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Standardly embedded train tracks and pseudo-Anosov
maps with minimum expansion factor

Eriko Hironaka and Chi Cheuk Tsang

Abstract. We show that given a fully punctured pseudo-Anosov map f W S ! S whose punctures
lie in at least two orbits under the action of f , the expansion factor �.f / satisfies the inequality

�.f /j�.S/j � �4 � 6:85408;

where �D 1C
p
5

2 � 1:61803 is the golden ratio. The proof involves a study of standardly embedded
train tracks, and the Thurston symplectic form defined on their weight space.
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1. Introduction

Let S D Sg;s be an oriented surface of finite type with genus g and s punctures, such that
�.S/ D 2 � 2g � s is negative, and let f W S ! S be a homeomorphism of S . By the
Nielsen–Thurston classification of mapping classes, up to isotopy, f either preserves an
essential multicurve (and is periodic or reducible), or it is pseudo-Anosov. In the latter
case, there exists a transverse pair of measured, singular stable and unstable foliations
`s; `u such that f stretches the measure of `u by �.f / and contracts the measure of `s by
1

�.f /
. The number �.f / > 1 here is known as the expansion factor of f .
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Thurston’s train track theory links the dynamics of pseudo-Anosov maps with that
of Perron–Frobenius matrices and implies that �.f / is a bi-Perron algebraic unit with
degree bounded in terms of �.S/ [14]. In particular, for fixed .g; s/, �.f / attains a mini-
mum �g;s > 1. Furthermore, each pseudo-Anosov map determines a closed geodesic on
the moduli space M.S/ with respect to the Teichmüller metric, whose length equals
log.�.f //. Thus, log.�g;s/ is the length of the shortest geodesics on M.Sg;s/ [2].
However, so far �g;s is known only for small g and s (see [10, 19, 26]).

In this paper, we focus on the normalized expansion factor

L.S; f / D �.f /j�.S/j

and consider pseudo-Anosov maps that are fully punctured, meaning the singularities of
`s and `u lie on the punctures of S . Let � be the golden ratio 1C

p
5

2
� 1:61803. Our main

result is the following.

Theorem 1.1. Let f W S ! S be a fully punctured pseudo-Anosov map with at least two
puncture orbits, then L.S; f / satisfies the sharp inequality

L.S; f / � �4 � 6:85408:

Here by a puncture orbit, we mean an orbit of the action of f on the punctures of S .
If we replace the punctures of S with boundary components, then the number of puncture
orbits equals the number of boundary components of the mapping torus of f . We remark
that the assumption of f having at least two puncture orbits is necessary. See Section 7.4
for explicit counterexamples.

For the rest of this introduction, we will first give some background on what is known
about the pattern of minimum expansion factors and its relations to the topology and
geometry of the mapping torus. Then we will state a more precise version of Theorem 1.1,
discuss some special cases, and finally explain the tools that are used in the proof.

1.1. Background on small expansion factors and mapping tori

The expansion factor is a measure of the dynamical complexity of a pseudo-Anosov map.
More concretely, it is equal to the exponential of the entropy, which measures how much
the map mixes points on the surface. Thus, the minimum expansion factor is related to
the complexity of the underlying surface and of the mapping torus, with the latter being
a fibered hyperbolic 3-manifold [38]. In the following, we describe what is known about
this relation.

1.1.1. Minimum expansion factor as a function on the .g; s/ plane. Applying pro-
perties of Perron–Frobenius matrices, Penner [32] observed that log�g;s is bounded below
by the reciprocal of a linear function in g and s

log�g;s �
log 2

12g � 12C 4s
:
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Furthermore, for sD 0, Penner constructed a sequence of examples giving an upper bound,
yielding

log�g;0 �
C

g

for some C > 0, which together with the lower bound implies

log�g;0 �
1

j�.Sg;0/j
:

This asymptotic behavior has been shown to persist along other lines in the .g; s/-plane,
namely, s D mg, where m > 0 [40]; g D 0 [21]; g D 1 [39]; and s D s0 for fixed s0 > 0
[41]. For lines g D g0 with fixed g0 � 2, however, [39] shows that

log�g;s �
log j�.Sg;s/j
j�.Sg;s/j

:

We also mention a result of Agol, Leininger, and Margalit [4] that concerns the mini-
mum expansion factor among pseudo-Anosov maps on an oriented closed surface with
fixed genus g whose action on the first homology preserves a k-dimensional subspace.
We denote this minimum expansion factor as �g;0;k . Their result is that

log�g;0;k �
k C 1

g
:

See [6] for a partial generalization of this result to punctured surfaces.
Let �K be the minimum expansion factor for pseudo-Anosov maps f W S ! S

satisfying j�.S/j D K.

Question 1.2 (McMullen [29]). Does the sequence .�K/K converge, and if so does it
converge to �4?

As we will see in this paper, it is possible to use the theory of digraphs and standardly
embedded train tracks to get information about minimum expansion factors in the fully
punctured case. To translate results from the fully punctured case to the general case, the
following question is of interest.

Question 1.3. For fixedK, where, on the level sets in the .g; s/-plane where 2gC s � 2D
K, is the minimum �K realized? Is there a bound s0, such that �K is always achieved by
�g;s for s � s0?

A positive answer to Question 1.3 would suggest that the minimum expansion factors
�ıK for fully punctured pseudo-Anosov maps f W S ! S satisfying j�.S/j D K should
have the same asymptotic behavior as �K .

We note that Theorem 1.9 answers Question 1.3 in the affirmative if we restrict to fully
punctured pseudo-Anosov mapping classes with even Euler characteristic and at least two
puncture orbits.
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1.1.2. Mapping tori. Pseudo-Anosov mapping classes .S; f / can be partitioned into
flow-equivalence classes, that is, collections of pseudo-Anosov mapping classes whose
mapping tori and suspension flows are equivalent. Thurston’s fibered face theory gives a
way to parameterize elements of a flow-equivalence class by primitive integral points on
a cone over a top-dimensional face F , called a fibered face, of the Thurston norm ball in
H 1.M IR/. Here, the Thurston norm of a primitive integral element a 2 cone.F / associ-
ated with .Sa; fa/ equals j�.Sa/j, and hence its projection to F is given by a D 1

j�.Sa/j
a

(see [37]).
It follows that the rational elements on F are in one-to-one correspondence with ele-

ments of the flow-equivalence class. By a result of Fried, the normalized expansion factor
L.Sa; fa/, considered as a function of integral classes a, extends to a continuous concave
function defined for all a 2 F that goes to infinity towards the boundary of F [15]. Thus,
in particular, for any compact subset of F , the corresponding pseudo-Anosov maps have
bounded normalized expansion factor.

For a hyperbolic 3-manifold M with fibered face F , let CM;F be the infimum of
L.S; f /, where .S; f / is associated with an element of cone.F /. One consequence of
Fried and Thurston’s fibered face theory is the following.

Theorem 1.4 (Fried–Thurston [15, 16, 37]). If b1.M/ � 2, then for any " > 0 there are
infinitely many fibrations M ! S1 whose monodromy .S; f / satisfies

L.S; f / < CM;F C ":

Given C > 1, the pseudo-Anosov mapping classes .S; f / that satisfy L.S; f / < C
must have mapping tori M and associated fibered face F with CM;F � C . The following
result is often referred to as the universal finiteness property and states that after remov-
ing the singular orbits of the suspension pseudo-Anosov flow, the number of such pairs
.M;F / is finite.

Theorem 1.5 (Farb–Leininger–Margalit [12]). Given anyC , there is a finite set of fibered,
hyperbolic 3-manifolds �C such that if .S; f / is a fully punctured pseudo-Anosov map,
and L.S; f / < C , then the mapping torus of .S; f / lies in �C (see also [3] and [5]).

The above theorem also implies finiteness for families of defining polynomials that
can arise for small expansion factors. Given a polynomial p.t/, let jpj be the complex
norm of the largest root of p.t/.

Theorem 1.6 (McMullen [29]). Let M be a fibered hyperbolic 3-manifold, with n D
b1.M/ � 2 and let F � H 1.M I R/ be a fibered face. Then there is a polynomial
‚ 2 ZŒt1; : : : ; tn� with the property that for any primitive integral a D .a1; : : : ; an/ in
the fibered cone over F , j‚.ta1 ; : : : ; tan/j is the expansion factor of the monodromy of
.S; f / corresponding to a.
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The polynomial ‚ is known as the Teichmüller polynomial of the fibered face.
Define CM to be the infimum of L.S; f /, where .S; f / is the monodromy of a fibra-

tion M ! S1. The topological invariant CM of a fibered hyperbolic 3-manifold M is
related to the geometry of M as shown by the following theorem.

Theorem 1.7 (Kojima–McShane [25]). For any hyperbolic, fibered 3-manifold M , CM
satisfies the following inequality

CM � exp
�vol.M/

3�

�
:

Remark 1.8. Theorem 1.7 implies, for example, that if .S; f / satisfies L.S; f / D �4,
the volume of the mapping torus M must satisfy

vol.M/ � 12� log.�/ � 18:14123:

For comparison, the magic manifold, which realizes many of the smallest known expan-
sion factors, has volume �5:33349 according to SnapPy [11]. Further work comparing
known pseudo-Anosov maps with small expansion factor and the volume of their mapping
tori can be found in [1, 23].

1.2. Refinement of the main theorem and some special cases

For positive integers a; b with a < b, define

LTa;b.t/ D t
2b
� tbCa � tb � tb�a C 1:

This family of polynomials was first noticed by Lanneau and Thiffeault [27] to play a role
in the study of minimum expansion factors.

The more precise version of our main theorem is as follows.

Theorem 1.9. Let f W S ! S be a fully punctured pseudo-Anosov map with at least two
puncture orbits where j�.S/j D K � 3. Then �.f / satisfies the inequality

�.f / � jLT1;K2
j;

for K even, and
�.f /K � 8;

for K odd.
Moreover, for each even K, equality is achieved by a fully punctured pseudo-Anosov

map with j�.S/j D K and s � 4.

Sharpness in Theorem 1.9 follows from computations in [1, 20, 23].
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1.2.1. Orientable pseudo-Anosov mapping classes. A pseudo-Anosov mapping class
.S; f / is called orientable if its stable and unstable foliations are orientable. These have
the property that the expansion factor of f is equal to the largest eigenvalue of its action
on the integral homology of S .

Lanneau and Thiffeault [27] asked whether the minimum expansion factor �Cg for even
genus g orientable pseudo-Anosov mapping classes is given by

�Cg D jLT1;g j

and showed that jLT1;g j is a lower bound for �Cg for g D 2; 4; 8; 10. For the case when
g � 2 is even and not divisible by 3, jLT1;g j is an upper bound for �Cg [20].

Theorem 1.10. Let .S; f / be an orientable pseudo-Anosov mapping class on a genus
g � 2 closed surface with exactly two singularities, each of which is fixed by f . Then
�.f / satisfies the inequality

�.f / � jLT1;g j

and this inequality is sharp when g is even and not divisible by 3.

1.2.2. Braid monodromies. Consider .S; f / where S D S0;nC1, and one puncture p1
is fixed by f . A mapping class of this type is called a braid monodromy on n strands.
Given a standard braid ˇ on n strands, there is an associated braid monodromy, and vice
versa (see, e.g., [8]). For convenience, we use the standard Artin braid group generators to
specify a braid and its associated monodromy.

Theorem 1.11. Let ˇ be a fully punctured pseudo-Anosov braid monodromy on n strands.
Then �.ˇ/ satisfies the inequality

�.ˇ/n�1 � �4:

More precisely, for n � 4, �.ˇ/ satisfies the inequality

�.ˇ/ � jLT1; n�12
j

for n odd, and
�.ˇ/n�1 � 8

for n even.

The 3-strand braid ˇ D �1��12 satisfies �.ˇ/D �2 (see [20]), while the 5-strand braid
ˇ D �1�2�3�4�1�2 satisfies �.ˇ/ D jLT1;2j (see [19]). Since both of these braid mon-
odromies are fully punctured, this shows that Theorem 1.11 is sharp. For larger number
of strands, however, there are no known examples achieving the lower bound. Instead, the
smallest known expansion factors of braid monodromies follow the pattern found in [21]
(see also [23]). This invites the following question.
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Question 1.12. Is it true that aside from �1�
�1
2 and �1�2�3�4�1�2, the expansion factor

of a fully punctured pseudo-Anosov braid monodromy on n strands is strictly larger than
jLT1; n�12

j?

A positive answer to Question 1.3 would suggest a positive answer to Question 1.12
as well. This is because the former would imply that the smallest values of �g;s are con-
centrated in a vertical band s � s0 on the .g; s/-plane, whereas the braid monodromies
concern the horizontal line g D 0 which moves away from this vertical band.

We remark that the answer to Question 1.12 is “no” if the word “fully punctured”
is dropped: It has been pointed out to us by Eiko Kin that the 5-strand braid ˇ D

.�1�2�3�4/
2�4�3 satisfies �.ˇ/ D jLT1;2j as well (but it is not fully punctured).

1.3. Techniques used in the proof

Our proof of Theorem 1.1 involves a study of properties of Perron–Frobenius-directed
graphs and of standardly embedded train tracks.

1.3.1. Perron–Frobenius digraphs. To any non-negative square integer matrix M � 0,
one can associate a directed graph, or digraph, � where each vertex corresponds to a row
(or column) of M , and the number of directed edges counted with multiplicity from one
vertex to another equals the corresponding .row; column/ entry of M . The matrix M is
Perron–Frobenius if it has the property that M n > 0 for large enough n. This translates
to the condition that � is strongly connected, that is, any ordered pair of vertices can be
connected by a directed edge path, and aperiodic, that is, the greatest common divisor of
the lengths of directed cycles is 1.

The characteristic polynomial �� of � is defined to be the characteristic polynomial of
M . We say that a polynomial is reciprocal if the set of roots (counted with multiplicities)
is closed under inverses. This is equivalent to the polynomial being palindromic, that is,
the list of its coefficients forms a palindrome, up to a sign.

Theorem 1.13 (McMullen [30]). Let � be a Perron–Frobenius digraph of rank K � 3
with reciprocal characteristic polynomial �� . Then

j�� j � jLT1;K2
j

for K even, and
j�� j

K
� 8

for K odd.

1.3.2. Expansion factors and train tracks. Recall that to compute expansion factors of
pseudo-Anosov maps f W S ! S one uses train tracks to translate the geometric dynamics
of f to combinatorial information. In their most general form train tracks are embed-
ded graphs on surfaces with smoothings at vertices indicating directions which paths are
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allowed to take. A foliation on a surface is said to be carried by a train track � if any leaf
can be isotoped to a smooth path on � . Thurston showed that if f W S ! S is pseudo-
Anosov, then there is a train track � embedded on S which carries the unstable foliation
of f , and for which the map f determines a graph map on � which sends vertices to
vertices and edges to edge paths. Thus, f naturally induces a linear map

f� W R
E
! RE ;

where E is the set of edges of � and RE can be thought of as choices of weights defined
on the edges. Under an appropriate choice of � , f� is Perron–Frobenius and the spectral
radius of f� is the expansion factor of f (see, e.g., [14]).

One might be tempted to apply Theorem 1.13 to the digraph associated with this f�.
However, there are some problems with this. Firstly, notice that one also needs to show
that f� has reciprocal characteristic polynomial. A natural idea for doing so is to make
use of the Thurston symplectic form !. However, ! is actually degenerate on RE , so reci-
procity is not immediate here. Even if one can show reciprocity, the dimension of RE is
rather large, so the bound obtained from Theorem 1.13 would not be very good.

One can instead restrict f� to the subspace of allowable weights W � RE , consisting
of weights that satisfy what are called the branching conditions. This is the minimal con-
dition required so that any simple closed loop which is carried by � will define a positive
vector in W . This would reduce the dimension and remove a large part of the degener-
acy of !, but it is now unclear whether the action of f� on W is Perron–Frobenius or not.
Indeed, there is not even a natural basis of W that we can write the action of f� as a matrix
in, making it difficult to apply digraph techniques directly.

These problems are avoided by considering only pseudo-Anosov maps that are carried
by a special kind of train track based on the Bestvina–Handel algorithm [7, 9], which we
define next.

1.3.3. Standardly embedded train tracks.

Definition 1.14. Let f W S ! S be a fully punctured pseudo-Anosov map. A train track �
that carries f is standardly embedded if its edges can be partitioned into two types: Ereal,
the set of real edges, and Einf, the set of infinitesimal edges, such that:

(1) Each connected component of the complement of � is homeomorphic to a
once-punctured disc.

(2) The action of f permutes the set of infinitesimal edges.

(3) The linear map on REreal induced by f

f real
� W REreal ! REreal

is Perron–Frobenius with respect to the standard basis.

For computations and properties of standardly embedded train tracks, see, for example,
[13, 21, 28, 34].



Standard embeddings and expansion factors 1271

It follows that given a pseudo-Anosov map f with a standardly embedded train track
� that carries it, the expansion factor �.f / is the spectral radius of the restriction f real

�

of f� to REreal . Furthermore, the degree of the characteristic polynomial of f real
� equals

j�.S/j.
Our main technical result is the following.

Theorem 1.15. If f W S ! S is a fully punctured pseudo-Anosov map with at least two
puncture orbits, then there exists a standardly embedded train track � such that

(i) � carries f , and

(ii) the characteristic polynomial of f real
� is reciprocal.

The proof of (ii) uses an explicit description of the radical of the Thurston symplectic
form on the weight space of � . We refer to Proposition 5.5 for the technical statement
used in our proof. Later in Proposition 8.1 we give an extension that applies to general
train tracks carrying a pseudo-Anosov map.

Our main theorem is then obtained by applying Theorem 1.13 to the digraph associated
with f real

� for such a standardly embedded train track.

1.4. Organization of paper

We set up some basic definitions in Section 2. In Section 3, we define standardly embed-
ded train tracks and prove Theorem 1.15. We note that unlike in the introduction, we will
define standardly embedded train tracks as a class of objects separate from surfaces and
pseudo-Anosov maps. This will make the discussion easier in Sections 4 and 5, where we
prove that the characteristic polynomial is reciprocal by studying the Thurston symplectic
form.

We prove our main theorem in Section 6. In Section 7, we explore the sharpness of
the main theorem, in particular demonstrating examples that show the last statement of
Theorem 1.9. Finally, in Section 8, we discuss some questions and future directions.

2. Background

2.1. Pseudo-Anosov maps

We recall the definition of a pseudo-Anosov map. More details can be found in [14].

Definition 2.1. A finite-type surface is an oriented closed surface with finitely many
points, which we call the punctures, removed.

A homeomorphism f on a finite-type surface S is said to be pseudo-Anosov if there
exists a pair of singular measured foliations .`s; �s/ and .`u; �u/ such that:

(1) Away from a finite collection of singular points, which includes the punctures,
`s and `u are locally conjugate to the foliations of R2 by vertical and horizontal
lines, respectively.
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(2) Near a singular point, `s and `u are locally conjugate to either

• the pull back of the foliations of R2 by vertical and horizontal lines by the map
z 7! z

n
2 , respectively, for some n � 3, or

• the pull back of the foliations of R2n¹.0; 0/º by vertical and horizontal lines
by the map z 7! z

n
2 , respectively, for some n � 1.

In this case, we say that the singular point is n-pronged.

(3) f�.`s; �s/ D .`s; ��1�s/ and f�.`u; �u/ D .`u; ��u/ for some � D �.f / > 1.

We call .`s;�s/ and .`u;�u/ the stable and unstable measured foliations, respectively. We
call �.f / the expansion factor of f and call �.f /j�.S/j the normalized expansion factor
of f .

Definition 2.2. f is said to be fully punctured if the set of singular points equals the set
of punctures. In this case, we will denote the set of punctures by X. Note that f acts on
X by some permutation, hence it makes sense to talk about the orbits of punctures under
the action of f , or puncture orbits for short.

We recall two standard facts about pseudo-Anosov maps which will be used in
Section 3.

Definition 2.3. A half-leaf of `s is a properly embedded copy of Œ0;1/ in a leaf of `s . A
half-leaf of `u is similarly defined.

Proposition 2.4. We have the following properties of f , `s , and `u.

• The set of periodic points of f is dense.

• Every half-leaf of `s and of `u is dense.

Proof. This is Proposition 9.20 and Proposition 9.6 of [14], respectively.

2.2. Train tracks

We define train tracks and set up some terminology.

Definition 2.5. A (ribbon) train track � is a finite graph endowed with two additional
pieces of data:

(1) A cyclic ordering on the set Ev of half-edges incident to each vertex v.

(2) A partition Ev D E1v t E2v into two nonempty cyclically consecutive subsets,
which we refer to as the smoothing at v.

We denote the set of vertices of � by V.�/ and denote the set of edges of � by E.�/.
We will sometimes refer to the vertices of � as the switches.

We will think of the two pieces of additional data on each Ev as represented by having
a small oriented disc at v with the half-edges being arranged around v as determined by
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the cyclic order, and with a tangent line at v such that the half-edges in E1v are tangent to
one side of the tangent line and those in E2v tangent to the other side (see Figure 1, left).

In fact, one can form an oriented surfaceN by taking the union of these small oriented
discs and a rectangular strip connecting the discs, respecting their orientations, along each
edge. N can be foliated by properly embedded intervals transverse to the edges of � . We
call N the tie neighborhood of � and call the intervals foliating N the ties (see Figure 1,
right).

We refer to a pair of adjacent elements in some E
ˇ
v as a cusp at v. Equivalently, con-

sider the complementary regions of � in its tie neighborhood. The cusps are in one-to-one
correspondence with the nonsmooth points on the boundary that meet � .

In general, let e and e0 be two elements in E
ˇ
v for some switch v and some ˇ 2 Z=2.

e is said to lie on the left of e0 if for some (hence any) f 2 E
ˇC1
v , .e; e0; f / is oriented

counterclockwise in Ev . We show one example of this in Figure 1 (left).

We make two remarks regarding this definition.
Firstly, train tracks are frequently defined to be subsets of surfaces in the litera-

ture. However, it will be to our advantage to define them independently of a fixed sur-
face. To connect with the usual definition, we have to consider embeddings of the tie
neighborhoods into surfaces. The following definition illustrates an example of this.

Definition 2.6. Let l be a lamination on finite-type surface S . Let � be a train track with
tie neighborhood N , and let � W � ,! S be an embedding. �.�/ is said to carry l if � can be
extended into an orientation preserving embedding � WN ,! S such that the leaves of l are
contained in �.N / and are transverse to the ties. �.�/ is said to fully carry l if in addition
every tie intersects some leaf of l .

Secondly, the underlying graph of a train track is sometimes required to be trivalent.
Here, we allow our train tracks to have arbitrary valence since this is the natural setting
for discussing standardly embedded train tracks.

We then define maps of train tracks.

Definition 2.7. An edge path or cycle c of � is said to be carried by � if at each vertex v
on c, the incoming and outgoing edges do not lie in the same E

ˇ
v .

v

e0

e

E2vE1v

Figure 1. A train track and its tie neighborhood near a switch.
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A map f W �! � 0 is said to be a train track map if f sends switches of � to switches of
� 0 and edges of � to edge paths carried by � 0, such that the induced mapDvf W Ev! Ef .v/
of half-edges at each switch preserves the cyclic ordering and sends elements in distinct
E
ˇ
v to distinct E

ˇ 0

f .v/
.

Suppose f W � ! � 0 is a train track map. Let N and N 0 be the tie neighborhoods of
� and � 0, respectively. Then, f induces an embedding N ,! N 0 which sends ties in N
into ties in N 0 (see Figure 2). For convenience of notation, we will denote this induced
embedding by f as well.

Definition 2.8. Let f W � ! � 0 be a train track map. The transition matrix of f is the
matrix f� 2ME.� 0/�E.�/.Z/ whose entries are defined by

.f�/e0;e D # times f .e/ passes through e0:

2.3. Reciprocal Perron–Frobenius matrices

We recall some terminology regarding matrices.

Definition 2.9. A matrix B is said to be positive if all of its entries are positive.
Let A 2 Mn�n.Z�0/ be a matrix with non-negative integer entries. A is said to be

Perron–Frobenius if there exists k � 1 such that Ak is positive.

Perron–Frobenius matrices arise naturally in the study of pseudo-Anosov dynamics
and are frequently applied with the following classical theorem.

Theorem 2.10 (Perron–Frobenius theorem). Let A be a Perron–Frobenius matrix. Let �
be the largest real eigenvalue of A. Then � is equal to the spectral radius of A and there
exists a positive �-eigenvector v of A. Moreover, up to scalar multiplication by a positive
number, v is the unique positive eigenvector of A.

Another property of matrices which we will use in this paper is reciprocity.

Figure 2. A train track map � ! � 0 induces an embedding of tie neighborhoods N ,! N 0.
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Definition 2.11. A linear map T W V ! V is said to be reciprocal if its eigenvalues (taken
with multiplicity) are invariant under � 7! ��1. Equivalently, T is reciprocal if and only
if its characteristic polynomial p.t/ is reciprocal, that is, it satisfies p.t/ D ˙tnp.t�1/
where n D dimV .

We remark that even though we will freely regard matrices as linear transformations on
Euclidean spaces using the standard bases, the reader should observe that reciprocity is a
property of linear transformations, whereas being Perron–Frobenius is strictly a property
of matrices.

For matrices that are both Perron–Frobenius and reciprocal, McMullen proved the
following sharp inequality regarding their spectral radius.

Theorem 2.12 ([30]). Let A 2 Mn�n.Z�0/, n � 2, be a reciprocal Perron–Frobenius
matrix with spectral radius �.A/. Then

�.A/n � �4:

More precisely, for n � 3, we have

�.A/ �
ˇ̌̌
LT1; n2

ˇ̌̌
if n is even, and

�.A/n � 8

if n is odd.

Proof. In [30], the first statement is stated as Theorem 7.1. The second statement is stated
as Theorem 1.1 for n even and stated in P.33 under the proof of Theorem 7.1 for n odd.

To conclude this subsection, we state some elementary facts that will help us establish
reciprocity.

Proposition 2.13. We have the following examples and properties of reciprocal matrices.

(1) A symplectic matrix is reciprocal.

(2) Suppose P 2Mn�n.Z/ is a signed permutation matrix and V � Rn is a subspace
invariant under P , then P jV W V ! V is reciprocal.

(3) Suppose matrix A admits a block decomposition
�
B �
0 C

�
. Then two of A, B , or C

being reciprocal implies that the remaining one is reciprocal as well.

Proof. In (1), a symplectic matrix is a matrix A 2 Mn�n.R/ satisfying !.Av; Av0/ D
!.v; v0/ for all v; v0 2 Rn, for some symplectic form !. It is an elementary fact that these
are reciprocal (see, e.g., the proof of [18, Theorem 2.1]).

In (2), by a signed permutation matrix, we mean that the only nonzero entries of P are
Pi;�.i/ D˙1 for some permutation � 2 Sn. Such matrices are orthogonal (with respect to
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the standard inner product on Rn), hence the restriction P jV is also orthogonal, and it is
another elementary fact that orthogonal maps are reciprocal (again see [18, Theorem 2.1]).

The statement in (3) follows from the observation that the set of eigenvalues of A is
the union of that of B and C (taken with multiplicity).

3. Standardly embedded train tracks

For the rest of this paper, we fix the following setting: Let f W S ! S be a fully punc-
tured pseudo-Anosov map. Let .`s; �s/ and .`u; �u/ be the stable and unstable measured
foliations of f , respectively. Let � be the expansion factor of f .

In this section, we will define standardly embedded train tracks and explain how they
are related to certain Markov partitions that encode the dynamics of f .

3.1. Definition of standardly embedded train tracks

We first define the notion of standardly embedded train tracks. The definition we use is
adapted from [10].

Let � be a train track with tie neighborhood N . Each complementary region of �
in N is homeomorphic to an annulus, with one boundary component along @N and the
other boundary component along � . We call the boundary component along � a boundary
component of � . Under this terminology, the boundary components of � are in one-to-
one correspondence with the boundary components of N . We denote the collection of
boundary components of � by @� .

We say that a boundary component c of � is n-pronged if it contains n cusps. We say
that c is odd/even-pronged if it is n-pronged for odd/even n, respectively.

Definition 3.1. Let @� D @I � t @O� be a partition of the boundary components of � into
a nonempty set of inner boundary components and a nonempty set of outer boundary
components, respectively.

A train track � is said to be standardly embedded with respect to .@I �; @O�/ if its set
of edges E can be partitioned into a set of infinitesimal edges Einf and a set of real edges
Ereal, such that:

• The smoothing at each vertex v is defined by separating the infinitesimal edges and
the real edges.

• The union of infinitesimal edges is a disjoint union of cycles, which we call the
infinitesimal polygons.

• The infinitesimal polygons are exactly the inner boundary components of � .

We show one example of a standardly embedded train track in Figure 3, where the
infintesimal polygons are drawn in gray.
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Figure 3. An example of a standardly embedded train track. The infintesimal polygons are drawn
in gray.

Proposition 3.2. Let � be a standardly embedded train track. The number of real edges
of � is equal to ��.�/.

Proof. It follows from the definition that jEinfj D jV j, so � has jV j C jErealj edges in total.
Hence, �.�/ D jV j � .jV j C jErealj/ D �jErealj.

3.2. Train track partitions

We now define the notion of train track partitions. These will be used to construct
standardly embedded train tracks in the next subsection.

Definition 3.3. A rectangle is defined to be a subset R of S such that .R; `sjR; `ujR/ is
homeomorphic to �

.Œ0; 1� � Œ0; 1�/n
®
x1; : : : ; xn

¯
;Vert;Hor

�
;

where ¹x1; : : : ; xnº is a (possibly empty) collection of points on the boundary of
Œ0; 1� � Œ0; 1�, Vert is the foliation by vertical lines, and Hor is the foliation by horizontal
lines. See Figure 4, where the empty dots denote omitted points. In this paper, we will
draw stable leaves in red and unstable leaves in blue.

Figure 4. A rectangle in S .
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We call the two sides of @R that lie along leaves of `s the stable sides of R and write
@sR for the union of the two stable sides. Similarly, we call the two sides of @R that lie
along leaves of `u the unstable sides of R and write @uR for the union of the two unstable
sides. In Figure 4, the stable sides are the vertical sides while the unstable sides are the
horizontal sides.

A partition is defined to be a finite collection of rectangles ¹Riº that have disjoint
interiors and cover S . A partition ¹Riº is Markov if it satisfies

• f
�S

i @sRi
�
�
S
i @sRi , and

• f �1
�S

i @uRi
�
�
S
i @uRi .

Definition 3.4. Let x be a puncture of S . A stable prong at x is a connected subset of
a stable leaf that limits to x. A stable star at x is a maximal disjoint union of prongs at
x. In particular, a stable star at x has n connected components when x is an n-pronged
puncture. A side of a stable star is the union of two adjacent prongs.

An unstable prong and an unstable star at x are similarly defined.

See Figure 5 for an example. Here, x is a 5-pronged puncture, so both the stable and
unstable stars at x in the figure have five prongs. We have also indicated a side of the
unstable star in dark blue.

Definition 3.5. Let X D XI t XO be a partition of the set of punctures of S into a
nonempty set of inner punctures and a nonempty set of outer punctures, respectively.

A train track partition with respect to .XI ;XO/ consists of

• a partition ¹Riº, along with

• a stable star � sx at every inner puncture x 2 XI , and

• an unstable star �ux at every outer puncture x 2 XO

such that:

• Each stable star � sx is disjoint from each unstable star �ux .

x

Figure 5. The local picture of `s and `u at a 5-pronged puncture x. We have indicated a side of the
unstable star at x in dark blue.
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• Each stable side of each rectangleRi lies along the closure of some side of some stable
star � sx , and each point on each � sx meets the stable side of some Ri .

• Each unstable side of each rectangle Ri lies along the closure of some side of some
unstable star �ux , and each point on each �ux meets the unstable side of some Ri .

A train track partition .¹Riº; ¹� sxº; ¹�
u
x º/ is Markov if the partition ¹Riº is Markov.

Notice that the collection of stable and unstable stars actually determines the partition:
The rectangles are the complementary regions of their union.

Also notice that if the train track partition is Markov, then f must preserve the set of
inner and outer punctures, respectively. In particular, f has at least two puncture orbits.
We will show below that this is in fact a sufficient condition. The following construction
will be used in the proof.

Construction 3.6. Let X DXI tXO be some partition of X into two nonempty subsets.
Let c�ux be the unstable star at each x 2XO for which each of its prongs has �s-length

1. Let � sx be the stable star at each x 2XI that is maximal with respect to the property that
it is disjoint from

S
x2XO

c�ux . That is, each � sx is defined by extending the stable prongs at

x until it bumps into some c�ux . Then define �ux to be the unstable star at each x 2XO that
is maximal with respect to the property that it contains c�ux and is disjoint from

S
x2XI

� sx .

That is, each �ux is defined by extending the prongs of c�ux until it bumps into some � sx .
We claim that each complementary region of

S
x2XI

� sx [
S
x2XO

�ux is a rectangle.
By construction, the punctures never lie in the interior of a complementary region, hence
each complementary region is foliated by properly embedded intervals that are the restric-
tion of the stable leaves. Meanwhile, a stable star � sx and an unstable star �ux can only meet
in the interior of the � sx and at the endpoint of the �ux or vice versa. That is, they meet in a
? form. Hence, each complementary region has convex corners along its boundary, which
implies the claim.

By taking the partition to be the collection of complementary regions, we obtain a
train track partition, which we denote by M.XI ;XO /.

We remark that this construction of M.XI ;XO / is natural. More precisely, if f1 W S1!
S1 and f2 W S2 ! S2 are fully punctured pseudo-Anosov maps, and g W S1 ! S2 is a
homeomorphism that sends the stable and unstable measured foliations .`s=u1 ; �

s=u
1 / of f1

to .`s=u2 ; �
s=u
2 / of f2, then for any partition X1 D X1;I tX1;O of the set of punctures of

S1, we have
g�M.X1;I ;X1;O / DM.g�X1;I ;g�X1;O /:

More generally, if f W S ! S is a fully punctured pseudo-Anosov map, � W zS ! S is a
finite cover, and zf W zS ! zS is a lift of f , with its stable and unstable measured foliations
lifted from that of f , then for any partition X D XI tXO , we have

��.M.XI ;XO // DM.��XI ;��XO /:
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We will be applying this fact implicitly in the sequel.

Proposition 3.7. If XI and XO are f -invariant, then M.XI ;XO / is Markov.

Proof. In Construction 3.6, notice that f �1
�S

x2XO
c�ux � �Sx2XO

c�ux since f expands
�s-lengths. This implies that f �1

� S
x2XI

� sx
�
�
S
x2XI

� sx , since each f �1.� sx/ is

obtained by extending the stable prongs at x until it bumps into some f �1.c�ux /. Similarly,
this in turn implies that f �1

� S
x2XO

�ux
�
�
S
x2XO

�ux . Now the proposition follows
from the observation that

S
i @sRi D

S
x2XI

� sx and
S
i @uRi D

S
x2XO

�ux .

3.3. From train track partitions to standardly embedded train tracks

Train track partitions give rise to standardly embedded train tracks via the following
construction.

Construction 3.8. Let M D .¹Riº; ¹�
s
xº; ¹�

u
x º/ be a train track partition with respect to

.XI ;XO/.
Define a graph �M by taking a set of vertices in one-to-one correspondence with the

sides of the stable stars � sx . The edges of �M will come in two types: infinitesimal and
real. The infinitesimal edges are in one-to-one correspondence with the prongs of � sx , with
their endpoints at the two vertices corresponding to the two sides the prong lies in. The
real edges are in one-to-one correspondence with the rectangles Ri , with their endpoints
at the two vertices corresponding to the two sides the stable sides of Ri lie along.

The smoothing at each vertex is defined by separating the infinitesimal edges and the
real edges. Each vertex is incident to exactly two infinitesimal half-edges, so it suffices
to order the real half-edges: This order is determined by the position of rectangles at the
corresponding side. It is straightforward to check that this makes �M into a standardly
embedded train track.

We illustrate a local picture of this construction in Figure 6.
When M DM.XI ;XO /, we write �.XI ;XO / D �M.XI ;XO/

.

Construction 3.9. When M is a Markov train track partition, we can in addition define a
train track map fM W �M ! �M as follows:

fM maps the vertex corresponding to a side s of a stable star to the vertex corre-
sponding to the side containing f .s/, maps the infinitesimal edge corresponding to a
stable prong p to the infinitesimal edge corresponding to the prong containing f .p/, and
maps the real edge corresponding to a rectangle Ri to the edge path corresponding to the
sequence of rectangles and prongs passed through by f .Ri /.

When M DM.XI ;XO /, we write f.XI ;XO / D fM.XI ;XO/
.

The train track �M and the train track map fM capture the dynamics of f in the
following sense.
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Figure 6. A local example of Construction 3.8.

Proposition 3.10. For every train track partition M, there is an embedding � of the tie
neighborhood N of �M into S that is a homotopy equivalence, such that �.�M/ fully car-
ries the unstable lamination of f (obtained by blowing air into the leaves of the unstable
foliation `u that contain the punctures).

Moreover, if M is Markov, then f � and �fM are homotopic embeddings of N in S .

Proof. Cut S along the unstable stars �ux , which does not change the homeomorphism
type of S . The resulting space bS can be obtained by gluing the rectangles Ri along their
stable sides to the stable stars � sx . Since the pattern of gluing corresponds exactly to
that used to glue real edges to infinitesimal polygons of �M, we can define an embed-
ding � W �M ,! S by sending the infinitesimal polygons into a neighborhood of the
corresponding stable stars, then sending the real edges into their corresponding rectangles.

After blowing air into the leaves of the unstable foliation `u that contain the punctures,
we can assume that the leaves of the unstable lamination are contained in bS . In this case,
we can extend � into an embedding of N such that the ties are transverse to the leaves.

With this �, f � will send each the union of ties in N intersecting an infinitesimal poly-
gon into a neighborhood of the image of the corresponding stable star under f , which by
definition is the stable star corresponding to the image of the infinitesimal polygon under
fM. Similarly, f � will send the union of ties that intersect a real edge into the sequence of
rectangles passed through by the image of the corresponding rectangle under f , which by
definition is the sequence of rectangles corresponding to the image of the real edge under
fM. From this one can construct a homotopy f � ' �fM.
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In the sequel, we will always use � in Proposition 3.10 to embed �M in S if needed.

Remark 3.11. The proof of Proposition 3.10 shows that the boundary components of �M

are in one-to-one correspondence with the punctures of S . Namely, a boundary component
c corresponds to the puncture p which �.c/ is homotopic into. Under this correspondence,
c is an element of @I=O�M if and only if p is an element of XI=O , respectively. Also, c is
n-pronged if and only if p is n-pronged.

The fact that fM captures the dynamics of f implies that we can compute the expan-
sion factor of f using the transition matrix of fM. More specifically, notice that by
definition, fM maps each infinitesimal edge to a single infinitesimal edge, hence if we
list the infinitesimal edges in front of the real edges, the transition matrix of fM will be of
the form

fM� D

�
P �

0 f real
M�

�
;

where P is a permutation matrix. We call f real
M�

the real transition matrix of fM.

Proposition 3.12. For any Markov train track partition M, f real
M�

is Perron–Frobenius.

Proof. The rows and columns of f real
M�

are indexed by the real edges of �M, which in turn
correspond to the rectangles Ri in the train track partition M. Under this correspondence,
the .Rj ; Ri /-entry of .f real

M�
/k is the number of times f k.Ri / crosses Rj . We claim that

for each i there exists ki such that the .Rj ; Ri /-entry of .f real
M�
/ki is positive for each j .

This would imply that .f real
M�
/
Q
ki is positive, hence f real

M�
is Perron–Frobenius.

To show the claim, we fix an i . By Proposition 2.4, there exists a periodic point z in
the interior of Ri , say of period p. Consider a short interval I lying along the unstable
leaf passing through z, with one endpoint on z and contained within Ri . Up to doubling
p, we have I � f p.I / and �s.f p.I // D �p�s.I /.

Now
S1
sD0 f

sp.I / is a half-leaf, hence by Proposition 2.4, is dense in S . So there
exists s > 0 such that f sp.I / meets the interior of each rectangle, which implies that
f sp.Ri / crosses every rectangle and proves the claim.

Proposition 3.13. For any Markov train track partition M, the spectral radius of f real
M�

is
the expansion factor of f .

Proof. We will directly define an eigenvector u of f real
M�

. The entries of u can be indexed
by the rectangles Ri in M as above. We define the Ri -entry of u to be the �s-measure
of an unstable side of Ri . By definition, the Ri -entry of f real

M�
u is the �s measure of the

image of an unstable side of f .Ri /, which is � times the Ri -entry of u. Hence, u is a
�-eigenvector of f real

M�
.

We have shown that f real
M�

is Perron–Frobenius in Proposition 3.12. Here, u is positive,
hence by Theorem 2.10, � is the spectral radius of f real

M�
.
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Let X D XI t XO be a partition of the set of punctures of S into nonempty f -
invariant sets. Propositions 3.2 and 3.10 imply that f real

.XI ;XO /�
is a j�.S/j-by-j�.S/j

matrix, while Proposition 3.12 implies that it is Perron–Frobenius. Our goal in Sections 4
and 5 is to show that f real

.XI ;XO /�
is reciprocal, for then we can apply Theorem 2.12 and

prove our main theorem.

3.4. Invariant standardly embedded train tracks

In this subsection, we will explain how for every Markov train track partition M, �M is
an f -invariant train track, which implies Theorem 1.15. To do so, we have to discuss
elementary moves on train tracks.

Definition 3.14. Let � be a train track. Suppose e is an edge of � with endpoints at
switches v1; v2. We can define a new train track � 0 by declaring an interior point v of e
as a new vertex and replacing e with two edges e1; e2 connecting v1 and v2, respectively,
with v. The ordering and smoothing at vi is unchanged, with the half-edge determined
by ei replacing that determined by e. For v, we take the unique choice of ordering and
smoothing.

Note that � 0 is homeomorphic to � as a topological space but nonisomorphic as a
graph. Nevertheless, there is a natural train track map � ! � 0. We refer to this map as the
subdivision move on e (see Figure 7, top).

Definition 3.15. Let � be a train track. Suppose e1; e2 are two edges of � which determine
a cusp at switch v, and having their other endpoint on switches v01 and v02, respectively.
Define a new train track � 0 by combining v01 and v02 into one switch v0 and replacing
e1 and e2 by a single edge e connecting v and v0. Without loss of generality suppose
that e1 lies to the left of e2 at v and the half-edge of ei lies in E2vi for both i D 1; 2.
Then the ordering on E1v0 D E1

v01
t E1

v02
is determined by placing all the half-edges in E1

v01
,

e v
e1 e2

e2

e1
v01

v02

v v0 ve

Figure 7. Elementary moves. Top: The subdivision move on e. Bottom: The elementary folding
move on .e1; e2/.
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in their original order, to the left of those in E1
v02

, in their original order. The ordering

on E2v0 D .E2
v01
n¹e1º/ t ¹eº t .E

2
v02
n¹e2º/ is determined by placing all the half-edges in

E2v2n¹e2º, in their original order, to the left of e, which is in turn placed to the left of all
the half-edges in E1v1n¹e1º, in their original order.

There is a train track map � ! � 0 defined by sending v1 and v2 to v, sending e1 and
e2 to e, and sending the remaining vertices and edges to themselves. We refer to this map
as the elementary folding move on .e1; e2/ (see Figure 7, bottom).

We refer to a subdivision move or an elementary folding move as an elementary move
in general.

Definition 3.16. Let � be a train track and with tie neighborhood N , and let � W N ,! S

be an embedding. Suppose there exists train track maps f1; : : : ; fn; � where each fi is an
elementary move and � is an isomorphism of train tracks, such that f � and ��fn � � �f1 are
homotopic embeddings of N in S . Then �.�/ is said to be f -invariant.

When � is understood, we will just say that � is f -invariant.

Proposition 3.18 will do most of the heavy lifting in showing that �M is f -invariant.
We will also be applying Proposition 3.18 and its corollary, Proposition 3.19, in Section 4
and Section 5.

Definition 3.17. Let M D .¹Riº; ¹�
s
xº; ¹�

u
x º/ and M0 D .¹R0iº; ¹�

0s
x º; ¹�

0u
x º/ be two train

track partitions with respect to .XI ;XO/ and .X0I ;X
0
O/, respectively. We say that M

is wider than M0 if
S
x2XI

� sx �
S
x2X0I

� 0sx and
S
x2XO

�ux �
S
x2X0O

� 0ux . Notice this
implies that XI � X0I and XO � X0O .

Proposition 3.18. If M is wider than M0 then there exists elementary moves f1; : : : ; fn
such that fn � � � f1 maps �M to �M0 .

Proof. For notational convenience we set � sx D ¿ for x 2 XO and �ux D ¿ for x 2 XI ,
and similarly � 0sx D ¿ for x 2X0O and � 0ux D ¿ for x 2X0I . Then we will have � sx � �

0s
x

and �ux � �
0u
x for every x.

We label the prongs of all the �ux as p1; : : : ; pN and label the prong of the � 0ux that is
contained in pi as p0i . The idea of the proof is that in contracting each pi into p0i , we com-
bine some rectangles, and this determines corresponding elementary moves (see Figure 8).
The precise description of the proof is rather technical. The reader may wish to skip it on
the first reading.

Define subsets pji of pi by setting p0i D pi and inductively defining pjC1i to be
the subset maximal with respect to the property of containing p0i and being properly
contained in pji , and having an endpoint lying on

S
x �
0s
x . Suppose p0i D p

ni
i . Write

UPk�1
iD1 niCj

D
Sk�1
iD1 p

0
i [ p

j

k
[
SN
iDk pi .

Notice that for each j ,
�S

x �
0s
x

�
nUj is a union of intervals. We call each such interval

a prong of
� S

x �
0s
x

�
nUj . Each interval has two sides in the `u direction. We consider
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Figure 8. Performing elementary folding moves on �j to obtain �jC1.

two sides to such intervals to be equivalent if there is a rectangle in the complement ofS
x �
0s
x [ Uj with a stable side incident to the two sides. We call each equivalence class

of sides a side of
� S

x �
0s
x

�
nUj . Thus, each prong lies on two sides, and for each j ,�S

x �
0s
x

�
nUjC1 has one or two less sides than

�S
x �
0s
x

�
nUj . Intuitively, as j increases,

Uj shrinks and the sides of
�S

x �
0s
x

�
nUj get combined, until we hit j D

PN
iD1 ni and� S

x �
0s
x

�
nUPN

iD1 ni
becomes exactly the union of stable stars that are the � 0sx and the

definitions of prongs and sides agree with our previous usage.
We will define train tracks �j for each j D 0; : : : ;

PN
iD1 ni such that

• the vertices of �j are in one-to-one correspondence with the sides of
�S

x �
0s
x

�
nUj ,

and

• the edges of �j are in one-to-one correspondence with the rectangles in the comple-
ment of

S
x �
0s
x [ Uj and the prongs of

�S
x �
0s
x

�
nUj ,

and such that each �jC1 is obtained from �j via elementary folding moves.
First, to define �0, consider the components of

�S
x �
0s
x

�
nU0 D

�S
x �
0s
x

�
n
�S

x �
u
x

�
that do not lie in

S
x �

s
x . Each of these is an interval lying in a rectangle Ri . For each

of these intervals, we subdivide twice the real edge of �M corresponding to the rectan-
gle the interval lies in. That is, we add two new vertices, each corresponding to a side of�S

x �
0s
x

�
nU0.

Inductively, suppose �j is defined. When going from Uj to UjC1, two rectangles in
the complement of

S
x �
0s
x [ Uj are combined into one in

S
x �
0s
x [ UjC1. We fold the

two edges of �j corresponding to these two rectangles. If
�S

x �
0s
x

�
nUjC1 has one less

component than
�S

x �
0s
x

�
nUj , then two prongs of

�S
x �
0s
x

�
nUj are combined into one.

In this case, we also fold the two edges of �j corresponding to these two prongs. After
these one or two elementary folding moves, we obtain �jC1 (see Figure 8).

Continuing inductively, by the time we reach �PN
iD1 ni

, this will be a train track with
vertices in one-to-one correspondence with the sides of

S
x �
0s
x and edges in one-to-one

correspondence with the rectangles R0i and the prongs of
S
x �
0s
x , thus �PN

iD1 ni
D �M0 .
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Proposition 3.19. If XI � X0I , then there are elementary folding moves f1; : : : ; fn such
that fn � � � f1 maps �.XI ;XO / to �.X0I ;X0O /.

Proof. If XI �X0I , then XO �X0O , so
Sc�ux �Sc� 0ux in Construction 3.6. This implies

that
S
� sx �

S
� 0sx , which in turn implies that

S
�ux �

S
� 0ux . That is, M.XI ;XO / is wider

than M.X0I ;X
0
O /

. So this proposition follows from Proposition 3.18.

Lemma 3.20. For any Markov train track partition M, the train track map fM W �M! �M

can be written as a composition of train track maps �fn � � � f1 where each fi is an
elementary move and � is an isomorphism of train tracks.

Proof. Note that M being Markov implies that M is wider than f �1.M/. So we can
apply Proposition 3.18 to get elementary moves f1; : : : ; fn such that fn � � � f1 maps �M

to �f �1.M/. Meanwhile, since f sends f �1.M/ to M, there is an induced isomorphism
of train tracks � W �f �1.M/ ! �M.

It remains to show that fM D �fn � � � f1. This will follow from checking that these
maps send each edge e to the same edge path.

Suppose e is infinitesimal and corresponds to a prong p. Then fn � � �f1 sends e to the
infinitesimal edge in �f �1.M/ corresponding to the prong containing p, which � sends to
the infinitesimal edge in �M corresponding to the prong containing f .p/. This is equal to
the image of e under fM.

Suppose e is real and corresponds to a rectangle R. Then fn � � �f1 sends e to the edge
path in �f �1.M/ corresponding to the sequence of rectangles and prongs passed by an
unstable side of R, which � sends to the edge path in �M corresponding to the sequence
of rectangles and prongs passed by an unstable side of f .R/. This is equal to the image
of e under fM.

Combining Proposition 3.7, Proposition 3.10, and Lemma 3.20, we have the following.

Proposition 3.21. Let f W S ! S be a fully punctured pseudo-Anosov map with at least
two puncture orbits. Let X DXI tXO be some partition of the set of punctures into two
nonempty f -invariant subsets. Then there exists an f -invariant train track � that is stan-
dardly embedded with respect to .@I �; @O�/, where the boundary components in @I=O�
are homotopic into the punctures in XI=O , respectively.

Theorem 1.15 follows from Proposition 3.21.

4. The Thurston symplectic form

In this section, we make the first steps towards showing that f real
.XI ;XO /�

is reciprocal. The
idea is to consider the space of weights on the train track, on which the Thurston symplec-
tic form can be defined. There is a slight misnomer here: The Thurston symplectic form
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is in general degenerate hence not a symplectic form. However, we will only set up the
theory in this section, leaving the task of addressing this to Section 5.

4.1. Weight space

Definition 4.1. Let � be a train track. A system of weights on � is an assignment of a real
number w.e/ to each edge e of � such that at each switch v,X

e2E1v

w.e/ D
X
e2E2v

w.e/:

It is convenient to think of the weight of a branch as the width of the branch. From this
point of view, the equation above simply states that the total width on the two sides of a
switch match up.

The weight space of � is the linear space of all systems of weights on � , which we
denote by W.�/.

Consider the space RE.�/ of all assignments of real numbers to the edges of � . Define
the linear map Tv W RE.�/ ! R by Tv.w/ D

P
e2E1v

w.e/ �
P
e2E2v

w.e/ for each switch
v, and define TV W RE.�/ ! RV.�/ by TV .w/ D .Tv.w//v2V.�/. Then the weight space
W.�/ is the kernel of TV . In other words, we have the exact sequence

0 W.�/ RE.�/ RV.�/:
TV

We remark that there is no canonical way to label E1v and E2v for each v, so each Tv
can only be canonically defined up to a sign. This is not very significant for our purposes,
but for concreteness let us simply fix some labeling of E1v and E2v for each v.

Proposition 4.2. Let f W � ! � 0 be a train track map. There exists a signed permutation
matrix P 2MV.� 0/�V.�/.R/ which fits into the commutative diagram

0 W.�/ RE.�/ RV.�/

0 W.� 0/ RE.� 0/ RV.� 0/

W.f /

TV

f� P

TV

.

Here, f� is the transition matrix of f and W.f / is the restriction of f� to W.�/.

Proof. Recall that f sends switches to switches. Define

Pv0;v D

8̂̂<̂
:̂
1; if v0 D f .v/ and Dvf sends E1v into E1v0 ;

�1; if v0 D f .v/ and Dvf sends E1v into E2v0 ;

0; otherwise:
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We have to check that PTV D TVf�. For convenience, let us denote the unit vector
in RE.�/ corresponding to e 2 E.�/ by e as well. Then PTV .e/ is the vector having two
˙1 entries at the images of the endpoints of e under f , whereas TVf�.e/ is the vector
having two ˙1 entries at the endpoints of the image of e under f . The position of the
only two nonzero entries hence coincide. It can also be checked that their signs coincide
respectively.

Note that by Proposition 4.2 and the discussion above Proposition 3.12 (along with
Proposition 2.13), in order to show that f real

.XI ;XO /�
is reciprocal, it suffices to show that

W.f.XI ;XO // is reciprocal.

4.2. The Thurston symplectic form

In this subsection we define the Thurston symplectic form on the weight space of a train
track. This is done for trivalent train tracks in [33, Section 3.2]; we simply generalize the
discussion to general train tracks.

Definition 4.3. Let w1; w2 2 W.�/ be two systems of weights on � . We define

!.w1; w2/ D
X
v2V.�/

X
e1 left of e2

.w1.e1/w2.e2/ � w1.e2/w2.e1//;

where the second summation is taken over all pairs e1; e2 in Ev for which e1 is on the left
of e2.

Then ! is clearly a skew-symmetric bilinear form on RE.�/ hence on W.�/. We call
! the Thurston symplectic form.

The definition of the Thurston symplectic form ! is motivated from the algebraic inter-
section number. We refer to [33, Lemma 3.2.2] for an explanation of this. The property of
! that matters to us is that it is preserved by the type of train track maps that we study.

Lemma 4.4. If f W � ! � 0 is a subdivision move, then W.f / is an isomorphism that
preserves the Thurston symplectic form !.

Proof. We use the notation as in Definition 3.14, and write w0 D .W.f //.w/.
The map W.f / is an isomorphism since w.e/ can be recovered as w0.e1/ D w0.e2/.
When computing ! in � 0, v does not make a contribution, since it only meets two half-

edges. For the other vertices, since w0.e1/ D w0.e2/ D w.e/, their contributions remain
the same.

Lemma 4.5. If f W � ! � 0 is an elementary folding move, then W.f / is an isomorphism
that preserves the Thurston symplectic form !.

Proof. We use the notation as in Definition 3.15, and write w0i D .W.f //.wi /.
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The map W.f / is an isomorphism since wi .ej / can be recovered asX
e2E1vj

w0i .e/ �
X

e2E2vj n¹ej º

w0i .e/:

When computing ! in � 0, the contributions from v and v0 are as follows (we omit the
summands when they are w1.e0/w2.e00/ � w1.e00/w2.e0/ and omit writing “e0 to the left
of e00” under the summations):X
e0;e002E2v

C

X
e0;e002E1v

C

X
e0;e002E2

v0

C

X
e0;e002E1

v0

D

X
e0;e002E2v

C

 X
e0;e002E1v

�.w1.e1/w2.e2/ � w1.e2/w2.e1//

!

C

 X
e0;e002E2

v01

C

X
e0;e002E2

v02

C

X
e02E2

v02
;e002E2

v01

�.w1.e2/w2.e1/ � w1.e1/w2.e2//

!

C

 X
e0;e002E1

v01

C

X
e0;e002E1

v02

C

X
e02E1

v01
;e002E1

v02

!

D

X
e0;e002E2v

C

X
e0;e002E1v

C

X
e0;e002E2

v01

C

X
e0;e002E2

v02

C

 X
e02E2

v02

w1.e
0/

! X
e002E2

v01

w2.e
00/

!
�

 X
e002E2

v01

w1.e
00/

! X
e02E2

v02

w2.e
0/

!

C

X
e0;e002E1

v01

C

X
e0;e002E1

v02

C

 X
e02E1

v01

w1.e
0/

! X
e002E1

v02

w2.e
00/

!

�

 X
e002E1

v02

w1.e
00/

! X
e02E1

v01

w2.e
0/

!

D

X
e0;e002E2v

C

X
e0;e002E1v

C

X
e0;e002E2

v01

C

X
e0;e002E2

v02

C

X
e0;e002E1

v01

C

X
e0;e002E1

v02

;

which is the contribution from v; v01; v
0
2 when computing ! in � .

The contributions from the rest of the vertices stay the same, so W.f / preserves !.

Proposition 4.6. For any Markov train track partition M, W.fM/ W W.�M/! W.�M/

is an isomorphism that preserves !.
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Proof. This follows from Lemma 3.20, Lemma 4.4, Lemma 4.5, and the fact that
an isomorphism of train tracks induces an isomorphism which preserves the Thurston
symplectic form on the weight space.

In general, Lemmas 4.4 and 4.5 essentially say that we can modify a train track as
much as we like using elementary moves when studying its weight space. Hence, we
make the following definition.

Definition 4.7. Consider the equivalence relation on the set of all train tracks that is gen-
erated by there being an elementary move between two train tracks. We say that two train
tracks in the same equivalence class are equivalent.

In particular, we have the following lemma, which will be very useful when making
computations in Section 5.

Lemma 4.8. Let X D XI t XO and X D X0I t X0O be two partitions of the set of
punctures of S . Then �.XI ;XO / and �.X0I ;X0O / are equivalent.

Proof. This follows immediately from Proposition 3.19.

5. Computing the radical

As mentioned in the last section, the Thurston symplectic form ! on the weight space
W.�/ is not actually a symplectic form in general. Its failure of being one is measured by
its radical rad.!/ D ¹w0 2 W.�/ W !.w;w0/ D 0 for every w 2 W.�/º.

Now, if ! were symplectic, we would be able to show that W.f.XI ;XO // is recipro-
cal by just applying Proposition 2.13 (1). In general, to apply this approach, we need to
understand what rad.!/ is. In this section, we make the computations to determine this.

5.1. Radical elements

Definition 5.1. Suppose c is an even-pronged boundary component of � . Label the inter-
vals in the complement of the cusps by I1; : : : ; In in a cyclic order. We define the radical
element of c, denoted by rc , to be the element of W.�/ where we assign to each edge
on Ik a weight of .�1/k (see Figure 9, left). Here, we assign weights with multiplicity,
meaning if an edge appears multiple times on possibly multiple Ik , then the weight we
assign to it is the sum of the weights that is assigned to it each time it appears in some Ik .

In the degenerate case when c is 0-pronged, rc is the element of W.�/ that assigns
each edge on c a weight of 1.

We remark that there is no canonical way to label the Ik , so rc can only be canonically
defined up to a sign. This is not very significant for our purposes, we can simply fix a
labeling where appropriate.



Standard embeddings and expansion factors 1291

�1

�1 �1

1

1 1

�1 �1

�1

�1

�1

�1�1
�1

�1
�11 1

1
1

1

1
11

1

1

Figure 9. Left: A radical element rc . Right: Showing that the terms cancel each other out when
computing !.w; rc/.

Proposition 5.2. Each rc lies in the radical of !.

Proof. Let w be an element of W.�/, we have to check that !.w; rc/ D 0. Let us first
assume that c is embedded in � for simplicity. Let v be a vertex on c that lies at a cusp.
Suppose half-edges e1 and e2 determine the cusp, where e1 is to the left of e2, and suppose
that rc assigns the weight .�1/i to ei . Then the contribution of v in !.w; rc/ isX

e left of e1

.w.e/ � .�1/ � w.e1/ � 0/C .w.e/ � 1 � w.e2/ � 0/

C

X
e2 left of e

.w.e2/ � 0 � w.e/ � 1/C .w.e/ � 1 � w.e2/ � 1/

C w.e1/ � 1 � w.e2/ � .�1/

D w.e1/C w.e2/:

If instead rc assigns the weight .�1/iC1 to ei , then the contribution of v is �w.e1/ �
w.e2/.

Now let v be a vertex on c that does not lie at a cusp. Let eˇ 2 E
ˇ
v , ˇ D 1; 2, be the

two edges that lie on c, such that e1 is the rightmost half-edge in E1v and e2 is the leftmost
half-edge in E2v . Suppose that rc assigns the weight 1 to e1 and e2. Then the contribution
of v in !.w; rc/ isX

e left of e1

.w.e/ � 1 � w.e1/ � 0/C
X

e2 left of e

.w.e2/ � 0 � w.e/ � 1/

D

 X
e2E1v

w.e/ � w.e1/

!
�

 X
e2E2v

w.e/ � w.e2/

!
D w.e2/ � w.e1/:

If instead rc assigns the weight �1 to e1 and e2, then the contribution of v is w.e1/ �
w.e2/.
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When adding together the contributions from all vertices, the terms cancel out in pairs,
giving us 0. We schematically illustrate how the canceling occurs in Figure 9 (right).

If c is not embedded, that is, some switch of � meets c more than once, then the above
computation still holds with some more careful bookkeeping. For example, if a vertex v
lies on two cusps of c, say determined by pairs of half-edges .e11 ; e

1
2/ and .e21 ; e

2
2/, respec-

tively, then one can check that the contribution of v is ˙.w.e11/ C w.e
1
2// ˙ .w.e

2
1/ C

w.e22//, depending on whether rc assigns ˙.�1/i to e1i and e2i , respectively. We let the
reader fill in the details. Alternatively, one can pass to a finite cover of � where c is
embedded and perform the computation there.

The radical elements behave nicely with respect to elementary moves. To state this
precisely, first note that if � 0 is obtained from � by an elementary move, then the boundary
components of � 0 are in natural one-to-one correspondence with those of � .

Proposition 5.3. Suppose c0 is a boundary component of � 0 that corresponds to a bound-
ary component c of � . Then rc maps to rc0 under the isomorphism W.�/!W.� 0/ induced
by the elementary move.

Proof. The proposition is clear for subdivision moves, and clear for elementary folding
moves if, in the notation of Definition 3.15, the cusp determined by .e1; e2/ is not in c. If
the cusp is in c, then, up to a sign, rc assigns the weight .�1/i to ei , hence upon folding
these add up to 0, which is the weight assigned by rc0 .

Proposition 5.4. Let X D XI t XO be a partition of the set of punctures into two
nonempty f -invariant sets. Then the train track map f.XI ;XO / W �.XI ;XO / ! �.XI ;XO /

preserves span¹rcº and acts on it via a reciprocal map.

Proof. Lemma 3.20 and Proposition 5.3 imply that W.f.XI ;XO // preserves span¹rcº.
For the second part of the statement, we claim that ¹rcº are linearly independent unless

all punctures are even-pronged, in which case there is only at most one relation of the formP
c ˙rc D 0.
Notice that by Proposition 5.3, the validity of the claim is invariant under equivalence

of train tracks. Hence by Lemma 4.8, we can assume that XO consists of a single element
corresponding to cO 2 @� .

If there is an odd-pronged puncture, we can further assume that cO is odd-pronged.
In this case, all even-pronged boundary components of the train track are disjoint, hence
¹rcº are linearly independent.

If all punctures are even-pronged, then all even-pronged boundary components except
for cO are disjoint. For an edge e on an infinitesimal polygon c, rc and rcO , and only
rc and rcO , are nonzero on it. In fact, they assign weights ˙1 to e, so the ratio of their
coefficients is uniquely determined to be one of˙1. This proves the claim.

Returning to the proof of the second part of the proposition, if ¹rcº are linearly inde-
pendent, then by Lemma 3.20 and Proposition 5.3, f.XI ;XO / acts on span¹rcº by a signed
permutation matrix, so this follows from Proposition 2.13 (2).
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If ¹rcº are not linearly independent, then consider the commutative diagram

0 h
P
˙rci RX span¹rcº 0

0 h
P
˙rci RX span¹rcº 0

˙1 P W.f.XI ;XO/
/ ;

where P is a signed permutation matrix, hence is reciprocal, as in the last case. By
Proposition 2.13 (3), W.f.XI ;XO // acts on span¹rcº via a reciprocal map.

The significance of Proposition 5.4 comes from the following result, whose proof will
occupy the rest of this section.

Proposition 5.5. Let X D XI t XO be a partition of the set of punctures into two
nonempty sets. For the train track �.XI ;XO /, we have

rad.!/ D span
®
rc
¯
; (5.1)

where c ranges over all even-pronged boundary components of � .

The strategy to proving Proposition 5.5 is to modify the train track into a convenient
form before making concrete computations. This strategy was already used in the proof of
Proposition 5.4, where we modified the train track up to equivalence. This applies equally
well in the setting of Proposition 5.5, as we have the following observation.

Lemma 5.6. Suppose � and � 0 are equivalent, then (5.1) holds for � if and only if it holds
for � 0.

Proof. This follows from Lemma 4.5 and Proposition 5.3.

Let us call a standardly embedded train track floral if it has only one infinitesimal
polygon. Visually, the single infinitesimal polygon forms the pistil while the real edges
form the petals of a flower. See Figure 10 for an example. Hence using Lemmas 4.8 and
5.6, we can assume that XI consists of a single element, that is, �.XI ;XO / is floral.

Here, the proof divides into two cases. Case 1 is if there is an odd-pronged puncture.
In this case, we can take the single infinitesimal polygon of �.XI ;XO / to be odd-pronged.
We show that admissible deletion of real edges preserves (5.1) (Lemmas 5.9 and 5.10).
This allows us to modify our train track into a simple form where we can explicitly verify
(5.1). This case is tackled in Section 5.2.

Case 2 is if all punctures are even-pronged. In this case, we would like to repeat the
reasoning in case 1, but here we must first pass to the orientable cover (Lemma 5.12)
before the arguments work. This case is tackled in Section 5.3.
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5.2. Case 1: There is an odd-pronged puncture

As explained above, in this case we can assume that �.XI ;XO / is floral with an odd-pronged
infinitesimal polygon, or odd floral for short. See Figure 10 for an example.

For odd floral train tracks, we can construct some convenient elements in the weight
space for which we can test elements of rad.!/ against.

Construction 5.7. Let � be an odd floral train track. Let e be a real edge in � . Let cI be
the infinitesimal polygon of � . Label the vertices of cI by v1; : : : ; vn in a cyclic order such
that the endpoints of e lie on v1 and vk . Up to flipping the ordering, we can assume that k
is even. Also label the edges of cI by e1; : : : ; en such that ei connects vi to viC1.

We definewe 2W.�/ to be the element that assigns .�1/iC1 to ei for i D 1; : : : ; k � 1,
assigns 1 to e, and assigns 0 to all other edges.

We now introduce the operation of admissible deletions. This is a general way of
modifying train tracks, but is particularly useful for proving Proposition 5.5 when applied
within the realm of floral train tracks, as we will see.

Construction 5.8. Let � be a train track and e be an edge of � . If e is not the only half-
edge at both of its end points, then we can delete e from � to get a new train track � 0 (see
Figure 11). We call this operation an admissible deletion (of the edge e).

Suppose e meets boundary components c1 and c2 of � . If c1 ¤ c2, then deleting e
combines c1 and c2 into one boundary component c0 of � 0. If ci is ni -pronged, then
c0 is .n1 C n2 � 2/-pronged. On the other hand, if c1 D c2 DW c, then deleting e splits
c into two boundary components c01 and c02. In this case, if c0i is n0i -pronged, then c is
.n01 C n

0
2 C 2/-pronged.

Figure 10. An odd floral train track.

e

Figure 11. Admissible deletion of an edge from a train track.
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If w0 is a system of weights on � 0, then we can define a system of weights w on � by
w.e0/Dw0.e0/ for e0 ¤ e andw.e/D 0. Conversely, ifw is a system of weights on � with
w.e/ D 0, then by restricting w to the remaining edges, we get a system of weights w0

on � 0. This allows us to identify W.� 0/ as a subspace of W.�/. Moreover, this inclusion
preserves the Thurston symplectic form !.

Our next task is to show that admissible deletion of a real edge from an odd floral train
track preserves (5.1). We split into two cases according to whether the admissible dele-
tion combines two boundary components into one (Lemma 5.9) or splits one boundary
component into two (Lemma 5.10).

Lemma 5.9. Suppose � and � 0 are odd floral train tracks where � 0 is obtained from
admissible deletion of a real edge e from � . Suppose deleting e combines two boundary
components into one. Then (5.1) holds for � if and only if it holds for � 0.

Proof. There are two cases here. Case 1 is if at least one of ci , say c1, is even-pronged.
In this case, we claim that W.�/ D W.� 0/˚ hrc1i. Indeed, since c1 ¤ c2, rc1.e/ ¤ 0, so
W.� 0/ \ hrc1i D 0. Meanwhile, dim.RE.�/=RE.� 0// D 1 and W.�/=W.� 0/ can be iden-
tified with a subspace of RE.�/=RE.� 0/, so dim.W.�/=W.� 0// � 1, which proves the
claim.

To prove the lemma in this case, first suppose that (5.1) holds for � . Then it follows
from the claim for any w00 2 rad.!/ in W.� 0/, w00 2 rad.!/ in W.�/ as well. Hence,
w00 D

P
c acrc . But w00.e/ D 0, so we have ac1 D 0 if c2 is odd-pronged, and ac1 D ac2

if c2 is even-pronged (under an appropriate choice of signs for rci ). Together with the fact
that˙rc0 D rc1 C rc2 when c2 is even-pronged, this shows thatw00 D

P
c0 ac0rc0 in W.� 0/.

Conversely, suppose that (5.1) holds for � 0. Then for any w0 2 rad.!/ in W.�/, we
can consider w0 �w0.e/rc1 . This lies in W.� 0/ hence lies in rad.!/ in W.� 0/. By hypoth-
esis, we then have w0 � w0.e/rc1 2 span¹rc0º, which together with the fact again that
˙rc0 D rc1 C rc2 when c2 is even-pronged, we have w0 2 span¹rcº in W.�/.

Case 2 is if both ci are odd-pronged. In this case c0 is even-pronged. It can be shown
by the same reasoning as in the last case that W.�/DW.� 0/˚ hwei, where we is defined
in Construction 5.7.

We compute !.rc0 ; w/ for w 2 W.�/. Suppose first for simplicity that e meets c0 in
two of its cusps p and p0. For i D 1; 2, let ei be the half-edge at p which is adjacent to
e on ci , and let e0i be the half-edge at p0 which is adjacent to e on ci . Without loss of
generality suppose that e1 lies to the left of e and rc0 assigns .�1/i to ei , then since ci are
odd-pronged, rc0 assigns .�1/iC1 to e0i (see Figure 12, left).

By the computation made in Proposition 5.2, the total contribution to !.rc0 ; w/ from
the vertices on c0 aside from p and p0 is w.e1/ C w.e2/ C w.e01/ C w.e

0
2/. The con-

tribution from p is �w.e/ � w.e2/ � w.e/ � w.e1/, and the contribution from p0 is
�w.e/�w.e02/�w.e/�w.e

0
1/. Adding these together, we see that !.rc0 ;w/D�4w.e/.
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p

p0

e

e02

e01

e2

e1

p0

e

p

e1

e2

e02

e01

Figure 12. The situation in case 2 of Lemma 5.9. Left: if e meets c0 in two of its cusps. Right: if e
meets c0 away from its cusps.

If one of the endpoints of e lies in the complement of the cusps on c0 instead, we
define ei as above, but with p or p0 being the endpoint of e. Suppose p is such an end-
point, say e1 does not determine a cusp with e on c1, and suppose that rc0 assigns 1 to
e1 and e2 (see Figure 12, right). Then the total contribution to !.rc0 ; w/ from the vertices
on c0 aside from p and p0 is �w.e1/C w.e2/C w.e01/C w.e

0
2/. The contribution from

p is
�
�
P
e2E

ˇ
p
w.e/Cw.e1/

�
C
�P

e2E
ˇ
p
w.e/�w.e2/� 2w.e/

�
, and the contribution

from p0 is �w.e/ � w.e02/ � w.e/ � w.e
0
1/. So we still have !.rc0 ; w/ D �4w.e/.

We are now ready to prove the lemma in this case. Suppose (5.1) holds for � . Let
w00 2 rad.!/ in W.� 0/. Let a D !.w00; we/, then w00 C

a
4
rc0 2 rad.!/ in W.� 0/ and

!.w00 C
a
4
rc0 ; we/ D a C a

4
.�4we.e// D 0, so w00 C

a
4
rc0 2 rad.!/ in W.�/, implying

that w00 2 span¹rcº � a
4
rc0 � span¹rc0º in W.� 0/.

Conversely, suppose (5.1) holds for � 0. Let w0 2 rad.!/ in W.�/. Then 0 D

!.rc0 ; w0/ D �4w0.e/. Hence, we can treat w0 as an element of W.� 0/, hence an ele-
ment of rad.!/ in W.� 0/. Thus, w0 2 span¹rc0º in W.� 0/. Say w0 D

P
c0 ac0rc0 . To

establish that w0 2 span¹rcº in W.�/, we need to show that ac0 D 0. This follows since
0 D !.w0; we/ D !.ac0rc0 ; we/ D �4ac0 .

Lemma 5.10. Suppose � and � 0 are odd floral train tracks where � 0 is obtained from
an admissible deletion of a real edge e from � . Suppose deleting e splits a boundary
component into two. Then (5.1) holds for � if and only if it holds for � 0.

Proof. There are three cases here. The proof of each case is similar to one of the cases in
Lemma 5.9.

Case 1 is if c is odd-pronged. In this case one of c0i , say c01, is even-pronged while the
other is odd-pronged.

We follow the strategy of case 2 in Lemma 5.9. It can be shown as before that
W.�/ D W.� 0/˚ hwei. Also, one can compute that !.rc01 ; w/ D �2w.e/ for w 2 W.�/

(for an appropriate choice of sign for rc01 ).
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Suppose (5.1) holds for � . Let w00 2 rad.!/ in W.� 0/. Let a D !.w00; we/, then
w00 C

a
2
rc01 2 rad.!/ in W.� 0/ and !.w00 C

a
2
rc01 ; we/ D a C a

2
.�2we.e// D 0, so

w00 C
a
2
rc01 2 rad.!/ in W.�/, implying that w00 2 span¹rcº � a

2
rc01 � span¹rc0º in W.� 0/.

Conversely, suppose (5.1) holds for � 0. Let w0 2 rad.!/ in W.�/. Then 0 D

!.rc01 ; w0/ D �2w0.e/. Hence, we can treat w0 as an element of W.� 0/, hence an ele-
ment of rad.!/ in W.� 0/. Thus, w0 2 span¹rc01º in W.� 0/. Say w0 D

P
c0 ac0rc0 . To

establish that w0 2 span¹rcº in W.�/, we need to show that ac01 D 0. This follows since
0 D !.w0; we/ D !.ac01rc

0
1
; we/ D �2ac01 .

Case 2 is if c is even-pronged while c01 and c02 are odd-pronged.
We follow the strategy of case 1 in Lemma 5.9. It can be shown as before that

W.�/ D W.� 0/ ˚ hrci, since c0i being odd-pronged implies that rc.e/ D 2 (under an
appropriate choice of sign for rc).

Suppose that (5.1) holds for � . For any w00 2 rad.!/ in W.� 0/, w00 2 rad.!/ in W.�/

as well. Hence, w00 D
P
c acrc . But w00.e/ D 0 so we have ac D 0. This shows that

w00 D
P
c0 ac0rc0 in W.� 0/.

Conversely, suppose that (5.1) holds for � 0. Then for anyw0 2 rad.!/ in W.�/, we can
consider w0 �

w0.e/
2
rc . This lies in W.� 0/ hence lies in rad.!/ in W.� 0/. By hypothesis,

we then have w0 �
w0.e/
2
rc 2 span¹rc0º, which gives w0 2 span¹rcº in W.�/.

Finally, case 3 is if c is even-pronged while c01 and c02 are even-pronged.
We follow the strategy of case 2 in Lemma 5.9. It can be shown as before that

W.�/ DW.� 0/˚ hwei. Also, one can compute that !.rc01 ; w/ D �2w.e/ for w 2W.�/.
Using the fact that rc D rc01 C rc02 , we have !.rc02 ; w/ D 2w.e/ (for appropriate signs for
rc ; rc01 ; rc

0
2
).

Suppose (5.1) holds for � . Let w00 2 rad.!/ in W.� 0/. Let a D !.w00; we/, then
w00 C

a
2
rc01 2 rad.!/ in W.� 0/ and !.w00 C

a
2
rc01 ; we/ D a C a

2
.�2we.e// D 0, so

w00 C
a
2
rc01 2 rad.!/ in W.�/, implying that w00 2 span¹rcº � a

2
rc01 � span¹rc0º in W.� 0/.

Conversely, suppose (5.1) holds for � 0. Let w0 2 rad.!/ in W.�/. Then 0 D

!.rc01 ;w0/D�2w0.e/. Hence, we can treat w0 as an element of W.� 0/, hence an element
of rad.!/ in W.� 0/. Thus, w0 2 span¹rc01º in W.� 0/. Say w0 D

P
c0 ac0rc0 . To estab-

lish that w0 2 span¹rcº in W.�/, we need to show that ac01 D ac02 . This follows since
0 D !.w0; we/ D !.ac01rc

0
1
C ac02rc

0
2
; we/ D �2ac01 C 2ac

0
2
.

Now notice that if �1 and �2 are two floral train tracks whose unique infinitesimal
polygons have the same number of prongs, then they can be related by a sequence of
admissible deletion of real edges. This is because upon fixing an identification of their
infinitesimal polygons, one can first add all the real edges of �2 to �1 (which is the reverse
of deleting those edges), with the cyclic ordering of half-edges determined by, say, placing
all the half-edges of �2 to the left of those of �1, then deleting the real edges of �1. See
Figure 13 for an example of this procedure.

Hence, Lemmas 5.9 and 5.10 implies that in order to prove Proposition 5.5 in this case,
we can simply establish (5.1) for one floral train track with an n-pronged infinitesimal
polygon for every odd n.
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Figure 13. Any two floral train tracks whose unique infinitesimal polygons have the same number
of prongs are related by a sequence of removals of real edges.

To this end, we choose the floral train track �n illustrated in Figure 14 left. That is, �n
has an n-pronged infinitesimal polygon, say with vertices labeled v1; : : : ; vn in a cyclic
way, and n real edges e1; : : : ; en, each ei having endpoints on vi and viC1, with ei�1 lying
to the left of ei at vi for every i . Then �n has nC 2 boundary components, two of them n-
pronged and n of them 0-pronged. It is straightforward to check that W.�n/ is generated
by ¹rcº for all the 0-pronged boundary components c. Hence, rad.!/ D span¹rcº must
hold. This concludes the proof of Proposition 5.5 in this case.

5.3. Case 2: All punctures are even-pronged

As explained under Proposition 5.5, the proof in this case is very similar to the last case.
The only difference is the preparatory step of taking a twofold cover.

Definition 5.11. A train track is said to be orientable if its edges can be oriented in a way
such that at each switch v, all the edges in one E

ˇ
v are oriented into v while all the edges

in E
ˇC1
v are oriented out of v.

For example, the train tracks �XI ;XO
we have been considering are orientable if and

only if the unstable foliation `u is orientable in the usual sense.
Now, up to passing to a twofold cover, `u can always be made orientable. More specif-

ically, one can define a 1-cocycle ˛ 2 H 1.S; Z=2/ by ˛.
/ D 0 if and only if `u is

n D 6n D 5

Figure 14. The train tracks we use to demonstrate (5.1) at the end of our modifications.
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orientable in a neighborhood of a curve 
 . Then the orientable twofold cover zS is deter-
mined by ˛. By embedding � in S as usual, ˛ also determines the orientable twofold cover
z� ! � .

The special property when there are no odd-pronged punctures is that ˛.c/ D 0 for
every boundary component c of � . So if z� is the orientable twofold cover, then every
boundary component of � lifts homemorphically to z� . Correspondingly, we have the 2-to-1
map zX ! X. In particular, we can lift a partition X D XI tXO to zX D fXI t

eXO .
By naturality of Construction 3.6, �

.eXI;fXO /
is the orientable twofold cover of �.XI;XO /.

Hence by the following lemma, we can assume that the �.XI ;XO / we are dealing with is
orientable.

Lemma 5.12. Let � W z� ! � be a finite normal covering of train tracks such that each
boundary component of � lifts homeomorphically to z� . Then (5.1) holds for � if (5.1) holds
for z� .

Proof. Let d be the degree of the covering and letG be the group of deck transformations.
We can define operators �� WW.z�/!W.�/, �� WW.�/!W.z�/, and s WW.z�/!W.z�/

by

.��. zw//.e/ D
X

�.ze/De

zw.e/

.��.w//.ze/ D w.�.ze//

.s. zw//.ze/ D
X
g2G

zw.gze/:

We have the following properties:

• ��.rc/ D
P
�.zc/Dc rzc

• ���
�.w/ D dw

• !.w1; ��. zw2// D !.�
�.w1/; zw2/

• s��.w/ D d��.w/

which imply that �� is injective and ��.rad.!// � rad.!/.
Now suppose that (5.1) holds for z� . Let w0 2 rad.!/ in W.�/. ��.w0/ 2 rad.!/ so

��.w0/ D
P
zc azcrzc . Hence

d��.w0/ D s�
�.w0/ D

X
zc

 X
g2G

agzc

!
rzc D �

�

 X
c

 X
�.zc/Dc

azc

!
rc

!
;

which implies that w0 D 1
d

P
c.
P
�.zc/Dc azc/rc 2 span¹rcº by injectivity of ��.

Together with Lemma 4.8, we can assume that �.XI ;XO / is orientable and floral (which
implies that the infinitesimal polygon cI is even-pronged), or orientable floral for short.
See Figure 15 for an example of such a train track. In this case, if we label the vertices of
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Figure 15. An orientable floral train track.

cI by v1; : : : ; vn in a counterclockwise order, then by orientability, the endpoints on each
real edge must lie on vi and vj for i; j of different parity.

Construction 5.7 can be repeated for orientable floral train tracks word-by-word. No-
tice here that we require � to be orientable in order for k to be even, in the notation of
Construction 5.7. Also notice that in this case both cyclic orderings give an even k. The
we defined under the two choices will differ by rcI . This is not very significant for our
purposes, but for concreteness we can simply fix some choice for each real edge e.

The proofs of Lemma 5.9 and Lemma 5.10 then carry over word for word to show the
following lemma.

Lemma 5.13. Suppose � and � 0 are orientable floral train tracks where � 0 is obtained
from an admissible deletion of a real edge e from � . Then (5.1) holds for � if and only if it
holds for � 0.

Hence by the reasoning at the end of the last subsection, we can simply establish (5.1)
for one orientable floral train track with an n-pronged infinitesimal polygon for every
even n.

To this end, we choose the floral train track �n illustrated in Figure 14 right. That is,
�n has an n-pronged infinitesimal polygon, say with vertices labeled v1; : : : ; vn in a cyclic
way, and n real edges e1; : : : ; en, each ei having endpoints on vi and viC1, with ei�1 lying
to the left of ei at vi for every i . Then �n has nC 2 boundary components, two of them
n-pronged and n of them 0-pronged. It is straightforward to check thatW.�n/ is generated
by ¹rcº for all these boundary components c. Hence, rad.!/ D span¹rcº must hold. This
concludes the proof of Proposition 5.5.

6. Proof of the main theorem

We gather all the ingredients to prove our main theorem, which we restate below for the
reader’s convenience.
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Theorem 6.1. Let f W S ! S be a fully punctured pseudo-Anosov map with at least two
puncture orbits. Then the normalized expansion factor L.S; f / D �.f /j�.S/j satisfies the
inequality

L.S; f / � �4:

More precisely, for j�.S/j � 3, we have

�.f / � jLT1;K2
j

if j�.S/j D K is even, and
�.f /K � 8

if j�.S/j D K is odd.

Proof. Take some partition X DXI tXO of the set of punctures of S into two nonempty
f -invariant sets. Consider the standardly embedded train track � D �.XI ;XO /, the train
track map f D f.XI ;XO /, and the matrix f real

� D f real
.XI ;XO /�

. Proposition 3.12 shows that
f real
� is Perron–Frobenius.

Meanwhile, consider the weight space W.�/. We have the commutative diagram

0 rad.!/ W.�/ W.�/=rad.!/ 0

0 rad.!/ W.�/ W.�/=rad.!/ 0

W.f / W.f / W.f / :

Propositions 5.4 and 5.5 imply that the restriction of W.f / to rad.!/ is reciprocal. On the
other hand, W.�/=rad.!/ inherits the form !, which is now symplectic. The induced
map of W.f / on W.�/=rad.!/ preserves ! hence is symplectic, thus reciprocal by
Proposition 2.13 (1). By Proposition 2.13 (3), W.f / W W.�/! W.�/ is reciprocal.

We also have the following commutative diagram from Proposition 4.2:

0 W.�/ RE TV .RE/ 0

0 W.�/ RE TV .RE/ 0

W.f /

TV

f� P j
TV .RE /

TV

.

We have deduced that W.f / W W.�/! W.�/ is reciprocal above. By Proposition 2.13
(2), P jTV .RE / is reciprocal. So by Proposition 2.13 (3), f� is reciprocal.

Finally, by the discussion above Proposition 3.12, f� being reciprocal implies that
f real
� is reciprocal. Hence, f real

� is a j�.S/j-by-j�.S/j reciprocal Perron–Frobenius matrix.
By Proposition 3.13, �.f / is the spectral radius of f real

� . Hence, the theorem follows
from Theorem 2.12.
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7. Sharpness of the main theorem

In this section, we discuss the sharpness of the main theorem. We give two families of
pseudo-Anosov maps realizing the lower bounds in Theorem 1.9 for even �.S/. We do
this in two ways. In Section 7.1, we describe folding sequences of train tracks which
determine the maps. In Section 7.2, we describe classes in certain fibered faces which
determine the same maps. In Section 7.3, we give examples showing that Theorems 1.11
and 1.9 for odd �.S/ are not sharp in general. In Section 7.4, we give examples showing
that the assumption of f having at least two puncture orbits is necessary in Theorem 1.1.

7.1. Examples for even �.S/: Train tracks

In this subsection, we will show that Theorem 1.9 is sharp in the cases when �.S/ is
even, by demonstrating folding sequences of standardly embedded train tracks, that is,

sequences of the form �0
f1
! � � �

fn
! �n

�
! �0 where each fi is the composition of a subdi-

vision move and an elementary folding move involving one of the subdivided edges, and
� is an isomorphism of train tracks.

Given such a sequence, the induced map �fn � � � f1 on the tie neighborhood N of �1
will determine a mapping class on the punctured surface S that is the interior of N . If
the real transition matrix f real

� of �fn � � � f1 is Perron–Frobenius, then this mapping class
contains a (unique) fully punctured pseudo-Anosov map f W S ! S , for which �0 is an
invariant train track. For a more detailed explanation of recovering pseudo-Anosov maps
from folding sequences of train tracks, see for example [7].

As described in Section 3, one can then compute the expansion factor �.f / of f as the
spectral radius of f real

� . Here, we will make this computation using the method described
in [30]. Namely, we write down the directed graph associated with f real

� , compute its curve
complex G, then compute the clique polynomial QG.t/ of G. Theorems 1.2 and 1.4 of
[30] state that the smallest positive root of QG.t/ is equal to 1

�.f /
. Here, as shown in the

proof of Theorem 1.1, f real
� will be reciprocal, so we can more directly compute �.f / as

the largest positive root of QG.t/.
Our first family of examples is shown in Figure 16. Here, each train track has a single

infinitesimal polygon with 3k cusps, which we have used as the center of reference, and
2k real edges. We indicated each fold fi by highlighting the relevant edges in bright red
(before) and dark red (after). The train track isomorphism � is induced by a rotation of
the center infinitesimal polygon.

When k D 2, one computes the real transition matrix to be

f real
� D

2664
1 0 0 1

0 0 1 1

1 0 0 2

0 1 0 0

3775
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Figure 16. Folding sequence of train tracks in the first family of examples.

and when k � 3, one computes it to be

f real
� D

26666666664

0 0 I2k�6 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 1

1 0 0 0 0 0 1

0 1 0 0 0 0 0

37777777775
;

where In denotes the n by n identity matrix.
The corresponding directed graphs and curve complexes for k D 2 and k � 3 are

shown in Figure 17, top and bottom, respectively. Here a number n besides a directed
edge ! is shorthand for n consecutive edges ! � ! � � � ! � !. Meanwhile, a number
besides a vertex in the curve complex denotes its weight.

For each k � 2, the clique polynomial of the corresponding curve complex is LT1;k D
t2k � tkC1 � tk � tk�1 C 1. Hence, the induced fully punctured pseudo-Anosov maps in
this family of examples have expansion factors jLT1;kj.
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2 3 3 4

1

k � 3

k � 2

k k � 1 k C 1 2k � 1

Figure 17. The associated directed graphs to the real transition matrices of Figure 16 and their curve
complexes.

Notice that this first family of examples already shows the sharpness statement in
Theorem 1.9. However, we are actually able to find a second family of examples that
attain equality in Theorem 1.9 for even j�.S/j. We will describe this second family next,
following the same format.

Unfortunately, for number theoretical reasons, it is difficult to present a single picture
that illustrates all the members of this second family; we need to split into five subcases
depending on the value of k (mod 5), where j�.S/j D 2k.

For k � 3 (mod 5), the folding sequence is shown in Figure 18.
For consistency, we have drawn Figure 18 in the style as Figure 16. Namely, we used

the single infinitesimal polygon as the center of reference, we highlighted each fold in red,
and the train track isomorphism is induced by a rotation of the infinitesimal polygon.

However, we caution that there are a few differences: This time the infinitesimal poly-
gon has 2k C 1 cusps (but there are still 2k real edges). Real edges that connect a shown
cusp to a cusp in the � � � range are truncated. Also, the number of cusps in each � � � differs.
The fact that the last map is a train track isomorphism will determine how these real edges
should be connected and how many cusps each � � � should contain.

For k � 4, 0, and 1 (mod 5), the folding sequences are shown in Figure 19. These are
drawn in the same style as Figure 18.
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k � 3 (mod 5)

Figure 18. Folding sequence of train tracks in the second family of examples.

Finally, for k � 2 (mod 5), the folding sequence is shown in Figure 20.
Figure 20 is drawn in a slightly different style from the previous pictures by necessity.

There are now five infinitesimal polygons, each having 2kC1
5

cusps. The train track iso-
morphism now permutes the five infinitesimal polygons; we have arranged these so that
this permutation is induced by a rotation. However, we caution that the isomorphism is not
just a rotation of the picture; one also needs to rotate one of the infinitesimal polygons.

The real transition matrices of these subcases admit a more consistent description.
When k D 2, we have

f real
� D

2664
0 1 1 1

0 0 1 0

1 0 0 0

0 0 1 1

3775
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k � 4 (mod 5)

k � 0 (mod 5)

Figure 19. Folding sequence of train tracks in the second family of examples (part I).
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k � 1 (mod 5)

Figure 19. Folding sequence of train tracks in the second family of examples (part II).

and when k � 3, we have

f real
� D

26666666664

0 1 1 0 0 0 0

0 0 0 I2k�6 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

37777777775
The corresponding directed graphs and curve complexes for k D 2 and k � 3 are

shown in Figure 21, top and bottom, respectively.
For each k � 2, the clique polynomial of the corresponding curve complex is LT1;k D

t2k � tkC1 � tk � tk�1 C 1. Hence, the induced fully punctured pseudo-Anosov maps in
this family of examples have expansion factors jLT1;kj.

We point out that similar train track maps were obtained in [22]. In particular, there
is some overlap between our first family and [22, Example 4.2] and between our second
family and [22, Example 4.4]. See also the discussion in the next subsection.
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k � 2 (mod 5)

Figure 20. Folding sequence of train tracks in the second family of examples.

7.2. Examples for even �.S/: Fibered face theory

In this subsection, we will show the sharpness statement in Theorem 1.9 again, but this
time using the tool of fibered face theory. This will also explain the source of our train
track maps in Section 7.1.

We first provide a brief review of fibered face theory, referring to [29] for details. Let
M be a fibered hyperbolic 3-manifold, with n D b1.M/ � 2 and let F �H 1.M IR/ be a
fibered face. To every primitive integral point a 2 cone.F /, there is a fibration of M over
S1 whose monodromy is a pseudo-Anosov mapping class .Sa; fa/.

Let�M 2 ZH1.M/ be the Alexander polynomial ofM . The Newton polytope of�M
is the convex hull of points inH1.M/ that have nonzero coefficient in�M . The Alexander
norm of an element a 2 H 1.M/ is defined to be

kak D sup
g;h

ha; g � hi;

where g; h range over the Newton polytope of �M .
It is a well-known fact that the Euler characteristic of Sa can be calculated by

j�.Sa/j D kak:
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2 1 3 3

k � 3 k � 3

k C 1 k � 1 k

Figure 21. The associated directed graphs to the real transition matrices of Figures 18–20, and their
curve complexes.

In other words, the Thurston norm agrees with the Alexander norm on cone.F /. See, for
example, [29, Theorem 7.1].

Meanwhile, there is another polynomial‚F 2 ZH1.M/, called the Teichmüller poly-
nomial associated with the fibered face F , with the property that the expansion factor
of the pseudo-Anosov monodromy .Sa; fa/ corresponding to a D .a1; : : : ; an/ can be
calculated by

�.fa/ D j‚F .t
a1 ; : : : ; tan/j:

See, for example, [29, Theorem 5.1].
Now consider the L6a2 link complement, which we denote by M1. It can be com-

puted (e.g., by using the veering triangulation eLMkbcddddedde_2100, see [17, 31] for
the details of such a computation) that the Alexander polynomial of M1 is

�1.a; b/ D b
2
C b.a2 � aC 1/C a2

under some choice of basis .a; b/ forH1.M1/, and the Teichmüller polynomial associated
with the fibered cone C1 D cone¹a� C 2b�;�a�º is

‚1.a; b/ D b
2
� b.a2 C aC 1/C a2:

Hence, the Thurston norm on C1 is given by �2aC 2b.
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Consider the class x1 D b�. The corresponding pseudo-Anosov monodromy f1;1 is
defined on a surface S1 with j�.S1/j D kx1k D 2. The expansion factor of f1;1 is the
largest root of t2 � 3t C 1, which is �2. Hence, f1;1 attains equality in Theorem 1.1.

Now consider the class xk D a� C .k C 1/b� 2 C1, for k � 2. The corresponding
pseudo-Anosov monodromy f1;k is defined on a surface Sk with j�.Sk/j D kxkk D 2k
and its expansion factor is the largest root of t2kC2 � tkC1.t2 C t C 1/C t2 D t2LT1;k ,
which is jLT1;kj. Hence, f1;k attains equality in Theorem 1.9.

Indeed, the first family of train track maps we described in Section 7.1 is computed
from f1;k . Here, we will not demonstrate this computation since the details are rather
tedious. It suffices to say that we essentially followed the methodology in [22]; see, in
particular, [22, Example 4.2]. We also remark that the maps f1;k are considered in [20] as
well, even though invariant train tracks were not provided there.

Similarly, consider the L13n5885 link (D the Whitehead sister link D the .�2; 3; 8/-
pretzel link) complement, which we denote by M2. It can be computed (e.g., by using
the veering triangulation fLLQcbeddeehhbghh_01110) that the Alexander polynomial
of M2 is

�2.a; b/ D b
2
C b.a2 C aC 1/C a2

under some choice of basis .a; b/ forH1.M2/, and the Teichmüller polynomial associated
with the fibered cone C2 D cone¹a� C 2b�;�a�º is

‚2.a; b/ D b
2
� b.a2 C aC 1/C a2:

Hence, the Thurston norm on C2 is given by �2aC 2b.
Consider the class x1 D b�. The corresponding pseudo-Anosov monodromy f2;1 is

defined on a surface S1 with j�.S1/j D kx1k D 2. The expansion factor of f2;1 is the
largest root of t2 � 3t C 1, which is �2. Hence, f2;1 attains equality in Theorem 1.1.

Now consider the class xk D a� C .k C 1/b� 2 C2, for k � 2. The corresponding
pseudo-Anosov monodromy f2;k is defined on a surface Sk with j�.Sk/j D kxkk D 2k
and its expansion factor is the largest root of t2kC2 � tkC1.t2 C t C 1/C t2 D t2LT1;k ,
which is jLT1;kj. Hence, f2;k attains equality in Theorem 1.9.

The second family of train track maps we described in Section 7.1 is computed from
f2;k . We refer to [22, Example 4.4] for the methodology of our computation. We also
remark that some of the maps f2;k were considered in [1, 24], even though invariant train
tracks were not provided in those works.

We summarize all the examples we have discussed in Table 1. In the table, we list a
puncture as having singularity type p if it has p prongs, and punctures with the same color
belong to the same orbit.

Finally, we remark that both M1 and M2 can be obtained by Dehn filling a single
fibered 3-manifold M , commonly known as the magic manifold. Indeed, all the known
examples of small expansion factor maps are realized as monodromies ofM and its Dehn
fillings along a component [23].
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g s Range of k Description
of f

Singularity type

0 4 –

Fiberings of
L6a2

.1; 1; 1; 1/

k 2 k � 2, k � 1; 2
(mod 3)

.3k; k/

k � 1 4 k � 3, k � 0
(mod 3)

.3k; k3 ;
k
3 ;
k
3 /

1 2 –

Fiberings of
L13n5885

.2; 2/

k 2 k � 4,
k � 0; 1; 4

(mod 5)

.2k C 1; 2k � 1/

k � 2 6 k � 2, k � 2
(mod 5)

.2kC15 ; 2kC15 ; 2kC15 ; 2kC15 ; 2kC15 ; 2k � 1/

k � 2 6 k � 3, k � 3
(mod 5)

.2k C 1; 2k�15 ; 2k�15 ; 2k�15 ; 2k�15 ; 2k�15 /

Table 1. Examples of maps that attain the lower bound in Theorem 6.1.

7.3. Braids and odd �.S/

Note that the only braid monodromies that appear in Table 1 are f1;1 and f2;2. It can
be checked that these are the simplest hyperbolic 3-braid �1��12 (see [20]) and the 5-
braid of minimal expansion factor �1�2�3�4�1�2 (see [19]), respectively. These imply
that Theorem 1.11 is sharp for n D 3; 5.

We do not currently know whether Theorem 1.11 is sharp for odd n � 7 (see Ques-
tion 1.12). Also note that the results of [26] on braids of minimum expansion factor do not
provide an answer here, since many of those braids are not fully punctured.

So far we have only discussed sharpness in the cases when j�.S/j is even. This is
because the cases when j�.S/j is odd are likely not sharp. For example, it is shown in [26]
that the 6-braid of minimum expansion factor �2�1�2�1.�1�2�3�4�5/2 is fully punctured
and has normalized expansion factor �50;7 � 15:14 > 8. See Section 8 for some discussion
on how one might try to sharpen the bound for odd j�.S/j.

7.4. Single orbit of punctures

In this subsection, we describe some examples that show that the assumption of f having
at least two punctures orbits in Theorem 1.1 is necessary.

Most of the examples are defined on the once-punctured torus S1;1. To describe them,
write S1;1 as .R2nZ2/=Z2 and notice that an element A 2 SL.2;Z/ induces a map fA
on S1;1. It is a classical fact that if jtrAj > 2, then fA is pseudo-Anosov with expansion
factor given by the spectral radius of A. Meanwhile, since j�.S1;1/j D 1, the normalized
expansion factor is equal to the expansion factor, and since S1;1 only has one puncture,
any map defined on it must only have one puncture orbit.
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g s Description of f Singularity
type

L.S;f /

1 1 Induced by˙
�
2 1
1 1

�
.2/ 3C

p
5

2 � 2:62

1 1 Induced by˙
�
3 2
1 1

�
.2/ 4C

p
12

2 � 3:73

5 1 Fibering of K12n242 .18/ .Lehmer’s number/9 � 4:31

1 1 Induced by˙
�
4 3
1 1

�
.2/ 5C

p
21

2 � 4:79

2 1 Fill in 2-pronged puncture of f1;2 (6) jLT1;2j
3 � 5:10

1 1 Induced by˙
�
5 4
1 1

�
.2/ 6C

p
32

2 � 5:83

Table 2. Examples of fully punctured pseudo-Anosov maps f with only one puncture orbit for
which the bound in Theorem 1.1 fails.

With this understanding, notice that the maps induced by ˙
�
2 1
1 1

�
, ˙

�
3 2
1 1

�
, ˙

�
4 3
1 1

�
,

and ˙
�
5 4
1 1

�
have expansion factors 3C

p
5

2
� 2:62, 4C

p
12

2
� 3:73, 5C

p
21

2
� 4:79, and

6C
p
32

2
� 5:83, respectively, each of them being strictly less than �4 � 6:85. This shows

that the inequality in Theorem 1.1 fails if the assumption “with at least two punctures
orbits” is removed.

There are (at least) two other examples that can be used to show this. Consider the
K12n242 knot (D the (-2,3,7)-pretzel knot) complement. This 3-manifold has a unique
fibering, with monodromy f W S5;1 ! S5;1. The expansion factor of f is given by the
largest real root of t10 C t9 � t7 � t6 � t5 � t4 � t3 C t C 1, also known as Lehmer’s
number, which is�1:18. Hence, the normalized expansion factor of f is�4:31, which is
strictly less than �4 � 6:85.

Meanwhile consider the map f1;2 defined in Section 7.2. According to Table 1, it is
defined on S2;2, where one of the punctures is 6-pronged while the other is 2-pronged.
If we fill in the 2-pronged puncture, we would still get a fully punctured pseudo-Anosov
map f1;2 with the same expansion factor but now defined on S2;1. Hence, the normalized
expansion factor of f1;2 is

ˇ̌
LT1;2

ˇ̌3
� 5:10, which is strictly less than �4 � 6:85.

We summarize these examples in Table 2.

8. Discussion and further questions

We first note the following generalization of Proposition 5.5. (Recall Definition 5.1 for the
definition of the radical elements rc .)

Proposition 8.1. Suppose � is a train track that fully carries the unstable lamination of a
pseudo-Anosov map. Then the radical of the Thurston symplectic form ! on � is given by

rad.!/ D span
®
rc
¯
;
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where c ranges over all even-pronged boundary components of � .
In particular,

dim rad.!/ D # even-pronged boundary components � "

for " D 0 or 1.

Proof. Up to puncturing the pseudo-Anosov map f at an orbit of a (nonsingular) periodic
point, we can arrange for f to have at least two puncture orbits. Correspondingly, we can
modify � by slitting a small segment of an edge at every punctured point (see Figure 22).

It is straightforward to check that this slitting operation preserves rad.!/ D span¹rcº,
hence we can assume that f has at least two puncture orbits.

Then by Proposition 5.5, rad.!/ D span¹rcº is true for at least one train track � 0 fully
carrying the unstable lamination of f . Now by a theorem of Stallings [35], � and � 0 are
related by a sequence of elementary moves, hence by Lemma 5.6, rad.!/ D span¹rcº is
true for � as well.

For the statement about the dimension of rad.!/, recall that the proof of Proposi-
tion 5.4 shows that the radical elements rc have at most one relation.

Question 8.2. Is the equation rad.!/ D span¹rcº, where c ranges over all even-pronged
boundary components of � , true for any train track �?

Given the invariance of the equation under a wide array of operations on train tracks,
it seems reasonable to expect a positive answer. However, if the answer is negative, then
Proposition 8.1 would be an obstruction for train tracks to carry the unstable lamination
of a pseudo-Anosov map.

Next, we propose some questions about small expansion factors which one might hope
to tackle using the ideas in this paper.

Firstly, recall that Table 1 records some maps that attain the lower bound in
Theorem 6.1. These being the only examples we are aware of, it is a natural question
to ask if they are actually the only possible examples.

Question 8.3. Let f W S ! S be a fully punctured pseudo-Anosov mapping class with at
least two puncture orbits. Suppose j�.S/j D 2k � 4 and L.f / D jLT1;kj2k . Must f be
one of the maps listed in Table 1?

Recall that for the examples in Table 1, we calculated that L.S; f /D jLT1;kj2k using
the techniques described in [30]. More specifically, starting with the matrix f real

� we get
from the train track map, we consider its associated digraph, compute its curve complex
G, compute the clique polynomial of G, and find its largest real root.

Figure 22. Puncturing at a nonsingular point corresponds to slitting a small segment of an edge.
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Now, McMullen has actually classified the weighted graphs G that could occur in this
computation, provided thatL.S;f /D jLT1;kj2k . Hence, one can hope to work backwards
from that information and classify the matrices f real

� that could occur in this computation,
then classify the train track maps themselves.

If the answer to Question 8.3 is “yes,” then this means that it is possible to sharpen
Theorem 1.9 for the other values of .g; s/. A natural candidate here would be to replace
jLT1;kj by jLT3;kj, since in McMullen’s analysis in [30], this is the second smallest value
for the largest real root of the clique polynomial that could occur in the computation (at
least for large enough values of k). We remark that the first author has found maps that
attain this expansion factor in [20].

If this can be done, then one could repeat Question 8.3 for this second-best bound to
ask for the exact range of .g; s/ it applies to. Then repeating this scheme as far as possi-
ble, one could hope to paint a nice picture to the minimum expansion factor problem when
restricted to fully punctured maps.

With our current understanding of Perron–Frobenius matrices (and pseudo-Anosov
maps), one can hope to carry out this program for even j�.S/j. However, the same question
for odd j�.S/j would likely require new ideas.

Question 8.4. What is the sharpest lower bound for odd j�.S/j in Theorem 1.9?

Indeed, this is down to the fact that in Theorem 2.12, the case when n is odd is likely
not sharp. This is in turn due to the approach taken in [30], where McMullen simply
shows that �.A/n < 8 is impossible by showing that there would not be an appropriate
curve complex G in the computation, via analyzing some small graphs. To understand the
sharpest lower bound possible when n is odd, one would likely have to extend the analysis
to some slightly larger graphs.

As another potential direction for the ideas in this paper, we turn our attention to the
hypothesis that f has at least two puncture orbits in Theorem 1.1. Notice that all the exam-
ples in Table 1 have exactly two puncture orbits. In particular, if the answer to Question 8.3
is “yes,” then it must be possible to sharpen Theorem 1.1 if we replace the hypothesis by,
say, “at least three puncture orbits.” In general, we ask the following question.

Question 8.5. What is the sharpest lower bound in Theorem 1.1 if one replaces “at least
two puncture orbits” by “at least q puncture orbits” for some number q � 3?

As before, the approach to answering Question 8.5 that we have in mind is to dive into
the analysis of [30]. The condition on the number of puncture orbits should impose some
conditions on the Perron–Frobenius digraph, which might translate to some conditions
on the corresponding curve complex G. By restricting to graphs satisfying this condition
(potentially broadening the analysis if necessary), one can hope to get lower bounds in
this scenario.

Another approach would be to generalize the definition of standardly embedded train
tracks. For standardly embedded train tracks, the set of punctures is naturally divided
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into the sets of inner and outer punctures. If there is a type of train track that naturally
treats, say, three classes of punctures distinctly, then the resulting dynamics could also
give interesting lower bounds.

We remark that whether the sharpest such lower bound is attained is also an interesting
question. Sun [36] showed that there exists 3-manifolds M with fibered faces F such that
the minimum normalized expansion factor on F is attained at an irrational point, that is,
not attained by a pseudo-Anosov map corresponding to a rational point on F . If this is the
case for the 3-manifolds that produce the sharpest lower bound in Question 8.5 for some
particular value of q, then such a lower bound will not be attained.
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