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Quasi-countable inverse semigroups as metric spaces, and
the uniform Roe algebras of locally finite inverse

semigroups

Yeong Chyuan Chung, Diego Martínez, and Nóra Szakács

Abstract. Given any quasi-countable, in particular, any countable inverse semigroup S , we intro-
duce a way to equip S with a proper and right subinvariant extended metric. This generalizes the
notion of proper, right invariant metrics for discrete countable groups. Such a metric is shown to
be unique up to bijective coarse equivalence of the semigroup, and hence depends essentially only
on S . This allows us to unambiguously define the uniform Roe algebra of S , which we prove can be
realized as a canonical crossed product of `1.S/ and S . We relate these metrics to the analogous
metrics on Hausdorff étale groupoids. Using this setting, we study those inverse semigroups with
asymptotic dimension 0. Generalizing results known for groups, we show that these are precisely
the locally finite inverse semigroups and are further characterized by having strongly quasi-diagonal
uniform Roe algebras. We show that, unlike in the group case, having a finite uniform Roe algebra is
strictly weaker and is characterized by S being locally L-finite, and equivalently sparse as a metric
space.

1. Introduction

Large-scale geometry (or coarse geometry) is, roughly speaking, the study of metric
spaces viewed from afar, that is, two spaces that look the same from a great distance are
considered equivalent. The idea was already present in classical results such as Mostow’s
rigidity theorem [18] and Wolf’s work on growth of groups [31] and has more recently
played a key role in the study of finitely generated groups as metric spaces.

Finitely generated discrete groups are naturally equipped with a metric called the word
metric, which is defined as the path metric in (any of) their Cayley graphs. The large-scale
geometry of this metric is group invariant and is closely tied to the algebraic properties
of the group. In the early 1990s, Gromov initiated a programme for the systematic study
of large-scale properties of finitely generated groups [9,10] which led to the development
of geometric group theory and has applications to topology and index theory [23, 32], as
well as operator algebras and noncommutative geometry [33, 34].

The idea that groups can be viewed as metric spaces generalizes to countably gen-
erated groups. The necessary properties of the metric that ensure it is connected to the
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algebraic structure of the group are right invariance, that is, d.g; h/ D d.gx; hx/ for
every g; h; x 2 G, and properness, meaning every ball of finite radius is finite. It is a clas-
sical result of Birkhoff and Kakutani from the 1930s that any first countable Hausdorff
topological group is metrizable, and the metric can be chosen to be right invariant, and
Struble [28] observed that if the group is locally compact and second countable, the met-
ric is also proper. In particular, countable discrete groups can be equipped with a proper,
right invariant metric. Dranishnikov and Smith [6] observe that this metric is unique up to
bijective coarse equivalence, which allows them to unambiguously define the asymptotic
dimension of non-finitely generated subgroups of finitely generated groups. Other well-
studied large-scale properties, such as amenability, property A, or coarse embeddability
into a Hilbert space, also naturally generalize to this setting.

Motivated by index theory on manifolds, Roe introduced two C*-algebras associated
with metric spaces [23], now called the Roe algebra and the uniform Roe algebra, which
capture the large-scale geometry of the space. If the metric space comes from a countable
group, the uniform Roe algebra can also be constructed as a crossed product from the right
action of the group on itself. This provides a three-way interplay between group theory,
large-scale geometry and operator algebras, which lies at the heart of the research on the
coarse Baum–Connes conjecture and the Novikov conjecture [32–34].

In the past few years, some of the ideas above have been extended from groups to
inverse semigroups [8, 16], one of the most important generalizations of groups. These
are the semigroups where each element s has a unique inverse s� such that ss�s D s and
s�ss� D s�. They originally emerged in the 1950s as the algebraic abstraction of par-
tial symmetries, and an extensive theory of abstract inverse semigroups was developed in
the following decades (see [11] and references therein). At the same time, inverse semig-
roups kept appearing in various guises all over mathematics: In the context of C*-algebras,
tilings, model theory, linear logic and combinatorial group theory [11, 13], among others.
Constructing C*-algebras from inverse semigroups has become a central theme in operator
algebras [7].

Equipping inverse semigroups with a word metric comes with several technical
caveats. The main difficulties are that multiplication in inverse semigroups is typically
not cancellative, and the Cayley graph of an inverse semigroup may not be strongly con-
nected; in particular, edges do not necessarily come in inverse pairs. As an extreme case,
the inverse semigroup may have a 0, which is a sink reachable from every vertex. However,
for finitely generated inverse semigroups, considering the path metric on the strong com-
ponents of the Cayley graph and defining different components to be at infinite distance
apart yield an extended metric that is naturally connected to properties of the semigroup
[8,16]. Moreover, the uniform Roe algebra C �u .S; d/ associated with this extended metric
space can also be obtained as a crossed product from the right action of the semigroup on
itself [16], and large-scale invariant amenability-type conditions (such as domain meas-
urability and property A, see [1, 16]) correspond to C*-properties of the uniform Roe
algebra.
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In this paper, our goal is to extend this approach to countable inverse semigroups as
was done in the group case by equipping them with a metric in a coarse unique way, and
study inverse semigroups with asymptotic dimension 0 from both an algebraic and C*
point of view.

To define the metric, the first step is to find the analogous properties to right invari-
ance and properness in the inverse semigroup settings. Right invariance itself cannot be
assumed – going back to the extreme case when S has a zero element 0 2 S , it would
imply d.s; t/ D d.s0; t0/ D 0 for all pairs s; t 2 S . Hence, right invariance is replaced by
right subinvariance, meaning we assume d.sx; tx/ � d.s; t/ for all s; t; x 2 S .

It is easy to see that this condition reduces to right invariance when S happens to
be a group. Defining properness is a bit more subtle, and we will leave its discussion to
Definition 3.1, where all these notions are introduced. For now, let us record the following
theorem, which is one of the main contributions of the paper.

Theorem 1 (See Theorem 3.23). Let S be an inverse semigroup. Then the following
statements are equivalent:

(1) S is quasi-countable, that is, there is some countable F � S such that S D
hF [Ei, where E is the set of idempotents of S .

(2) S admits a proper and right subinvariant uniformly discrete extended metric
whose components are exactly the L-classes.

Moreover, such a metric is unique up to bijective coarse equivalence.

In particular, the above theorem provides an essentially unique metric to any countable
inverse semigroup. It is worth mentioning that these metrics correspond to coarse metrics
on the universal groupoid of S in the sense of Ma and Wu [17], who define length func-
tions on locally compact étale Hausdorff groupoids. In Subsection 3.5, we give a detailed
discussion of these topics; see Theorem 3.36 for a precise relationship between the metrics
studied in this text and those of [17].

Before recording more contributions of the paper, we would like to highlight the free-
dom that working with inverse semigroups entails. The following theorem shows that any
metric space can appear as some L-class of some countable inverse semigroup.

Theorem 2 (See Theorem 3.24). Let .X; dX / be an infinite non-extended metric space of
bounded geometry. Then there is a countable inverse semigroup S and an L-class L � S
such that .L; dS / is bijectively coarsely equivalent to .X; dX /, where dS is any proper
and right subinvariant metric on S .

Extending the analogous result of [16], we prove in Theorem 4.3 that the uniform Roe
algebra associated with a proper and right subinvariant metric can also be recovered from
the natural left action of the semigroup on itself.
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Theorem 3 (See Theorem 4.3). Let S be a quasi-countable inverse semigroup, and let d
be a proper and right subinvariant metric on S . Then, `1.S/ Ìr S and C �u .S; d/ are
�-isomorphic as C*-algebras, where the action of S on `1.S/ is the canonical action by
left-translation.

Using this framework, we then characterize inverse semigroups with asymptotic
dimension 0. Asymptotic dimension was introduced by Gromov as a large-scale invariant
notion of dimension and is analogous to Lebesgue’s covering dimension of a topological
space. Of particular interest to us are those inverse semigroups S such that .S; d/ has
asymptotic dimension 0. For countable groups, [25] shows asymptotic dimension 0 to be
equivalent to being locally finite, and [24] shows this is equivalent to its uniform Roe
algebra being finite, which [14] shows to be equivalent to several other properties of the
C*-algebra, including being quasi-diagonal or stably finite.

We investigate the relationship between these notions in the more general setting of
inverse semigroups. In Theorem 5.12, we show that like in the group case, asymptotic
dimension 0 is equivalent to local finiteness. However, when it comes to the C*-algebraic
results, the characterizations change. Asymptotic dimension 0 corresponds to the uniform
Roe algebra being local AF, or equivalently, strongly quasi-diagonal. The C*-algebraic
conditions seen for groups are strictly weaker in this setting, and in Theorem 5.14 are
shown to be equivalent to the metric being sparse, and the inverse semigroup being locally
L-finite.

Theorem 4 (See Theorem 5.12). Let S be a quasi-countable inverse semigroup equipped
with its unique proper and right subinvariant metric d . The following statements are
equivalent:

(1) S is locally finite.

(2) .S; d/ has asymptotic dimension 0.

(3) C �u .S; d/ is local AF.

(4) C �u .S; d/ is strongly quasi-diagonal.

Theorem 5 (See Theorem 5.14). Let S be a quasi-countable inverse semigroup equipped
with its unique proper and right subinvariant metric d . The following statements are
equivalent:

(1) S is locally L-finite.

(2) .S; d/ is sparse.

(3) C �u .S; d/ is quasi-diagonal.

(4) C �u .S; d/ is stably finite.

(5) C �u .S; d/ is finite.

The interest of the latter theorems lies in the observation that quasi-diagonality, as a
property of C*-algebras, is, generally speaking, poorly understood. It is a very powerful
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tool to study the structure of a C*-algebra that imposes strong conditions, but we do not
have many ways to check whether a given C*-algebra is quasi-diagonal or not. In partic-
ular, observe that the groundbreaking results of [30] do not apply here, since the uniform
Roe algebras we study are almost never separable.

We end the introduction with an account of how the text is organized. Section 2 col-
lects all the background notions needed throughout the text about inverse semigroups,
coarse geometry or C*-algebras. Section 3 then introduces when a metric is proper and
right subinvariant and proves Theorem 1 (see Theorem 3.23), and in Subsection 3.4 we
prove Theorem 2 (see Theorem 3.24). Section 4 then introduces the uniform Roe algebra
of S and proves Theorem 3 (see Theorem 4.3). Lastly, in Section 5 we characterize those
inverse semigroups of asymptotic dimension 0, proving Theorem 4 (see Theorem 5.12).

Conventions. We consider all maps to be left maps and compose them left to right.
Throughout the text, S will be a quasi-countable inverse semigroup (unless otherwise spe-
cified), and its meet-semilattice of idempotents shall be E. By a metric, we will always
mean an extended metric.

2. Preliminaries

In this section, we collect all the necessary background for the text. Given that our work
lies in the intersection of operator algebras, large-scale geometry and inverse semigroups,
we provide an introduction to all three so that the paper is accessible to researchers with
any of these backgrounds.

2.1. C*-algebras and approximation properties

We begin by giving a brief introduction to C*-algebras, focusing on the finiteness notions
we use in the paper. We refer the reader to [19] for a comprehensive introduction to
operator algebras; the finiteness properties can be found in [3].

A Banach algebra is an associative algebra which is a Banach space, that is, equipped
with a complete submultiplicative norm. A C*-algebra is a Banach algebra A over the
field of complex numbers, together with an involution x 7! x� such that

.x C y/� D x� C y�I .xy/� D y�x�I

.�x/� D �x�I kxx�k D kxk2

for all x;y 2A and � 2C. The canonical example is the C*-algebra B.H/ of all bounded
linear operators on a Hilbert space H , where x� is the adjoint of x. Note that, in the
finite-dimensional case, these are just full matrix algebras. An important example for us is
B.`2.X//, where `2.X/ is the Hilbert space of square-summable functions from X to C.
In this text, we also are only concerned with C*-algebras which are unital.

Any finite-dimensional C*-algebra is isomorphic to some finite sumMn1 ˚ � � � ˚Mnk

for some n1; : : : ; nk 2 N, where Mni
denotes the full matrix algebra of size ni -by-ni .
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Within C*-algebra literature (see, e.g., [3]) it is often interesting to see which C*-algebras
behave similarly to finite-dimensional C*-algebras and which do not. Following Dede-
kind’s definition of a finite set, we say that a unital C*-algebra A is infinite if it has a
proper isometry, that is, there is some v 2 A such that v�v D 1 and vv� < 1. Likewise,
we say A is finite if it is not infinite. Lastly, we say that A is stably finite ifMn.A/ is finite
for every n 2 N, where Mn.A/ denotes the C*-algebra formed by the n-by-n matrices
whose entries lie in A.

Even though stably finite C*-algebras behave in a similar manner to finite-dimensional
ones, we shall need other stronger notions of finiteness. The following notions are well
known, and their importance has recently been made explicit in relation to the so-called
classification programme (see [30] and the references therein).

Definition 2.1. Let A be a C*-algebra, and let � � B.H / be a set of operators:

(1) We say � is a quasi-diagonal set of operators if for all finite F b �, " > 0 and
v1; : : : ; vk 2 H there is a finite rank orthogonal projection p 2 B.H / such that
kp! � !pk � " for all ! 2 F and kpvi � vik � " for all i D 1; : : : ; k.

(2) We say A is quasi-diagonal if there is a faithful representation � WA ! B.H /

whose image �.A/ is a quasi-diagonal set of operators.

(3) We say A is strongly quasi-diagonal if every quotient of A is a quasi-diagonal
C*-algebra.

Lastly, we still need yet another form of finiteness within the C* literature. The fol-
lowing are the strongest notions of finiteness we have seen so far, as any AF algebra (or
local AF algebra) is automatically quasi-diagonal.

Definition 2.2. Let A be a C*-algebra:

(1) We say A is an AF algebra (or AF for short) if there is an increasing sequence
of finite-dimensional subalgebras Bn � A with dense union, that is, A is the
norm-closure of

S
n2N Bn.

(2) We say A is locally finite-dimensional (or local AF for short) if for every
a1; : : : ; ak 2 A and " > 0 there is a finite-dimensional subalgebra B � A and
b1; : : : ; bk 2 B such that kai � bik � " for every i D 1; : : : ; k.

AF algebras are always separable, that is, they have a countable dense subset. How-
ever, the class of C*-algebras that are of interest to us, namely uniform Roe algebras, are
almost never separable (as we discuss in the end of Subsection 2.2), and hence are almost
never AF. The notion of local AF algebras intends to correct this handicap. Furthermore,
note that, in general, AF algebras are local AF; local AF algebras are strongly quasi-
diagonal, which implies quasi-diagonal. Likewise, quasi-diagonal C*-algebras are stably
finite, and hence also finite. In particular, if a C*-algebra A contains a non-unitary iso-
metry v 2 A, that is, 1D v�v > vv�, then A cannot be quasi-diagonal (a proof of this fact
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can be found, for instance, in [3, Proposition 7.1.15]). None of the reverse implications
hold in general.

2.2. Coarse geometry and uniform Roe algebras

In this subsection, we introduce the relevant notions concerning coarse geometry and uni-
form Roe algebras. A comprehensive introduction to the topic is [20]. As outlined in
the introduction, we will be working with extended metric spaces rather than just metric
spaces, and (unlike in the standard literature) all notions are introduced in this setting.
Recall that an extended metric d on a set X is a map d WX �X ! Œ0;1� that is reflexive,
symmetric and satisfies the triangle inequality. In an extended metric space, being finite
distance apart is an equivalence on the points, and the corresponding equivalence classes
will be referred to as components.

Since we deal with extended metrics throughout the paper, for convenience we will
always tacitly assume all metric spaces to be extended unless otherwise stated.

Definition 2.3. Let .X; d/ be a metric space:

(1) .X; d/ is uniformly discrete if there is a uniform constant c such that 0 < c <

d.x; y/ for every pair x; y 2 X with x ¤ y.

(2) .X;d/ is of bounded geometry if it is uniformly discrete and supx2X jBr .x/j<1

for every r > 0, where Br .x/ D ¹y 2 X j d.x; y/ � rº.

Likewise, we say d is uniformly discrete (resp. of bounded geometry) when .X; d/ is
uniformly discrete (resp. of bounded geometry).

For example, finitely generated groups (or indeed, finitely generated inverse semig-
roups) are uniformly discrete (extended) metric spaces of bounded geometry with the
word metric.

The following definition makes the idea of two metric spaces having the same large-
scale geometry precise. In Gromov’s foundational work on the large-scale geometry of
finitely generated groups [10], coarse equivalence is one of the definitions of large-
scale equivalence considered. For finitely generated groups (and more generally, for
quasi-geodesic spaces), the notion of being quasi-isometric is equivalent, but in general,
quasi-isometry is strictly stronger, and too strong for the countably generated setting.

Definition 2.4. Let .X; dX / and .Y; dY / be metric spaces. A map f WX ! Y is called a
coarse embedding if there are non-decreasing functions ��; �CW Œ0;1�! Œ0;1� such that
��1
C .1/ D ¹1º, ��.r/!1 when r !1 and

��
�
dX .x; y/

�
� dY

�
f .x/; f .y/

�
� �C

�
dX .x; y/

�
for all x; y 2 X .

If, moreover, there exists k � 0 such that the k-neighbourhood of f .X/ is Y , then f
is called a coarse equivalence.
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Notice that the conditions ensure that any coarse embedding respects components, that
is, dX .x; y/ D 1 if and only if dY .f .x/; f .y// D 1. While it is not obvious from the
definition, coarse equivalence is in fact an equivalence relation.

Given a metric space .X; d/ of bounded geometry, we can define its uniform Roe
algebra in the following way (see [23] for a more comprehensive discussion). If t 2
B.`2.X// is an operator, we say its propagation is

prop.t/ WD inf
®
r � 0 such that htıx ; ıyi D 0 whenever d.x; y/ > r

¯
;

that is, if we see t as an X -by-X matrix, then its entries are 0 outside of a band of
radius prop.t/ around the diagonal. The uniform Roe algebra of .X; d/, introduced by
Roe in [22], is the C*-subalgebra C �u .X; d/ of B.`2.X// generated by the operators of
finite propagation, which form a non-closed *-subalgebra.

Note that we can consider `1.X/, the set of all bounded functions X ! C as a sub-
set of B.`2.X//, as these act linearly by pointwise multiplication on `2.X/; furthermore,
they all have propagation 0. Therefore, we always have that `1.X/ is a C*-subalgebra
of C �u .X; d/ and, hence, since `1.X/ is non-separable as soon as X is infinite, so will
C �u .X; d/ be non-separable.

Lastly, recall that C �u .S; d/ is a bijective coarse invariant of the space. Indeed, if
'W .X; d/ ! .Y; d 0/ is a bijective coarse equivalence, then C �u .X; d/ Š C �u .Y; d

0/. In
order to prove this, note that we may define a unitary operator uW `2.X/ ! `2.Y / by
uıx WD ı'.x/. It is then routine to show that the map a 7! uau� defines a *-isomorphism
between Cu.X; d/ and C �u .Y; d

0/.

2.3. Inverse semigroups

In this section, we give a quick overview of inverse semigroups. We refer the reader to [11]
for a comprehensive introduction, or to [12] for a more concise one.

A semigroup S is said to be inverse if each element s 2 S admits a unique inverse
s� 2 S with the properties

ss�s D s and s�ss� D s�:

Groups, in particular, are inverse semigroups, but in an inverse semigroup, ss� and s�s
are typically not identity elements and are typically distinct from each other. We do how-
ever have .s�/� D s and .st/� D t�s�, which shows similarity with the �-operation in
C*-algebras.1 Semilattices, that is, commutative semigroups where every element is an
idempotent, are also inverse semigroups, with every element being its own inverse.

The canonical example of an inverse semigroup is the symmetric inverse semigroup
	X on a set X : This consists of all bijections between subsets of X (including the empty

1In the inverse semigroup literature, the inverse is usually denoted by �1. The � notation is more com-
mon where inverse semigroups are used to generate C*-algebras, as in these constructions, the inverse in
the semigroup does correspond to the * operation in the algebra.
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map), which forms a semigroup under the usual composition of partial maps (i.e., com-
posing on the largest possible domain), and the inverse of a map is just the usual inverse
mapping. In particular, if ' 2 	X , then '�' is the identity map on the domain of ',
whereas ''� is the identity map on its range (we work with left maps in the paper). The
common cardinality of the domain and range of ' is called its rank.

Analogously to groups, each inverse semigroup can be represented in a symmetric
inverse semigroup. The (left) Wagner–Preston representation of S maps s to �s 2 	S ,
where �s W s

�S ! sS; x 7! sx. This also allows us to represent S in the �-algebra
B.`2.S// of bounded linear operators on `2.S/:

vs W `
2.S/! `2.S/; vs.f /.t/ D

´
f .�s�.t// if t 2 sS;

0 if t … sS:
(2.1)

An inverse monoid is an inverse semigroup that has an identity element. For example,
the symmetric inverse semigroup is also an inverse monoid with the identity map. Not all
inverse semigroups are monoids; however, any inverse semigroup S can be turned into an
inverse monoid S1 by adjoining an external identity, that is, S1 D S t ¹1º where 1 acts
as an identity element, and multiplication is otherwise inherited from S . This allows us to
work with inverse monoids rather than just semigroups when convenient, without a loss
of generality.

An inverse subsemigroup T of an inverse semigroup S is a subset of S closed under
multiplication and taking inverses. If S is an inverse monoid, then T is an inverse submon-
oid if it is an inverse subsemigroup and it contains the identity element of S . For example,
if jX j D n, then the rank n maps form an inverse submonoid of 	X : the symmetric group
onX . The notions of inverse subsemigroups and inverse submonoids generated by subsets
of S are defined as usual.

An element e 2 S is called idempotent if e2 D e, or equivalently, if e� D e. The set
of idempotents plays an important role in the algebraic theory of inverse semigroups and
is usually denoted by E. In any inverse semigroup, idempotents commute with each other
and thus form an inverse subsemigroup. Since multiplication in E is idempotent and com-
mutative, it forms a semilattice, and considering multiplication as a meet operation we
have the corresponding partial order given by e � f if ef D e. This partial order extends
naturally to the whole semigroup S by defining s � t if ss�t D s, or equivalently, ts�sD s,
and is called the natural partial order on S . An equivalent characterization is that s � t if
there exists an idempotent e with s D et , or equivalently, if there exists an idempotent f
with s D tf . In the symmetric inverse semigroup 	X , the idempotents are the identity
maps on subsets of X , and the natural partial order just corresponds to restriction of the
domain. An important property of the natural partial order is that it is compatible with the
operations, that is, if s1 � t1 and s2 � t2, then s1s2 � t1t2 and s�1 � t

�
1 .

In order to understand the structure of an inverse semigroup – or indeed, semigroups
in general – it is key to know which elements can be multiplied into one another. This
is described by the so-called Green’s relations. We say s and t are L-related if they can
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be mutually multiplied into each other on the left, that is, if there are elements u; v 2 S
with us D t and vt D s. There are several equivalent characterizations which are useful
to know, such as s and t generate the same left-ideal, that is, Ss D St ; or, equivalently,
s�s D t�t . In particular, s L s�s for any s 2 S , and this is the unique idempotent in the
L-class of s, on which it acts as a left identity. It also follows that elements of the L-class
are pairwise incomparable in the natural partial order.

The R-relation is analogously defined on the right hand side. The smallest equival-
ence containing both L and R is called the D-relation. It can be proven that s D t if
and only if there exists u 2 S with s L u R t , or equivalently, there exists v 2 S with
s R v L t . In a symmetric inverse semigroup 	X , two maps ' and  are L-related if they
have the same domain, and similarly, they are R-related if they have the same image and
D-related if they have the same rank.

We denote the L-, R-, and D-class of s 2 S by Ls; Rs and Ds , respectively. We
remark that there are two more Green’s relations we have not mentioned as we will not be
using them in the paper.

Given an inverse semigroup S generated by X – in notation, S D hXi, we define the
(left) Cayley graph of S as the edge-labelled digraph with vertex set S and edges of the
form s

x
�! xs where x 2 X [ X�, and X� D ¹y� j y 2 Xº. Cayley graphs of inverse

semigroups are typically not strongly connected; indeed, note that there is a direct path
s ! t if and only if there exists u 2 S with t D us. This shows that the strong com-
ponents are exactly the L-classes of the inverse semigroup. The strong component of s
is called the Schützenberger graph of s, and it follows from the work of Stephen [27]
that the full Cayley graph of an inverse semigroup can be recovered from just the set of
Schützenberger graphs (as edge-labelled graphs). Furthermore, within the Schützenberger
graphs, edges do come in inverse pairs: s L xs if and only if s D x�xs, that is, x and x�

are opposite edges between s and xs. As first observed in [8,16], finitely generated inverse
semigroups are therefore naturally equipped with a word metric via the path metric within
the Schützenberger graphs, by defining d.s; t/ to be infinite if s 6L t , and the distance of s
and t in their (common) Schützenberger graph if s L t .

Unlike in the case of groups, this word metric is a meaningful metric in some non-
finitely generated, even non-countable semigroups. Observe that if e 2X is an idempotent
and s L es, then s D e�es D es, that is, idempotents label loops within the Schützenber-
ger graphs, and therefore they do not influence the metric. Thus, for our purposes it makes
sense to consider the following generalization of generation.

Definition 2.5. We say an inverse semigroup S is quasi-generated by a set X if S D
hX [ Ei, where E � S is the set of idempotents of S . We call S quasi-countable if it is
quasi-generated by a countable set.

Note that this does not imply S itself is countable – any semilattice is quasi-countable
by definition.
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We remark that [8] is only concerned with finitely generated inverse semigroups,
while [16] considers the word metric in a larger class they call finitely labelable, which
in turn is a subclass of finitely quasi-generated inverse semigroups. In Section 3, we
generalize the word metric to any quasi-countable inverse semigroup.

A nice class of inverse semigroups we will often appeal to for examples are the direct
products of semilattices and groups. In general, the direct product of inverse semigroups is
again an inverse semigroup, so, in particular, given a semilattice E and a group G, the set
S D G �E is an inverse semigroup with .g; e/� D .g�1; e/ for g 2 G and e 2 E. In par-
ticular, .g; e/�.g; e/D .g; e/.g; e/� D .1; e/, where 1 is the identity element of the group.
Thus, here the L, R and D relations all coincide with having the same second component,
and all Schützenberger graphs are isomorphic to the Cayley graph of G. Notice that S is
quasi-generated by G, or indeed by any generating set of G, so S is finitely (countably)
quasi-generated whenever G is.

3. Proper and right subinvariant metrics on inverse semigroups

This section is dedicated to defining a coarse invariant metric on quasi-countable inverse
semigroups. As in the finitely generated case, the metric we consider will always be a uni-
formly discrete, extended metric whose components are exactly the L-classes. By a metric
on an inverse semigroup, we will always mean such a metric, even when not explicitly
stated.

In Subsection 3.1, we define the adequate notions of properness and right invariance.
Subsections 3.2 and 3.3 then show that such metrics always exist and, up to bijective
coarse equivalence, depend on the inverse semigroup alone. Subsection 3.4 shows that any
uniformly discrete metric space of bounded geometry arises as a component of an inverse
semigroup. Lastly, Subsection 3.5 describes the relationship between length functions on
inverse semigroups and their universal groupoids.

3.1. Proper and right subinvariant metrics

Definition 3.1. Let S be a quasi-countable inverse semigroup, and let d W S � S !
Œ0;1� be a metric (which is, as always, uniformly discrete and the components are the
L-classes):

(1) We say d is right subinvariant if d.sx; tx/ � d.s; t/ for every s; t; x 2 S .

(2) We say d is proper if for every r � 0 there is some finite set F b S such that
y 2 Fx for every pair x; y 2 S with x ¤ y and d.x; y/ � r .

Remark 3.2. In condition (1) we may, without loss of generality, assume that d.s; t/ <1,
that is, s L t , as the statement is automatic for pairs with d.s; t/ D 1. We will take
advantage of this to shorten proofs.
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Remark 3.3. There is an obvious one-sidedness to our definitions in that we chose right
subinvariance as opposed to left subinvariance, and L-classes rather than R-classes. This
all stems from the fact that the variant of the Wagner–Preston representation we use to
construct the crossed product algebra represents S as left maps rather than right maps, as
usual in operator theory. However, this is only a convention, and the dual of the paper also
holds; in fact, the map s 7! s� is an anti-homomorphism on inverse semigroups which
swaps the sides.

Example 3.4 (The word metric in finitely quasi-generated inverse semigroups). To reas-
sure the reader that this section is not about the empty set, we begin by observing that
for finitely quasi-generated inverse semigroups, the word metric satisfies the above condi-
tions, and thus Definition 3.1 generalizes the metric defined in [8, 16] as claimed. Indeed,
consider the strong components of the Cayley graph with respect to the generating set
X [E. These components are the L-classes, and if s L t , s ¤ t , then d.s; t/ is the length
of a minimum length path from s to t . Since idempotents label loops, a minimum length
path will only have labels coming from X [X�, so

d.s; t/ WD min
®
k j x1 � � � xkt D s; xi 2 X [X

�
¯
:

This is right subinvariant, since x1 � � �xkt D s implies x1 � � �xktx D sx for any x 2 S . To
see properness, take r > 0, and let F D ¹x1 � � � xk j xi 2 X [ X

�; 1 � k � rº. Then if
d.s; t/ � r , then either s D t or x1 � � �xkt D s for some 1 � k � r and xi 2 X [X

�, that
is, s 2 F t indeed.

Notice properness could fail if we did not assume x ¤ y in the definition, as in gen-
eral there may not be closed paths with labels in X [X� around each point. Indeed, if we
choose S to be the semilattice .N;min/, then S is quasi-generated by the empty set, but
for any finite subset F ifm > maxF thenm … Fn for any n 2 N. While our definition of
properness is similar in flavour to the finite labelability condition of [16], .N;min/ is not
finitely labelable for this very reason.

Since the word metric is our prototype for Definition 3.1, we record a few of its prop-
erties here which proper, right subinvariant metrics will generalize. The following claims
follow from [27].

Proposition 3.5. Let S be an inverse semigroup:

(1) If t L st , then the mapLs!Lt , where x 7! xt , is an edge-labelled graph morph-
ism with s�s 7! t and s 7! st . In particular, if S is finitely quasi-generated and d
is the word metric, then d.s�s; s/ � d.t; st/.

(2) Any two Schützenberger graphs contained in the same D-class are isomorphic as
edge-labelled digraphs.

Note that if 1 6L s, then d.1; s/ D 1; however, d.s�s; s/ is always finite as s�s L s,
furthermore s.s�s/ D s. In light of item (1), d.s�s; s/ can be considered as the analogue
of the length of s in groups, and will later be introduced as such.



Quasi-countable inverse semigroups as metric spaces 1511

In the following, we present a few more examples to show why some natural, weaker
alternatives to right subinvariance and properness are too weak to guarantee a coarse
unique metric.

Example 3.6 (Invariance under the Wagner–Preston action is too weak). We remarked in
the introduction that we cannot, in general, replace right subinvariance with right invari-
ance, which most obviously fails in the case when S has a 0. However, from an inverse
semigroup theory point of view, an even more natural question is whether we can replace
right subinvariance with being invariant under the natural right Wagner–Preston action
of S on itself.

It turns out this is not strong enough to guarantee uniqueness up to bijective coarse
equivalence. For a counterexample, consider the direct product S of any finitely generated
group G and the semilattice .Z�;min/. (This is an infinite descending chain of copies
of G.) Consider the word metric dG in G, and define the following two metrics on S (see
Figure 1):

d1

�
.g;�n/; .h;�m/

�
WD

´
dG.g; h/ if n D m;

1 otherwise;

d2

�
.g;�n/; .h;�m/

�
WD

´
n � dG.g; h/ if n D m;

1 otherwise:

First, notice that these two metrics are not bijectively coarse equivalent – there is no
way to bound d2 by a function of d1. However, both are invariant under the right Wagner–
Preston action. Indeed, the action of s 2 S is given by �s W Ss

�! Ss;x 7!xs. In this case,
if s D .g;�n/, then Ss� D ¹.h;�m/ j �m � �nº, and .h;�m/ 7! .hg;min.�n;�m//D
.hg;�m/, so the Wagner–Preston maps stabilize each group and are exactly the right

�
1

� �
1

�

�
1

� �
2

�

�
1

� �
3

�

�
1

� �
4

�

:::
:::

Figure 1. The two distances d1 and d2 when G D Z2 in Example 3.6.
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Cayley maps groupwise. Clearly, both metrics are right invariant under these. (Note,
however, that d2 is not right subinvariant, while d1 is.) Furthermore, both metrics are
proper: For r � 0, one can choose F to be the r-neighbourhood of .1;�1/, the iden-
tity of the maximal group. Then, if r � di ..g; �n/; .h; �n// for either metric, then
r � dG.g;h/D dG.1;hg

�1/D di ..1;�1/; .hg
�1;�1//, so .hg�1;�1/2F and .h;�n/D

.hg�1;�1/.g;�n/.

The properness condition is the more technical and perhaps more mysterious one of the
two in Definition 3.1. As we are about to see, it is strictly stronger than having bounded
geometry, and this stronger condition is indeed necessary if we want to end up with a
coarse unique metric.

Lemma 3.7. Let S be an inverse semigroup, and let d be a right subinvariant metric. If d
is proper, then the extended metric space .S; d/ is of bounded geometry.

Proof. Observe that if d is proper then Br .x/ n ¹xº � Fx, where F witnesses the proper-
ness of d for r (see Definition 3.1 (2)). Therefore, supx2S jBr .x/j � supx2S jFxj C 1 �

jF j C 1 <1, which proves that .S; d/ is of bounded geometry.

The converse of Lemma 3.7 does not hold in general.

Example 3.8 (Bounded geometry is too weak). LetG be any non-trivial finitely generated
group, and let S be the direct product ofG and the semilattice .N;min/. Note that S is not
finitely quasi-generated, as it contains an unbounded chain, but it is quasi-countable, as it
itself is countable. Let dG be the word metric on the group G, and consider the metrics
(see Figure 2)

d1

�
.g; n/; .h;m/

�
WD

´
dG.g; h/ if n D m;

1 otherwise;

d2

�
.g; n/; .h;m/

�
WD

´
n � dG.g; h/ if n D m;

1 otherwise:

Both metrics are right subinvariant:

d1

�
.g; n/.k;m/; .h; n/.k;m/

�
D d1

�
.gk;min.m; n//; .hk;min.m; n//

�
D dG.gk; hk/ D dG.g; h/ D d1

�
.g; n/; .h; n/

�
d2

�
.g; n/.k;m/; .h; n/.k;m/

�
D d2

�
.gk;min.m; n//; .hk;min.m; n//

�
D min.m; n/ � dG.gk; hk/ D min.m; n/ � dG.g; h/

� n � dG.g; h/ D d2

�
.g; n/; .h; n/

�
:

Also, both metrics are of bounded geometry; however, similarly to Example 3.6, they
are not coarsely equivalent as d2 cannot be bounded by a function of d1. However, d1 is
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�
1

� �
1

�

�
1

� �
2

�

�
1

� �
3

�

�
1

� �
4

�

:::
:::

Figure 2. The two distances d1 and d2 when G D Z2 in Example 3.8.

not proper, while d2 is. Indeed, observe any finite set F b S is contained inG � ¹1; : : : ; nº
for some n, and the set G � ¹1; : : : ; nº is an ideal, so we have F s � G � ¹1; : : : ; nº for
any s 2 S . This shows that d1 cannot be proper. However in the case of d2, the ball
Br .g; n/ only contains elements other than .g; n/ if n � r , so choosing F D Br .1; r/ will
suffice by the same argument as seen in Example 3.6.

For groups, properness in the sense of Definition 3.1 is equivalent to uniformly
bounded geometry, and thus properness in the group sense: Indeed, given r � 0, taking
F DBr .1/, where 1 is the identity element of the group will suffice. Right subinvariance is
also equivalent to right invariance given d.g;h/� d.gx;hx/� d.gxx�1; hxx�1/ implies
d.g;h/D d.gx;hx/. This shows that Definition 3.1 does indeed extend the definition used
for groups.

The following lemma contains a few simple observations about the components of the
metric.

Lemma 3.9. Let d be a metric on S with L-classes as components. Then the following
hold:

(1) S is a group if and only if .S; d/ is a non-extended metric space. This, in turn, is
equivalent to S having precisely one idempotent.

(2) S is a semilattice if and only if d.x; y/ D1 whenever x; y 2 S and x ¤ y.

(3) .S; d/ is coarsely equivalent to .E; d/ if and only if each component of S has
diameter at most c for some c � 0.

Proof. The first statement (1) follows from the fact that S is a group if and only if L is
the universal relation.
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Condition (2) follows from the observation that S is a semilattice if and only if each
element of S is idempotent, that is, each L-class is a singleton.

Lastly, for (3), notice that since coarse equivalences preserve components, any coarse
embedding from .E; d/ must map different elements to different L-classes. Furthermore,
since any permutation of E is an isometry of .E; d/, a coarse equivalence exists from
.E; d/ to .S; d/ if and only if the inclusion map �WE ! S is a coarse equivalence. This,
in turn, is equivalent to � being coarse-surjective, that is, there is some constant k � 0 such
that for every s 2 S there is some e 2 E with d.e; s/ � k. Since d.e; s/ � k, in particular,
implies e L s, we must have e D s�s here, the unique idempotent in the L-class. Thus,
taking c D 2k proves the statement.

The following lemma will allow us to assume S is a monoid when it is convenient to
do so.

Lemma 3.10. Let S be an inverse semigroup, and d be a metric. Moreover, let S1 WD

S t ¹1º be S with an added identity. Then there is exactly one metric d1 on S1 that
extends d .

Proof. Since by construction, 1 does not arise as a product with a factor in S , it follows
that 1 forms a trivial D-class, and hence

d1.s; t/ D

8̂̂<̂
:̂
d.s; t/ if s; t 2 S;

0 if s D t D 1 2 S1;

1 otherwise:

The next lemma shows that the analogue of Proposition 3.5 holds for any metric
satisfying the conditions of Definition 3.1.

Lemma 3.11. Let S be a quasi-countable inverse semigroup, and let d be a right
subinvariant metric. Then the following assertions hold:

(1) If t L st , then d.t; st/ � d.s�s; s/.

(2) If y � x, then d.y�y; y/ � d.x�x; x/.

(3) The map Ls ! Ls� , where t 7! ts�, is d -isometric, where Ls and Ls� are the
L-classes of s and s�, respectively.

(4) d.s; t/ D d.ss�; ts�/ for every pair s; t 2 S such that s L t .

(5) Given any two L-classes in the same D-class, there is an isometry between them.

Proof. For (1), recall that t L st implies t D s�st , so d.s�s; s/ � d.s�st; st/ D d.t; st/
by right subinvariance. Item (2) is an immediate consequence: If x � y then xy�y D y,
so applying (1) with s D x and t D y�y we get d.x�x; x/ � d.y�y; xy�y/ D d.y�y; y/
indeed.
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For (3) take t1; t2 2 Ls , that is, t�1 t1 D t
�
2 t2 D s

�s. First note that

.tis
�/�tis

�
D st�i tis

�
D ss� D .s�/�s�;

so tis� 2 Ls� indeed. By right subinvariance,

d.t1; t2/ D d.t1s
�s; t2s

�s/ � d.t1s
�; t2s

�/ � d.t1; t2/;

which proves the claim. Notice that (4) immediately follows from (3). For (5), consider
two D-related L-classes L1 and L2, and let si 2 Li . As s1 D s2, there exists t 2 S such
that s1 L t R s2, that is, Lt D L1 and t� L s�2 , so L2 D Lt� . Thus, L1 and L2 are
isometric by (3).

3.2. Existence of metrics

In this subsection, we show that every quasi-countable inverse semigroup admits an essen-
tially unique, proper and right subinvariant metric. The first part, Proposition 3.17, proves
the existence of such metrics, while the second one, Proposition 3.22, proves these metrics
are unique up to coarse equivalence. The proofs of both of these facts are inspired by those
for countable groups (see, e.g., [20]).

As in the case of groups, metrics correspond naturally to length functions, and it is
often more convenient to define these rather than metrics. Proposition 3.15 establishes the
correspondence between the two.

Definition 3.12. Let .P;�/ be a partially ordered set and A � P . We say A is finitely
upper bounded (f.u.b. for short) if there is some finite F b P such that for every a 2 A
there is some b 2 F with a � b.

Definition 3.13. Let S be a quasi-countable inverse semigroup, and let l WS! Œ0;1/. We
say that l is a length function if infs2SnE l.s/ > 0 and for any s; t 2 S the following hold:

(1) l.s/ D 0 if and only if s 2 E.

(2) l.s/ D l.s�/.

(3) l.st/ � l.s/C l.t/.

Moreover, we say that l is proper if for any r 2 RC, the set Cr D ¹s 2 S j 0 < l.s/ � rº

is finitely upper bounded.

Remark 3.14. The condition that infs2SnE l.s/ > 0 guarantees that the metric associated
with l in Proposition 3.15 is uniformly discrete, albeit this condition is not actually needed
from a purely coarse geometric point of view.

For the purposes of this paper, the set Cr plays the role of the r-ball of a discrete
countable group. For this reason, we shall call Cr the r-cylinder of S .

Note that any length function l on S respects the partial order of S , in the sense that
l.t/ � l.s/ whenever t � s, as in this case l.t/ D l.st�t / � l.s/C l.t�t / D l.s/.
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Proposition 3.15. If d is a right subinvariant metric on S , then

l.s/ D d.s�s; s/

defines a length function on S . Conversely, if l WS ! Œ0;1/ is a length function on S , then

d.s; t/ D

´
l.ts�/ if s L t;

1 otherwise

is a right subinvariant metric on S .
These define mutually inverse mappings between the length functions and right

subinvariant metrics, and proper length functions correspond exactly to proper metrics.

Proof. We begin by the first statement, that is, we need to show that l.s/ satisfies Defini-
tion 3.13. Indeed, for (1), notice that d.s�s; s/ D 0 if and only if s D s�s, which holds if
and only if s 2 E. For (2), it suffices to show that d.s�s; s/ D d.s�; ss�/, which follows
from Lemma 3.11 (3). For property (3),

l.st/ D d.t�s�st; st/ � d.t�s�st; t t�s�st/C d.t t�s�st; st/

by the triangle inequality, and

d.t�s�st; t t�s�st/ D d.t�t .t�s�st/; t.t�s�st// � d.t�t; t / D l.t/

by right subinvariance. Furthermore, as t t�s�st D s�st t�t D s�st , we have

d.t t�s�st; st/ D d.s�st; st/ � d.s�s; s/ D l.s/

by right subinvariance again, proving the claim.
Lastly, we show that when d is proper, so is l . Indeed, there exists a finite set F such

that for any s 2 Cr , we have s 2 F s�s � FE, so Cr is upper bounded by F .
For the converse statement, we first prove that d is a metric. For any s; t 2 S , by defin-

ition we have d.s; t/ D 0 if and only if s�s D t�t and ts� 2 E. If s D t , then this clearly
holds. Conversely, if ts� 2 E, then .ts�/� D st� 2 E as well, so

s D ss�s D st�t � t D t t�t D ts�s � s;

hence sD t . Symmetry of d immediately follows from Definition 3.13 (2). For the triangle
inequality, let s; t; u 2 S . Notice that if s 6L u or t 6L u, then d.s; t/ � d.s; u/C d.u; t/ is
immediate, and whence we may assume s�s D u�u D t�t . Then

d.s; t/ D l.ts�/ D l.tu�us�/ � l.tu�/C l.us�/ D d.u; t/C d.s; u/

by Definition 3.13 (3). Right subinvariance of d follows automatically, for if s; t; x 2 S
then

d.sx; tx/ D l.txx�s�/ � l.ts�/ D d.s; t/:
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Finally, we show that if l is proper, so is d . Assume Cr is finitely upper bounded by F ,
and let 0 < d.s; t/ D l.ts�/ � r . Then ts� � m for some m 2 F , and as s�s D t�t that
means ts� D m.st�/.ts�/ D mss�, so ms D mss�s D ts�s D t t�t D t , that is, t 2 F s.

Lastly, to prove that the above maps are mutually inverse, assume that s L t and note
that

l.s/
def
D d.s�s; s/

def
D l.ss�s/ D l.s/

and
d.s; t/

def
D l.ts�/

def
D d.st�ts�; ts�/ D d.ss�; ts�/ D d.s; t/:

The following lemma is a useful way to rephrase quasi-countability.

Lemma 3.16. Let S be a quasi-countable inverse semigroup. Then there is a countable
inverse subsemigroup T � S such that for every s 2 S either s 2 E or there is some t 2 T
and e 2 E with s D te.

Proof. Let F � S be a countable set such that S D hF [Ei, and let T WD hF i. Given any
s 2 S n E there are t1; : : : ; tn 2 T and e1; : : : ; en 2 E such that s D t1e1 � � � tnen, hence
either s 2 E or s � t1 � � � tn, and so s D t1 � � � tns�s.

Proposition 3.17. Every quasi-countable inverse semigroup S admits a proper, right
subinvariant metric.

Proof. We define the metric via a proper length function. Since S is quasi-countable let
T �S be as in Lemma 3.16, that is, T is a countable subsemigroup such that S D TE [E.
Moreover, choose an ascending sequence of finite symmetric subsets T1 � T2 � � � � � T

such that
S

n2N Tn D T . Furthermore, and without loss of generality, we may assume
that TnTm � TnCm just by adding to Tn all the products of the form st where s 2 Ti and
t 2 Tn�i for i D 1; : : : ; n � 1. Consider then the subsets

C 0 WD E and C n WD E [ TnE D E [
®
s 2 S j s � t for some t 2 Tn

¯
:

Then we can define a length function l WS ! Œ0;1/ by putting l.s/D n if s 2 C n nC n�1.
We need to show that this function satisfies all the conditions in Definition 3.13. Prop-

erty (1) is immediate from the definition, while (2) follows from the symmetry of the
subsets Ti , and (3) holds too as TnTm � TnCm implies C nCm � C nCm. Lastly, l is proper
since for any r 2 ZC, Tr is a finite upper bound for Cr D C r n C r�1.

A more hands-on way to construct the metric is by generalizing the word metric in
finitely quasi-generated inverse semigroups. The classical word metric with an infinite
quasi-generating set generally yields a non-proper (in fact, non-uniformly bounded) met-
ric, as the vertices in the Schützenberger graphs can have infinitely many neighbours.
However, we can rectify this by making some edges longer in the metric than length 1.
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Definition 3.18. Let S D hX [Ei for a countable, symmetric set X , and let wWX ! N
be a function such that w.x/ D w.x�/ and w�1.n/ is finite for any n 2 N. The weighted
word metric on S is defined by taking the path metric on the Schützenberger graphs where
an edge labelled by x has length w.x/. Formally, if s L t with s ¤ t , then

d.s; t/ WD min
®
w.x1/C � � � C w.xk/ j x1 � � � xkt D s; xi 2 X [X

�
¯
:

Proposition 3.19. The weighted word metric is a proper, right subinvariant metric on
quasi-countable inverse semigroups.

Proof. The proof is completely analogous to the finitely quasi-generated case in Exam-
ple 3.4. The components of the metric are, by definition, the L-classes, and right subin-
variance can be seen in exactly the same way as before. For properness, given any r � 0,
let

F D ¹x1 � � � xk j xi 2 X [X
�; w.x1/C � � � C w.xk/ � rº:

Notice that the finiteness of w�1.n/ ensures that F is finite. Suppose d.s; t/ � r , that is,
either s D t or xk � � �x1t D s with w.x1/C � � � Cw.xk/ � r; xi 2 X [X

�, in which case
s 2 F t indeed.

Observe that in Example 3.8, the metric d2 was a weighted word metric. Indeed, if the
group G is generated by the finite set X , then S is generated by X �N, a countable set.
The function wWX �N ! N, .x; n/ 7! n yields exactly the metric d2.

3.3. Uniqueness of metrics

We proceed by showing that right subinvariant, proper metrics on inverse semigroups are
unique up to bijective coarse equivalence.

Lemma 3.20. Let S be an inverse monoid equipped with a proper length function l , and
let A � S . Then A is finitely upper bounded if and only if sups2A l.s/ <1.

Proof. First suppose that for any s 2 A, l.s/ � r for some r . Then, because the cylin-
der Cr is finitely upper bounded, there is a finite upper bound F for A n E. Since S has
an identity, adding that identity to F ensures it is a finite upper bound for A.

For the converse, assume that sups2A l.s/ D 1, and A is upper bounded by some
set F . Take a sequence ¹snºn2N � A such that l.sn/ � n for every n. If sn � t for some
t 2 F , then l.sn/ � l.t/, so

1D sup
n2N

l.sn/ � sup
t2F

l.t/;

hence F cannot be finite.

This gives us the following equivalent characterizations of coarsely trivial inverse
semigroups.
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Corollary 3.21. For any inverse monoid S equipped with a proper right subinvariant
metric d , the following are equivalent:

(1) .S; d/ is coarsely equivalent to .E; d/.

(2) supxLy d.x; y/ <1.

(3) sups2S d.s
�s; s/ <1.

(4) S is finitely upper bounded.

Proof. The equivalence of (1) and (3) follows directly from Lemma 3.9 (3). The equival-
ence of (3) and (4) is immediate from Lemma 3.20 and Proposition 3.15, and clearly (2)
implies (3). For the converse, recall that by Proposition 3.15, if x L y then for s D yx�,
we have d.x; y/ D l.s/ D d.s�s; s/.

We are now ready to prove coarse uniqueness of the metric.

Proposition 3.22. Let S be a quasi-countable inverse semigroup, and let d; d 0 be two
proper and right subinvariant metrics on S . The identity map idW .S; d/! .S; d 0/ is then
a bijective coarse equivalence.

Proof. By Lemma 3.10 we may suppose, without loss of generality, that S is a monoid.

Case 1. S is finitely upper bounded, that is, supxLy d.x; y/; supxLy d
0.x; y/ < 1 by

Corollary 3.21. In this case, both metrics are coarsely trivial, hence the identity map is a
coarse equivalence.

Case 2. S is not finitely upper bounded, that is, supxLy d.x; y/ D supxLy d
0.x; y/ D1

by Corollary 3.21.
Clearly, it is enough to prove that idW .S; d/! .S; d 0/ is a coarse embedding, as it is

already a bijection. That is, it suffices to construct ��; �CW Œ0;1�! Œ0;1� non-decreasing
functions such that ��.r/!1 when r !1, ��1

C .1/ D1 and

��
�
d.x; y/

�
� d 0.x; y/ � �C

�
d.x; y/

�
: (3.1)

Notice that equation (3.1) is automatic when x 6L y, and if xL y then letting s WD yx�,
by Proposition 3.15 we have d.x; y/ D d.s�s; s/ and d 0.x; y/ D d 0.s�s; s/, so it follows
that it is enough to show that

��
�
d.s�s; s/

�
� d 0.s�s; s/ � �C

�
d.s�s; s/

�
(3.2)

for every s 2 S . It is clear that the functions

��.r/ WDmin
®
d 0.s�s; s/ j d.s�s; s/� r

¯
and �C.r/ WD sup

®
d 0.s�s; s/ j d.s�s; s/� r

¯
satisfy equation (3.2) and are non-decreasing (note that the minimum in the definition of
�� exists as d 0 is uniformly discrete). Therefore, all that is left to prove is that ��.r/!1
when r !1 and that �C.r/ <1 for every r 2 Œ0;1/.
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It is immediate from the definition that �C.0/D 0. Since d is proper and S has an iden-
tity, ¹s2S j d.s�s; s/� rº is finitely upper bounded, so sup¹d 0.s�s; s/ jd.s�s; s/� rº<1
indeed by Lemma 3.20.

To show that ��.r/! 1 when r grows, assume for contradiction that ��.r/ � m
for all r 2 Œ0;1/. Then, by the definition of ��, for each n 2 N there is sn 2 S such that
d 0.s�nsn; sn/�m and d.s�nsn; sn/� n. However, by the properness of d 0 and the fact that S
is a monoid, ¹sn j n 2 Nº is finitely upper bounded, so by Lemma 3.20, ¹d.s�nsn; sn/ºn2N

is a bounded sequence, which contradicts the assumption.

The preceding results immediately give the following theorem.

Theorem 3.23. Let S be an inverse semigroup. Then the following statements are
equivalent:

(1) S is quasi-countable.

(2) S admits a proper and right subinvariant uniformly discrete metric whose
components are the L-classes.

Moreover, such a metric is unique up to bijective coarse equivalence.

Proof. If S is quasi-countable, then the existence of such a metric is provided by Pro-
position 3.17, while its uniqueness is given by Proposition 3.22. For the converse, given
a proper metric d observe we can construct finite subsets Fn b S such that if s 2 S n E
and d.s; s�s/ � n, then s 2 Fns

�s. Then the set F WD
S

n2N Fn is countable and F [E
generates S .

Henceforth, we shall implicitly assume that any quasi-countable inverse semigroup S
is canonically equipped with a proper and right subinvariant metric, usually denoted by d .

3.4. Metrics arising from inverse semigroups

By extending the study of countable groups as geometric objects to inverse semigroups,
we gain algebraic tools to study a much bigger array of metric spaces than before. Indeed,
in this subsection we show that any uniformly discrete metric space X of bounded geo-
metry arises as the L-class of some countable inverse semigroup S , up to bijective coarse
equivalence.

The idea behind the proof is very straightforward. Let X be a uniformly discrete met-
ric space of bounded geometry (note this implies X is countable). For x; y 2 X , let 
y;x

be the map with domain ¹xº and range ¹yº, mapping x 7! y. Notice that 
y;x sits inside
the symmetric inverse monoid 	X as it is a partial injective map.

We will define S as a countably generated inverse subsemigroup of 	X containing all
the rank 1 maps 
y;x for any x; y 2 X . Recall from Subsection 2.3 that 
y;x L 
v;u if
and only if x D u, so the rank 1 L-classes are in bijection with X . Therefore, fixing any
x 2 X , the metric space X is in natural bijection with the L-class Lx corresponding to
the domain ¹xº via the map 
y;x 7! y. The idea is to define a proper, right subinvariant



Quasi-countable inverse semigroups as metric spaces 1521

metric d on S such that d.
y;x ; 
z;x/ is uniformly close to dX .y; z/, yielding that Lx is
in bijective coarse equivalence with X .

One’s first idea might be to just take the inverse subsemigroup of 	X consisting of all
rank 1 maps and the empty map, with the distance inherited from X . The issue is that this
metric may not be proper. Properness would mean that if 0 < d.
x;y ; 
x;z/D d.y; z/� n,
then 
y;x 2 F
z;x for some finite set F – observe that 
y;x 2 F
z;x holds if and only if
there is a map ' 2 F with z 7! y. If there are infinitely many pairs of points with distance
at most n, there is no such finite subset in ¹
y;x j x; y 2 Xº. We rectify this by adding in
higher rank maps from 	X – selecting these is where the proof becomes technical. We use
some ideas from combinatorics.

Let � be any (undirected, simple, possibly infinite) graph. Recall that a matching in �
is a set of edges with no common endpoints. Any matching M determines a permuta-
tion 'M on the vertices which swaps the endpoints of each edge in the matching and fixes
any vertex not covered by the matching. Vizing’s theorem states if � is an undirected
simple (possibly infinite) graph where the degree of any vertex is at most�, then its edges
can be partitioned into at most �C 1 matchings.2

For any n 2 N, consider the undirected graph �n with vertex set X and an edge
between y and z whenever n � 1 < dX .y; z/ � n. Note that since X has bounded geo-
metry, �n has uniformly bounded degree. Therefore, by Vizing’s theorem, there is a finite
family Mn D ¹Mn;j j j 2 Jnº of matchings containing all its edges. Consider the bijective
maps 'n;j D 'Mn;j

defined by the matchings, and put Fn D ¹'n;j j j 2 Jnº � 	X . Notice
that by construction we have

n � 1 < dX .x; '.x// � n for any x 2 X; ' 2 Fn; '.x/ ¤ x: (3.3)

Let S be the inverse submonoid of 	X generated by the sets Fn, where n 2 N and
the identity maps on singletons idy ; y 2 X . Notice that for any pair of points x; y 2 X
such that n � 1 < d.x; y/ � n, there is a map ' in Fn with '.x/ D y, and for this map,
' idx D 
y;x . This shows that all maps of rank 1 are in S .

The inverse semigroup will in fact consist of three D-classes: a 0 element at the bot-
tom (the empty map), the D-classes of the rank 1 maps in the middle, and the group
generated by the bijections ¹'n;j º on top.

Equip S with the right subinvariant, proper metric induced by assigning weights to the
(non-idempotent) generators: w.'/ D n for ' 2 Fn. We then, by equation (3.3), have

w.'/ � 1 < dX .x; '.x// � w.'/ for any x 2 X; ' 2 F D
[
n2N

Fn: (3.4)

Theorem 3.24. The inverse semigroup S contains an L-class which is bijectively coarse
equivalent to the metric space X .

2Vizing’s theorem states this in the language of edge-colourings – the parts in the partition correspond
to edges sharing the same colour, which are always matchings.
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Proof. We show that the L-class Lx of all maps with domain ¹xº is such an L-class for
any x 2 X . As observed, there is a natural bijection ˆ W X ! Lx , y 7! 
y;x between Lx

and X . We now prove that this is a coarse equivalence.
Let y; z 2 X be arbitrary and put 
y;x D 'y idx , 
z;x D 'z idx for some 'y ; 'z 2 F .

Recall that

d.
y;x ; 
z;x/ D min
² nX

iD1

w.'i / j 'i 2 F; 'n � � �'1
y;x D 
z;x

³
by definition, and 'n � � �'1
y;x D 
z;x is equivalent to 'n � � �'1.y/D z. As there is a map
' 2 F with '.y/ D z, and by equation (3.4) we have w.'/ � dX .y; z/C 1, we obtain

d.
y;x ; 
z;x/ � w.'/ � dX .y; z/C 1:

On the other hand, for any '1; : : : ; 'n 2 F with 'n � � � '1.y/ D z, by equation (3.4) and
the triangle inequality, we have

nX
iD1

w.'i / �

nX
iD1

dX .'i�1 � � �'1.y/; 'i .'i�1 � � �'1.y/// � dX .y; z/;

thus d.
y;x ; 
y;x/ � dX .y; z/. We thus have obtained that

dX .y; z/ � d.ˆ.y/;ˆ.z// � dX .y; z/C 1;

thus the map ˆ is a bijective coarse equivalence with ��.r/ D r and �C.r/ D r C 1.

We end the subsection with one potential application of the latter construction.

Remark 3.25. Suppose we have a coarse invariant geometric property (GP), and an algeb-
raic technique to prove that an inverse semigroup has property (GP) then its uniform Roe
algebra has property (RP). We would like to deduce that (GP) implies (RP) for arbitrary
metric spaces.

If, for a metric space X , we can construct an inverse semigroup S that contains X as a
component and retains the property (GP), then C �u .S/ has (RP), and if furthermore (RP)
is closed under taking either C*-subalgebras or quotients, then C �u .X/ (which is both a
C*-subalgebra and a quotient) has property (RP) as well.

Depending on the property (GP), the construction above may not result in an inverse
semigroup which retains it. For example, the reader can verify that if X has asymptotic
dimension 0 (see Definition 5.1), then so does S , but if X is sparse (see Definition 5.4), S
may not be (in fact it is sparse if and only if X has asymptotic dimension 0). However, the
above construction is just an example of the more general idea of realizing X in an over-
semigroup of the rank 1maps of 	X . The interested reader can verify that if we replace the
group of bijections in the construction above by its Birget–Rhodes expansion (see [29] for
the definition) which we equip with the metric inherited naturally from the group, then the
resulting metric will inherit both being proper and sparse. We do not give a detailed proof
for these arguments as for these particular properties, the respective C*-characterizations
are already known for (non-extended) metric spaces by other methods.
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3.5. Metrics in groupoids

This subsection discusses the relationship between length functions in inverse semigroups,
and those in étale groupoids, as introduced in [17]. The main result is Theorem 3.36,
which provides a partial dictionary between these two settings. As this subsection is not
referenced in the rest of the paper, and we are expecting that readers interested in these
results are already familiar with étale groupoids, we have not included a comprehensive
introduction, but the reader can find one in [7] and references therein.

We briefly recall the universal groupoid associated with an inverse semigroup S . This
groupoid was introduced in [21] and has been studied extensively since (see, e.g., [4,7,26]
and references therein). Given a (discrete) inverse semigroup S , whose semilattice of
idempotents we denote by E, let yE0 be the spectrum of E, that is, the set of non-
trivial filters on E, equipped with a topology with basis of clopen sets of the form
De \D

c
e1
\ � � � \Dc

en
, e1; : : : ; en < e, where

De D ¹� 2 yE0 j e 2 �º:

We see every e 2 E as a principal filter e" WD ¹f 2 E j f � eº 2 yE0. We then have a
canonical action � WS Õ yE0 given by partial homeomorphisms �s WDs�s ! Dss� , where

�s.�/ D
®
e 2 E j e � sf s� for some f 2 �

¯
whenever � 2 Ds�s . The universal groupoid of S is then the groupoid of germs of the
action � W S Õ yE0, that is, the set G of equivalence classes Œs; �� where s 2 S and
� 2 Ds�s � yE0, and Œs; �� D Œt; �� whenever � D � and there is some idempotent e 2 E
such that � 2 De and se D te. The unit space G.0/ of G is then homeomorphic to yE0,
and G is equipped with the topology coming from the unit space such that the result-
ing G is étale. It is then routine to show that G is a locally compact étale (in fact, ample)
groupoid with Hausdorff unit space. Note, however, that G itself may not be Hausdorff.
An efficient characterization of Hausdorffness of G in terms of properties of S is given
in [26, Theorem 5.17].

We now introduce the relevant notions about length functions in groupoids, as defined
in [17].

Definition 3.26. LetG be a locally compact, Hausdorff étale groupoid. We say a function
l WG ! Œ0;1/ is a length function for G if for all g; h 2 G the following hold:

(1) l.g/ D 0 if and only if g 2 G.0/.

(2) l.g/ D l.g�1/.

(3) l.gh/ � l.g/C l.h/ whenever s.g/ D r.h/, that is, g and h are composable.

Moreover, we say l is

(1) proper if for everyK �G nG.0/, if supg2K l.g/ <1 thenK is precompact (i.e.,
K is compact);
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(2) controlled if for every K � G, if K is precompact then supg2K l.g/ <1.

Remark 3.27. In the definition of proper length function above we avoid the unit
space in K since we do not assume G.0/ to be compact, but only locally compact.
Indeed, observe that if K D G.0/ is not compact then K cannot be precompact, whereas
supg2K l.g/ D 0. This is the same technicality we have seen in the definition of proper
metrics for inverse semigroups (see Definition 3.1), where we only require the finite set
F b S to implement paths of non-zero length, or in the case of length functions, where
idempotents are excluded from cylinders (see Definition 3.13).

Remark 3.28. Ma and Wu [17] study length functions that are in addition continuous,
which requires the groupoid to be Hausdorff. Indeed, recall that an étale groupoid is Haus-
dorff if and only ifG.0/ is closed inG. Therefore, ifG is not Hausdorff, then the preimage
l�1.0/ D G.0/ is not closed.

Most of what we prove in this section does not use the Hausdorff condition, but
following the definition of [17] we will state everything for the Hausdorff case.

We record the following result from [17, Theorem 4.10] for convenience of the reader.

Theorem 3.29. Up to coarse equivalence, any � -compact locally compact Hausdorff
étale groupoid has a unique proper and controlled continuous length function.

Remark 3.30. By [17, Remark 4.11], the length functions on Hausdorff universal group-
oids are locally constant. In general, length functions on ample Hausdorff groupoids are
locally constant.

The following definition will turn out to correspond to continuity in the groupoid
language.

Definition 3.31. A length function l W S ! Œ0;1/ on an inverse semigroup S is tightly
proper if for every r � 0 there is some finite F b S witnessing r-properness and such
that maxs2F l.s/ � r .

Proposition 3.32. Any quasi-countable inverse semigroup S has a tightly proper length
function.

Proof. It is straightforward to see that the construction of Proposition 3.17 yields a tightly
proper length function.

The following technical results will be useful in the proof of Theorem 3.36.

Lemma 3.33. Let S be an inverse semigroup, and let G be its universal groupoid. Then,
for any K � G, the following statements are equivalent:

(1) K is precompact.
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(2) There is a finite F b S and a compact C �G.0/ such thatK � ¹Œs; x� j s 2 F;x 2
C \Ds�sº.

Proof. In order to prove that (1) implies (2), observe that the closure K is com-
pact, and covered by the open bisections coming from the inverse semigroup, that is,
K �

S
s2S¹Œs; x� j x 2 Ds�sº. By compactness there is a finite set F � S such that

K �
S

s2F ¹Œs; x� j x 2 Ds�sº. Putting C WD s�1.K/, it follows that C is compact as
the sets Ds�s � G

.0/ are compact open, and C �
S

s2F Ds�s hence C is a closed subset
of a compact set. Then the pair F;C satisfies (2).

Suppose now that F;C satisfies (2). Then ¹Œs; x� j s 2 F; x 2 C \Ds�sº is compact,
as it is a finite union of the compact open sets .s; C \Ds�s/, and hence K is compact as
well, being a closed subset of a compact set.

Remark 3.34. We observe in passing that Lemma 3.33 holds in much greater generality.
Indeed, it holds even when S is only a wide inverse semigroup of compact open bisections
of G (see [4, Definition 2.14]).

Lemma 3.35. Let S be an inverse semigroup, and let G be its universal groupoid.
Suppose that ¹gaºa2A � G is a net with ga ! Œs; x�. Then s.ga/ ! x 2 G.0/, and
ga D Œs; s.ga/� for all sufficiently large a.

Proof. Put ga D Œta; xa� for some ta 2 S and xa 2Dt�a ta . Note that xa must converge to x,
for otherwise we would find an open neighbourhood x 2 U � G.0/ such that xa 62 U for
large a. In this case, the set .s; U / WD ¹Œs; y� j y 2 U º would be an open neighbourhood
of Œs; x�, and would contain no point ga, contradicting the assumption that ga ! Œs; x�.

In order to finish the proof, note that x 2 Ds�s is an open set hence .s; Ds�s/ is
an open neighbourhood of Œs; x�, so Œta; xa� 2 .s; Ds�s/ for sufficiently large a, that is
ga D Œta; xa� D Œs; xa� for sufficiently large a as desired.

The following theorem states the relationship between length functions (and hence
metrics as well) as studied in this paper and those in groupoids as introduced before
(coming from [17]).

Theorem 3.36. Let S be a quasi-countable inverse semigroup, and let G be its universal
groupoid. Suppose that G is Hausdorff. Then the map

ˆ.l/
�
Œs; x�

�
D inf

®
l.t/ j t 2 S; x 2 Dt�t and Œt; x� D Œs; x�

¯
is an injective map between length functions of S and controlled length functions of G,
and

‰.l/.s/ D sup
s2Ds�s

l.Œs; x�/

is its left inverse, that is, ‰ ıˆ D id.
Moreover, the following assertions hold:
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(1) l is proper if and only if ˆ.l/ is proper.

(2) l is tightly proper if and only if ˆ.l/ is proper and continuous.

Proof. First, observe that the infimum in the definition of ˆ.l/ is actually a minimum,
as the image of l is a discrete set; furthermore, the minimum is attained on some l.t/
with t � s. The fact that ˆ.l/ is a length function follows from the respective properties
of l . If ˆ.l/.Œs; x�/ D 0, then Œs; x� D Œe; x� for some e 2 E, and hence Œs; x� 2 G.0/.
Likewise, ˆ.l/.Œs; x�/ D ˆ.l/.Œs�; sx�/ follows from the fact that l.s/ D l.s�/ for every
s 2 S . For the triangle inequality, consider a germ Œst; x� D Œs; �t .x/�Œt; x�, and assume
ˆ.l/.Œs; �t .x/�/ D l.u/ where Œs; �t .x/� D Œu; �t .x/�, and ˆ.l/.Œt; x�/ D l.v/ where
Œt; x� D Œv; x�. Then Œst; x� D Œuv; x�, so

ˆ.l/.Œst; x�/ � l.uv/ � l.u/C l.v/ D ˆ.l/.Œs; �t .x/�/Cˆ.l/.Œt; x�/

indeed.
Furthermore, observe that ˆ.l/ is always controlled (in the sense of Definition 3.26).

In fact, if K � G is precompact then by Lemma 3.33 we may find a finite F b S and a
compact C � G.0/ such that K � ¹Œs; x� j s 2 F and x 2 C \Ds�sº. Therefore

sup
g2K

ˆ.l/.g/ � max
s2F

sup
x2C\Ds�s

ˆ.l/
�
Œs; x�

�
� max

s2F
l.s/ <1;

as desired.
Considering the map ‰, note, again, the supremum in ‰ is always a maximum,

that is, it is finite, since l is assumed controlled and the sets Ds�s are compact (and
open). We show that ‰ indeed maps controlled length functions on G to length func-
tions on S – the only non-trivial property of ‰.l/ is the triangle inequality. As we have
‰.l/.st/ D l.Œst; x�/ for some x 2 Dt�s�st , then

‰.l/.st/ � l.Œs; �t .x/�/C l.Œt; x�/ � ‰.l/.s/C‰.l/.t/:

We next prove that ‰.ˆ.l// D l for every length function l on S , which also implies
the injectivity of ˆ. Indeed, observe, we have to prove that

sup
x2Ds�s

inf
t2S

Œt;x�DŒs;x�

l.t/ D l.s/

for all s 2 S . First, note that the inequality � is immediate, as infŒt;x�DŒs;x� l.t/ � l.s/ for
all x 2 Ds�s . The � inequality is more subtle and follows from the observation that

sup
x2Ds�s

inf
t2S

Œt;x�DŒs;x�

l.t/ � inf
t2S

Œt;.s�s/"�DŒs;.s�s/"�

l.t/ D l.s/;

since if Œt; .s�s/"� D Œs; .s�s/"�, then se D te for some e 2 E such that e � s�s, which
implies that s D ss�s D se D te, that is, t � s, and so l.t/ � l.s/, finishing the proof.
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We now prove assertion (1). First, suppose that l is a proper length function on S ,
and let K � G n G.0/ be such that r WD supg2K ˆ.l/.g/ <1. That is, for every g 2 K
there is a t 2 S such that 0 < l.t/ � r , s.g/ 2 Dt�t and Œt; s.g/� D g. Now, by the pro-
perness of l we may find a finite F b S that upper bounds the cylinder Cr , that is, if
0 < l.t/ � r then t � m for some m 2 F . In particular, Dt�t � Dm�m, so s.g/ 2 Dm�m

and Œt; s.g/� D Œm; s.g/�. It then follows that

K �
®
Œm; s.g/� j s.g/ 2 Dm�m and m 2 F and g 2 K

¯
;

which, by Lemma 3.33, implies that K is precompact, as desired.
For the converse, let r � 0 be given, and consider the set:

Kr WD
®
Œs; .s�s/"� j 0 < l.s/ � r

¯
:

Then Kr contains no units of G, and supg2Kr
ˆ.l/.g/ � r < 1. Thus, since ˆ.l/ is

assumed to be proper, we have that Kr is precompact which, by Lemma 3.33, implies we
may find a finite set Fr b S and a compact set Cr � G

.0/ such that Kr � ¹Œs; x� j s 2

Fr ; x 2 Cr \Ds�sº. We claim that Fr then witnesses r-properness of l . For this, let s 2 S
be such that 0 < l.s/ � r . Then Œs; .s�s/"� 2 Kr , and hence Œs; .s�s/"� D Œm; .s�s/"� for
some m 2 Fr . By the germs relations this means that se D me for some e 2 E such that
.s�s/" 2De . This implies that e 2 .s�s/", meaning that e � s�s. In turn, this implies that
s D ss�s D se D me, that is, Fr 3 m � s, as desired.

We now turn our attention to assertion (2). Let l be tightly proper and observe that,
by (1), ˆ.l/ is a proper length function, so it is enough to prove that it is also continuous.
For this, let ¹gaºa2A � G be a convergent net, say to Œs; x� 2 G. Using the fact that the
infimum in the definition of ˆ.l/ is in fact a minimum, by choosing the representative of
Œs; x� on which the minimum is attained, we have l.s/Dˆ.l/.Œs; x�/. By Lemma 3.35, we
may, without loss of generality, assume that ga D Œs; xa�, where xa D s.ga/, and xa! x.
Then,

ˆ.l/
�
Œs; xn�

�
D inf

t2S
Œt;xn�DŒs;xn�

l.t/ � l.s/ D ˆ.l/
�
Œs; x�

�
:

The other inequality follows from the tight properness assumption of l . Indeed, suppose
that ˆ.l/.Œs; xa�/ 6! l.s/, and note that, since the values that ˆ.l/ takes are discrete
(see [17, Lemma 4.14]), it must be the case thatˆ.l/.Œs; xa�/ � r < l.s/ for some positive
numbers r � 0 in some subnet B . Then let Fr b S be a finite set that witnesses the r-tight
properness of l , and observe that Œs; xa� D Œma; xa� for some ma 2 Fr . Since Fr is finite,
this implies that, possibly passing to a subnet, we may assume that Œs; xa� D Œm; xa� for
all a, and hence Œm; xa�! Œm; x� D Œs; x� since G is assumed Hausdorff and limit points
are unique in Hausdorff spaces. It would then follow that

l.s/ D ˆ.l/
�
Œs; x�

�
D ˆ.l/

�
Œm; x�

�
� l.m/ � max

n2Fr

l.n/ � r < l.s/

by the choice of Fr . This is a contradiction, and hence ˆ.l/.Œs; xa�/ ! ˆ.l/Œs; x�, as
desired.
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For the converse, assume that l is proper, but not tightly proper for some r . Let F be
the finite set witnessing the properness of r . Consider the set C r D ¹s 2 S j l.s/ � rº.
Then there is no finite subset of C r which is an upper bound of C r , and hence there is a
set of elements s1; s2; : : : with l.si / � r and no upper bound in C r . By properness, there
is m 2 F such that si < m for infinitely many indices i – let us pass to this subsequence.
Then, in particular, s�i si � m

�m, and thus Œm;
T

i .s
�
i si /

"� 2 G.
Notice that Œsi ; .s�i si /

"�! Œm;
T

i .s
�
i si /

"�, and ˆ.Œsi ; .s�i si /
"�/ � l.si / � r . Whereas

ˆ

��
m;
\

i

.s�i si /
"

��
D inf¹l.t/ j t�t � s�i si ; m � tº D inf¹l.t/ j t � siº > r

as the chain si has no upper bound in C r . Thus, ˆ.l/ is not continuous.

Remark 3.37. From Theorem 3.36 it is apparent that continuity of a length function on a
groupoid is not a coarse invariant, as being tightly proper is not a coarse invariant. How-
ever, by Theorem 3.29, we can always find a continuous length function on G, and by
Proposition 3.32 we can always find a tight proper length function on S . Furthermore,
note both length functions are unique up to coarse equivalence.

4. Uniqueness of the uniform Roe algebra of an inverse semigroup

This section is dedicated to the uniform Roe algebra of an inverse semigroup. The goal
is to show that there are several ways to construct a (usually non-separable) C*-algebra
C �u .S/ from S that inherits much of the geometric aspects of the semigroup. This C*-
algebra will then be studied in the upcoming Section 5. The first way to construct C �u .S/
is via the following canonical action of S on `1.S/.

Definition 4.1. Let S be an inverse semigroup and let s 2 S :

(1) Given the idempotent e 2 E let Ie be the two-sided closed ideal

Ie WD
®
f 2 `1.S/ j supp.f / � eS

¯
:

(2) Given f 2 Is�s let sf 2 Iss� be defined by .sf /.y/ WD f .s�y/ for any y 2 ss�S .

Note that s defines a �-isomorphism Is�s ! Iss� , where f 7! sf , and the corres-
ponding action of S on `1.S/ is in fact the dual of the Wagner–Preston representation.
Moreover, recall that given any action of a discrete inverse semigroup S on a C*-algebraA
we may form the reduced crossed product of A by S , that is, a C*-algebra A Ìr S that
encapsulates both A and the action of S on A [4, 5]. However, since this construction is
quite technical and will not be needed here in full generality, we will only prove that the
C*-algebras we shall henceforth consider are indeed reduced crossed products as in [4, 5]
in Theorem 4.3. For now, consider the representations given by:

� W`1.S/!B
�
`2.S/˝ `2.S/

�
; �.f /

�
ıx ˝ ıy

�
WD

´
f .yx/ıx ˝ ıy if xx� D y�y;

0 otherwise,
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and

1˝ vWS ! B
�
`2.S/˝ `2.S/

�
; .1˝ v/.s/

�
ıx ˝ ıy

�
WD

´
ıx ˝ ısy if y 2 s�S;

0 otherwise.

Notice that .1˝ v/.s/D 1˝ vs , where vs is given in Subsection 2.3. Furthermore, observe
that the representations are covariantly intertwined, that is, they satisfy that

.1˝ vs/�.f /.1˝ vs�/ D �.sf /

for all f 2 Is�s and s 2 S . In this setting, let RS be the C*-algebra generated by
¹�.f /.1˝ vs/ j s 2 S; f 2 Is�sº, which is canonically embedded in B.`2.S/˝ `2.S//.
The importance of the action in Definition 4.1 comes from the following observation,
whose proof is given in [16] (observe that the countability assumption in [16] is never
used). Nevertheless, we include a sketch of the proof for convenience.

Proposition 4.2. Let S be an inverse semigroup, and let S act on `1.S/ as above. Then

C �
�
`1.S/ � ¹vs j s 2 Sº

�
Š RS ;

where the left hand side is sitting in B.`2.S// and the right hand side in B.`2.S/ ˝

`2.S//.

Proof. Consider the operator uW `2.S/˝ `2.S/! `2.S/˝ `2.S/ given by

u.ıx ˝ ıy/ D

´
ıx ˝ ıyx if xx� D y�y;

0 otherwise:

Then a computation shows that u commutes with 1˝ vs and u�.f /u� D .1˝ f /uu�.
The claim of the proposition then follows.

For the following, recall from [5] (and references therein) the construction of the
reduced crossed product `1.S/ Ìr S , where the action is the one given in Definition 4.1.
In [5, Section 2], however, this construction is carried out for a Fell bundle A D .As/s2S

over the inverse semigroup S . These Fell bundles form a vastly more general body of
objects than the particular action of Definition 4.1. Since we do not need such gen-
erality in this paper, we simply recall that an action of an inverse semigroup S on a
C*-algebraA (e.g., Definition 4.1) yields a Fell bundle AD .As/s2S as in [4,5] via declar-
ing Asıs WD Iss�ıs , where Iss� is as in Definition 4.1. The construction detailed in [4, 5]
(and references therein) defines a crossed product, which we denote by `1.S/ Ìr S . For
the convenience of the reader, we detail this construction below.

For any s 2 S we let Is;1 be the (C*-)ideal of `1.S/ generated by every Ie where
e � s and e 2 E (see [5, Definition 2.12]). Completing in the weak topology yields a (von
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Neumann) ideal I ��s;1 � `
1.S/��.3 We denote the canonical inclusion map of `1.S/ into

`1.S/�� by �. Since von Neumann ideals are always unital, we let 1s;1 be the unit of I ��s;1 .
The conditional expectation of the action is given in [5, Definition 2.25] as

P W

algM
s2S

`1.ss�S/vs !
�
`1.S/

���
; .fsvs/s2S 7!

X
s2S

�.fs/1s;1; (4.1)

where fs 2 `
1
�
ss�S

�
is viewed naturally as an element of `1.S/ by extending by 0 out

of ss�S . We must highlight here that the domain of P above is not made of c0 sums, but
of finite ones.

Quotienting the domain of P by its nucleus, namely NP D ¹x j P.x
�x/ D 0º, yields

a *-algebra, which we denote by `1.S/ Ìalg S (see [5, Proposition 2.27]). Then, the C*-
algebra `1.S/ Ìr S is defined to be the unique C*-algebra that contains `1.S/ Ìalg S

densely and such that P induces a faithful conditional expectation on `1.S/ Ìr S . This
is the definition that we shall use in the following.

Theorem 4.3. Let S be a quasi-countable inverse semigroup, and let d be a proper and
right subinvariant metric. Then `1.S/ Ìr S and RS are *-isomorphic. Moreover, if S is
a monoid, then they are isomorphic to C �u .S; d/ as well.

Proof. Note that, by Proposition 4.2, we may see RS embedded in B.`2.S/˝ `2.S// or
B.`2.S// as needed.

We first prove that RS is contained in C �u .S; d/ as subsets of B.`2.S//. In fact,
we prove that span

�
`1.S/ � ¹vs j s 2 Sº

�
consists exactly of finite propagation operat-

ors in B.`2.S//, which by taking the C*-closures of both sides implies the statement.
It is clear that every generator f vs of RS is of finite propagation. Indeed, note that if
hf vsıx ; ıyi ¤ 0 then sx D y and s�sx D x, which implies that x L y and d.x; y/ �
d.s�s; s/ by right subinvariance of d . It follows that every operator in span

�
`1.S/ � ¹vs j

s 2 Sº
�

is of finite propagation.
We now prove the reverse inclusion when S is a monoid, which is more subtle. Let

T 2 C �u .S; d/ be of propagation r > 0. As d is proper and S is a monoid there is some
finite F b S such that for any x;y 2 S with d.x;y/ � r , we have y D tx for some t 2 F .
Let ¹tx;yºx;y2S � F be such a choice, that is, tx;yx D y. Then for each s 2 F , we may
define an operator fs 2 `

1.S/ by

fs.y/ WD

´
hT ıs�y ; ıyi if y L s�y and s D ts�y;y ;

0 otherwise,
;

and it is straightforward to check that T D
P

s2F fsvs (a proof is also given in [16, Proof
of Theorem 3.25]).

3In [5], the double dualA�� is denoted asA00. However, the notationA�� is more common in functional
analysis, and hence we stick to it.
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We now turn to the proof that RS Š `
1.S/Ìr S , regardless of whether S is a monoid.

In order to prove this, we shall show that RS satisfies the defining feature of `1.S/ Ìr S ,
namely it is the (necessarily unique) C*-algebra densely containing `1.S/ Ìalg S and
such that the conditional expectationP given in equation 4.1 induces a faithful conditional
expectation on RS .

We first begin by showing that the image of P is contained in `1.S/. Indeed, given
s 2 S let ps be the orthogonal projection onto `2

�S
e2s#\E eS

�
, which is a closed sub-

space of `2.S/, and ps 2 `
1.S/. It hence suffices to prove that 1s;1 D �.ps/, where

�W `1.S/ ,! `1.S/�� is the canonical inclusion. But this is readily done. Indeed, on one
hand, 1s;1 � �.ps/, since psx D x and xps D x for all x 2 Ie and idempotent e � s.
Likewise, note that 1s;1 � �.ps/. For this, fix some idempotent e � s and observe that
1s;1 � �.pe/ D �.ve/, since Ie � Is;1 � I

��
s;1 . Thus, �.ps/ D supe�s#\E �.pe/ � 1s;1, as

desired. This means we may view P in equation (4.1) simply as the map

P W

algM
s2S

`1.ss�S/vs ! `1.S/; .fsvs/s2S 7!

X
s2S

fsps :

Next, recall that the usual conditional expectation EWB.`2.S//! `1.S/ is defined as
E.t/.x/ D htıx ; ıxi for all x 2 S . Moreover, it is not hard to show that E is faithful,
meaning that t D 0 whenever E.t�t / D 0. In this context, consider the map

 W

algM
s2S

`1.ss�S/vs ! B.`2.S//; .fsvs/s2S 7!

X
s2S

fsvs :

We claim that P D E ı  . By linearity, it suffices to prove that P.fsvs/ D E. .fsvs//

for all s 2 S and fs 2 `
1.ss�S/. In order to do this, note that  .fsvs/ D fsvs (as an

element of B.`2.S//, not as a formal monomial). Then, for all x 2 S we have that

P.fsvs/.x/ D .fsps/.x/ D

8̂<̂
:
fs.x/ if x 2

[
e2s#\E

eS;

0 otherwise.

Likewise,

E
�
 .fsvs/

�
.x/ D E.fsvs/.x/ D hfsvsıx ; ıxi D

´
fs.x/ if x D s�sx D sx;

0 otherwise.

By simply noting that x 2
S

e2s#\E eS if and only if x D s�sx D sx, the proof that
P D E ı  is done. Notice that the image of  consists exactly of the set span

�
`1.S/ �

¹vs j s 2 Sº
�

of finite propagation operators, since
S

s2S ss
�S D S . All that remains

to be shown is NP D ker . This would indeed imply that Im. / D `1.S/ Ìalg S ŠLalg
s2S `

1.ss�S/=NP , which RS densely contains, and the conditional expectation
induced by P on RS will coincide with E, which is faithful on all of B.`2.S//.
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In order to prove that ker DNP , we first must show that  is a homomorphism. For
this, given fsvs and ftvt we let

fsvsftvt WD
�
x 7! fs.stx/ft .tx/

�
vst and

�
fsvs

��
WD
�
x 7! fs.s�x/

�
vs� :

The above operations, extended by linearity, equip
Lalg

s2S `
1.ss�S/vs with an �-algebra

structure. Moreover, note that  is then a �-homomorphism. Given any x such that
 .x/ D 0, it follows from P D E ı  , that

P.x�x/ D E
�
 .x�x/

�
D E

�
 .x�/ .x/

�
D 0;

and hence ker � NP . For the reverse inclusion, let x be such that P.x�x/ D 0. Then,
by the computation above and the fact that E is faithful, we have that  .x/ D 0, as
desired.

In view of Theorems 3.23 and 4.3, we shall henceforth fix a proper and right subin-
variant metric d on S , and call C �u .S; d/ the uniform Roe algebra of S , as it (essentially)
does not depend on the choice of such a metric.

Remark 4.4. In order to answer a question of the referee, the isomorphisms given
in Theorem 4.3 do fix the copies of the natural abelian subalgebra `1.S/ in all of
`1.S/ Ìr S;RS and C �u .S; d/ (at least when S is a monoid). Indeed, for instance,  
in the proof of Theorem 4.3 does send `1.S/ into B.`2.S// in the usual way.

5. Local finiteness properties, geometry and quasi-diagonality

This final section of the text has the goal of characterizing those inverse semigroups that
have asymptotic dimension 0, both algebraically and by properties of their uniform Roe
algebra. Incidentally, the same methods actually allow us to characterize those inverse
semigroups whose L-classes are sparse.

5.1. Local finiteness, asymptotic dimension 0 and strong quasi-diagonality

Recall we say an inverse semigroup S is locally finite if every finitely generated inverse
subsemigroup of S is finite. Observe that when S happens to have an identity, it is loc-
ally finite as an inverse monoid if and only if it is locally finite as an inverse semigroup,
that is, its finitely generated inverse submonoids are finite if and only if its finitely gener-
ated inverse subsemigroups are finite. We therefore do not differentiate between these two
notions.

Asymptotic dimension was introduced by Gromov as an analogue of topological
dimension for metric spaces. It is a coarse invariant of the space. As for the purposes
of this paper we are only interested in asymptotic dimension 0; this is the only definition
that we shall give (see [20] for the general definition).
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Definition 5.1. Let .X; d/ be a metric space of bounded geometry:

(1) A cover U of X is a family of subsets U � X such that
S

U2U U D X .

(2) The cover U is uniformly bounded if the diameters of the sets U 2 U are
uniformly bounded, that is, supU2U diam.U / <1.

(3) We say .X; d/ is of asymptotic dimension 0 if for all r 2 RC the space X has a
uniformly bounded cover U such that d.U;V / > r for any U;V 2U with U ¤ V .

It is well known that a group is locally finite if and only if it has asymptotic
dimension 0 (see [25, Theorem 2]). We shall prove the analogous result for inverse
semigroups.

Below we give a known alternative definition for having asymptotic dimension 0.
Recall that, given a metric space .X; d/, we may define an equivalence �r on X by
setting x �r y if there exists a sequence of points z1; : : : ; zn with x D z1, y D zn and
d.zi ; ziC1/ � r . The �r -classes are called r-components.

Lemma 5.2. The following are equivalent for any metric space .X; d/ with bounded
geometry:

(1) X has asymptotic dimension 0.

(2) For any r 2 RC, the r-components of X have uniformly bounded diameter.

(3) For any r 2 RC, the r-components of X have uniformly bounded size.

Proof. We will prove that (1)) (3)) (2)) (1). For (1)) (3), fix r 2 RC and let U

be a covering witnessing the asymptotic dimension of X , that is, there is some k � 0 such
that diam.U / � k and d.U; V / > r for any U ¤ V 2 U. In particular, if x 2 U then for
any z 2 U with d.x; z/ � r we have z 2 U as well. Hence, by an inductive argument, the
r-component of x is thus contained in U � Bk.x/, and so its cardinality is bounded by
jBk.x/j. Bounded geometry then gives a uniform bound on the size of the r-components.

For (3) ) (2), assume any r-component C has size at most N . Let x; y 2 C , and
consider a sequence z1; : : : ; zn with x D z1, y D zn and d.zi ; ziC1/ � r . We can without
loss of generality assume that the points in the sequence are pairwise distinct, and as they
are all contained in C , we have n � N . Then, d.x; y/ � rN by the triangle inequality, so
diam.C / � rN .

Finally, for (2) ) (1), simply note that the set of r-components is a cover with the
required properties.

The statements of the following lemma are immediate from the definition and the fact
that asymptotic dimension is a coarse invariant, along with the fact that proper and right
subinvariant metrics in inverse semigroups are unique up to bijective coarse equivalence
(see Theorem 3.23).
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Lemma 5.3. Let S be an inverse semigroup, and let S1 be the monoid obtained by adjoin-
ing an identity to S . Let d; d1 be proper and right subinvariant metrics on S and S1

respectively. Then the following hold:

(1) S is locally finite if and only if S1 is locally finite.

(2) .S; d/ has asymptotic dimension 0 if and only if .S1; d1/ has asymptotic
dimension 0.

A related, more general concept is that of sparse metric spaces (see, e.g., [2]). A non-
extended metric space .X; d/ of bounded geometry is sparse if X is the disjoint union of
nonempty finite subsets ¹Xnºn2N such that d.Xn;Xm/!1 as nCm!1. In particular,
sparse non-extended metric spaces are countable. As we are interested in quasi-countable
inverse semigroups, we consider the following definition for (extended) metric spaces.

Definition 5.4. Let .X; d/ be a metric space of bounded geometry. We say X is sparse if
.C; d jC / is a sparse metric space for every connected component C � X .

The following lemma, which is analogous to Lemma 5.2, details the relationship
between asymptotic dimension 0 and sparseness.

Lemma 5.5. The following are equivalent for any extended metric space .X; d/ with
bounded geometry:

(1) X is sparse.

(2) For any r 2 RC, the r-components of X have finite diameter.

(3) For any r 2 RC, the r-components of X are finite.

In particular, any metric space with asymptotic dimension 0 is sparse.

Proof. The fact that (2) and (3) are equivalent follows routinely from the fact that X is of
bounded geometry. In order to see (3)) (1), let C � X be a connected component of X ,
and fix a point p 2 C . We shall define pairwise disjoint sets Xi such that

C D

1[
nD1

Xn and d.Xn; Xm/ > max¹n;mº � 1

when n ¤ m. Let X1 be the 1-component of p. For n � 2, define Xn as the n-component
of p minus the .n � 1/-component of p. By (3), these are all finite sets. It is also clear
from the definition that C is the disjoint union of the sets ¹Xnºn2N . Now if n > m then

d.Xn; Xm/ � d.Xn; X1 [ � � � [Xn�1/

� d.X n ¹X1 [ � � � [Xn�1º; X1 [ � � � [Xn�1/ > n � 1;

because X1 [ � � � [ Xn�1 is exactly the .n � 1/-component of p. Thus, d.Xn; Xm/ �

max¹n;mº � 1 whenever n ¤ m.
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In order to prove that (1) implies (3), given r 2 RC, each r-component of X is con-
tained in a disjoint union of nonempty finite subsets ¹Xnºn2N such that d.Xn; Xm/!1

as nCm!1. Let k 2 N be large enough so that if nCm � k, then d.Xn; Xm/ > r .
We claim that then each r-component is contained in one of the finite sets

X1 [ � � � [Xk�1; Xk ; XkC1; : : :

Indeed, by the assumption, the distance between any pair of the above sets is bigger than r ,
meaning no two r-related elements can fall into two distinct sets.

It is immediate from the above lemma that sparseness, too, is a coarse invariant prop-
erty. Note that even though bounded geometry metric spaces with asymptotic dimension 0
are all sparse, the converse is in general false. However, within the realm of groups, the
two notions coincide, as is well known and we will see below. We will show that for
inverse semigroups having asymptotic dimension 0 and being sparse are not equivalent.

It turns out that the corresponding algebraic property of inverse semigroups is what
we term local L-finiteness. We say an inverse semigroup S is L-finite if all its L-classes
are finite and, as usual, we say it is locally L-finite if all of its finitely generated inverse
subsemigroups are L-finite. Again, in the case when S is a monoid, this is equivalent to
the finitely generated submonoids of S being L-finite. The following characterization of
L-finite inverse semigroups is useful to know.

Lemma 5.6. The following are equivalent for any inverse semigroup S :

(1) S is L-finite.

(2) S only has finite R-classes.

(3) S only has finite D-classes.

Proof. The equivalence of (1) and (2) follows from the fact that s L t if and only if
s� R t�, so the L-class Ls is in bijection with the R-class Rs� .

Since D-classes are unions of L-classes, the (3)) (1) implication is trivial. For the
converse, let s 2 S and note thatDs D

S
t2Rs

Lt D
S

t�2Ls�
Lt , whence jDsj � jLsj

2.

Observe that for groups, the notions of (local) finiteness and (local) L-finiteness coin-
cide, as L is the universal relation. However, for inverse semigroups these are different
classes. For instance, finitely generated free inverse semigroups are L-finite (but not
finite), and free inverse semigroups are locally L-finite (but not locally finite). The ana-
logue of Lemma 5.3 remains true in this setting; the proof is again immediate from the
definitions.

Lemma 5.7. Let S be an inverse semigroup, and let S1 be the monoid obtained by adjoin-
ing an identity to S . Let d; d1 be proper and right subinvariant metrics on S and S1

respectively. Then the following hold:

(1) S is locally L-finite if and only if S1 is L-locally finite.
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(2) .S; d/ is sparse if and only if .S1; d1/ is sparse.

The following lemma characterizes those finitely generated inverse semigroups which
are sparse spaces and, respectively, of asymptotic dimension 0.

Lemma 5.8. Let T be a finitely generated inverse semigroup:

(1) If T has asymptotic dimension 0, then it is finite.

(2) If T is sparse then it is L-finite.

Proof. Since T is finitely generated we obtain the unique right subinvariant proper met-
ric d by taking the word metric with respect to a finite generating set A b T . Notice that
in this metric, d.x; y/ <1 if and only if they are in the same 1-component, that is, the
1-components are the L-classes. This immediately implies (2) by Lemma 5.5. Likewise,
by Lemma 5.2, if T has asymptotic dimension 0 then its L-classes are uniformly bounded
in size by some constant k. Hence, by Lemma 5.6, in order to prove (1) all we have to do
is show that T admits only finitely many D-classes.

Consider a Schützenberger graph S�.s/ for s 2 T . It has at most k vertices, and so
given any label a 2 A, there are at most k edges labelled by a, since no two edges with
the same label can have the same initial (or terminal) vertex. Since A is finite we see that
there are only finitely many such edge-labelled graphs up to isomorphism respecting the
labels. Recall that S�.s/ and S�.t/ are isomorphic as edge-labelled digraphs if and only
if s D t , which implies T has only finitely many D-classes.

The following lemma is routine to show, but will be useful when proving the main
contributions of the section (see Theorems 5.12 and 5.14).

Lemma 5.9. Given any uniformly bounded metric spaces .X; dX / and .Y; dY / with
X � Y , if for any x; z 2 X we have dX .x; z/ � dY .x; z/, then

(1) If Y has asymptotic dimension 0, then so does X .

(2) If Y is sparse, then so is X .

Proof. Suppose x and z are in the same r-component of X , that is, there exist
x1; : : : ; xn 2X such that x D x1; z D xn, and dX .xi ; xiC1/ � r . Then dY .xi ; xiC1/ � r ,
so x and z are also in the same r-component in Y . This shows that the r-components
of X are contained in the r-components of Y , which implies both statements (1) and (2)
by Lemmas 5.2 and 5.5, respectively.

We obtain the following key lemma as an easy consequence.

Lemma 5.10. Given any inverse semigroup S and an inverse subsemigroup T � S ,

(1) if S has asymptotic dimension 0, then so does T ;

(2) if S is sparse, then so is T .
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Proof. Denote by ds and ls the metric and the respective length function on S . Choose a
generating set A for T , and consider the metric on T arising as the weighted word met-
ric choosing weights w.a/ D ls.a/ for a 2 A (see Proposition 3.19). Denote this metric
by dT . We claim that if t1; t2 2 T , then dT .t1; t2/ � dS .t1; t2/. First notice that t1 and t2
are L-related in both S and T if and only if t�1 t1 D t

�
2 t2, so the connected components

are the same in both metrics. Assume t1 L t2, and consider a geodesic path with respect
to dT from t1 to t2 labelled by an; : : : ; a1 with ai 2 A [ A

�, that is, t2 D a1 � � � ant1 with

dT .t1; t2/ D w.a1/C � � � Cw.an/ D lS .a1/C � � � C lS .an/ � lS .a1 � � � an/ � dS .t1; tn/

by Lemma 3.11 (1). We can then apply Lemma 5.9 to .T; dT / and .S; dS /, yielding both
statements.

The following lemma provides a useful necessary condition for inverse semigroups
not of asymptotic dimension 0. In particular, it says that such semigroups must con-
tain arbitrarily long r0-paths, for some r0 � 0. This was proved in [15, Lemma 2.4] for
non-extended metric spaces and can be proved for extended metric spaces similarly.

Lemma 5.11. Let S be an inverse semigroup not of asymptotic dimension 0. Then there
is some r0 � 0 and sets Xn D ¹x

.n/
1 ; : : : ; x

.n/

m.n/
º such that m.n/!1 when n!1 and

the following assertions hold:

(1) d.x.n/
i ; x

.n/
iC1/ � 2r0 and d.x.n/

1 ; x
.n/
i / 2 Œ.i � 1/r0; ir0/ for every n 2 N and

i D 1; : : : ; m.n/ � 1.

(2) The sequence ¹infm¤n d.Xn; Xm/ºn2N is positive and tends to1 when n!1.

In particular, there are L-classes Ln � S such that Xn � Ln.

We are now in a position to give the proof of the main contribution of the subsection.
The following theorem characterizes the geometric property of having asymptotic dimen-
sion 0 via the algebraic property of being locally finite, and via the C*-property of having
a strongly quasi-diagonal uniform Roe algebra.

Theorem 5.12. Let S be a quasi-countable inverse semigroup equipped with its unique
proper and right subinvariant metric d . The following statements are equivalent:

(1) S is locally finite.

(2) .S; d/ has asymptotic dimension 0.

(3) C �u .S; d/ is an inductive limit of finite-dimensional C*-subalgebras.

(4) C �u .S; d/ is local AF.

(5) C �u .S; d/ is strongly quasi-diagonal.

Proof. We shall prove that (1), (2), and (2)) (3)) (4)) (5)) (2).
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Observe that, by Lemmas 3.10 and 5.3, in order to prove (1), (2) we may assume
that S is a monoid. In this setting, the implication (2)) (1) is an immediate consequence
of Lemmas 5.8 (1) and 5.10 (1).

For (1)) (2), given r > 0 we will show that the r-components of S are uniformly
bounded in size which, by Lemma 5.2, proves (2). Since d is proper there is some finite
F b S such that y 2 Fx for every x; y 2 S such that d.x; y/ � r . Indeed, just put
F WD ¹1º [ zF where zF is as in Definition 3.1 (2). The inverse semigroupM WD hF i � S
is then finite, as it is finitely generated. Suppose s and t are in the same r-component of S ,
that is, there are elements x1; : : : ; xn 2 S such that x1 D s, xn D t , and d.xi ; xiC1/ � r .
Then xi 2 FxiC1 �MxiC1 by assumption. Therefore, by induction, s 2Mt , sinceM is
closed under multiplication. We hence have that the r-component of t is contained in Mt

and thus has size at most jM j, proving the claim.
The proof of (1)) (3) is the exact same as that of [15, Theorem 2.2] (1)) (2), which

is the analogous statement for non-extended metric spaces.
Lastly, since the implications (3) ) (4) ) (5) are well known to hold for gen-

eral C*-algebras, let us prove that (5) ) (2). We shall prove the contrapositive, and
assuming asdim.S/ > 0 we will construct a homomorphism � W C �u .S; d/ ! B where
�.C �u .S; d// contains a proper isometry. This implies there is a non-quasi-diagonal
quotient of C �u .S; d/ (see [3, Proposition 7.1.15]). First, since S is not of asymptotic
dimension 0, let r0 � 0; ¹Xnºn2N and ¹Lnºn2N be as in Lemma 5.11. Consider

 WC �u .S; d/! C �u

�G
n

Ln; d

�
; x 7! xp;

where p 2 B.`2.S// denotes the orthogonal projection onto `2.
F

n Ln/. In particular,
note that xp D px for all x 2 C �u .S; d/, and, therefore,  is a surjective homomorphism.
Now, let .Y; zd/ be any non-extended metric space such that Y D

F
n2N Ln and zd restricts

to d in Ln, whereas zd.Ln;Lm/!1 when nCm!1 and n¤m. We will compose  
with the natural inclusion map

�WC �u

�G
n

Ln; d

�
,! C �u .Y;

zd/:

The map � ı  is then a homomorphism, and its image contains all the operators t 2
C �u .Y;

zd/ of finite propagation and that respect the sets Ln � Y , that is, tqn D qnt , where
qn 2 C

�
u .Y;

zd/ projects onto `2.Ln/ � `
2.Y /.4 Hence, the operator

t W `2.Y /! `2.Y /; ıy 7!

8̂̂<̂
:̂
ı

x
.n/
kC1

if y D x.n/

k
and k � m.n/ � 1;

0 if y D x.n/

m.n/
;

ıy otherwise;

4Note, however, that � ı  is not surjective, as the operators in C �u .Y; zd/ may move the pieces Ln

around.
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is in the image of � ı  . Now, .Y; zd/ is a non-extended metric space of bounded geo-
metry, so as shown in the proof of [15, Theorem 2.2] (4) ) (1), we obtain a quotient
map �WC �u .Y; zd/ ! B , where the operator t above maps to a proper isometry. Putting
things together, � WD � ı � ı WC �u .S; d/! B is a homomorphism whose image contains
a proper isometry. This shows that C �u .S; d/ is not strongly quasi-diagonal and completes
the proof.

5.2. Local L-finiteness, sparseness and quasi-diagonality

The goal of this final section of the paper is to give an analogous characterization for
sparse inverse semigroups.

Lemma 5.13. Given " > 0 and v1; : : : ; vk 2 `
2.S/, there is some finite F b S such that

if q is the projection onto span¹ıx j x 2 F º, then kqvi � vik � " for all i D 1; : : : ; k.

Proof. The proof follows from a routine "=2-argument.

Theorem 5.14. Let S be a quasi-countable inverse semigroup equipped with its unique
proper and right subinvariant metric d . The following statements are equivalent:

(1) S is locally L-finite.

(2) .S; d/ is sparse.

(3) C �u .S; d/ is quasi-diagonal.

(4) C �u .S; d/ is stably finite.

(5) C �u .S; d/ is finite.

Proof. The proof of this theorem is very similar to that of Theorem 5.12, both at a
technical and heuristic level. We shall, hence, follow the same strategies and show
that (1), (2), and that (1)) (3)) (4)) (5)) (1).

First, for the equivalence between (1) and (2) observe that, by Lemmas 3.10 and 5.3,
we may assume that S is a monoid. In order to prove (1) ) (2), given any r > 0 and
s 2 S we will show that the r-component of s is finite. As d is proper, let F b S be
finite and such that y 2 Fx for every x; y 2 S such that d.x; y/ � r , and consider
M WD hF [ ¹sºi � S , which is an L-finite inverse subsemigroup of S .

Let t be an element of S in the same r-component. Just as in the proof of (1)) (2)
in Theorem 5.12, we obtain that t D ms for some m 2 M . Note that since s and t must
be in the same L-class of S , we have s�s D t�t D s�m�ms. Let n D mss� 2M . Notice
that t D ms D mss�s D ns, and furthermore n�n D .mss�/�mss� D s.s�m�ms/s� D
ss�ss� D ss�, thus n is L-related to ss� both in S and in M . Denote the L-class of ss�

in M by L, and note that L is finite. As n 2 L and t D ns, we have obtained that t 2 Ls
for any t in the r-component of s. Thus, the r-component of s is contained in the finite
set Ls, as required.
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Observe that the implication (2) ) (1) is an immediate consequence of Lem-
mas 5.8 (2) and 5.10 (2).

The fact that (1)) (3) follows from some simple approximation arguments. Indeed,
observe that givenK b C �u .S; d/; " > 0 and v1; : : : ; vk 2 `

2.S/, it is enough to construct
a finite rank orthogonal projection p 2 B.`2.S// such that

kpvi � vik � " and kpa � apk � " for all a 2 K and i D 1; : : : ; k:

By a routine "=2-argument we may, without loss of generality, suppose that every a 2 K
is of finite propagation, say bounded by r � 0. Then let F1 b S be a finite set witness-
ing the r-properness of d . In addition, let F2 b S and q be as in Lemma 5.13, and put
T WD hF1 [ F2i. As S is locally L-finite, observe that the L-classes of T are finite,
though T itself might be infinite. Consider then the subspace V � `2.S/ generated by the
finite set

¹ıx j x 2 T; x L m for some m 2 F1 [ F2º:

We claim that, then, the orthogonal projection p onto V meets the requirements of the
claim. Indeed, p has finite rank, since V is finite-dimensional. Likewise, p � q, and hence
kpvi � vik � kqvi � vik � " for every i D 1; : : : ; k. Lastly, observe that vtp D pvt for
all t 2 T . Indeed, for every x 2 S we have that

�
vtp

��
ıx

�
D

´
ıtx if ıx 2 V and x D t�tx;

0 otherwise.

Likewise, �
pvt

��
ıx

�
D

´
ıtx if ıtx 2 V and x D t�tx;

0 otherwise.

In particular, observe that if x D t�tx then x L tx, and hence ıx 2 V if, and only if,
ıtx 2 V . Thus, pvt D vtp, and hence pa D ap for all a 2 K since, by construction,
every element a 2 K is a finite sum of monomials of the form f vt with t 2 T , as desired.

The implications (3) ) (4) ) (5) hold for general C*-algebras (see, e.g., [3,
Proposition 7.1.15]).

Lastly, we shall show (5)) (1). We show this by proving the contrapositive, and sup-
pose S is not locally L-finite, that is, there is a finitely generated inverse subsemigroup
T � S and an L-class L � T such that L is infinite. Since T is finitely generated, its
unique proper and right subinvariant metric dT is the path metric in the Schützenberger
graphs of T . Therefore, there is an infinite 1-path ¹xnºn2N , that is, xn 2 L � T � S and
dT .xn; xnC1/ D 1. Moreover, observe that this 1-path is also a 1-path in .S; d/. Hence,
the operator

vW `2.S/! `2.S/; where ıx !

´
ıxnC1 ifx D xn;

ıx if x ¤ xk for any k 2 N;
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is a proper isometry, that is, 1D v�v > vv�. Moreover, v clearly has propagation at most 1,
and hence v 2 C �u .S; d/, finishing the proof (see [3, Proposition 7.1.15]).
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