.�/ ! P .� 0/ and g W X ! X.� 0/ be the simplicial embedding and the

cubical embedding obtained by the above induction. ThenE D g.X/ is a compact convex
subcomplex of X.� 0/ and

yE D f .F.�// Š F.�/:
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Thus G.�/ is isomorphic to a special subgroup of G.� 0/. In particular, G.� 0/ and G.�/
are quasi-isometric, so � 0 is also of type II by Corollary 3.18. Next we show G.� 0/ is
prime.

Take a vertex in xu 2 F.� 0/. Let x 2 E be a vertex, and let v 2 yx be the lift
of xu. Put xv D f �1.v/. Let r W X.� 0/ ! X.�/ be the map in Theorem 2.16, and let
r� W P .�

0/! P .�/ be the induced simplicial isomorphism. We claim the stretch factor
of r� at v is dxv . Note that this claim and Lemma 6.9 imply xu is prime.

It remains to prove the claim. Lemma 6.9 implies that this stretch factor is upper
bounded by the number of prime factors at � ı r�.v/, which is equal to dxv by Remark 6.20
(note that the composition

F.�/
f
�! P .� 0/

r�
�! P .�/

�
�! F.�/

is a simplicial isomorphism). Now we produce the lower bound.
By considering the g-image of Xxv Š hxv � Œ0; dxv � 1�, we deduce that there is a seg-

ment Iv � E of length Ddxv � 1 such that it is made of v-edges and it contains x. Let
¹x1; : : : ; xdxv º be vertices of Iv . Then each component C of F.� 0/ n St.xu/ gives rise to a
component Ci of yxi n St.v/ via

F.� 0/ n St.xu/ Š yx n St.v/:

Let BCi be the v-branch containing Ci . It follows from Corollary 3.13 that BCi ¤ BCj
unless i D j ; moreover, for a component C 0 of F.� 0/ n St.xu/ with C 0 ¤ C , we have

BCi ¤ BC 0j

for 1 � i; j � dxv . Let … be the map defined before Definition 6.4. Then

….BCi / D C

for 1 � i � dxv . However, as each BCi contains a component of

yIv n St.v/ � yE n St.v/;

we know that
….r�.BCi // ¤ ….r�.BCj //

for i ¤ j and
….r�.BCi // ¤ ….r�.BC 0j //

when C 0 ¤ C (note that r.E/ is a vertex in X.�/, and r�. yE/ D br.E/ by (1) and (2) of
Theorem 2.16). This means stretch factor of r� at v (Lemma 6.9) is �dxv . Thus the claim
is proved.
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Remark 6.35. Suppose � is of type II. For each vertex v 2 P .�/, we pick an identifi-
cation fv between the collection of v-sub-tiers and a copy of integers Zv . A v-halfspace
is a subcomplex of P .�/ of form St.v/ [ f �1v .Œa;1// or St.v/ [ f �1v ..�1; a�/, where
a 2 Zv . We can put a pocset structure on the collection of all these halfspaces in a similar
way as before. Then the CAT.0/ cube complex associated with this pocset is isomorphic
to X.� 0/.

We will not use this fact, so we will not give the detailed argument. However, it is
instructive to think about the case when Out.G.�// is finite. Then the cube complex
associated with the above pocset is actually isomorphic to X.�/. So the quasi-isometry
rigidity/flexibility of G.�/ is reflected in how hard it is to reconstruct X.�/ from P .�/

via cubulation.

The following is a consequence of Corollary 3.18 and Theorems 6.10 and 6.34.

Theorem 6.36. If G.�1/ is a RAAG of type II, then G.�2/ is quasi-isometric to G.�1/ if
and only if G.�2/ is commensurable with G.�1/. Moreover, there exists a unique prime
RAAG G.�/ such that G.�1/ and G.�2/ are isomorphic to special subgroups of finite
index in G.�/.

Now we discuss several related examples.

Example 6.37. Let �1 be a pentagon, and let �2 be a hexagon. We glue �1 and �2 along
a vertex star to form � and claim � is prime. Let xv be the only vertex of � such that St.xv/
separates � . For i D 1; 2, let Ci D �i n St.xv/. Pick v 2 P .�/ such that �.v/ D xv, and let
Bi be a v-branch such that ….Bi / D Ci . It suffices to show B1 and B2 are not QII.

Suppose the contrary is true, and let q be the quasi-isometry such that q�.B1/DB2. By
Corollary 3.13, there exist vertices x1; x2 2 Pv such that .�i /xi n St.v/ � Bi for i D 1; 2
(where .�i /xi � .�/xi is the lift of �i ). Note that for any v 2 P .�/, .�1/x1 n St.v/ is
contained in a single v-branch – this follows from Lemma 3.7. Thus for any v 2 P .�/,
q�..�1/x1/ n St.v/ is contained in a single v-branch. Then Lemma 6.11 implies thatT
Pvi ¤ ; with vi ranges over vertices in q�..�1/x1/. As v 2 q�..�1/x1/, we know

q�..�1/x1/ D .�1/x3 for some vertex x3 2 Pv . Take a vertex u in .�1/x1 n St.v/. Then
Pq�.u/ \Pv¤; and �.q�.u//��..�1/x3/D�1. On the other hand, .�2/x2 n St.v/�B2.
Then Lemma 3.8 implies that q�.B1/ ¤ B2, which is a contradiction.

Theorem 6.36 implies that anyG.� 0/ quasi-isometric toG.�/ is isomorphic to a finite
index subgroup of G.�/. Note that by the same proof, this statement is true in the case
when � is obtained by gluing two distinct graphs �1 and �2 (Out.G.�i // is finite for
i D 1; 2) along an isomorphic vertex star.

Example 6.38. Let � be a pentagon and a hexagon glued together over the star of a ver-
tex. Let � 0 be a pentagon and two hexagons glued together over the star of a vertex. See
the picture below. We claim P .�/ and P .� 0/ are isomorphic, but G.�/ and G.� 0/ are
not quasi-isometric.
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� xv � 0 xv0

First we show G.�/ and G.� 0/ are not quasi-isometric. Suppose the contrary is true,
and let q W G.�/! G.� 0/ be a quasi-isometry. Let � W P .�/! F.�/ and � 0 W P .� 0/!
F.� 0/ be the canonical projection map defined after Lemma 2.12.

Pick vertex v 2 P .�/ such that �.v/ D xv, and let v0 D q�.v/. Then � 0.v0/ D xv0. This
follows from the fact that �.v/D xv (or � 0.v0/D xv0) if and only if there are at least two QII
classes among all the v-branches (or v0-branches). This fact follows from the discussion
in Example 6.37 and Corollary 3.13.

Now we compute the stretch factor of q� at v. Corollary 3.13 implies that a v-tier
contains two v-branches B1 and B2 such that ….B1/ and ….B2/ give the two connected
components of � n St.xv/. Suppose ….B1/ is contained in the pentagon subgraph of � ,
and ….B2/ is contained in the hexagon subgraph of � . Corollary 3.13 also implies that
a v0-tier contains three v0-branches B 01; B

0
2 and B 03 such that ….B 01/; ….B

0
2/ and ….B 03/

give the three connected components of � 0 n St.xv0/. Suppose….B 02/ and….B 03/ are inside
the two hexagons in � 0. Then using the symmetry of � 0 that exchanges the two hexagons,
we know B 02 and B 03 are QII. Thus the two hexagons give components of � 0 n St.xv0/ that
are QII.

We claim ….q�.B1// D ….B
0
1/. Let x1 and .�1/x1 be as in Example 6.37. We argue

as in the second paragraph of Example 6.37 to see that there exists x01 2 Pv0 such that
q�..�1/x1/ D .�

0
1/x01 , where � 01 is the pentagon subgraph of � 0 and .� 01/x01 are defined in

the same way as .�1/x1 . Thus….q�.B1//D….B 01/. Similarly, we can show….q�.B2//D
….B 02/ or ….B 03/, ….q

�1
� .B

0
1// D ….B1/ and ….q�1� .B

0
2// D ….q�1� .B

0
3// D ….B2/.

Thus if we use B1 to compute the stretch factor as in Definition 6.8, we will conclude that
the factor is 1. If we use B2 to compute the stretch factor as in Definition 6.8, we obtain
that the factor is 2. This contradicts Lemma 6.9. Thus the quasi-isometry q does not exist.

It remains to show P .�/ and P .� 0/ are isomorphic. Let f1 and f2 be two simplicial
embeddings from � to � 0 such that (1) they cover different hexagons in � 0; (2) f1 D f2
when restricted to the pentagon in � . We also use fi to denote the group monomorphism
induced by fi . Let ! 2 G.�/ be a geodesic word and write ! D !1a1 � � � !nan!nC1,
where ai is a product of powers of elements in St.xv/ for all i , but !i does not contain any
powers of elements in St.xv/ (!1 or !nC1 may be trivial). By permuting letters in ai , we
have ai D xvki bi , where bi does not contain any power of xv.

Define a map h W G.�/ ! G.� 0/ by mapping ! to !01a
0
1 � � � !

0
na
0
n!
0
nC1 such that

(1) !0i D f1.!i / if and only if ki�1=2 is an integer, otherwise !0i D f2.!i /; (2) a0i D f1.ai /
if and only if the first letter ofwiC1 is inside the pentagon, otherwise a0i D xv

0bki=2c � f1.bi /.
Given a different geodesic word !1 D !, we can obtain !1 from ! by using the com-
mutator relations to permute the letters in !; moreover, each word in the middle is
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also a geodesic word. Now it is easy to check that h is well defined, and for each S -
geodesic ` � G.�/, there exists a unique S 0-geodesic `0 � G.� 0/ such that h.`/ D `0

up to finitely many points; moreover, if two S -geodesic are parallel (or orthogonal), then
the corresponding h-images are parallel (or orthogonal), thus h induces a simplicial map
h� W P .�/! P .� 0/. We can define a map h0 W G.� 0/! G.�/ in a similar fashion which
serves as the inverse of h, which would imply that h� is actually a simplicial isomorphism.
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