
Groups Geom. Dyn. 19 (2025), 1373–1423
DOI 10.4171/GGD/831

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Random walks and contracting elements II: Translation
length and quasi-isometric embedding

Inhyeok Choi

Abstract. Continuing from Choi (2022), we study random walks on metric spaces with contracting
elements. We prove that random subgroups of the isometry group of a metric space are quasi-
isometrically embedded into the space. We discuss this problem in two ways, namely in the sense of
random walks and counting problem. We also establish the genericity of contracting elements and
the central limit theorem and its converse for translation length.
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1. Introduction

This is the second in a series of articles concerning random walks on metric spaces with
contracting elements. This series is a reformulation of the previous preprint [8] announced
by the author, aiming for clearer and more concise exposition.

Let X be a geodesic metric space and let o 2 X . We say that a subset A of X is
contracting if the closest point projection of a geodesic 
 onto A is uniformly bounded
whenever 
 is far away from A. An isometry g of X is contracting if the orbit ¹gnoºn2Z

is a contracting quasi-geodesic (see Definition 2.1). Two contracting isometries g and h
of X are independent if their orbits have unbounded Hausdorff distance.

Convention 1.1. Throughout, we assume that:
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• .X; d/ is a geodesic metric space,

• G is a countable group of isometries of X and

• G contains two independent contracting isometries.

We also fix a basepoint o 2 X .

This type of contraction takes place in various non-positively curved spaces includ-
ing (relatively) hyperbolic spaces, CAT(0) spaces, Teichmüller space, Culler–Vogtmann
Outer space and small cancellation groups. We refer the readers to [1, 2, 7, 23, 24] for the
treatment for each case.

We wish to sample a random isometry g in G. For this, we fix i.i.d. random variables
gi ’s distributed according to a probability measure � and define Zn WD g1 � � � gn. The
sequence of random variables .Zn/n�0 then constitute the random walk generated by �.
We say that the random walk .Zn/n�0 is non-elementary if the support of � generates a
semigroup that contains two independent contracting isometries (see Subsection 2.2).

Given a non-elementary random walk on G, one can ask the asymptotic behavior
of the displacement d.o; go/ of a random isometry g. This was indeed pursued in [10],
discussing the strong law of large numbers (SLLN) with an exponential bound, central
limit theorem (CLT) and the law of the iterated logarithm (LIL). In this article, we aim
to investigate yet another quantity, the translation length �.g/ WD limi dX .o; g

io/=i , of a
random isometry g. The translation length of an element g of G often encodes interesting
dynamical phenomena. For example, the translation length of a deck transformation of a
negatively curved manifold is the length of the corresponding closed geodesic. The trans-
lation length of a pseudo-Anosov mapping class (irreducible outer automorphism, resp.)
on Teichmüller space (Outer space, resp.) equals its stretch factor as a self-map on the
surface (expansion factor as a train-track map on the graph, resp.).

Our first main result is companion to the corresponding result for displacement [10,
Theorem 6.4].

Theorem A. Let .X;G; o/ be as in Convention 1.1 and let .Zn/n�0 be the random walk
generated by a non-elementary measure � on G. Let �.�/ be the escape rate of �, that
is, �.�/ WD limn!1 E��n Œd.o; go/�=n. Then for each 0 < L < �.�/, there exists K > 0

such that for each n we have

P .Zn is contracting and �.Zn/ � Ln/ � 1 �Ke�n=K :

This result has been observed by Sisto for simple random walks on various spaces
in [25]. In the absence of moment conditions, Maher and Tiozzo observed in [21] that
non-elementary random walks on Gromov hyperbolic spaces favor loxodromic elements
in probability. Their methods and Benoist–Quint’s estimates in [6] also lead to the stronger
SLLN for translation length under finite second moment condition, as noted by Dahmani
and Horbez [12]. Dahmani and Horbez also deduced the same SLLN on Teichmüller
space. Later, Baik, Choi and Kim obtained the same SLLN under finite first moment
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assumption using ergodic theorems and Maher–Tiozzo’s notion of persistent joint [3].
We also note Le Bars’ recent result [4] that non-elementary random walks on a proper
CAT(0) space favor contracting isometries in probability. Theorem A generalizes these
results by obtaining an exponential bound from below without any moment condition.
Finally, Goldsborough and Sisto recently presented a QI-invariant theory for exponential
genericity of positive translation length [14]. Their theory applies to (relatively) hyperbolic
groups, acylindrically hyperbolic 3-manifold groups, right-angled Artin groups and many
more.

Genericity of contracting elements is a recurring theme that has been investigated in
various settings. For example, Yang describes genericity of contracting elements in count-
ing problem for proper actions on a metric space [28]. The novelty of Theorem A is that
it discusses genericity of contracting elements for possibly non-WPD actions on spaces
and for non-elementary random walks without moment condition.

We also provide a quantitative comparison between the displacement and the transla-
tion length of a random isometry.

Theorem B. Let .X; G; o/ be as in Convention 1.1, and .Zn/n�0 be the random walk
generated by a non-elementary measure � on G.

(1) If � has finite p-th moment for some p > 0, then

lim
n!1

1

n1=2p
Œd.o;Zno/ � �.Zn/� D 0 almost surely.

(2) If � has finite first moment, then there exists K > 0 such that

lim sup
n!1

1

logn
Œd.o;Zno/ � �.Zn/� � K almost surely.

There have been many results that capture the sublinear discrepancy between the dis-
placement and translation length for random walks with bounded support or with finite
exponential moment (see [19,21]). Moreover, using Benoist–Quint’s strategy in [5,6] and
its application to other spaces [12, 18], one can achieve sublinear discrepancy for random
walks with finite first moment. We improve these observations by proving that random
walks with finite .1=2/-th moment exhibit sublinear discrepancy between displacement
and translation length.

Combining the CLT for displacement proved in [10] and Theorem B, we deduce the
CLT for translation length.

Theorem C (CLT and its converse). Let .X;G; o/ be as in Convention 1.1, and .Zn/n�0
be the random walk generated by a non-elementary measure� onG. If� has finite second
moment, then 1p

n
.d.o;Zno/� n�/ and 1p

n
.�.Zn/� n�/ converge to the same Gaussian

distribution in law.
Conversely, if � has infinite second moment, then for any sequence .cn/n�0, neither

1p
n
.d.o;Zno/ � cn/ nor 1p

n
.�.Zn/ � cn/ converges in law.
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CLT for translation length and the converse of CLT for Gromov hyperbolic spaces
and Teichmüller space have been observed in [9]. Here, we establish the same result for
general spaces with contracting isometries.

Meanwhile, Taylor and Tiozzo proved in [26] that random subgroups of a weakly
hyperbolic group is quasi-isometrically embedded into the ambient Gromov hyperbolic
space, in the sense that such event happens for eventual probability 1. See also [20, 22]
for additional conclusions under geometric assumptions, for example, acylindricity or
WPD. These results are linked to a deeper understanding of convex-cocompact subgroup
of mapping class groups and random extensions of surface groups and free groups.

The following theorem strengthens the conclusion of Taylor–Tiozzo’s theorem and
generalizes it to more general spaces.

Theorem D. Let .X; G; o/ be as in Convention 1.1, and .Z.1/n ; : : : ; Z
.k/
n /n�0 be k inde-

pendent random walks generated by a non-elementary measure � on G. Then there exists
K > 0 such that

P ŒhZ.1/n ; : : : ; Z.k/n i is q.i. embedded into a quasi-convex subset of X� � 1 �Ke�n=K :

Thanks to concrete control of the decay rate, we can deduce the analogous conclusion
for counting problems.

Theorem E. Let G be a finitely generated group acting on a metric space X with at least
two independent contracting elements. Then for each k > 0, there exists a finite generating
set S of G such that

#
°
.g1; : : : ; gk/ 2

�
BS .n/

�k
W
hg1; : : : ; gki is q.i. embedded into

a quasi-convex subset of X

±
�
#BS .n/

�k
converges to 1 exponentially fast.

Theorem E has been previously observed for a vast number of group actions by Han
and Yang. First, Yang describes the genericity of contracting elements for counting prob-
lem in [28], which corresponds to the case of k D 1 in Theorem E. Yang considered
groups admitting a statistically convex-cocompact (SCC) action on proper spaces, which
include relatively hyperbolic group, groups with non-trivial Floyd boundary, non-splitting
right-angled Artin groups (RAAGs) and right-angled Coxeter groups (RACGs), small can-
cellation groups, mapping class groups acting on Teichmüller spaces and many more. This
was later generalized to arbitrary k by Han and Yang in [16].

Meanwhile, mapping class groups are not known to possess a contracting element with
respect to the actions on their Cayley graphs. This necessitates a different approach for
the counting problem in the Cayley graph. Theorem E accomplishes this purpose by not
requiring the action of G on X be proper or SCC, while deducing a result for the counting
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problem in the Cayley graph of G. For Gromov hyperbolic spaces and Teichmüller space,
Theorem E for k D 1 has been observed in [11] as an affirmative answer to a version of
Farb’s conjecture in [13].

1.1. Structure of the paper

In Section 2, we recall the basic notions and facts about contracting isometries, alignment
of paths and Schottky sets that were discussed in [10].

All the theorems of this paper eventually follow from Gouëzel’s pivoting tech-
nique [15]. Among them, Theorems A and B and the first half of Theorem C (CLT) use
pivoting technique implicitly via referring to the results of [10]. This part is explained
in Section 3, which only assumes the content of Section 2 and does not require any
knowledge about pivotal times.

The other theorems are deduced using pivoting technique that we explain in Section 4.
In Subsection 4.1, we recall the pivotal time construction for a discrete model. In Sub-
section 4.2, we consider two lemmata to reduce a random walk into the discrete model.
Given this preparation, we relate pivotal times with translation length and genericity of
contracting isometries in Subsection 4.3. In Subsection 4.4, we combine these ingredi-
ents and deduce the converse of CLT. In Subsection 4.5, we generalize the discussion in
Subsection 4.2 to discuss the quasi-isometric embedding of k independent random walks.

It remains to discuss counting problem. Our strategy is to compare the exponential
bound for simple random walks onG and a counting estimate onG. For this, we establish
a quantitative version of Subsection 4.2 in Section 5. We prove Theorem E using this in
Section 6.

2. Preliminaries

In this section, we summarize the language and the setting of [10]. Throughout the
paper, X is a geodesic metric space with basepoint o and G is a countable isometry group
of X .

2.1. Contracting isometries and alignment

Definition 2.1 (Contracting sets). For a subset A � X and " > 0, we define the closest
point projection of x 2 X to A by

�A.x/ WD ¹a 2 A W dX .x; a/ D dX .x; A/º:

A is said to be K-contracting if:

(1) �A.z/ ¤ ; for all z 2 X and

(2) for all x; y 2 X such that dX .x; y/ � dX .x; A/ we have

diamX .�A.x/ [ �A.y// � K:
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AK-contractingK-quasi-geodesic is called aK-contracting axis. An isometry g 2 G
is said to be K-contracting if its orbit ¹gnoºn2Z is a K-contracting axis.

Definition 2.2 (Translation length). For g 2 G, the (asymptotic) translation length of g
is defined by

�.g/ WD lim inf
n!1

1

n
d.o; gno/:

Given an isometry g 2 G, the orbit ¹gnoºn2Z is a quasi-geodesic if and only if g has
strictly positive translation length. However, an isometry with positive translation length
may not be contracting.

A path is a map from either an interval or a set of consecutive integers to X . Given a
path 
 W Œa; b�!X , we define its reversal x
 W Œa; b�!X by the map x
.t/ WD 
.aC b � t /.

A subset A � X is said to be K-quasi-convex if any geodesic Œx; y� connecting two
points x;y 2A is contained in theK-neighborhood ofA. Two paths � and � onX are said
to be K-fellow traveling if their beginning points and ending points are pairwise K-near
and dHauss.�; �/ < K.

Let us now recall some alignment lemmata established in [10].

Definition 2.3 ([10, Definition 3.6]). For i D 1; : : : ; n, let 
i be a path onX whose begin-
ning and ending points are xi and yi , respectively. We say that .
1; : : : ; 
n/ is C -aligned
if

diamX .yi [ �
i .
iC1// < C; diamX .xiC1 [ �
iC1.
i // < C

hold for i D 1; : : : ; n � 1.

Here, we regard points as degenerate paths. For example, for a point x and a path 
 ,
we say that .x; 
/ is C -aligned if

diamX .beginning point of 
 [ �
 .x// < C

holds. The following observation is immediate.

Observation 2.4. Let g be an isometry of X . Let n be a positive integer and let k be an
integer in ¹1; : : : ; nº. Let K > 0 and let 
1; : : : ; 
n be paths on X .

(1) If the sequences .
1; : : : ; 
k/ and .
k ; : : : ; 
n/ are each K-aligned, then their
concatenation .
1; : : : ; 
n/ is also K-aligned.

(2) If .
1; : : : ; 
n/ is K-aligned, then .x
n; : : : ; x
1/ is also K-aligned.

(3) If .
1; : : : ; 
n/ is K-aligned, then .g
1; : : : ; g
n/ is also K-aligned.

Lemma 2.5 ([10, Lemma 3.8]). For each C > 0 andK > 1, there existsD DD.K;C / >
K;C that satisfies the following.

Let 
 and 
 0 be K-contracting axes whose ending points are y and y0, respectively. If
.y; 
 0/ and .
; y0/ are C -aligned, then .
; 
 0/ is D-aligned.
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Lemma 2.6 ([10, Proposition 3.12]). For each D > 0 and K > 1, there exist E D
E.K;D/ > K;D and L D L.K;D/ > K;D that satisfy the following.

Let x and y be points in X and let 
1; : : : ; 
n be K-contracting axes whose domains
are longer than L and such that .x; 
1; : : : ; 
n; y/ is D-aligned. Then the geodesic Œx; y�
has subsegments �1; : : : ; �n, in order from left to right, that are longer than 100E and such
that �i and 
i are 0:1E-fellow traveling for each i . In particular, .x; 
i ; y/ are E-aligned
for each i .

Lemma 2.7 ([27, Proposition 2.9]). For each D;M > 0 and K > 1, there exist E D
E.K;D;M/ > D and L D L.K;D/ > D that satisfy the following.

Let 
1; : : : ; 
n be K-contracting axes whose domains are longer than L. Suppose
that .
1; : : : ; 
n/ is D-aligned and d.
i ; 
iC1/ < M for each i . Then the concatenation

1 [ � � � [ 
n of 
1; : : : ; 
n is an E-contracting axis.

For the proofs of these lemmata, refer to [10, Subsections 3.1 and 3.2].

2.2. Random walks

Let � be a probability measure on G. We denote by {� the reflected version of �, which is
defined by {�.g/ WD �.g�1/. The random walk generated by � is the Markov chain on G
with the transition probability p.g; h/ WD �.g�1h/.

Consider the step space .GZ; �Z/, the product space of .G; �/. Each element
.gn/n2Z 2 G

Z is called a step path, and there is a corresponding (bi-infinite) sample path
.Zn/n2Z under the correspondence

Zn D

8̂̂<̂
:̂
g1 � � �gn n > 0;

id n D 0;

g�10 � � �g
�1
nC1 n < 0:

We also introduce the notation {gn D g�1�nC1 and {Zn D Z�n. Note that we have an isomor-
phism .GZ; �Z/ ! .GZ>0 ; {�Z>0/ � .GZ>0 ; �Z>0/ by .gn/n2Z 7! ..{gn/n>0; .gn/n>0/.
We will frequently use the latter parametrization: For each .!; {!/ 2 .GZ>0 ; {�Z>0/ �

.GZ>0 ; �Z>0/, we have

gn.{!;!/ WD gn.!/; Zn.{!;!/ WD Zn.!/;

{gn.{!;!/ WD gn.{!/; {Zn.{!;!/ WD Zn.{!/:

We define the support of �, denoted by supp�, as the set of elements in G that are
assigned nonzero values of �. We denote by �N the product measure of N copies of �,
and by ��N the N -th convolution measure of �.

Now suppose that G is acting on the metric space .X; d/. A probability measure �
onG is said to be non-elementary if the semigroup generated by the support of � contains
two independent contracting isometries g; h of X .
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2.3. Schottky set

We now introduce the notion of Schottky set. Given a sequence ˛ D .a1; : : : ; an/ 2 Gn,
we employ the following notations:

….˛/ WD a1a2 � � � an;

�.˛/ WD
�
o; a1o; a1a2o; : : : ;….˛/o

�
:

The following definition is an adaptation of Gouëzel’s notion of Schottky sets on
hyperbolic groups in [15].

Definition 2.8 (Cf. [15, Definition 3.11] and [10, Definition 3.15]). LetK0>0 and define:

• D0 D D.K0; K0/ be as in Lemma 2.5,

• D1 D E.K0;D0/, L D L.K0;D0/ be as in Lemma 2.6,

• E0 D E.K0;D1/, L0 D L.K0;D1/ be as in Lemma 2.6 and

• L00 D L.K0;D1/ be as in Lemma 2.7.

We say that a set of sequences S � Gn is a fairly long K0-Schottky set if:

(1) n > max¹L;L0; L00º;

(2) �.˛/ is K0-contracting axis for all ˛ 2 S ;

(3) d.o;….˛/o/ � 10E0 for all ˛ 2 S ;

(4) for each x 2 X we have

#¹˛ 2 S W .x; �.˛// and .�.˛/;….s/x/ are K0-alignedº � #S � 1I

(5) for each ˛ 2 S , .�.˛/;….˛/�.˛// is K0-aligned.

When the Schottky parameter K0 is understood, the constants D0;D1; E0 always denote
the ones defined above. Further, we sometimes omit the Schottky parameter and just say
that S is a fairly long Schottky set.

Once a fairly long Schottky set S is understood, its element ˛ is called a Schottky
sequence and the translates of �.˛/ are called Schottky axes. When a probability mea-
sure � on G is given in addition such that S � .supp�/n, we say that S is a fairly long
Schottky set for �.

Some facts regarding Schottky sets are in order.

Lemma 2.9 ([10, Proposition 3.19]). Let � be a non-elementary probability measure
onG. Then for eachN > 0 there exists a fairly long Schottky set for � with cardinalityN .

Definition 2.10. Let S be a fairly long Schottky set and letK > 0. We say that a sequence
of Schottky axes is K-semi-aligned if it is a subsequence of a K-aligned sequence of
Schottky axes.
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More precisely, for Schottky axes 
1; : : : ; 
n, we say that .
1; : : : ; 
n/ is K-semi-
aligned if there exist Schottky axes �1; : : : ; �m such that .�1; : : : ; �m/ is K-aligned and
there exists a subsequence ¹i.1/ < � � � < i.n/º � ¹1; : : : ; mº such that 
l D �i.l/ for
l D 1; : : : ; n.

Similarly, given two points x; y 2 X and Schottky axes 
1; : : : ; 
n on X , we say
that .x; 
1; : : : ; 
n; y/ is K-semi-aligned if it is a subsequence of a K-aligned sequence
.x; �1; : : : ; �m; y/ for some Schottky axes �1; : : : ; �n.

Lemma 2.6 implies the following corollary.

Corollary 2.11. Let S be a fairly long K0-Schottky set, with constants D0;D1 as in Def-
inition 2.8. Let x; y 2 X and 
1; : : : ; 
N be Schottky axes. Then .x; 
1; : : : ; 
N ; y/ is
D1-aligned whenever it is D0-semi-aligned.

3. The first method: Deviation inequalities

Our first approach to the limit laws relies on the pivoting technique implicitly via devia-
tion inequalities. Throughout, we fix .X;G; o/ as in Convention 1.1, fix a non-elementary
probability measure � on G and fix a fairly long Schottky set S � .supp�/M0 for �.

Employing the notations defined in Subsection 2.2, let .{!; !/ 2 .GZ>0 ; {�Z>0/ �

.GZ>0 ; �Z>0/. We briefly recall the random variable � D �.{!; !/ defined in [10,
Section 5]. For each k �M0, we ask whether there exists M0 � i � k such that:

(1) 
 WD .Zi�M0o;Zi�M0C1o; : : : ; Zio/ is a Schottky axis, and

(2) . {Zmo; 
;Zno/ is D0-semi-aligned for all n � k and m � 0.

Note that, by Corollary 2.11, item (2) forces that . {Zmo;
;Zno/ isD1-aligned for all n� k
and m � 0. We define �.{!; !/ as the minimal index k that possesses such an auxiliary
index i � k.

Similarly, we defined {� D {�.{!;!/ as the minimal index k �M0 such that there exists
M0 � i � k for which:

(1) 
 WD . {Zio; {ZiC1o; : : : ; {Zi�M0o/ is a Schottky axis, and

(2) . {Zno; 
;Zmo/ is D0-semi-aligned for all n � k and m � 0.

In [10], we proved the following results.

Lemma 3.1 ([10, Lemma 4.10]). Let .X;G;o/ be as in Convention 1.1 and let� be a non-
elementary probability measure on G. Then there exist �; K > 0 such that the following
estimate holds for all k and all choices of gkC1; {g1; : : : ; {gkC1 2 G:

P {�Z>0��Z>0 .�.{!;!/ � k j gkC1; {g1; : : : ; {gkC1/ � Ke
��k ;

and for all k and for all choices of gkC1; {g1; : : : ; {gkC1 2 G:

P {�Z>0��Z>0 .{�.{!;!/ � k j {gkC1; g1; : : : ; gkC1/ � Ke
��k :
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By integrating for gkC1 and {g1; : : : ; {gkC1 over G, we deduce that

P {�Z>0��Z>0 .�.{!;!/ � k/

D

X
{g1;:::;{gkC1;
gkC12G

P {�Z>0��Z>0 .�.{!;!/ � k j gkC1; {g1; : : : ; {gkC1/

� �.gkC1/{�.{g1/ � � � {�.{gkC1/ � Ke
��k :

Similarly, we have P {�Z>0��Z>0 .{�.{!;!/ � k/ � Ke
��k for each k.

Lemma 3.2 ([10, Corollary 4.15]). Let p > 0 and suppose that � has finite p-th moment.
Then there exists K > 0 such that

E{�Z>0��Z>0 Œmin¹d.o;Z�o/; d.o; {Z{�o/º
2p� < K:

Let Fp be the distribution of min¹d.o;Z�o/; d.o; {Z{�o/º2p , that is,

Fp.u/ D P {�Z>0��Z>0 .min¹d.o;Z�o/; d.o; {Z{�o/º
2p
� u/:

By Lemma 3.2,
R1
0
Fp.u/du is finite whenever � has finite p-th moment.

Using this, we can prove Theorem B.

Proof of Theorem B. Recall that � be a non-elementary probability measure on G. Let
�;K > 0 be the constants for � as in Lemma 3.1.

Recall also our notations introduced in Subsection 2.2: .gi /i2Z’s are i.i.d. random vari-
ables (RVs) distributed according to � and Zi WD g1 � � �gi for i � 0. Now for each n > 0,
we bring the n-step initial subpath .g1; : : : ; gn/ of .gi /i>0 that is distributed according to
�n, together with another RV .hi /i2Z distributed according to �Z that is independent of
.gi /i2Z. We then define

gi I0 WD

´
gi i D 1; : : : ; bn=2c;

hi i > bn=2c:
{gi I0 WD

´
g�1n�iC1 i D 1; : : : ; n � bn=2c;

h�1
�i i > n � bn=2c:

gi I1 WD

´
gbn=2cCi i D 1; : : : ; n � bn=2c;

hi i > n � bn=2c:
{gi I1 WD

´
g�1
bn=2c�iC1

i D 1; : : : ; bn=2c;

h�1
�i i > bn=2c:

Then ..{gi It /i>0; .gi It /i>0/ is distributed according to {�Z>0 ��Z>0 for t D 0; 1. Using
them, we similarly define other RVs such as

Zi It WD g1It � � �gi It ; {Zi It WD {g1It � � � {gi It ;

�t WD �..{gi It /i>0; .gi It /i>0/; {� t WD {�..{gi It /i>0; .gi It /i>0/:

Note that �t , {� t are RVs that depend on the choice of n. For this reason, we will also
denote �0 by �.n/ and {�0 by {�.n/.
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We now define
An WD ¹max¹�0; {�0; �1; {�1º � n=10º:

Since ..{gi I0/i>0; .gi I0/i>0/ and ..{gi I1/i>0; .gi I1/i>0/ are both distributed according to
{�Z>0 � �Z>0 , Lemma 3.1 implies

P .An/ � 2P {�Z>0��Z>0 .�.{!;!/ � n=10/C 2P {�Z>0��Z>0 .{�.{!;!/ � n=10/

� 4Ke��n=10:
(3.1)

Furthermore, Lemma 3.2 implies

P .min¹d.o;Z�t It o/; d.o; {Z{� t It o/º
2p
� u/ D Fp.u/

for each u � 0 and t D 0; 1. We aim to show the following.

Claim 1.
Œd.o;Zno/ � �.Zn/� � 2min¹d.o;Z�0I0 o/; d.o; {Z{�0I0 o/º (3.2)

holds outside An.
For the proof of Claim 1, we discuss everything outside An. That means, we assume

from now on that
�0; {�0; �1; {�1 � n=10: (3.3)

First, by the definition of �0, there exists an integer i.0/ such that:

(1) M0 � i.0/ � �0;

(2) 
0 WD .Zi.0/�M0I0 o;Zi.0/�M0C1I0 o; : : : ; Zi.0/I0 o/ is a Schottky axis and

(3) . {Zj I0 o; 
0; ZkI0 o/ is D1-aligned for j � 0 and k � �0.

Recall our definition that

Zi I0 D g1I0 � � �gi I0 D g1 � � �gi D Zi .i D 0; 1; : : : ; bn=2c/;

{Zi I0 D {g1I0 � � � {gi I0 D g
�1
n � � �g

�1
n�iC1 D Z

�1
n Zn�i .i D 0; 1; : : : ; n � bn=2c/:

(3.4)

Item (3) of the condition for i.0/ and displays (3.3) and (3.4) together imply the following.

Observation 1. The sequence

.Z�1n Zn�j o; 
0; Zko/ D .Z
�1
n Zn�j o; .Zi.0/�M0

o; : : : ; Zi.0/o/; Zko/

is D1-aligned for 0 � j � n � bn=2c and �0 � k � bn=2c.
Meanwhile, by the definition of {�0, there exists an integer j.0/ such that:

(1) M0 � j.0/ � {�0,

(2) . {Zj.0/I0 o; {Zj.0/�1I0 o; : : : ; {Zj.0/�M0I0 o/ is a Schottky axis and

(3) . {Zj I0 o; . {Zj.0/I0 o; : : : ; {Zj.0/�M0
o/;ZkI0 o/ is D1-aligned for k � 0 and j � �0.

We now define

{
0 WD .Zn�j.0/o;Zn�j.0/C1o; : : : ; Zn�j.0/CM0
o/:

Item (3) of the above and displays (3.3) and (3.4) together imply the following.
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Observation 2.

.Z�1n Zn�j o;Z
�1
n {
0;Zko/D .Z

�1
n Zn�j o; .Z

�1
n Zn�j.0/o; : : : ;Z

�1
n Zn�j.0/CM0

o/;Zko/

is D1-aligned for {�0 � j � n � bn=2c and 0 � k � bn=2c.
Similarly, we have indices i.1/; j.1/ such that:

(1) M0 � i.1/ � �1 and M0 � j.1/ � {�1,

(2) .Zi.1/�M0I1o; : : : ; Zi.1/I1o/ and . {Zj.1/I1o; : : : ; {Zj.1/�M0I1o/ are Schottky axes,

(3) . {Zj I1o; .Zi.1/�M0I1o; : : : ; Zi.1/I1o/; ZkI1o/ is D1-aligned for j � 0 and k � �1
and

(4) . {Zj I1o; . {Zj.1/I1o; : : : ; {Zj.1/�M0I1o/;ZkI1o/ is D1-aligned for k � 0 and j � {�1.

This time, we define


1 WD .Zbn=2cCi.1/�M0
o; : : : ; Zbn=2cCi.1/o/;

{
1 WD .Zbn=2c�j.1/o; : : : ; Zbn=2c�j.1/CM0
o/:

Recall the following:

Zi I1 D g1I1 � � �gi I1 D gbn=2cC1 � � �gbn=2cCi D Z
�1
bn=2cZbn=2cCi

.i D 0; 1; : : : ; n � bn=2c/;

{Zi I1 D {g1I1 � � � {gi I1 D g
�1
bn=2c � � �g

�1
bn=2c�iC1 D Z

�1
bn=2cZbn=2c�i

.i D 0; 1; : : : ; bn=2c/:

(3.5)

Combining items (3) and (4) of the conditions for i.1/ and j.1/ and displays (3.3)
and (3.4), we obtain the following.

Observation 3. The sequence

.Zbn=2c�j o; 
1; Zbn=2cCko/

D .Zbn=2c�j o; .Zbn=2cCi.1/�M0
o; : : : ; Zbn=2cCi.1/o/;Zbn=2cCko/

is D0-aligned for 0 � j � bn=2c and �1 � k � n � bn=2c. Moreover,

.Zbn=2c�j o; {
1; Zbn=2cCko/

D .Zbn=2c�j o; .Zbn=2c�j.1/o; : : : ; Zbn=2c�j.1/CM0
o/;Zbn=2cCko/

is D0-aligned for {�1 � j � bn=2c and 0 � k � n � bn=2c.
A special case of Observation 1 is that .o; 
0;Z�0o/ isD1-aligned. By Lemma 2.6 (cf.

Definition 2.8), there exists a subsegment Œp:q� of Œo;Z�0o� that is 0:1E0-fellow traveling
with 
0. We deduce that

d.o;Zi.0/�M0
o/ � d.o; p/ � 0:1E0

D d.o; q/ � d.p; q/ � 0:1E0

� d.o;Z�0o/ � d.Zi.0/�M0C1o;Zi.0/o/ � 0:3E0

� d.o;Z�0/ � 90E0:

(3.6)
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Similarly, from the fact that .Zn�{�0o; {
0; Zno/ is D1-aligned, we deduce

d.o;Z�1n Zn�j.0/CM0
o/ � d.Zn�{�0o;Zno/ � 90E0 D d.

{Z{�0o; o/ � 90E0:

Next, display (3.3) implies that


0 � ¹Zko W 0 � k � bn=2c � {�1º; {
1 � ¹Zko W �0 � k � bn=2cº;


1 � ¹Zko W bn=2c � k � n � {�0º; {
0 � ¹Zko W bn=2c C �1 � k � nº:

Combining this with Observations 1, 2 and 3, we deduce that .
0; {
1; 
1; {
0; Zn
0/ is
D1-aligned, and consequently,

.o; 
0; {
1; 
1; {
0; Zn
0; Zn{
1; Zn
1; Zn{
0; : : : ;

Zk�1n 
0; Z
k�1
n {
1; Z

k�1
n 
1; Z

k�1
n {
0; Z

k
no/

is also D1-aligned. By Lemma 2.6, there exist points p0; q0; : : : ; pk�1; qk�1 on Œo;Zkno�,
from left to right, so that

d.pi ; Z
i
n �Zi.0/�M0

o/ < 0:1E0; d.qi ; Z
i
n �Zn�j.0/CM0

o/ < 0:1E0:

This implies that

d.o;Zkno/

�

k�1X
iD1

d.pi�1; pi /

�

k�1X
iD1

�d.Zi�1n o;Zino/ � d.Z
i�1
n o;Zi�1n Zi.0/�M0

o/ � d.Zino;Z
i
nZi.0/�M0

o/

�d.pi�1; Z
i�1
n Zi.0/�M0

o/ � d.pi ; Z
i
nZi.0/�M0

o/

�
� .k � 1/.d.o;Zno/ � 2d.o;Zi.0/�M0

o/ �E0/:

By taking the limit and applying inequality (3.6), we deduce that

�.Zn/ � d.o;Zno/ � 2d.o;Zi.0/�M0
o/ � 2E0 � d.o;Zno/ � 2d.o;Z�0o/:

By a similar argument using qi ’s and Zi�1n Zn�j.0/CM0
’s, we also observe that

�.Zn/ � d.o;Zno/ � 2d.o; {Z{�0o/. Claim 1 is now established.
Given the claim, we obtain

P .d.o;Zno/ � �.Zn/ � Cn
1=2p/

D P .Œd.o;Zno/ � �.Zn/�
2p
� C 2pn/

� P .An/C P .22p min¹d.o;Z�0Io o/; d.o; {Z{�0I0 o/º
2p
� C 2pn/

� Fp.C
2pn=22p/C 8Ke��n=10:

When � has finite p-th moment, Fp.u/ is integrable and the above probability is
summable. The Borel–Cantelli lemma implies item (1) of Theorem B.
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Now suppose that � has finite first moment and let � be its escape rate. We denote �0
by v.n/ to clarify its dependence on n. This time, we define

A0n WD ¹v.n/ � K
0 lognº

for some large K 0 such that
P
nKe

��K0 logn < C1. Recall that Lemma 3.1 tells us that

P .An [ A
0
n/ � 4Ke

��k
C P {�Z>0��Z>0 .�.{!;!/ � K

0 logn/

� 4Ke��k CKe��K
0 logn:

The Borel–Cantelli lemma implies that almost every sample path .{!; !/ eventually lies
outside An [ A0n, which implies that d.o; Zno/ � �.Zn/ � d.o; Zv.n/o/ for all large
enough n (Claim 1) and lim sup v.n/=logn � K 0. Moreover, by subadditive ergodic
theorem, we have limn d.o;Zno/=n D � for almost every sample path.

It remains to show that lim supn
d.o;Zno/��.Zn/

logn � 4�K 0 whenever

lim sup
n

d.o;Zno/ � �.Zn/

d.o;Zv.n/o/
� 1; lim sup

n

v.n/

logn
� K 0; lim

n

d.o;Zno/

n
D �:

To show this, take N large enough such that d.o; Zno/=n � 2� for n � 2K 0 logN and
v.n/=logn � 2K 0 for n � N . For n � N , we have

d.o;Zv.n/o/ �

´
max¹d.o;Zio/ W 0 � i � 2K 0 logN º when v.n/ � 2K 0 logN;

2�v.n/ � 4K 0� logn otherwise:

It is clear that d.o;Zv.n/o/=logn � 4�K 0 for all large enough n. Consequently, we have

lim sup
n

d.o;Zno/ � �.Zn/

logn
� lim sup

n

d.o;Zno/ � �.Zn/

d.o;Zv.n/o/
�
d.o;Zv.n/o/

logn
� 4K 0�:

When � has finite first moment, Theorem B implies that

0 � lim
n!C1

1

n
jd.o;Zno/ � �.Zn/j

� lim
n!C1

1
p
n log logn

jd.o;Zno/ � �.Zn/j

� lim
n!C1

1
p
n
jd.o;Zno/ � �.Zn/j D 0 almost surely:

(3.7)

Combining inequality (3.7) with the SLLN for displacement (cf. [10, Theorem A]), we
conclude the following.

Corollary 3.3 (SLLN for finite first moment). Let .X;G; o/ be as in Convention 1.1, and
let .Zn/n�0 be the random walk generated by a non-elementary measure � on G with
finite first moment. Then

lim
n

1

n
�.Zn/ D � (3.8)

holds almost surely, where � D �.�/ is the escape rate of �.
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Also, combining inequality (3.7) with the CLT and LIL for displacement [10,
Theorems 4.17 and 4.20], we deduce the following.

Corollary 3.4 (CLT). Let .X; G; o/ be as in Convention 1.1, and ! be the random walk
generated by a non-elementary measure � onG. If � has finite second moment, then there
exists �.�/� 0 such that 1p

n
.�.Zn/� n�/ and 1p

n
.d.o;Zno/� n�/ converge to the same

Gaussian distribution N.0; �.�/2/ in law. We also have

lim sup
n!1

�.Zn/ � �n
p
2n log logn

D �.�/ almost surely:

In fact, Theorem B implies Corollary 3.3 for measures with finite .1=2/-th moment,
and the converse of CLT for measures with finite .1=4/-th moment. For general non-
elementary measures, Theorem B is not sufficient for the SLLN and the converse of CLT.
Toward a different approach, let us recall the following.

Theorem F ([10, Theorem 6.4]). Let .X; G; o/ be as in Convention 1.1 and .Zn/n�0 be
the random walk generated by a non-elementary measure � on G. Let �.�/ be the escape
rate of �. Then for any 0 < L < �.�/, there exists K > 0 such that for each n we have

P Œd.o;Zno/ � Ln� � Ke�n=K :

Using this theorem, let us prove Theorem A.

Proof of Theorem A. Let � be a non-elementary probability measure on G and �.�/ 2
.0; C1� be its escape rate. Given 0 < L < �.�/, we fix 0 < " < 1=10 such that
L0 D L=.1 � 2"/ is still smaller than �.

In the proof of Theorem B, we defined �0 D v.n/ and {�0 D {v.n/ for each n. Given
" > 0, we now define

A00n WD ¹max¹�.n/; {�.n/º � "nº:

As explained in inequality (3.1), with "n in place of n=10, P .A00n/ decays exponentially
as n increases. In the sequel, we discuss everything outside A00n.

Observations 1, 2 and 3 guarantee four Schottky axes 
0; {
0; 
1; {
1, such that 
0 con-
tains a point Zi.0/o for some i.0/ 2 ¹M0; M0 C 1; : : : ; �.n/º � ¹0; 1; : : : ; b"ncº, {
0
contains a point Zn�j.0/o for some j.0/ 2 ¹M0;M0 C 1; : : : ; {�.n/º � ¹0; 1; : : : ; b"ncº,
and such that

.o; 
0; {
1; 
1; {
0; Zn
0; Zn{
1; Zn
1; Zn{
0; : : : ;

Zk�1n 
0; Z
k�1
n {
1; Z

k�1
n 
1; Z

k�1
n {
0; Z

k
no/

is D1-aligned for each k. By Lemma 2.6, there exist points p0; q0; : : : ; pk�1; qk�1 on
Œo; Zkno�, from left to right, so that

d.pi ; Z
i
n �Zi.0/�M0

o/ < 0:1E0; d.qi ; Z
i
n �Zn�j.0/CM0

o/ < 0:1E0:
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This implies that

d.o;Zkno/ �

k�1X
iD0

d.pi ; qi /

�

k�1X
iD0

�
d.ZinZi.0/�M0

o;ZinZn�j.0/CM0
o/ � d.pi ; Z

i
nZi.0/�M0

o/

�d.qi ; Z
i
nZn�j.0/CM0

o/

�
� kmin¹d.Zio;Zn�j o/ W 0 � i; j � "nº �E0:

By dividing by k and taking the limit, we conclude that

�.Zn/ � min¹d.Zio;Zn�j o/ W 0 � i; j � "nº

outside A00n. Now, thanks to Theorem F, there exists K > 0 such that

P Œd.o;Zmo/ � L
0m� � Ke�m=K

holds for all m. This implies

P .�.Zn/ � Ln/ � P .A00n/C P Œmin¹d.Zio;Zn�j o/ W 0 � i; j � "nº � Ln�

� P .A00n/C
X

0�i;j�"n

P Œd.Zio;Zn�j o/ � Ln�

� P .A00n/C ."n/
2
�Ke�.1�2"/n=K

(3.9)

for large enough n, which decays exponentially.
Meanwhile, outside A00n, the following sequence of Schottky axes is D1-aligned:

.: : : ; Zk�1n 
0; Z
k�1
n {
1; Z

k�1
n 
1; Z

k�1
n {
0; Z

k
n
0; Z

k
n L
1; : : :/:

Since d.
; 
 0/ is uniformly bounded for 
; 
 0 2 ¹
0; {
0; 
1; {
1; Zn
0º, Lemma 2.7 tells us
that the concatenation of sequences .Zkn
0; Z

k
n {
1; Z

k
n
1; Z

k
n {
0/k2Z is a contracting axis.

Since this axis and the orbit ¹Zknoºk2Z are fellow traveling,Zn is also contracting. Hence,
we have P .Zn is not contracting/ � P .A00n/, which decays exponentially.

The previous proof did not assume that the initial displacement d.o; Zio/ or the
final displacement d.Zn�j o; Zno/ of a random path is shorter than the middle one
d.Zi ; Zn�j o/; indeed, one cannot expect such a phenomenon for high probability if the
random walk has no moment condition. Instead, the proof explicitly used the fact that the
middle segment will catch up the escape rate regardless of the moment condition, which
is proven using the pivoting technique.

In order to discuss the converse of CLT for general measures, one should perform the
pivoting more explicitly. For this purpose, we will recall the basics of the pivotal time
construction in [10].
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4. The second method: Pivoting technique

4.1. Pivotal times and pivoting

This subsection is a summary of results in [10, Subsection 5.1], which is an adaptation
of Gouëzel’s work in [15, Subsection 5.A]; for complete proofs, refer to the explanation
there.

We keep employing Convention 1.1 for the metric space X with basepoint o and the
isometry group G. We fix a fairly long K0-Schottky set S � GM0 with cardinality N0 for
someK0,M0 andN0 > 400. Recall that we have associated an isometry and a contracting
axis for each ˛ 2 S :

….˛/ WD a1a2 � � � an; �.˛/ WD .o; a1o; a1a2o; : : : ;….˛/o/:

We first fix sequences of isometries .wi /1iD0, .vi /1iD1 in G. Then we draw a sequence
of Schottky sequences

s D .˛1; ˇ1; 
1; ı1; : : : ; ˛n; ˇn; 
n; ın/ 2 S4n;

with respect to the uniform measure on S4n and construct words

Wk WD w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �….˛k/….ˇk/vk….
k/….ık/wk :

Following [15], we constructed a setPnDPn.sI .wi /niD0; .vi /
n
iD1/� ¹1; : : : ;nº, called

the set of pivotal times, that satisfies the properties described in Lemmas 4.1, 4.3 and 4.4.
First, pivotal times are (partial) recording of those Schottky axes that are aligned along the
eventual progress.

Lemma 4.1 ([10, Proposition 5.1]). Let s 2 S4n, .wi /niD0 2 G
nC1 and .vi /niD1 2 G

n. Let
us enumerate the elements of Pn.sI .wi /niD0; .vi /

n
iD1/ as ¹i.1/ < � � � < i.m/º and define


4k�3 WD Wi.k/�1 � �.˛i.k//;


4k�2 WD Wi.k/�1….˛i.k// � �.ˇi.k//;


4k�1 WD Wi.k/�1….˛i.k//….ˇi.k//vi.k/ � �.
i.k//;


4k WD Wi.k/�1….˛i.k//….ˇi.k//vi.k/….
i.k// � �.ıi.k//;

for k D 1; : : : ; m. Then .o; 
1; 
2; : : : ; 
4m; Wmo/ is D0-semi-aligned.

Another important feature of the pivotal times is that we are allowed to change our
choices of ˇi ’s, 
i ’s and vi ’s at the pivotal times. To formulate, we define a subset zS of
S2 �G.

Definition 4.2 ([10, Lemma 5.5]). We define

zS WD ¹.ˇ; 
; v/ 2 S2 �G W .�.ˇ/;….ˇ/v….
/o/ and .v�1o; �.
//

are K0-aligned sequencesº:
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Furthermore, we define for each v 2 G its section:

zS.v/ WD ¹.ˇ; 
/ 2 S2 W .�.ˇ/;….ˇ/v….
/o/ and .v�1o; �.
//

are K0-aligned sequencesº:

Motivated by [15, Lemma 4.6], we observed in [10] that # zS.v/ � .#S/2 � 2#S for
each v 2 G. The role of zS is captured by the following.

Lemma 4.3 ([10, Lemma 5.5]). Let s D .˛1; ˇ1; 
1; ı1; : : : ; ˛n; ˇn; 
n; ın/ be a choice
drawn from S4n and w D .wi /niD0; v D .vi /

n
iD1 be auxiliary sequences in G.

Let i 2 Pn.sIw; v/ and let .xs; w;xv/ be obtained from .sIw; v/ by replacing .ˇi ; 
i ; vi /
with some . x̌i ; x
i ; xvi / such that . x̌i ; x
i ; xvi / 2 zS .

Then Pl .sIw; v/ D Pl .xsIw;xv/ for any 1 � l � n.

Given s;xs 2 S4n and G-valued sequences w; v and xv, we say that .xsIw; xv/ is pivoted
from .sIw; v/ if:

• ˛i D x̨i , ıi D xıi for all i 2 ¹1; : : : ; nº,

• . x̌i ; x
i ; xvi / 2 zS for each i 2 Pn.sIw; v/ and

• .ˇi ; 
i ; vi / D . x̌i ; x
i ; xvi / for each i 2 ¹1; : : : ; nº n Pn.sIw; v/.
By Lemma 4.3, being pivoted from each other is an equivalence relation. Using this
fact, we proved in [10] that the set of pivotal times grows linearly to the step number
in probability.

Lemma 4.4 ([10, Corollary 5.8]). Fix w 2GnC1 and v 2Gn. When sD .˛i ;ˇi ; 
i ; ıi /niD1
is chosen from S4n with the uniform measure, #Pn.s/ is greater in distribution than the
sum of n i.i.d. Xi , whose distribution is

P .Xi D j / D

8̂̂<̂
:̂
.N0 � 4/=N0 if j D 1;

.N0 � 4/4
�j =N

�jC1
0 if j < 0;

0 otherwise.

(4.1)

Corollary 4.5. In the setting of Lemma 4.4, for each n we have

P .#Pn.s/ � n=2/ �
�
3 4
p
4=N0

�n
:

Proof. This is a consequence of the Chernoff–Hoeffding-type inequality [17, Theorem 1].
We provide here a version of proof using Chebyshev’s inequality for convenience.
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Let Xi ’s be the RVs in the conclusion of Lemma 4.4. By equation (4.1), we have

E
�p
4=N0

Xi �
D

�
1 �

4

N0

�
�

"s
4

N0
C

1X
jD1

r
N0

4

j

�

� 4
N0

�j#

D

�
1 �

4

N0

�s 4

N0

�
1C

1

1 �
p
4=N0

�
D 2

p
4=N0 C

p
4=N0

2
�
p
4=N0

3
� 3

p
4=N0:

Here, the last inequality is due to the fact
p
4=N0 � 1. Now using the conclusion of

Lemma 4.4 and the independence of Xi ’s, we deduce

E
�p
4=N0

#Pn.s/�
� E

�p
4=N0

Pn
iD1Xi �

D

nY
iD1

E
�p
4=N0

Xi �
�
�
3
p
4=N0

�n
:

By Chebyshev’s inequality, we also have

E
�p
4=N0

#Pn.s/�
� P .#Pn.s/ � n=2/ �

p
4=N0

n=2
:

Combining these two inequalities leads to the desired conclusion.

4.2. Reduction for random walks

In this subsection, we modify random walks onG into a suitable combinatorial model and
then apply pivoting technique. As a result, we obtain a random path which is an alternation
of fixed subsegments and i.i.d. random subsegments, all aligned on X .

Lemma 4.6. Let � be a non-elementary probability measure on G and let S � GM0 be
a fairly long K0-Schottky set for �. Then for each n there exist an integer m.n/, a prob-
ability space �n, a measurable subset Bn � �n, a measurable partition Qn of Bn and
random variables

Z 2 G;

¹wi ; i D 0; : : : ; m.n/º 2 G
m.n/C1;

¹vi W i D 1; : : : ; m.n/º 2 G
m.n/;

¹˛i ; ˇi ; 
i ; ıi W i D 1; : : : ; m.n/º 2 S
4m.n/;

such that the following hold:

(1) limn!C1 P .Bn/ D 1 and limn!C1m.n/=n > 0.

(2) On each equivalence class F 2Qn; .wi /
m.n/
iD0 are constant and .˛i ;ˇi ;
i ;ıi ;vi /

m.n/
iD1

are i.i.d.s distributed according to .uniform measure on S4/ � �.
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(3) Z is distributed according to ��n on �n and

Z D w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �

�….˛m.n//….ˇm.n//vm.n/….
m.n//….ım.n//wm.n/

holds on An.

Proof. Let us denote the uniform measure on S by �S . Since S is a fairly long Schottky
set for �, �S is absolutely continuous with respect to �. Consequently, there exists
0 < p < 1 that admits a decomposition

�4M0C1 D p.�2S � � � �
2
S /C .1 � p/�

for some (non-negative) probability measure �. Let n0 D bn=.4M0 C 1/c.
We consider Bernoulli RVs .�i /1iD0 with average p, .�i /1iD0 with the law�2S ����

2
S

and .�i /1iD0 with the law �, all independent, and define

.g.4M0C1/kC1; : : : ; g.4M0C1/.kC1// D

´
�k when �k D 0;

�k when �k D 1:
.k D 0; : : : ; n0 � 1/:

Let g.4M0C1/n0C1; : : : ; gn be i.i.d.s distributed according to � that are also independent
of .�i ; �i ; �i /n

0�1
iD0 . Then .g1; : : : ; gn/ is distributed according to �n. We denote by �n

the ambient probability space on which .�i ; �i ; �i /i ; .gi /i are all measurable. We set
Z D g1 � � �gn, whose distribution on �n is ��n.

Recall that �i ’s are i.i.d. Bernoulli RVs with average p. Chernoff–Hoeffding’s inequal-
ity implies that P

�Pn0�1
iD0 �i � "n

�
decays exponentially for each 0 < " < p

4M0C1
.

Considering this, we define m.n/ WD bpn=8M0c and

Bn WD

²
! 2 �n W

n0�1X
iD1

�i � m.n/

³
:

The first item of the conclusion follows.
For ! 2 Bn, we collect those indices i at which �i D 1. Then we denote the m.n/

smallest ones among them, in the increasing order, by #.1/; : : : ; #.m.n//. In other words,
¹i W �i .!/ D 1º D ¹#.1/ < #.2/ < � � � < #.m.n// < � � � º. We now define Qn of Bn to be
the partition determined by the values of ¹�i ; �i W i � 0º, and define

wi�1 WD g.4M0C1/Œ#.i�1/C1�C1 � � �g.4M0C1/#.i/ .i D 1; : : : ; m.n//;

wm.n/ WD g.4M0C1/.#.m.n//C1/C1 � � �gn;

˛i WD .g.4M0C1/#.i/C1; : : : ; g.4M0C1/#.i/CM0
/;

ˇi WD .g.4M0C1/#.i/CM0C1; : : : ; g.4M0C1/#.i/C2M0
/;

vi WD g.4M0C1/#.i/C2M0C1;


i WD .g.4M0C1/#.i/C2M0C2; : : : ; g.4M0C1/#.i/C3M0C1/;

ıi WD .g.4M0C1/#.i/C3M0C2; : : : ; g.4M0C1/#.i/C4M0C1/:
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On each equivalence class F of Qn, wi ’s are constants (since these are determined
by the values of ¹�i ; �i W i � 0º) and .˛i ; ˇi ; vi ; 
i ; ıi / are i.i.d.s with distribution
�2S � � � �

2
S . Moreover, on An we have

g1 � � �gn D

m.n/Y
iD1

.g.4M0C1/Œ#.i�1/C1�C1 � � �g.4M0C1/#.i//

� .g.4M0C1/#.i/C1 � � �g.4M0C1/.#.i/C1//

� g.4M0C1/.#.m.n//C1/C1 � � �gn

D w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �

�….˛m.n//….ˇm.n//vm.n/….
m.n//….ım.n//wm.n/:

This is the third item of the conclusion and the proof is completed.

Before the next reduction, we need the following definition.

Definition 4.7. Let n > 0 and K > 0. We say that a sequence .wi /
n
iD0 in G is

K-pre-aligned if, for the isometries W0 WD w0 and

Vk WD Wk�.ˇkC1/vkC1; WkC1 WD Vk�.
kC1/wkC1 .k D 0; : : : ; n � 1/;

the sequence

.o;W0�.ˇ1/; V0�.
1/; : : : ;Wn�1�.ˇn/; Vn�1�.
n/;Wno/

is K-semi-aligned for any choices of .ˇi ; 
i ; vi / 2 zS .i D 1; : : : ; n/.
We say that an isometry � 2 G is K-pre-aligned if

.�.
 0/;….
 0/� � �.ˇ//

is K-semi-aligned for any choices of .ˇ; 
; v/; .ˇ0; 
 0; v0/ 2 zS .

We now describe the alignment of Schottky axes at the pivotal times.

Lemma 4.8. For each integer n, the following holds for m.n/ WD 2b0:25nc.
Let� be a probability measure onG, and let S �GM0 be a fairly longK0-Schottky set

with cardinality N0 � 400. Fix a sequence .wi /niD0 in G, and let .˛i ; ˇi ; 
i ; ıi ; vi /niD1 be
i.i.d.s on .S4 � G/n, distributed according to .uniform measure on S/4 � �. Then there
exist a measurable subset B 0n � .S

4 �G/Z>0 , a measurable partition Q0n of B 0n and RVs

¹w0i ; i D 0; : : : ; m.n/º 2 G
m.n/C1;

¹v0i W i D 1; : : : ; m.n/º 2 G
m.n/;

¹ˇ0i ; 

0
i W i D 1; : : : ; m.n/º 2 S

2m.n/;

such that the following hold:
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(1) P .B 0n/ � 1 �
�
3 � 4
p
4=N0

�n.

(2) On each F 0 2 Q0n, .w0i /
m.n/
iD0 is a fixed D0-pre-aligned sequence in G and

.ˇ0i ; 

0
i ; v
0
i /
m.n/
iD1 are i.i.d.s distributed according to .uniform measure on S2/ � �

conditioned on zS .

(3) On B 0n, we have the equality

w00….ˇ
0
1/v
0
1….


0
1/w

0
1 � � �….ˇ

0
m.n//v

0
m.n/….


0
m.n//w

0
m.n/

D w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �….˛n/….ˇn/vn….
n/….ın/wn:

Proof. Following the discussion in Subsection 4.1, we define

Pn.!/ D Pn..˛i ; ˇi ; 
i ; ıi /
n
iD1I .wi /

n
iD0; .vi /

n
iD1/: (4.2)

We take m.n/ D 2 � b0:25nc and let B 0n WD ¹! 2 � W #Pn.!/ � n=2º. By Corollary 4.5,
we have

P .B 0n/ � 1 �
�
3 � 4
p
4=N0

�n
� 1 �

�
3=
p
10
�n
:

We now define

Wk WD w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �….˛k/….ˇk/vk….
k/….ık/wk

.k D 0; : : : ; n/:

Given ! 2 B 0n with Pn.!/ D ¹i.1/ < i.2/ < � � � < i.m.n// < � � � º, we define

w00 WD Wi.1/�1….˛i.1//; w0m.n/ WD ….ıi.m.n///wi.m.n// �W
�1
i.m.n// �Wn;

w0k WD ….ıi.k//wi.k/ �W
�1
i.k/ �Wi.kC1/�1….˛i.1// .k D 1; : : : ; m.n/ � 1/:

Furthermore, we record the Schottky axes at the pivotal times: We define ˇ0
k
WD ˇi.k/,

v0
k
WD vi.k/ and 
 0

k
WD 
i.k/ for k D 1; : : : ;m.n/. We then observe the following relation:

Wi.kC1/�1….˛i.kC1// D Wi.k/�1….˛i.k// �….ˇi.k//vi.k/ �….
i.k//w
0
k :

By induction, we observe that

w00….ˇ
0
1/v
0
1….


0
1/w

0
1 � � �….ˇ

0
k/v
0
k….


0
k/w

0
k D Wi.kC1/�1….˛i.kC1//

.k D 0; : : : ; m.n/ � 1/;

w00….ˇ
0
1/v
0
1….


0
1/w

0
1 � � �….ˇ

0
m.n//v

0
m.n/….


0
m.n//w

0
m.n/ D Wn

(4.3)

on B 0n, settling item (3) of the conclusion.
We define the measurable partition Q0n of B 0n by pivoting at the first m.n/ pivotal

times. More explicitly, two elements !; !0 2 B 0n belong to the same equivalence class if
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and only if

˛0i .!/ D ˛
0
i .!
0/; ı0i .!/ D ı

0
i .!
0/; w0i .!/ D w

0
i .!
0/ .i 2 ¹0; : : : ; nº/;

Pn.!/ D Pn.!
0/ DW ¹i.1/ < i.2/ < � � � º;

.ˇ0i .!/; 

0
i .!/; v

0
i .!// 2

zS .i 2 ¹i.1/; : : : ; i.m.n//º/;

.ˇ0i .!/; 

0
i .!/; v

0
i .!// D .ˇ

0
i .!
0/; 
 0i .!

0/; v0i .!
0//

.i 2 ¹1; : : : ; nº n ¹i.1/; : : : ; i.m.n//º/:

Lemma 4.3 describes the structure of the equivalence class in Q0n. To elaborate, let us
fix an equivalence class F 0 2 Q0n. Then F 0 is associated with a set of indices Pn.F 0/ D
¹i.1/ < � � � < i.m.n// < � � � º. Moreover, an element ! 2 .S4 � G/n belongs to F 0 if
and only if the following hold:

(I) The following isometries/Schottky sequences coincide with the fixed ones asso-
ciated with F 0:

.w00.!/; ˛
0
1.!/; ˇ

0
1.!/; : : : ; w

0
i.1/�1

.!/; ˛0
i.1/
.!//;

.ı0
i.1/
.!/; w0

i.1/
.!/; : : : ; w0

i.2/�1
.!/; ˛0

i.2/
.!//;

:::

.ı0
i.m.n/�1/

.!/; w0
i.m.n/�1/

.!/; : : : ; w0
i.m.n//�1

.!/; ˛0
i.m.n//

.!//;

.ı0
i.m.n//

.!/; w0
i.m.n//

.!/; : : : ; ı0n.!/; w
0
n.!//:

(II) .ˇ0
i.k/
.!/; 
 0

i.k/
.!/; v0

i.k/
.!// 2 zS for k D 1; : : : ; m.n/.

Moreover, for all ! 2 F 0 we have Pn.!/ D Pn.F 0/.
Item (I) says that .w0

k
/
m.n/

kD0
are constant on F 0. Item (II) says that, on each F 0, the RVs

.ˇ0
k
; 
 0
k
; v0
k
/
m.n/

kD1
are .ˇi.k/; 
i.k/; vi.k//’s restricted on the set ¹.ˇi.k/; 
i.k/; vi.k// 2 zSº.

Hence, .ˇi.k/; 
i.k/; vi.k//
m.n/

kD1
conditioned on F 0 are i.i.d.s whose distribution is the

restriction of .uniform measure on S2/ � �. This establishes item (3) of the conclusion.
Next, Lemma 4.1 tells us that0BBBBBBBBBBBB@

o;Wi.1/�1�.˛i.1//;Wi.1/�1….˛i.1//�.ˇi.1//;Wi.1/�1….˛i.1//….ˇi.1//vi.1/�.
i.1//;

Wi.1/�1….˛i.1//….ˇi.1//vi.1/….
i.1//�.ıi.1//;

Wi.2/�.˛i.2//;Wi.2/�1….˛i.2//�.ˇi.2//;Wi.2/�1….˛i.2//….ˇi.2//vi.2/�.
i.2//;

Wi.2/�1….˛i.2//….ˇi.2//vi.2/….
i.2//�.ıi.2//;
:::

Wi.m.n//�.˛i.m.n///;Wi.m.n//�1….˛i.m.n///�.ˇi.m.n///;

Wi.m.n//�1….˛i.1//….ˇi.m.n///vi.1/�.
i.m.n///;

Wi.m.n//�1….˛i.m.n///….ˇi.m.n///vi.m.n//….
i.m.n///�.ıi.m.n///; : : : ; Wno

1CCCCCCCCCCCCA
is D0-semi-aligned on F 0. As a result, we observe the following: for each F 0 2 Q0n
that comes with the isometries .w0i .F

0//
m.n/
iD0 , and for each ! 2 F 0 that determines

.ˇ0i .!/; 

0
i .!/; v

0
i .!//

m.n/
iD1 ,

.o;W 00�.ˇ
0
1/; V

0
0�.


0
1/; : : : ;W

0
m.n/�1�.ˇ

0
m.n//; V

0
m.n/�1�.


0
m.n//;Wm.n/o/
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is D0-semi-aligned for W 00 WD w0 and

V 0i WD W
0
i �.ˇ

0
iC1/v

0
iC1; W 0iC1 WD V

0
i �.


0
iC1/w

0
iC1 .i D 0; : : : ; m.n/ � 1/:

By item (II), .ˇ0i ; 

0
i ; v
0
i / ranges all over zS for each i D 1; : : : ; m.n/. This implies that

for each F 0, .w0i .F //
m.n/
iD0 is D0-pre-aligned. Since B 0n is composed of these equivalence

classes, we can conclude item (2) of the conclusion.

4.3. Pivoting and self-repulsion

We discuss the heart of this paper, the pivoting for translation length. The ingredient to
begin with is a D0-pre-aligned sequence .wi /niD0 in G. This means that for every choice
of .ˇi ; 
i ; vi / 2 zS for i D 1; : : : ; n the sequence

.o;W0�.ˇ1/; V0�.
1/; : : : ;Wn�1�.ˇn/; Vn�1�.
n/;Wno/

is D0-semi-aligned, where W0 WD w0 and

Vk WD Wk….ˇkC1/vkC1; WkC1 WD Vk….
kC1/wkC1 .k D 0; : : : ; n � 1/: (4.4)

Our aim is to show that Wn is contracting whose axis is fellow traveling with Wk�.ˇk/
and Vk�.
k/ for intermediate k’s. For this let us define

�k D �k..wi /
n
iD0; .ˇi ; 
i ; vi /

n
iD1/

WD .Vn�k….
n�kC1//
�1WnWk�1

D wn�kC1….ˇn�kC2/vn�kC2….
n�kC2/wn�kC2 � � �….ˇn/vn….
n/wn

� w0….ˇ1/v1….
1/w1 � � �….ˇk�1/vk�1….
k�1/wk�1:

Then �k depends only on .wl ; ˇl ; 
l ; vl /’s for 1 � l � k � 1 and n � k C 2 � l � n,
together with w0; wn�kC1. For 1 � k � n=2, we define

S�k WD ¹.ˇk ; 
k/ 2
zS.vk/ W .W

�1
n Vn�k….
n�kC1/o;Wk�1�.ˇk// is K0-alignedº

D ¹.ˇk ; 
k/ 2 zS.vk/ W .�
�1
k o; �.ˇk// is K0-alignedº;

S�n�kC1 WD ¹.ˇn�kC1; 
n�kC1/ 2
zS.vn�kC1/ W .W

�1
n Vn�k�.
n�kC1/;

Wk�1….ˇk/o/ is K0-alignedº

D ¹.ˇn�kC1; 
n�kC1/ 2 zS.vn�kC1/ W .�.
n�kC1/;….
n�kC1/�k….ˇk/o/

is K0-alignedº:

These sets are devised to capture the match between displacement and translation
length.

Lemma 4.9. Let 1� l � k � n=2, let .wi /niD0 be aD0-pre-aligned sequence inG and let
.ˇi ; 
i ; vi /iD1;:::;l;n�lC1;:::;n 2 zS

2l be choices such that

.ˇl ; 
l / 2 S
�
l and .ˇn�lC1; 
n�lC1/ 2 S

�
n�lC1: (4.5)
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Then for any additional choice .ˇi ; 
i ; vi /iDlC1;:::;k;n�kC1;:::;n�l 2 zS2.k�l/, the isometry

�kC1 WD wn�k….ˇn�kC1/vn�kC1….
n�kC1/wn�2kC1 � � �….ˇn/vn….
n/wn

� w0….ˇ1/v1….
1/w1 � � �….ˇk/vk….
k/wk

is a D0-pre-aligned isometry.

Proof. Pick an arbitrary further choice .ˇi ; 
i ; vi / 2 zS for i D k C 1; : : : ; n � k. Recall
again the notation in display (4.4) (with W0 WD w0). For notational purpose, let

�2i�1 D Wi�1�.ˇi /; �2i D Vi�1�.
i / .i D 1; : : : ; n/:

Since .wi /niD0 is a D0-pre-aligned sequence, any subsequence of

.o; �1; : : : ; �2n; Wno/

is D0-semi-aligned.
Meanwhile, W �1n Vn�l….
n�lC1/o is the ending point of W �1n Vn�l�.
n�lC1/ D

W �1n �2.n�l/C2, while Wl�1….ˇl /o is the ending point of Wl�1�.ˇl /o D 
2l�1. Since
we are assuming condition (4.5), Lemma 2.5 tells us that .W �1n �2.n�l/C2; �2l�1/ is
D0-aligned.

Overall, we observe that

.W �1n �2.n�k/; : : : ; W
�1
n �2.n�l/C2; �2l�1; : : : ; �2kC1/

is D0-semi-aligned. This implies that

.W �1n �2.n�k/; �2k�1/

D ..W �1n Vn�k�1/ � �.
n�k/; .W
�1
n Vn�1/ �….
n�k/�kC1 � �.ˇkC1//

is D0-semi-aligned. Recall also that .ˇkC1; 
kC1; vkC1/ and .ˇn�k ; 
n�k ; vn�k/ were
chosen in zX arbitrarily. Hence, we conclude that �k is D0-semi-aligned.

Lemma 4.10. Let 1 � k � n=2, let .wi /niD0 be a D0-pre-aligned sequence in G and let
.ˇi ; 
i ; vi /

n
iD1 2

zSn be choices such that �k is a D0-pre-aligned isometry. Then Wn is a
contracting isometry, and moreover, .�i /i2Z is D0-semi-aligned for the Schottky axes

.�2.n�kC1/tC1; �2.n�kC1/tC2; : : : ; �2.n�kC1/.tC1/�1; �2.n�kC1/.tC1//

WD .W t
nWk�1�.ˇk/;W

t
nWk�1�.
k/; : : : ;W

t
nWn�k�.ˇn�kC1/;W

t
nVn�k�.
n�kC1//

.t 2 Z/:

Proof. Since �k is D0-pre-aligned, we have that

.W �1n Vn�k….
n�kC1/o;Wk�1�.ˇk//; .W �1n Vn�k�.
n�kC1/;Wk�1….ˇk/o/
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is D0-semi-aligned, as well as .�2.n�kC1/t�1; �2.n�kC1/t / for t 2 Z.
Moreover, since .wi /niD0 is also D0-pre-aligned, we have that

.Wk�1�.ˇk/; Vk�1�.
k/; : : : ;Wn�k�.ˇn�kC1/; Vn�k�.
n�kC1//

is D0-semi-aligned. This implies that .�2.n�kC1/tC1; : : : ; �2.n�kC1/.tC1// is D0-aligned
for each t 2 Z. Combining these facts, we conclude that .�i /i2Z is D0-semi-aligned.

Since Schottky axes are K0-contracting and sufficiently long (as described in Defini-
tion 2.8), we can apply Lemma 2.7 to conclude that the concatenation of ¹�2.n�kC1/lºl2Z

is a contracting axis. Since the orbit ¹wloºl2Z is fellow traveling with this concatenation,
w is contracting as desired.

We now estimate the probability for the event described in Lemma 4.9.

Lemma 4.11. Fix .wi /niD0 2 G
nC1 and let 1 � k � n=2. Picking .ˇi ; 
i ; vi /niD1 from zSn,

the condition

.ˇl ; 
l / 2 zS
�
l and .ˇn�lC1; 
n�lC1/ 2 zS

�
n�lC1 for some 1 � l � k (4.6)

depends only on ¹.ˇl ; 
l ; vl / W l D 1; : : : ; k; n � k C 1; : : : ; nº.
Moreover, fixing any choice of ¹vl W l D 1; : : : ; k; n � k C 1; : : : ; nº, the condi-

tion holds for probability at least 1 � .6#S/k with respect to the uniform measure on
zS.v1/ � � � � � zS.vk/ � zSn�kC1.vn�kC1/ � � � � � zS.vn/.

Proof. Recall that �1; : : : ; �k depend only on .ˇi ; 
i ; vi /’s for i D 1; : : : ; k � 1; n � k C
2; : : : ; n. Moreover, condition (4.6) involves �1; : : : ; �k and .ˇi ; 
i / for i D 1; : : : ; k; n�
k C 1; : : : ; n. Combining these leads to the first assertion.

Before proving the second assertion, we observe the following claim.

Claim 2. The following holds true:

(1) For each 1 � l � n=2 and for each choice of

.ˇ1; 
1; : : : ; ˇl�1; 
l�1; ˇn�lC2; 
n�lC2; : : : ; ˇn; 
n/ 2 S
4l�4;

.v1; : : : ; vl ; vn�lC1; : : : ; vn/ 2 G
2l ;

the following holds with respect to the uniform measure on zS.vl /:

P ..ˇl ; 
l / 2 zS.vl / W .�
�1
l o; �.ˇl // is K0-aligned/ � 1 � 3=#S:

(2) For each 1 � l � n=2 and for each choice of

.ˇ1; 
1; : : : ; ˇl ; 
l ; ˇn�lC2; 
n�lC2; : : : ; ˇn; 
n/ 2 S
4l�2;

.v1; : : : ; vl ; vn�lC1; : : : ; vn/ 2 G
2l ;

the following holds with respect to the uniform measure on zS.vn�lC1/:

P
�

.ˇn�lC1; 
n�lC1/ 2 zS.vn�lC1/ W

.�.
n�lC1/;….
n�lC1/�l….ˇl /o/ is K0-aligned

�
� 1 � 3=#S:
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Proof of Claim 2. Recall that �l is determined by .ˇt ; 
t ; vt /’s for t D 1; : : : ; l � 1; n �
l C 2; : : : ; n. With this in mind, the property of the Schottky set S (cf. Definition 2.8)
implies that the condition in item (1) is violated by at most one choice of ˇl 2 S ; for any
other choice of ˇl and for any choice of 
l , the condition holds. Hence, at most #S choices
in S2 � zS.vl / violate the condition. Meanwhile, since # zS.vl / � .#S/2 � 2#S holds for
any vl , we conclude that

P ..ˇl ; 
l / 2 zS.vl / W .�
�1
l o; �.ˇl // is not K0-aligned/ �

#S
.#S/2 � 2#S

�
3#S
.#S/2

:

We similarly deduce item (2), and Claim 2 is now established.

We now prove the second assertion. For this, we first fix ¹vl W l D 1; : : : ; k; n � k C
1; : : : ; nº and define

Ak WD

°
.ˇl ; 
l /

n
lD1 W

.ˇl ; 
l / … S
�
l

or .ˇn�lC1; 
n�lC1/ … S�n�lC1
for each 1 � l � k

±
:

Then Ak � AkC1 holds for each k. Further, the first assertion implies that the member-
ship of .ˇi ; 
i /niD1 in Ak depends only on .ˇi ; 
i / for i D 1; : : : ; k; n � k C 1; : : : ; n.
Finally, for each choice of .ˇi ; 
i /iD1;:::;k�1;n�kC2;:::;n that makes .ˇi ; 
i /niD1 belong to
Ak�1, Claim 2 implies that

P .Ak j ˇ1; 
1; : : : ; ˇk�1; 
k�1; ˇn�kC2; 
n�kC2; : : : ; ˇn; 
n/ � 6=#S:

Summing up these conditional probabilities, we deduce that P .Ak/ � .6=#S/ � P .Ak�1/.
This leads to the conclusion of the lemma.

4.4. Converse of CLT

In this subsection, we prove the converse of CLT. We first assemble Lemmas 4.6, 4.8, 4.9,
and 4.11.

Corollary 4.12. Let � be a non-elementary probability measure on G and let S be a
fairly long K0-Schottky set for � with cardinality at least 400. Then for each n there
exist m.n/ 2 ¹2s W s > 0º, a probability space �n with a measurable subset An � �n, a
measurable partition Pn of An and RVs

Zn 2 G;

¹wi W i D 0; : : : ; m.n/º 2 G
m.n/C1;

¹vi W i D 1; : : : ; m.n/º 2 G
m.n/;

¹ˇi ; 
i W i D 1; : : : ; m.n/º 2 S
2m.n/;

such that the following hold:
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(1) limn!C1 P .An/ D 1 and limn!C1m.n/=n > 0.

(2) On An, .wi /
m.n/
iD0 is a D0-pre-aligned sequence in G and w�1

m.n/
w0 is a D0-pre-

aligned isometry.

(3) On each equivalence class E 2 Pn, .wi /
m.n/
iD0 are constant and .ˇi ; 
i ; vi /

m.n/
iD1

are i.i.d.s distributed according to the measure .uniform measure on S2/ � �
conditioned on zS .

(4) Zn is distributed according to ��n on �n and

Zn D w0….ˇ1/v1….
1/w1 � � �….ˇm.n//vm.n/….
m.n//wm.n/

holds on An.

Proof. Given n > 0, Lemma 4.6 provides an integer N1 D m.n/, a probability space
.�n;P / with a subset B D Bn, a measurable partition Qn D ¹F�º� of Bn, random vari-
ables Zn 2 G, .wi /

N1
iD0 2 G

N1C1, .v00i /
N1
iD1 2 G

N1 and .˛i ; ˇi ; 
i ; ıi /
N1
iD1 2 S

4N1 such that
the following hold:

(1) limn P .B/ D 1 and limn!C1N1=n > 0.

(2) On each equivalence class G
 2 R, .wi /i are constant and .˛i ; ˇi ; 
i ; ıi ; vi /i are
i.i.d.s distributed according to .uniform measure on S4/ � �.

(3) Zn is distributed according to ��n on �n and

Zn D w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �….˛N1/….ˇN1/vN1….
N1/….ıN1/wN1

holds on B D
S
� F� .

Next, we take N2.n/ WD 2b0:25N1c as in Lemma 4.8, with input N1 in place of n.
Since N1 grows linearly, limn N2=n > 0 also holds. We now endow each F� 2 Qn with
the conditional measure P jF� of P .

We note that .wi ; vi ; ˛i ; ˇi ; 
i ; ıi /i satisfy the assumption of Lemma 4.8 on each
F� 2 Qn. For each F� 2 Qn, Lemma 4.8 then provides a measurable subset B 0

�
� F� , a

measurable partition Q0
�
D ¹F 0

� I�
º� of B 0

�
, and RVs .w0i /

N2
iD0; .v

0
i ; ˇ
0
i ; 

0
i /
N2
iD1 on F� such

that the following hold:

(1) P
�
B 0
�

ˇ̌
F�
�
� 1 �

�
3 4
p
4=N0

�N1
� 1 �

�
3=
p
10
�N1 .

(2) On B� we have

Zn D w0….˛1/….ˇ1/v1….
1/….ı1/w1 � � �….˛N1/….ˇN1/vN1….
N1/….ıN1/wN1

D w00….ˇ
0
1/v
0
1….


0
1/w

0
1 � � �….ˇ

0
N2
/v0N2….


0
N2
/w0N2 :

(3) On each F 0
� I�
2 Q0

�
, the sequence .w0i /

N2
iD0 is constant and is D0-pre-aligned,

and the triples .ˇ0i ; 

0
iv
0
i /
N2
iD1 are i.i.d.s distributed according to the restriction of

.uniform measure on S2/ � � to zS .
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We then take B 0 WD
F
� B
0
�

and Q0n WD
F
� Q0

�
. Note that

P .B 0/ D
X
�

P .B 0�
ˇ̌
F�/ � P .F�/ �

�
1 �

�
3=
p
10
�N1�
� P .B/;

and the right-hand side converges to 1 as n tends to infinity; hence, limn P .B 0/ D 1.
We now set m.n/ D 2blog2N2c�1. Note that m.n/ is a power of 2 and N2 � m.n/ is

even. Moreover, we have m.n/ � N2=4 and N2 �m.n/ � N2=2.
We now consider a refinement Q00n of Q0n by first fixing the values of the RVs

¹v0i W i D 1; 2; : : : ; 0:5.N2 �m.n//;N2 � 0:5.N2 �m.n//C 1; : : : ; N2 � 1;N2º:

We also consider a refinement Pn of Q00n by further fixing the values of the RVs

¹ˇ0i ; 

0
i W i D 1; 2; : : : ; 0:5.N2 �m.n//;N2 � 0:5.N2 �m.n//C 1; : : : ; N2 � 1;N2º:

We consider the following property:

P D “.ˇ0l ; 

0
l / 2

zS�l and .ˇ0N2�lC1; 

0
N2�lC1

/ 2 zS�N2�lC1

for some 1 � l � 0:5.N2 �m.n//”:

The first part of Lemma 4.11 implies that, for each E 2 Pn, either P holds on the
entire E or P does not hold on the entire E . The second part of Lemma 4.11 tells us
that P .P j F 00/ � 1 � .6=N0/0:5.N2�m.n// � 1 � .6=N0/N2=4 for each F 00 2 Q00n. If we
take

An WD
[
¹E 2 P W P holds on Eº;

then we get

P .An/ �
X

F 002Q00n

P .P j F 00/ � P .F 00/ � .1 � .6=N0/
N2=4/ � P .B 0n/;

which converges to 1 as n tends to infinity. Item (1) of the conclusion is now proven. By
abuse of notation, from now on, we let Pn be the restriction of Pn on An.

Now, on An we define RVs

w000 WD w
0
0….ˇ

0
1/v
0
1….


0
1/w

0
1 � � �….ˇ

0
k/v
0
k….


0
k/w

0
k ;

w00m.n/ WD w
0
N2�k

….ˇ0N2�kC1/v
0
N2�kC1

….
 0N2�kC1/w
0
N2�kC1

� � �

�….ˇ0N2/v
0
N2
….
 0N2/w

0
N2
;

.v00i ; ˇ
00
i ; 

00
i /
m.n/
iD1 WD .v

0
iCk ; ˇ

0
iCk ; 


0
iCk/

m.n/
iD1 ;

.w00i /
m.n/�1
iD1 WD .w0iCk/

m.n/�1
iD1

�
k WD

N2 �m.n/

2

�
:
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Our goal is to prove that .w00i /
m.n/
iD0 and .ˇ00i ; 


00
i ; v

00
i /
m.n/
iD1 (in place of .wi /

m.n/
iD0 and

.ˇi ; 
i ; vi /
m.n/
iD1 ) satisfy the desired conclusion. First, we have

w000….ˇ
00
1/v
00
1….


00
1 /w

00
1 � � �….ˇ

00
m.n//v

00
m.n/….


00
m.n//w

00
m.n/

D w00….ˇ
0
1/v
0
1….


0
1/w

0
1 � � �….ˇ

0
N2
/v0N2….


0
N2
/w0N2

holds on An by definition, and the right-hand side equals Zn on Bn. This establishes
item (4) of the conclusion.

By definition of Pn, .w00i /
m.n/
iD0 are constant and .ˇ00i ; 


00
i ; v
00
i /
m.n/
iD1 are i.i.d.s distributed

according to .uniform measure on S2/ � � on each E˛ 2 P . Item (3) of the conclusion
follows.

Meanwhile, pick an arbitrary ! 2 An, which determines .w0i /
N2
iD0 and .w00i /

m.n/
iD0 . Since

! belongs toB 0n, .w0i /
N2
iD1 is aD0-pre-aligned sequence. This in turn implies that .w00i /

m.n/
iD0

is also D0-pre-aligned. Moreover, Lemma 4.9 implies that

.w00m.n//
�1
� w000 D

�
�kC1 for .w0i /

N2
iD0 and .ˇ0i ; 


0
i ; ı
0
i /
N2
iD1

�
is a D0-pre-aligned isometry. Item (2) of the conclusion is now established and the proof
is complete.

We now investigate the displacement and the translation length of Zn in Corol-
lary 4.12.

Lemma 4.13. Let S be a fairly long K0-Schottky set for � with cardinality at least 400,
and fix a D0-pre-aligned sequence .wi /niD0 in G. Given .ˇi ; 
i ; vi / 2 zS for i D 1; : : : ; n,
define W0 WD w0 and

Vk WD Wk�.ˇkC1/vkC1; WkC1 WD Vk�.
kC1/wkC1 .k D 0; : : : ; n � 1/;

.x2k�1; x2k/ WD .Wk�1o; Vk�1….
k/o/ .k D 1; : : : ; n/;

x0 WD 0; x2nC1 WD Wno:

Let � be a probability measure on G with infinite second moment, and let .ˇi ; 
i ; vi /niD1
be i.i.d.s distributed according to .uniform measure on S2/ � � conditioned on zS . Then
the following hold:

(1) ¹d.x2l�1; x2l / W l D 1; : : : ; nº are i.i.d.s with infinite second moment, whose
distribution depends on S and � but is independent of wi ’s.

(2) ¹d.x2l ; x2lC1/ W l D 0; : : : ; nº are constant RVs.

(3) For each 0 � i � j � k � 2nC 1, .xi ; xk/xj is bounded by E0.

(4) For each 0 � i � j � k � i 0 � j 0 � k0 � 2nC 1, .xi ; xk/xj and .xi 0 ; xk0/xj 0 are
independent.

Proof. Note that Œx2l�1; x2l �’s are translates of Œo;….ˇl /vl….
l /o�’s, which are i.i.d.s.
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We denote by �S the uniform measure on S . Recall that # zS.v/ � .#S/2 � 2#S holds
for each v 2 G. As a consequence, for each g 2 G we have

0:995 � �.g/ �
.#S/2 � 2#S

.#S/2
�.g/ � .�2S � �/.¹.ˇ; 
; v/ 2

zS W v D gº/ � �.g/:

Also, we have

.�2S � �/.
zS/ �

.#S/2 � 2#S
.#S/2

� 0:995:

Hence, if we denote by �0 the common distribution of vi ’s, then

0:99�.g/ � �0.g/ � 1:01�.g/

holds for each g 2 G. Since � is assumed to have infinite second moment, �0 also has
infinite second moment. Now note that

jd.x2l�1; x2l / � d.o; vlo/j D jd.….ˇl /
�1o; vl….
l /o/ � d.o; vlo/j

� 2max¹d.o;….s/o/ W s 2 Sº:

This implies that d.x2l�1; x2l / also has infinite second moment.
Next, recall that .wi /niD0 is a fixed D0-pre-aligned sequence. Hence, d.x2l ; x2lC1/ D

d.o;wl / is constant. Moreover, the sequence

.o;W0�.ˇ1/; V0�.
1/; : : : ;Wn�1�.ˇn/; Vn�1�.
n�1/;Wno/ (4.7)

is D0-semi-aligned for any choices of .ˇi ; 
i ; vi /’s. Also, note that .x2l�1; x2l / are the
beginning and ending points of the i -th Schottky axes in display (4.7). By Lemma 2.6,
there exist points y1; : : : ; y2n on Œx0; x2nC1�, from left to right, so that d.xi ; yi / � 0:1E0
for i D 1; : : : ; n. It follows that

.xi ; xk/xj � .yi ; yk/yj C 0:15E0 < E0 .i � j � k/:

Finally, for any k 2 ¹0; 1; : : : ; 2nC 1º, the RVs ¹d.xi ; xk/ W i � kº depend only on
the choices of ¹.ˇl ; 
l ; vl / W l � k=2º, while ¹d.xi ; xk/ W i � kº depend on the choices
of ¹.ˇl ; 
l ; vl / W l > k=2º. It follows that the two collections of RVs are independent, and
this settles item (4) of the claim.

Lemma 4.14. Let S be a fairly long K0-Schottky set for � with cardinality at least 400,
and fix a D0-pre-aligned sequence .wi /niD0 in G such that w�1n w0 is a D0-pre-aligned
isometry. Given .ˇi ; 
i ; vi / 2 zS for i D 1; : : : ; n, define x0 WD w�1n o, W0 WD w0 and

Vk WD Wk�.ˇkC1/vkC1; WkC1 WD Vk�.
kC1/wkC1 .k D 0; : : : ; n � 1/;

.x2k�1; x2k/ WD .Wk�1o; Vk�1….
k/o/ .k D 1; : : : ; n/:

Let � be a probability measure on G with infinite second moment, and let .ˇi ; 
i ; vi /niD1
be i.i.d.s distributed according to .uniform measure on S2/ � � conditioned on zS . Then,
in addition to all the conclusions of Lemma 4.13, the following also holds:
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(5) The translation length �.Wn/ and d.x0; x2n/ differ by at most E0.

Proof. The single change is that x0 is now w�1n o instead of o. Since w�1n w0 is assumed
to be D0-pre-aligned, we have that

.w�1n ….
n/
�1�.
n/; w0�.ˇ1// D .W

�1
n Vn�1�.
n/;W0�.ˇ1//

is D0-semi-aligned for any choice of .ˇ1; 
1; v1/; .ˇn; 
n; vn/ 2 zS . Moreover, since
.wi /

n
iD0 is assumed to be D0-pre-aligned, we still have that

.o;W0�.ˇ1/; V0�.
1/; : : : ;Wn�1�.ˇn/; Vn�1�.
n/;Wno/

is D0-semi-aligned for any choices of .ˇi ; 
i ; vi / 2 zS . Combining these, we observe that

.x0; W0�.ˇ1/; V0�.
1/; : : : ;Wn�1�.ˇn/; Vn�1�.
n/;Wno/

is always D0-semi-aligned. Items (1)–(4) of the conclusion follows.
It remains to prove the additional conclusion. For this, define

.�1; �2; : : : ; �2n�1; 
2n/ WD
�
W0�.ˇ1/; V0�.
1/; : : : ;Wn�1�.ˇn/; Vn�1�.
n/

�
(4.8)

and �2ntCk WDW t
n � �k for each t 2 Z and k D 1; : : : ; 2n. Since .�0; �1/ and .�1; : : : ; �2n/

are always D0-semi-aligned, we conclude that .: : : ; ��1; �0; �1; �2; : : :/ is D0-semi-
aligned for any t > 0. At this point, note that W t

nx0 D W
t�1
n Vn�1….
n/o is the ending

point of �2nt for each t . By applying Lemma 2.6 to the D0-semi-aligned sequence

.�0 3 x0; �1; �2; : : : ; �2nt�1; W
t
nx0 2 �2nt /;

we deduce that there exist points y1; : : : ; yt�1 on Œx0; W t
nx0�, in order from closest to

farthest from x0, such that d.W k
n x0; yk/ � 0:1E0 for each k. This implies that

d.x0; W
t
nx0/ D d.x0; y1/C

t�2X
kD1

d.yk ; ykC1/C d.yt�1; W
t
nx0/

� d.x0; Wnx0/C

t�2X
kD1

d.W k
n x0; W

kC1
n x0/C d.W

t�1
n x0; W

t
nx0/ � tE0

� t .d.x0; x2n/ �E0/:

After dividing by t and sending t to infinity, we obtain �.Wn/ � d.x0; x2n/ � E0.
Meanwhile, the triangle inequality implies that

d.x0; W
t
nx0/ �

tX
kD1

d.W k�1
n x0; W

k
n x0/ � td.x0; x2n/

and hence �.Wn/ � d.x0; x2n/. The conclusion is now established.
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We are now ready to prove the following.

Proposition 4.15. Let .X; G; o/ be as in Convention 1.1 and let .Zn/n�0 be the ran-
dom walk on G generated by a non-elementary measure � with infinite second moment.
Then for any sequence .cn/n of real numbers, neither of 1p

n
.d.o; Zno/ � cn/ and

1p
n
.�.Zn/ � cn/ converges in law.

Proof. We follow the proof given in [9, Section 6.1]. Let S be a fairly long K0-Schottky
set for � with cardinality at least 400. Since we are concerned with the distribution of Zn,
we may replace Zn with the one in Corollary 4.12 that is defined on a probability space
�n, constructed together with the integer m.n/, the subset An � �n, partition Pn of An
and the RVs .wi ; vi ; ˇi ; 
i /i .

The idea is to construct the product space �n � P�n with the product measure Pn,
where P�n carries an i.i.d. copy PZn of Zn, as well as the corresponding notions PAn, PPn
and . Pwi ; Pvi ; P̌i ; P
i /i . If 1p

n
d.o; Zno/ � cn converges in law for some sequence .cn/n>0,

the difference with its i.i.d. copy

1
p
n
Œd.o;Zno/ � d.o; PZno/�

also converges in law. We will deduce a contradiction to this convergence.
On An ��n, we defineWi ’s and Vi ’s as in the setting of Lemma 4.13:W0 WD w0 and

Vk WD Wk….ˇkC1/vkC1; WkC1 WD Vk….
kC1/wkC1 .k D 0; : : : ; m.n/ � 1/:

We also define
.x2k�1; x2k/ WD .Wk�1o; Vk�1….
k/o/

for k D 1; : : : ; m.n/ and let x0 WD o, x2m.n/C1 WD Wm.n/o D Zno.
Let E 2 Pn be an arbitrary equivalence class. By item (2) of the conclusion of

Corollary 4.12, conditioned on E , .wi /i are fixed and .ˇi ; 
i ; vi /i are i.i.d.s distributed
according to .uniform measure on S2/ � � conditioned on zS . Moreover, by item (3) of
the conclusion of Corollary 4.12,

.o;W0�.ˇ1/; V0�.
1/; : : : ;Wm.n/�1�.ˇm.n//; Vm.n/�1�.
m.n//;Wm.n/o/

is D0-semi-aligned on E . We then apply Lemma 4.13 to the equality

d.o;Zno/ D

m.n/C1X
iD1

d.x2i�2; x2i�1/„ ƒ‚ …
I1

C

m.n/X
iD1

d.x2i�1; x2i /„ ƒ‚ …
I2

� 2

log2m.n/X
lD0

m.n/=2lX
kD1

.x2l .2k�2/; x2l �2k/x2l .2k�1/„ ƒ‚ …
I3

�2 �.x0; x2�m.n/C1/x2m.n/„ ƒ‚ …
I4

:
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Let Jl WD
Pm.n/=2l

kD1
.x2l .2k�2/; x2l �2k/x2l .2k�1/ be the .l � 1/-th summand of I3. Condi-

tioned on E , Jl is the sum of m.n/=2l independent RVs bounded by E0. By Chebyshev’s
inequality, we have

Pn
�
jJl � EŒJl jE�j � 2

�l=4
� 100E0

p
m.n/ j E

�
�

1

.2�l=4 � 100E0 �
p
m.n//2

Var.Jl j E/

�
2l=2

10000E20m.n/
�
m.n/

2l
�E20 � 10

�4
� 2�l=2:

By summing this probability, we have

Pn
�
jI3 � EŒI3 j E�j > 800E0 �

p
m.n/ j An

�
� 1=2000: (4.9)

Note also I1 is constant on each E 2 Pn and I4 is bounded by E0 on An.
Let us now bring an arbitrary equivalence class PE from the partition PPn. Similarly, we

get

d.o; PZno/ D

2sC1X
iD1

d. Px2i�2; Px2i�1/„ ƒ‚ …
PI1

C

2sX
iD1

d. Px2i�1; Px2i /„ ƒ‚ …
I2

� 2

sX
lD0

2s�lX
kD1

. Px2l .2k�2/; Px2l �2k/ Px2l .2k�1/„ ƒ‚ …
PI3

�2 �. Px0; Px2�2sC1/ Px2�2s„ ƒ‚ …
PI4

:

We have the following (�):

(1) Since the situation is symmetric, for large enough n we have

Pn
�[
¹.E; PE/ 2 Pn � PPn W I1 C EŒI3 j E� � PI1 C EŒ PI3 j PE�º

�
�
1

2
Pn.An � PAn/ � 0:5.1 � Pn.An/ � Pn. PAn// � 0:4:

(2) By inequality (4.9), we have

Pn
�
max.jI3 � EŒI3 j E�j; j PI3 � EŒ PI3 j PE�j/ � 800E0 �

p
m.n/ j E � PE

�
� 1=1000

for each E 2 Pn and PE 2 PPn for all n.

(3) Since I2 � PI2 is a sum ofm.n/ i.i.d.s of symmetric distribution with infinite second
moment, for any K 0 > 0 we have

Pn
�
I2 � PI2 � K

0
p
m.n/ j E � PE

�
� 1=5

for each E 2 P and PE 2 PP for sufficiently large n.
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(4) I4 and PI4 are bounded by E0 on An � PAn.

Let C WD limnm.n/=n > 0. The four items in .�/ imply that for eachK 0 > 10000E0, for
large enough n, we have

d.o;Zno/ � d.o; PZno/ � K
0
p
m.n/ � 1600E0

p
m.n/ � 2E0 � 0:25K

0
p
Cn

with probability at least 0:4 � .1=5 � 1=1000/ � 0:05. Hence, we have

lim inf
n

Pn
� 1
p
n
.d.o;Zno/ � d.o; PZno// � 0:25K

0
p
C
�
� 0:05 .8K 0 > 10000E0/:

This contradicts to the convergence of 1p
n
Œd.o;Zno/ � d.o; PZno/� in law.

We now derive a contradiction to the convergence in law of 1p
n
Œ�.Zn/ � �. PZn/�.

We again prepare the outputs of Corollary 4.12, namely m.n/; �n; An, Pn, .wi /
m.n/
iD0 ,

.ˇi ; 
i ; vi /
m.n/
iD1 and their independent copies. Given these ingredients, we then define

.Wi ; Vi /
m.n/�1
iD0 and .xi /

2m.n/
iD1 as before, and let x0 WD w�1m.n/o.

This time, Lemma 4.14 tells us that

�.Zn/ D d.x0; x2n/C Œ�.Zn/ � d.x0; x2n/�

D

m.n/C1X
iD1

d.x2i�2; x2i�1/„ ƒ‚ …
I1

C

m.n/X
iD1

d.x2i�1; x2i /„ ƒ‚ …
I2

� 2

log2m.n/X
lD0

m.n/=2lX
kD1

.x2l .2k�2/; x2l �2k/x2l .2k�1/„ ƒ‚ …
I3

C .�.Zn/ � d.x0; x2m.n///„ ƒ‚ …
I4

:

Here, I1; I2; I3 and I4 satisfy the exact same properties as before. Hence, we observe
the same consequences as in .�/. This leads to the same contradiction to the conver-
gence in law of 1p

n
Œ�.Zn/ � �. PZn/�. Hence, for any choice of the sequence .cn/n>0,

1p
n
.�.Zn/ � cn/ cannot converge in law.

4.5. Pivoting and repulsion among independent random walks

In this subsection, we consider two random walks .Z.1/n /n and .Z.2/n /n generated by non-
elementary measures �.1/ and �.2/ on G. Let S .1/ and S .2/ be fairly long K0-Schottky
sets for �.1/ and �.2/. We define the subset zS .t/ following Definition 4.2, with S .t/ in
place of S .

We first fixD0-semi-aligned sequences .w.t/i /
n
iD0 in G for t D 0; 1. Given the choices

of .ˇ.t/i ; 

.t/
i ; v

.t/
i / 2

zS .t/ for i D 1; : : : ; n, we defineW .t/
i ’s, V .t/i ’s as before:W .t/

0 WDw
.t/
0

and
V
.t/

k
WD W

.t/

k
….ˇ

.t/

kC1
/v
.t/

kC1
; W

.t/

kC1
WD V

.t/

k
….


.t/

kC1
/w

.t/

kC1
:
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This time, we want not only that W .t/
n and .W .t/

n /�1 head in different directions for
t D 1; 2, but also that the directions made by W .1/

n , W .2/
n , .W .1/

n /�1, .W .2/
n /�1 are all

distinct. For this purpose, we define the following:

(1) (front-front repulsion) For each 1 � k � n=2, we let

�
.1;2/;front
k

WD .W
.2/

k�1
/�1 �W

.1/

k�1

D .w
.2/

k�1
/�1.….


.2/

k�1
//�1 � � � .w

.2/
0 /�1 � w

.1/
0 ….ˇ

.1/
1 / � � �w

.1/

k�1
;

zS
.1;2/;front
k

WD ¹.ˇ
.1/

k
; 

.1/

k
/ 2 zS .1/.v

.1/

k
/ W ..�

.1;2/;front
k

/�1o; �.ˇ
.1/

k
// is K0-alignedº;

zS
.2;1/;front
k

WD ¹.ˇ
.2/

k
; 

.2/

k
/ 2 zS .2/.v

.1/

k
/ W .�

.1;2/;front
k

….ˇ
.1/

k
/o; �.ˇ

.2/

k
// is K0-alignedº:

(2) (back-back repulsion) For each 1 � k � n=2, we let

�
.1;2/;back
k

WD .V
.2/

n�k
….


.2/

n�kC1
//�1W .2/

n � .W .1/
n /�1V

.1/

n�k
….


.1/

n�kC1
/

D w
.2/

n�kC1
….ˇ

.2/

n�kC2
/ � � �w.2/n � .w

.1/
n /�1.….
 .1/n //�1 � � � .w

.1/

n�kC1
/�1;

zS
.1;2/;back
k

WD

²
.ˇ
.1/

n�kC1
; 

.1/

n�kC1
/ 2 zS .1/.v

.1/

n�kC1
/ W

.�.

.1/

n�kC1
/;….


.1/

n�kC1
/ � .�

.1;2/;back
k

/�1o/ is K0-aligned

³
;

zS
.2;1/;back
k

WD

²
.ˇ
.2/

n�kC1
; 

.2/

n�kC1
/ 2 zS .2/.v

.2/

n�kC1
/ W

.�.

.2/

n�kC1
/;….


.2/

n�kC1
/�
.1;2/;back
k

.….

.1/

n�kC1
//�1 � o/ is K0-aligned

³
:

(3) (front-back repulsion) For each s; t 2 ¹1; 2º and 1 � k � n=2, we let

�
.s;t/;mixed
k

WD .V
.t/

n�k
….


.t/

n�kC1
//�1W .t/

n �W
.s/

k�1

D w
.t/

n�kC1
….ˇ

.t/

n�kC2
/ � � �w.t/n � w

.s/
0 ….ˇ

.s/
1 / � � �w

.s/

k�1
;

zS
.s;t/;!

k
WD

²
.ˇ
.s/

k
; 

.s/

k
/ 2 zS .s/.v

.s/

k
/ W

..�
.s;t/;mixed
k

/�1o; �.ˇ
.s/

k
// is K0-aligned

³
;

zS
.s;t/; 

k
WD

²
.ˇ
.t/

n�kC1
; 

.t/

n�kC1
/ 2 zS .t/.v

.t/

n�kC1
/ W

.�.

.t/

n�kC1
/;….


.t/

n�kC1
/�
.s;t/;mixed
k

….ˇ
.s/

k
/ � o/ is K0-aligned

³
:

We now establish an analog of Lemma 4.9.

Lemma 4.16. Let 1 � k � n. Let .w.0/i /niD0 and .w.1/i /niD0 be D0-pre-aligned sequences
in G. Let .ˇ.t/i ; 


.t/
i ; v

.t/
i /iD1;:::;k;n�kC1;:::;n 2 .

zS .t//2k for t D 1; 2 be choices such that

.ˇ
.1/

k
; 

.1/

k
/ 2 zS

.1;2/;front
k

\ zS
.1;1/;!

k
\ zS

.1;2/;!

k
;

.ˇ
.2/

k
; 

.2/

k
/ 2 zS

.2;1/;front
k

\ zS
.2;1/;!

k
\ zS

.2;2/;!

k
;

.ˇ
.1/

n�kC1
; 

.1/

n�kC1
/ 2 zS

.1;2/;back
k

\ zS
.1;1/; 

k
\ zS

.2;1/; 

k
;

.ˇ
.2/

n�kC1
; 

.2/

n�kC1
/ 2 zS

.1;2/;back
k

\ zS
.2;1/; 

k
\ zS

.2;2/; 

k
:

(4.10)

Then for any further choices .ˇ.t/i ; 

.t/
i ; v

.t/
i /iDkC1;:::;n�k 2 .

zS .t//2.n�k/ for t D 1;2,W .1/
n

and W .2/
n are contracting isometries that generate a free group of order 2. Moreover, the
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orbit map is a quasi-isometric embedding of hW .1/
n ; W

.2/
n i into a quasi-convex subset

of X .

Proof. Recall the following notation: Given a path � D .x0; x1 : : : ; xm/, we defined its
reversal by

x� WD .xm; xm�1; : : : ; x0/:

For convenience, let us define �.t/ WDW .t/

k�1
�.ˇ

.t/

k
/ and let x�.t/ be its reversal for s D 1; 2.

Also, let �.t/ WD .W .t/
n /�1Vn�k�.


.t/

n�kC1
/ and let x�.t/ be its reversal.

By Lemma 2.5, the assumption of the lemma implies that the following sequences of
Schottky axes are K0-aligned:

.x�.1/; �.2//; .�.1/; x�.1//; .�.1/; �.1//;

.�.2/; �.1//; .�.1/; �.2//; .�.2/; �.2//:

Moreover, since .w.t/i /
n
iD0’s are D0-pre-aligned, we have that

.o; �.t/; W
.t/
n �.t/; W

.t/
n o/ .t 2 ¹1; 2º/

is D0-semi-aligned.
We now prove that the orbit map from hW .1/

n ;W
.2/
n i to X is bi-Lipschitz and the orbit

set is quasi-convex. It is clear that the map is max.d.o; W .1/
n o/; d.o; W

.2/
n o//-Lipschitz.

We define

K1 WD min¹diam.�.1/ [W .1/
n �.1//; diam.�.2/ [W .2/

n �.2//º �E0;

K2 WD 4
X
t2¹1;2º

.diam.�.t/; o/C diam.�.t/o/C diam.�.t/ [W .t/
n �.t//CE0/:

Since �.1/ and �.2/ are both fairly long Schottky axes, we have diam.�.1//; diam.�.2// �
10E0 and consequently K1 is positive.

The conclusion is established once we show that

d.o; a1 � � � amo/ � mK1;

Œo; a1 � � � amo� � NK2.¹o; a1o; a1a2o; : : : ; a1 � � � amoº/
(4.11)

for each m and each choice of a1; : : : ; am 2 ¹W
.1/
n ;W

.2/
n ; .W

.1/
n /�1; .W

.2/
n /�1º such that

ai ¤ a�1iC1 for each i . Let us show this for the choice a1a2a3 D W
.1/
n .W

.2/
n /�1W

.1/
n

as an example; the same argument applies to all other cases. Combining the alignment
mentioned above, we deduce that�

o; �.1/; W
.1/
n �.1/; W

.1/
n x�.2/; W

.1/
n .W

.2/
n /�1x�.2/; W

.1/
n .W

.2/
n /�1�.1/;

W
.1/
n .W

.2/
n /�1W

.1/
n �.1/; W

.1/
n .W

.2/
n /�1W

.1/
n o

�
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isD0-semi-aligned. By Lemma 2.6, there exist disjoint subsegments Œx1; y1�, : : : , Œx6; y6�
of Œo; W .1/

n .W
.2/
n /�1W

.1/
n o�, in order from closest to farthest from o, that 0:1E0-fellow

travel with �.1/; : : : ; W
.1/
n .W

.2/
n /�1W

.1/
n �.1/, respectively. In particular, we deduce that

d.x1; y2/ � diam.�.1/ [W .1/
n �.1// �E0;

d.x3; y4/ � diam.W .1/
n x�.2/ [W

.1/
n .W .2/

n /�1x�.2// �E0

D diam.�.2/ [W .2/
n �.2// �E0;

d.x5; y6/ � diam.W .1/
n .W .2/

n /�1�.1/ [W
.1/
n .W .2/

n /�1W .1/
n �.1// �E0

D diam.�.1/ [W .1/
n �.1// �E0:

Since d.o; W .1/
n .W

.2/
n /�1W

.1/
n o/ is greater than d.x1; y2/C d.x3; y4/C d.x5; y6/, we

can conclude the first inequality in display (4.11). Moreover, note that

d.x2; W
.1/
n o/ � diam.�.1/o [ o/CE0;

d.x4; W
.1/
n .W .2/

n /�1o/ � diam.�.1/o [ o/CE0:

Now for each point y on Œo; x2�, we have

d.y;W .1/
n o/ � d.o; x2/C d.x2; W

.1/
n o/

� .diam.o [ �.1//C diam.�.1/ [W .1/
n �.1//CE0/

C .diam.�.1/o [ o/CE0/ � K2:

Similarly, for any point y on Œx2; x4�, we have

d.y;W .1/
n .W .2/

n /�1o/

� d.x2; x4/C d.x4; W
.1/
n .W .2/

n /�1o/

� diam.o [ �.1//C diam.o [ �.2//C diam.�.2/ [W .2/
n �.2//C 2E0

C diam.�.2/o [ o/CE0 � K2:

For a similar reason, Œx4; W
.1/
n .W

.2/
n /�1W

.1/
n o� is contained in the K2-neighborhood of

W
.1/
n .W

.2/
n /�1W

.1/
n o. This settles the second line of display (4.11).

We now establish an analog of Lemma 4.11.

Lemma 4.17. Let 1 � k � n=2, let .w.t/i /
n
iD1 2 G

nC1 and let .ˇ.t/i ; 

.t/
i ; v

.t/
i /

n
iD1 2

zS
.t/
n

for t D 1; 2. Then condition (4.10) depends only on ¹.ˇ.t/
l
; 

.t/

l
; v
.t/

l
/ W l D 1; : : : ; k; n �

k C 1; : : : ; n; t D 1; 2º.
Moreover, fixing any choice of ¹v.t/

l
W l D 1; : : : ; k; n � k C 1; : : : ; n; t D 1; 2º, the

condition holds for probability at least 1 � .10#S .1//k � .10#S .2//k with respect to the
uniform measures on zS .t/.vl / for t D 1; 2 and for l D 1; : : : ; k; n � k C 1; : : : ; n, all
independent.



Random walks and contracting elements II 1411

Proof. Note that the statement

.ˇ
.1/

k
; 

.1/

k
/ 2 S

.1;2/;front
l

\ zS
.1;1/;!

k
\ zS

.1;2/;!

k
(4.12)

is really a condition for ˇ.1/
k

that involves �.1;2/;front
k

, �.1;1/;mixed
k

and �.1;2/;mixed
k

, which
depend only on ˇ.t/

l
and 
 .t/

l
for l D 1; : : : ; k � 1; n � k C 2; : : : ; n and for t D 1; 2.

Fixing a choice of .ˇ.1/
k
; 

.1/

k
/ satisfying condition (4.12), the statement

.ˇ
.2/

k
; 

.2/

k
/ 2 S

.2;1/;front
l

\ zS
.2;1/;!

k
\ zS

.2;2/;!

k
(4.13)

is now a condition for ˇ.2/
k

that is determined only by ˇ.t/
l

and 
 .t/
l

for l D 1; : : : ; k �

1; n � k C 2; : : : ; n and for t D 1; 2, and ˇ.1/
k

. Fixing a .ˇ.2/
k
; 

.2/

k
/ further, the condition

.ˇ
.1/

n�kC1
; 

.1/

n�kC1
/ 2 zS

.1;2/;back
k

\ zS
.1;1/; 

k
\ zS

.2;1/; 

k
(4.14)

then depends on ˇ.t/
l

and 
 .t/
l

for l D 1; : : : ; k � 1; n� k C 2; : : : ; n and for t D 1; 2, and
the choice of ˇ.1/

k
, ˇ.2/
k

. Fixing a .ˇ.1/
n�kC1

; 

.1/

n�kC1
/, finally, the condition

.ˇ
.2/

n�kC1
; 

.2/

n�kC1
/ 2 zS

.1;2/;back
k

\ zS
.2;1/; 

k
\ zS

.2;2/; 

k
(4.15)

depends on ˇ.t/
l

and 
 .t/
l

for l D 1; : : : ; k � 1; n � k C 2; : : : ; n, t D 1; 2 and ˇ.1/
k

, ˇ.2/
k

,


.1/

n�kC1
. Combining these four statements leads to the first assertion.

The second assertion is proven analogously to the proof of Lemma 4.11; we sketch
the necessary ingredients here. Fixing an arbitrary choice of

¹ˇ
.t/
i ; 


.t/
i ; v

.t/
i W i D 1; : : : ; k � 1; t D 1; 2º;

note that condition (4.12) is asking the alignment of ˇ.1/
k

with three other fixed isometries.
The property of the Schottky set S .1/ (cf. Definition 2.8) tells us that such alignments are
realized by all but at most three choices of ˇ.1/

k
2 S .1/. This implies that at most 3#S .1/

choices in .S .1//2 � zS .1/.v.1/
k
/ violate the condition. This implies that

P ..ˇ.1/
k
; 

.1/

k
/ 2 zS .1/.v

.1/

k
/ violates condition (4.12) j

ˇ
.t/
i ; 


.t/
i ; v

.t/
i W i D 1; : : : ; k � 1; t D 1; 2/

�
3#S .1/

.#S .1//2 � 2#S .1/
�

5#S .1/

.#S .1//2
:

For a similar reason, we can prove that the probabilities of violating conditions (4.13),
(4.14) and (4.15) are at most 5=#S .2/, 5=#S .1/ and 5=#S .2/, respectively. Combining
these, we can deduce

P .condition (4.10) violated at step k j condition (4.10) violated till k � 1/

�
10

#S .1/
C

10

#S .2/
:

By induction, we can conclude the second assertion.
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Recall that we have implemented pivotal times for random walks in Corollary 4.12.
Following this idea, and also by combining Lemmas 4.11 and 4.16, we deduce the
following corollary.

Corollary 4.18. Let .X; G; o/ be as in Convention 1.1 and .Z.1/n /n>0; .Z
.2/
n /n>0 be two

independent random walks generated by a non-elementary measure � on G. Then there
exists K > 0 such that the following holds outside a set of probability Ke�n=K .

The n-th step isometries Z.1/n , Z.2/n arising from two random walks generate a free
group of order 2. Moreover, the orbit map is a quasi-isometric embedding of hZ.1/n ; Z

.2/
n i

into a quasi-convex subset of X .

It is not difficult to consider k independent random walks; the arguments are identical.
Hence, we conclude Theorem D.

5. Effective estimates for translation length

In this section, we establish an effective version of Corollary 4.12 that will be used for the
counting problem.

We will employ Schottky sets to construct the generating set S 00. For this we introduce
a notation. Given a set of sequences S � Gn, we define

ˆ.S4/ WD ¹….s1/….s2/….s3/….s4/ W s1; s2; s3; s4 2 Sº:

Applying the map ˆ to S4 does not erase any information because of the following.

Lemma 5.1. Let S be a fairly long Schottky set. Then the map ˆ is a bijection between
S4 and ˆ.S4/.

Proof. This is a consequence of Lemma 5.2.

One technicality is that ˆ.S4/ cannot be a symmetric subset of G for any Schottky
set S . (This is due to our choice of property (4) of Schottky sets.) To get around this tech-
nicality, we introduce another notation. Given a sequence ˛ D .a1; : : : ; an/ 2 Gn, let us
denote the sequence .a�1n ; : : : ; a�11 / by ˛�1. For a set S � Gn, we define

{S WD ¹˛�1 W ˛ 2 Sº D ¹.a�1n ; : : : ; a�11 / W .a1; : : : ; an/ 2 Sº:

Lemma 5.2. Let k 2Z>0 and let S be a fairly long Schottky set. Let ˛i 2 S and "i 2 ¹˙1º
for i D 1; : : : ; k. Suppose that there does not exist i such that ˛i D ˛iC1 and "i"iC1 D�1
simultaneously holds. Then:

(1) the sequence of Schottky axes

.�.˛
"1
1 /;….˛

"1
1 /�.˛

"2
2 /; : : : ;….˛

"1
1 / � � �….˛

"k
k�1

/�.˛
"k
k
//

is D0-aligned, and
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(2) ….˛"11 / � � �….˛
"k
k
/ is a non-trivial isometry.

Proof. Let ˛ 2 S and " 2 ¹˙1º. Then

diam.��.˛"/.….˛"/o/ [ o/ D diam.….˛"/o [ o/ � 10E0 > K0

holds, which means that

˛ … ¹ˇ 2 S W .….˛/o; �.ˇ// is K0-alignedº;

˛ … ¹ˇ 2 S W .�.ˇ/;….ˇ/….˛�1/o/ is K0-alignedº:

By property (4) of Schottky sets (cf. Definition 2.8), we deduce that .�.ˇ/;….ˇ/….˛"/o/

and .….˛"/o; �.ˇ// are K0-aligned sequences for each ˇ 2 S n ¹˛º. The latter statement
means that .�.ˇ�1/;….ˇ�1/….˛"/o/ is K0-aligned. (�)

Now for each i , we have the following cases:

(I) ˛i ¤ ˛iC1. In this case, .�.˛"ii /; ….˛
"i
i /….˛

"iC1
iC1 /o/ is K0-aligned due to (�).

Moreover, .….˛"ii /o; ….˛
"i
i /�.˛

"iC1
iC1 // is 0-aligned. This is because ….˛"ii /o

projects onto ….˛"ii /�.˛
"iC1
iC1 / 3 ….˛

"i
i /o at itself.

Now by Lemma 2.5, .�.˛"ii /;….˛
"i
i /�.˛

"iC1
iC1 // is D0-aligned.

(II) ˛i D ˛iC1: Then "i D "iC1, and the sequence

.�.˛
"i
i /;….˛

"i
i /�.˛

"i
i //

is D0-aligned, thanks to property (5) of Schottky sets.

Combining these stepwise D0-alignment, we conclude item (1).
For convenience, we denote ….˛"11 / � � �….˛

"k
k
/ by w. By Lemma 2.6, we know that

Œo; wo� contains disjoint subsegments that 0:1E0-fellow travel with suitable translates of
�.˛

"1
1 /; : : : ; �.˛

"k
k
/, respectively. Recall that these Schottky axes have diameter at least

10E0. Hence, we have

d.o;wo/ �

� kX
iD1

d.o;….˛
"k
k
/o/

�
� 0:2.k � 1/E0 � 5E0k:

In particular, w is non-trivial and item (2) follows.

Lemma 5.3. Let S � Gn be a set of sequences in G and let K0 > 0. Then the following
hold:

(1) ˆ. {S4/ consists of the inverses of elements of ˆ.S4/.

(2) S is a fairly long K0-Schottky set if and only if {S is.

(3) If S is a fairly long Schottky set, then ˆ. {S4/ and ˆ.S4/ are disjoint.

Proof. (1) This follows from the definition of {S and {S4.
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(2) Let S be a fairly long K0-Schottky set. Note the following equivalence for each
˛ 2 Gn and x 2 X :

�.˛/ is K0-contracting, �.˛�1/ is K0-contracting;

d.o;….˛/o/ > 10E0, d.o;….˛�1/o/ > 10E0;

.x; �.˛//, .�.˛/;….˛/x/ are K0-aligned, .x; �.˛�1//; .�.˛�1/;….˛�1/x/

are K0-aligned;

.�.˛/;….˛/�.˛// is K0-aligned, .�.˛�1/;….˛�1/�.˛�1// is K0-aligned:

This implies that changing an element ˛ 2 S with ˛�1 does not affect the Schottky-
ness of S . By converting all the elements into their inverses, we conclude that {S is also
K0-Schottky.

(3) If sD .˛1; ˛2; ˛3; ˛4/ 2 S4 and s0 D .{̨1; {̨2; {̨3; {̨4/ 2 {S4 have the sameˆ-values,
then we have

id D ˆ.s/ �ˆ.s0/�1 D ….˛1/ � � �….˛4/ �….{̨�14 / � � �….{̨�11 /: (5.1)

Here, ˛i ’s and {̨�1i ’s are all elements of S . With this, equation (5.1) contradicts
Lemma 5.2.

We are now ready to state and proved modified versions of Lemma 4.6 and Corol-
lary 4.12.

Lemma 5.4. For each 0 < q < p < 1, there exists a constant " D ".p; q/ > 0 such that
the following holds.

Let S �GM0 be a fairly longK0-Schottky set and let � be a probability measure onG
such that

� � p � .uniform measure on ˆ.S4/ [ˆ. {S .4///:

Then for each n there exist a probability space �n, a measurable subset Bn � �n, a
measurable partition Qn of Bn and RVs

¹wi W i D 0; : : : ; m.n/º 2 G
m.n/C1;

� 2 ¹S; zSº; .m.n/ WD b"nc/

¹˛i ; ˇi ; 
i ; ıi W i D 1; : : : ; m.n/º 2 �4m.n/

such that the following hold:

(1) P .Bn/ � 1 � .1 � q/n holds for each n.

(2) On each equivalence class F 2 Qn, the isometries .wi /
m.n/
iD0 and the Schottky

set � are constant, and .˛i ; ˇi ; 
i ; ıi /
m.n/
iD1 are i.i.d.s distributed according to the

uniform measure on �4.
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(3) The RV

w0….˛1/….ˇ1/….
1/….ı1/w1 � � �….˛m.n//….ˇm.n//….
m.n//….ım.n//wm.n/

is distributed according to ��n on �n.

Proof. Let �1 be the uniform measure on ˆ.S .4// and �2 be the uniform measure on
ˆ. {S .4//. Recall that ˆ.S4/ and ˆ. {S4/ are disjoint by Lemma 5.3 (3). Hence, we have a
decomposition

� D p

�
1

2
�1 C

1

2
�2

�
C .1 � p/�:

Consider:

• Bernoulli random variables .�i /i�0 with average p,

• Bernoulli random variables .�i /i�0 with average 1=2,

• G-valued random variables .�i /i�0 with the law �1,

• G-valued random variables .{�i /i�0 with the law �2 and

• G-valued random variables .�i /i�0 with the law �,

all independent. We then define

gk D

8̂̂<̂
:̂
�k when �k D 0;

�k when �k D 1 and �k D 0;

{�k when �k D 1 and �k D 1:

Then gk’s are i.i.d. distributed according to �. Setting m.n/ suitably, we define

Cn D

²
! W

nX
kD1

�k.1 � �k/ � m.n/

³
; {Cn D

²
! W

nX
kD1

�k�k � m.n/

³
:

Note that Cn and {Cn are determined by the values of ¹�k ; �kºk . Moreover, the values of
¹�k ; �kºk>0 determine the indices i 2 ¹1; : : : ; nº such that �i D 1 and �i D 0, and for
each ! 2 Cn we can gather the m.n/ smallest such positive indices and label them by
#.1/ < � � � < #.m.n//. For each ! 2 {Cn, we analogously define {#.1/ < � � � < {#.m.n// to
be the m.n/ smallest indices i such that �i D 1 and �i D 1.

Now on Cn, we declare � WD S and let Q
.1/
n be the measurable partition determined

by the values of ¹�k ; �k ; �kºk>0 as well as ¹�k W k > #.m.n//º. We then define

wi�1 WD g#.i�1/C1 � � �g#.i/�1 .i D 1; : : : ; m.n//;

wm.n/ WD g#.m.n//C1 � � �gn;

.˛i ; ˇi ; 
i ; ıi / WD ˆ
�1.g#.i// .i D 1; : : : ; m.n//:
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Then on each equivalence class in Q
.1/
n , wi ’s are fixed and .˛i ; ˇi ; 
i ; ıi / are uniformly

distributed on S4m.n/. Moreover, on Bn we have

g1 � � �gn D w0….˛1/….ˇ1/….
1/….ı1/w1 � � �

�….˛m.n//….ˇm.n//….
m.n//….ım.n//wm.n/: (5.2)

Similarly, on {Cn n Cn, we first declare � WD {S and let Q
.2/
n be the measurable partition

determined by the values of ¹�k ; �k ; �kºk>0 as well as ¹{�k W k > {#.m.n//º. We then define

wi�1 WD g{#.i�1/C1 � � �g{#.i/�1 .i D 1; : : : ; m.n//;

wm.n/ WD g{#.m.n//C1 � � �gn;

.˛i ; ˇi ; 
i ; ıi / WD ˆ
�1.g{#.i// .i D 1; : : : ; m.n//:

Then on each equivalence class in Q
.2/
n , wi ’s are fixed and .˛i ; ˇi ; 
i ; ıi / become

i.i.d. distributed according to the uniform measure on {S4. Moreover, equation (5.2) still
holds on {Cn. These constructions realize items (1) and (2) of the conclusion on the set
Bn WD Cn [ {Cn.

Finally, we define wi ’s and ¹˛i ; ˇi ; 
i ; ıiº arbitrarily on .Cn [ {Cn/c so that equa-
tion (5.2) still holds. Since g1 � � � gn is distributed according to �n, we conclude item (3)
of the conclusion.

It remains to precisely choose " andm.n/. Note that
Pn
kD1 �k < 2m.n/ holds outside

Cn [ {Cn. Chernoff–Hoeffding’s inequality as in [17, Theorem 1] tells us that

P

� nX
kD1

�k � 2"n

�
�

�
f ."/ WD

� p
2"

�2"
�

� 1 � p
1 � 2"

�1�2"�n
:

Since lim"!0 f ."/ D 1 � p is smaller than 1 � q, we can pick small " so that
P
�Pn

kD1 �k � 2"n
�
� .1 � q/n holds. By setting m.n/ D b"nc, we arrive at the desired

conclusion.

Recall that we obtained Corollary 4.12 by combining Lemmas 4.6, 4.8, 4.9 and 4.11.
By replacing Lemma 4.6 with Lemma 5.4, we obtain the following.

Corollary 5.5. For each 0 < q < p < 1, there exist a constant " D ".p; q/ > 0 and
M DM.p; q/ > 0 such that the following hold.

Let S � GM0 be a fairly long K0-Schottky set with cardinality N0 > M . Let � be a
probability measure on G such that

� � p � .uniform measure on ˆ.S4/ [ˆ. {S .4///:
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Then for each n there exist an integer m.n/, a probability space �n with a measurable
subset An � �n, a measurable partition Pn of An and RVs

Zn 2 G;

� 2 ¹S; {Sº;

¹wi W i D 0; : : : ; m.n/º 2 G
m.n/C1;

¹ˇi ; 
i W i D 1; : : : ; m.n/º 2 S
2m.n/

such that the following hold:

(1) P .An/ > 1 � 3 � .1 � q/n and m.n/ > "n for eventual n.

(2) On An, .wi /
m.n/
iD0 is a D0-pre-aligned sequence in G and w�1

m.n/
w0 is a D0-pre-

aligned isometry.

(3) On each E 2 Pn, .wi /
m.n/
iD0 and � are constant and .ˇi ; 
i /

m.n/
iD1 are i.i.d.s

distributed according to the uniform measure on z�.id/.

(4) Zn is distributed according to ��n on �n and

Zn D w0….ˇ1/v1….
1/w1 � � �….ˇm.n//vm.n/….
m.n//wm.n/

holds on An.

Proof. First, given the inputs p and q, Lemma 5.4 provides the constant "1 D ".p; q/,
and we set " D 0:01"1. Now for each n with N1 WD b"1nc, Lemma 5.4 also provides a
probability space �n with a subset B D Bn, a measurable partition Qn of Bn, a ran-
dom fairly long K0-Schottky set � 2 ¹S; {Sº of cardinality N0, random variables Zn 2 G,
.wi /

N1
iD0 2 G

N1C1 and .˛i ; ˇi ; 
i ; ıi /
N1
iD1 2 �4N1 such that the following hold:

(1) Pn.B/ � 1 � .1 � q/n.

(2) On each F 2 Qn, the sequence .wi /
N1
iD0 and the Schottky set � are constant and

.˛i ; ˇi ; 
i ; ıi /i are i.i.d.s distributed according to the uniform measure on �4.

(3) Zn is distributed according to ��n on �n and

Zn D w0….˛1/….ˇ1/….
1/….ı1/w1 � � �….˛N1/….ˇN1/….
N1/….ıN1/wN1

holds on B .

Now, as we did in the proof of Corollary 4.12, we apply Lemma 4.8; this time, it is with
the input probability Diracid in place of �, with the input Schottky set � in place of S ,
and with the input integer N1 in place of n. As a result, we obtain N2 D 2b0:25N1c.
Just as in the proof of Corollary 4.12, we obtain a measurable set B 0 with measurable
partition Q0 and RVs .w0i ; ˇ

0
i ; 

0
i /i such that the following hold:

(1) B 0 has probability at least
�
1�

�
3 4
p
4=N0

�N1�
�P .B/�

�
1�

�
3 4
p
4=N0

�N1�
� .1�

.1 � q/n/.
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(2) On B 0, we have

Zn D w
0
0….ˇ

0
1/….


0
1/w

0
1 � � �….ˇ

0
N1
/….
 0N2/w

0
N2
:

(3) On each F 0 2 Q0, .w0i /
N2
iD0 is a fixed D0-pre-aligned sequence in G for � and

.ˇ0i ; 

0
i /
N2
iD1 are i.i.d.s distributed according to the uniform measure on z�.id/.

Finally, by setting m.n/ WD 2blog2N2c�1 � N2=4 and by considering the refinement
of Q0 as in the proof of Corollary 4.12, we can realize items (2)–(4) of the conclusion on
a subset An of B such that

P .An/ � .1 � .6=N0/
N2=4/ � P .B 0/:

Moreover, note thatm.n/�N2=4�N1=5� "n for large enough n, which establishes the
latter half of item (1) of the conclusion.

At this point, by requiring

N0 > M WD max
��

34 � 4

.1 � q/4

�4="1
;

�
6

1 � q

�8="1�
C 1;

we conclude

P .An/ � 1 � .1 � q/
n
� .3 4

p
4=N0/

N1 � .6=N0/
N2=4 � 1 � 3 � .1 � q/n

for large enough n. This settles item (1) of the conclusion.

We now combine Corollary 5.5 with Lemma 4.10. Note that onAn, .wi /
m.n/
iD0 is always

aD0-pre-aligned sequence and �1 WDw�1m.n/w0 is aD0-pre-aligned isometry. Lemma 4.10
then implies the following on An:

Zn D w0….ˇ1/….
1/w1 � � �….ˇm.n//….
m.n//wm.n/

is a contracting isometry, and moreover, there exist Schottky axes �1; : : : ; �2m.n/ such that

.: : : ; Z�1n �1; : : : ; Z
�1
n �2m.n/; �1; : : : ; �2m.n/; Zn�1; : : : ; Zn�2m.n/; : : :/

is D0-semi-aligned, and such that .o; �1; �2m.n/; Zno/ is also D0-semi-aligned. Then
Lemma 2.6 implies that for each j , Œo; Zjno� contains 2m.n/ � j disjoint subsegments,
each 0:1E0-fellow traveling with some Zln�i .l D 0; : : : ; j � 1; i D 1; : : : ; 2m.n//. This
implies that

d.o;W
j

m.n/
o/ �

2m.n/X
iD1

j�1X
lD0

.diam.Zln�i / � 0:2E0/ � 5E0m.n/:

As a consequence, we obtain the following corollary.
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Corollary 5.6. For each 0 < q < p < 1, there exist a constant " D ".p; q/ > 0 and
M DM.p; q/ > 0 such that the following holds.

Let S � GM0 be a fairly long K0-Schottky set with cardinality N0 > M . Let � be a
probability measure on G such that

� � p � .uniform measure on ˆ.S4/ [ˆ. {S .4///;

and let .Zn/n>0 be the random walk generated by �. Then

P .Znis a contracting element with �.Zn/ � 5E0"n/ � 1 � 3.1 � q/n

holds for large enough n.

6. Counting problem

We now present a quantitative version of the main theorem in [11].

Theorem 6.1 (Translation length grows linearly). Let .X; G/ be as in Convention 1.1.
Then for each � > 1, there exists �0 > 0 satisfying the following. Let G be a finitely gen-
erated non-elementary subgroup of Isom.X/ and S 0 �G be a finite symmetric generating
set.

Then there exist a subset S 00 ofG containing S 0 such that #S 00 � .1C �/#S 0C �0 and
a constant K > 0 such that for each large n we have

#¹g 2 BS 00.n/ W g is not contracting or �X .g/ � Knº
#BS 00.n/

� Ke�n=K :

Proof. First note that we can replace any finite symmetric generating set S 0 with S 0 [ ¹idº
and then find S 00, at the cost of increasing �0 by 1. For this reason, we from now on assume
that S 0 contains id.

The assumption � > 1 implies that �
1C�

> 1=2, so we can take parameters q and p
such that 1=2 < q < p < �

1C�
. Take " D ".p; q/ and M DM.p; q/ as in Corollary 5.6.

Note that the function f .x/ WD x
xC1

is strictly increasing on the positive reals and
limx!C1 f .x/ D 1. Meanwhile, note the equivalence

p.1C �/ < �, p < �.1 � p/,
p

�.1 � p/
< 1:

Since we took p < �
1C�

, there exists some �0 >M 4 such that f
�
4
p
�0
�
> 4
p
p=�.1 � p/.

Furthermore, since 1=2p is also smaller than 1, we can further require that f
�
4
p
�0 � 1

�
>

4
p
1=2p.

Using Lemma 2.9, we take a fairly long Schottky set S in G with cardinality

N0 D max
��

4

r
1

2
�#S 0

�
;
4
p
�0

�
:
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Let K0 be the Schottky parameter of S and D0;D1; E0 be the associated constants.
Note that

2N 4
0 � 2max

�
1

2
�#S 0; �0

�
� �#S 0 C �0:

Meanwhile, using the monotonicity of f .x/ D x
xC1

, we deduce

N 4
0

.N0 C 1/4
D .f .N0//

4
�
�
f
�
4
p
�0
��4
�

p

�.1 � p/
: (6.1)

.N0 � 1/
4

N 4
0

D .f .N0 � 1//
4
�
�
f
�
4
p
�0 � 1

��4
� 1=2p: (6.2)

Note that inequality (6.1) implies

2N 4
0 D 2.N0 C 1/

4
�

N 4
0

.N0 C 1/4
� �#S 0 �

p

�.1 � p/
�

p

1 � p
#S 0:

With these estimates, we set S 00 D S 0 [ ˆ.S4/ [ ˆ. {S4/, which is still a symmetric
set. Moreover, we have

#S 00 � #S 0 C 2.#S/4 D #S 0 C 2N 4
0 � .1C �/#S

02
C �0

and
#.ˆ.S4/ [ˆ. {S4//

#S 00
D
2N 4

0

#S 00
�

2N 4
0

2N 4
0 C #S 0

�
1

1C 1�p
p

D p:

This implies that the uniform measure � on S 00 satisfies the assumption of Corollary 5.6.
At this moment, let

An D ¹g 2 G W g is contracting and �.g/ � 5E0"nº:

Then Corollary 5.6 tells us that, for large enough n, the n-th step Zn of the �-random
walk is in An except for probability at most 3.1 � q/n.

Meanwhile, each element g 2 BS 00.id; n/ arises as an n-th step Zn of the �-random
walk, with probability at least .#S 00/�n. Hence, we have

#.BS 00.id; n/ nAn/ �
P .Zn … An/

.#S 00/�n
� 3.#S 00/n.1 � q/n:

Meanwhile, let ˛1; : : : ; ˛4n of S be such that ˛i ¤ ˛iC1 for i D 1; : : : ; 4n � 1, and let
"1; : : : ; "n 2 ¹1;�1º. Lemma 5.2 (2) guarantees that the isometries

4nY
iD1

….˛
"di=4e
i / D ….˛

"1
1 / � � �…

�
˛
"1
4

�
�….˛

"2
5 / � � �….˛

"2
8 / � � �….˛

"n
4n�3/ � � �….˛

"n
4n/



Random walks and contracting elements II 1421

are distinct for different choices of such ..˛i /4niD1; ."j /
n
jD1/’s. All these isometries are

contained in BS 00.id; n/. The number of such elements is at least

.#S � 1/4n � 2n D 2n.N0 � 1/4n D
�
2N 4

0

#S 00
� .#S 00/ �

�
N0 � 1

N0

�4�n
�

�
p �

1

2p
� .#S 00/

�n
: (* inequality (6.2))

Hence, for large enough n we have

#.BS 00.id; n/ nAn/

#BS 00.id; n/
�
3.1 � q/n.#S 00/n

.1=2/n.#S 00/n
D 3 � .2.1 � q//n:

This decays exponentially since 1 � q < 1=2 as desired.

Using a similar argument that involves pivoting for quasi-isometric embedding of k
independent random walks (Lemmas 4.16 and 4.17), we can deduce the following version
of Theorem E.

Theorem 6.2. For each k 2 Z>0 and � > 1, there exists �0 > 0 satisfying the following.
LetG be a finitely generated non-elementary subgroup of Isom.X/ and S 0 �G be a finite
symmetric generating set.

Then there exists a set S 00 � S 0 of G with #S 0 � .1C �/#S 0 C �0 such that for all
k-tuples .g1; : : : ; gk/ of elements in BS 00.n/ except an exponentially decaying proportion,
hg1; : : : ; gki is quasi-isometrically embedded into a quasi-convex subset of X .
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