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Second-countable spaces and Reverse Mathematics

Sam Sanders

Abstract. Reverse Mathematics (often abbreviated RM) is a program in the foundations of mathem-
atics that seeks to identify the minimal axioms needed to prove theorems of ordinary mathematics.
The development of RM generally is based on the rather frugal language of second-order arith-
metic, essentially including only variables for natural and real numbers. As a result, higher-order
notions have to be ‘coded’ or ‘represented’ indirectly and it is a natural question – at the very heart
of RM – whether this coding practise has any influence on the minimal axioms needed to prove
certain theorems. In this paper, we investigate this question for basic properties of second-countable
spaces, including the Ginsburg–Sands theorem, recently studied in RM. We show that the coding of
countable second-countable spaces already has a significant influence, namely shifting the classific-
ation of basic statements from ‘provable using arithmetical comprehension’ to ‘inhabits the range of
hyperarithmetical analysis’. We also show that basic statements about (countable) second-countable
spaces can imply – or are equivalent to – strong axioms, including countable choice, the enumeration
principle, and full second-order arithmetic in various guises.

1. Introduction and preliminaries

1.1. Short summary

The study of certain classes of topological spaces in mathematical logic has been de-
veloped via ‘representations’ or ‘codes’ in the rather frugal language of second-order
arithmetic, where the latter only has variables for natural numbers and real numbers (see
[18, §10.8]). In this paper, we establish the following observations (O1)–(O3) concerning
this coding practise for the subject of second-countable spaces that are at most the size of
the continuum.

(O1) Hyperarithmetical shift: coding countable second-countable spaces in the lan-
guage of second-order arithmetic can change the logical strength of basic state-
ments about such spaces from ‘inhabits the range of hyperarithmetical analysis’
to ‘is provable from arithmetical comprehension’.

(O2) New equivalences: certain basic third-order statements about countable second-
countable spaces are equivalent to the enumeration principle, which simply
states that certain countable sets of reals can be enumerated.
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(O3) Strong Axioms: other basic statements about second-countable spaces imply – or
are equivalent to – strong axioms, including countable choice and full second-
order arithmetic in various guises.

When formulated with codes/representations, the basic theorems covered by (O1)–(O3)
can be proved in rather weak fragments of second-order arithmetic, usually arithmetical
comprehension. Our conception of ‘basic’ statement includes the supremum principle for
(strongly) continuous functions on compact spaces and similar theorems. We also study
the Ginsburg–Sands theorem as the latter has recently received some attention in mathem-
atical logic [4]. The former theorem is a prime example of (O1) by Corollary 2.12.

We believe that every mathematician should be aware of (O1)–(O3), as major founda-
tional topics in mathematics, like Turing computability [3,19,20,54], computable analysis
[8–10, 56] and Reverse Mathematics [18, 53, 55] are based at their core on second-order
codes/representations. The associated classification apparently depends greatly on this
coding practise and ‘less coding-heavy’ alternatives should be studied, in our humble opin-
ion. A less foundational result in this paper is the observation that basic statements about
second-countable spaces, like that a continuous function is bounded or the existence of
discontinuous functions, are equivalent to a known1 fragment of the Axiom of countable
Choice, namely by Theorems 2.9 and Corollary 2.11.

An important point regarding the above centred slogan is that the results in this paper
are robust, i.e., we obtain the same results for many variations of the theorems at hand.
Robustness is studied as a property of logical systems in mathematical logic as follows in
[35, p. 432].

[. . .] one distinction that I think is worth making is the one between robust systems
and non-robust systems. A system is robust if it is equivalent to small perturbations
of itself. This is not a precise notion yet, but we can still recognize some robust
systems.

Finally, we provide a more detailed introduction in Section 1.2 while Section 1.3 lists
required definitions and axioms. Our main results are in Sections 2.2–2.4.

1.2. Detailed summary

It is a commonplace that the abstract and general nature of topology entails a deep connec-
tion to set theory, the usual foundations of most of mathematics (see e.g. [36, Preface]).
Nonetheless, topology has also been studied in much more frugal logical systems, includ-
ing second-order arithmetic Z2 [53, I–II]. A central topic here is to identify the minimal
axioms needed to prove a given theorem of ordinary mathematics, i.e., which subsystem of
Z2 suffices for a proof. This constitutes the aim of Reverse Mathematics [18,53,55] where
a central result is that the majority of theorems of ordinary mathematics are provable in
rather weak fragments of Z2, often carrying foundational import.

1The fragment at hand is called QF-AC0;1 and not provable in ZF, i.e., the usual foundations of math-
ematics without the Axiom of Choice (see [31] and Section 1.3.1).
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The previous paragraph describes a theme that permeates the exact sciences: classific-
ation. In particular, a central topic of mathematical logic is the classification of theorems
from mathematics in hierarchies according to their logical strength. It seems self-evident
that such a classification should not be an artifact of the representation used for math-
ematical objects. However, the language of Z2, called L2, only has variables for natural
numbers n 2 N and sets X � N. Thus, higher-order objects have to be ‘represented’ or
‘coded’ via second-order objects in L2. Well-known third-order examples that are studied
via codes are continuous functions [53, II.6.1], metric spaces [53, II.5.1], and topological
spaces [18, §10.8].

The goal of this paper is to show that the coding of second-countable topological
spaces can have a profound influence on the logical strength of the associated theorems.
Our starting point is the notion of countable second-countable space (abbreviated ‘CSC-
space’), introduced by Dorais in [13, 15], and studied in [4, 18, 52]. We introduce the
third-order version of CSC-space, called ‘RSC-space’, in Section 1.3.2; we stress that
RSC-spaces have at most the size of the continuum. It is then a natural question, in the very
spirit of RM, whether there is any difference between CSC-spaces and ‘RSC-spaces that
are countable’, i.e., where the latter come with an injection (or bijection) to N. The answer
to this question is three-fold, mirroring the observations (O1)–(O3) from Section 1.1.

Now, on one hand, arithmetical comprehension seems to suffice to establish the known
theorems about CSC-spaces in second-order RM. On the other hand, a number of basic
theorems about countable RSC-spaces are equivalent to a new ‘Big’ system of RM, namely
the enumeration principle, which expresses that countable sets can be enumerated. The
latter is central in the RM of the Jordan decomposition theorem [42, 47, 49], as discussed
in detail in Section 2.2. By ‘basic theorem’, we mean e.g. the supremum principle for
continuous functions or the fact that compact RSC-spaces are separable. This establishes
observation (O2) from Section 1.1.

The previous paragraph does not tell the entire story: we also identify theorems about
(countable or uncountable) RSC-spaces that inhabit the range of hyperarithmetical ana-
lysis, where the latter italicised text is explained at the end of Section 1.3.1. This includes
the Ginsburg–Sands theorem, recently studied for CSC-spaces in [4] and formulated as
follows in [24, p. 574].

Principle 1.1 (GS). An infinite topological space has a sub-space homeomorphic to ex-
actly one of the following topologies over N:
• The discrete topology: all sets are open.
• The indiscrete topology: only ; and N are open.
• The co-finite topology: the open sets are ;, N, and any sub-set of N with finite com-

plement.
• The initial segment topology: the open sets are ;, N, and any set of the form Œ0; n� D

¹k 2 N W k � nº.
• The final segment topology: the open sets are ;, N, and any set of the form Œn;C1/D
¹k 2 N W n � kº.
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The results on GS and related topics may be found in Section 2.3 and establish the
observation (O1). We stress that on one hand the Ginsburg–Sands theorem for CSC-spaces
is provable in ACA0 (see [4]), while for (countable) RSC-spaces it is stronger, namely GS
inhabits the range of hyperarithmetical analysis over ACA!0 .

Finally, we also identify basic third-order theorems about RSC-spaces that imply
strong axioms, including countable choice and second-order arithmetic in various incarn-
ations. In particular, we study the following statements for RSC-spaces.

(a) A (compact) RSC-space is separable.

(b) A (compact) RSC-space is Lindelöf.

(c) A continuous function on a compact RSC-space has a supremum.

(d) A continuous function on a compact RSC-space attains a maximum.

When formulated for CSC-spaces, the associated second-order versions of (a)–(d) are
provable in rather weak fragments of second-order arithmetic, i.e., arithmetical compre-
hension seems sufficient. By contrast, the third-order theorems in items (a)–(d) imply at
least Feferman’s highly non-constructive projection principle (see [21] and Section 2.4)
and even full second-order arithmetic or countable choice in some cases, as established in
Section 2.4 as a contribution to (O3) from Section 1.1.

For our background framework, we make use of Kohlenbach’s base theory RCA!0 of
higher-order Reverse Mathematics (often abbreviated RM), introduced in [31]. We shall
assume familiarity with RCA!0 and the associated RM of real analysis as in e.g. [31, §2]
or [43]. To be absolutely clear, RCA!0 is a weak logical system that we assume as a ‘back-
ground theory’. In the latter, we prove that the above statements (a)–(d) imply or are
equivalent to strong axioms, including even second-order arithmetic Z2 and countable
choice QF-AC0;1 (see Section 1.3.1 for the latter). Along the way, we will obtain a number
of elegant equivalences for Feferman’s projection principle and countable choice QF-AC0;1

in higher-order RM.
In conclusion, the use of codes or representations in general can have a tremendous

influence on the logical strength of basic theorems of topology. The results in this paper are
novel since we show that this logical strength can vary as much as Z2 itself, or even require
countable choice. Moreover, items (a)–(d) are rather elementary. We believe that many
variations on these results are possible and look forward to the associated exploration.

1.3. Preliminaries

We introduce some (mostly standard) topology definitions in higher-order arithmetic (Sec-
tion 1.3.2) and some required axioms (Section 1.3.1). We assume basic familiarity with
the formalisation of the real numbers, which is the same in second- and higher-order RM
(see [53, II.5] or [31, §3]).

1.3.1. Some axioms of higher-order arithmetic. We introduce some higher-order ax-
ioms needed in the below. We assume basic familiarity with Kohlenbach’s base theory
RCA!0 of higher-order RM (see [31, §2]).
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First of all, the functional E in (92) is also called Kleene’s quantifier 92:�
9EWNN

! ¹0; 1º
�
.8f 2 NN/

�
.9n 2 N/

�
f .n/ D 0

�
$ E.f / D 0

�
: (92)

Related to (92), the functional �2 in (�2) is called Feferman’s � (see [1]) and may be
found – with this symbol – in Hilbert–Bernays’ Grundlagen [25, Supplement IV]:

�.f / WD

´
n if n is the least natural number such that f .n/ D 0;

0 if f .n/ > 0 for all n 2 N:
(�2)

We have (92)$(�2) over RCA!0 (see [31, §3]) while ACA!0 � RCA!0 C (92) proves the same
sentences as ACA0 by [28, Theorem 2.5].

Secondly, the functional S2 in (S2) is called the Suslin functional [31]:�
9S2WNN

!¹0; 1º
�
.8f 2NN/

�
.9g2NN/.8n2N/

�
f . Ngn/D0

�
$S.f /D0

�
: (S2)

The system …1
1-CA!0 � RCA!0 C (S2) proves the same …1

3-sentences as …1
1-CA0 by [46,

Theorem 2.2]. By definition, the Suslin functional S2 can decide whether a†11-formula as
in the left-hand side of (S2) is true or false. We similarly define the functional S2

k
which

decides the truth or falsity of †1
k

-formulas from L2; we also define the system …1
k

-CA!0
as RCA!0 C .S

2
k
/, where .S2

k
/ expresses that S2

k
exists. We note that the operators �n from

[11, p. 129] are essentially S2n strengthened to return a witness (if existent) to the †1n-
formula at hand.

Thirdly, full second-order arithmetic Z2 is readily derived from [k…1
k

-CA!0 , or from:�
9EW .NN

! N/
�
.8Y WNN

! N/
�
.9f 2 NN/

�
Y.f / D 0

�
$ E.Y / D 0

�
; (93)

and we therefore define Z�2 � RCA!0 C (93) and Z!2 � [k…
1
k

-CA!0 , which are conservative
over Z2 by [28, Cor. 2.6]. The functional from (93) is also called ‘Kleene’s quantifier 93’,
and we use the same convention for other functionals.

Fourth, many results in higher-order RM are established in RCA!0 plus the following
special case of the Axiom of countable Choice [31, 40].

Principle 1.2 (QF-AC0;1). Let ' be quantifier-free and such that

.8n 2 N/.9f 2 NN/'.f; n/:

Then there is a sequence .fn/n2N in NN with .8n 2 N/'.fn; n/.

The local equivalence between sequential and ‘epsilon-delta’ continuity cannot be
proved in ZF, but can be established in RCA!0 C QF-AC0;1 (see [31]). Thus, it should not
be a surprise that the latter system is often used as a base theory too. Below, we show
that QF-AC0;1 is equivalent to various basic statements about second-countable spaces. We
shall sometimes use a ‘bounded’ version of countable choice, which follows from the
induction axiom.
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Principle 1.3 (B-QF-AC0;1). Let ' be quantifier-free and such that

.8n 2 N/.9f 2 NN/'.f; n/:

For every k 2 N, there exists .fn/n2N with .8n � k/'.fn; n/.

The (necessary) use of extra induction axioms is not unheard of in RM [38]. We let
B-QF-AC0;1

Š
be the previous principle with the ‘unique existence’ restriction .8n 2 N/

.9Šf 2 NN/'.f; n/ in place.
Finally, we introduce the notion of hyperarithmetical analysis as it is essential for (O1)

from Section 1.1.
Now, hyperarithmetical analysis refers to a cluster of logical systems just above ACA0.

In particular, going back to Kreisel [32], the notion of hyperarithmetical set (see e.g. [53,
VIII.3]) gives rise to the second-order definition of theory/theorem of hyperarithmetical
analysis (THA for brevity, see e.g. [2]). Well-known THAs are †11-CA0 and weak-†11-
CA0 (see [53, VII.6.1 and VIII.4.12]), where the latter is the former with the antecedent
restricted to unique existence.

Moreover, any system between two THAs is also a THA, which is a convenient way of
establishing that a given system is a THA. At the higher-order level, ACA!0 C QF-AC0;1 is
a conservative extension of †11-CA0 by [28, Cor. 2.7]. We therefore arrive at the following
definition, pioneered in [50].

Definition 1.4. We say that a system of higher-order arithmetic T exists in the range of
hyperarithmetical analysis in case ACA!0 C QF-AC0;1 ! T ! ACA!0 C weak-†11-AC0.

Many theorems from real analysis exist in the latter range (see [50]) while natural
(second-order) THAs are considered to be relatively rare.

1.3.2. Definitions. We introduce some required definitions, stemming from mainstream
mathematics. We note that subsets of R are given by their characteristic functions as in
Definition 1.5, well-known from measure and probability theory. We shall generally work
over ACA!0 as some definitions make little sense over RCA!0 . The notion of ‘CSC-space’
exclusively refers to the second-order definition [13, 18].

First of all, we make use the usual definition of (open) set, where B.x; r/ is the open
ball with radius r > 0 centred at x 2 R.

Definition 1.5. Sets of reals are defined as follows.

• A function F WR! R is represented by ˆWNN ! NN satisfying

.8x; y 2 R/
�
x DR y ! F.x/ DR F.y/

�
; (1.1)

which is an instance of the axiom of function extensionality.

• A subset A � R is given by its characteristic function 1AWR! ¹0; 1º, i.e., we write
x 2 A for 1A.x/ D 1, for any x 2 R.

• A subsetO�R is open in case x2O implies that there is k2N such thatB.x; 1
2k
/�O.
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• A subset O � R is RM-open in case there are sequences of reals .an/n2N ; .bn/n2N

such that O D [n2N.an; bn/.

• A subset C � R is closed if the complement R n C is open.

• A subset C � R is RM-closed if the complement R n C is RM-open.

• A set A � R is enumerable if there is a sequence of reals that includes all elements
of A.

• A set A � R is countable if there is Y WR! N that is injective on A, i.e.,

.8x; y 2 A/
�
Y.x/ D0 Y.y/! x DR y

�
:

• A set A � R is strongly countable if there is Y WR! N that is injective and surjective
on A; the latter means that .8n 2 N/.9x 2 A/.Y.x/ D n/.

Secondly, our definition of second-countable spaces is given by Definition 1.6. To be
absolutely clear, we include the mapping k in the definition as the latter is generally used
in second-order RM [4, 13, 18]. Below, we only study second-countable spaces with size
at most the continuum, which we call RSC-spaces.

Definition 1.6. Second-countable spaces are defined as follows.

• A basis/base for a topology onX is a collection .Ui /i2I and a mapping kW .X � I 2/!
I satisfying the following.

– For every x 2 X , there is i 2 I with x 2 Ui .

– For x 2 X and i; j 2 I , we have x 2 Ui \ Uj ! x 2 Uk.x;i;j / � Ui \ Uj .

• A real second-countable space consists of a set X � R and a basis with index set
I D N. We abbreviate this by ‘RSC-space X ’.

• An RSC-space X is (strongly) countable if X is (strongly) countable.

As promised, the definition of ‘countable RSC space’ amounts to the second-order one
with ‘enumerable set X � N’ replaced by ‘countable set X � R’. For an RSC-space X ,
a sub-set Z � X is defined via its characteristic function 1Z WR ! ¹0; 1º, keeping in
mind (1.1). We now have the following definition, again mirroring CSC-spaces as close
as possible.

Definition 1.7. Let X be an RSC-space with basis .Ui /i2N and kW .X �N2/! N.

• A set O � X is open if for x 2 O , there exists i 2 N with x 2 Ui � O .

• [13, 18] A set O � X is uniformly open if there is a function �WX ! N such that for
all x 2 O , x 2 U�.x/ � O .

• A set C � X is closed if the complement X n C is open.

• A set C � X is uniformly closed if X n C is uniformly open.

The notion of uniform openness is similar to having an R2-representation from [39]. In
the latter, a setO �R is called R2-open if there is Y WR!R such that x 2O$Y.x/>R 0

and x 2 O ! B.x; Y.x// � O for all x 2 R.
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Thirdly, the following definitions are mostly standard, where we note that a different
nomenclature is sometimes used in the logical literature.

Definition 1.8 (Compactness and around). For an RSC-space X with basis .Ui /i2N and
kW .X �N2/! N, we say that

• X is countably-compact if for any sequence .On/n2N of open sets in X such that
X � [n2NOn, there is m 2 N such that X � [n�mOn,

• X is (open-cover) compact in case for any covering2 generated by ‰WX ! N, there
are x0; : : : ; xk 2 X such that [i�kU‰.xi / covers X ,

• X is Lindelöf in case for any covering2 generated by ‰WX ! N, there is a sequence
.xn/n2N in X such that [i2NU‰.xi / covers X ,

• a sequence .xn/n2N in X converges to y 2 X in case for every open U containing y,
we have .9m 2 N/.8n � m/.xn 2 U/.

• X is sequentially compact if any sequence in X has a limit point3,

• a setZ�X is finite if there isN2N such that for any pairwise different x0; : : : ; xN 2Z,
there is i � N with xi 62 Z; we then write jZj � N ,

• X is limit point compact if any infinite set in X has a limit point3,

• X is separable if there is a sequence .xn/n2N in X such that for any non-empty open
O � X , there is n 2 N with xn 2 O .

It is well-known that for second-countable spaces, various compactness notions are
equivalent and that such spaces are separable. We argue in Section 1.4 that our notion
of ‘finite set’ from Definition 1.8 is the right one for developing higher-order RM. By
Theorem 2.14, this choice does not greatly influence our classification anyway.

We now introduce the (usual) definition of continuity, alongside its effective notion
from [4, 13, 18]. We let .Vj /j2N be an enumeration of all balls with rational centre and
radius. Since we shall work over ACA!0 , we need not address partiality.

Definition 1.9 (Continuity). For an RSC-space X , a function f WX ! R is

• continuous if for any open V � R, f �1.V / D ¹x 2 X W f .x/ 2 V º is open,

• continuous at x 2 X if for any open V � R containing f .x/, there is an open U � X
containing x and f .U / � V ,

• effectively continuous if there exists 'W .X � N/! N such that if f .x/ 2 Vj , then
x 2 U'.x;j / � f

�1.Vj /,

2A mapping ‰WX ! N generates a covering of X in case x 2 U‰.x/ for any x 2 X . Both Cousin
and Lindelöf (only) study this kind of uncountable coverings in [12,34], which are the papers in which the
Cousin and Lindelöf lemmas first appeared.

3We say that y 2 X is a limit point of the sequence .xn/n2N if there exists g 2 NN such that
.xg.n//n2N converges to y. Similarly, y 2 X is a limit point of the (infinite) set Z � X if there is a
sequence in Z n ¹yº that converges to y.
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• sequentially continuous if for any sequence .xn/n2N in X with limit y 2 X , the limit
of .f .xn//n2N is f .y/,

• strongly continuous if for any V � R, f �1.V / is open (see [33, 37]).

We could also study notions intermediate between strong and normal continuity, with
the same results.

Finally, separation axioms in topology are well-known.

Definition 1.10. The Ti -separation axioms .i D 1; 2/ are defined as follows.

• A space is T1 in case any two distinct points are separated, i.e., each lies in a neigh-
bourhood not including the other.

• A space is Hausdorff or T2 in case for any two distinct points x; y, there is a neigh-
bourhood U of x and a neighbourhood V of y such that U \ V D ;.

1.4. On the choice of definitions

Most mathematical notions have a number of equivalent definitions. In this section, we
provide motivation for our choice of ‘finite set of reals’ as in Definition 1.8, as it is
(slightly) different from the mainstream definitions like Dedekind finite.

In particular, the following three items show that our definition of finite set naturally
comes to the fore in basic real analysis.

• Limit point compactness goes back to Weierstrass, according to Jordan [29, p. 73]. A
basic result regarding limit points is that

for X � R without limit points; X \ Œ�n; n� is finite for all n 2 N:

A standard compactness argument establishes the centred statement in ACA!0CQF-AC
0;1,

assuming ‘finite’ refers to Definition 1.8. By contrast, finding an injection or bijection
from X \ Œ�n; n� to some ¹0; 1; : : : ; kº seems much harder (see [42, 49] for details).

• A function f W Œ0; 1�! R is regulated if the left and right limits f .x�/ and f .xC/
exist. Now define the following set for regulated f :

Dk WD
®
x 2 Œ0; 1� W

ˇ̌
f .x/ � f .x�/

ˇ̌
> 1

2k
_
ˇ̌
f .x/ � f .xC/

ˇ̌
> 1

2k

¯
:

All this can be done in ACA!0 . The setDk is finite, which again follows from a standard
compactness argument in ACA!0 C QF-AC0;1, assuming ‘finite’ refers to Definition 1.8.
By contrast, finding an injection or bijection from Dk to some ¹0; 1; : : : ; nº seems
much harder [42, 49].

• Borel studies height functions in [5–7]. The latter generalises the notion of ‘injection
to N’ by allowing finitely many elements to map to the same natural number. In light
of [47, 49], height functions allow for a smooth development of the higher-order RM
of the uncountability of R, assuming ‘finite’ refers to Definition 1.8. By contrast, the
notion of ‘injection to N’ or other notions do not seem to yield such a development.
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By the previous items, Definition 1.8 provides a smooth development of higher-order RM.
By contrast, a development based on the set-theoretic definition, involving injections and
bijections, seems to require a stronger base theory. Nonetheless, Theorem 2.14 implies that
we obtain the same classification for the Ginsburg–Sands theorem, independent of whether
we use Definition 1.8 or the set-theoretic definition. At the same time, Theorem 2.14
suggests that using finiteness notions other than Definition 1.8, one seems to need more
induction than with the latter.

2. Main results

2.1. Introduction

We establish the results sketched in Section 1, i.e., that basic theorems concerning RCS-
spaces imply or are equivalent to relatively strong axioms. We study basic properties
like the supremum principle for continuous functions (see Principle 2.1 right below), but
also more advanced theorems like the Ginsburg–Sands theorem (see Principle 1.1 in Sec-
tion 1.2).

• In Section 2.2, we establish (O2) from Section 1.1, i.e., we show that various properties
of countable RSC-spaces are equivalent to enumeration principles which express that
(strongly) countable sets can be enumerated.

• In Section 2.3, we establish (O1) and (O3) from Section 1.1. In particular, we show that
basic statements about uncountable RSC-spaces are equivalent to countable choice as
in QF-AC0;1. As a result, related statements are classified in the range of hyperarith-
metical analysis.

• In Section 2.4, we establish (O3) from Section 1.1. In particular, we show that basic
statements about uncountable RSC-spaces imply -or are equivalent to- various incarn-
ations of second-order arithmetic, including Kleene’s quantifier (93) and Feferman’s
projection principle.

Next, the supremum principle studied in the below is defined as usual.

Principle 2.1 (SUP). Let X be a compact RSC-space. For a continuous function f WX !
R and a decreasing sequence .Cn/n2N of closed sets, there is a sequence .xn/n2N such
that xn D supx2Cn f .x/.

We also study the sequential version of the supremum and maximum principles. Se-
quential versions are studied in RM in e.g. [14, 16, 18, 22, 23, 26, 27, 30, 53, 57].

Principle 2.2 (SUP0). LetX be a compact RSC-space. For a sequence of continuousX !
R-functions .fn/n2N , there is a sequence .xn/n2N with xn D supx2X fn.x/.

Principle 2.3 (MAX). For a compact RSC-spaceX and a sequence of continuousX !R-
functions .fn/n2N , there is .xn/n2N with .8x 2 X; n 2 N/.fn.x/ � fn.xn//.

These principles seem rather basic compared to the other principles in this paper.
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Finally, we shall work over ACA!0 for convenience, but could in principle obtain most
results over RCA!0 or RCA!0 C WKL0 using the following trick.

Remark 2.4 (On the law of excluded middle). Our starting point is Kleene’s arithmetical
quantifier (92) from Section 1.3.1. By [31, Prop. 3.12], (92) is equivalent over RCA!0 to the
statement

There exists an R! R-function that is not continuous:

Clearly, :.92/ is then equivalent to Brouwer’s theorem, i.e., the statement that all R!
R-functions are continuous. Now, if we wish to prove a given statement T of real ana-
lysis about possibly discontinuous functions in RCA!0 C WKL0, we may invoke the law of
excluded middle as in .92/ _ :.92/. We can then split the proof of T in two cases: one
assuming :.92/ and one assuming .92/. In the latter case, since .92/! ACA0, we have
access to much more powerful tools (than just WKL0). In the former case, since :.92/
implies that all functions are continuous, we only need to establish T restricted to the
special case of continuous functions. Moreover, we can use WKL0 to provide codes for
all (continuous) functions (see [43, §2]). After that, we can use the second-order RM lit-
erature to establish T restricted to codes for continuous functions, and hence T . To be
absolutely clear, the ‘law of excluded middle trick’ is the above splitting of proofs based
on .92/ _ :.92/.

2.2. Countable spaces

In this section, we establish observation (O2) from Section 1.1, i.e., we show that vari-
ous properties of countable RSC-spaces are equivalent to enumeration principles which
express that (strongly) countable sets can be enumerated. This includes basic properties
like the supremum principle for continuous functions (see Theorem 2.7), but also more
advanced theorems, like the Ginsburg–Sands theorem (Theorem 2.8).

First of all, we introduce the aforementioned enumeration principles. The principle
cocode0 is a new ‘Big’ system in higher-order RM, boasting many equivalences involving
basic properties of functions of bounded variation, including the Jordan decomposition
theorem and approximation theorems [42, 47].

Principle 2.5 (cocode0). Any countable set A � R is enumerable.

As to logical properties (see [41, 42]), RCA!0 C cocode0 is conservative over RCA0
while Z�2 (and hence ZF) proves cocode0. Moreover, cocode0 is ‘explosive’ in that ACA!0 C
cocode0 proves ATR0 while …1

1-CA!0 C cocode0 proves …1
2-CA0.

Next, the principle cocode1 boasts some equivalences (see [42, 50]).

Principle 2.6 (cocode1). Any strongly countable set A � R is enumerable.

As explored in detail in [50], cocode1 and (many) related third-order principles popu-
late the range of hyperarithmetical analysis. In particular, ACA!0 CQF-AC

0;1 is conservative
over†11-AC0 [28, Ch. 2], while ACA!0 C cocode1 implies weak-†11-AC0. We refer to [50,53]
for the exact definitions of these second-order systems and a detailed discussion of hyper-
arithmetical analysis.
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Secondly, we have the following theorem where item (a) essentially expresses that
countable RSC-spaces have a representation as in second-order RM. The results seem
rather robust, following Montalbàn’s criterion from Section 1.

Theorem 2.7 (ACA!0 ). The following are equivalent.

(a) A countable RSC-space is separable.

(b) The previous item restricted to compact spaces.

(c) A countable RSC-space is Lindelöf.

(d) The supremum principle SUP for countable RSC-spaces.

(e) The previous item restricted to effectively or strongly continuous functions.

(f) The previous item restricted to sequences .Cn/n2N of uniformly closed sets.

(g) The enumeration principle cocode0.

The equivalence holds for ‘sequential’, ‘countable’, and ‘limit point’ compactness, the
latter additionally assuming QF-AC0;1.

Proof. First of all, that cocode0 implies all other items is relatively straightforward. Indeed,
the former provides an enumeration of the set X , after which the ‘usual’ second-order
proofs go through (or are trivial). These second-order proofs can be found in [13, 15, 18,
52].

Secondly, let A � R and Y WR! N be such that the latter is injective on the former.
Without loss of generality, we may assume that 0 62 A as we can always append one real
to an enumeration, even in RCA!0 . Define the sequence of sets .Ui /i2N as follows:

U2n D
®
x 2 A W Y.x/ D n

¯
and U2nC1 D ¹0º [

®
x 2 A W Y.x/ > n

¯
: (2.1)

Use (92) to define kW .A �N2/! N as follows for x 2 A and i � j in N

k.x; i; j / WD

8̂̂<̂
:̂
j if i and j are odd;

j if i is odd and j is even;

i otherwise;

(2.2)

and observe that this mapping has the required properties for forming a base of X D
A [ ¹0º. Hence, X is an RSC-space, which can be seen to be compact as follows: let
‰WX !N be given and note that n0 D ‰.0/must be odd to guarantee 0 2 Un0 following
(2.1). Clearly, X is covered by [i<n0U2i [ Un0 . In exactly the same way, one proves that
X is countably compact.

To prove that X is sequentially compact, let .xn/n2N be a sequence in the former.
In case .8k 2 N/.9n 2 N/.xn 2 A ^ Y.xn/ > k/, then 0 is an accumulation point of
the sequence. Note that QF-AC0;0, included in RCA!0 , suffices to obtain the required sub-
sequence. Otherwise, 0 must occur infinitely often in .xn/n2N , i.e., the former is again an
accumulation point. In exactly the same way, one proves that X is limit point compact,
using QF-AC0;1 to obtain a sequence in a given infinite set.
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Next, either item (a) or (b) provide a sequence .xn/n2N such that for any open set
O � X , there is m 2 N with xm 2 O . Clearly, this sequence provides an enumeration
of A as .9a 2 A/.Y.a/ D n/$ .9x 2 R/.x 2 U2n/$ .9m 2 N/.xm 2 U2n/ for any
n 2 N. Thus, the aforementioned items imply cocode0. For item (c), repeat the above
while omitting 0 from X and omitting U2nC1 from the base. The function‰.x/ WD 2Y.x/
generates the required covering.

Now assume item (d) and consider the RSC-spaceX D A[ ¹0º defined above. Define
f WX ! R as f .0/ WD 0 and f .x/ WD 1

2Y.x/
otherwise. To establish effective and strong

continuity, define '.x; j / WD 2Y.x/ and note that indeed x 2 U'.x;j / � f �1.Vj / in case
f .x/ 2 Vj . Now use item (d) or item (e) and note that for n � 1:

.9x 2 A/
�
Y.x/ D n

�
$
�
1
2n
D sup
x2Cn

f .x/
�
;

where Cn WD X n [i<nU2i ; the complement of Cn is uniformly open as witnessed by
�.x/ WD 2Y.x/. Hence, we can define the range of Y restricted to A, which yields cocode0
by [42, Theorem 2.11].

The equivalences in the theorem still go through if we require certain separation
axioms Ti . The reason is of course that A is countable and that U2n in (2.1) are there-
fore at most singletons.

We have studied Borel’s notion of height countability in [47, 49]. The equivalences
in Theorem 2.7 go through for this notion mutatis mutandis. We could similarly study
Weierstrass’ extreme value theorem and obtain equivalences for the latter.

Finally, the previous results pertain to countable sets and -with some effort- similar
equivalences go through for strongly countable sets and the associated enumeration prin-
ciple cocode1. We study one example in detail in Theorem 2.8. We sometimes write ‘w1

�

’
to indicate that w is a finite sequence of type 1 objects with length jwj. We assume a fixed
coding of such objects, e.g. via type 0! 1.

Theorem 2.8 (ACA!0 ). The following are equivalent.

• The enumeration principle cocode1.

• The combination of the following.

– The principle B-QF-AC0;1
Š

.

– The Ginsburg–Sands theorem GS for strongly countable RSC-spaces.

Proof. First of all, cocode1 allows us to enumerate strongly countable sets, i.e., a strongly
countable RSC-space is homeomorphic (in the obvious way) to a CSC-space. Since ACA0
proves GS for CSC-spaces [4, Theorem 4.6], the second item from the theorem follows
from cocode1. To show that cocode1 implies B-QF-AC0;1Š , let ' be such that .8n 2 N/
.9Šf 2 NN/'.n; f /. Define the set A D ¹f 2 NN W .9n 2 N/'.n; f /º and the function
Y WR! N via Y.f / WD .�n/'.n; f /. By assumption, Y is injective and surjective on
A and cocode1 provides an enumeration of A, say .fn/n2N . We thus have .8n 2 N/
.9m 2 N/'.n; fm/ as required.
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Secondly, fix A � R and let Y be injective and surjective on A. Fix a standard coding
of finite sequences of reals where we writew1

�

D hx0; : : : ; xki for xi 2R and jwj D kC 1
is called the ‘length’ of w. Now define X as®

w1
�

W
�
8i < jwj

��
w.i/ 2 A ^ Y

�
w.i/

�
D i

�¯
:

Then consider the base defined by Un D ¹w 2 X W jwj D nº and where the associated
function k is obvious. Note that the RSC-spaceX is infinite thanks to B-QF-AC0;1

Š
. Clearly,

all sub-sets of X are open and the same for any sub-space of X . By GS as in the final item,
X has a sub-space that is homeomorphic to the indiscrete topology on N. Let f WX ! N
and f �1WN ! X be the associated continuous bijection and its inverse. Now consider
the sequence .f �1.n//n2N in X . Since f WX ! N is a bijection, this sequence includes
w 2 X of arbitrary length jwj. Thus, we obtain an enumeration of A, and we are done

The Ginsburg–Sands theorem for CSC-spaces is provable in ACA0 by [4, Theorem 4.6].
By Theorem 2.8, replacing ‘enumerated sets’ by ‘strongly countable sets’, the Ginsburg–
Sands theorem is equivalent to cocode1 and therefore inhabits the range of hyperarith-
metical analysis. Following Theorem 2.11, the Ginsburg–Sands theorem for (possibly
uncountable) RSC-spaces is equivalent to QF-AC0;1, i.e., this version is in the range of
hyperarithmetical analysis.

In conclusion, we have established that various properties of countable second-count-
able spaces are equivalent to the enumeration principles cocodei for i D 0; 1.

2.3. Uncountable spaces and countable choice

In this section, we establish observations (O1) and (O3) from Section 1.1. In particular,
we show that basic statements about uncountable RSC-spaces are equivalent to count-
able choice as in QF-AC0;1. As a result, related statements are classified in the range of
hyperarithmetical analysis, including the Ginsburg–Sands theorem.

First of all, we obtain some elegant equivalences involving countable choice, in line
with observation (O3) from Section 1.1. Moreover, countable choice is now fundamental
in light of item (c), given how central continuity is to topology.

Theorem 2.9 (ACA!0 ). The following are equivalent.

(a) The principle QF-AC0;1.

(b) The conjunction of the following.

• B-QF-AC0;1 (see Principle 1.3).

• For a sequentially (or: open cover, or: countably) compact RSC-space X , a
(sequentially) continuous function f WX ! R is bounded.

(c) The conjunction of the following.

• B-QF-AC0;1 (see Principle 1.3).

• For a sequentially compact RSC-space X , if X is infinite, there is a discon-
tinuous f WX ! R.
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(d) The previous item restricted to ‘not effectively continuous’.

(e) The conjunction of the following.

• B-QF-AC0;1 (see Principle 1.3).

• For any RSC-space X , sequential compactness implies countable compact-
ness.

(f) The conjunction of the following.

• B-QF-AC0;1 (see Principle 1.3).

• For a sequentially compact RSC-space X and a continuous function f WX !
R with y D supx2X f .x/, there is x0 2 X with f .x0/ D y.

The second bullet in item (b) with all instances of ‘sequentially’ omitted, is provable.

Proof. For the final sentence, fix continuous f WX!R and defineOn WD¹x2X W f .x/>nº
D f �1..C1; n//, which is open since f is continuous. Clearly, [n2NOn covers X and
if[n�n0On is a finite sub-covering, then f is bounded above by n0 onX . Hence, the final
sentence of the theorem follows.

To establish item (b) using QF-AC0;1, let f WX ! R be (sequentially) continuous. In
case .8n 2 N/.9x 2 X/.jf .x/j > n/, apply QF-AC0;1 and let .xn/n2N be the associated
sequence. If y 2X is an accumulation point of this sequence, let .yn/n2N be the associated
sub-sequence converging to y. Clearly, .f .yn//n2N does not converge to f .y/, nor is f
continuous at y, a contradiction. As a result, f must be bounded and item (b) follows.

To derive QF-AC0;1 from item (b), fixF WR!N such that .8n2N/.9x2R/.F.x/Dn/
but there is no sequence .xn/n2N such that F.xn/D n for all n 2N. Like in the previous,
fix a standard coding of finite sequences of reals where we write w1

�

D hx0; : : : ; xki for
xi 2 R and jwj D k C 1 is called the ‘length’ of w. Up to coding, define the set X � R
such that w 2 X in case w equals a finite sequence y0; : : : ; yk 2 R with F.yi / D i for
i � k D jwj. The set X also includes a new symbol 0X different by fiat from all reals.
Now define

U2n D
®
w 2 X n ¹0Xº W jwj D n

¯
; U2nC1 D ¹0Xº [

®
w 2 X n ¹0Xº W jwj > n

¯
: (2.3)

To obtain a basis, consider the function from (2.2). To establish sequential compactness,
let .yn/n2N be a sequence in X . We must have .9k 2 N/.8n 2 N/.yn D 0X _ jynj � k/
as otherwise we would obtain a sequence .xn/n2N such that F.xn/ D n for all n 2 N.
As a result, .yn/n2N has a constant sub-sequence and hence trivially a limit point. For
(countable) compactness, note that any open neighbourhood of 0X covers most of X .

Now define the function f WX!R by f .0X /D 0 and f .x/D jxj C 1 for 0X ¤ x 2X .
Then f is sequentially continuous at any fixed x ¤ 0X , as any sequence converging to x
must eventually be in U2jxj. Moreover, any sequence converging to 0X must be eventually
0X as otherwise we would obtain a sequence .xn/n2N such that F.xn/ D n for all n 2 N.
Hence, f is also sequentially continuous at 0X . However, f is not bounded, for which
we seem to need B-QF-AC0;1, contradicting item (b). Hence, we have obtained a version of
QF-AC0;1 for the real numbers; one readily shows that this implies QF-AC0;1 itself.
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To prove item (c) using QF-AC0;1, apply the latter to ‘X is infinite’ to obtain a sequence
of distinct points inX , say .xn/n2N . Now define gWX ! R as g.x/D 0 if x ¤ yn for any
n 2 N and g.yn/ D nC 1. We proved above that QF-AC0;1 implies item (b), i.e., g must
by discontinuous. To derive QF-AC0;1 from item (c), suppose the former is again false and
consider the RSC-space X0 WD X n ¹0Xº with base .U2n/n2N from (2.3) and the function
from (2.2). The RSC-space X0 is sequentially compact in the same way as for the RSC-
space X (but the former is not (countably) compact). Let f WX0 ! R be any function
and fix open V � R. In case x 2 f �1.V /, then x 2 U2jxj � f �1.V /, i.e., f �1.V / is
(uniformly) open. Hence, all functions on X0 are (effectively) continuous, contradicting
item (c). Hence QF-AC0;1 follows from the latter, and the same for item (d).

That item (e) implies QF-AC0;1 follows from the previous. To establish the former using
the latter, let X be a sequentially compact RSC-space and suppose there is an open cov-
ering .On/n2N with .8n 2 N/.9x 2 X/.x 62 [m�nOm/. Apply QF-AC0;1 to the latter and
let .xn/n2N be the associated sequence. By sequential compactness, there is a convergent
sub-sequence .yn/n2N , say with limit y 2 X . However, y is in someOn0 and therefore so
is the tail of .yn/n2N , a contradiction, and item (e) follows.

To derive item (f) using QF-AC0;1, let y be as in the former and apply QF-AC0;1 to
.8n 2 N/.9x 2 X/.jf .x/ � yj/. The resulting sequence has a convergent sub-sequence,
say with limit x0 2 X , and by continuity f .x0/D y. To derive QF-AC0;1 from (f), suppose
the former is false and consider the RSC-space X0 defined above (on which all functions
are continuous). Define f WX0 ! R as f .x/ WD 1 � 1

2jxj
for which supx2X0 f .x/ D 1

by B-QF-AC0;1. However, there clearly is no x0 2 X0 such that f .x0/ D 1, contradicting
item (f). Hence, the latter implies QF-AC0;1.

Secondly, an interesting corollary is that the implication sequential implies countable
compactness for countable RSC-spaces, inhabits the range of hyperarithmetical analysis.
By contrast, the second-order version of this implication is equivalent to ACA0 by [18,
§10.8.9]. This is our first example of the hyperarithmetical shift from (O1) in Section 1.1.

Corollary 2.10 (ACA!0 ). The higher items imply the lower ones.

• QF-AC0;1.
• For a RSC-space X , sequential compactness implies countable compactness.
• The previous item restricted to countable spaces.
• The previous item restricted to strongly countable spaces.
• cocode1.
• weak-†11-AC0.

Proof. Most implications are immediate or follow from the theorem. To show that the fifth
item implies cocode1, consider the strongly countable RSC-space X from the proof of
Theorem 2.8. Assuming there is no enumeration of A, this space is sequentially compact
as any sequence .xn/n2N in X is such that .9m 2 N/.8n 2 N/.jxnj � m/. Hence, the
former sequence must have a constant sub-sequence, which of course has an accumulation
point. By contrast, the covering [n2NXn of the space X has no finite sub-covering.
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Regarding similar results, item (f) of Theorem 2.9 for CSC-spaces is provable in ACA0
while the restriction to (strongly) countable sets implies cocode1. Thus, item (f) and these
restrictions to (strongly) provide more examples of the hyperarithmetical shift as in (O1)
from Section 1.1.

Thirdly, we connect the Ginsburg–Sands theorem and countable choice.

Theorem 2.11 (ACA!0 ). The following are equivalent.

• The combination of the following.
– The principle B-QF-AC0;1.
– The Ginsburg–Sands theorem GS for RSC-spaces X � R.

• Countable choice as in QF-AC0;1.

Proof. First of all, we show thatGS for RSC-spaces impliesQF-AC0;1, assumingB-QF-AC0;1.
To this end, let ' be quantifier-free and such that .8n 2 N/.9x 2 R/'.n; x/. We assume
a fixed coding of finite sequences of reals as real numbers, which is readily defined in
ACA!0 . Now define w1

�

2 X if and only if .8i < jwj/'.i; w.i//, i.e., X contains initial
segments of the choice function we are after. Define Un WD ¹w 2 X W jwj D nº and note
that we obtain a base in the obvious way. Thanks to B-QF-AC0;1, the RSC-space X is
infinite. Clearly, all sets are open in X and the same for any sub-space of X . By GS as in
the first item, X has a sub-space that is homeomorphic to the discrete topology on N. Let
f WX ! N and f �1WN ! X be the associated continuous bijection and its inverse. Now
consider the sequence .f �1.n//n2N in X . By definition, f �1.n/ is a finite sequence and
since f WX ! N is a bijection, we have that .8m 2 N/.9n 2 N/.9x 2 f �1.n//'.m; x/.
Thus, .f �1.n//n2N readily yields a choice function for .8n 2 N/.9x 2 R/'.n; x/. Since
ACA!0 is available, QF-AC0;1 also follows.

Secondly, to prove GS for an RSC-space X , apply QF-AC0;1 to the statement ‘X is
infinite’, yielding a sequence of distinct elements of X . Identifying an element with its
index, apply the second-order GS, provable in ACA0 by [4, Theorem 4.6], to obtain the
required result.

Finally, an interesting corollary is that the third-order Ginsburg–Sands theorem inhab-
its the range of hyperarithmetical analysis. This is our second explicit example of the
hyperarithmetical shift from (O1) in Section 1.1. Note that we can also restrict the fifth
item to stable spaces (see [4]).

Corollary 2.12 (ACA!0 ). The higher items imply the lower ones.

• QF-AC0;1

• The Ginsburg–Sands theorem GS for RSC-spaces.
• The Ginsburg–Sands theorem GS for countable RSC-spaces.
• The Ginsburg–Sands theorem GS for strongly countable RSC-spaces.
• The previous item restricted to T1 or Hausdorff spaces.
• cocode1.
• weak-†11-AC0.
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Proof. The implications are either trivial or follow by Theorems 2.8 and 2.11. Note that
the RSC-space in the proof of the former theorem is T1 and Hausdorff.

Regarding the fifth item in Corollary 2.12, GS for T1-CSC-spaces is exceptional from
the point of view of the RM zoo [4, 17], but all second-order versions of GS do not go
beyond ACA0. By contrast, in higher-order RM, most variations of GS are classified in the
range of hyperarithmetical analysis, in the sense of Corollary 2.12. Of course, it is then a
natural question whether our classification of GS depends on our choice of representation,
in particular the definition of ‘finite set’ from Definition 1.8. Theorem 2.14 right below
suggests that the answer is negative, where we use the usual definitions from set theory as
follows.

Definition 2.13. A set of reals X � R is called

• set theory finite if there is k 2 N and Y WR! N such that Y is injective on X and
Y.x/ � k for x 2 X ,

• set theory infinite if it is not set theory finite,

• Dedekind infinite if there is Z ¨ X and Y WR! R with .8z 2 Z/.Y.z/ 2 X/ and Y
is injective on Z, i.e., Y.z/ D Y.z0/! z D z0 for all z; z0 2 Z.

We also assume †-IND, the higher-order4 version of †11-induction.

Theorem 2.14. The system ACA!0 C QF-AC0;1 C†-IND exists in the range of hyperarith-
metical analysis and proves the Ginsburg–Sands theorem GS for RSC-spaces with ‘infinite’
replaced by ‘set theory infinite’ or ‘Dedekind infinite’.

Proof. First of all, the induction axiom †-IND proves that a finite set X � R can be enu-
merated (via a finite sequence) by considering the formula

'.n/ � .9w1
�

/
�
jwj D n ^

�
8i < jwj

��
w.i/ 2 X

��
:

Hence, a set theory infinite or Dedekind infinite set must be infinite, as the former notions
do not hold for finite-sets-with-an-enumeration, by the pigeon-hole principle.Thus, assum-
ing †-IND, GS for set theory or Dedekind infinite sets, implies GS for infinite sets, as
required.

Secondly, for the remaining claim, we recall that ACA!0 C QF-AC0;1 is conservative
over †11-AC0 by [28, Cor. 2.7]. This is established by a construction that extends any
model M of †11-AC0 to a model N of ACA!0 C QF-AC0;1 where the second-order part of
N is isomorphic to M. Via exactly the same construction, any model M0 of †11-AC0 C
†11-induction extends to a model N 0 of ACA!0 C QF-AC0;1 C †-IND, where the second-
order part of N 0 is isomorphic to M0. Hence, ACA!0 C QF-AC0;1 C †-IND is conservative
over †11-AC0 C †11-induction. The latter is known to be a system of hyperarithmetical
analysis, as observed between [2, Def. 3.4 and Thm. 3.6].

4The induction schema†-IND is Œ'.0/^ .8n 2N/.'.n/! '.nC 1//�! .8n 2N/'.n/ for any '.n/
of the form .9f 2 NN/'0.n; f / for quantifier-free '0 and any parameters.
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In conclusion, we have obtained a number of equivalences involving countable choice
and RSC-space, contributing to (O3) from Section 1.1. As an aside, we showed that the
Ginsburg–Sands theorem for (countable) RSC-spaces inhabits the range of hyperarith-
metical analysis, contributing to (O1). By contrast, arithmetical comprehension suffices to
establish this theorem for CSC-spaces.

2.4. Uncountable spaces and comprehension

In this section, we develop observation (O3) from Section 1.1. In particular, we show
that basic statements about uncountable RSC-spaces imply – or are equivalent to – strong
axioms, including Kleene’s quantifier (93), second-order arithmetic, and Feferman’s pro-
jection principle, with the latter defined next.

First of all, Feferman introduces the ‘projection principle’ Proj1 in [21, §5] as a third-
order version of Kleene’s quantifier (93) from Section 1.3.1. Working over a base theory
akin to ACA!0 , it is then shown that Proj1 implies various well-known theorems of ana-
lysis, like the supremum principle. Moreover, Proj1 also yields Z2 when combined with
(�2). Thus, Proj1 can be said to be impredicative and highly non-constructive. Now, Fefer-
man’s language is slightly richer than that of ACA!0 and the following axiom constitutes
the higher-order RM version of Proj1:

.8Y WNN
! N/.9X � N/.8n 2 N/

�
n 2 X $ .9f 2 NN/

�
Y.f; n/ D 0

��
: (BOOT)

The name refers to the verb ‘to bootstrap’ as …1
k

-CA!0 C BOOT prove …1
kC1

-CA0. Con-
vergence theorems for nets are equivalent to BOOT, as well as the supremum principle for
certain weak continuity notions [48, 51].

Secondly, we have the following theorem, in line with (O3) from Section 1.1.

Theorem 2.15 (ACA!0 C B-QF-AC0;1
Š

). The following are equivalent.

(a) An RSC-space is separable.

(b) An RSC-space is Lindelöf.

(c) A compact RSC-space is separable.

(d) The maximum principle MAX for sequentially compact RSC-spaces.

(e) The supremum principle SUP0 for RSC-spaces.

(f) The supremum principle SUP for RSC-spaces.

(g) The previous item restricted to effectively continuous functions.

(h) The previous item restricted to sequences .Cn/n2N of uniformly closed sets.

(i) QF-AC0;1 C BOOT.

The equivalence holds for ‘sequential’, ‘limit point’, and ‘countable’ compactness.

Proof. First of all, to derive the other items from QF-AC0;1 C BOOT, let X � R be an
RSC-space with base .Ui /i2N . Use BOOT to form the set X0 � N such that .i 2 X0 $
.9x 2 R/.x 2 Ui //. Now apply QF-AC0;1 to .8i 2 N/.i 2 X0 ! .9x 2 Ui // to obtain
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the sequence witnessing the separability of X . This sequence also establishes that X is
Lindelöf. The supremum principle now follows via the usual interval-halving technique,
replacing .9x 2 X/.f .x/ > q/ by .9n 2 N/.f .xn/ > q/, where .xn/n2N is the sequence
provided by the separability of the space. Note that by Theorem 2.9, QF-AC0;1 suffices to
show that continuous functions are bounded. The principle SUP0 follows in the same way.
To obtain MAX, apply QF-AC0;1 to

.8k; n 2 N/.9y 2 X/
�ˇ̌
fn.y/ � sup

x2X

fn.x/
ˇ̌
< 1

2k

�
:

The resulting sequence has a convergent (relative to k) sub-sequence, say with limits
.yn/n2N . The latter is as required for MAX.

Secondly, assume item (c) and note that BOOT is equivalent over ACA!0 to the statement
that for any F WR! N, there is X1 � N such that

.8n 2 N/
�
n 2 X1 $ .9x 2 R/

�
F.x/ D n

��
:

Now fix F WR! N and define .Ui /i2N as follows:

U2n D
®
x 2 R W F.x/ D n

¯
and U2nC1 D ¹0Xº [

®
x 2 R W F.x/ � n

¯
;

where X WD R [ ¹0Xº and 0X is a new symbol different from all reals by fiat. Then
.Un/n2N is a base for X , as the associated function k is straightforward. Note that any
open set containing 0X covers all but finitely many points inX , i.e., the latter is (countably)
compact. For sequential compactness (and similar for limit point compactness), the point
0X is the required limit point for sequences that do not contain a constant sub-sequence.
Now let .xn/n2N be the sequence provided by item (c) and note that for any n 2 N, by
definition:

.9m 2 N/
�
F.xm/ D n

�
$ U2n ¤ ; $ .9x 2 R/

�
F.x/ D n

�
:

Since the left-most formula is arithmetical, BOOT follows. To derive QF-AC0;1, we assume
.8n 2 N/.9x 2 R/.F.x/ D n/ and proceed in the same way.

Thirdly, assume item (f) and note that QF-AC0;1 follows by Theorem 2.9. To obtain
BOOT, fix F WR! N and define the compact RSC-space X as in the previous paragraph.
Moreover, the function f WX ! R defined as f .x/ D 1

2F.x/
for x ¤ 0X and f .0X / D 0 is

(effectively) continuous. Now consider the following:

.9x 2 R/
�
F.x/ D n

�
$
�
1
2n
D sup
x2Cn

f .x/
�
; (2.4)

where Cn WD X n [i<nU2i ; the complement of Cn is uniformly open as witnessed by
�.x/ WD 2F.x/. Since the right-hand side of (2.4) is arithmetical, BOOT follows. The proof
involving items (d) and (e) is similar.

Fourth, the following theorem is now relatively straightforward. We emphasise that the
norm kf k1 D �f: supx2X f .x/ is found throughout mathematical textbooks. The final
item in the theorem merely expresses the existence of kf k1 for continuous functions on
certain spaces.
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Theorem 2.16 (RCA!0 ). The following are equivalent.

• Kleene’s quantifier (93).

• The combination of the following.

– Kleene’s quantifier (92).

– For any compact RSC-space X , there exists �W .X ! R/! R such that for any
continuous f WX ! Œ0; 1�, we have �.f / D supx2X f .x/.

Proof. First of all, Kleene’s (93) implies BOOT and can perform the usual interval-halving
technique for finding the supremum of bounded functions, as quantifying over an RSC-
space X amounts to quantifying over Baire space.

Secondly, fixF WR!N and consider the RSC-spaceX as in the proof of Theorem 2.15.
Recall the function f WX ! Œ0; 1� define by f .x/ WD 1 � 1

2F.x/
and f .0X / D 0. Now

consider
.9x 2 R/

�
F.x/ D 0

�
$
�
1 D sup

x2X

f .x/
�
:

Thus, �.f / as in the final item of the theorem allows us to decide where F has a zero or
not. Using (92), this readily yields (93).

Clearly, we could restrict the final item in the theorem to effectively (or strongly)
continuous functions. The associated function ' could then be an input to the modified
�-functional. Many other variations seem possible.

Finally, the definition of RSC-space as in Definition 1.6 is readily adapted to sets
X � Y � R2. We now study the following supremum principle where we stress that the
supremum-as-a-function �x: supy2Y f .x; y/ is found in textbooks like [44, 45].

Principle 2.17 (SUP2). Let X � Y � R2 be a compact RSC-space. For a continuous
function f WX � Y ! Œ0; 1�, there exists an X ! R2-function ˆ such that

ˆ.x/.1/ D sup
y2Y

f .x; y/ and ˆ.x/.2/ D inf
y2Y

f .x; y/ for all x 2 X:

We now show that Principle 2.17 implies the following generalisation of BOOT to
arbitrary quantifier alternations, where k � 2.

Principle 2.18 (BOOTk). For any Y W .NN/k ! N, there is X � N with

.8n 2 N/
h
n 2 X $ .9f0 2 NN/.8f1 2 NN/ � � �„ ƒ‚ …

k � 1 quantifier alternations

�
Y.f0; : : : ; fk ; n/ D 0

�i
:

We note that BOOTk ! …1
k

-CA0 over RCA!0 while ACA!0 C BOOTk proves …1
kC1

-CA0.
We now have the following implication.

Theorem 2.19 (ACA!0 ). We have SUP2 ! BOOTk for any k � 2. We can replace ‘sequen-
tial’ by ‘limit point’ or ‘countable’ or ‘open cover’ in SUP2.
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Proof. We first establish SUP2 ! BOOT2 using Theorem 2.15. Like in the proof of the
latter, BOOT2 is equivalent over ACA!0 to the statement that for any F W R2 ! N, there is
X2 � N such that

.8n 2 N/
�
n 2 X2 $ .9x 2 R/.8y 2 R/

�
F.x; y/ D n

��
: (2.5)

Now fix F WR2 ! N and define .Ui /i2N as follows:

U2nD
®
.x;y/ 2R2 WF.x;y/D n

¯
and U2nC1D ¹x0Xº [

®
.x;y/ 2R2 WF.x;y/� n

¯
;

where x0X is a new symbol different from all .x; y/ 2 R2 by fiat; also, X WD R2 [ ¹x0Xº.
Clearly, the RSC-spaceX is (countably) compact as any open set containing x0X covers all
but finitely many points inX . Now define f W .X �X/!R as f .x0X /D 0 and f ..x;y//D
1

2F.x;y/
for x; y 2 R, which is readily seen to be (effectively) continuous. Hence, we have

access to the functions �x: supy2X f ..x; y// and �x: infz2X f ..x; z//. Now consider the
following equivalence, for all n 2 N:

.9x 2 R/.8y 2 R/
�
F.x; y/ D n

�
$ .9x 2 R/

�
sup
y2X

f ..x; y// D 1
2n
D inf
z2X

f ..x; z//
�
:

The right-hand side only has one quantifier over R, i.e., BOOT provides a set X1 � N of
exactly those n 2 N satisfying .9x 2 R/.8y 2 R/.F.x; y/ D n/. Thus, we obtain (2.5)
and hence BOOT2 following Theorem 2.15.

Finally, we prove BOOT3 from SUP2; the general case is then straightforward. Fix
GWR3 ! N, let ZWR! R2 be a bijection and let W WR2 ! R be the inverse, readily
defined in ACA!0 . Then define F.x; y/ WD G.Z.x/.1/;Z.x/.2/; y/ and consider the RSC-
space X and function f W X2 ! R defined in terms of F as in the previous paragraph.
Now consider the following, for any n 2 N:

.8x 2 R/.9y 2 R/.8z 2 R/
�
G.x; y; z/ D n

�
$ .8x 2 R/.9y 2 R/

�
sup
z02X

f ..W.x; y/; z0// D
1
2n
D inf
z12X

f ..W.x; y/; z1//
�
;

and the bottom formula only involves one quantifier alternation, i.e., BOOT2 applies, yield-
ing BOOT3 as required.
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