
Interfaces Free Bound. 27 (2025), 575–618
DOI 10.4171/IFB/550

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

A Dirichlet-to-Neumann map for the Allen–Cahn
equation on manifolds with boundary

Jared Marx-Kuo

Abstract. We study the asymptotic behavior of Dirichlet minimizers to the Allen–Cahn equation
on manifolds with boundary, and we relate the Neumann data to the geometry of the boundary. We
show that Dirichlet minimizers are asymptotically local in orders of " and compute expansions of the
solution to high order. A key tool is showing that the linearized Allen–Cahn operator is invertible at
the heteroclinic solution, on functions with 0 boundary condition. We apply our results to separating
hypersurfaces in closed Riemannian manifolds. This gives a projection theorem about Allen–Cahn
solutions near minimal surfaces, as constructed by Pacard–Ritoré.

1. Introduction

Consider .M n; g/, a closed, smooth Riemannian manifold with boundary Y D @M (see
Figure 3). We assume that Y is at least C 2;˛ and will state higher regularity when needed.

For any " > 0, there exists a non-negative minimizer of the Allen–Cahn energy [2]

E".u/ D

Z
M

"
jrguj

2

2
C
1

"
W.u/ (1.1)

such that ujY � 0, where W.u/ D 1
4
.1 � u2/2 is taken to be the standard double-well

potential. Minimizers of this energy functional satisfy the Allen–Cahn equation on the
interior of M

"2�gu D W
0.u/ D u.u2 � 1/: (1.2)

On closed Riemannian manifolds, there is a well-known correspondence between zero sets
of solutions to the Allen–Cahn equation and minimal surfaces: Modica and Mortola [12]
showed that the Allen–Cahn energy functional �-converges to the perimeter. Under cer-
tain geometric constraints, Wang and Wei [17, Thm 1.1] showed that the level sets of a
sequence of stable solutions to (1.2), ¹u"i º, converge to a minimal surface with good regu-
larity. On the other hand, given a minimal surface Y �M , Pacard and Ritoré [14, Thm 4.1]
showed that one can construct solutions to Allen–Cahn with zero sets converging to Y as
"! 0 (see Figure 1).
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Figure 1. Illustration of level set convergence to a minimal hypersurface

In this paper, we are concerned with solutions to equation (1.2) on manifolds with
boundary. Given Y D @M , how can one see the geometry of Y in a solution, u";Y , to (1.2)
that vanishes on Y ? We take u";Y W M ! R to be the non-negative minimizer of (1.1)
with zero Dirichlet data on Y . We then show an asymptotic expansion of the Neumann
data, �Y .u";Y /, in powers of ", with the coefficients depending on the curvatures of Y .
Finally, we apply our results to the setting of .M n; g/ closed with Y n�1 �M n, a separat-
ing hypersurface so that M DMC tY M�.

1.1. Background

For Y as above, consider the non-negative energy minimizer of (1.1), u";Y , with Dirich-
let conditions on Y . By standard methods in calculus of variations, this minimizer exists.
By work of Brezis–Oswald [3, Thm 1], there is at most one such solution to (1.2) on M
with this Dirichlet condition, and such a solution minimizes (1.1) among all such func-
tions. We ask, what is @�u";Y ? We describe normal derivative, as well as an expansion
of u";Y itself, asymptotically in ", by mimicking the techniques of Wang–Wei [17] and
also Mantoulidis [9, Section 4].

Our main application is the closed setting of this problem. Let .M n; g/ be a smooth
Riemannian manifold, and Y n�1 � M n a separating, two-sided hypersurface (see Fig-
ure 2) such that M D MC tY M�. One can consider non-negative (resp. non-positive)
minimizers of (1.1) on M˙, referred to as u˙";Y . For � D �C a normal pointing inward
to MC, the condition @�uC";Y D @�u

�
";Y means that u˙";Y can be pasted together to form a

smooth solution to equation (1.2) with level set on Y . In particular, we are motivated by
the following theorem of Pacard and Ritoré:

Theorem 1.1 (Pacard–Ritoré [14, Thm 1.1]). Assume that .M; g/ is an n-dimensional
closed Riemannian manifold and Y n�1 �M is a two-sided, smooth, nondegenerate min-
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Figure 2. Closed Setting

imal hypersurface. Then there exists "0 > 0 such that 8" 2 .0; "0/ there exists ¹u"º,
solutions to the Allen–Cahn equation, such that u" converges toC1 (resp.�1) on compact
subsets of .MC/o (resp. .M�/o). Furthermore,

E".u"/
"!0
���!

1
p
2
A.Y /

where A.Y / is the (n � 1)-dimensional area of Y .

Our Theorem 1.13 describes the projection of the solutions constructed by Pacard and
Ritoré [14, Thm 4.1] onto a specific kernel.

While Pacard–Ritoré showed that one can construct solutions with zero sets converg-
ing to a prescribed minimal surface, Wang–Wei consider a stable sequence of solutions
to (1.2) and produce curvature bounds on the level sets [17, Thm 1.1]. Recall that B.u"/
denotes the extended second fundamental form on graphical functions (see [17, eqn 1.4]).

Theorem 1.2 (Wang–Wei [17, Thm 1.1]). For any � 2 .0;1/, 0 < b1 � b2 < 1, andƒ> 0,
there exist two constantsC DC.�;b1;b2;ƒ/ and "�D ".�;b1;b2;ƒ/ so that the following
holds: suppose u" is a stable solution of equation (1.2) in B1.0/ � Rn satisfying

jru"j ¤ 0 and jB.u"/j � ƒ in ¹ju"j � 1 � b2º \ B1.0/

If n� 10 and "� "�, then for any t 2 Œ�1C b1;1� b1�, ¹u"D tº are smooth hypersurfaces
and

ŒH.u"/�� � C; kH.u"/kC 0 � C".log j log "j/2

where H.u"/ denotes the mean curvature of ¹u" D tº.

We are heavily inspired by the techniques used in their paper, though our results have
a different theme.
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1.2. Motivating example

As mentioned in the previous section, one can construct solutions of (1.2) by matching
Dirichlet and Neumann conditions along a hypersurface. We are motivated by the follow-
ing example from [7, Ex. 19]:

Example 1.3. LetM D Sn �RnC1. Define regionsA� D Sn \ ¹jxnC1j< �º and SnnA�
D DC� [D

�
� , where D˙� are the discs forming the complement of the annulus A� . Con-

sider u˙";� the non-negative energy minimizers of the Allen–Cahn energy on D˙� . Let v";�
denote the nonpositive energy minimizer on A� and define

zu�;".p/ WD

8̂̂<̂
:̂
uC";� .p/ p 2 DC� ;

u�";� .p/ p 2 D�� ;

v";� .p/ p 2 A� I

see Figure 4. The function zu�;" 2 C 0.Sn/ is a solution to equation (1.2) on Snn@A� . We
aim to find 0 < � < 1 such that zu� is C 1 across @A� , that is, the Neumann data matches
on xnC1 D ˙� .

Sketch of the proof. One can show that

C˙";� WD
@u˙";�

@xnC1
�
@v";�

@xnC1
jxnC1D˙�

varies continuously with � and is only dependent on " and � (i.e., these solutions are
one dimensional). Note by symmetry that C�";� D �C

C
";� . In particular, for " fixed and �

sufficiently close to 1, u˙";� � 0 while v";� < 0 on Int.A� /. Similarly, for � sufficiently
close to 0, u˙";� > 0 and v";� � 0, that is, for some ı > 0,

j1 � � j < ı H) CC";� > 0;

j1 � � j > 1 � ı H) CC";� < 0:

Figure 3. Image of our setup
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Figure 4. Example of matching Neumann data on the sphere

By continuity of CC";� , there exists � such that C˙";� D 0, and so that zu�;" is a C 1 and hence,
by elliptic regularity, a smooth solution to equation (1.2) on Sn.

1.3. Results

We recall the classical Dirichlet-to-Neumann map: consider an elliptic operator, L, aris-
ing from an energy functional. Given .M; g/ a Riemannian manifold and @M smooth,
consider f W @M ! R. Suppose there exists a unique zu such that

zu WM ! R; Lzu D 0; zuj@M D f:

Then one can formulate a map

D W H 1.@M/! L2.@M/; D.f / D @�.zu/I

see [11, Section 7] for details. We investigate the following Dirichlet-to-Neumann-type
map, where the Dirichlet data is fixed at 0, but the manifold and its boundary (M; Y
D @M ), are variable. This is pictured in Figure 5 where we think of M as a subset of a
larger closed manifold. Suppose we take the unique energy minimizer on M such that8̂̂̂̂

<̂
ˆ̂̂:
zu WM ! R;

"2�g.zu/ �W
0.zu/ D 0;

zujM > 0;

zujY D 0:

Let � be the positive normal to Y and define

N .Y / WD @�.zu/jY :
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Figure 5. Variable boundary visualization

The function N .Y / is a global term and depends on the geometry of M , as opposed to
just the geometry of Y . We prove the following result, which expands the Neumann data
asymptotically in ":

Theorem 1.4. For 0 < ˛ < 1, Y D @M a C 3;˛ hypersurface, and u";Y the positive mini-
mizer of E" on M with 0 Dirichlet condition on Y , we have that

@�u";Y D
1

"
p
2
�
2

3
HY CO."

1�˛/

with error in C ˛.Y /.

Remark 1.5. We can posit this more formally as a Dirichlet-to-Neumann operator
whenM is closed and Y �M is a separating hypersurface. Let M2;˛.M/ denote the space
of C 2;˛ two-sided, closed hypersurfaces with bounded geometry (cf. equation (2.1)). For
Y �M2;˛.M/, let U.Y / denote a normal neighborhood such that each Y 0 2 U can be
represented as

Y 0 D Y� D F.Y; �/ WD expY .�.p/�.p//

with � 2 C 2;˛.Y / and � a normal to Y . Define

F W Y � .�ı; ı/!M;

F.p; t/ D expp.t�.p//;

F�.p; t/ D expp..t C �.p//�.p//

(1.3)

so that
N W U.Y /! C 1;˛.Y /;

Y� 7! F �� .�Y�u
C

";Y�
/jtD0 D .F

�1
� /�.��/F

�
� .u

C

";Y�
/jtD0:

(1.4)

Now noting thatU.Y /DW V �C 2;˛.Y /, we can frame N W V !C ˛.Y / as a map between
functions on Y . In this sense, the variable initial level set, Y� , is the Dirichlet data, and
the normal derivative is the Neumann data, which forms a Dirichlet-to-Neumann-type map
on Y after pulling back. Our results do not just apply to perturbations of a fixed Y , as all of
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our theorems (with the exception of Theorem 1.13) apply to any separating hypersurface
of the appropriate regularity and bounded geometry. For this, we use the term “Dirichlet-
to-Neumann-type map” to describe N .

As noted in [7, Ex. 8], for Y fixed, a positive minimizer on M˙ will exist for " suffi-
ciently small.

We begin with a key estimate on L" D "2�g �W 00.H"/ with respect to the weighted
holder space, C k;˛" (see the definition in (2.8)).

Theorem 1.6. Let Y D @MC be aC 2;˛ surface, and suppose f WMC!R in C 2;˛" .MC/

with f .s; 0/ � 0. Then there exists an "0 > 0 sufficiently small, independent of f , such
that for all " < "0, we have

kf k
C
2;˛
" .MC/

� KkL"f kC˛" .M/

for K independent of ".

Immediately, we see that the linearized Allen–Cahn operator is invertible as a map
from C

2;˛
" .MC/ \ C0.M

C/ (i.e., with zero boundary conditions) to C ˛" .M
C/ (see [6,

Thm 6.15]). After establishing this, Theorem 1.4 is then proved in the following manner:

(1) Let t denote the signed distance from Y and s be a Fermi coordinate on Y . We
decompose

u";Y .s; t/ D H
� t
"

�
C �.s; t/

where H.t/ is a modification of the heteroclinic solution. We then rewrite the
Allen–Cahn equation in terms of �.

(2) We prove a modified Schauder estimate,

k�k
C
2;˛
" .MC/

� kL"�kC˛" .MC/;

reminiscent of [13, Prop. 3:21].

(3) We integrate the Allen–Cahn equation, showing that

@t�.s; 0/jtD0 D HY .s/�0 C

Z �!" ln."/

0

.�t�/
PH" CO."

2/:

(4) We show that the quantity
R �!" ln."/
0

.�t�/
PH" is small by proving better C 2;˛"

estimates for @si�. This mimics [17, Section 7].

We can improve our analysis of the Neumann data when HY D 0:

Theorem 1.7. When Y D @M is minimal, we have that

�C.uC";Y / D
1

"
p
2
C ��10 �0"ŒRicY .�; �/C jAY j2�CO."2�˛/

with error in C ˛.Y /.
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In the manifold with boundary setting, we see that as Y is more regular, we can capture
more terms in the expansion of �.u";Y /. This culminates in our main theorem (Theo-
rem 1.8). Recall the .s; t/ coordinates for a tubular neighborhood of Y , where t denotes
the signed distance from Y . Let Ht denote the mean curvature of the set of points a dis-
tance t from Y . Then

Theorem 1.8. For Y D @M aC xkC3;˛ hypersurface, the minimizer of (1.1) can be expand-
ed as

u".s; t/ D H".t/

C

xkX
iD1

"i �
� miX
jD0

ai;j
�®
@ˇs @

j
tHt .s/jtD0 j̄Cjˇ j�i

�
xwi;j;".t/

�
C �; (1.5)

k�k
C
2;˛
" .M/

D O."kC1/;

where ai;j .s/ are polynomials of derivatives of Ht up to a certain order and xwi;j;".t/
D xwi;j .t="/ are modifications of functions wi;j;".t/ D wi;j .t="/ for wi;j W Œ0;C1/! R
smooth and exponentially decaying in t (see Definition 2.1).

When xk � 1, this yields

Corollary 1.9. For u" a solution to equation (1.2) with Dirichlet data on a C 4;˛ hyper-
surface Y , we have that

uC";Y .s; t/ D H".t/C "HY .s/ xw".t/C �.s; t/;

k�k
C
2;˛
" .M/

D O."2/:

When Y is minimal (and has no singular set, by assumption at the beginning of Sec-
tion 1), we have the following corollary:

Corollary 1.10. For u";Y a solution to equation (1.2) with Dirichlet data on Y , a minimal
surface, the expansion in (1.5) exists to any order.

Such surfaces appear when the minimal surface exhibits symmetry inside of the ambi-
ent manifold. See, for example, [7, Section 6] and [4, Section 5] among other sources.

Remark 1.11. In general, we see that both the expansion of u";Y and its Neumann deriva-
tive are asymptotically local in terms of a series expansion in powers of ", despite being
determined by the global geometry of M .

Remark 1.12. Similar expansions have been done by Wang and Wei [16], Chodosh and
Mantoulidis [5], and Mantoulidis [9], among other authors. These works begin with
u WM ! R a smooth solution to (1.2) and then expand u about its zero set. This approach
actually gives the zero set better regularity by a Simons-type equation (see [16, Lem 8.6]),
allowing for more terms in the expansion. By contrast, we start with Y , a prescribed
zero set with limited regularity, and one-sided solutions, u˙";Y W M

˙ ! R, for which the
Simons-type equation does not apply.
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Figure 6. Perturbation of Y and the corresponding splitting of M DMC� tY� M
�
�

Returning to the setting of M closed and Y � M a separating hypersurface: take
� 2 C 2;˛.Y /, along with equation (1.3):

F� W Y ! U.Y / �M; F�.p; 0/ WD expp.�.p/�.p//; Y� D ¹F�.p/ j p 2 Y º;

where U.Y / is some open neighborhood of Y inM . DecomposeM DMC� tY� M
�
� (see

Figure 6), and consider the (positive) energy minimizers u˙";� on M˙� . By Brezis–Oswald
[3, Thm 1], these are the unique solutions to (1.2) onM˙� and we can paste them together
to form:

u";� WM ! R; (1.6)

u";� D

´
uC";�.p/ p 2MC� ;

�u�";�.p/ p 2M�� :

We now use the map in equation (1.4)

N ˙ W U.Y / � C 2;˛.Y /! C 1;˛.Y /; N ˙.�/ D F �� .@�˙Y�
u˙";�/.p/:

The Neumann data of u";� match along Y� if and only if

N C.�/ �N �.�/ D 0:

When this is the case, u";� is a smooth solution to (1.2) and we can characterize the
projection of u";� onto PH", the kernel of L" WD "2@2t �W

00.H"/.

Theorem 1.13. Let Y � M be a minimal separating hypersurface in a closed, smooth
Riemannian manifold. For u";� W M ! R as in (1.6), suppose that u";� is C 1 across Y�
and k�kC 2;˛ D O."1Cˇ / for some ˇ � ˛ fixed. ThenZ

R
�Y .�/

PH".t/dt D 2�0JY .�/C zO."
1C2ˇ /
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with error holding in C ˛.Y /. If we further have that Y is nondegenerate, thenZ �!" ln."/

!" ln."/
u";�.s; t/

PH".t/dt D

p
2

3
�.s/C zO."2; �2/

with error in C 2;˛.Y /.

The above theorem tells us that when we perturb Y to Y� to find a solution to (1.2)
with zero set Y� , then we can detect � via the projection of our solution onto PH". Also
note that for u";�.s; t/ D H".t/C �.s; t/,Z �!" ln."/

!" ln."/
u";�.s; t/

PH".t/dt D

Z �!" ln."/

!" ln."/
�.s; t/ PH".t/dt CO."

k/;

so Theorem 1.13 is equivalent to computing the projection of � onto PH". Further note
that Theorem 1.13 differs from Corollary 1.9 in that we compute a two-sided integral for
Theorem 1.13.

Following the completion of this paper, the expansions in Theorem 1.8 and the lin-
earized operator bound in Theorem 1.6 have been used in a fundamental way in [10, 15]
in order to construct an Allen–Cahn like energy on hypersurfaces and establish a strong
min-max property for it.

1.4. Paper organization

This paper is organized as follows:

• In Section 2, we define our notation and recall some known geometric equations and
quantities.

• In Section 3, we pose the initial decomposition of uC";Y D H.t="/ C � where H is
a modification of the heteroclinic solution. We prove Theorem 1.6, which is used to
estimate k�k

C
2;˛
"

and k@si�kC 2;˛" . We then prove Theorem 1.4.

• In Section 4, we prove higher order expansions of the Neumann data, Theorem 1.7,
and our main result, Theorem 1.8. This theorem says that given Y a C kC3;˛ surface
with bounded geometry, we can expand u˙";Y to order "k .

• In Section 5, we prove Theorem 1.13.

2. Setup

We first describe the manifold with boundary setting. Let .M n; g/ be a Riemannian mani-
fold with Y D @M a C k;˛ surface for some k � 2. Throughout this paper, we will assume
uniform bounds on the geometry of Y , that is, we fix a C > 0 (independent of ") such that

kAY kC k�2;˛ � C: (2.1)
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We define u";Y (also denoted as u") to be the energy minimizer of (1.1) onM with Dirich-
let conditions on Y . Let p 2 Y a base point, ¹Eiº an orthonormal frame for T Y at p, and �
a normal on Y with respect to g. We coordinatize a tubular neighborhood of Y via the fol-
lowing maps:

G W B1.0/
n�1
! Y; G.s/ D expYp .s

iEi /;

F W B1.0/
n�1
� Œ0; ı0/!M; F.s; t/ WD expMG.s/.�.G.s//t/; (2.2)

for any ! > 5 fixed. Here, expYp W B1.0/! Y denotes the exponential map into Y , and
expM W Y � Œ0; ı0/! M is the M -exponential map. We will often suppress the F.s; t/
notation and identify F.s; t/ with .s; t/ notationally. Using equation (2.2), we will also
denote u D u.s; t/ D u.F.s; t// in an "-neighborhood of Y via the above. In this neigh-
borhood, we can expand the metric and second fundamental form, gij .s; t/ and Aij .s; t/,
in coordinates, smoothly in t from the following equations:

gij .s; t/ D gij .s; 0/ � 2t

nX
kD1

Aki .s; 0/gjk.s; 0/

C t2
nX

i;jD1

A2.@i ; @j / � Rmg.@i ; @t ; @t ; @j /CO.t
3/; (2.3)

A.s; t/ D A.s; 0/C t
h
A2j.s;t/ � Rm.�; @t ; @t ; �/j.s;t/

i
CO.t2/; (2.4)

H.s; t/ D H.s; 0/C t Œ�jAj2j.s;t/ � Ricg.@t ; @t /j.s;t/�CO.t2/: (2.5)

Here, g.s; 0/, A.s; 0/, and H.s; 0/ denote the corresponding geometric quantities on Y .
Moreover, A2 denotes a single trace of A˝ A (see [5, A.1–A.2]). We can decompose the
Laplacian on M in a neighborhood of Y via

�g D �t �Ht@t C @
2
t (2.6)

where �t D �YCt� is the Laplacian on the surface Y C t� D ¹p j dsigned.p; Y / D tº

and Ht denotes the mean curvature of Y C t�. See [17, Section 3] for details. In light
of this notation, Ht jtD0 D H0 D HY and we will use H0 and HY interchangeably. Sim-
ilarly, �t jtD0 D �0 D �Y and we will use these two interchangeably as well. While
the above expansions hold on t 2 Œ0; ı0/, we will often restrict u to t 2 Œ0;�!" ln."// as
kuj � 1j D O."!/ in C k;˛" for t > �!" ln."/ [7, Exercise 10 and Remark]. In the closed
setting for which Y � M is separating, we decompose M D MC tY M

� and use the
above framework for .MC; Y D @MC/ and .M�; Y D @M�/ respectively.

We also define the rescaled metric

g" WD "
�2g (2.7)



J. Marx-Kuo 586

along with the following geometric Hölder spaces:

kf k
C
0;˛
"
WD kf kC 0 C Œf �0;˛;";

Œf �˛;M D sup
p1¤p22M

jf .p1/ � f .p2/j

jdistg.p1; p2/j˛
;

Œf �k;˛;" WD Œf �k;˛;";M D "
k sup
ˇ s.t. jˇ jDk

sup
p1¤p22M

jDˇf .p1/ �D
ˇf .p2/j

distg".p1; p2/˛
;

kf k
C
k;˛
"
WD

kX
jD0

"j kDjf kC 0 C "
k
kDkf k

C
0;˛
"
;

C
k;˛
";0 .M/ D C k;˛"

\®
f WM ! R j f j@M � 0

¯
:

(2.8)

Note that with respect to the rescaled metric, equation (1.2) becomes

�g"u D W
0.u/:

In accordance with this, we can define the following blow-up maps:

G" W B"�1.0/
n�1
! Y; G".�/ WD expYp;g".�

iEi /;

F" W B"�1.0/
n�1
� Œ0;�! ln."//!M; F".�; �/ WD expNYG.�/;g".�.G.�//�/:

(2.9)

We may refer to .�; �/ as “scaled” Fermi coordinates, as opposed to .s; t/, the actual Fermi
coordinates. For � 2 C 2;˛.Y / non-negative and k�kC 0 � ı0, define the perturbed graph

Y� WD ¹p D F.s; �.s// j s 2 Y º (2.10)

where F.s; �.s// (see equation (2.2)) is the point that is a distance of �.s/ away from
s 2 Y . We also define

M� WD ¹p D F.s; t/ 2M j �.s/ � t < ı0º [ ¹p 2M j dist.p; Y / � ı0º

As with Y , we define Y� WD @M� . We then define u�;", the minimizer of E" onM� with 0
Dirichlet condition on Y� .

For the closed setting, we have .M n; g/ a closed Riemannian manifold, and Y n�1

� M n, a separating, two-sided hypersurface. In this case, � in (2.10) is real valued.
Moreover, Y� divides M into MC� and M�� . We then define u˙�;", the non-negative (resp.
nonpositive minimizers) of E" on M˙� with 0 Dirichlet condition on Y� D @M˙� (see
Figure 6).

2.1. Constants and definitions

We recall the 1-dimensional solution to equation (1.2), the heteroclinic solution, denoted
by

H.t/ WD tanh
� t
p
2

�
;
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following the convention of [5]. For any " > 0, we define

H.t/ WD
h
1 � �

� t

�! ln."/

�i
H.t/C �

� t

�! ln."/

�
;

where �.t/ is a smooth function that is 0 for t < 1, goes from 0! 1 on Œ1; 2�, and is 1 for
t � 2. For reference, we will also use �ı.t/ WD �.t=ı/. Note that

@2tH �W
0.H/ D O."!/

in a C k;˛.RC/ sense and H is supported on Œ�! ln."/;�2! ln."/�. Now let PH, RH denote
the first and second derivatives of H.t/. We further denote

H".t/ WD H
� t
"

�
; PH" WD

PH
� t
"

�
; RH".t/ WD RH

� t
"

�
to be the rescaled versions of H and its derivatives and analogously for H";

PH";
RH". Fur-

thermore, let
R!;" D "

2@2tH" �W
0.H"/;

which is O."!/ in C k;˛" .R/ and supported on Œ�!" ln."/;�2!" ln."/�.
Define the constants

�0 WD

Z 1
0

PH
2
dt D

p
2

3
; �0 WD

Z 1
0

t PH
2
dt D

1

6
Œ4 ln.2/ � 1�; � D PH.0/ D

1
p
2
:

Similarly, consider w W Œ0;1/! R, the solution to

w00.t/ �W 00.H/w.t/ D H.t/; (2.11)

w.0/ D 0; (2.12)

lim
t!1

w.t/ D 0; (2.13)

which exists and is unique by Section A.5 (see also [1, Lemma B.1 and Remark B.3]). We
note that Pw.0/ < 0. As with H and H", let

xw.t/ WD
h
1 � �

� t

�! ln."/

�i
w.t/

(i.e., smooth cut off to 0). Also let w".t/ WD w.t="/ and similar for Pw"; Rw"; Pxw"; Rxw". In gen-
eral, for any exponentially decaying function satisfying an ODE similar to equation (2.11),
we will adopt the same notation of

f ! xf .t/ D
�
1 � �

� t

�! ln."/

��
f .t/:

With this, we define the linearized Allen–Cahn operator about H":

L" WD "
2�g �W

00.H"/ W C
2;˛.MC/! C ˛.MC/:



J. Marx-Kuo 588

We also define big O and zO notation to capture the size of error terms. We write
E D O."m/ or kEk

C
k;˛
"
D O."m/ to denote

kEk
C
k;˛
"
� C"m

for some C independent of ". Similarly, E D zO.f1; f2; : : : / denotes error depending on
the collection of functions

E D zO.f1; f2; : : : / H) kEk
C
k;˛
"
� C

X
i

kfikC k;˛"
:

for some C independent of " and the ¹fiº.
Finally, we establish a definition for exponentially decaying functions.

Definition 2.1. A function f W Œ0;1/!R is exponentially decaying if there exists 
 > 0,
C > 0, t0 > 0 such that

8t > t0; jf .t/j � Ce
�
t :

Moreover, f is exponentially decaying in C k if such a bound holds for all p � k deriva-
tives of f with constants 
p; Cp; tp for each p. The function f is exponentially decaying
in C1 if such coefficients exist and the bound holds for each p 2 ZC.

3. Normal derivative for Y

In this section we work in the manifold with boundary setting. The goal is to prove Theo-
rem 1.4.

3.1. Initial decomposition

Decompose
u".s; t/ D H".t/C �.s; t/ (3.1)

with the above holding on a tubular neighborhood of Y in normal coordinates, that is,
Y � Œ0; ı0/. We recall the following initial bound that k�k

C
k;˛
"
D o.1/ as "! 0:

Lemma 3.1. Let Y be a C kC1;˛ surface. For �.s; t/ WMC! R as in (3.1), we have that
for all � > 0, there exists an "0.�/ such that for all " < "0,

k�k
C
k;˛
" .MC/

� �:

Proof. LetR > 0 to be determined. Note that � WB1.0/n�1 � Œ0; "R/!R is smooth away
from the boundary and C kC1;˛ near the boundary (i.e., about t D 0; see [[6, Lem 6.18]).
On this subdomain, we have

� D o.1/ 2 C k;˛" .Y � Œ0; "R�/ (3.2)

as "! 0. This follows by
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• Blowing up our sequence of u" on .M;g"/ to get a C kC1 solution u1 WRn�1 �RC!
R to (1.2) with " D 1.

• Considering the odd reflection of u1, to get zu1 W Rn ! R a smooth solution on the
whole space (the Dirichlet and Neumann data match at t D 0!).

• Using a classification of solutions to equation (1.2) on Rn with u�1.0/ D ¹xn D 0º
[8, Thm 3].

This gives us C kC1loc convergence on Rn D Rn�1 � R, which when we restrict to t

2 Œ0; R� gives uniform convergence in t for any Br .p/ � Rn�1 fixed. Bounding C k;˛

norms by C kC1 norms, translating this back to the unscaled setting of Y � Œ0; "R�, and
noting that Y is closed, we see that (3.2) holds. For t > R", we recall that for u" a solution
to (1.2) with u�1" .0/D Y , we have the following decay estimate from [7, Exercise 10] for
any ` 2 ZC, ˛ > 0,

k�kC `;˛ D ku".s; t/ �H
� t
"

�
kC `;˛ � Ce

��t="

where C D C.`; ˛/ and � > 0 independent of "; `; ˛. This holds for all t , and on
I2 D ."R; ı0/ for R sufficiently large,

k�kC k;˛.¹t>R"º/ � Ce
��R
� �

for some " sufficiently small. Since kf k
C
k;˛
"
� kf kC k;˛ , the conclusion follows.

Having given an initial bound on �, we write a PDE describing it.

Lemma 3.2. For �.s; t/ as in (3.1), we have

L".�/ D "Ht
PH" CQ0.�/; (3.3)

where Q0.�/ D zO.�2; "!/ holds in C k;˛" for any k > 0; 0 < ˛ < 1.

Proof. In this decomposition, the Allen–Cahn equation for t 2 Œ0; ı/ is

"2�gu D �"Ht
PH" C

RH" C "
2Œ�t� �Ht�t C �t t �;

W 0.u/ D W 0.H"/CW
00.H"/� CQ0.�

2/

H) 0 D "2�gu �W
0.u/

D �"Ht
PH" C L".�/CQ0.�

2/CR!;"

D �"Ht
PH" C L".�/C zQ0:

For

Q0.�/ D �
1

2
W 000.H"/�

2
� �3 D zO.�2/;

zQ0.�/ D Q0.�/CR!;" D zO.�
2; "! ; "!�/

D zO.�2; "!/:
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3.2. Proof of Theorem 1.6

We now demonstrate the invertibility of the linearized operator, L", proving Theorem 1.6.

Proof of Theorem 1.6. Rescale the metric to g" as in (2.7) so that

L" D "
2�g �W

00.H"/ D �g" �W
00.H"/:

For any U in the interior of .M; g"/, that is, dist.U; Y / > ı fixed, we have that

kf k
C
2;˛
" .U /

� KŒkL"�kC˛" .U / C k�kC 0.U /�

by Schauder theory, withK independent of ". For points in Y � Œ0; ı/, we consider scaled
Fermi coordinates � D "�1s, � D "�1t (along with (2.9)). This gives

kf .�; �/kC 2;˛.Y�Œ0;ı"�1// � K.kL"f .�; �/kC˛.Y�Œ0;ı"�1// C kf kC 0.Y�Œ0;ı"�1///:

Note that we have changed C k;˛" ! C k;˛ by parameterizing by .�; �/ instead of .s; t/.
Moreover, K is independent of " by the expansion of "2�g D �g" in the scaled coordi-
nates, .�; �/. Undoing the scaling and using compactness of Y and MC, our two bounds
give

kf k
C
2;˛
" .M/

� KŒkL"f kC˛" .M/ C kf kC 0.M/�:

It suffices to prove
kf kC 0.M/ �

zKkL"f kC˛" .M/

for some zK > 0 also independent of ". To this end, suppose this is not the case. Then there
exists a sequence of ¹fj º and ¹"j º such that

kfj kC 0.M/ � j kL"fj kC˛" .M/:

Normalize each fj by kfj kC 0 so that

j�1 � kL"fj kC˛" .M/:

Choose pj 2 M so that jfj .pj /j D 1. By doing a maximum principle comparison with
f � 1, we see that dist.Y; pj / < �"j for some � > 0 independent of "j (by using Sec-
tion A.2). Thus, pj D .sj ; tj / with tj < �"j . Define the blowups of fj around sj as

zfj W B"�1.0/ � Œ0; ı"
�1/! R; zfj .�; �/ WD fj ."� C sj ; "�/:

In .�; �/ coordinates, we have the local estimate kL" zfj kC˛.B"�1 .0/�Œ0;ı"�1/ ! 0, since

kL"fj kC˛" .M/ > kL" zfj kC˛.B"�1 .0/�Œ0;ı"�1/:

Having normalized by kfj kC 0 , we have uniform C
2;˛
"j bounds. Moreover, g" ! gRn

uniformly in " after pulling back to .�; �/ coordinates. Thus, we have uniform C 2;˛ esti-
mates on zfj .�; �/. Use the Arzelà–Ascoli theorem to pass to a subsequence that converges
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in C 2 to f1 W Rn � RC on compact sets. The subsequence comes with ¹�j º ! �� with
0 < �� <1, so that

jf1.0; �
�/j D 1:

We also have convergence at the boundary, that is,

8� 2 Rn; f1.�; 0/ � 0:

This follows because for C > � > 0, all of the zfj ’s satisfy

j zfj .�; �/j � 2K�

by the C 2;˛ bounds and zfj .�; 0/� 0. Thus, we get the same interior bound for f1, which
forces the same Dirichlet data. Since j !1 H) "j ! 0, we get

L"j D �g" �W
00.H.�//

j!1
����! �Rn C @2� �W

00.H/ DW zL

H) zLf1 D 0:

This tells us that f1.�; �/ � 0 by Lemma A.1 for zL D �Rn C @2� �W
00.H/ on the half

space. But we have picked our sequence of points so that f1.0; ��/ ¤ 0, which is a
contradiction.

From the lemma, we immediately have

Corollary 3.3. For all " < "0 sufficiently small, the operator

L" W C
2;˛
";0 .M/! C ˛" .M/

is invertible.

In the exact same way, we prove the corresponding C 1;˛" estimate.

Lemma 3.4. Let Y be C 2;˛ and suppose f WM ! R in C 2;˛" .M/ satisfies f .s; 0/ � 0.
There exists "0 > 0 such that 8" < "0,

kf k
C
1;˛
" .M/

� KkL"f kC 0.M/:

Remark 3.5. Of course, our results apply to u˙";Y in the closed setting, recreating the
lemmas on each of M˙ in the decomposition of M D MC tY M

�. We compare the
above bounds with the analogous bound in Pacard–Ritoré [14]. In [14, Prop 8.6], � W
Y �R! R and the bound

k�k
C
2;˛
" .Y�R/ � KkL"�kC

˛
" .Y�R/

holds when the authors enforce the orthogonality condition of
R

R �
PH D 0. In this case, �

has been projected away from the kernel ofL", which allows the authors to exclude k � kC 0
terms in the Schauder estimate. In our setting, we use the Dirichlet condition of u.s; 0/
� 0 H) �.s; 0/ � 0 (instead of an orthogonality condition) to obtain the estimate of
Lemma 3.4.
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Corollary 3.6. For � satisfying the same conditions as in Theorem 1.6, we have

k�k
C
2;˛
" .M/

D O."/: (3.4)

Proof. Theorem 1.6 and equation (3.3) let us conclude that for u".s; t/DH".t/C �.s; t/,

k�k
C
2;˛
" .M/

� k"Ht
PH"kC˛" .M/ C k

zQ0.�/kC˛" .M/;

k zQ0.�/kC˛" .M/ � k�k
2
C˛" .M/ CK"

!

H) k�k
C
2;˛
" .M/

� O."/C �k�kC˛" .M/;

k�k
C
2;˛
" .M/

� O."/

where � can be made arbitrarily small as "! 0 by Lemma 3.1.

3.3. Better tangential behavior

In this section, we get improved horizontal estimates when Y is C 3;˛ . Let rY denote the
gradient on Y , extended as an operator on functions on Y � Œ0; ı0/ in .s; t/ coordinates
via

r
Y f .s; t/ D gij .s; 0/@si .f /@sj j.s;t/;

where @si is identified with F�.@si /js;t using equation (2.2). Then we have

Lemma 3.7. Let Y beC 3;˛ . For �.s; t/ as in u.s; t/DH".t/C�.s; t/ from equation (3.1)
and any ı > 0, there exists K D K.ı/ such that

krY �kC 2;˛" .Y�Œ0;ı//
� K": (3.5)

Remark 3.8. The reader may ask how this estimate is “improved” since � satisfies the
same C 2;˛" bound. The point is that because of the weighting in the k�k

C
2;˛
"

bound, a
priori we have

k�si kC 1;˛" .Y�Œ0;ı//
� "�1k�k

C
2;˛
" .M/

D O.1/;

k�tkC 1;˛" .Y�Œ0;ı//
� "�1k�k

C
2;˛
" .M/

D O.1/

by definition of theC k;˛" norms and (3.4). By contrast, the above Lemma 3.7 gives anO."/
bound for �si near the boundary, that is, one order in " better. This method does not work
for �t , since Œ@t ; L"�.�/ is large a priori. However, we do note that for t > �!" ln."/, the
same proof in Lemma 3.1 gives

k�k
C
k;˛
" .t>�!" ln."// � C.k/"

! (3.6)

for " < "0.k/ and C.k/ independent of ". This will be used below.
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Proof. Starting with

"Ht
PH".t/ D L".�/CQ0.�/CR!;";

move into Fermi coordinates and apply �ı.t/@si to each side:

".�ı@siHt /
PH" D L".�ı�si /C T0.�/�ı�si C ŒL"; �ı@si �.�/C �ıR!;"

D L".�ı�si /CE;

where

E D T0.�/�ı�si C ŒL"; �ı@si �.�/C �ıR!;";

T0.�/ D �
1

2
W 000.H"/� � 3�

2

and we can bound

k".�ı@si .Ht /
PH"/kC˛" .M/ � K":

For the error term, we have

kEkC˛" .M/ � k�ı�si kC˛" .M/ � kT0.�/kC˛" .M/ C kŒL"; �ı@si �.�/kC˛" .M/

C k�ıR!;"kC˛" .M/;

T0.�/ D zO.�/ � K";

k�ıR!;"kC˛" .M/ D o."/;

H) kEkC˛" .M/ � K"k�si kC˛" .M/ C kŒL"; �ı@si �.�/kC˛" .M/ C o."/

� K"C kŒL"; �ı@si �.�/kC˛" .M/:

Here, we noted that T0.�/D zO.�/ and that k�si kC˛" .M/DO.1/ a priori. We now compute
the commutator

ŒL"; �ı@si � D "
2Œ�t �Ht@t C @

2
t �W

00.H"/; �ı.t/@si �

D Œ"2�t ; �ı.t/@si �C Œ�"
2Ht@t ; �ı.t/@si �C Œ"

2@2t ; �ı.t/@si �

� Œ"2W 00.H"/; �ı.t/@si �

D AC B C C CD:

We bound each summand in the commutator as follows:

kAkC˛" .M/ D kŒ"
2�t ; �ı.t/@si ��kC˛" .M/ � "

2
kŒ�t ; �ı.t/r

Y ��kC˛" .M/

� "2kŒ�Y ;r
Y ��ı.t/�kC˛" .M/ C "

2
kŒ.�t ��Y /;r

Y ��ı.t/�kC˛" .M/

� "2k�ı.t/Ric.rY �; �/kC˛" .M/ C "
2
kŒ.�t ��Y /;r

Y ��ı.t/�kC˛" .M/

� "2k�ı.t/Ric.rY �; �/kC˛" .M/ C "
2
kŒ.�t ��Y /;r

Y ��ı.t/�kC˛" .Y�Œ0;2ı//



J. Marx-Kuo 594

� K"k�k
C
1;˛
" .M/

CKık�k
C
2;˛
" .M/

CO."!/ � Kı";

having used (3.6) and for K independent of ı. We also compute

kBkC˛" .M/ D kŒ�"
2Ht@t ; �ı.t/@si ��kC˛" .M/

� "2Œk�ı@si .Ht /�tkC˛" .M/ C kHt�
0
ı.t/�skC˛" .M/�

� K"2k�tkC˛" .M/ CK"
2ı�1k�skC˛" .M/ � Kı

�1"k�k
C
1;˛
" .M/

� Kı�1"2:

Furthermore,

kCkC˛" .M/ D kŒ"
2@2t ; �ı@si ��kC˛" .M/ D "

2
k�0ı�st C �

00
ı�skC˛" .M/ � ı

�2
k�k

C
2;˛
" .t>ı/

� K"! ;

kDkC˛" .M/ D kŒ�ı@si ; "
2W 00.H"/��k D 0:

So in conclusion, we have
kEkC˛" .M/ � K";

and so

L".�ı�si / D ".�ı@si .Ht /
PH"/ �E;

k�si kC 2;˛" .Y�Œ0;ı//
� k�ı�si kC 2;˛" .M/

� KkL".�ı�si /kC˛" .M/ � K":

Here, we have used Theorem 1.6 (note that �si .s; 0/ � 0). The bound on rY � now fol-
lows.

3.4. Proof of Theorem 1.4

Referencing the decomposition in equation (3.3), we multiply by PH" (recall the definition
in Section 2.1) and integrate from t D 0 to t D �!" ln."/:

zO.�2/ D �"Ht
PH" C L".�/; (3.7)

which impliesZ �!" ln."/

0

zO.�2/ PH" D �"

Z �!" ln."/

0

Ht
PH
2

" C "
2

Z �!" ln."/

0

.�t�/
PH"

� "2
Z �!" ln."/

0

Ht�t
PH"

C "2
Z �!" ln."/

0

Œ�t t �W
00.H"/��

PH": (3.8)

Note that the left-hand side of (3.8) can be bounded:


Z �!" ln."/

0

zO.�2/ PH"dt




C˛.Y /

� K"2�
Z̨ �!" ln."/

0

PH"dt � K"
3�˛
CO."!/ � K"3�˛;
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since ! > 5. For the right-hand side of (3.8), we note that

jHt �H0j � tk PHtkC 0.Y�Œ0;ı// � Kt;

which follows by the mean value theorem and (2.4). Moreover, recall from Section 2.1
that Z �!" ln."/

0

PH
2

" D "�0 C C"
! :

We further note from (3.5) that


 Z �!" ln."/

0

"2.�t�/
PH"





C˛.Y /

D




 Z �!" ln."/

0

"2.�0�/
PH"





C˛Y

C




 Z �!" ln."/

0

"2.Œ�t ��0��/
PH"





C˛Y

D O."3�˛/CO."4�˛/ D O."3�˛/:

Here, we again used that �t � �0 D tL where L is a second-order linear differential
operator with bounded coefficients. In both cases, we use equation (3.7) to get the final
bounds. Similarly, from equation (3.4), we have


 Z �!" ln."/

0

"2Ht�t
PH"





C˛.Y /

D O."3�˛/:

We also compute Z �!" ln."/

0

PH" D ".1CO."
!//;Z �!" ln."/

0

�
"2�t t

PH" �W
00.H"/�

PH"

�
D �"2��t .s; 0/CO."

k/;Z �!" ln."/

0

"Ht
PH
2

" D "
2H0�0 CO."

3/

with all estimates holding in C ˛.Y /. Combining and noting that �0��1 D 2
3

, we have

"2�t .s; 0/ D �"
2 2

3
H0 CO."

3�˛/

for any k � 3. We summarize this as

�t .s; 0/ D �
2

3
H0 CO."

1�˛/;

so that

@�u.p/ D @tu D "
�1 PH.0/C �t .p; 0/ D

1

"
p
2
�
2

3
HY .p/CO."

1�˛/

holds in C ˛.Y /. This proves Theorem 1.4.
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4. Higher order expansions

4.1. Proof of Theorem 1.7

In this section, we give a next order expansion of the normal derivative when HY D 0.

Proof of Theorem 1.7. When Y is minimal (and hence smooth, since we assumed all our
hypersurfaces are at least C 2;˛), (3.3) becomes

L".�/ D "Ht
PH" CQ0.�

2/:

If HY D H0 D 0, then

Ht D

Z t

0

PHrdr:

We expand this as

L".�/ D "
2 PH0.s/

� t
"

�
PH".t/C "

�Z t

0

Z r

0

RHw.s/dwdr
�
PH".t/CQ0.�

2/ (4.1)

with the goal of showing


"�Z t

0

Z r

0

RHw.s/dwdr
�
PH".t/





C˛" .M/

D o."2/:

The C 0 bound holds clearly, asˇ̌̌
"
�Z t

0

Z r

0

RHwdwdr
�
PH".t/

ˇ̌̌
� "

�Z t

0

Z r

0

sup
s2Y

w2Œ0;�!" ln."//

j RHw.s/jdwdr
�
PH"

� K"t2 PH" � K"
3 sup
t2Œ0;�!" ln."//

ˇ̌̌� t
"

�2
PH".t/

ˇ̌̌
� K"3:

For the Œ��˛ bound, we have

f .s; t/ WD "
�Z t

0

Z r

0

RHw.s/dwdr
�
PH".t/;

Œf �˛;Y�Œ0;�2!" ln."// � "
�


 Z t

0

Z r

0

RHw.s/dwdr




C 0.Y�Œ0;�2!" ln."//

Œ PH"�˛;Y�Œ0;�2!" ln."/

C

h Z t

0

Z r

0

RHw.s/dwdr
i
˛;Y�Œ0;�2!" ln."/

�k
PH"kC 0.Y�Œ0;�2!" ln."//

�
;

having noted that PH" � 0 for t > �2!" ln."/. On Y � Œ0;�2!" ln."//, these norms are
bounded by


 Z t

0

Z r

0

RHw.s/dwdr




C 0.Y�Œ0;�2!" ln."//

� Kt2 D O."2 ln."/2/;
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h Z t

0

Z r

0

RHw.s/dwdr
i
˛;Y�Œ0;�2!" ln."/

� Kt2�˛ D O."2�˛ ln."/2�˛/;

k
PH"kC 0.Y�Œ0;�2!" ln."// D O.1/;

Œ PH"�˛;Y�Œ0;�2!" ln."/ D O."
�˛/;

so that
Œf �˛;" � O."

3�2˛ ln."/2�˛/ D o."2/:

Further noting that

kQ0.�/kC˛" .M/ � Kk�kC˛.M/ CK"
!
� K"2;

we then have to leading order
L".�/ D O."

2/

in C ˛" .M/. From Theorem 1.6,

k�k
C
2;˛
" .M/

� K"2:

If we differentiate (4.1) with respect to si again, we get by the same bounding techniques

L".@si�/ D "
�Z t

0

@si .
PHr /dr

�
PH" C xQ0.��si ; "

2D2�; "2D�/C o."2/:

Using our bound on k�k
C
2;˛
"

and Theorem 1.6 composed with �ı as in Lemma 3.7, we
get

k�si kC 2;˛" .Y�Œ0;ı//
D O."2/

so that
sup

t2Œ0;�!" ln."//
k�t�.s; t/kC˛.Y / � k�t�kC˛.Y�Œ0;ı// D O."

1�˛/:

Now we multiply (4.1) by PH" and integrate:Z �!" ln."/

0

L".�/
PH".t/dt D

Z �!" ln."/

0

."2Œ�t .�/ �Ht�t C �t t �

�W 00.H"/�/
PH".t/dt

D �"2��t .s; 0/CO."
4�˛/;

"2
Z �!" ln."/

0

PH0.s/
� t
"

�
PH
2

".t/ D �0"
3 PH0;ˇ̌̌

"

Z �!" ln."/

0

�Z t

0

Z r

0

RHw.s/dwdr
�
PH".t/

2dt
ˇ̌̌
� C"

Z �!" ln."/

0

t2 PH".t/
2dt

D O."4/;Z �!" ln."/

0

Q0.�/
PH"dt D O."

4/;



J. Marx-Kuo 598

where these error terms hold in C ˛.Y /. Now note that

PH0 D ŒRic.�; �/C jAY j2�

so that
�t .s; 0/ D �

�1�0"ŒRic.�; �/C jAY j2�CO."2�˛/:

4.2. Full characterization of Neumann data

One can compare Theorems 1.4 and 1.7 and note that more terms can be gleaned. In fact,
if Y is a C kC3;˛ surface, we can find an expansion for u".s; t/ (and hence, @tu"jtD0) up
to order k (k � 1, respectively). Let

ai;j .s/ WD ai;j
�
¹@ˇs @

j
tHt jtD0ºjCjˇ j�i

�
.s/

denote a polynomial in derivatives of Ht .s/ at t D 0. Define

i 2 Z�0; �.i/ WD max.0; 2di=2e � 2/ D

´
0 i D 0;

largest even integer less than i i > 0:

We now prove our main result, Theorem 1.8.

Proof of Theorem 1.8. Actually, we prove the following by induction: for any k < xk, we
have

uC" .s; t/ D H".t/C

kX
iD1

"i �
� miX
jD0

ai;j .s/ xwi;j

� t
"

��
C �;

L".�/ D RkC1.s; t/C Fk.�/;

kai;j kC˛.Y / D O.1/;

kwi;j kC k;˛.Œ0;1// D O.1/

where ¹wi;j .t/º are all exponentially decaying (again see Definition 2.1). Moreover, we
require that RkC1 can be expanded in powers of " to arbitrary order less than ! (which
we can choose ! > xk C 2) as follows:

8` � 0; 9¹bkC1;i;j .s/º; ¹fkC1;i;j .t/º s.t.

RkC1.s; t/ D "
kC1

NkC1X
jD0

bkC1;0;j .s/ xfkC1;0;j

� t
"

�
C

X̀
iD1

"kC1Ci
NkC1;iX
jD0

bkC1;i;j .s/ xfkC1;i;j

� t
"

�
CO."`CkC2/;

kfkC1;i;j kC˛.Œ0;1// D O.1/;

where the expansion ofRkC1 holds in C ˛" .M/ for `C kC 2� xkC 1 assuming xk � k � 1
� 0. In this sense, we see that there is a partial expansion of the remainder up to any order.
Here, we require that
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• bkC1;0;j .s/ D bkC1;0;j .¹@
p
t @
ˇ
sHt jtD0/ depends on at most �.k C 1/ tangential

derivatives of ¹@pt Ht jtD0.s/º.

• For i � 1, bkC1;i;j .s/D bkC1;i;j .¹@
p
t @
ˇ
sHt jtD0/ is a polynomial in at most �.k C 2/

tangential derivatives of @pt Ht jtD0.s/.

• Each fkC1;i;j .t/ is exponentially decaying in C1 and xfkC1;i;j is the modification
with a smooth cutoff. This allows us to solve

wkC1;i;j W Œ0;1/! R

RwkC1;i;j .t/ �W
00.H.t//wkC1;i;j .t/ D fkC1;i;j .t/

wkC1;i;j .0/ D 0

lim
t!1

wkC1;i;j .t/ D 0

(4.2)

by Section A.5.

We also require that Fk.�/ is an error term that has at most cubic dependency on � in the
following form:

Fk.�/ D "
h nkX
iD1

ck;i .s/xhk;i

� t
"

�i
� C

hmkX
iD1

dk;i .s/ xpk;i

� t
"

�i
�2 � �3;

khk;i .t/kC˛.Œ0;1// D O.1/;

kpk;i .t/kC˛.Œ0;1// D O.1/:

Moreover,

• ¹hk;iº and ¹pk;iº are expontentially decaying in C1.

• ¹ck;iº, ¹dk;iº depend on at most �.k/ tangential derivatives of @pt Ht jtD0.s/.

Note that L".�/ D RkC1 C Fk and Theorem 1.6 automatically gives the conclusion of

k�k
C
2;˛
" .M/

D O."kC1/:

From hereon in the proof, we assume that ! > xkC 2. Base Case k D 0. This is the content
of Corollary 3.6:

uC" .s; t/ D H".t/C �.s; t/;

L".�/ D ."Ht
PH" �R!;"/ �

h1
2
W 000.H"/�

2
C �3

i
D R1.s; t/C F0.�/

from (3.3). At this level of expansion, ¹a1;i;j D 0º; ¹w1;i;j D 0º. We see that R1.s; t/
D "Ht

PH" �R!;" satisfies our inductive assumptions simply by expanding

Ht D H0 C t PH C
t2

2
RH C � � � C

t`C1

.`C 1/Š
@`C1t Ht jtD0 CO.t

`C2/

H) "Ht
PH" D ".H0/

PH" C

X̀
iD1

"iC1
� 1

.i C 1/Š
@`C1t Ht jtD0

�h� t
"

�iC1
PH".t/

i
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CO."`C2/;

R!;" D
RH" �W

0.H"/ D O."
!/ D O."/;

since ! > xk C 2. Here, we noted that . t
"
/i PH" is bounded in C k;`" for all `; ˛, and i .

Thus, R1.s; t/ satisfies our inductive assumptions. Note that computing @itHt does not
require extra regularity of Y - simply expand (2.4) in t . In particular,

N1 D N1;i D 0;

b1;i;0.s/ D
� 1

.i C 1/Š
@`C1t Ht jtD0

�
; f1;i;0.s/ D

� t
"

�iC1
PH".t/:

Moreover, each biC1 depends on 0 � �.1/; �.2/ tangential derivatives of ¹@pt Ht jtD0º.
And finally, each f1;i;0.t/ is exponentially decaying. Similarly, it is clear that F0.�/ sat-
isfies our inductive assumptions as it only has quadratic and cubic terms with bounded
coefficients in C k;˛" that are also exponentially decaying:

d0;1.s/ D 1; p0;1

� t
"

�
D
1

2
W 000.H"/ D 3H":

Induction. Now assume that we have an expansion up to order k � 1 for k � xk:

uC" .s; t/ D H".t/C

k�1X
iD1

"i
miX
jD0

ai;j .s/ xwi;j

� t
"

�
C �;

L".�/ D Rk.s; t/C Fk�1.�/:

We expand (for any ` � 1)

Rk.s; t/ D "
k

NkX
jD0

bk;0;j .s/ xfk;0;j

� t
"

�
C

hX̀
iD1

"iCk
Nk;iX
jD0

bk;i;j .s/ xfk;i;j

� t
"

�
CO."`C1Ck/

i
(4.3)

where we know ¹bk;0;j º depend on at most �.k � 1 C 1/ D �.k/ D max.0; 2dk=2e �
2/ � k � 1 derivatives of @pt Ht jtD0.s/. We can compute two more tangential derivatives
of bk;0;j when Y is C kC3;˛ . With this, we use (4.3) and write

�.s; t/ D "k
NkX
jD0

bk;0;j .s/wk;0;j

� t
"

�
C z�

such that each wk;0;j solves

Rwk;0;j .t/ �W
00.H"/wk;0;j .t/ D fk;0;j .t/
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and has bounded C ˛.RC/ norm and is exponentially decaying. This follows again by
Section A.5. Multiplying these functions by cutoffs, we get

k Rxwk;0;j .t/ �W
00.H"/ xwk;0;j .t/ � xfk;0;j .t/kC˛.RC/ � Ck;0;j "

!
� Ck;0;j "

kC2

for some constants Ck;0;j independent of ". With this expansion, we have

L".�/ D L".z�/C "
kC2

NkX
jD0

�t .bk;0;j /.s/ xwk;0;j

� t
"

�
� "kC1

NkX
jD0

Ht .s/bk;0;j .s/ Pxwk;0;j

� t
"

�
C "k

NkX
jD0

bk;0;j .s/Œ Rxwk;0;j

� t
"

�
�W 00.H"/ xwk;0;j

� t
"

�
�:

Because ¹bk;0;j º depend on �.k/ � k � 1 derivatives of @pt Ht jtD0.s/, we know that
�tbk;0;j is at least in C ˛.Y /, since k � xk and Y is C xkC3;˛ . Using (4.2), we see that
the last line cancels with the first term in (4.3) at the cost of an O."kC2/ error. We also
expand

�t .bk;0;j / xwk;0;j

� t
"

�
D �0.bk;0;j /.s/ xwk;0;j

� t
"

�
C "

��t ��0
t

�
.bk;0;j / �

� t
"

�
xwk;0;j

� t
"

�
;

Ht .s/bk;0;j .s/ Pwk;0;j

� t
"

�
D H0.s/bk;0;j .s/ Pxwk;0;j

� t
"

�
C "

�Ht .s/ �H0.s/

t

�� t
"

�
bk;0;j .s/ Pxwk;0;j

� t
"

�
;

where we can write

.�tbk;0;j / D

mX
iD0

t i

i Š
.@it�t jtD0/.bk;0;j /.s/CO.t

mC1/;

.@mt �t /jtD0 W C
lC2.Y /! C l D .@mt g

ij .s; t/jtD0/@si @sj � .@
m
t b

k.s; t/jtD0/@sk :

These expansions in t do not require higher regularity of Ht .s/, as can be seen from
the expansion of the metric, g.s; t/, and the second fundamental form, A.s; t/, in equa-
tions (2.3) and (2.4). This allows us to make sense of �t��0

t
. Similarly,

Ht .s/bk;0;j .s/ Pxwk;0;j

� t
"

�
D

mX
iD0

"i
1

iŠ
.@itHt jtD0.s//

h� t
"

�i
Pxwk;0;j

� t
"

�i
CO."mC1/

for any m. Moreover, we have

Fk�1.�/ D "
hnk�1X
iD1

ck�1;i .s/xhk�1;i

� t
"

�i
� C

hmk�1X
iD1

dk�1;i .s/ xpk�1;i

� t
"

�i
�2 � �3
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D "
hnk�1X
iD1

ck�1;i .s/xhk�1;i

� t
"

�i�
"k

NkX
jD0

bk;0;j .s/ xfk;0;j

� t
"

�
C z�

�
C

hmk�1X
iD1

dk�1;i .s/ xpk�1;i

� t
"

�i�
"k

NkX
jD0

bk;0;j .s/ xfk;0;j

� t
"

�
C z�

�2
�

�
"k

NkX
jD0

bk;0;j .s/ xfk;0;j

� t
"

�
C z�

�3
with ¹ck�1;iº, ¹dk�1;iº depending on at most �.k � 1/ derivatives of @pt Ht jtD0.s/. If
we expand and relabel, noting that the product of exponentially decaying functions are
themselves exponentially decaying, we get

Fk�1.�/ D "
kC1

h znkX
iD1

Ck;i .s/xh
�
k;i

� t
"

�i
C "

h nkX
iD1

ck;i .s/xhk;i

� t
"

�i
z�

C

hmkX
iD1

dk;i .s/ xpk;i

� t
"

�i
z�2 � z�3

for some nk ; mk ; znk . Here

• ¹h�
k;i
; hk;i ; pk;iº are all exponentially decaying and O.1/ in C ˛ norm.

• ¹Ck;iº, ¹ck;iº, ¹dk;iº depend on at most �.k/ derivatives of @pt Ht jtD0.s/.

We define

RkC1.s; t/ WD
h
Rk.s; t/ � "

k

NkX
jD0

bk;0;j .s/ xfk;0;j

� t
"

�i
C "kC1

h znkX
iD1

Ck;i .s/xh
�
k;i

� t
"

�i
� "kC2

NkX
jD0

�t .bk;0;j /.s/ xwk;0;j

� t
"

�
C "kC1

NkX
jD0

Ht .s/bk;0;j .s/ Pxwk;0;j

� t
"

�
H) RkC1.s; t/ D "

kC1
hNk;1X
jD0

bk;1;j .s/ xfk;1;j

� t
"

�
C

znkX
iD1

Ck;i .s/xh
�
k;i

� t
"

�
C

NkX
jD0

H0.s/bk;0;j .s/ Pxwk;0;j

� t
"

�i



A Dirichlet-to-Neumann map for the Allen–Cahn equation on manifolds with boundary 603

C "kC2
NkX
jD0

�Ht .s/ �H0.s/

t

�� t
"

�
bk;0;j .s/ Pxwk;0;j

� t
"

�
� "kC2

NkX
jD0

�t .bk;0;j /.s/ xwk;0;j

� t
"

�
C

X̀
iD2

"iCk
Nk;iX
jD0

bk;i;j .s/ xfk;i;j

� t
"

�
CO."`C1Ck/:

Moreover, note that ¹bkC1;i;j º depends on at most �.k C 1/ derivatives for i � 1,
while Ck;i .s/ and bk;0;j .s/ depend on at most �.k/ derivatives. Also recalling that ` is
any value such that `C 1C k � xk C 1, we can rewrite the above as

RkC1.s; t/ D "
kC1

NkC1X
jD0

bkC1;0;j .s/ xfkC1;0;j

� t
"

�
C

X̀
iD1

"iCkC1
NkC1;iX
jD0

bkC1;i;j .s/ xfkC1;i;j

� t
"

�
CO."`CkC2/;

adjusting the expansion depending on the value of xk � k � 1. If kD xk, then no such expan-
sion is needed, as we have reached the maximal value of k in the induction. Furthermore,
we define

Fk.z�/ WD "
h nkX
iD1

ck;i .s/xhk;i

� t
"

�i
z� C

hmkX
iD1

dk;i .s/ xpk;i

� t
"

�i
z�2 � z�3

so that
L".z�/ D RkC1.s; t/C Fk.z�/

with the correct decomposition and regularity of coefficients. Now with the decomposition
of RkC1, we use Theorem 1.6 and get

kz�k
C
2;˛
" .M/

D O."kC1/:

This finishes the induction.

As a result, we have the following corollaries for k D 1:

Corollary 4.1. For u" a solution to equation (1.2) with Dirichlet data on Y D @M a C 4;˛

hypersurface, we have that

u".s; t/ D H".t/C "HY .s/w".t/C �.s; t/;

k�k
C
2;˛
" .M/

D O."2/:

Similarly, for k D 2, we have
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Corollary 4.2. For u" a solution to equation (1.2) with Dirichlet data on Y D @M a C 5;˛

hypersurface, we have that

uC" .s; t/ D H".t/C"HY .s/w".t/C"
2
h
PH0.s/�".t/CH

2
Y �".t/C

1

2
H 2
Y .s/�".t/

i
C�;

k�k
C
2;˛
" .M/

D O."3/:

5. Proof of Theorem 1.13

In this section, we work in the closed setting. Consider Y a minimal hypersurface, and
perturbations � W Y ! R, with Y� defined as in Section 1.3. Recall the definition of u";�
from (1.6):

u";� D

´
uC";�.p/ p 2MC;

�u�";�.p/ p 2M�:

We aim to prove Theorem 1.13. As a corollary, we can describe the horizontal variation of
the solutions constructed in Pacard–Ritoré ([14, Thm 4.1] and [13, Thm 1.1]). We recall
their notation

u".t/ WD tanh
� t

"
p
2

�
;

xu.y; t/ D u".t � �.y//C v.y; t/:

In our notation, v.y; t/$ �.s; t/ and �.y/$ �.s/. With this, we have

Corollary 5.1. Suppose � is the perturbation constructed in [13, Thm 3.33] and v the
solution to (1.2) with v�1.0/ D Y� and Y nondegenerate, minimal, and separating. ThenZ

R
v.s; t/ PH".t/dt D

p
2

3
�.s/CO."1C2ˇ /

with error in C 2;˛.Y /. In particular,Z
R
�Y v.s; t/

PH".t/ D

p
2

3
JY .�/CO."

1C2ˇ /:

Remark 5.2. Note that

JY D �Y C .jAY j
2
C Ricg.�; �//

and we show that Z
R
.jAY j

2
C Ricg.�; �//v

PH" D o."
1C2ˇ /

in C ˛.Y /. Thus, we could replace �Y v with JY v on the left-hand side of 5.1.



A Dirichlet-to-Neumann map for the Allen–Cahn equation on manifolds with boundary 605

Figure 7. ˆ map describing our setup

Remark 5.3. The corollary tells us that the Pacard–Ritoré solutions have horizontal vari-
ation as large as the perturbation, �.s/, off of the initial Y minimal.

The proof is essentially the same as for Theorem 1.7, but we have to confront the
low regularity of Y� given that � 2 C 2;˛.Y /. We do this by pulling back uC";� to Y �
Œ0;�!" ln."// and then showing

�C.uC";�/ D
1

"
p
2
C �0"ŒRic.�; �/C jAY j2�

C

h
�0JY .�/C

Z �!" ln."/

0

�Y .u";�/
PH"

i
C zO.�2; "2/:

5.1. Setup

For Y� as in (2.10), we consider the decomposition of M D MC� [Y� M
�
� and u˙";� the

minimizers on M˙� . With Fermi coordinates about Y , define

ˆ W Y � .!" ln."/2;�!" ln."/2/! Y � .!" ln."/2;�!" ln."/2/;

ˆ.s; t/ WD F
�
s; t C �.s/�

�
�4t

!" ln."/2

��
for F as in (2.2) and where �.t/ is the standard bump function, which is 1 on .�1; 1/ and
goes to zero outside of Œ�2; 2� (see Figure 7). Note that we choose a factor of ln."/2 so
that ˆ restricted to Y � .!" ln."/;�!" ln."// is a diffeomorphism onto its image.

In fact, on this subdomain

jt j < �!" ln."/ H) ˆ.s; t/ D .s; t C �.s//:
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We pull back uC";� by this function and compute the Allen–Cahn equation under this pull-
back. We define (dropping the˙ notation)

u�" W Y � Œ0;�!" ln."//! R;

WD ˆ�.u";�/.s; t/

so that

ˆ�.W 0.u";�// D W
0.u�" /;

u�" .s; 0/ � 0

and
ˆ�.�gu

C
";�/ D �ˆ�.g/u

�
"

using diffeomorphism invariance of the Laplacian. Instead of computing ˆ�.g/ in coor-
dinates, we push forward �g to .M;ˆ�.g//, as a differential operator, by ˆ�1, that is,

�ˆ�.g/ D .ˆ
�1/�.�g/:

We first expand �g on .M; g/, recalling (2.6):

�g D �t �Ht@t C @
2
t ;

where �t0 denotes the Laplacian on Yt0 WD Y C t0�, that is, the set at signed distance t0
from Y . We now compute �ˆ�.g/ D .ˆ�1/�.�g/ by pushing forward each summand:

.ˆ�1/�.Ht@t / D HtC�@t ;

.ˆ�1/�.@
2
t / D @

2
t ;

.ˆ�1/�.�t / D �tC� CE�

H) .ˆ�1/�.�g/jt D �g jtC� CE�

where in the last line, �g jtC� denotes the ambient Laplacian on M but with metric coef-
ficients evaluated at the point .s; t C �.s//. We also define

E� WD g
ij .s; t C �.s//Œ��i .s/@t@sj � �j .s/@t@si � �ij .s/@t C �i .s/�j .s/@

2
t �

D ��tC�.�/@t � 2r
tC�.�/@t C jr

tC��j2@2t :

From hereon, we only consider u�" restricted to Y � Œ0;�!" ln."//, and we rewrite the
pulled back Allen–Cahn equation as

"2Œ�tC� �HtC�@t C @
2
t CE��.u

�
" / D W

0.u�" /:

Now we decompose (using that Y is minimal and inspired by 4.2)

u�" D H".t/C "
2 PH0.s/x�".t/C �

�.s; t/ (5.1)
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where
R�.t/ �W 00.H.t//�.t/ D t PH.t/

on RC. From hereon, we label �� DW �, and our pulled back Allen–Cahn equation be-
comes

L";tC�.�/ D "Œ�tC�.�/C PH0��
PH" C jr

tC��j2 RH"

C "3
�HtC�.s/ � PH0.s/.t C �/

.t C �/2

�� t C �
"

�2
PH"

� "4�tC�. PH0/x�"C"
3HtC�

PH0 Px�"C"
3�tC�.�/ PH0 Px�"C2"

3
r
tC�.�/. PH0/ Px�"

� "2jrtC��j2 PH0 Rx�" C
1

2
W 000.H"/"

4 PH 2
0 x�

2
" C "

6 PH 3
0 x�

3
"

CR.�/CO."!/ (5.2)

where

L";r WD "
2.�r �Hr@t C @

2
t �W

00.H".t///;

R.�/ WD "2E�.�/ � F0.�/; (5.3)

F0.�/ WD W
000.H"/"

2 PH0x�"� C
h
3"4 PH 2

0 �
2
" C

1

2
W 000.H"/

i
�2 C �3 (5.4)

where F0.�/ is the error term from expanding W 0.u/. Here, all of the O."!/ terms come
from replacing H"!H" and the like. We abbreviate the right-hand side of equation (5.2)
as G.�/, and we will often use L";t and L" interchangeably when it is clear from context.

5.2. Estimates on �

Again using Theorem 1.6 and equation (3.6), we have

k�k
C
2;˛
" .M/

� KkL"�kC˛" .M/

�

�2
ı

�˛
ŒkL"�kC˛" .t<ı/ C kL"�kC˛" .t>ı=2/�

� KkL"�kC˛" .t<ı/ CO."
!/

� KkL";tC��kC˛" .t<ı/ C k"
2.�tC� ��t /�kC˛" .t<ı/

C k"2.HtC� �Ht /�tkC˛" .t<ı/ CO."
!/;

having used (3.6) to bound kL"�kC˛" .t>ı=2/. With k�kC 2;˛.Y / � K"1Cˇ , this implies

k�k
C
2;˛
" .M/

� KkL";tC��kC˛" .t<ı/ C "
1Cˇ
k�k

C
2;˛
" .M/

CO."!/

H) k�k
C
2;˛
" .M/

� KŒk"Œ�tC� C PH0�.�/
PH"kC˛" .t<ı/

C k jr
tC��j2 RH"kC˛" .t>ı/�CO."

3/

� O."2Cˇ /: (5.5)
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5.3. Proof of Theorem 1.13

Now as in Section 3.4, we again decompose L";tC� , multiply by PH", integrate, and extract
the normal derivative:Z �!" ln."/

0

L";tC�.�/
PH" D �"

2��t .s; 0/C "
2

Z �!" ln."/

0

�Y .�/
PH" CO."

4Cˇ�˛/;

where the above holds in C ˛.Y /, having used (5.5). Similarly,Z �!" ln."/

0

G.�/ PH" D "
2 PH0��0 C "

2�0.�/�0 CO."
3C2ˇ /

with error terms holding in C ˛.Y /. The details are sketched in Section A.4. Because
k�kC 2;˛.Y / � K"

1Cˇ , we see that in terms of order of ",

�t .s; 0/ D
p
2

Z �!" ln."/

0

�Y .�/
PH".t/dt„ ƒ‚ …

O."1Cˇ�˛/

�
2

3
Œ�0 C PH0�.�/„ ƒ‚ …
O."1Cˇ /

CO."1C2ˇ /

where the above asymptotics hold in C ˛.Y /. We frame this as


�t .s; 0/ �p2 Z �Y .�/
PH" C

2

3
JY .�/




jC˛.Y / D O."1C2ˇ /:
We now note that @t is comparable to .ˆ�1/�.��/ (see Section A.3), that is, the normal
vector for Y and that of Y� (translated to Y ) are comparable since � is small:

�� D .1C A.s//@t C B
i .s/@si jtD�.s/;

kA.s/kC˛.Y / � Ck�k
2
C 1;˛.Y /

;

kB i .s/kC˛.Y / � Ck�kC 1;˛.Y /

H) .ˆ�1/�.��/ D .1C zA.s//@t C zB
i .s/@si jtD0;

k zA.s/kC˛.Y / � Ck�k
2
C 1;˛.Y /

;

k zB i .s/kC˛.Y / � Ck�kC 1;˛.Y /:

As such,
k.ˆ�1/�.��/.�/ � �t .s; 0/kC˛.Y / D O."

3C3ˇ�˛/

(recall that �si .s; 0/ � 0) and so

.ˆ�1/�.��/.�/ D �t .s; 0/CO."
3C3ˇ�˛/

D
p
2

Z �!" ln."/

0

�Y .�/
PH".t/dt �

2

3
JY .�/CO."

1C2ˇ /:
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To prove Theorem 1.13, we note that if u";� is C 1 across Y� D u�1";�.0/, then the Neumann
data match. If we take

u";� W Y � .!" ln."/2;�!" ln."/2/! R;

xu�" WD ˆ
�.u";�/ W Y � .!" ln."/;�!" ln."//! R;

xu�" D H".t/C "
2 PH0.s/x�".t/C x�.s; t/;

x�".t/ WD

´
�".t/ t � 0;

��".�t / t < 0;

x�.s; t/ WD

´
�C.s; t/ t � 0;

��.s; t/ t < 0

where �˙ are the same functions as in (5.1) with the ˙ referring to M˙ (i.e., t > 0 or
t < 0). With the above, ��.u";�/ D .ˆ�/

�1
� .��/.u

�
" / is well defined, and the Neumann

data matches, that is,

0 D ��.u";�/jtD�.s/C � ��.u";�/jtD�.s/�

if and only if the following holds:

0 D .ˆ�/
�1
� .��/.u

�
" /jtD0C � .ˆ�/

�1
� .��/.u

�
" /jtD0�

D �
4

3
JY .�/C

p
2

Z �!" ln."/

!" ln."/
�Y .x�/

PH".t/dtCO."
1C2ˇ /

H)

Z �!" ln."/

!" ln."/
�Y .x�/

PH".t/dt D
2
p
2

3
�0JY .�/C zO."

1C2ˇ /;

where the error holds in C ˛.Y /. Now note that


Z �!" ln."/

!" ln."/

PH0 x�
PH"dt





C˛.Y /

D O."3Cˇ�˛/

so that we can write the above as

JY

�Z �!" ln."/

!" ln."/

x� PH".t/dt
�
D 2�0JY .�/CO."

1C2ˇ /

with error in C ˛.Y /. We now substitute
R
u";�
PH" for

R
� PH" at the cost of negligible error,

since ˇ̌̌Z �!" ln."/

!" ln."/
H".t/ PH".t/dt

ˇ̌̌
D O."!/;


Z �!" ln."/

!" ln."/
"2 PH0.s/�".t/ PH".t/





C˛.Y /

D O."3/
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and the same order of bound holds if we replace H"! H"; �"! x�". Furthermore, if Y is
nondegenerate, we invert both sides by JY ,Z �!" ln."/

!" ln."/
u";�.s; t/

PH".t/dt D 2�0�.s/CO."
1C2ˇ /;

where the error holds in C 2;˛.Y /. This concludes the proof of the theorem.

A. Miscellaneous lemmas and computations

A.1. Lemma on L� D �Rn C @2t �W
00.H/ for Rn �RC

Lemma A.1. For � 2 C 1.Rn �RC/, suppose �.s; 0/ � 0 and L�.�/ D 0 on Rn �RC.
Then � � 0.

Proof. The proof is a slight extension of the well-known classification of ker.L/ on
Rn �R. See [13, Lemma 3.7] for reference. Because of the Dirichlet condition at t D 0,
consider the odd reflection

z�.s; t/ D

´
�.s; t/ t � 0;

��.s;�t / t < 0:

Then z�.s; t/ is a C 1 solution to L�. By the maximum principle, z� converges to 0 expo-
nentially and uniformly as t !˙1. Thus, it is in L2 and via an energy argument (again
[13, Lemma 3.7]), we see that

z�.s; t/ D c PH.t/;

but �.s; 0/ D 0, so c D 0.

A.2. Boundedness of � in Theorem 1.6

Recall that we have a sequence ¹fj º WM !R and pj such that jfj .pj /j D kfj kC 0.M/D 1

and kL"fj kC˛" .M/ � j
�1. We show that dist.Y; pj / < �"j for some � independent of "j .

In terms of scaled Fermi coordinates, .�; �/, we have

L" D �g" �W
00.H.�//:

Consider � D 1 for which

L.1/ D �W 00.H/ D 1 � 3H
2
:

We see that this L.1/ < �1 for all � > arctanh.
q
2
3
/ DW c0. Moreover, 1 � j�j j by the

normalization. We now apply the maximum principle to L and .1˙ �/ on the open set
U D ¹p j dist.p; Y / > c0"º. This tells us that for � > c0 (i.e., t > c0"), 1˙ �j achieves
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its minimum on the boundary of ¹� > c0º. Immediately, this tells us that we can choose
pj D .qj ; tj / for some 0 � tj < c0". Similarly, we can show that �j D "�1tj � �0 > 0.
Recentering � at .qj ; 0/ and using .�; �/ coordinates, we have

j@��j .�; �/j � k�j kC 2;˛" .M//
� K.kL�j kC˛" .M/ C k�j kC 0.M// � K.o.1/C 1/ � 2K;

so that because �j .�; 0/ � 0 for all � , we have

j�j .�j ; �j /j � 1=2 H) �j �
1

4K

where K is the Schauder constant and independent of j and ". This tells us that

0 <
1

4K
� �j � c0;

so there exists a convergent subsequence of ¹�j º that converges to 0 < � <1.

A.3. Normal for Y�

In this section, we show that for � a perturbation with k�kC 2;˛k � K"1Cˇ , we have

�Y� D a
t .s/@t C a

i .s/@si ;

kat � 1kC 2;˛.Y / � C"
2C2ˇ ;

kaikC 2;˛.Y / � C"
1Cˇ :

Lemma A.2. For any � 2 C 2;˛.Y / and k�kC 2;˛.Y / � K"1Cˇ , there exists C > 0 so that
the normal derivative to Y� expands as

�� D a
t .s/@t C a

i .s/@si ;

kat .s/ � 1kC 1;˛.Y / � Ck�k
2
C 2;˛.Y /

;

kai .s/kC 1;˛.Y / � Ck�kC 2;˛.Y /:

Proof. In coordinates, we compute the tangent basis for Y� as

vi D @si C �i@t j.s;tD�/:

Let g.�/ij WD g.vi ; vj / and g.�/ij be the corresponding inverse. Then

g.�/ij D gij j.s;tD�/ C �i�j D ıij C �Aij CO..D�/
2/;

so that for

w� WD @t �…TY .@t / D @t � g
ijg.@t ; vi /vj

D @t � .ıij � �Aij C zO..D�/
2//�i .@sj C �j @t /

D .1C zO.��i�j ; .D�/
4/@t � .�iıij C zO.�D�; .D�/

3//@j ;
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we compute

kw�k
2
D 1C zO..D�/2/ H) kw�k

�1
D 1C zO..D�/2/

and so

�� D
w�

kw�k
D at .s/@t C B

i .s/@si ;

kat � 1kC 1;˛.Y / � Ck�k
2
C 2;˛.Y /

;

kB ikC 1;˛.Y / � Ck�kC 2;˛.Y /:

We now note that for the diffeomorphism

ˆ W Y � .!" ln."/;�!" ln."//! Y � .�!" ln."/2; !" ln."/2/;

ˆ.s; t/ D .s; t C �/

H) .ˆ�1/�.��/ D .1C A.s//.ˆ
�1/�.@t /C B

i .s/.ˆ�1/�.@si /

D .1C A.s//@t C B
i .s/.@si C �i@t /

D .1C zA.s//@t C B
i .s/@si ;

k zA.s/kC 1;˛.Y / � Ck�k
3
C 2;˛.Y /

� Ck�k2
C 2;˛.Y /

using that k�kC 2;˛.Y / D O."1Cˇ /.

A.4. Integrating the � equation for the normal derivative

In this section, we keep track of all the terms in equation (5.2) when integrating against PH"

to extract ��t .s; 0/.

Lemma A.3. The function ��t .s; 0/ decomposes as

�
�
t .s; 0/ D

p
2

Z �!" ln."/

0

�Y .�/
PH".t/dt �

2

3
JY .�/CO."

1C2ˇ /

where the error bound holds in C ˛.Y /.

Proof. Recall from (5.2) that we have

L";tC�.�/ D "Œ�tC�.�/C PH0��
PH" C jr

tC��j2 RH"

C "3
�HtC�.s/ � PH0.s/.t C �/

.t C �/2

�� t C �
"

�2
PH"

� "4�tC�. PH0/x�"C"
3HtC�

PH0 Px�"C"
3�tC�.�/ PH0 Px�"C2"

3
r
tC�.�/. PH0/ Px�"

� "2jrtC��j2 PH0 Rx�" C
1

2
W 000.H"/"

4 PH 2
0 x�

2
" C "

6 PH 3
0 x�

3
" CR.�/CO."

!/

DW G.�/: (A.1)
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Starting with the left-hand side, we first recall

L";tC�.�/ D "
2.�tC�.�

�/ �HtC��
�
t C �

�
tt / �W

00.H"/�
�:

We multiply by PH" and integrate from t D 0! t D �!" ln."/. From hereon, all integrals
will be from Œ0;�!" ln."//. We getZ �!" ln."/

0

L";tC�.�/
PH" D �"

2��
�
t .s; 0/C "

2

Z
�tC�.�

�/ PH" � "
2

Z
HtC��

�
t
PH"

D �"2��
�
t .s; 0/C "

2

Z
�Y .�/

PH" CO."
4�˛/:

Here we used equation (5.5), that is,

k�k
C
2;˛
" .M//

D O."2Cˇ /

and k
R PH"HtC�kC˛.Y / D O."

1Cˇ /, since Y is minimal and k�kC 2;˛ D O."1Cˇ /. On the
right-hand side of (A.1), we haveZ �!" ln."/

0

G.��/ PH"dt D "

Z
Œ�tC�.�/C PH0��

PH
2

"dt C

Z
jr
tC��j2 PH"

RH"dt

C "3
Z �HtC�.s/ � PH0.s/.t C �/

.t C �/2

�� t C �
"

�2
PH
2

"dt

� "4
Z
�tC�. PH0/x�"

PH"dt C "
3

Z
HtC�

PH0 Px�"
PH"dt

C "3
Z
�tC�.�/ PH0 Px�"

PH" C 2"
3

Z
r
tC�.�/. PH0/ Px�"

PH"

� "2
Z
jr
tC��j2 PH0 Rx�"

PH" C
1

2
"4
Z
W 000.H"/ PH

2
0 x�

2
"
PH"

C "6
Z
PH 3
0 x�

3
"
PH" C

Z
R.�/ PH" CO."

!C1/:

We write this as Z �!" ln."/

0

G.��/ PH"dt D A1 C A2

C B1

C C1 C C2

C C3 C C4

CD1 CD2

CD3 CE CO."
!C1/;

with the aim of extracting the leading terms and an appropriate error bounded in C ˛.Y /.
We have

A1 D ".�0.�/C PH0�/

Z
PH
2

"dt C "

Z
Œ�tC� ��0�.�/

PH
2

"dt
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D �0"
2JY .�/C "

Z
Œ�tC� ��0�.�/

PH
2

"dt

D �0"
2JY .�/CO."

3
k�kC 2;˛.Y /; "

2
k�kC˛.Y /k�kC 2;˛.Y //

D �0"
2JY .�/CO."

4Cˇ /;

which comes from expanding �tC� ��0 in powers of .t C �/. Similarly,

A2 D

Z
jr
Y �j2 PH"

RH" C

Z
ŒjrtC��j2 � jrY �j2� PH"

RH"dt D O."
3C2ˇ /;

which comes from expanding gij .s; t C �/ in powers of .t C �/ and

jr
tC��j2 D gij .s; t C �/�i�j D g

ij .s; 0/�i�j C Œg
ij .s; t C �/ � gij .s; 0/��i�j :

For B1, we see that

kB1kC 0 � "
3

Z
K
�
jt j C j�j

"

�
PH
2

"dt � O."
4/:

To see the Œ��˛ bound, we write

B1 D "
3

Z �!" ln."/

0

�Z tC�

0

Œ PHr .s/ � PH0.s/�dr
�
PH
2

"dt

D "3
Z �!" ln."/

0

�Z tC�

0

Z r

0

RHw.s/dwdr
�
PH
2

"dt

H) ŒB1�C˛.Y / D O."
4/:

For ¹Ciº, we compute in a straightforward manner, using that Y 2 C 4;˛ and satisfies (2.1),

C1 D "
4

Z
�tC�. PH0/ Px�"

PH"dt D O."
5/;

C2 D "
3

Z
HtC�

PH0 Px�"
PH"dt D O."

4/;

C3 D "
3

Z
�tC�.�/ PH0 Px�"

PH"dt D O."
5Cˇ /;

C4 D 2"
3

Z
r
tC�.�/. PH0/ Px�"

PH"dt D O."
5Cˇ /;

which is seen from making a change of variables t ! t=" to gain another factor of ", and
then noting that the integrals converge and are bounded in C ˛.Y /. For the ¹Diº terms, we
similarly have

D1 D �"
2

Z
jr
tC��j2 PH0 Rx�"

PH"dt D O."
5C2ˇ /;

D2 D
1

2
"4
Z
W 000.H"/ PH

2
0 x�

2
"
PH"dt D O."

5/;
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D3 D "
6

Z
PH 3
0 x�

3
"
PH" D O."

7/:

Finally, recall (5.3) to decompose the E term

E1 D

Z
R.�/ PH" D

Z
"2E�.�/

PH" �

Z
F0.�/

PH";

and we have

E� D ��tC�.�/@t � 2r
tC�.�/@t C jr

tC��j2@2t ;

"2
Z
.��tC�.�//�t

PH" D O."
5C2ˇ�˛/;

�2"2
Z
r
tC�.�/.�t /

PH" D O."
4C2ˇ�˛/;

"2
Z
jr
tC��j2�t t

PH" D O."
5C3ˇ�˛/;

H) "2
Z
E�.�/

PH" D O."
4C2ˇ�˛/

with bounds holding in C ˛.Y /. Similarly, using the definition of F0 in (5.4),

F0.�/ WD W
000.H"/"

2 PH0x�"� C
h
3"4 PH 2

0 x�
2
" C

1

2
W 000.H"/

i
�2 C �3;

"2
Z
W 000.H"/ PH0x�"�

PH" D O."
5Cˇ�˛/;

3"4
Z
PH 2
0 x�

2
" �

2 PH" D O."
9C2ˇ�˛/;

1

2

Z
W 000.H"/�

2 PH" D O."
5C2ˇ�˛/;Z

�3 PH" D O."
7C3ˇ�˛/

H)

Z
F0.�/

PH" D O."
5Cˇ�˛/:

With this, we have shown thatZ
G.��/ PH"dt D "

2�0JY .�/CO."
3C2ˇ /

with error in C ˛.Y /. This finishes the proof.

A.5. Existence of solutions to RF �W 00.H/F D '

Given ' W Œ0;1/! R smooth and asymptotically exponentially decaying, consider

@2tF.t/ �W
00.H.t//F.t/ D '.t/;

F .0/ D 0;

lim
t!1

F.t/ D 0:

(A.2)
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We reprove the following lemma seen in [9] and proven in [1, Lemma B.1, Remark B.3]:

Lemma A.4. Given ' 2 C1.Œ0;1// such that

9t0 > 0; K > 0; 
 > 0 s.t. 8t > t0; j'.t/j � Ke
�
t

then there exists a smooth solution to system (A.2) with exponential decay.

Proof. Consider the a priori solution of the form

F.t/ D v.t/ PH.t/

where v.t/ is to be constructed with v.0/D 0. We plug this into (A.2), multiply by PH, and
integrate twice to get a general solution of

v.t/ D b0 C

Z t

0

PH.s/�2
h
a0 C

Z s

0

'.r/ PH.r/dr
i
ds:

Using the condition of v.0/ D 0, we have b0 D 0. Moreover, we can set

a0 D �

Z 1
0

'.r/ PH.r/:

We now show that v.t/ is bounded so that limt!1 F.t/ D 0. First, we know that for t
large,

PH.t/�2 � e
p
2t

and from this, we can enforce

j Pv.t/j D ja0 C

Z t

0

'.r/ PH.r/j � Ke�.ˇC
p
2/t

for some ˇ > �
p
2 and K > 0 by using the exponential decay of '.s/ in L1. Thus, Pv is

exponentially decaying, so that v.t/ is bounded and, hence,

lim
t!1

F.t/ D lim
t!1

v.t/ PH.t/ D 0:

Moreover, since v.t/ is bounded and PH.t/ is exponentially decaying, F.t/ is also expo-
nentially decaying by differentiating the equation for F .
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