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Minimal and maximal solution maps of elliptic QVIs of
obstacle type: Lipschitz stability, differentiability, and

optimal control
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Abstract. Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solu-
tions that can be ordered. We study a multitude of properties of the operator mapping the source
term to the minimal or maximal solution of such QVIs. We prove that the solution maps are
locally Lipschitz continuous and directionally differentiable and show existence of optimal con-
trols for problems that incorporate these maps as the control-to-state operator. We also consider a
Moreau–Yosida-type penalisation for the QVI, wherein we show that it is possible to approximate
the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively)
of certain PDEs, which have a simpler structure and offer a convenient characterisation in partic-
ular for computation. For solution mappings of these penalised problems, we prove a number of
properties including Lipschitz and differential stability. Making use of the penalised equations, we
derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand
stationarity we get from the differentiability result.

1. Introduction

Let .�; �; #/ be a measure space and define H WD L2.�/ to be the usual Lebesgue space
on this measure space. We utilise the partial ordering � defined in the standard almost
everywhere sense through # . Take V to be a separable Hilbert space with V ,! H (a
continuous embedding) and the property that v 2 V implies vC 2 V and that there exists a
C >0with kvCkV �CkvkV for all v 2V . Here, .�/CDmax.0; �/ denotes the positive part
of a function. Let A W V ! V � be a bounded, linear, coercive, and T-monotone operator
and suppose that ˆ W H ! V is a given obstacle map that is increasing. Given a source
term f 2 V �, consider the quasi-variational inequality (QVI)

find u 2 V; u � ˆ.u/ such that hAu� f;u� vi � 0; 8v 2 V with v � ˆ.u/: (1)

Under certain circumstances, this inequality has solutions that can be ordered and we
denote by M.f / the maximal solution of (1) and by m.f / the minimal solution.
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In this paper, we study the sensitivity and directional differentiability of these extremal
solution maps M and m, in addition to deriving stationarity conditions for optimisation
problems with QVI constraints of the form

min
f 2Uad

J.M.f /;m.f /; f /: (2)

Regarding particular instances of J , we have in mind optimisation problems such as

min
f 2Uad

1

2
kM.f / �m.f /k2H C

�

2
kf k2H and min

f 2Uad

1

2
kM.f / � ydk2H C

�

2
kf k2H : (3)

The first is a formulation aiming to minimise the variation in solutions, first modelled and
motivated in [3], and the second is the typical tracking-type problem.

Inspired in part by our interest in deriving stationarity conditions for the control prob-
lems and in part by some results of Lions and Bensoussan in [8, Chapter 4], a substantial
portion of this paper is devoted to the study of the following penalised problem associated
to QVI (1):

AuC
1

�
��.u �ˆ.u// D f; (4)

where � > 0 is a parameter and �� is the below smoothed approximation of .�/C,

��.r/ WD

8̂̂<̂
:̂
0 if r � 0;
r2

2�
if 0 < r < �;

r � �
2

if r � �:

(5)

It turns out that (4) also has multiple solutions that can be ordered and we can again find
a maximal solution M�.f / and a minimal one m�.f /. We provide a substantive analysis
of the properties of these maps M�;m� and also their limiting behaviour as �& 0.

For convenience, we summarise our most important findings.

• We show that M�.f / and m�.f / converge to M.f / and m.f / respectively under some
assumptions. Along the way, we prove that M�.f / and m�.f / can themselves be
approximated by iterative sequences of solutions of PDEs, opening up the possibil-
ity for computation and numerical simulation (see Remark 4.11 for details).

• We prove that all four of these extremal solution maps (M�;m�;M, and m) are loc-
ally Lipschitz from V � into V (by a bootstrapping and contraction argument; we also
utilise some sharp estimates from [29] to ensure that our assumptions are kept as unob-
trusive as possible).

• We demonstrate that the four maps are directionally differentiable for more general
directions than in previous works, and also Hadamard differentiable in a certain sense
(the proof is along the lines of the iterative approach of [2] with some modifications
from [29]).
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• Using the differentiability results on M and m, we derive first-order conditions of
Bouligand type for the control problem. We also derive C-stationarity conditions,
which is possible thanks to the various results onM� andm� that we obtain (we approx-
imate (2) with a penalised control problem and then pass to the limit).

For precise details of all the main results, see Section 2 where we present them in full.
Now, let us highlight the novelty and positioning of our work among the literature.

• Continuity of the minimal and maximal solution maps with perturbations in an L1-
type space was first proved in [3, Theorem 4] under the structural assumption that
�ˆ.u/�ˆ.�u/ for all � 2 .0;1/ and for u 2HC. In [10, Theorem 3.2], Lipschitz con-
tinuity of these maps was shown, again under this setup and for source terms belonging
to a subset of L1.
In contrast, our result shows Lipschitz stability with respect to the V norm and for
sources in V � (thus we do not need to restrict to the L1 setting) and we do not
require the homogeneity-type assumption on ˆ (we do however ask for a local small
Lipschitz assumption; see (8)).
In particular, if ˆ has a small Lipschitz constant around M.f /, we already know that
locally there is a stable (with respect to the norm in V ) solution of the QVI [2, 5, 28],
but it is not clear whether these are the maximal solutions. On the other hand, there
are results [3, 10] showing that the maximal solution is stable (with respect to L1).
Now, our new results show that the maximal solution is indeed V -stable.

• The first work on directional differentiability for solutions of QVIs in infinite dimen-
sions is, to the best of our knowledge, [2] where it was shown for localised solutions
and for non-negative directions. Subsequent work in [28] and [5] relaxed the assump-
tions of [2] greatly. All three papers use a type of smallness assumption onˆ (locally)
similar to the one in this paper. However, neither paper tackled the case of extremal
solutions. Regarding in particular differentiability for the minimal and maximal maps,
this was proved in [4] under some sign conditions on the direction and a QVI charac-
terisation of the derivative was given. In [10], again in an L1-type setting and with ˆ
assumed to be concave, a differentiability result for the maximal solution appears and
under assumptions that entail the unique global solvability of the QVI, a characterisa-
tion of the derivative is given.
In this work, we provide a unique QVI characterisation of the directional derivat-
ive of the minimal and maximal solution maps under a general and natural function
space setting and with relatively agreeable assumptions. In contrast to the two previ-
ous works [4, 10] on extremal solution maps, we require neither sign restrictions on
the perturbation directions nor concavity or homogeneity-type assumptions on ˆ, nor
an embedding into L1.

• The study of the specifics of the maps M� and m� in this general setting seems entirely
new, although we should once again remind the reader that [8] contains some results
on the convergence behaviour of these maps in a specific setting (and not in generality
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like ours). The results on the sensitivity and differentiability of the maps are new, as
are the convergence results in this generality.

• The stationarity conditions for the control problem involving minimal and maximal
solution maps are also entirely new. The works [5, 28] have addressed stationarity for
control problems in a QVI setting but not for the extremal solution maps. Furthermore,
our C-stationarity system in some sense improves the one in [5] because we are able to
show that the multipliers for the adjoints vanish on the inactive set (formally speaking;
see Proposition 7.8) without requiring any additional strong assumptions.

• On this note, we are for the first time able to treat problems like the first one in (3) in
a substantial way.

• Our results remain valid when the obstacle mapping ˆ �  is constant, that is, in the
case where (1) is a variational inequality. We note in particular that Proposition 7.8
improves the E-almost conditions derived in [14, Theorem 3.4] for control of the
obstacle problem; see Proposition 7.9.

Although we have specified the functional framework of this paper with the base space
chosen as L2.�/, let us stress that in fact, many of our results will apply in far greater
generality, with a much more general function space setting (than H D L2.�/ as taken
above) and also with far more general maps �� (provided certain crucial properties are
satisfied) than the one above – for example, ��.u/ WD uC. For simplicity and clarity of
exposition, we have decided to present our work with the choice ofH as above and with ��
as in (5) in the paper. We will not present the details here but invite interested readers to
work out the details.

Regarding the organisation of the paper, we begin in Section 1.1 with some basic
definitions, notations, and fundamental results. In Section 2 we state all of our main results
for the convenience of the reader, also including some useful or interesting remarks and
providing some examples in Section 2.4.1. In Section 3, we study (4) and an iterative
sequence of associated problems and show that (4) does indeed possess extremal solutions.
Section 4 is devoted to the study of the limit �! 0 in (4), both with and without a locally
small Lipschitz assumption onˆ. Using these obtained results, we prove our claims on the
Lipschitzness of all the maps in Section 5 and directional differentiability in Section 6. In
Section 7, we study the optimisation problem in (2) and prove B-stationarity and various
forms of C-stationarity. In Section 8, we finish the main part of the paper with some final
remarks.

1.1. Notation and preliminaries

Define the set HC WD ¹h 2 H W h � 0º of non-negative elements of H D L2.�/, and
define VC similarly. We write hC D PHCh to denote the orthogonal projection of h 2 H
onto HC and define h� WD hC � h. The infimum and supremum of two elements h1; h2
2 H are defined as usual: inf.h1; h2/ WD h1 � .h1 � h2/

C and sup.h1; h2/ WD h1
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C .h2 � h1/
C. We define an order on the dual space V � via

f � g ” hf � g; vi � 0; 8v 2 VC:

Here h�; �i is the duality pairing between V � and V . Regarding the elliptic operator in (1),
as mentioned, we take A W V ! V � to be a linear operator that satisfies the following
properties for all u; v 2 V :

hAu; vi � CbkukV kvkV ; (boundedness)

hAu; ui � Cakuk
2
V ; (coercivity)

hAuC; u�i � 0; (T-monotonicity)

where Ca; Cb > 0 are constants.
With K.u/ WD ¹v 2 V W v � ˆ.u/º, QVI (1) can be written as

u 2 K.u/ W hAu � f; u � vi � 0; 8v 2 K.u/:

We introduce S W V � �H! V as the solution map of the associated variational inequality,
that is, u D S.f;  / if and only if

u 2 K. / W hAu � f; u � vi � 0; 8v 2 K. /:

Thus the solutions of (1) are precisely the fixed points of S.f; �/.

Assumption 1.1. Given f 2 V �, assume that there exist u; u 2 V such that

u � S.f; u/; u � S.f; u/; and u � u:

The element u is called a subsolution for S.f; �/ and u is called a supersolution
for S.f; �/.

We come now to an existence result for (1). For more existence results under different
assumptions, see [5, §2].

Proposition 1.2. Under Assumption 1.1, there exists a minimal solution m.f / and max-
imal solution M.f / to (1) on the interval Œu; u� WD ¹v 2 V W u � v � u a.e. in �º.

Proof. We apply the Birkhoff–Tartar theorem [6, §15.2.2, Proposition 2], which gives
existence of fixed points for increasing maps that possess subsolutions and supersolu-
tions to the map S.f; �/ (which is increasing; see [20, §4:5, Theorem 5.1]). See also [24],
[7, §11.2], and [19, Chapter 2].

We will use the notation Br .x/ to denote the (closed) ball of radius r centred at x. It
should be clear from the context the function space in which the ball is taken, but typically
when we use ı (or a variant such as xı) for the radius, it refers to the V � ball, whereas the
radius being " (or a variant) refers to the V ball.
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2. Main results

Let us discuss our main results. As a matter of notation, to handle both cases (of the
minimal and maximal solution maps) simultaneously, we denote by Z one of the maps M
or m. Note that Z is defined at all points f satisfying Assumption 1.1.

2.1. On directional differentiability

Our first result concerns local Lipschitz continuity of Z. For this, we need Z to be defined
not just at a solitary point but in a neighbourhood. Thus, we need to expand Assump-
tion 1.1 to take this into account.

Assumption 2.1. Let f 2 V � and take a setW � V � containing f and assume that there
exist u; u 2 V and xı such that

u � u; (6a)

u � S.g; u/; 8g 2 Bxı.f / \W; (6b)

u � S.g; u/; 8g 2 Bxı.f / \W: (6c)

The intersection with the set W that appears in the assumption above is inspired by
applications where the source terms may lie in some given ordered interval and it ensures
that natural candidates for the sub- and supersolutions (namely those arising from the
boundary of the ordered interval) indeed qualify as sub- and supersolutions; see the next
remark.

Remark 2.2. Consider the example in Section 2.4.1. If we had asked for (6) to hold for
all g 2Bxı.f / (i.e., without the intersection with a setW ), then uD 0 does not satisfy (6b)
for the element f D 0 2 V � since Bxı.0/ contains negative functions, so that 0 � S.g; 0/
may not hold for all g 2 Bxı.0/. Even worse, due to S.g; u/ � A�1g for all g 2 V � and
u 2 V , we would need u � A�1g for all g 2 Bxı.f /, but this is not possible since A�1g
could have negative singularities at arbitrary points. Hence, the intersection with W is
necessary for the existence of sub- and supersolutions.

The next theorem will be proved in Section 5.

Theorem 2.3 (Local Lipschitz continuity of Z). Let f 2 V � andW � V � satisfy Assump-
tion 2.1. Assume

ˆ W V ! V is completely continuous; (7)

there exists "� > 0 such that ˆ W B"�.Z.f //! V has a Lipschitz constant CL satisfying

CL <
Ca

Cb
or A is self-adjoint and CL < 2

p
Cb=Ca

1C Cb=Ca
. (8)
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Then then there exists ı 2 .0; xı/ such that for all g 2 Bı.f / \W ,

kZ.f / � Z.g/kV � Ckf � gkV �

where C > 0 is a constant (which depends only on CL, Ca, Cb and the self-adjointness
of A).

In the assumption in (8) above, “self-adjoint” essentially means that the associated
bilinear form is symmetric. Note that (8) is indeed a rather strong assumption as it asks
for a smallness condition on the Lipschitz constant of ˆ, albeit only locally. In particular,
the assumption implies local uniqueness on the ball B"�.Z.f //: any solution that exists
in the ball is isolated. The nature of QVIs where non-uniqueness appears seems to neces-
sitate such assumptions. We will demonstrate a real-world application in which such an
assumption is satisfied in Section 2.4.2.

With the addition of just one more assumption (namely the differentiability of ˆ at a
point) we can secure directional differentiability. Before we state the result, let us recall
that the radial cone of a set C � X of a Banach space X at a point x 2 C is defined as

RC .x/ WD
®
y 2 X j 9s0 > 0 W x C sy 2 C; 8s 2 Œ0; s0�

¯
:

The tangent cone is defined as

TC .x/ WD
®
y 2 X j 9sk & 0; 9yk ! y in X W x C skyk 2 C; 8k

¯
:

In the case that C is additionally convex, the tangent cone is the closure of the radial cone
in X , written TC .x/ D RC .x/.

Theorem 2.4 (Hadamard differentiability of Z). Let f 2 V � andW � V � satisfy Assump-
tion 2.1. Assume (7), (8), and

ˆ is directionally differentiable at Z.f /: (9)

Then

(i) the map Z is Hadamard differentiable in the sense that if d 2 TW .f /, then for
any sequence dk ! d in V � with f C skdk 2 W where sk & 0,

Z.f C skdk/ � Z.f /
sk

! Z0.f /.d/I

(ii) the derivative Z0.f /.d/ is the unique solution of the QVI

˛ 2Ku.˛/ W hA˛ � d; ˛ � vi � 0; 8v 2Ku.˛/ (10)

where, writing u D Z.f /,

Ku.˛/ WD ˆ0.u/.˛/C TK.u/.u/ \ Œf � Au�
?
I
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(iii) the map Z0.f / W TW .f / ! V can be extended to a bounded and continuous
mapping from V � to V by defining it via (10) for all d 2 V �.

For the proof, see Section 6.2.

Remark 2.5 (Directional differentiability of Z). A simple corollary of Theorem 2.4(i) is
that the map Z W Bxı.f / \W ! V is directionally differentiable at f in every direction
d 2 RW .f / � V

�:

lim
s&0

Z.f C sd/ � Z.f /
s

D Z0.f /.d/:

Taking the direction from RW .f / ensures that the perturbed solution Z.f C sd/ is well
defined via Assumption 2.1.

Example 2.6 (The radial cone RW .f /). Similarly to Section 2.4.1, let us consider

W WD
®
g 2 V � W 0 � g � F

¯
with F � k0 for some constant k0 > 0, and u WD 0 and u WD A�1F . Let us try to describe
the radial cone at different points in W .

• Take d 2 L1C .�/. Then sd � 0 for all s > 0 and if s � k0=kdkL1.�/, we have, for
all ' 2 VC,

hsd � F; 'i D hsd � k0; 'i C hk0 � F; 'i � 0;

so that sd 2 W for sufficiently small s. This shows that L1C .�/ � RW .0/.

• In a similar way, take d 2 L1� .�/. For all s � 0, we have F C sd � F and if
s � k0=kdkL1.�/, we have

hF C sd; 'i D hF � k0; 'i C hk0 C sd; 'i

and k0 C sd � k0 C k0d=kdkL1.�/ D k0.1C d=kdkL1.�// � 0, thus F C sd � 0
and we have shown that L1� .�/ � RW .F /;

• Now consider a point f such that 0 < c0 � f � c1 <F where c0 and c1 are constants.
Using similar arguments to the above, we can show L1.�/ � RW .f /.

2.2. On the penalised problem

In this section, we address results for the penalised problem in (4), that is,

AuC
1

�
��.u �ˆ.u// D f:

We denote by T� W V � � H ! V the solution map .f; w/ 7! u of the corresponding
equation

AuC
1

�
��.u �ˆ.w// D f:
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Here, we associate with the real-valued function �� defined in (5) the operator �� W
V ! V � defined as

h��.u/; vi D

Z
�

��.u/v:

If, given f 2 V � and a fixed � > 0, we have the availability of u; u such that

u � T�.f; u/; u � T�.f; u/; and u � u; (11)

then there exist a minimal solution m�.f / and maximal solution M�.f / to (4) on Œu; u�.
We will show this in Proposition 3.10. In a similar way as before, we use Z� to denote
either M� or m�.

Since we want to consider the limit �& 0, we need Z� to be defined for sufficiently
small �, and hence (11) (which holds for a fixed �) needs to be modified. We do this in the
next assumption, which kills two birds with one stone: it also ensures that both Z� and Z
are defined on a neighbourhood (just like we argued for Assumption 2.1) and not just at
one point.

Assumption 2.7. Let f 2 V � and take a setW � V � containing f and assume that there
exist u; u 2 V and xı; �0 > 0 such that

u � u; (12a)

u � S.g; u/; 8g 2 Bxı.f / \W; (12b)

u � T�0.g; u/; 8g 2 Bxı.f / \W: (12c)

The fundamental question is whether M�.f / and m�.f / converge (in some sense)
to M.f / and m.f /. In fact, we can even prove something stronger with the following joint
(in � and the source term) continuity result, the proof of which appears in Section 4.3:

Theorem 2.8 (Convergence of Z�.g/ to Z.f /). Let f 2 V � andW � V � satisfy Assump-
tion 2.7. Assume (7)1 and (8). Then

lim
�&0
g!f

Z�.g/ D Z.f /

where the convergence g! f is understood in V � and for g 2 W .

As we said in Remark 2.2, havingW ¤ V � in Assumption 2.7 above makes it a weaker
assumption than if it held withW equal to the entire space V �, and leads to a convergence
result with respect to g that is perhaps weaker than one might first expect, but this is
obviously natural since the extremal maps only exist for such source terms.

By choosing W D ¹f º in the statement of the theorem, we get the corollary below.
Note that the assumption below essentially asks for the inequalities in (12) to hold only at
(g replaced with) the particular point f .

1Instead of (7) we could assume that ˆ W V ! V is continuous, (29), (30) and (32).
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Corollary 2.9 (Convergence of Z�.f / to Z.f /). Let f 2 V � and W WD ¹f º satisfy
Assumption 2.7 and assume (7) and (8). Then Z�.f /! Z.f / in V .

Remark 2.10. This result uses the small Lipschitz condition in (8), but it is not necessary
to obtain the convergence of M�.f / to M.f /; see Theorem 4.8. It is an open problem
whether m�.f / converges to m.f / under the general assumptions of Theorem 4.8.

In a similar fashion to Theorems 2.3 and 2.4, we have the following local Lipschitz
and differentiability results for Z�, proven in Sections 5 and 6.1, respectively:

Theorem 2.11 (Local Lipschitz continuity of Z�). Let f 2 V � and W � V � satisfy
Assumption 2.7. Assume (7) and (8). Then there exist �0 and ı > 0 such that for all � � �0
and g 2 Bı.f / \W ,

kZ�.f / � Z�.g/kV � Ckf � gkV �

where C > 0 is a constant (which depends only on CL, Ca, Cb and the self-adjointness
of A).

Theorem 2.12 (Hadamard differentiability of Z�). Let f 2 V � and W � V � satisfy
Assumption 2.7. Assume (7), (8), and

ˆ is directionally differentiable at Z�.f /: (13)

Then for � sufficiently small,

(i) the map Z� is Hadamard differentiable in the sense that if d 2 TW .f /, then for
any sequence dk ! d in V � with f C skdk 2 W where sk & 0,

Z�.f C skdk/ � Z�.f /
sk

! Z0�.f /.d/I

(ii) the derivative Z0�.f /.d/ is the unique solution of the equation

A˛ C
1

�
� 0�.u �ˆ.u//.˛ �ˆ

0.u/.˛// D d (14)

where u D Z�.f /;
(iii) the map Z0�.f / W TW .f / ! V can be extended to a bounded and continuous

mapping from V � to V by defining it via (14) for all d 2 V �.

Exactly as in Remark 2.5, we obtain from Theorem 2.12(i) the directional differentab-
ility of Z� W Bxı.f / \W ! V at f in every direction d 2 RW .f / � V

�:

lim
s&0

Z�.f C sd/ � Z�.f /
s

D Z0�.f /.d/:
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2.3. On optimal control

Regarding existing literature on the derivation of stationarity systems for optimal con-
trol with QVI constraints, we mention [28] and [5] in particular. The first work contains
a strong stationarity system characterisation in the absence of control constraints, while
the latter work includes the derivation of various forms of stationarity systems (including
strong) with potential box constraints on the control. In this work, we extend these res-
ults to the setting of minimal and maximal solution mappings and derive a C-stationarity
system.

Suppose that
V

c
,�! H ,! V � is a Gelfand triple

(
c
,�! means a compact embedding; by definition of the Gelfand triple, V

d
,�! H is a dense

embedding) and let Uad � H be a non-empty, closed, and convex set2. Recall the control
problem in (2), reproduced here:

min
f 2Uad

J.M.f /;m.f /; f /:

We make the next standing assumption, which guarantees the well-definedness of (2).

Assumption 2.13. There exist u; u 2 V such that

u � u;

u � S.g; u/; 8g 2 Uad;

u � S.g; u/; 8g 2 Uad:

Regarding the objective functional J , we need the following assumptions in place.
Observe that the last two assumptions below are conditions that involve ˆ.

Assumption 2.14. Regarding J.y; z; f /, assume that

(i) J W V � V �H ! R is continuously Fréchet differentiable and bounded from
below.

(ii) If .yn; zn/! .y; z/ in V � V and fn * f in H , then

J.y; z; f / � lim inf
n!1

J.yn; zn; fn/:

(iii) If ¹J.yn; zn; fn/º is bounded for a sequence ¹.yn; zn; fn/º � V � V �Uad, then
¹fnº is bounded in H .

(iv) If Jy 6� 0, for every f 2 Uad, there exists "� > 0 such that ˆ W B"�.M.f //! V

has a Lipschitz constant satisfying CL < Ca=Cb or A is self-adjoint and CL <
2
p
Cb=Ca.1C Cb=Ca/

�1.

2It would suffice to replace “closed and convex” here with “weakly sequentially closed” (which is a
weaker requirement) for the existence results below.
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(v) If Jz 6� 0, for every f 2 Uad, there exists "� > 0 such thatˆ W B"�.m.f //! V

has a Lipschitz constant satisfying CL < Ca=Cb or A is self-adjoint and CL <
2
p
Cb=Ca.1C Cb=Ca/

�1.

An example of J satisfying items (i)–(iii) above is

J.y; z; f / D
1

2
kay C bz � ydk

2
H C

�

2
kf k2H

given constants a; b 2 R, � > 0, and for some given yd 2 H . When we choose a D 1,
b D �1, and yd � 0, we recover the first objective functional in (3) and when a D 1 and
b D 0 or vice versa, we recover the second one in (3).

We remark that the assumptions in (iv) and (v) are unfortunately rather unsatisfactory,
because they impose local uniqueness around the extremal solutions for every source term
in Uad.

Theorem 2.15 (Existence of optimal controls). Assume (7), and Assumptions 2.13
and 2.14. Then there exists an optimal control f � 2 Uad to the problem in (2).

The proof (see Section 7) is more or less standard and uses the direct method in the
calculus of variations. From now on, let

.y�; z�; f �/ be an arbitrary local minimiser of (2)

with y� D M.f �/ and z� D m.f �/. We begin with the following primal characterisation
of the minimiser:

Proposition 2.16 (Bouligand stationarity). Assume (7), Assumptions 2.13, and 2.14, and

if Jy 6� 0, ˆ is directionally differentiable at M.f �/;

if Jz 6� 0, ˆ is directionally differentiable at m.f �/:

Then

hJy.y
�; z�; f �/;M0.f �/.h/i C hJz.y�; z�; f �/;m0.f �/.h/i C hJf .y�; z�; f �/; hi

� 0; 8h 2 TUad.f
�/:

The proof of the proposition appears in Section 7.1.
For numerics, it is convenient to derive other forms of stationarity systems, like C-

stationarity. For this purpose, we consider the penalised control problem

min
f 2Uad

J.M�.f /;m�.f /; f /: (15)

The following standing assumption is stronger than Assumption 2.13 and it implies the
assumptions of Theorem 2.11, which is needed for the existence of controls for the above
control problem.
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Assumption 2.17. There exist u; u 2 V and �0 > 0 such that

u � u;

u � S.g; u/; 8g 2 Uad;

u � T�0.g; u/; 8g 2 Uad:

We need some further regularity on ˆ in the form of the next assumption. When ˆ is
continuously Fréchet differentiable, these assumptions follow from Assumptions 2.14(iv)
and (v). See the discussion around (40) and the proof of [5, Lemma 5.9].

Assumption 2.18. Assume the following:

(i) If Jy 6� 0, assume that there exists " > 0 such that

for all w 2 B".y�/, ˆ is directionally differentiable at w and ˆ0.w/ is linear:

If Jz 6� 0, the above holds with y� replaced by z�.
(ii) If Jy 6� 0, assume that for sequences vn ! v, wn ! w, and qn * q in V with

vn; v 2 B".y
�/, we have

.Id �ˆ0.vn//�1qn * .Id �ˆ0.v//�1q in V ; (16)

.Id �ˆ0.vn//�1wn ! .Id �ˆ0.v//�1w in V ; (17)

If Jz 6� 0, the above holds with y� replaced by z�.

We also need additional structure on the function spaces in the form of a Dirichlet
space.

Assumption 2.19. Let V be a regular Dirichlet space and suppose that .�/C W V ! V is
continuous.

We will not enter into an exposition about Dirichlet spaces here (see [5, Example 3.5]
for a convenient definition and comments on this as well as further references), but let
us give some examples that satisfy the above assumption. Suppose that D � Rn is a
bounded Lipschitz domain. We can take H D L2.D/ and V D H 1

0 .D/ (thus � � D),
or H D L2.D/ and V D H 1.D/ (thus � � D). Fractional spaces are also a possibility.
Indeed, V D H s.D/ for s 2 .0; 1/ and H D L2.D/ is valid (i.e., � WD D), where the
fractional Sobolev space H s.D/ is defined as usual as the space of measurable functions
u W D ! R such that the norm

kukH s.D/ WD

�Z
D

u2 C

Z
D

Z
D

ju.x/ � u.y/j2

jx � yjnC2s

� 1
2

(18)

is finite. On the plane, we could also pick V D H s.Rd / and H D L2.Rd / (V is defined
similarly to the above via (18) but withD replaced with Rd ); thus, here�D Rd . In these
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two cases the natural operator to choose for A would be the fractional Laplacian .��/s .
We refer to [2, §1.2.1] for a QVI example involving the fractional Laplacian in an applic-
ation involving fluid flow.

Assuming a Dirichlet space structure enables us to define notions of capacity and
quasi-continuity (capacity is, loosely speaking, a way to measure sets finer than through
the Lebesgue measure), see [11, §2.1] or [26, Section 2] for the H 1

0 .�/ setting. In addi-
tion, it allows us to explicitly characterise the critical cone appearing in Theorem 2.4 (see
Remark 6.7) using capacity, and (more pertinently for us in this section) the tangent cone
as well, which is something we will use to prove a statement in the stationarity system
below. On that topic, note for any y 2 V we can define3®

y D ˆ.y/
¯
�
®
x 2 � W y.x/ D ˆ.y/.x/

¯
;

which, when y is a solution of the QVI, is called the active or coincidence set. This set is
defined up to sets of capacity zero.

We will prove a version of C-stationarity (but note that this terminology is used some-
what inconsistently in the literature). Before we proceed, let us record that owing to the
complementarity characterisation of solutions of QVIs (see, e.g., [5, Proposition 2.1]), the
statements y� D M.f �/ and z� D m.f �/ imply (but are not necessarily equivalent to)
that

Ay� � f � C ��1 D 0;

Az� � f � C ��2 D 0;

��1 � 0 in V �; y� � ˆ.y�/; h��1 ; y
�
�ˆ.y�/i D 0;

��2 � 0 in V �; z� � ˆ.z�/; h��2 ; z
�
�ˆ.z�/i D 0:

(19)

The main result in this section is the following, which will be proved through a succession
of results in Section 7.3:

Theorem 2.20 (C-stationarity). Assume (7), and Assumptions 2.14, 2.17, 2.18, and 2.19.
Take any local minimiser .y�; z�; f �/ of (2) and define ��1 ; �

�
2 as in (19). Then there exist

multipliers .p�; q�; ��; ��/ 2 V � V � V � � V � satisfying the C-stationarity system

y� D M.f �/; (20a)

z� D m.f �/; (20b)

A�p� C .Id �ˆ0.y�//��� D �Jy.y�; z�; f �/; (20c)

A�q� C .Id �ˆ0.z�//��� D �Jz.y�; z�; f �/; (20d)

f � 2 Uad W hJf .y
�; z�; f �/ � p� � q�; f � � vi � 0 8v 2 Uad; (20e)

h��; p�i � 0; (20f)

h��; q�i � 0; (20g)

3Strictly speaking, every y 2 V has a quasi-continuous representative and we identify it with its rep-
resentative. Then the set ¹y D ˆ.y/º is quasi-closed.
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h��; vi D 0; 8v 2 V W v D 0 q.e. on
®
y� D ˆ.y�/

¯
; (20h)

h��; vi D 0; 8v 2 V W v D 0 q.e. on
®
z� D ˆ.z�/

¯
; (20i)

h��1 ; .p
�/Ci D h��1 ; .p

�/�i D h��2 ; .q
�/Ci D h��2 ; .q

�/�i D 0: (20j)

The “q.e.” appearing in (20h) and (20i) means quasi-everywhere and a statement holds
“q.e.” if it holds everywhere except on a set of capacity zero. Let us observe that (20h)
and (20i) imply

h��; y� �ˆ.y�/i D 0; h��; z� �ˆ.z�/i D 0:

It is worth noting that if Assumption 2.19 is not available, it is still possible to show
that a subset of the conditions above (called weak C-stationarity) are satisfied; see Pro-
position 7.4. Therein, (20h)–(20j) are missing. By assuming just the continuity of .�/C W
V ! V , we can further show some substitutes for the missing relations, see Proposi-
tion 7.5 and Lemma 7.7.

2.4. Examples

2.4.1. Obstacle map as solution map of PDE. It is illustrative to give an example that
occurs commonly in applications and that satisfies all of the assumptions (for the subsolu-
tion and supersolution) that appear in this paper. Letˆ be increasing and satisfyˆ.0/ � 0
and let F 2 V �C be a given function. Define

u WD 0; u WD A�1F:

We define the set of source terms

W WD
®
g 2 V � W 0 � g � F

¯
:

With these choices, we in fact satisfy every assumption on the existence of sub- and super-
solutions that is mentioned in the paper. We will prove this later in Lemma 3.8.

Regarding specific choices of the function spaces, we can take��Rn to be a bounded
Lipschitz domain and set V D H 1

0 .�/. A concrete example of ˆ W H ! V could be
ˆ.w/ D � defined via

��� D w in �;

� D 0 on @�
(21)

where �� W V ! V � denotes the weak Laplacian. Clearly,ˆ.0/D 0. Regarding the oper-
ator A, we could take, for example, A.u/D �r � .aru/ where the coefficient a W �! R
is a function satisfying a 2 L1.�/ and a � a0 > 0 almost everywhere for a constant a0.

Further applications and examples of QVIs can be found in, for example, [5, 10].
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2.4.2. An application in thermoforming. We consider now an application of our the-
ory in thermoforming. Thermoforming is a manufacturing process in which mould shapes
that are to be reproduced are forced into contact with heated membranes (which are typic-
ally plastic sheets): the membrane deforms and takes on the shape of the mould. In some
circumstances, the ensuing heat exchange between the materials leads also to a deform-
ation of the mould, giving rise to the QVI nature of the problem. For further details, we
refer to [2]. We look at a concrete one-dimensional realisation from [1, §4.3], which is
co-authored by two of the present authors. Let D � � D .0; 1/, A D ��, V WD H 1

0 .�/,
and consider the QVI

u 2 V , u � ˆ.u/; h��u � f; u � viV �;V � 0; 8v 2 V; v � ˆ.u/; (22)

for f 2 L2.�/ defined by f .x/ D �2 sin.�x/ and ˆ.u/ given by ˆ.u/ WD 'T where
T 2 H 1.�/ is the unique weak solution of

kT ��T D g. T � u/ in �;

@�T D 0 on @�,

and where

'.x/ D
10�2 sin.�x/
5 � cos.2�x/

; k D �2; g.s/ D 4min.0; s/2;  .x/ D
5�2 sin.�x/
5 � cos.2�x/

:

Here, u refers to the displacement of the membrane,ˆ.u/ is the displacement of the mould
and T is the temperature of the membrane. The above model is valid for one time step in
the time discretisation of the thermoforming process; see again [2] for full details.

Regarding existence for (22), first note that the fact that g is decreasing implies that
u 7! T is increasing (the argument is the same as in [2, Lemma 6.3]) and hence as is
the map ˆ. Regarding S.f; �/, since f 2 L2.�/ with f � 0, it is easy to check that 0 is
a subsolution and A�1f is a supersolution with 0 � A�1f , by non-negativity of f . By
Proposition 1.2, QVI (22) possesses minimal and maximal solutions on Œ0; A�1f �. It is
not difficult to see that 0 is a solution of the QVI, and hencem.f /D 0 for all non-negative
f 2 L2.�/. Note that (22) has the second explicit solution sin.�x/; see [1, Lemma 4.3].

The assumption in (7) on the complete continuity of ˆ follows from the compact
embedding of V into L2.�/ and the inequality

kˆ.u1/ �ˆ.u2/kV � Lip.g/
�
k'kL1.�/k

�1=2
C k'0kL1.�/k

�1
�
ku1 � u2kL2.�/;

which was shown in the proof of [1, Theorem 3.9].
The smallness condition in (8) on B"�.0/ is satisfied thanks to the next result.

Lemma 2.21. There exists an "� > 0 such that ˆ W B"�.0/ ! V has a Lipschitz con-
stant CL satisfying CL < 1.

Proof. Let B � V be a closed ball such that B � ¹v 2 V j kvkV < R�º, where

R� WD
3

10.1C �/

�r13�2 C 8�

80
�
�

4

�
:
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If we take R < R� and set

MR D
1

2
RC

10.1C �/

3�
R2; (23)

then we have, using the notation Lip.g; I / to mean the Lipschitz constant of g W I ! R
on the interval I ,

Lip.g; Œ�MR;MR�/
�
k'kL1.�/k

�1=2
C k'0kL1.�/k

�1
� 1
�

D
50

3

�
RC

20.1C �/

3�
R2
�
< 1 (24)

(see [1, Lemma 4.3] for the equality; the inequality holds because we took R < R� and
is not difficult to see by using the quadratic formula). From the estimate in [1, The-
orem 3.12],

kˆ.u1/ �ˆ.u2/kV

�
1

�
Lip.g; Œ�MR;MR�/

�
k'kL1.�/k

�1=2

C k'0kL1.�/k
�1
�
ku1 � u2kV ; 8u1; u2 2 BR.0/;

and (24), it follows that there exists 
B 2 Œ0; 1/ such that

kˆ.u1/ �ˆ.u2/kV � 
Bku1 � u2kV ; 8u1; u2 2 B: (25)

This implies the claim.

Let us now address (9). First we remark that ˆ is Newton differentiable from V into
V \H 2.�/; see [1, Theorem 3.9(iii)]. Indeed, defining � by

k� ��� � g0. T � u/ � D �g0. T � u/h in �;

@�T D 0 on @�,

we have that the Newton derivative of ˆ is Gˆ.u/.h/ D '�. In fact, we can prove the
following stronger result:

Lemma 2.22. The map ˆ W V ! V is continuously Fréchet differentiable.

Proof. This relies on applying the implicit function theorem to the map F W V �H 1.�/

! H 1.�/� defined by F .u; T / WD kT ��T � g. T � u/, and is essentially the same
as the proof of [2, Theorem 8], except with two differences. We modify the first step of the
cited proof and show the Fréchet differentiability of g as follows. Using the mean value
theorem, for x; y 2 R,

g.x C y/ � g.x/ � g0.x/y D

Z 1

0

g0.x C .1 � �/y/y � g0.x/y d�;
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and hence if we take now v; d 2 H 1.�/, using the Lipschitzness of g0,

kg.v C d/ � g.v/ � g0.v/dkH1.�/�

D sup
w2H1.�/kwkH1.�/D1

Z
�

�Z 1

0

g0.v C .1 � �/d/d � g0.v/d d�
�
w

� 8 sup
w2H1.�/kwkH1.�/D1

Z
�

�Z 1

0

.1 � �/d2 d�
�
w � 8 sup

w2H1.�/
kwkH1.�/D1

Z
�

d2w

� 8kdk2
L4.�/

sup
w2H1.�/kwkH1.�/D1

kwkL2.�/

� C1kdk
2
H1.�/

(using H 1.�/ ,! L4.�/)

for some constant C1; this shows that g W H 1.�/! H 1.�/� is Fréchet differentiable. In
the second step of the proof of [2, Theorem 8], we can use the Lipschitzness of g0 (instead
of the mean value theorem as utilised there) to show the continuity of g0 W H 1.�/ !

L.H 1.�/;H 1.�/�/. The rest of the proof follows as in [2, Theorem 8].

Now, if we take W WD Œ0; F � where F 2 V � is such that F � f , and set u WD 0 and
u WD S.F;1/ D T�.F;1/ as the solution of the unconstrained problem, we see that
Assumption 2.7 is satisfied. Therefore, all of the results in Section 2 up to and including
Section 2.2 are applicable.

3. Properties of the penalised problem

This section culminates in a result that shows the existence (in a constructive way) of
extremal solutions to (4). To arrive at such a result, we first have to study some intermedi-
ary problems, which will also be of considerable use in later sections.

Recalling �� from (5), let us point out that �� W V ! V � is bounded (in the sense of
non-linear operators), increasing, T-monotone, and hemicontinuous4. T-monotonicity and
the fact that �� is increasing will be needed for the comparison results that are required for
this paper. Note that the T-monotonicity condition implies monotonicity [19, Chapter 2,
Lemma 2.1]. Another important property is the following, which shows that �� is indeed
a penalty operator:

Lemma 3.1. We have that

z� * z in V and ��.z�/! 0 in V � H) z � 0:

4T-monotonicity in the non-linear setting means h��.u/ � ��.v/; .u � v/Ci � 0 and hemicontinuity
means s 7! h��.uC sv/; wi is continuous for all u; v;w 2 V .



Minimal and maximal solution maps of elliptic QVIs of obstacle type 539

Proof. First observe that for any h 2H , we have ��.h/! hC inH . This is an immediate
consequence of the estimate

0 � rC � ��.r/ �
�

2

(see [14, Lemma 2.1(iv)]). Suppose that z� * z in V and ��.z�/! 0 in V �. By mono-
tonicity, we have for any � > 0,

h��.z�/ � ��.z C �v/; z� � z � �vi � 0; 8v 2 V:

Passing to the limit �& 0 here using the strong convergence of ��.z�/ and the fact that
��.z C �v/! .z C �v/C in H , we obtain

h.z C �v/C; �vi � 0; 8v 2 V:

Dividing through by � and using (hemi)continuity of .�/C W H ! H , we derive

hzC; vi � 0; 8v 2 V:

The arbitrariness of v then implies that zC D 0.

3.1. Results on a semilinear elliptic PDE

For f 2 V � and ' 2 H , consider the equation

AuC
1

�
��.u �ˆ.'// D f; (26)

the solution map of which we write as

u D T�.f; '/;

so that T� W V � �H ! V . Equation (26) has a unique solution (for fixed f and '): the
non-linearity is monotone, radially continuous, and bounded, giving pseudomonotonicity
of the full elliptic operator by [21, Lemmas 2.9 and 2.11], whereas coercivity follows from

hAu; u �ˆ.'/i C
1

�
h��.u �ˆ.'//; u �ˆ.'// � Cakuk

2
V � CbkukV kˆ.'/kV ;

leading to existence via [21, Theorem 2.6].
In the next two lemmas, we utilise the results of [29] to obtain Lipschitz estimates

for T�.

Lemma 3.2. Assume that ˆ is Lipschitz on U � V with Lipschitz constant CL � 0 satis-
fying

CL <
Ca

Cb
or A is self-adjoint and CL < 2

p
Cb=Ca

1C Cb=Ca
. (27)

Then, there exist constants C � 0, zc 2 Œ0; 1/ (depending only on CL, Ca, Cb , and the
self-adjointness of A) such that for all u; v 2 V and '; 2 U , we have

hA.u � v/; u �ˆ.'/ � v Cˆ. /i � C
�
ku � vk2V � zc

2
k' �  k2V

�
:



A. Alphonse, M. Hintermüller, C.N. Rautenberg, and G. Wachsmuth 540

Proof. This is precisely [29, Lemma 20]. Note that the linear and continuous operator A
is a derivative of a convex function if and only if A is self-adjoint.

If the constant CL is larger than or equal to the allowed threshold from Lemma 3.2,
the result no longer holds (cf. [28, Theorems 3.6 and 3.7]). Note that the latter constant
in (27) is larger than the former one. If CL < Ca=Cb , we may choose

C D
Ca

2
; zc D

CbCL

Ca
;

whereas in the other case we could choose

C D
CaCb

Ca C Cb
; zc D

.Ca C Cb/CL

2
p
CaCb

:

The next result will be crucial, since it shows that the map u 7! T�.f; u/ is a contraction
under appropriate assumptions.

Proposition 3.3. For all f; g 2 V � and '; 2 H , we have

kT�.f; '/ � T�.g;  /kV �
p
2C�1a kf � gkV � C C

�1
a .
p
2Cb/kˆ. / �ˆ.'/kV :

In the case thatˆ W V ! V is locally Lipschitz in U � V with small Lipschitz constant CL
satisfying (27) and if '; 2 U , then

kT�.f; '/ � T�.g;  /kV � yCkf � gkV � C yck � 'kV

for some constants yC � 0, yc 2 Œ0; 1/, depending only on CL, Ca, Cb and the self-adjoint
ness of A.

Proof. Let u D T�.f; '/ and v D T�.g;  /. We have that

AuC
1

�
��.u �ˆ.'// D f and Av C

1

�
��.v �ˆ. // D g:

Testing the difference with u �ˆ.'/ � v Cˆ. / and using monotonicity leads to

hA.u � v/; u �ˆ.'/ � v Cˆ. /i � hf � g; u �ˆ.'/ � v Cˆ. /i (28)

and, consequently,

Caku � vk
2
V � Cbku � vkV kˆ.'/ �ˆ. /kV

� kf � gkV �.ku � vkV C kˆ.'/ �ˆ. /kV /:

Together with the estimates

Cbku � vkV kˆ.'/ �ˆ. /kV �
Ca

4
ku � vk2V C

C 2
b

Ca
kˆ.'/ �ˆ. /k2V ;

kf � gkV �ku � vkV �
Ca

4
ku � vk2V C

1

Ca
kf � gk2V � ;
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we get

1

2
ku � vk2V �

C 2
b

C 2a
kˆ.'/ �ˆ. /k2V C

1

Ca
kf � gkV �kˆ.'/ �ˆ. /kV

C
1

C 2a
kf � gk2V �

�

�Cb
Ca
kˆ.'/ �ˆ. /kV C

1

Ca
kf � gkV �

�2
:

This shows the first estimate.
In order to arrive at the second estimate, we use Lemma 3.2 in (28) to obtain

C
�
ku � vk2V � zc

2
k' �  k2V

�
� kf � gkV �.ku � vkV C CLk' �  kV /:

Together with

kf � gkV �ku � vkV � C
1 � zc2

2
ku � vk2V C

1

2C.1 � zc2/
kf � gk2V �

we get

C
1C zc2

2
ku � vk2V �

1

2C.1 � zc2/
kf � gk2V � C kf � gkV �CLk' �  kV

C C zc2k' �  k2V

�

�� 1p
2C.1 � zc2/

C
CL

2
p
C zc

�
kf � gkV � C

p
C zck' �  kV

�2
:

This yields the claim.

The next lemma shows that the solution of the PDE converges to the solution of the
associated VI.

Lemma 3.4. For f 2 V � and ' 2 H , we have T�.f; '/! S.f; '/ in V as �& 0.

Proof. This is an extension of the classical penalty theory (see [12, Theorem 3.1] or
[16, §5.3, Chapter 3]) to the varying �� setting given in [5]. More precisely, since ��
is hemicontinuous (and hence radially continuous) and bounded, this follows by [5, The-
orem 2.18].

3.2. Order properties

In this section, we discuss various properties related to the partial order. The next lemma
is fundamental: it will be used to show that (4) has minimal and maximal solutions.

Lemma 3.5. The map T�.�; �/ W V � �H ! V is increasing.
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Proof. Let f � g, ' �  and consider u D T�.f; '/ and v D T�.g;  /. Testing the
equation for v � u with .v � u/C, we have

hA.v� u/; .v� u/CiC
1

�
h��.v�ˆ. //� ��.u�ˆ.'//; .v� u/

C
i D hg� f; .v� u/Ci:

Sinceˆ.'/�ˆ. /, we have v �ˆ. /� v �ˆ.'/ and hence by the increasing property,
��.v �ˆ. // � ��.v �ˆ.'//. This implies from above that

hA.v � u/; .v � u/Ci C
1

�
h��.v �ˆ.'// � ��.u �ˆ.'//; .v � u/

C
i � 0

and hence, using T-monotonicity, we get .v � u/C D 0 so that v � u.

Lemma 3.6. We have
� � � H) T�.f; '/ � T�.f; '/:

Proof. Let u� D T�.f; '/ and u� D T�.f; '/. We have

A.u� � u�/C
1

�
��.u� �ˆ.'// �

1

�
��.u� �ˆ.'// D 0;

and we manipulate

1

�
��.u� �ˆ.'// �

1

�
��.u� �ˆ.'//

D

�1
�
�
1

�

�
��.u� �ˆ.'//C

1

�

�
��.u� �ˆ.'// � ��.u� �ˆ.'//

�
D

�1
�
�
1

�

�
��.u� �ˆ.'//C

1

�

�
��.u� �ˆ.'// � ��.u� �ˆ.'//

�
C
1

�

�
��.u� �ˆ.'// � ��.u� �ˆ.'//

�
which, when tested with .u� � u�/C, is non-negative (the first term by � � �, the second
by T-monotonicity, and the third because �� satisfies � � � H) �� � ��).

We should expect that the solution of the VI is dominated by the solution of the pen-
alised equation.

Lemma 3.7. We have S.f; '/ � T�.f; '/.

Proof. Let u� D T�.f; '/ and v D S.f; '/. Take as test function in the VI for v the
function v � .v � u�/C and combine to get

hA.v � u�/; .v � u�/
C
i �

1

�
h��.u� �ˆ.'//; .v � u�/

C
i � 0:
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Since v � ˆ.'/, we have u� �ˆ.'/ � u� � v and the increasing property of �� as well
as the fact that �� � 0 on .�1; 0� implies that

h��.u� �ˆ.'//; .v � u�/
C
i � h��.u� � v/; .v � u�/

C
i � 0:

Using this fact above, we deduce that hA.v � u�/; .v � u�/Ci � 0, which gives the
claim.

Before we move on, let us prove, with the aid of a result from this section, a claim we
made earlier in Section 2.4.1.

Lemma 3.8. The example in Section 2.4.1 satisfies every assumption on sub- and super-
solutions in the paper. More precisely, with W , u, and u as defined in Section 2.4.1, any
f 2 W and the set W satisfy Assumptions 1.1, 2.1, 2.7, 2.13, 2.17 (with W D Uad), 3.9,
and 4.6.

Proof. It suffices to show that u and u are sub- and supersolutions for S.f; �/ and T�.f; �/
for all f 2 W . It is not difficult to see this:

• Since ˆ is increasing, for all � � 0, we have u D T�.F;1/ � T�.F; u/ � T�.f; u/
for any f � F because of Lemma 3.5 (for � > 0/ and [20, §4:5, Theorem 5.1] (for
� D 0). Thus, u is a supersolution of S.f; �/ and T�.f; �/ for all f 2 W .

• If f 2 W , for all � � 0, we have T�.f; 0/ � T�.0; 0/ D 0 again by the above-cited
results and since f � 0. Hence, u is a subsolution for S.f; �/ and T�.f; �/ for all f 2W .

The proof is complete.

3.3. Minimal and maximal solutions of PDEs

Recall (4):

AuC
1

�
��.u �ˆ.u// D f:

Let us assume the existence of a sub- and supersolution for T�.f; �/ and prove our earlier
claim that (4) has extremal solutions.

Assumption 3.9 (Well-definedness of Z�.f /). Given f 2 V �, assume that there exist
u; u 2 V such that

u � T�.f; u/; u � T�.f; u/; and u � u:

This assumption is exactly (11). Arguing like in Proposition 1.2, we have the follow-
ing:

Proposition 3.10. Under Assumption 3.9, there exist a minimal solution m�.f / and max-
imal solution M�.f / to equation (4) on Œu; u�.



A. Alphonse, M. Hintermüller, C.N. Rautenberg, and G. Wachsmuth 544

Proof. Due to Lemma 3.5, it follows by the Birkhoff–Tartar theorem [6, §15.2, Proposi-
tion 2] that the set of fixed points of u 7! T�.f; u/ is non-empty and possesses a minimal
and maximal solution on the interval Œu; u�.

Now, we focus on ways to approximate these extremal solutions by sequences.

Definition 3.11. Define the iterative sequence ¹un�º by

un� D T�.f; u
n�1
� /; u0� D u;

and ¹un�º by
un� D T�.f; u

n�1
� /; u0� D u:

Note that ¹un�º is a decreasing sequence and ¹un�º is an increasing sequence (see the
proof of the next result). As a matter of fact, un� approaches M�.f / from above and un�
approaches m�.f / from below.

Proposition 3.12 (Strong convergence). Under Assumption 3.9, assume (7) or that

ˆ W V ! V is weakly sequentially continuous; (29)

V
c
,�! H: (30)

Then
un� & M�.f / and un� % m�.f / strongly in V as n!1.

Proof. For readability, let us write un instead of un� . Each un satisfies

Aun C
1

�
��.u

n
�ˆ.un�1// D f:

By the definition of supersolution, u0 D u � T�.f; u/ D u1, and since we have shown
above that T�.f; �/ is increasing, we obtain in this fashion that un � unC1, so that ¹unº is
a decreasing sequence.

Note also that u1 � T�.f;u/� u, and hence un � u for all n. Define v0 Dˆ.u/. Then
we have v0 � ˆ.un/ for all n since ˆ is increasing, therefore,

h��.u
n
�ˆ.un�1//; un � v0iDh��.u

n
�ˆ.un�1// � ��.v0 �ˆ.u

n�1//; un � v0i � 0

by monotonicity. Testing the un equation with un � v0,

Caku
n
k
2
V � kf kV �ku

n
kV C kf kV �kv0kV C Cbku

n
kV kv0kV

and this leads to a uniform bound in V . Thus, un * u in V for some u, for the entire
sequence by monotonicity (see, e.g., [5, Lemma 2.3]). Take any solution u� D T�.f; u�/
with u� � u0. It follows that u� � u1 by applying T�.f; �/ to both sides. Likewise, u� � un

and hence u� � u, so if u is a solution of the limiting problem, it must be the largest
solution. Let us show now that u does solve the limiting equation, that is, u D T�.f; u/.
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Satisfaction of the equation. Case 1. Under complete continuity (see (7)), making the
transformation wn D un �ˆ.un�1/, we can write the equation for un as

Awn C
1

�
��.w

n/ D f � Aˆ.un�1/:

Call the operator on the left-hand side yA. By monotonicity, we have for all v 2 V ,

0 � h yA.wn/ � yA.v/; wn � vi D hf � Aˆ.un�1/ � yA.v/; wn � vi;

and hence, noting that wn * u �ˆ.u/ DW w and ˆ.un�1/! ˆ.u/ by (7) (observe that
it suffices to have this complete continuity only for monotonic sequences),

0 � hf � Aˆ.u/ � yA.v/; w � vi; 8v 2 V:

Since yA is radially continuous, by Minty’s trick [21, Lemma 2.13], we obtain yA.w/ D
f � Aˆ.u/, that is,

Aw C
1

�
��.w/ D f � Aˆ.u/:

Since w D u �ˆ.u/, we see that u D T�.f; u/.
Case 2. Otherwise, by (29), the Lipschitz continuity of �� W H ! H , and the fact

that V
c
,�! H , we obtain ��.un � ˆ.un�1// * ��.u � ˆ.u// in V �. This lets us pass to

the limit in the equation for un.

Strong convergence. It remains for us to show that un ! u in V strongly.
Case 1. By using Lemma 3.3, we obtain the continuous dependence estimate

kun � ukV � Ckˆ.u
n�1/ �ˆ.u/kV ;

and we can pass to the limit on the right-hand side using (7), yielding un ! u.
Case 2. In the second case, we test the equation for un � uwith un � u and manipulate

Ca�ku
n
� uk2V � h��.u �ˆ.u// � ��.u

n
�ˆ.un�1//; un � uiH�;H ! 0

with the convergence because we have ��.un �ˆ.un�1//! ��.u�ˆ.u// inH� by the
compact embedding (see (30)), and un � u! 0 in H for the same reason.

Remark 3.13. If we assume that ˆ W H ! V is continuous, (30) implies (7). Since the
aforementioned continuity of ˆ and (30) typically do hold in examples, the above result
is rather a powerful property that we attain without cost.

In some sense, the conclusion of Proposition 3.12 improves the similar convergence
result of [5, Theorem 2.18] where it was shown that, in greater generality and in the
absence of the assumption that ˆ is increasing, solutions of (4) converge along a sub-
sequence to some solution of QVI (1). Here, we are able to select precisely the minimal
or maximal solution as the limiting objects thanks to the strengthened structure.
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4. Convergence to the QVIs

We now consider the limiting behaviour of M� and m� as � & 0 and show that they
converge to the expected limits under some circumstance. First, we need some more prop-
erties.

4.1. Properties with respect to varying �

In the next lemma, we show that � 7! Z� is increasing. In other words, Z� shrinks as � gets
smaller (this is natural, since we expect Z� to converge to the solution of the constrained
problem). Recall Definition 3.11.

Lemma 4.1. Let �; � > 0 and assume that u is a subsolution and u is a supersolution of
both T�.f; �/ and T�.f; �/ with u � u. If � � �, then

un� � u
n
� and un� � u

n
� :

Thus, if the assumptions of Proposition 3.12 hold, then

M�.f / � M�.f / and m�.f / � m�.f /:

Proof. Set u� WD M�.f /, u� WD M�.f /. We have u1� D T�.f; u/ � T�.f; u/ D u1� by
Lemma 3.6. Hence, u2� D T�.f; u

1
�/ � T�.f; u

1
�/ � T�.f; u

1
�/ D u2� by the increasing

property of Lemma 3.5 and again Lemma 3.6. The same holds when one replaces the
supersolution by the subsolution. This implies the first claim and then taking n ! 1,
using Proposition 3.12 implies the second.

Remark 4.2. In the above lemma, we could consider two different pairs of sub/super-
solution for T� and T� . We can prove the same result (but Z� and Z� would be defined
on different intervals of course) if we assume the subsolution (supersolution) for the �
problem is less than or equal to than the subsolution (supersolution) for the � problem.
We leave the details to the reader.

In a similar fashion to Definition 3.11, we introduce the following:

Definition 4.3. Define the sequences

yun D S.f; yun�1/; yu0 D u;

and
zun D S.f; zun�1/; zu0 D u:

The map S can be thought of as T0 (i.e., T� with � D 0).
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Proposition 4.4 ([4, Lemmas 3.2 and 3.3]). Under Assumption 1.1, assume (7). Then
yun & M.f / and zun % m.f / in V .

This proposition corresponds to the convergence results of Proposition 3.12 for the
� D 0 case.

The next lemma shows that the unconstrained iterates (which solve PDEs) are greater
than the constrained iterates which solve VIs).

Lemma 4.5. If ¹un�º; ¹yu
nº and ¹un�º; ¹zu

nº are defined as above with the same initial ele-
ments u and u respectively, then un� � yu

n and un� � zu
n.

Proof. This is essentially Lemma 4.1 with � D 0.
We have, using Lemma 3.7 , u1� D T�.f;u/� S.f;u/D yu1, and hence u2� D T�.f;u

1
�/

� S.f; u1�/ � S.f; yu1/ D yu2, and so on. Here, we have used the increasing property
of S.f; �/. The same applies with the supersolution replacing the subsolution.

4.2. The � & 0 limit

We want to prove that the penalised extremal solutions converge to the (non-penalised)
extremal solutions in the limit � & 0. First, we have to guarantee that all these objects
exist.

Assumption 4.6 (Well-definedness of Z.f / and Z�.f / for all � sufficiently small). Given
f 2 V �, assume that there exist u; u 2 V and �0 > 0 such that

u � u; u � S.f; u/; u � T�0.f; u/:

Remark 4.7. The statements
u � S.f; u/

and
u � T�.f; u/; 8� � �0

are equivalent. One direction follows from the convergence result (as �! 0) of Lemma 3.4
and the other from Lemma 3.7.

Under this assumption, u � S.f; u/ � T�.f; u/ for all � (see the above remark), and

u � T�0.f; u/ � T�.f; u/ � S.f; u/; 8� � �0

so that .u;u/ are a sub- and supersolution pair for both T�.f; �/ (for all � � �0) and S.f; �/.
This means that both Assumption 1.1 and (11) (i.e., Assumption 3.9) are satisfied and
both Z�.f / and Z.f / are well-defined objects in Œu; u�, for all � � �0.

Theorem 4.8. Let Assumption 4.6 and the weak sequential continuity (see (29)) hold.
Then M�.f /&M.f / weakly in V andm�.f /& u weakly in V , where u 2 V is a solution
of (1). If (7) holds, then the convergences are strong.
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Proof. As mentioned above, M.f / and M�.f / exist for all 0 < � � �0 by Assumption 4.6.
Define u� WD M�.f /. Since u � S.f; u/ � ˆ.u/ � ˆ.u�/ for all �, if we set v0 WD u, we
can test the u� equation with u� � v0 and we get that ¹u�º is bounded by using

h��.u� �ˆ.u�//; u� � v0i D h��.u� �ˆ.u�// � ��.v0 �ˆ.u�//; u� � v0i � 0:

Hence, u� * u in V for a subsequence that we have relabelled. This implies that �.f �
Au�/ D ��.u� � ˆ.u�//! 0 in V �. Then, testing the equation for u� with u� � v for
v 2 V and using the monotonicity formula

h��.u� �ˆ.u�//; u� � vi � h��.v �ˆ.u�//; u� � vi; 8v 2 V (31)

(this follows by the monotonicity of ��; see the proof of [5, Theorem 2.18]), we have

hAu�; u�i C
1

�
h��.v �ˆ.u�//; u� � vi � hf; u� � vi C hAu�; vi:

Let v 2 V be such that v � ˆ.u/. Since u � u� (as Lemma 4.1 shows that ¹u�º is a
decreasing sequence), v � ˆ.u�/, and hence the second term on the left disappears. We
can pass to the limit and use weak lower semicontinuity to obtain that u solves the expec-
ted inequality. By (29), u� �ˆ.u�/ * u�ˆ.u/ in V , which, in conjunction with the fact
that ��.u� �ˆ.u�//! 0, implies by Lemma 3.1 that u � ˆ.u/, so that u solves (1).

We also have, using Lemma 4.5 for the first inequality and with the limits below being
weak,

u� D M�.f / D lim
n
un� � lim

n
yun � M.f /

(recall yun D S.f; yun�1/ is defined above) where we used Lemma 4.4 for the final inequal-
ity. Passing to weak limit in � proves the result.

For strong convergence, we begin by defining v� WD uCˆ.u�/ �ˆ.u/, which satis-
fies

v� ! u in V ; v� � ˆ.u�/; u� � v� D .u� � u/C .ˆ.u/ �ˆ.u�// * 0 in V ;

with the first part holding thanks to (7). Testing the equation for u� with u� � v�, we have

hA.u� � v�/; u� � v�i D hf; u� � v�i �
1

�
h��.u� �ˆ.u�//; u� � v�i � hAv�; u� � v�i;

and to this we apply the monotonicity formula (see (31)) and coercivity of A to find

Caku� � v�k
2
V � hf; u� � v�i �

1

�
h��.v� �ˆ.u�//; u� � v�i � hAv�; u� � v�i

D hf; u� � v�i � hAv�; u� � v�i (since v� � ˆ.u�/):

The right-hand side converges to zero, and hence u� � v� ! 0 strongly in V , implying
u� ! u.

The claim for the minimal solution follows similar lines to the above to deduce that
the weak limit u is a solution to (1).
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Note that we are not (yet) able to identify u above as the minimal solution and prove
that m�.f / * m.f / in the above theorem under such general circumstances. It appears
difficult to do this because un� � zu

n (by virtue of un� being a solution of the unconstrained
problem) and thus in the limit we do not obtain anything useful. This has been an open
problem as identified in [8, Chapter 4, Remark 1.4]. But we can identify the desired limit
with a contractive argument under different assumptions – see Theorem 2.9, which we
will prove below.

4.3. The � & 0 limit under a contraction assumption

By assuming the small Lipschitz constant assumption in (8), we can prove the convergence
result that we wanted. It is convenient to introduce the following notation: considering the
cases Z D m or Z D M, we define the mappings Zn W RC [ ¹0º � V � ! V via

Zn.�; g/ WD T�.g;Z
n�1.�; g//; Z0.�; g/ WD

´
u if Z D m;

u if Z D M;

where u; u are given and independent of � and g (to be fixed later). For convenience, we
define T0.g; '/ WD S.g; '/. With this, note that Zn.0; g/ D S.g;Zn�1.0; g//.

Lemma 4.9. If ˆ W V ! V is continuous, then for each n, the map Zn W RC � V � ! V

is continuous at all points from the set ¹0º � V �.

Proof. We show this by induction. It is clear for nD 0, asZ0 is constant in its arguments.
Assume that Zn.�; g/! Zn.0; f / as .�; g/! .0; f /. The inductive step is:

ZnC1.�; g/ �ZnC1.0; f / D T�.g;Z
n.�; g// � T0.f;Z

n.0; f //

D ŒT�.g;Z
n.�; g// � T�.f;Z

n.0; f //�

C ŒT�.f;Z
n.0; f // � T0.f;Z

n.0; f //�:

The first bracket is continuous, due to Lemma 3.3 and the induction hypothesis, and the
second bracket is continuous due to Lemma 3.4.

Lemma 4.10. Assume that ˆ W V ! V is continuous and f 2 V � is such that (8) and

Zn.0; f /! Z.f / (32)

hold. Then for every " > 0, there exist N 2 N and �0; ı > 0 such that

Zn.�; g/ 2 B".Z.f //; 8n � N; � 2 Œ0; �0�; g 2 Bı.f /: (33)

Regarding the above assumptions, note that we are implicitly assuming that Z.f / is
defined (it would be true if f , u, and u satisfy Assumption 1.1; see Lemma 4.4).
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Proof. Without loss of generality, we assume "� "�. Let us first record some useful estim-
ates. Due to (32), we getN 2N such that n�N givesZn.0;f /2B"=2.Z.f //. For g 2V �

and � � 0, we have

kZN .�; g/ � Z.f /kV � kZN .�; g/ �ZN .0; f /kV C kZN .0; f / � Z.f /kV

� kZN .�; g/ �ZN .0; f /kV C
"

2
:

The function ZN is continuous at .0; f / due to the previous lemma. This, together with
Lemma 3.4, means that we can choose �0 > 0 and ı > 0 such that

ZN .�; g/ 2 B".Z.f //; 8� 2 Œ0; �0�; g 2 Bı.f /;

kT�.f; Z.f // � T0.f; Z.f //kV �
1 � yc

2
"; 8� 2 Œ0; �0�;

ı �
1 � yc

1C yC

"

2
:

Here, the constants yC � 0 and yc 2 Œ0; 1/ are chosen as in Lemma 3.3.
By induction over n, we show that (33) holds. To this end, suppose that n � N ,

� 2 Œ0; �0�, and g 2 Bı.f / are given such that Zn.�; g/ 2 B".Z.f //. Using the defin-
ition of ZnC1, we find

kZnC1.�; g/ � Z.f /kV D kT�.g;Zn.�; g// � T0.f; Z.f //kV
� kT�.g;Z

n.�; g// � T�.f; Z.f //kV C kT�.f; Z.f // � T0.f; Z.f //kV

� kT�.g;Z
n.�; g// � T�.f; Z.f //kV C

1 � yc

2
":

Since Zn.�; g/ 2 B".Z.f // � B"�.Z.f //, we can apply Lemma 3.3 and get

kZnC1.�; g/ � Z.f /kV � yCkf � gkV � C yckZn.�; g/ � Z.f /kV C
1 � yc

2
"

� yCı C yc"C
1 � yc

2
" � ":

This shows ZnC1.�; g/ 2 B".Z.f //. By induction, (33) follows.

The important point in the previous result is that (33) holds for � � �0 and g 2 Bı.f /
uniformly in n.

Let us now prove the theorem on the convergence of Z�.g/! Z.f /.

Proof of Theorem 2.8. We take u and u in the definition of Z0 to satisfy Assumption 2.7.
By Assumption 2.7, Assumption 4.6 is satisfied for every source term in Bxı.f / \W and
we get that Z and Z� are well defined on the set Bxı.f / \W for small �.

Step 1. By Lemma 4.10 (note that ˆ is continuous by (7)), there exist N 2 N and
�0; ı > 0 such that Zn.�; g/ 2 B"�=2.Z.f // as long as n � N , � � �0, and g 2 Bı.f /.
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Without loss of generality, we can assume that ı � yı. For g 2 Bı.f /, let us define the
sequence

yn WD T�.g; y
n�1/; y0 WD ZN .�; g/:

that is, yn D ZNCn.�; g/. As noted, we have y0 2 B"�=2.Z.f // under the stated condi-
tions on � and g. We claim that T�.g; �/ W B"�=2.Z.f //! B"�=2.Z.f // is a contraction
for sufficiently small � and g sufficiently close to f . Indeed, take ' 2 B"�=2.Z.f //,
g 2 Bı�.f / where

ı� D
.1 � yc/"�

4. yC C 1/
;

and take � small enough (let us say � � �1) so that T�.f; Z.f // 2 B yCı�.Z.f // (this is
possible by Lemma 3.4). Then using Lemma 3.3 and (8),

kT�.g; '/ � Z.f /kV � kT�.g; '/ � T�.f; Z.f //kV C kT�.f; Z.f // � Z.f /kV

� yCkg � f kV � C yck' � Z.f /kV C
.1 � yc/"�

4

�
.1 � yc/"�

4
C
yc"�

2
C
.1 � yc/"�

4
D
"�

2

so that T�.g; �/ is invariant on the ball in question. For the contraction property, due to
Lemma 3.3 and (8),

kT�.g; '/ � T�.g;  /kV � yck' �  kV ; 8'; 2 B"�=2.Z.f //

where yc 2 Œ0; 1/.
Hence, by Banach’s fixed point theorem, we obtain yn! y in V where y D T�.g; y/.

That is, Zn.�; g/! Z1.�; g/ for some Z1.�; g/. Furthermore, we have

kyn � ykV � ycky
n�1
� ykV ;

which implies
kyn � ykV � yc

n
ky0 � ykV ;

that is,

kZNCn.�; g/ �Z1.�; g/kV � yc
n
kZN .�; g/ �Z1.�; g/kV � "yc

n

since ZN .�; g/; Z1.�; g/ 2 B"=2.Z.f //. Recall that the above holds as long as n � N ,
� � min.�0; �1/ and g 2 Bmin.ı;ı�/.f /.

We can rewrite this as

kZn.�; g/ �Z1.�; g/kV � "yc
n�N

for n � 2N , � � min.�0; �1/, and g 2 Bmin.ı;ı�/.f /, where we note that the right-hand
side of the inequality is independent of � and g.
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Step 2. Assumption 2.7 implies that Assumption 3.9 is satisfied for all g 2Bxı.f /\W
and small enough �, and thus for g taken in Bxı.f / \W , we can apply Proposition 3.12,
which allows us to identify Z1.�; g/ D Z�.g/.

Conclusion. To summarise, we have shown

Zn.�; g/! Z�.g/ uniformly in �, g 2 Bı.f / \W as n!1;

while from Lemma 4.9, we have

Zn.�; g/! Zn.0; f / as �& 0, g! f :

Thus, we can interchange the iterated limits and get (the limit g ! f below should be
understood for g 2 W )

lim
�&0
g!f

Z�.g/ D lim
�&0
g!f

lim
n!1

Zn.�; g/ D lim
n!1

lim
�&0
g!f

Zn.�; g/ D lim
n!1

Zn.0; f / D Z.f /;

which concludes the proof.

By taking u, u in the definition of Z0 to satisfy Assumption 4.6 (rather than Assump-
tion 2.7) and arguing similarly to above, we obtain Theorem 2.9.

Remark 4.11. Examining Sections 3 and 4, we see that there is a constructive way to
approach the minimal and maximal solutions: we start at a subsolution or a supersolution,
solve iteratively to get un� or un� (see Definition 3.11) for a large n, take � small and we
will be close to the minimal solution or the maximal solution, thanks to the results of Pro-
position 3.12 and either Theorem 4.8 or, in the case of the maximal solution, Theorem 2.9.
This can be useful for numerical realisations.

5. Local Lipschitz continuity of Z and Z�

Local Lipschitz continuity for these maps does not immediately follow from the continu-
ous dependence estimate of Lemma 3.3 if we impose only the local Lipschitz condition
ofˆ (as in the statement of the result below), since we do not know a priori that (even if f
and g are close enough) Z�.f / and Z�.g/ are in the neighbourhood where ˆ is Lipschitz
with a small Lipschitz constant. Instead, we have to argue using the results of the above
section.

Proof of Theorem 2.11. Since by Theorem 2.8, Z�.g/ 2 B"�.Z.f // for all g 2 W suffi-
ciently close to f and � sufficiently small, we obtain via Lemma 3.3 and (8), for yc < 1,
the estimate

kZ�.f / � Z�.g/kV � yCkf � gkV � C yckZ�.f / � Z�.g/kV :
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Regarding Lipschitz continuity for Z, a first thought might be that we could pass to the
limit in � in the inequality of Theorem 2.11, but the assumptions with respect to T� would
still be needed with that approach. We argue differently.

Proof of Theorem 2.3. The idea is that if we had Z.g/ 2B"�.Z.f // for g sufficiently close
to f , we can, like in the above proof, once again apply Lemma 3.3 (with � D 0) and the
smallness assumption in (8) to obtain the result.

Thus, we need the result of Theorem 2.8 for � D 0 (without any assumptions on �� or
other �-dependent quantities. This can be achieved by simply noting that the arguments
of Section 4.3 still hold with � D 0 and with Assumption 2.7 replaced by Assumption 2.1.
The proofs of the results can be modified in the obvious way, but let us point out that in the
proof of Theorem 2.8, we need to use Lemma 4.4 in place of Proposition 3.12 (observe
that (6) implies Assumption 1.1).

It is worth noting that the Lipschitz constants in Theorems 2.3 and 2.11 are both
exactly

yC

1 � yc
;

with yc and yC given in Lemma 3.3.

6. Directional differentiability

In this section, we shall prove that Z� and Z are directionally differentiable maps (and also
Hadamard differentiable in a certain sense). Our line of attack is based on the iteration
approach from [2] (where we approximate the QVI solutions by a sequence of solutions
of VIs, derive an expansion formula for the elements of the sequence and then pass to the
limit) combined with some refinements from [29]. We start with the analysis for Z�.

6.1. Differentiability for Z�

An essential task is to obtain differentiability for T� in its arguments. In the equation
defining T�, observe that the non-linearity �� W V ! V � is Hadamard differentiable and
the derivative is bounded in the direction: in fact, when seen as a real-valued function, ��
is C 1, and by using the Lipschitzness and boundedness of � 0�, we have that �� W V ! V � is
Gâteaux differentiable [13, Theorem 8] (thus, it is also Hadamard differentiable, since ��
is Lipschitz). We use this fact below.

Lemma 6.1. Let f 2 V � and assume thatˆ is directionally differentiable at ' 2 V . Then
T� W V

� � V ! V is directionally differentiable at .f; '/, that is,

lim
s&0

T�.f C sd; ' C sh/ � T�.f; '/

s
D T 0�.f; '/.d; h/ for d 2 V � and h 2 V ,
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where T 0�.f; '/.d; h/ D ı is the unique solution of the equation

Aı C
1

�
� 0�.u �ˆ.'//.ı �ˆ

0.'/.h// D d: (34)

Proof. First, it is easy to see that (34) has a unique solution: if we make a transformation
yı D ı �ˆ0.'/.h/, we have

Ayı C
1

�
� 0�.u �ˆ.'//.

yı/ D d � Aˆ0.'/.h/

and this is uniquely solvable by the Lax–Milgram lemma because the linear operator AC
1
�
� 0�.u �ˆ.'// is coercive and bounded5.

Let y WD T�.f C sd; ' C sh/, u WD T�.f; '/ and define ı as the solution of (34).
Let us make the transformation yy D y � ˆ.' C sh/, yu D u � ˆ.'/ and (as above) yı D
ı �ˆ0.'/.h/ so that

Ayy C
1

�
��.yy/ D f C sd � Aˆ.' C sh/; AyuC

1

�
��.yu/ D f � Aˆ.'/;

Ayı C
1

�
� 0�.yu/.

yı/ D d � Aˆ0.'/.h/:

Multiplying the last equation by s, subtracting the latter two equations from the first, and
adding and subtracting ��1��.yuC syı/, we obtain

A.yy � yu � syı/C
1

�
.��.yy/ � ��.yuC syı//C

1

�
.��.yuC syı/ � ��.yu/ � s�

0
�.yu/.

yı//

D �Als.'; h/;

where ls is the remainder term associated to ˆ. The above is, using the fact that �� is
directionally differentiable,

A.yy � yu � syı/C
1

�
.��.yy/ � ��.yuC syı//C

1

�
oms .yu;

yı/ D �Als.'; h/;

where oms denotes the remainder term of ��. Testing with yy � yu� syı and using monoton-
icity,

Cakyy � yu � syıkV �
1

�
koms .yu;

yı/kV � C Cbkls.'; h/kV :

5In general, if �� is directionally differentiable atw 2 V , then � 0�.w/ W V ! V � is a monotone operator;
this follows from

h� 0�.w/.a/ � �
0
�.b/; a � bi D

1

s
h��.w C sa/ � o

m.s; a/ � ��.w C sb/C o
m.s; b/; a � bi

�
1

s
hom.s; b/ � om.s; a/; a � bi:
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Now note that yy � yu � syı D y � u � sı � ls.'; h/ so that

Caky � u � sıkV �
1

�
koms .u �ˆ.'/; ı �ˆ

0.'/.h//kV � C .Ca C Cb/kls.'; h/kV :

Dividing by s and sending s ! 0 proves the result.

Suppose that we are

given f 2 V � and a set W � V � satisfying Assumption 2.7

so that Z�.g/ and Z.g/ are well defined for all g 2 Bxı.f / \W and sufficiently small �.
Let d 2 TW .f /, so there exist ¹dkº with dk ! d in V � and ¹skº with sk & 0 such that
f C skdk 2 W . Define

ukn WD T�.f C skdk ; u
k
n�1/; uk0 WD Z�.f /:

For convenience, let us also define

u WD Z�.f /:

We have omitted writing the dependence on � in these definitions for ease of reading. In
the following, we need, in particular, thatˆ is locally Lipschitz onB"�.Z.f // and take CL
as in (27) from Lemma 3.2, that is, we assume (8). An alternative approach could be to
instead assume it is locally Lipschitz on B"�.Z�.f //; this would entail a different set of
assumptions from the below.

Lemma 6.2. Assume (7), (8), and Assumption 2.7. If � is sufficiently small and k is suffi-
ciently large, we have

ukn ! uk WD Z�.f C skdk/ in V as n!1:

Proof. We take � small enough and K > 1 (to be specified later) such that uk0 D u D

Z�.f / 2 B"�=K.Z.f // � B"�.Z.f //, which is possible thanks to Theorem 2.96.
If k is sufficiently large, we have f C skdk 2 Bxı.f /, and we have by assumption

that f C skdk 2W . Hence, by Assumption 2.7, for � sufficiently small and k sufficiently
large, Z�.f C skdk/ is well defined and Z�.f C skdk/ 2 B"�.Z.f //, due to the local
Lipschitz property for Z�; see Theorem 2.11.

We next show that the operator T�.f C skdk ; �/ maps the ball B"�.Z.f // onto itself,
if k and K are large enough. We take an arbitrary ' 2 B"�.Z.f //. By using Z�.f / D
T�.f; Z�.f // and by utilising Lemma 3.3, we get

kT�.f C skdk ; '/ � Z.f /kV � kT�.f C skdk ; '/ � Z�.f /kV C kZ�.f / � Z.f /kV

� sk yCkdkkV � C yck' � Z�.f /kV C
"�

K
:

6We could instead apply Theorem 4.8 if Z� D M� is under consideration; this would lead to different
assumptions being required for this result.
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Here, yC � 0 and yc 2 Œ0; 1/ are given by Lemma 3.3. For the second term on the right-hand
side, we employ the triangle inequality to get

k' � Z�.f /kV � k' � Z.f /kV kZ.f / � Z�.f /kV � "� C
"�

K
:

Altogether, we arrive at

kT�.f C skdk ; '/ � Z.f /kV � sk yCC1 C yc
�
"� C

"�

K

�
C
"�

K

where C1 is the uniform bound on the dk . The right-hand side is less than "� if k is
sufficiently large and K is chosen large enough (we need K > .1C yc/.1 � yc/�1).

This proves the mapping property T�.f C skdk ; �/ W B"�.Z.f //! B"�.Z.f //. Using
Lemma 3.3 again, we find T�.f C skdk ; �/ is a contraction on B"�.Z.f //. Hence, the
assertions follow from the celebrated Banach fixed point theorem, since Z�.f C skdk/ is
a fixed point of T�.f C skdk I �/ on B"�.Z.f //.

The next proposition shows that if ˆ is differentiable at u D Z�.f /, we can obtain a
Taylor expansion for ukn.

Proposition 6.3. Let (8) and (13) hold. For � sufficiently small, we have for each n,

lim
k!1

ukn � u

sk
D ˛n

where ˛n WD T 0�.f; u/.d; ˛n�1/, that is,

A˛n C
1

�
� 0�.u �ˆ.u//.˛n �ˆ

0.u/.˛n�1// D d:

Proof. First of all, due to Lemma 3.3 (which gives local Lipschitzness for T� around
V � �B"�.Z.f //) and Lemma 6.1 (which gives directional differentiability of T� at .f;u/)
we find that T� is Hadamard differentiable at .f; u/ because we have taken � such that
u 2 B"�.Z.f //.

We use a proof by induction. The base case is obviously true (with ˛n D 0). Assume
.1=sk/.u

k
n � u/! ˛n. Then we have

uknC1 � u

sk
D
T�.f C skdk ; u

k
n/ � T�.f; u/

sk

D
T�.f C skdk ; uC sk.

ukn�u

sk
// � T�.f; u/

sk
! T 0�.f; u/.d; ˛n/;

where we used that T� is Hadamard differentiable and dk ! d .

Lemma 6.4. Let (8) and (13) hold. We have that ˛n ! ˛ in V , where ˛ is the unique
solution of

A˛ C
1

�
� 0�.u �ˆ.u//.˛ �ˆ

0.u/.˛// D d:

Furthermore, the map d 7! ˛ is bounded and continuous from V � to V .
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Proof. Consider the map ˇ 7! ˛ defined as the solution mapping of

A˛ C
1

�
� 0�.u �ˆ.u//.˛ �ˆ

0.u/.ˇ// D d;

that is, the map T 0�.f; u/.d; �/. We show that it is a contraction. By using ˇ; y̌ 2 V and the
associated solutions ˛; y̨ 2 V , we get

A.˛ � y̨/C
1

�

�
� 0�.u �ˆ.u//.˛ �ˆ

0.u/.ˇ// � � 0�.u �ˆ.u//.y̨ �ˆ
0.u/. y̌//

�
D 0:

Testing with ˛ �ˆ0.u/.ˇ/ � y̨ Cˆ0.u/. y̌/ and using monotonicity, we obtain

hA.˛ � y̨/; ˛ �ˆ0.u/.ˇ/ � y̨ Cˆ0.u/. y̌/i � 0:

Now, since ˆ0.u/ W V ! V is Lipschitz with the same Lipschitz constant CL as ˆ, we
obtain via similar arguments to [29] (see also the proof of Lemma 3.3 following (28)) that
T 0�.f; u/.d; �/ is a contraction, since CL satisfies (27). The Banach fixed point theorem
gives the result.

The map d 7! ˛ defined through (14) is sensible for all d 2V � by the above procedure,
and it is bounded, as can be seen by testing with ˛ � ˆ0.u/.˛/ and using the smallness
condition on CL of Lemma 3.2. For continuity, if dn ! d in V � and ˛n and ˛ are the
associated derivatives, we have

hA.˛n � ˛/; ˛n �ˆ
0.u/.˛n/ � ˛ Cˆ

0.u/.˛/i

� hdn � d; ˛n �ˆ
0.u/.˛n/ � ˛ Cˆ

0.u/.˛/i

and making use again of the Lipschitz property of ˆ0.u/, we conclude the claim from

k˛n � ˛kV � Ckdn � dkV � :

Lemma 6.5. Let the assumptions of Theorem 2.11 hold. If k is sufficiently large and � is
sufficiently small, we have

lim
n!1

ukn � u

sk
D
uk � u

sk
uniformly in k and �.

In [2, §5.3], three of the present authors showed that (under a different setup to what we
have here) the limit lims&0

usn�s

s
is uniform in n. Here though, like in [29, Theorem 32],

we will show uniformity in k (and �) in the limit n!1.

Proof. We argue similarly to the proof of [29, Theorem 32]. In the proof of Lemma 6.2, we
have used the Banach fixed point theorem to obtain the convergence of the sequence ukn.
This directly yields the a priori estimate

kukn � u
k
kV � yc

k
kuk0 � u

k
kV � yc

nCskkdkkV � ;
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where we used uk0 � u
k D Z�.f / � Z�.f C skdk/ and the estimate from Theorem 2.11.

This shows that

kukn � u
kkV

sk
! 0 as n!1 uniformly in k and �:

Using ukn � u
k D ukn � u � .u

k � u/, we deduce the result.

We now prove our differentiability result for Z�.

Proof of Theorem 2.12. The above results allow us to switch limits:

lim
k!1

uk � u

sk
D lim
k!1

lim
n!1

ukn � u

sk
D lim
n!1

lim
k!1

ukn � u

sk
D lim
n!1

˛n D ˛:

This is exactly the Hadamard differentiability claim (see Theorem 2.12(i)). The remaining
assertions on the derivative have been shown in Lemma 6.4.

6.2. Differentiability for Z

We cannot pass to the limit in � to deduce that Z is differentiable because we do not have
uniformity in � or s of the appropriate expression, but we may repeat the arguments in
Section 6.1 with � taken to be zero and with Assumption 2.1 rather than Assumption 2.7.
Let us point out the changes. For the � D 0 version of Lemma 6.1, we have from similar
arguments to [2, Proposition 1] the following, making use of the differentiability of the VI
solution map result in [27] given under a general vector lattice setting, which generalises
Mignot’s result in [17]:

Lemma 6.6. Let ˆ be directionally differentiable at ' 2 V and take f 2 V �. Then
S W V � � V ! V is directionally differentiable at .f; '/ and we have

S.f C sd; ' C sh/ � S.f; '/

s
! S 0.f; '/.d; h/ for d 2 V � and h 2 V ,

where the derivative S 0.f; '/.d; h/ D ı is the solution of the inequality

ı 2Ku.'; h/ W hAı � d; ı � vi � 0; 8v 2Ku.'; h/;

where u D S.f; '/ and

Ku.'; h/ WD ˆ0.'/.h/C TK.'/.u/ \ Œf � Au�
?:

In the above, recall that TK.'/.u/ is the tangent cone, which can be defined as the
closure RK.'/.u/.

Remark 6.7. When we are in a Dirichlet space setting (see the discussion around As-
sumption 2.19), we obtain an explicit expression for the tangent cone and we in fact have
that

Ku.'; h/ D
®
w 2 V W w � ˆ0.'/.h/ q.e. on ¹u D ˆ.'/º

and hAu � f;w �ˆ0.'/.h/i D 0
¯
:
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Let us assume (7), (8), (9), and Assumption 2.1. Similarly to before, we let d 2 TW .f /,
so that there exist ¹dkºwith dk! d in V � and ¹skºwith sk& 0 such that f C skdk 2W .
Define

ukn WD S.f C skdk ; u
k
n�1/; uk0 WD Z.f /;

and u D Z.f /. Then

• Lemma 6.2 still holds with ukn ! uk WD Z.f C skdk/ if we use Theorem 2.3 instead
of Theorem 2.11.

• In Proposition 6.3, we may use Lemma 6.6 instead of Lemma 6.1 and we have instead
that ˛n WD S 0.f; u/.d; ˛n�1/, which satisfies d � A˛n 2 NKu.u;˛n�1/.˛n/, that is,

˛n 2Ku.u; ˛n�1/ W hA˛n � d; ˛n � vi � 0; 8v 2Ku.u; ˛n�1/:

• The result of Lemma 6.4 still holds. The map for the derivative is well defined for all
d 2 V �: we can consider the VI

˛ 2Ku.ˇ/ W hA˛ � d; ˛ � vi � 0; 8v 2Ku.ˇ/

and use a fixed point approach, just like in the proof of Lemma 6.4 (or see [5, Propos-
ition 3.9]). For the continuity of the derivative, a similar argument to that above works
(or see [5, Proposition 3.12]). Lemma 6.5 also holds if we again use Theorem 2.3.

• Finally, arguing similarly to the proof of Theorem 2.12, we can prove Theorem 2.4.

7. Optimal control and stationarity

The proof for the existence of optimal points is straightforward.

Proof of Theorem 2.15. Let ¹fnº � Uad be an infimising sequence with yn D M.fn/ and
zn D m.fn/, that is,

J.yn; zn; fn/! inf
f 2Uad;
yDM.f /;
zDm.f /

J.y; z; f /:

Then by Assumption 2.14(iii), ¹fnº is bounded in H and therefore there exists f � 2 H
such that, for a subsequence,

fnj * f � in H:

The weak sequential closedness of Uad yields that f � 2 Uad. By Assumption 2.14(iv)
and (v), (8) holds in a ball around the points M.f �/ and m.f �/. UsingH

c
,�! V �, we have

fnj ! f � in V � so fnj 2 Bı.f
�/ sufficiently far along the sequence.

SinceBxı.f /\Uad �Uad for any f 2Uad, by Assumption 2.13, we have that Assump-
tion 2.1 holds (with W selected as Uad). Thus we can use Theorem 2.3, and pass to the
limit to discover .ynj ; znj / D .M.fnj /;m.fnj //! .M.f �/;m.f �// D .y�; z�/ in V .
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To see that this point is optimal, we observe that (dispensing with the subsequence
notation now), using Assumption 2.14(ii),

J.y�; z�; f �/ � lim inf
n!1

J.yn; zn; fn/ � lim
n!1

J.yn; zn; fn/ D min
f 2Uad
yDM.f /;
zDm.f /

J.y; z; f /:

7.1. Bouligand stationarity

Working directly with the non-smooth optimisation problem, we can obtain a Bouligand
stationarity characterisation of local minimisers (as in the case for variational inequalities,
see [17, §5] and [18, Lemma 3.1]).

Proof of Lemma 2.16. Take h in the radial cone of Uad at f � so that it is an admissible
direction. Writing ys D M.f � C sh/ and zs D m.f � C sh/, we obtain by Theorem 2.4
that

ys D y
�
C s˛ C o.s/ and zs D z

�
C sˇ C o.s/;

where o is a remainder term and ˛ D M0.f �/.h/ and ˇ D m0.f �/.h/. It follows that
.f � C sh; ys; zs/ can be made arbitrarily close to .f �; y�; z�/ if s is sufficiently small.

By the definition of local minimiser, we have J.ys; zs; f � C sh/� J.y�; z�; f �/ � 0
for s sufficiently small. Dividing by s and taking the limit, using the fact that J is (at least)
Hadamard differentiable, this yields

Jy.y
�; z�; f �/.˛/C Jz.y

�; z�; f �/.ˇ/C Jf .y
�; z�; f �/.h/ � 0; 8h 2 RUad.f

�/;

and by density and continuity of the derivatives appearing above with respect to the direc-
tion, also for h 2 TUad.f

�/.

7.2. The penalised problem

We will not work directly with the penalised problem in (15), but instead a modified
problem in order to prove that every minimiser is a stationarity point. This is a classical
localisation approach.

Proposition 7.1. Assume (7). For any local minimiser .y�; z�; f �/ of (2), there exists a
sequence of locally optimal points .y�� ; z

�
� ; f

�
� / of

min
f 2Uad

J.M�.f /;m�.f /; f /C
1

2
kf � f �k2H (35)

such that .y�� ; z
�
� ; f

�
� /! .y�; z�; f �/ in V � V �H .

Proof. Denote by 
 the radius such that f � is a minimiser on Uad \ B
H

 .f

�/ (the latter
object is the closed ball in H of radius 
 with centre f �).
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Define the augmented functional xJ .y; z; f / WD J.y; z; f /C 1
2
kf � f �k2H that ap-

pears in (35) and consider the problem

min
f 2Uad\B

H

 .f �/

xJ .M�.f /;m�.f /; f /: (36)

By the same proof as for Theorem 2.15 with the obvious modifications, we find that there
exists an optimal point to this problem, which we denote by .xy�; xz�; xf�/. From

xJ .xy�; xz�; xf�/ � xJ .M�.f �/;m�.f �/; f �/; (37)

and using Z�.f �/! Z.f �/ (due to Theorem 2.8) and the continuity of xJ , we have

lim sup
�!0

xJ .xy�; xz�; xf�/ � J.y
�; z�; f �/:

On the other hand, it follows from (37) and Theorem 2.8 that xJ .xy�; xz�; xf�/ is uniformly
bounded, and hence, due to Assumption 2.14(iii), we obtain the existence of yf such that
(for a subsequence that we have relabelled) xf� * yf in H with the convergence strong
in V �.

We have

M�. xf�/ � M. yf / D .M�. xf�/ � M�. yf //C .M�. yf / � M. yf //

and availing ourselves of the Lipschitz estimate of Theorem 2.11 (with the Lipschitz
constant independent of �), we have that the first term above converges to zero and the
second term does also due to Theorem 2.9. Hence xy� ! yy WD M. yf / and, arguing simil-
arly, xz� ! yz WD m. yf /. By the inequality lim sup.an/C lim inf.bn/ � lim sup.an C bn/
and weak lower semicontinuity, this gives

lim sup
�!0

xJ .xy�; xz�; xf�/

� J.yy; yz; yf /C lim sup
�!0

k xf� � f
�
k
2
H � J.y

�; z�; f �/C lim sup
�!0

k xf� � f
�
k
2
H ;

with the last inequality because .y�; z�; f �/ is a local minimiser and yf 2BH
 .f
�/. Com-

bining these two inequalities shows that yf D f � and xf� ! f � in H . The latter fact
implies that for � sufficiently small, xf� 2 BH
 .f

�/ automatically and, hence, the feasible
set in (36) can be taken to be just Uad. Finally, since the limit point yf D f � is independ-
ent of the subsequence that was taken, it follows by the subsequence principle that the
entire sequence ¹ xf�º converges. From this, we also gain convergence for ¹xy�º and ¹xz�º
(by repeating the above arguments).

7.3. C-stationarity

Via Proposition 7.1, we obtain the existence of minimisers .y�� ; z
�
� ; f

�
� / of (35) such that

.y�� ; z
�
� ; f

�
� /! .y�; z�; f �/ in V � V �H .
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Thus, for any " > 0, we can find a �0 such that � � �0 implies

.y�� ; z
�
� / 2 B".y

�/ � B".z
�/:

We make the standing assumption (Assumption 2.18 (i)) on the local differentiability ofˆ
and linearity of the derivative on the above balls. Observe that (13) (which in this context
is the assumption thatˆ is differentiable at Z�.f �� /) follows from these assumptions: since
Z�.f �� /! Z.f �/ (thanks to Theorem 2.8), for sufficiently small �, Z�.f �� / 2 B".Z.f

�//

and ˆ is differentiable at these points too.
In the next result, we meet the conditions to apply the directional differentiability

result of Theorem 2.12.

Proposition 7.2. Let (7) hold. For any optimal point .y�� ; z
�
� ; f

�
� ) of (35), there exists

.p�� ; q
�
� / 2 V � V such that

A�p�� C
1

�
.Id �ˆ0.y�� //

�� 0�.y
�
� �ˆ.y

�
� //p

�
� D �Jy.y

�
� ; z
�
� ; f

�
� /;

A�q�� C
1

�
.Id �ˆ0.z�� //

�� 0�.z
�
� �ˆ.z

�
� //q

�
� D �Jz.y

�
� ; z
�
� ; f

�
� /;

hJf .y
�
� ; z
�
� ; f

�
� / � p

�
� � q

�
� ; f

�
� � vi C .f

�
� � f

�; f �� � v/H � 0; 8v 2 Uad:

(38)

Proof. Defining yJ .f / WD xJ .M�.f /;m�.f /; f / we consider the reduced problem

min
f 2Uad

yJ .f /:

Note that we may use the chain rule (see, e.g., [9, Proposition 2.47]) to differentiate yJ
since it is the composition of a C 1 map with a directionally differentiable map. Now, at
the optimal point f �� , we have yJ .f �� C sh/� yJ .f

�
� /� 0 for all h 2RUad.f

�
� /, and hence

h yJ 0.f �� /; hi � 0; 8h 2 RUad.f
�
� /:

We calculate, with y�� D M�.f �� / and z�� D m�.f �� /,

h yJ 0.f �� /; hi D hJy.y
�
� ; z
�
� ; f

�
� /;M

0
�.f

�
� /.h/i C hJz.y

�
� ; z
�
� ; f

�
� /;m

0
�.f

�
� /.h/i

C hJf .y
�
� ; z
�
� ; f

�
� /; hi

D hM0�.f
�
� /
�Jy.y

�
� ; z
�
� ; f

�
� /Cm0�.f

�
� /
�Jz.y

�
� ; z
�
� ; f

�
� /; hi

C hJf .y
�
� ; z
�
� ; f

�
� /; hi C .f

�
� � f

�; h/H

with the adjoint well defined since Z0�.f
�
� / is a bounded linear map thanks to Assump-

tion 2.18(i) (which implies that the derivative satisfies a linear PDE; see (14)). It is easy
to see that the previous inequality in fact holds for all h 2 TUad.f

�
� / by a simple density

argument.
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Defining ��� WD �.M
0
�.f

�
� /
�.Jy.y

�
� ; z
�
� ; f

�
� //Cm0�.f

�
� /
�.Jz.y

�
� ; z
�
� ; f

�
� ///, we write

the above as

hJf .y
�
� ; z
�
� ; f

�
� / � �

�
� ; hi C .f

�
� � f

�; h/H � 0; 8h 2 TUad.f /:

Take v 2 Uad, then h WD v � f �� is in the tangent cone. With this choice of h, we recover

hJf .y
�
� ; z
�
� ; f

�
� / � �

�
� ; v � f

�
� i C .f

�
� � f

�; v � f �� /H � 0; 8v 2 Uad:

Let us characterise each term in ��. First, observe that

p WD M0�.g/
�.d/

” A�p C
1

�
.Id �ˆ0.v�//�� 0�.v� �ˆ.v�//p D d where v� D M�.g/

and a similar formula holds for m0�.f /
�.w/. Note that these adjoint maps (which are

solution maps of linear PDEs) are linear in w. Hence, if we define

p�� WD M0�.f
�
� /
�.�Jy.y

�
� ; z
�
� ; f

�
� //; q�� WD m0�.f

�
� /
�.�Jz.y

�
� ; z
�
� ; f

�
� //;

they satisfy ��� D p
�
� C q

�
� and the equations stated in the proposition.

Before proceeding, let us record some facts. Due to the Lipschitz condition (see As-
sumption 2.14(iv)–(v)), we have

.Id �ˆ0.w// W V ! V is invertible for w 2 B".y�/ if Jy 6� 0;

and for w 2 B".z�/ if Jz 6� 0;
(39)

which follows from the Neumann series, and the inverse satisfies k.Id �ˆ0.w//�1vkV �
.1�CL/

�1kvkV for all v 2 V . For an arbitrary v 2 V , we set uD .Id�ˆ0.w//�1v. Then
we have

hA.Id �ˆ0.w//�1v; vi D hAu; .Id �ˆ0.w//ui � C 0akuk
2
V �

C 0a
.1C CL/2

kvk2V

for some C 0a depending only on CL; Ca; Cb , and the self-adjointedness of A, by using
Lemma 3.2 (see also [29]) adapted to the operator ˆ0.w/. Thus, we have shown that

A.Id �ˆ0.w//�1 W V ! V � is uniformly bounded and uniformly coercive (40)

for w belonging to the same sets as in (39); see also [28, Lemmas 3.3 and 3.5].

Lemma 7.3. Under Assumption 2.18(ii), if Jy 6� 0, for sequences vn ! v and qn * q

in V with vn; v 2 B".y�/, we have

lim inf
n!1

hA.Id �ˆ0.vn//�1qn; qni � hA.Id �ˆ0.v//�1q; qi: (41)

A similar result holds if Jz 6� 0 with the obvious modifications.
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Proof. Let Tn WD .Id �ˆ0.vn//�1. We have, due to the coercivity above,

0 � hATn.qn � q/; qn � qi D hATnqn; qni � hATnqn; qi � hATnq; qni C hATnq; qi

Rearranging, we have

hATnqn; qni � hATnqn; qi C hATnq; qni � hATnq; qi:

Taking the limit inferior, using on the right-hand side (16) for the first and last terms
and (17) for the second term, we obtain the desired statement.

For convenience and because of structural reasons, the proof of Theorem 2.20 will be
realised via the next three propositions. First, we show that a system of so-called weak
C-stationarity is satisfied; see [5, §5] for the terminology.

Proposition 7.4 (Weak C-stationarity). There exists .p�; q�; ��; ��/ 2 V � V � V � � V �

satisfying

y� D M.f �/; (42a)

z� D m.f �/; (42b)

A�p� C .Id �ˆ0.y�//��� D �Jy.y�; z�; f �/; (42c)

A�q� C .Id �ˆ0.z�//��� D �Jz.y�; z�; f �/; (42d)

f � 2 Uad W hJf .y
�; z�; f �/ � p� � q�; f � � vi � 0; 8v 2 Uad; (42e)

h��; p�i � 0; (42f)

h��; q�i � 0: (42g)

In this and the following proofs, for ease of reading, we will omit the stars in �-
dependent notation as p�� and simply write this as p�.

Proof. By construction, we already know that .y�; z�; f�/! .y�; z�; f �/ in V � V �H
due to Proposition 7.1. We now need to pass to the limit in system (38) for the adjoint
states and the optimal control. We write the arguments just for p�; obvious modifications
will work for the q� equation too.

1. Satisfaction of the equation. The weak form of the equation for p� is

hA�p�; 'i C
1

�
h� 0�.y� �ˆ.y�//p�; .Id �ˆ

0.y�//'i D �hJy.y�; z�; f�/; 'i; 8' 2 V:

By defining v WD .Id � ˆ0.y�//', thanks to the invertibility property in (39), this can be
transformed to

hA�p�; .Id �ˆ0.y�//�1vi C
1

�
h� 0�.y� �ˆ.y�//p�; vi

D �hJy.y�; z�; f�/; .Id �ˆ0.y�//�1vi
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for all v 2 V . Now, selecting v D p�, using the coercivity in (40), the monotonicity of ��
(which implies that h� 0�.v/.h/; hi � 0 for all v; h 2 V ), Young’s inequality with 
 > 0,
and the uniform boundedness of Jy (see Assumption 2.14(i)) and of .Id�ˆ0.y�//�1 (see
the discussion above (40)), we obtain

C 0akp�k
2
V � C
 C 
kp�k

2
V :

Selecting 
 sufficiently small so that the right-most term is absorbed onto the left, we
obtain a bound on ¹p�º independent of �. This gives rise to the convergence (for a sub-
sequence that has been relabelled)

p� * p:

In a similar way, we also obtain q� * q. Define

�� WD
1

�
� 0�.y� �ˆ.y�//

�p�;

�� WD
1

�
.Id �ˆ0.y�//�� 0�.y� �ˆ.y�//

�p� D �Jy.y�; z�; f�/ � A
�p�;

the latter of which, since the right-hand side converges, satisfies

�� * � WD �Jy.y; z; f / � A
�p: (43)

Setting � WD .Id �ˆ0.y/�/�1� in (43), we get (42c).

2. Inequality relating multiplier to adjoint. Again using the monotonicity of ��,

hJy.y�; z�; f�/C A
�p�; .Id �ˆ0.y�//�1p�i D �h��; .Id �ˆ0.y�//�1p�i

D �
1

�
h� 0�.y� �ˆ.y�//

�p�; p�i � 0;

and taking the limit superior of this, we obtain (noting that .Id � ˆ0.y�//�1p� * .Id �
ˆ0.y//�1p by (16))

0 � lim sup
�!0

hJy.y�; z�; f�/C A
�p�; .Id �ˆ0.y�//�1p�i

� lim sup
�!0

hJy.y�; z�; f�/; .Id �ˆ0.y�//�1p�i C lim inf
�!0

hA.Id �ˆ0.y�//�1p�; p�i

.using lim sup.an C bn/ � lim sup.an/C lim inf.bn//

� hJy.y; z; f /; .Id �ˆ0.y//�1pi C hA.Id �ˆ0.y//�1p; pi

D h���; .Id �ˆ0.y//�1pi

using the continuity of the Fréchet derivative from Assumption 2.14(i) and (41) for the
final inequality. This shows (42f).
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3. VI relating control to adjoint. Finally, writing the VI relating u� and �� WD p� C q�
in (38) as

0 � hJf .y�; z�; f�/ � ��; v � f�i C .f� � f
�; v � f�/H D hJf .y�; z�; f�/; v � f�i

� h��; v � f�i C .f� � f
�; v � f�/H ; 8v 2 Uad

and taking the limit inferior here, using the continuity of Jf from Assumption 2.14(i) and
the inequality lim infn.an C bn/ � lim supn an C lim infbn, we get the desired inequality.

The next results (until the end of this section) use the fact that .�/C W V ! V is con-
tinuous. Furthermore, the next proposition also uses weak sequential continuity of the
map.

Proposition 7.5 (Orthogonality conditions). We have

h��1 ; .p
�/Ci D h��1 ; .p

�/�i D h��2 ; .q
�/Ci D h��2 ; .q

�/�i D 0:

In the proof, we use specific properties of the fact that H is a Lebesgue space. The
proof is almost identical to that of [5, Theorem 5.11], but we give it here for completeness.

Proof. Let us introduce the sets

M1.�/ WD
®
0 � y� �ˆ.y�/ < "

¯
and M2.�/ WD

®
y� �ˆ.y�/ � "

¯
:

Since h��; y� �ˆ.y�/i ! h��; y �ˆ.y/i D 0, we find

1

�

Z
M1.�/

.y� �ˆ.y�//
3

2"
C
1

�

Z
M2.�/

�
y� �ˆ.y�/ �

"

2

�
.y� �ˆ.y�//! 0;

and as both integrands are non-negative,


�M1.�/.y� �ˆ.y�//
3
2

p
�"




 ! 0 and



�M2.�/.y� �ˆ.y�/ �

"
2
/

p
�




 ! 0; (44)

where for the second convergence we used the fact that y� � ˆ.y�/ � y� � ˆ.y�/
� "=2 � 0. We calculate

h��; p�i D
1

�

Z
M1.�/

.y� �ˆ.y�//
2

2"
p� C

1

�

Z
M2.�/

�
y� �ˆ.y�/ �

"

2

�
p�

�
1

2




�M1.�/

.y� �ˆ.y�//
3=2

p
�"







 .y� �ˆ.y�//1=2p
�"

�M1.�/p�





C




�M2.�/.y� �ˆ.y�/ �
"
2
/

p
�







�M2.�/p�
p
�




: (45)
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Now, using (44), the first factor in each term above converges to zero and hence the above
right-hand side will converge to zero if we are able to show that the second factor in
each term remains bounded. Since �� and .Id �ˆ0.y�//�1p� are bounded (for the latter,
see (39) and the discussion), so is their duality product, and therefore

C � jh��; .Id �ˆ0.y�//�1p�ij D
1

�

ˇ̌̌Z
�

� 0�.y� �ˆ.y�//.p�/
2
ˇ̌̌

D
1

�

Z
�

�M1.�/

y� �ˆ.y�/

"
.p�/

2
C
1

�

Z
�

�M2.�/.p�/
2:

Both of the terms on the right-hand side are individually bounded uniformly in � as the
integrands are non-negative. This fact then implies from (45) that

h��; p�i D 0:

Replacing p� by .p�/C in (45) and in the above calculation, we also obtain in the same
way (utilising the fact7 that vn * v in V implies that vCn * vC in V )

h��; .p�/Ci D 0:

We are left to show conditions (20h) and (20i) on the multipliers. To do so, we will
follow an approach motivated by [26, Lemma 2.6].

Lemma 7.6. If gn * g in V � and sn ! s in V with sn � 0 and

hgn; vi D 0; 8v 2 V; 0 � v � sn;

then
hg; vi D 0; 8v 2 V; 0 � v � s:

Proof. Let v 2 V with 0� v � s be given. Set vn WD inf.v; sn/, which satisfies 0� vn � sn
and vn ! v. Thus,

0 D hgn; inf.v; sn/i ! hg; vi:

In the next lemma, we use the fact that

��.z/ D ��.z � v/; 8v 2 V; 0 � v � z
�:

This essentially means that ��.z/ ignores changes of z in the regions where z is already
negative.

Lemma 7.7. We have

h��; vi D 0; 8v 2 V; 0 � v � ˆ.y�/ � y�:

7This is due to the compact embedding V
c
,�!H and the fact that .�/C WH !H is continuous, as well

as the boundedness of .�/C W V ! V that we assumed in the introduction.
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The condition on �� means, roughly speaking, that �� vanishes on the inactive set on
which y� �ˆ.y�/ < 0.

Proof. The property on �� stated above immediately implies

� 0�.z/v D 0; 8v 2 V; 0 � v � z
�:

Using the definition of ��, we find

h��; vi D
1

�
h� 0�.y� �ˆ.y�//v; p�i D 0; 8v 2 V; 0 � v � .y� �ˆ.y�//

�

by the above property of � 0�. As .y� � ˆ.y�//� ! .y� � ˆ.y�//� D ˆ.y�/ � y�,
Lemma 7.6 yields the claim.

Obviously, a similar condition also holds for ��.

Proposition 7.8. Let Assumption 2.19 hold. We have

h��; vi D 0 8v 2 V W v D 0 q.e. on ¹y� D ˆ.y�/º;

h��; vi D 0 8v 2 V W v D 0 q.e. on ¹z� D ˆ.z�/º:

Hence, system (20) is satisfied.

Proof. Set yy WD ˆ.y�/ � y�. Since yy 2 V , it has a quasi-continuous representative and
we will identify yy with its representative. Define the active set

A WD ¹yy D 0º:

Let v 2 V with v � 0 and v D 0 quasi-everywhere on A be given. Since we have the
following expression for the tangent cone of VC (see [9, Theorem 6.57] in the V DH 1

0 .�/

setting or [17, Lemma 3.2] in the general Dirichlet space setting):

TVC.yy/ D
®
' 2 V W ' � 0 q.e. on A

¯
;

it follows that v 2 TV C.yy/ and hence, there exists a sequence ¹vnº with vn ! v in V and
vn � tn yy for some tn > 0. Thus,

0 � max.0; vn=tn/ � yy

and we can apply the conclusion of Lemma 7.7 and getD
��;max

�
0;
vn

tn

�E
D 0:

Multiplying by tn and passing to the limit n!1 gives

h��; vi D 0 for all v � 0, v D 0 q.e. on A.

Then, using the decomposition v D vC � v�, we obtain the result.
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Remark 7.9 (E-almost C-stationarity). Define the inactive sets

	1 D
®
y� < ˆ.y�/

¯
and 	2 D

®
z� < ˆ.z�/

¯
:

The following argument shows that the conditions

8� > 0; 9E� � 	1 with j	1 nE� j � � W h��; vi D 0

8v 2 V W v D 0 a.e. on � nE� ; (46)

8� > 0; 9E� � 	2 with j	2 nE� j � � W h��; vi D 0

8v 2 V W v D 0 a.e. on � nE� ; (47)

are an easy consequence of Proposition 7.8 and of the regularity of the Lebesgue measure:
for every � > 0, there exists an open set O� with ¹y� D ˆ.y�/º � O� and jO� n ¹y� D
ˆ.y�/ºj � � . Using 	1 D � n ¹y

� D ˆ.y�/º and E� WD � nO� , we get E� � 	1 and
j	1 n E

� j � � by taking complements. Next, we take an arbitrary function v 2 V with
v D 0 almost everywhere on � n E� D O� . Since O� is open, this gives v D 0 quasi-
everywhere on O� and, in particular, v D 0 quasi-everywhere on ¹y� D ˆ.y�/º. Thus,
Proposition 7.8 yields h��; vi D 0 and we get (46).

Remark 7.10 (Regularity of optimal control). Suppose we have Jf .y; z; f / D �f and
we take Uad to be of the box constraint type

Uad D
®
u 2 H W ua � u � ub a.e. in �

¯
for given functions ua; ub 2 H . The VI relating f � and p� is, in this case,

f � 2 Uad W h�f
�
� p� � q�; f � � vi � 0; 8v 2 Uad;

Using the characterisation in [15, §II.3],

1

�
.p� C q�/C

�
ua �

p� C q�

�

�C
�

�p� C q�
�

� ub

�C
D f �

and it follows that f � 2 V if ua and ub belong to V .

7.4. Alternative stationarity conditions

In some papers, for example, [22], in direct analogy with the finite-dimensional setting,
rather than the inequality condition in (20f), the stronger condition

h��;  p�i � 0 for all sufficiently smooth and non-negative  

is required in order to satisfy the terminology C-stationarity. We can show this holds under
an additional assumption.
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Proposition 7.11 (Satisfaction of alternative criterion in C-stationarity). Under the con-
ditions of Theorem 2.20, assume also that for q� * q in V ,

lim inf
�!0

hA�q�; .Id �ˆ0.y�� //
�1. q�/i � hA

�q; .Id �ˆ0.y�//�1. q/i;

8 2 W 1;1.�/ with  � 0: (48)

Then inequality condition (20f) can be strengthened to

h��;  p�i � 0; 8 2 W 1;1.�/ with  � 0:

Under the obvious modifications to the above assumption, (20g) can also be strengthened
similarly.

Proof. Testing the equation for p� with .Id �ˆ0.y�//�1. p�/, noticing that  p� *  p

in V and arguing in a similar way to the proof of Proposition 7.4,

lim sup
�!0

�h��; .Id �ˆ0.y�//�1. p�/i D lim sup
�!0

hJy.y�; z�; f�/; .Id �ˆ0.y�//�1. p�/i

C lim inf
�!0

hA�p�; .Id �ˆ0.y�//�1. p�/i

� hJy.y; z; f /; .Id �ˆ0.y//�1. p/i

C hA�p; .Id �ˆ0.y//�1. p/i

(using Assumption 2.14(i) and (48))

D �h�; .Id �ˆ0.y//�1. p/i D �h�; pi:

On the other hand, we have

h��; .Id �ˆ0.y�//�1. p�/i D h��;  p�i D
1

�

Z
�

� 0�.y� �ˆ.y�//.p�/
2 � 0;

which implies the result.

Remark 7.12. Some works (such as [14]) call system (20) C-stationarity only if the “q.e.”
in conditions (20h) and (20i) are replaced by “a.e”. Note that this is a stronger condition.

8. Conclusion

In conclusion, we have provided a thorough theory of Lipschitz and differential stability
for M and m and the penalised versions. We studied in depth the penalised problem in (4)
and its properties and used it to derive stationarity conditions for a general class of optim-
isation problems with the extremal maps as constraints. We conclude with the following
remarks:
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• Applying this theory to other real-world phenomena (such as applications in biomedi-
cine [23]) in this context and studying numerical schemes in line with Remark 4.11
are natural next steps.

• It would be interesting to derive strong stationarity conditions for (2) using the
approaches of [5, 25].

• Resolving whether in Theorem 4.8 m�.f / indeed converges (weakly) to m.f / or
providing a counterexample is open.

• We aim to investigate whether the convergence result for M�.f / in Theorem 4.8 can
be used to obtain differentiability results for M without the small Lipschitz assumption
in (2.14).
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