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Khovanov homology and rational unknotting

Damian Iltgen, Lukas Lewark, and Laura Marino

Abstract. Building on the work by Alishahi–Dowlin, we extract a new knot invariant � � 0
from universal Khovanov homology. While � is a lower bound for the unknotting number, in
fact more is true: � is a lower bound for the proper rational unknotting number (the minimal
number of rational tangle replacements preserving connectivity necessary to relate a knot to the
unknot). Moreover, we show that, for all n � 0, there exists a knot K with �.K/ D n. Along
the way, following Thompson, we compute the Bar-Natan complexes of rational tangles.

1. Introduction

The most famous geometric application of Khovanov’s categorification of the Jones
polynomial [18] comes from the Rasmussen invariant, a knot concordance homomor-
phism giving a strong lower bound for the slice genus [41]. The Rasmussen invariant
may be read off the grading of the limit of Lee’s spectral sequence [26], which starts at
Khovanov homology. Recently, Alishahi and Dowlin [2] discovered that there is fur-
ther geometric information contained in Lee’s spectral sequence. Namely, the number
of the page on which that sequence collapses is a lower bound for the unknotting num-
ber u. This new lower bound behaves rather differently from the Rasmussen invariant;
e.g., it is not invariant under concordance and not additive under the connected sum
of knots.

In this paper, we use Alishahi and Dowlin’s methods on a different variation of
Khovanov homology to define a new knot invariant � taking non-negative integer
values. This invariant is greater than or equal to all the previously known variations of
Alishahi–Dowlin’s bound appearing in [1, 2, 8, 13]. Before giving the definition of �,
let us state our two main results.

Theorem 1.1. For all knots K, one has �.K/ � uq.K/.

Theorem 1.2. For every n � 0, there exists a knot K such that �.K/ D n.
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P.3; 3; 2/ D 85 unknot

P.3; 3;�2/ D T3;4 D 819 unknot

(i)

(ii)

Figure 1. (i) An example of a proper rational replacement (1=3 by �1 in the language of Defini-
tion 5.14), showing that the P.3; 3; 2/ pretzel knot has proper rational unknotting number 1. (ii)
An example of a non-proper rational replacement (1=3 by 0), showing that the P.3; 3;�2/ pret-
zel knot, which is also the T3;4 torus knot, has rational unknotting number 1. Since �.T3;4/D 2,
it follows from Theorem 1.1 that there is no proper rational replacement transforming the T3;4
pretzel knot into the unknot; i.e., T3;4 has proper rational unknotting number at least 2 (and in
fact equal to 2).

Here, the proper rational unknotting number uq.K/ is defined as follows.

Definition 1.3. Two knots K, K 0 are related by a rational replacement if K 0 may be
obtained fromK by replacing a rational tangle T inK with another rational tangle T 0.
If the arcs of T and T 0 connect the same tangle end points, we say that the rational
replacement is proper. Now, uq.K/ is defined as the minimal number of proper ratio-
nal replacements relating K to the unknot.

Figure 1 shows examples of rational replacements and an application of Theo-
rem 1.1. Since a crossing change is merely a special case of a proper rational replace-
ment, we find that uq.K/ � u.K/ holds for all knotsK. So, Theorem 1.1 can be seen
as a strengthening of the inequality uX .K/ � u.K/, where uX .K/ denotes one of the
bounds constructed by Alishahi–Dowlin [2]. Indeed, we have

uX .K/ � �.K/ � uq.K/ � u.K/:

We will see that none of these inequalities are equalities, and in fact, the gaps between
the four involved invariants can be arbitrarily large.

In contrast to Theorem 1.2, let us note that currently uX .K/ � 3 holds for all
knots K for which uX has been computed. The essentially only known knot with
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uX .K/ D 3 was recently found by Manolescu and Marengon [34]. Still, it seems
a reasonable conjecture that uX is unbounded, though the proof of that conjecture
might require more complicated knots and methods of computation than our proof of
the unboundedness of � in Theorem 1.2.

In the remainder of the introduction, let us provide details and background about
Khovanov homologies, the invariant �, and rational unknotting.

1.1. Rational replacements and rational unknotting

Rational unknotting has previously been considered by Lines [30] and McCoy [36],
while proper rational unknotting was explored in a recent paper by McCoy and Zent-
ner [37]. In those papers, rational unknotting is obstructed via the double branched
cover, relying on the so-called Montesinos trick: if two knots K and J are related
by a rational replacement, then their double branched covers MK , MJ are related
by a surgery. So, one may obstruct the existence of certain rational replacements by
obstructing the existence of certain surgeries.

The arguably easiest upshot of that method is the following: the minimal number
of generators of H1.MK IZ/ is a lower bound for the rational unknotting number
of K. For example, this implies that the connected sum of n trefoil knots has (proper
and non-proper) rational unknotting number equal to n. On the other hand, one may
easily compute that � of the connected sum of n � 1 trefoil knots equals 1. This may
be taken as a first sign that our lower bound � is quite different from the lower bounds
for uq obtainable from the double branched cover. In the instance of connected sums
of trefoils, the � bound is weaker. However, there are also knots for which � is the
strongest lower bound for uq that we know of. Let us give an explicit example.

Question 1.4. In Example 3.18, we compute �.T5;6/ D 3, from which it follows that
uq.T5;6/ � 3. Is there any other way of showing uq.T5;6/ � 3?

Note that the gap between the proper rational unknotting number uq and the (clas-
sical) unknotting number u may be arbitrarily high. For example, uq.K/ D 1 clearly
holds for all two-bridge knots K; but u.K/ of two-bridge knots can take any value,
which can, e.g., be shown using the signature bound j�.K/=2j � u.K/. This also
demonstrates that j� j=2 is not a lower bound for the proper rational unknotting num-
ber.

In Section 2.1, we will fix our conventions regarding tangles and tangle diagrams.
We will then revisit Definition 1.3 and give a more refined definition of rational
replacement in Definition 5.14. As an aside, let us also remark that, in the definition
of the proper rational unknotting number uq.K/, the proper rational replacements
relating K and the unknot are sequential: happening one after another. However, by a
standard transversality argument (see, e.g., [43]), one can show that, for every knotK,
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there exist uq.K/ many simultaneous rational replacements, i.e., rational replace-
ments taking place in pairwise disjoint balls.

1.2. A simple universal Khovanov homology

An algebra A over a ring R equipped with an .A; A/-bilinear map �WA! A ˝ A

and an R-linear map "WA! R, such that ." ˝ Id/ ı � D Id, is called a Frobenius
algebra, and the tuple F D .R; A; �; "/ is called a Frobenius system. We will only
consider the so-called rank two Frobenius systems. These are Frobenius systems F

with anX 2 A such that A is freely generated by 1 andX as an R-module. Moreover,
all our Frobenius algebras will be equipped with a filtration or a grading such that
1 and X are homogeneous elements of degree 0 and �2, respectively. We call this
the quantum grading. Every such rank two Frobenius system F yields a variation of
Khovanov homology theory, i.e., a way to associate with all diagramsD of a link L a
chain complexCF .D/ ofR-modules such thatCF .L/ is well defined up to homotopy
equivalence [20]. For links with a marked component, or for knots, there is an action
of A on CF .D/, which is well defined up to homotopy, so we may consider CF .D/

as a chain complex of A-modules, which are free.
Khovanov’s original homology theory corresponds to the Frobenius algebra

ZŒX�=.X2/ over Z. On the other hand, the theory coming from the Frobenius alge-
bra Auniv D RunivŒX�=.X

2 � hX � t / over Runiv D ZŒh; t � is called universal, since
for all rank two Frobenius algebras F , the chain complex CF .D/ is determined by
Cuniv.D/ [20]. Recently, Khovanov and Robert defined another theory called
˛-homology, which is also universal in the sense above [21]. To define �, we will
use a third universal theory, which we call ZŒG�-homology.1 The universality of this
theory is due to Naot [39, 40]. This ZŒG�-theory associates with a diagram D of a
knot K the reduced Khovanov chain complex coming from the Frobenius algebra
RŒX�=.X2 C GX/ with R D ZŒG�. We denote this chain complex by JDK (well
defined up to isomorphism) or JKK (well defined up to homotopy equivalence). Our
reason to use ZŒG�-homology is that it is the simplest of the three mentioned univer-
sal theories, in so far as the ground ring is a polynomial ring in only one, instead of
two variables. Let us explicitly state how ZŒG�-homology determines Funiv-homology.
(This is implicit in the work of Naot [39, 40].)

Theorem 1.5. Endow Auniv D ZŒh; t �ŒX�=.X2 � hX � t / with the structure of a
ZŒG�-module by letting G act as 2X � h. Then, for every knot K,

Cuniv.K/ ' JKK˝ZŒG� Auniv¹1º:

1Here, G is simply a symbolic variable, and so, ZŒG� is the one-variable polynomial ring
over the integers (not some group ring).
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Here, ¹ � º denotes a shift in quantum degree.

Corollary 1.6. For every knotK,Cuniv.K/ is homotopy equivalent to a chain complex
of free shifted Auniv-modules, with differentials consisting only of integer multiples of
powers of 2X � h.

Theorem 1.5 and Corollary 1.6 can be understood to say that ZŒG�-homology
encodes the same amount of information present in Funiv- and ˛-homology in a more
compact way. In particular, the original reduced Khovanov homology over Z of K as
defined in [19] may be obtained from JKK simply by setting G D 0, i.e., by tensoring
with ZŒG�=.G/ Š Z. The original unreduced Khovanov homology over Z is also
determined by ZŒG�-homology; see Corollary 2.18.

Let us give three examples of ZŒG�-complexes J � K of knots. For the unknot U ,
JU K is simply homotopy equivalent to one copy of ZŒG� supported in homological
degree 0. For the trefoil T2;3, we have a homotopy equivalence

JT2;3K ' 0ZŒG�¹2º ! 0! ZŒG�¹6º
G
�! ZŒG�¹8º;

where the subscript to the left denotes homological degree. Finally, for the T3;4 torus
knot, we have

JT3;4K ' 0ZŒG�¹6º ! 0! ZŒG�¹10º
G
�! ZŒG�¹12º

0
�! ZŒG�¹12º

G2

��! ZŒG�¹16º:

Many more examples will be given in Sections 3 and 4.
We will give an introduction to Khovanov homologies and the proof of Theo-

rem 1.5 in Section 2. The idea of the proof is to show that ZŒG�-homology of a knot
K determines the Bar-Natan complex [5] of the 2-ended tangle obtained by cutting
K open at some point. The Bar-Natan complex in turn is known to be universal and
determine Funiv-homology. The Bar-Natan complex is discussed in Section 2, and also
in Section 1.4 below.

1.3. The definition of �

Let us now introduce this paper’s protagonist.

Definition 1.7. For a knot K, let �.K/ be the minimal integer k � 0 such that there
exist ungraded chain maps (i.e., chain maps that do not need to respect the homologi-
cal or the quantum degree, cf. Definition 3.1)

JKK JU K
f

g

and homotopies g ı f ' Gk � idJKK; f ı g ' G
k � idJU K.
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It is not obvious that, for a given knot, f , g, k as in Definition 1.7 exist at all.
So, for the time being, we scrupulously set �.K/ D 1 if they do not. It will then be
a consequence of Theorem 1.1 that this case does not occur, since �.K/ � uq.K/ �
u.K/ < 1. To get acquainted with calculating �, the reader is invited to convince
themself that �.U / D 0, �.T2;3/ D 1, �.T3;4/ D 2.

Our Definition 1.7 is based on the work of Alishahi and Dowlin, who use analo-
gous maps f , g in the proof that their invariant uX is a lower bound for the unknot-
ting number u. The invariant uX .K/ is defined as the maximal X -torsion order of
the homology of K coming from the Frobenius algebra FLee D QŒX; t �=.X2 � t /

over QŒt �, i.e., the minimal n such thatXnHLee.K/ is torsion-free. At first glance, the
definition of uX and � appear to be rather different, but on a closer look, one finds that
uX .K/ D �X .K/, where �X .K/ is the minimal k � 0 such that there exist ungraded
chain maps

CLee.K/ CLee.U /
f

g

and homotopies g ı f ' .2X/k � idCLee.K/ ; f ı g ' .2X/
k � idCLee.U/ .

In this sense, � is a direct generalization of uX , obtained from the reduced homol-
ogy coming from the Frobenius algebra FZŒG� instead of from the unreduced homol-
ogy coming from FLee. But why do not we instead of � consider uG.K/, defined
(see Definition 3.21) as the maximal G-torsion order of ZŒG�-homology ofK? There
are two reasons. Firstly, � is not equal to uG for all knots; the proof of the equality
�X D uX does not carry over from QŒX; t �=.X2 � t / to ZŒG� because it relies on

QŒX; t �=.X2 � t / Š QŒX�

being a PID, which ZŒG� is not. In fact, �.K/ � uG.K/ holds for all knots K. Sec-
ondly, uG displays some unorthodox behavior; for example, the value of uG.�K/ is
not determined by the value of uG.K/, where �K denotes the mirror image of K.
Again, the ring ZŒG� not being a PID is to blame for this.

More details about the invariant � and related invariants can be found in Sec-
tion 1.5 below and in Section 3.

1.4. The Bar-Natan complex of rational tangles

The proof of Theorem 1.1, given at the end of Section 5, proceeds by relating the
Bar-Natan complexes of different rational tangles. So, first, we need to compute the
Bar-Natan complexes of rational tangles. For this, we heavily rely on Thompson’s
computation [50] of dotted Bar-Natan complexes of rational tangles. Thompson’s
proof adapts mutatis mutandis to the (more general) version of Bar-Natan complexes
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that we are using. We also use Kotelskiy–Watson–Zibrowius’ theorem [22, Theo-
rem 1.1] that Bar-Natan’s category of 4-ended tangles and cobordisms is equivalent
to a category coming from a quiver with two vertices and four edges, which yields a
quite simple calculus for chain complexes of 4-ended tangles.

As a result, we obtain a recursive algorithm that takes as input a rational tangle T
corresponding to a rational number p=q 2 Q [ ¹1º and returns as output a chain
complex in the homotopy class of the Bar-Natan complex of T . That chain complex
is relatively small, consisting of jpj C jqj many objects and jpj C jqj � 1 non-trivial
morphisms. We refer the reader to Section 5 and Theorem 5.6 for details.

1.5. Further properties and generalizations of �

From Kronheimer–Mrowka’s result that Khovanov homology detects the unknot [24],
it follows that � does, too.

Proposition 1.8. The �-invariant detects the unknot; i.e., �.K/D 0 holds if and only
if K is the unknot.

We will see that the value of �.K#J / for the connected sum K#J is not deter-
mined by the values of �.K/ and �.J /. However, we can say the following.

Proposition 1.9. (i) �.K#J / � �.K/C �.J / for all knots K, J .
(ii) � does not change under taking mirror images, or orientation reversal.

Let us call a knot K thin if its reduced integral Khovanov homology consists of
free modules supported in a single ı-degree (see Section 3.5 for the definition of ı
and further details).

Proposition 1.10. For all non-trivial thin knots K, we have �.K/ D 1.

In particular, �.K/D 1 holds for all non-trivial quasi-alternating knots, since those
knots are thin in the above sense [35]. This leads to applications, such as the following.

Example 1.11. In Example 3.18, we will compute �.T5;6/ D 3. It follows that there
is no proper rational replacement relating T5;6 to a quasi-alternating knot (compare
this to [8, Example 10]).

In the definition of �, replacing U by an arbitrary second knot J yields the defi-
nition of a function �.K; J / � 0 that is symmetric and obeys the triangle inequality:
�. �; � / is a pseudometric on the set of isotopy classes of knots. In fact, we can even
further extend the definition of � and define � for pairs of tangles. This leads to a
pseudometric on the set of equivalence classes of tangles in a fixed ball, with fixed
base point, connectivity, and number of components; see Proposition 3.13. Section 3
provides details and also the proofs of the above propositions.
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1.6. A comparison of � with previously known invariants

Alishahi and Dowlin’s article [2] appeared at the same time as an article by Alishahi
[1], in which, similarly to uX , a lower bound uh for the unknotting number was con-
structed using the Frobenius algebra F2ŒX; h�=.X2 C hX/ over F2Œh�. Then, further
papers followed: Caprau–González–Lee–Lowrance–Sazdanović–Zhang generalized
Alishahi and Dowlin’s work for Q to the fields Fp for all odd primes p [8]. Gujral [13],
using ˛-homology, defined an invariant � which can be seen to equal our invariant uG
and showed that it provides a lower bound for the ribbon distance between knots;
this was a generalization of earlier work by Sarkar [42]. Here, the ribbon distance
between two smoothly concordant knots K and J is the minimal k such that there
is a sequence K D K1; : : : ; Kn D J of knots such that each consecutive Ki ; KiC1
are related by a ribbon concordance in either direction with at most k saddles. This
leads to the following question (see Section 1.5 or Definition 3.2 for the definition
of �.K; J /).

Question 1.12. Is �.K; J / less than or equal to the ribbon distance of K and J for
all pairs of knots K, J ?

The previously defined invariants mentioned above will be discussed in more
detail in Section 3.4. By construction, � is greater than or equal to all of them.
(The price to pay is that � is generally slightly harder to compute.) Let us explicitly
emphasize that this observation combined with Theorem 1.1 implies that all of those
previously defined invariants are also lower bounds for the proper rational unknotting
number.

The construction principle that underlies � and the other above-mentioned invari-
ants from Khovanov homology goes back to the work by Alishahi and Eftekhary,
who applied it to knot Floer homology [3, 4]. They obtained a lower bound for the
unknotting number, as well as lower bounds for other quantities, such as the mini-
mal number of negative-to-positive crossing changes in any unknotting sequence of a
knot. Further, knot Floer torsion order invariants were defined by Juhász, Miller, and
Zemke [17], who find lower bounds for even more topological quantities, such as the
bridge index, the band-unlinking number, etc., Still, the following question remains
open.

Question 1.13. Is one of the knot Floer torsion order invariants a lower bound for the
proper rational unknotting number? 2

2After the article at hand first had appeared as a preprint, Eftekhary answered this question
in the positive [10].



Khovanov homology and rational unknotting 663

1.7. Computations

Computations of ZŒG�-homology are theoretically possible by hand using Bar-Natan’s
divide-and-conquer approach [6]. Nevertheless, to proceed efficiently, we use the pro-
gram khoca [28] (originally written for [27]) to compute ZŒG�-complexes of knots.3

As input, khoca accepts diagrams of a knot K, e.g., in PD notation. From khoca’s
output, one may read off a chain complex of ZŒG�-modules in the homotopy class
of JKK. For further simplification, khoca’s output may be fed into the new program
homca [14], which attempts to decompose JKK as a direct sum of simpler chain
complexes. From these simpler pieces, one may typically calculate � by hand. See
Example 3.18 for an application of this strategy to the T5;6 torus knot. For small
knots, we find the following.

Proposition 1.14. For all knots up to 10 crossings, we have � D 1, except for the
knots 819, 10124, 10128, 10139, 10152, 10154, 10161, where � D 2.

This proposition and further calculations for small knots are discussed in Sec-
tion 4.3.

1.8. Structure of the paper

In Section 2, we introduce ZŒG�-homology and the other variations of Khovanov
homology needed in this article and prove Theorem 1.5. (Parts of that proof have
been moved to Appendix A.) Section 3 contains properties and generalizations of the
�-invariant and other closely related invariants (in particular, the proofs of the propo-
sitions mentioned in Section 1.5 above). In Section 4, we calculate the � invariant for
various families of knots, thereby proving Theorem 1.2. Section 5 includes a discus-
sion of the Bar-Natan complexes of rational tangles and the proof of Theorem 1.1.

2. ZŒG�-homology and other variations of Khovanov homology

The aim of this section is to lay the foundations of ZŒG�-homology and discuss how it
fits in the general picture of Khovanov homology. We will in particular show that the
ZŒG�-theory is equivalent to Khovanov’s universal theory described in [20], which
establishes ZŒG�-homology as a simpler alternative of equal strength. Note that the

3Note that javakh [12], while being very fast, apparently only calculates Morrison’s ‘uni-
versal homology’, which corresponds to QŒG�-homology. Currently, the program kht++ [53]
also only simplifies complexes over fields, not over the integers.
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ZŒG�-theory is not new; it was previously described by Naot [39, 40]4. Other topics
of discussion in this section include Frobenius systems and topological quantum field
theories (TQFTs for short), as well as homology of reduced type. Throughout this sec-
tion, we assume familiarity with Bar-Natan’s theory for tangles and cobordisms [5].

2.1. Tangles and tangle diagrams

Let us start by giving precise definitions of tangles and tangle diagrams and discuss
their relationship.

Definition 2.1. A tangle T is a proper smooth 1-submanifold of a closed oriented
3-ball B . The points in T \ @B are called end points of T . Every tangle is 2n-ended;
i.e., has 2n end points for some n � 0. Throughout this text, we will consider ori-
ented tangles, unless explicitly mentioned otherwise. Two tangles in the same 3-ball
B with the same set of 2n end points in @B are equivalent if there is an orientation-
preserving homeomorphism of B , fixing the boundary pointwise, mapping one tangle
to the other, and preserving the orientation of the tangles if they are oriented.

Note that a 2n-ended tangle consists of n arcs and a finite number of circles.

Definition 2.2. The connectivity of a 2n-ended tangle T with arcs ˛1; : : : ; ˛n � T is
the set ¹@˛1; : : : ; @˛nº.

For example, for tangles in a fixed ball B with a fixed set of 0; 2; 4; 6; : : : end
points on @B , there are 1; 1; 3; 15; : : : possible connectivities5. Bleiler [7] called this
notion ‘string attachments’, but for its brevity, we prefer the term connectivity, which
is also used in [23,49]. Note that proper rational replacements (see Definition 1.3) are
precisely those rational replacements that preserve connectivity.

Definition 2.3. A tangle diagram D is an immersed proper smooth 1-submanifold
of a closed 2-disk E such that all self-intersections are transverse double points,
endowed with over-under information at each such double point. Similarly, as for
tangles, every tangle diagram has an even number of end points D \ @E, and we call
two tangle diagrams in the same disk E with the same set of end points equivalent if
there is an orientation-preserving homeomorphism of E, fixing the boundary point-
wise, mapping one tangle diagram to the other, preserving over-under information,
and preserving orientation if the tangle diagram is oriented.

4Naot’s notation is ZŒH � instead of ZŒG�. H is for ‘handle’, while G is for ‘genus’ . . ..
5With 2n > 0 end points, there are .2n � 1/ŠŠ connectivities, where ŠŠ denotes the double

factorial.
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Remark 2.4. All tangles in a ball that is embedded into the 3-sphere arise as intersec-
tions of that ball with a link that is transverse to the ball’s boundary sphere. Similarly,
all tangle diagrams in a disk embedded into the plane arise as intersections of that disk
with link diagrams that are transverse to the disk’s boundary circle.

How are tangle diagrams with 2n end points in two different disksE1,E2 related?
Let us consider homeomorphisms 'WE1!E2 that are orientation-preserving and end
point-preserving, i.e., sending end points to end points. If two such homeomorphisms
'; '0 are end point-preservingly isotopic (i.e., isotopic along end point-preserving
maps), then they send a tangle diagram D � E1 to two equivalent tangle diagrams
'.D/; '0.D/ � E2. By Alexander’s trick, the isotopy class of a homeomorphism
E1!E2 is determined by the isotopy class of its restriction to the boundary. So, there
are 2n end point-preserving isotopy classes of homeomorphisms E1! E2, each giv-
ing a way to identify equivalence classes of 2n-ended tangle diagrams in two different
disks. If one considers tangle diagrams with base points, i.e., one distinguished end
point, then requiring that ' sends base point to base point determines ' uniquely up
to isotopy.

The situation is more complicated, however, for tangles in different balls B1, B2.
As before, the end point-preserving isotopy classes of homeomorphisms 'W B1 !
B2 are determined by the end point-preserving isotopy classes of homeomorphisms
@B1 ! @B2. Those are in (non-canonical) one-to-one correspondence with the ele-
ments of the mapping class group of the 2n-punctured sphere (see, e.g., [11] for an
introduction to mapping class groups). For 2n � 4, there are non-trivial mapping
classes fixing some boundary point; so, in contrast to the situation for tangle dia-
grams, base-pointed tangles with four or more end points in different balls cannot be
identified in a canonical fashion.

This also has consequences for the tangle diagrams of a tangle, which one may
obtain by projection.

Definition 2.5. Let T � B be a 2n-ended tangle. Let ' be a homeomorphism from B

to the unit ball B0 � R3, mapping the end points of T on @B to

¹.cos.k�=n/; sin.k�=n/; 0/ j 0 � k < 2nº:

If the projection R3 ! R2; .x; y; z/ 7! .x; y/ sends '.T / to a tangle diagram DT in
the unit disk in the xy-plane, we call DT a tangle diagram of T .

A fixed homeomorphism ' sends equivalent tangles T , T 0 to tangle diagrams
DT ; DT 0 related by Reidemeister moves and tangle diagram equivalence. But if one
does not specify ', this is no longer true, and the equivalence class of T is no longer
determined by DT . We will revisit this in Section 3.2.
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For now, let us focus on the special case n D 1. (Note that, for n D 0, tangles
without end points are just links in a ball and of no interest beyond that.) Two-ended
tangles and tangle diagrams will be the objects we use to construct ZŒG�-homology
in this section. We have the following one-to-one correspondences:

isotopy classes of base-
pointed oriented links
L � S3

1W1
 !

equivalence classes of 2-ended tan-
gles T in a fixed ball with fixed end
points x, y, with the arc of T oriented
from x to y.

(2.1)

isotopy classes of base-
pointed oriented link dia-
grams

1W1
 !

equivalence classes of 2-ended tangle
diagrams D in a fixed disk with fixed
end points x, y, with the arc of D ori-
ented from x to y.

(2.2)

Let us describe how to get from L to T and vice versa in (2.1). The complement
of an open ball neighborhood of the base point of L is a closed ball B containing
a 2-ended tangle B \ L. There are two non-isotopic homeomorphisms sending end
points to end points betweenB and another fixed ball; these two correspond to the two
elements of the mapping class group of the twice-punctured sphere. By specifying the
orientation of the arc on the right-hand side of (2.1), we eliminate this ambiguity.
In the other direction, a fixed ball containing a 2-ended tangle T may be embedded
into S3, and the two end points of T may be joined by an arc outside of the embedded
ball, producing a link L � S3. The correspondence (2.2) can be shown in a similar
way.

So, from now on, we will work with the notions of base-pointed link (diagrams)
and 2-ended tangle (diagrams) interchangeably. Moreover, we may assign tangle dia-
grams to given 2-ended tangles, without the ambiguities arising for tangles with more
end points.

Note that this setup is also well suited to describe the connected sum operation:
given two base-pointed oriented links L, L0, glue their corresponding 2-ended tangles
together in a way that is compatible with the orientation of the arcs. This produces
another oriented 2-ended tangle, which corresponds to the connected sum L#L0.

2.2. Categorical framework

Let us now fix some notions from category theory, following Bar-Natan [5]. When-
ever we refer to “category” in this paper, we assume that the category is small; i.e., its
classes of objects and morphisms are actually sets. A category C is called pre-additive
if it has the following additional structure: for any two given objects O;O0 2 ob.C/,
the set homC .O;O

0/ is an Abelian group and the composition of morphisms is bilin-
ear. An arbitrary category C can be made pre-additive by allowing formal Z-linear



Khovanov homology and rational unknotting 667

2

1

3

1

3

2

Figure 2. Two non-equal but isomorphic objects in Cob3.2n/.

combinations in every set of morphisms homC .O;O
0/ and by extending composition

of morphisms in the natural bilinear way. Given a pre-additive category C , we denote
by Mat.C/ the additive closure and by Kom.C/ the category of complexes over C (in
the sense of Bar-Natan [5]). We call a pre-additive category C graded if it carries the
following additional structure.

(1) For any two objects O;O0 2 ob.C/, homC .O;O
0/ forms a graded Abelian

group such that composition of morphisms respects the grading and such that
all identity maps are of degree zero.

(2) There is a Z-action .m;O/ 7! O¹mº on the objects of C , called grading shift
by m. Note that this action changes gradings of morphisms, but not the set
of morphisms itself (i.e., homC .O;O

0/ D homC .O¹mº;O
0¹nº/, but if f 2

homC .O;O
0/ has degree d , then f 2 homC .O¹mº;O

0¹nº/ has degree d �
mC n).

If a pre-additive category C only satisfies the first point above, we can extend the
category to have the second point as well: simply add “artificial” objects O¹mº for
any O 2 ob.C/ andm 2 Z and define the Z-action in the obvious way. Let us call this
construction the graded closure. If C is a graded category, the additive closure Mat.C/
and the category of complexes Kom.C/ can be considered as graded categories as
well.

Next, let us describe the categories we are going to work with to construct ZŒG�-
homology.

• Cob3.2n/: the objects of Cob3.2n/ are crossingless unoriented 2n-ended tangle
diagrams DT (possibly empty if n D 0) in some disk that is fixed throughout,
together with an enumeration of every circle appearing in DT (see Figure 2).
Morphisms are 2-dimensional cobordisms (orientable, possibly disconnected sur-
faces) between two such diagrams DT , DT 0 , considered up to boundary-fixing
isotopy. The identity is given by the product cobordism, and composition is done
by concatenating cobordisms. We turn Cob3.2n/ into a pre-additive category as
described above. For better readability, we will frequently keep the enumeration
implicit and omit it in our diagrams.
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+ = +

= 2= 0

S -relation T -relation

4T u-relation

Figure 3. The defining relations for Cob3=l .2n/.

• Cob3=l.2n/: by modding out the local relations S , T , and 4T u on the morphisms
of Cob3.2n/, we obtain the category Cob3=l.2n/ (see Figure 3).

• E: there is only one object in E , namely, the crossingless diagram DT0 of the
trivial 2-ended tangle T0. Morphisms are connected cobordisms up to boundary-
fixing isotopy. The identity is given by the product cobordism (a “curtain”, see
Definition 2.7), and composition is done by concatenating cobordisms. We turn E

into a pre-additive category as described above.

• MR: let R be a graded ring. We write R¹mº for R with grading shifted by m 2
Z, i.e., R¹mºn D Rn�m. Let MR be the category whose objects are graded R-
modules isomorphic to a direct sum

Ln
iD1 R¹miº, and whose morphisms are

graded homomorphisms between R-modules. We turn MR into a graded category
by introducing the shift operation 

nM
iD1

R¹miº

!
¹nº WD

nM
iD1

R¹mi C nº; n 2 Z:

Remark 2.6. Note that our definition of the category Cob3.2n/ (resp., Cob3=l.2n/)
differs from Bar-Natan’s definition in [5]: we require that the objects in Cob3.2n/,
i.e., crossingless tangle diagrams, come with an enumeration of the circles in the
diagram. This enumeration will be needed in subsequent sections in order to obtain
well-defined TQFTs. It is worthwhile to note that while the enumeration enlarges the
set of objects in Cob3.2n/, it does not introduce any new isomorphism classes of
objects compared to Bar-Natan’s definition. Indeed, the morphisms of Cob3.2n/ are
unaffected by the enumeration, so any two differently enumerated tangle diagrams
with the same underlying un-enumerated tangle diagram are isomorphic via the prod-
uct cobordism. In fact, the functor that forgets the enumeration of the circles is an
equivalence of categories.
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Connected cobordisms between the trivial 2-ended tangle diagram DT0 and itself
will have a special role throughout this paper, so let us give them a proper name.

Definition 2.7. A connected cobordism of genus k between the trivial 2-ended tangle
diagram and itself will be called a curtain of genus k.

Figure 4 shows a curtain of genus one.
Let C 2 homCob3.2n/.DT1 ; DT2/ be a morphism between two tangle diagrams

DT1 and DT2 . We can turn homCob3.2n/.DT1 ; DT2/ into a graded Abelian group by
setting

degC WD �.C / � n;

where �.C / is the Euler characteristic of C . Consequently, we can extend Cob3.2n/
to become a graded category (cf. [5]). Since the three local relations S , T , and 4T u
are degree-homogeneous, Cob3=l.2n/ is graded too. Last but not least, we use the same
notion of degree to turn E into a graded category as well. For the sake of simplicity,
we will use the same notation for the graded versions of Cob3.2n/, Cob3=l.2n/, and E .

2.3. Definition of the ZŒG�-complex

Given a 2n-ended tangle T with diagram DT , Bar-Natan [5] showed how to obtain
from the cube of resolutions of DT a chain complex ŒDT � living in

Kom.Mat.Cob3=l.2n///

and well defined up to isomorphism. For 2-ended tangles, this complex is an invariant
up to homotopy equivalence for equivalent tangles. If T is obtained from a link L
with base point by the correspondence (2.1), Bar-Natan showed that one can obtain
the original Khovanov homology of L from the complex ŒT � [5, Section 9].

There is an isomorphism in the category Mat.Cob3=l.2// known as delooping6,
which can be used to reduce the complexity of the complex ŒT �. It is described in
Figure 5.

It is a simple exercise to check that the morphisms depicted in Figure 5 yield
two mutually inverse isomorphisms in Mat.Cob3=l.2//. In other words, we have an
isomorphism of objects

Š ¹�1º ˚ ¹C1º:

6Delooping was first described by Bar-Natan [6], with a different version given later by
Naot [39]. Our version is closest to Naot’s, with the exception that we do not use dotted cobor-
disms.
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Figure 4. A curtain of genus one.

-

¹�1º

¹C1º

Figure 5. Delooping.

Given a 2-ended tangle T with diagram DT , we can use delooping to succes-
sively resolve every circle appearing in the complex ŒDT �. This yields an isomor-
phic complex whose chain objects consist solely of sums of grading shifted copies
of DT0 , giving us a connection between the categories Kom.Mat.Cob3=l.2/// and
Kom.Mat.E//. In fact, we have the following.

Proposition 2.8. The functor BWMat.E/! Mat.Cob3=l.2// given by inclusion is an
equivalence of categories.

The proof requires quite a bit of work and is postponed to Appendix A.
As B is an equivalence of categories, there is a functor I WMat.Cob3=l.2// !

Mat.E/ such that I ı B and B ı I are naturally isomorphic to the identity func-
tors IdMat.E/ and IdMat.Cob3=l .2//

, respectively. This functor can be constructed by using
delooping, though not in a natural way: there is an ambiguity in the order of which cir-
cles get delooped.7 Observe that if I is constructed in this way, then I ıB D IdMat.E/

while B ı I is still only naturally isomorphic to IdMat.Cob3=l .2//
. The functor I induces

an equivalence of categories

yI WKom.Mat.Cob3=l.2///! Kom.Mat.E//:

7This problem can be resolved by introducing the convention of always delooping the last
circle with respect to the enumeration. However, since we do not need a natural inverse, we are
not going to introduce such a convention.
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Now, let G be a formal variable and consider the ring ZŒG�. We equip ZŒG�

with a grading by setting deg 1 D 0 and degG D �2, and we consider the cate-
gory MZŒG�. There is a functor F WE !MZŒG� sending the object DT0¹mº 2 ob.E/
to the ZŒG�-module ZŒG�¹mº and a cobordism of genus k to the linear map given by
multiplication with Gk . This functor extends by linearity to a functor F WMat.E/!
MZŒG�, which is in fact an isomorphism. Moreover, it induces yet another functor

yF WKom.Mat.E//! Kom.MZŒG�/:

Let us make the following definition.

Definition 2.9. The ZŒG�-complex of a 2-ended tangle T , denoted by �.T /, is
defined as the chain complex

�.T / WD yF . yI .ŒT �// 2 Kom.MZŒG�/;

where ŒT � is the Bar-Natan complex of T . IfL is a link with base point and TL its cor-
responding 2-ended tangle, we define the ZŒG�-complex ofL as�.L/ WD yF . yI .ŒTL�//.

By construction, the homotopy class of �.T / is an invariant for 2-ended tangles.
The construction is summarized in the following schematic below:

2-ended tangle T

cube of resolutions of T

ŒT � 2 Kom.Mat.Cob3=l.2///

yI .ŒT �/ 2 Kom.Mat.E//

�.T / WD yF . yI .ŒT �// 2 Kom.MZŒG�/:

[5]

yI ;Proposition 2.8

yF

2.4. Frobenius systems and TQFTs

In [20], Khovanov describes a rank 2 Frobenius system Funiv (denoted by F5 in [20])
which is universal in the sense that any other rank two Frobenius system can be
obtained from it by a base change and a twist. Consequently, the chain complex
obtained by applying the Funiv-TQFT to the cube of resolutions is sometimes called
universal Khovanov complex. Before we go into more details, let us first recall the
definition of a Frobenius system (as in [20]).
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Definition 2.10. A Frobenius system F D .R; A; �; "/ is a 4-tuple consisting of a
graded commutative unitary ringR and a graded or filtered freeR-moduleA equipped
with a commutative algebra structure (multiplication m, unit �) and a cocommutative
coalgebra structure (comultiplication �, counit ") that are related by the so-called
Frobenius identity:

� ım D .Id˝m/ ı .�˝ Id/:

The maps defining the (co-)algebra structure are required to be homogeneous of a
certain degree.

We will only be interested in rank 2 Frobenius systems, i.e., Frobenius systems
where A Š R1˚ RX as R-modules for some X 2 A, and for such systems, we will
always use the grading deg 1 D 0 and degX D �2.

Given a rank 2 Frobenius system F D .R; A; �; "/, we can define a functor
(a TQFT) F WCob3=l.2/!MA as follows.8

(1) On objects, F acts in the following way:

F
�
t � � �„ ƒ‚ …

n times

�
D A¹1º ˝R A¹1º ˝R � � � ˝R A¹1º„ ƒ‚ …

n times

:

Here, the special strand corresponds to the first tensor factor while the other
factors are ordered according to the enumeration of the circles. The underline
indicates the action of A on the tensor product A¹1º ˝R A¹1º˝n, turning it
into an A-module.

(2) The morphisms of Cob3=l.2/ can be expressed as sums of compositions of
disjoint unions of the following elementary cobordisms (details can be found
in [18]):

Hence, it is enough to define F on these elementary cobordisms:

F

� �
D mWA¹1º ˝ A¹1º ! A¹1º;

F
� �

D �WR¹1º ! A¹1º;

F

� �
D �WA¹1º ! A¹1º ˝ A¹1º;

F
� �

D "WA¹1º ! R¹1º;

8We abuse notation and use F to denote the Frobenius system, the corresponding TQFT,
and sometimes even the Frobenius algebra of the system.
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F

� �
D mWA¹1º ˝ A¹1º ! A¹1º;

F

� �
D IdWA¹1º ! A¹1º;

F

� �
D �WA¹1º ! A¹1º ˝ A¹1º;

F

� �
D IdWA¹1º ! A¹1º:

Given a 2-ended tangle T with diagram DT , we can apply F to its cube of
resolutions and obtain a Khovanov-type chain complex in the usual way. The result-
ing complex is sometimes called unreduced. We will denote it by either CF .T /

or CF .DT /, which is justified since different choices of the diagramDT yield homo-
topy equivalent complexes.

Remark 2.11. (1) By our definition, a TQFT yields a complex over the category MA.
However, this category is not Abelian, so in order to take homology, one has to move
from Kom.MA/ to Kom.A-Mod/ using inclusion, where A-Mod denotes the category
of gradedA-modules. We accept this inconvenience because MA is a simpler category
and complexes are our main working tool (in contrast to homology).

(2) If we forget about the base point, then the TQFT above can be viewed as
F WCob3=l.0/!MR which yields the usual Khovanov complex corresponding to the
Frobenius system F .

We will mainly be interested in the following two Frobenius systems.

Definition 2.12. The Frobenius system Funiv D .Runiv; Auniv; �; "/ is defined as fol-
lows:

Runiv D ZŒh; t �; Auniv D RunivŒX�=.X
2
� hX � t /;

".1/ D 0; �.1/ D 1˝X CX ˝ 1 � h1˝ 1;

".X/ D 1; �.X/ D X ˝X C t1˝ 1:

We equip Funiv with a grading by setting degX D deg h D �2 and deg t D �4.

Definition 2.13. The Frobenius system FZŒG� D .RZŒG�; AZŒG�; �; "/ is defined as
follows:

RZŒG� D ZŒG�; AZŒG� D RZŒG�ŒX�=.X
2
CGX/;

".1/ D 0; �.1/ D 1˝X CX ˝ 1CG1˝ 1;

".X/ D 1; �.X/ D X ˝X:

We equip FZŒG� with a grading by setting degX D degG D �2.
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It is easy to see that FZŒG� can be obtained from Funiv by a base change that
sends t 7! 0 and h 7! �G. To simplify notation, we will write Cuniv for the unreduced
complex CFuniv and CZŒG� for CFZŒG�

.
Using the Frobenius system FZŒG�, we can define a second type of chain complex

as follows.

Definition 2.14. Let T be a 2-ended tangle with diagramDT and CZŒG�.DT / the cor-
responding FZŒG�-complex. The reduced FZŒG�-complex of T is defined as follows:

JT K WD CZŒG�.DT /˝AZŒG� AZŒG�=.X/¹�1º 2 Kom.MZŒG�/:

The notation JT K is justified since different choices of the diagram DT yield
homotopy equivalent complexes. (We will sometimes use JDT K nevertheless.)
Observe that reducing has the following effect on summands in CZŒG�:

AZŒG�¹1º ˝RZŒG� AZŒG�¹1º
˝n reduce
���! RZŒG� ˝RZŒG� AZŒG�¹1º

˝n:

In particular, the reduced complex has no longer an AZŒG�-module structure. Also,
note that the first factor is no longer affected by a shift in grading.9 We will see in the
next section that the reduced FZŒG�-complex JT K is in fact isomorphic to the ZŒG�-
complex �.T / defined in Section 2.3.

2.5. Equivalence of the Funiv- and ZŒG�-theory

Let F D .R;A;�; "/ be a rank 2 Frobenius system. The corresponding TQFT gives
us a functor

˛ D ˛F WKom.Mat.Cob3=l.2///! Kom.MA/:

Let us now show that the Funiv- and the ZŒG�-theory are equivalent.

Lemma 2.15. Let DT be a 2-ended tangle diagram, and let F D .R; A;�; "/ be a
rank 2 Frobenius system. We can see A as a ZŒG�-module by lettingG act as F . /.
Then, the functor 
 WKom.MZŒG�/! Kom.MA/ defined as


.Y / WD Y ˝ZŒG� A¹1º; Y 2 Kom.MZŒG�/

satisfies
˛.ŒDT �/ Š 
.�.DT //

(cf. Figure 6).

9This is needed in order for the dual of the reduced complex to correspond to the reduced
complex of the mirror image. Here, we use the usual convention that the signs of the homolog-
ical and quantum grading in the dual are switched.
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2-ended tangle diagrams

cubes of resolutions

Kom.Mat.Cob3=l.2///

Kom.Mat.E//

Kom.MA/ Kom.MZŒG�/

F -TQFT

[5]

˛

yI ;Proposition 2.8

yF



Figure 6. The functors and constructions figuring in the statement of Lemma 2.15.

Kom.Mat.Cob3=l.2///

Kom.Mat.E//

Kom.MA/ Kom.MZŒG�/

˛
yI

ˇ

yJ
yF




�

Figure 7. Functors used in the proof of Lemma 2.15.

Proof. We know that the functor yI is an equivalence of categories (with “inverse” yB ,
cf. Proposition 2.8) and that yF is an isomorphism of categories; thus, if ˇ D yF ı yI
and � D yB ı yF �1, we have that �.ˇ.C // Š C for all C 2 Kom.Mat.Cob3=l.2/// (see
Figure 7). In order to show that ˛.ŒDT �/Š 
. yF . yI .ŒDT �///, it is enough to prove that
˛.�.Y //Š 
.Y / for all Y 2 Kom.MZŒG�/. This is done by introducing a new functor
J WE !MA sending the trivial 2-ended tangle diagram DT0 to the A-module A and
the curtain with genus k � 0 to the linear map given by F . /k . The functor J
induces a functor

yJ WKom.Mat.E//! Kom.MA/:

It is easy to see that yJ D ˛ ı yB , so ˛ is naturally isomorphic to yJ ı yI . Thus, it only
remains to check that yJ Š 
 ı yF . This follows immediately from the definitions.

Before we move on, let us first show that the reduced FZŒG�-complex J � K is iso-
morphic to �.
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Proposition 2.16. The reduced FZŒG�-complex JDT K is isomorphic to the ZŒG�-
complex �.DT /.

Proof. Using Lemma 2.15 with F D FZŒG� and that

AZŒG�=.X/ Š ZŒG�;

we obtain

JDT K D CZŒG�.DT /˝AZŒG� AZŒG�=.X/¹�1º

D ˛.ŒDT �/˝AZŒG� AZŒG�=.X/¹�1º

Š 
.�.DT //˝AZŒG� AZŒG�=.X/¹�1º

Š �.DT /˝ZŒG� AZŒG�=.X/¹�1º

Š �.DT /:

Proposition 2.16 tells us that the reduced FZŒG�-complex and the ZŒG�-complex
are isomorphic. We will from now on denote both complexes by J � K and no longer
distinguish between them.

Theorem 2.17. Let DT be a 2-ended tangle diagram, and let

F D .R;A;�; "/

be a rank 2 Frobenius system. The F -complex CF .DT / is determined by the ZŒG�-
complex JDT K in the following way:

CF .DT / Š JDT K˝ZŒG� A¹1º 2 Kom.MA/;

where A is a ZŒG�-module via G acting as F . /.

Proof. The statement of the theorem follows immediately from Lemma 2.15 and
Proposition 2.16:

CF .DT / D ˛.ŒDT �/ Š 
.�.DT // Š JDT K˝ZŒG� A¹1º:

Observe that Theorem 2.17 specializes to Theorem 1.5 from the introduction.

Theorem 1.5. Endow Auniv D ZŒh; t �ŒX�=.X2 � hX � t / with the structure of a
ZŒG�-module by letting G act as 2X � h. Then, for every knot K,

Cuniv.K/ ' JKK˝ZŒG� Auniv¹1º:

Proof. Apply Theorem 2.17 with F D Funiv.

Let us make explicit how ZŒG�-homology determines the original Khovanov ho-
mology. (Naot mentions this statement in [39, Section 6.6].)
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Corollary 2.18. For all knots K, the unreduced integral Khovanov chain complex
may be obtained from JKK by tensoring with the ZŒG�-module Z¹�1º ˚Z¹1º, where
G acts as

�
0 2
0 0

�
. More sloppily said, replace every copy of ZŒG�¹mº by Z¹m � 1º ˚

Z¹mC 1º, and every differential nGk with n; k 2 Z; k � 0 by
�
n 0
0 n

�
for k D 0, by�

0 2n
0 0

�
for k D 1, and by the zero matrix for k � 2.

Proof. Apply Theorem 2.17 to the Frobenius system ZŒX�=.X2/ over Z, and forget
the action of the algebra.

Theorem 2.17 shows us how to obtain the F -complex CF .DT / from the ZŒG�-
complex JDT K for any rank 2 Frobenius system F , which is in particular true for the
universal system Funiv. In order to show that the Funiv- and the ZŒG�-theory are in fact
equivalent, it remains to prove that JDT K is also determined by Cuniv.DT /.

Theorem 2.19. Let DT be a 2-ended tangle diagram. The ZŒG�-complex JDT K is
determined by the Funiv-complex Cuniv.DT / in the following way:

JDT K Š Cuniv.DT /˝Auniv ZŒG�¹�1º 2 Kom.MZŒG�/;

where ZŒG� is an Auniv-module by X and t acting as 0 and h as �G.

Proof. By Theorem 2.17,

CFuniv.DT / Š JDT K˝ZŒG� Auniv¹1º: (*)

Consider AZŒG� as an Auniv-module by letting t act as 0 and h as �G. Tensoring (*)
with AZŒG� over Auniv yields

Cuniv.DT /˝Auniv AZŒG� Š
�
JDT K˝ZŒG� Auniv¹1º

�
˝Auniv AZŒG�

Š JDT K˝ZŒG� AZŒG�¹1º

Š CZŒG�.DT /:

Therefore,

JDT K D CZŒG�.DT /˝AZŒG� AZŒG�=.X/¹�1º

Š .Cuniv.DT /˝Auniv AZŒG�/˝AZŒG� AZŒG�=.X/¹�1º

Š Cuniv.DT /˝Auniv AZŒG�=.X/¹�1º

Š Cuniv.DT /˝Auniv ZŒG�¹�1º:

The discussion in this section can be summarized by the commutative diagram in
Figure 8, where �WKom.MAuniv/! Kom.MZŒG�/ is the functor given by

�.C / WD C ˝Auniv ZŒG�¹�1º

for C 2 Kom.MAuniv/.
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2-ended tangle diagrams

cubes of resolutions

Kom.Mat.Cob3=l.2///

Kom.Mat.E//

Kom.MAuniv/ Kom.MZŒG�/

Funiv-TQFT red.FZŒG�-TQFT

[5]

yI ;Proposition 2.8

yJ yF

�




Figure 8. A summary of the relationships discussed in Section 2.5.

2.6. Reduced ZŒG�-homology

Let T be a 2-ended tangle. We have seen in the previous subsection that the reduced
ZŒG�-complex JT K is determined by the Funiv-complex Cuniv.T / and vice versa. One
advantage of the ZŒG�-complex is that setting G D 1 yields a particularly simple
homology theory.

Proposition 2.20. Let T be a 2-ended tangle with a single component. Then,

H.JT KGD1/ Š Z;

where JT KGD1 is the complex JT KGD1 WD JT K˝ZŒG� ZŒG�=.G � 1/.

Proof. Let us first look at the unreduced situation over the rationals, i.e., the complex

C.T / WD .CZŒG�.T /˝AZŒG� AQŒG�/˝AQŒG� QŒG�=.G � 1/;

where AZŒG� D ZŒX;G�=.X2 CGX/ and AQŒG� DQŒX;G�=.X2 CGX/. Note that
C.T / can be equivalently obtained from the Frobenius algebra QŒX�=.X2 C X/ in
the usual way. By [33, Proposition 2.3], we know that

H.C.T // Š Q˚Q:

In fact, using Wehrli’s edge-coloring technique [52, Section 2.1], one obtains a de-
composition

C.T / D XC.T /˚ .X C 1/C.T /;
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whereXC.T / and .X C 1/C.T / are the subcomplexes generated by all elements hav-
ingX andX C 1 as the first tensor factor (i.e., at the base point), respectively. Similar
to [52, Theorem 5], one can show that bothXC.T / and .X C 1/C.T / have homology
of dimension one. Now, let us look at the reduced situation over the rationals, i.e., the
complex

JT KQ;GD1 WD JT KGD1 ˝Z Q:

By construction, JT KQ;GD1 is equivalent to the complex C.T / with X set to 0 in the
first tensor factor of every summand in C.T /, which means that the summandXC.T /
becomes trivial after reducing. Hence,

H.JT KQ;GD1/ Š Q:

Switching back to the integers, the above tells us that dimQ.JT KGD1/ D 1. Hence, it
remains to show that JT KGD1 has no torsion. This is done in the same way as in the
proof of [33, Proposition 2.4 (ii)].

Remark 2.21. Let T be a 2-ended tangle corresponding to a knot K. It is interesting
to note that one can extract the Rasmussen sF -invariant ofK over any field F from the
ZŒG�-homology of K. Indeed, consider the ZŒG�-complex with coefficients switched
to some field F , i.e.,

JKKFŒG� D JKK˝ZŒG� F ŒG�:

This is a Khovanov-type complex over the PID F ŒG�; hence, it decomposes into a
single grading-shifted copy of the base ring F ŒG�¹nº and some summands of the form

F ŒG�¹mº
Gk

��! F ŒG�¹2kCmº for k;m;n 2 Z and k � 0 (a so-called pawn and several
Gk-knights, cf. Definition 3.16). Therefore, setting G D 1 in JKKFŒG� yields

JKKFŒG� ˝FŒG� F ŒG�=.G � 1/ ' F ŒG�¹nº ˝FŒG� F ŒG�=.G � 1/:

We claim that n, i.e., the filtered degree of the generator of F ŒG�¹nº in homology, is
equal to sF .K/. By [33], sF .K/ can be obtained from the homology of the unreduced
complex CFFŒG�

.K/ corresponding to the Frobenius algebra

AFŒG� D F ŒG;X�=.X2 CGX/

after setting G D 1. On the other hand, using Theorem 2.17 and the decomposition of
JKKFŒG� described above, we can write CFFŒG�

.K/ as

CFFŒG�
.K/ Š JKKFŒG� ˝FŒG� AFŒG�¹1º

Š .F ŒG�¹nº ˚R/˝FŒG� AFŒG�¹1º

Š AFŒG�¹nC 1º ˚ .R˝FŒG� AFŒG�¹1º/;
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where R consists solely of summands F ŒG�¹mº
Gk

��! F ŒG�¹2k C mº. If we now set
G D 1 and take homology, we obtain

H.CFFŒG�
.K/˝FŒG� F ŒG�=.G � 1// Š F ŒX�=.X2 CX/¹nC 1º:

Now, F ŒX�=.X2 C X/¹nC 1º is generated by 1 and X in filtered degrees nC 1 and
n � 1, respectively; hence, sF .K/ D n by [41], as claimed.

2.7. The Bar-Natan complex of tangles with base point

Recall that the crossingless unoriented 2n-ended tangle diagrams in Cob3.2n/ lie
inside a fixed disk with fixed end points. Let us fix one of those end points as base
point. Given a cobordism from the trivial 2-ended tangle diagram DT0 to itself, and a
cobordism in Cob3.2n/ between diagrams D and D0, one may glue these two cobor-
disms together such that one of the end points of DT0 gets attached to the base points
of D and D0. This gives a bilinear map

homCob3.2/.DT0 ;DT0/ � homCob3.2n/.D;D
0/! homCob3.2n/.D;D

0/:

Quotienting by the relations l , and using that homCob3.2/.DT0 ; DT0/ is isomorphic
to ZŒG�, we obtain a ZŒG�-action on each of the morphism Z-modules of Cob3=l.2n/.

Definition 2.22. Denote by Cob3;�=l .2n/ the ZŒG�-enriched category obtained from
Cob3=l.2n/ by fixing one of the tangle end points as base point and letting ZŒG� act
on the morphism groups as described above. For a 2n-ended tangle diagram D with
base point, denote by ŒD�� the Bar-Natan chain complex ofD over Cob3;�=l .2n/. Here,
we identify equivalence classes of tangle diagrams in the disk in which D lives with
equivalence classes of tangle diagrams in the disk fixed for Cob3;�=l .2n/, using a home-
omorphism (which is unique up to isotopy) between these disks that sends end points
to end points and base point to base point.

Note that one may recover Cob3=l.2n/ from Cob3;�=l .2n/ and ŒD� from ŒD�� by sim-
ply forgetting the ZŒG�-action and the base point. In other words, Definition 2.22 only
introduces the action of G but does not introduce any new objects and morphisms.

Remark 2.23. For n D 1, the ZŒG�-action on Cob3=l.2/ is by construction the same
as the one obtained via the equivalence of Cob3=l.2/ and MZŒG�. In particular, for 2-
ended tangle diagrams D, both choices of base point result in the same ZŒG�-action
on ŒD��.

Gluing constructions as the one above have been formalized by Bar-Natan [5]
using the following tool.
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(a) (b)

(c) (d)

Figure 9. Examples of the concepts introduced in Definition 3.8. An asterisk marks the base
point. (a) D4, (b) a braid-like 6-ended tangle diagram Q, (c) a 4-ended tangle diagram T ,
(d) D4.T;Q/, called a braiding of T using Q.

Definition 2.24. A d -input planar arc diagram D is a disk (called output disk), with
d enumerated open so-called input disks removed from its interior, together with a
proper smooth oriented 1-submanifold of D , with end points on @D . Here, @D con-
sists of the union of the @E, with E ranging over the input disks and the output disk.
The number of end points on each such @E is required to be even; if it is non-zero,
then one of the end points is distinguished as base point of E. An example can be
seen below and in Figure 9.

Let D be a d -input planar arc diagram with 2n0 end points on the output disk
and 2ni end points on the i -th input disk. By gluing tangle diagrams, D yields an
operator that takes as input d base-pointed tangle diagrams D1; : : : ; Dd that fit into
the input disks, and that gives as output a base-pointed tangle diagram D.D1; : : : ;Dd /.
For what follows, recall that, for each n � 1, we fixed a base point on the boundary
of the disk containing the crossingless tangles of Cob3.2n/. By gluing crossingless
tangle diagrams and cobordisms, D then gives a functor

dY
iD1

Cob3.2ni /! Cob3.2n0/;

which is compatible with modding out the relations l . By taking tensor products, this
functor extends to a functor

dY
iD1

Kom.Mat.Cob3=l.2ni ///! Kom.Mat.Cob3=l.2n0///;

which is compatible with homotopy equivalence. Note that the orientations of the
arcs and circles in D matter for the operator, but not for the functors. We have the
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following compatibility result:

D.ŒD1�; : : : ; ŒDd �/ Š ŒD.D1; : : : ;Dd /�: (2.3)

Equipped with this tool set, one could give a more formal definition of the ZŒG�

action on ŒD�� given in Definition 2.22, using a 2-input planar arc diagram whose two
input disks have 2 and 2n end points, respectively.

Moreover, for the following input diagram

D D * * * ,

clearly, D.D1; D2/ is a diagram of the connected sum L1#L2, if Di is a 2-ended
tangle diagram corresponding do the base-pointed link Li , in the sense of (2.1). From
ŒD.D1;D2/� Š D.ŒD1�; ŒD2�/, it now follows that

JL1#L2K Š JL1K˝ JL2K: (2.4)

To adapt to ZŒG�-complexes, we consider planar arc diagrams D satisfying the
following condition: D contains an arc connecting the base point of the output disk
to the base point of the first input disk. Then, D induces a functor

Kom.Mat.Cob3;�=l .2n1///�
dY
iD2

Kom.Mat.Cob3=l.2ni ///!Kom.Mat.Cob3;�=l .2n0///:

For this functor, we have the following analog of (2.3):

D.ŒD1�
�; ŒD2�; : : : ; ŒDd �/ ' ŒD.D1; : : :Dd /�

�:

3. Properties of the �-invariant

For the convenience of the reader, let us restate the definition of � from the introduc-
tion.

Definition 1.7. For a knot K, let �.K/ be the minimal integer k � 0 such that there
exist ungraded chain maps (i.e., chain maps that do not need to respect the homologi-
cal or the quantum degree, cf. Definition 3.1)

JKK JU K
f

g

and homotopies g ı f ' Gk � idJKK; f ı g ' G
k � idJU K.
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Let us take this opportunity to clarify what we mean by ‘ungraded’.

Definition 3.1. For chain complexes .C; d/; .C 0; d 0/ in some additive category, an
ungraded chain map f WC ! C 0 is a morphism

f W

1M
iD�1

Ci !

1M
iD�1

C 0i

that need not respect homological degree such that d 0 ı f D f ı d . Whenever we
want to highlight the difference, we call a chain map in the usual sense graded. If the
underlying category is Abelian (so that one may take homology), then the ungraded
chain map f induces a morphism

f�WH.C/ D

1M
iD�1

Hi .C /!

1M
iD�1

Hi .C
0/ D H.C 0/:

Some authors also call a chain complex without homological grading a differential
module.

3.1. Basic properties and generalizations of �

First, let us extend the above definition of �.

Definition 3.2. Abusing notation, we denote by � all of the following functions.

• �.A;B/ for two chain complexes A;B over ZŒG�, or over Cob3;�=l .2n/, is defined
as the minimal integer k � 0 such that there exist ungraded chain maps f WA! B

and gWB ! A and homotopies g ı f ' Gk � idA, f ı g ' Gk � idB , if such a k
exists, and1 otherwise.

• �.A/ for A a chain complex over ZŒG� is an abbreviation for �.A; JU K/.

• �.D; D0/ for D and D0 two tangle diagrams in a fixed disk with the same end
points and the same base point is defined as �.ŒD��; ŒD0��/.

• �.K; J / for K and J two knots is defined as �.JKK; JJ K/.

Note that, for all knots K, �.K/ as in Definition 1.7 equals

�.K;U / D �.JKK; JU K/ D �.JKK/;

as in Definition 3.2.

Remark 3.3. One can naturally extend the definition of � from knots to links with
base point by setting �.L; L0/ to be �.T; T 0/, where T , T 0 are the 2-ended tangles
corresponding to the links L, L0 via (2.1). In this sense, most of this paper’s results
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will generalize from knots to links. For simplicity’s sake, however, we are sticking
with knots.

Next, let us prove some useful basic properties of �.

Lemma 3.4. For some k � 1, let A1; : : : ; Ak; B1; : : : ; Bk be chain complexes over
ZŒG� or Cob3;�=l .2n/. Then, for AD A1 ˚ � � � ˚Ak and B D B1 ˚ � � � ˚Bk , one has

�.A;B/ � max.�.A1; B1/; : : : ; �.Ak; Bk//:

Proof. Without loss of generality, we can assume that k D 2. If either �.A1; B1/
or �.A2;B2/ are equal to1, the statement of the lemma is trivial, so let us assume that
they are both finite. We pick chain maps f1; g1 such that f1 ı g1 ' G�.A1;B1/ � idB1
and g1 ı f1 ' G�.A1;B1/ � idA1 , and choose maps f2; g2 similarly for �.A2; B2/. Let
m D max.�.A1; B1/; �.A2; B2// and define

f WA1 ˚ A2 ! B1 ˚ B2; gWB1 ˚ B2 ! A1 ˚ A2

as follows:

f D

 
Gm��.A1;B1/ � f1 0

0 Gm��.A2;B2/ � f2

!
; g D

 
g1 0

0 g2

!
:

We leave it to the reader to check that

f ı g ' Gm � idB1˚B2 and g ı f ' Gm � idA1˚A2 :

Taking one of the Bi as JU K, and all the others as 0, we obtain the following
special case of Lemma 3.4, which gives a useful upper bound for � of a direct sum.

Corollary 3.5. Let C 1; : : : ; C n be chain complexes of ZŒG�-modules, fix a
j 2 ¹1; : : : ; nº, and let lk D �.C k; 0/, for all k ¤ j , and lj D �.C j /. Then,

�
�M

i

C i
�
� max

i
li :

Lemma 3.6. (i) �.A1˝A2/ � �.A1/C �.A2/ for A1, A2 chain complexes of ZŒG�-
modules.

(ii) �. xA/ D �.A/, where A is a ZŒG�-complex and xA is its dual.

Proof. For the first statement, let us assume that �.A1/;�.A2/ are both finite (if either
one is 1 the statement is trivial). Let fi WAi ! JU K, gi W JU K! Ai be chain maps
such that gi ı fi ' G�.Ai / � idAi and fi ı gi ' G�.Ai / � idJU K for i D 1; 2. Define

f WA1 ˝ A2 ! JU K˝ JU K Š JU K; gW JU K˝ JU K Š JU K! A1 ˝ A2
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as
f D f1 ˝ f2; g D g1 ˝ g2:

Then, g ı f ' G�.A1/C�.A2/ � idA1˝A2 and f ı g ' G�.A1/C�.A2/ � idJU K, so

�.A1 ˝ A2/ � �.A1/C �.A2/;

as desired.
As for the second statement, it follows from the fact that if f WA! JU K, gWJU K!

A are chain maps such that g ı f 'Gk � idA and f ı g'Gk � idJU K, then the induced
dual chain maps NgW xA! xJU K Š JU K and Nf W xJU K Š JU K! xA satisfy

Nf ı Ng ' Gk � id xA and Ng ı Nf ' Gk � idJU K :

Proposition 1.9 now follows directly from Lemma 3.6, since JK#J KŠ JKK˝ JJ K
(see (2.4)) and J�KK Š xJKK.

3.2. A closer look at � for tangles

Here, we will again make use of planar arc diagrams, as introduced in Section 2.7.

Lemma 3.7. Let D be a 2-input planar arc diagram containing an arc connecting
the base points of the output disk and the first input disk. LetD1 andD01 be two tangle
diagrams fitting into the first input disk, and let D2 be a tangle diagram fitting into
the second input disk. Then,

�.D.D1;D2/;D.D01;D2// � �.D1;D
0
1/:

Proof. If �.D1;D01/ D1, the statement is clear. Suppose that

�.D1;D
0
1/ D n 2 N

and consider chain maps f W ŒD1��! ŒD01�
� and gW ŒD01�

�! ŒD1�
� satisfying f ı g '

Gn � idŒD0
1
�� and g ı f 'Gn � idŒD1�� . Using the functor induced by D , we may define

maps Qf and Qg as

D.ŒD1�
�; ŒD2�/ D.ŒD01�

�; ŒD2�/:

QfDD.f;idŒD2�/

QgDD.g;idŒD2�/

These maps satisfy

Qg ı Qf D D.g ı f; idD2/ ' D.Gn � idD1 ; idD2/ D G
n
� idD.ŒD0

1
��;ŒD2�/

;

and the analogous equality for Qg ı Qf . This shows the desired statement.
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See Figure 9 for examples of the following definitions.

Definition 3.8. Let D2n be the following 2-input planar arc diagram: the two input
disks are 2n-ended and .4n � 2/-ended, respectively; D2n consists of one arc con-
necting the base point of the output disk to the base point of the first input disk,
2n � 1 arcs connecting end points of the two input disks, and 2n � 1 arcs connecting
end points of the second input disk to end points of the output disk.

We say that a tangle diagram Q with 2m end points is braid-like, if it may be
isotoped such that m end points are on the left, m end points are on the right, and Q
consists of m arcs that at no point have a vertical tangent.

For D2n as above, Q a .4n � 2/-ended braid-like tangle diagram, and D a 2n-
ended tangle diagram, we say that D2n.D;Q/ is a braiding of D.

Recall from Definition 2.5 that, to obtain a tangle diagram of a given tangle in a
ball B , one must choose a homeomorphism between B and the unit ball B0. We will
now show that two tangle diagrams of a fixed tangle are related by a finite sequence of
Reidemeister moves and a braiding. In fact, the braiding only depends on the homeo-
morphisms between the balls, and not on the tangles. Let us make this precise.

Lemma 3.9. LetB be a ball, and P D ¹p1; : : : ;p2nº � @B for some n� 1. Let '1, '2
be homeomorphisms from B to the unit ball B0 with '1.P / D '2.P / and '1.p1/ D
'2.p1/. Let D2n be the 2-input planar arc diagram from Definition 3.8. Then, there is
an unoriented braid-like .4n � 2/-ended tangle diagram Q such that for all tangles
T in B with end points P and base point p1 the following holds: if D1 and D2 are
the tangle diagrams of T coming from '1 and '2, respectively, then D2n.D1; Q/

and D2 are related by a finite sequence of Reidemeister moves and tangle diagram
equivalences.

Proof. Let f W S2 ! S2 be the restriction of '2 ı '�11 to S2 D @B0. Let us write
zP D '1.P / D '2.P / and Qpi D '1.pi /. Note f . zP / D zP . In case that f is isotopic

to idS2 along homeomorphisms fixing zP pointwise, it follows that '1.T / and '2.T /
are equivalent tangles, and thus, D1 and D2 are related by a finite sequence of Rei-
demeister moves and tangle diagram equivalences. To deal with general f , let us
consider the mapping class group of homeomorphisms f WS2 ! S2 with f . zP / D zP
and f . Qp1/ D Qp1, up to isotopy along such maps. Every such f is isotopic to a home-
omorphism fixing a neighborhood of Qp1 pointwise, and so this mapping class group
is isomorphic to the mapping class group of the .2n � 1/-punctured disk, which is
isomorphic to the braid group on 2n � 1 strands. More explicitly, it is generated
by �1; : : : ; �2n�2, where �i is a so-called half-twist, switching the positions of the
punctures QpiC1 and QpiC2 [11, Section 9.1.3]. So, f is isotopic to a product ˇ of the
generators �1; : : : ; �2n�2. Let Q be a braid-like .4n � 2/-ended tangle diagram cor-
responding to ˇ. Then, one sees that D2n.D1; Q/ is a tangle diagram of T coming
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from the homeomorphism .'2 ı '
�1
1 / ı '1 D '2. Therefore, D2n.D1;Q/ andD2 are

related by a finite sequence of Reidemeister moves and tangle diagram equivalences,
as desired.

Proposition 3.10. Let S and T be tangles with the same end points and the same
base point in a ball B . Let '1 and '2 be homeomorphisms from B to the unit ball B0,
leading to tangle diagramsDS1,DS2 for S andDT1,DT2 for T , respectively. Then,

�.DS1;DT1/ D �.DS2;DT2/:

Proof. By Lemma 3.9, there is a 2-input planar arc diagram D and a tangle Q such
that D.DS1; Q/ and DS2 are related by a finite sequence of Reidemeister moves,
and so, are D.DT1; Q/ and DT2. By Lemma 3.7, it follows that �.DS2; DT2/ �
�.DS1;DT1/. Switching the roles of '1 and '2, the opposite inequality also follows.

As a consequence, the following is well defined, since it does not depend on the
choice of homeomorphism.

Definition 3.11. Let S and T be tangles with the same end points and the same base
point in a ball B . Then, let �.S; T / be defined as �.DS ; DT /, where DS and DT
are tangle diagrams of S and T , respectively, obtained via the same homeomorphism
from B to the unit ball B0.

Proposition 3.12. Let S and T be two tangles in a ball B with the same connectivity,
base point and end points. Let R be a tangle in another ball B 0 and 'W @B ! @B 0 an
orientation-reversing homeomorphism sending end points to end points such that S [
R and T [R are knots in B [' B 0 Š S3. Then,

�.S [R; T [R/ � �.S; T /:

Proof. One may pick tangle diagramsDS ,DT , andDR for S , T , andR, respectively,
such thatDS andDT come from the same homeomorphism fromB toB0; gluingDS
and DR (using a 2-input planar arc diagram D) results in a knot diagram of S [ R;
and similarly, D.DT ;DR/ is a diagram of T [R. Then, we have

�.S [R; T [R/ D �.D.DS ;DR/;D.DT ;DR//

� �.DS ;DT /

D �.S; T /

by the definition of � for knots, Lemma 3.7, and Definition 3.11, respectively.

Proposition 3.13. Let us fix a ball and 2n end points on its boundary, and consider
unoriented tangles T with a fixed number of components, a fixed connectivity, and
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a fixed base point in that ball. On the set of equivalence classes of such tangles T ,
� is a pseudometric.

Proof. It is straightforward to see that � is symmetric, satisfies the triangle inequality,
and �.T; T / D 0. Since any two tangles S; T with same connectivity are related by
crossing changes, Theorem 1.1 implies that �.S; T / <1.

Note that �.S; T / D 0 if and only if ŒS�� and ŒT �� are ungradedly homotopy
equivalent. So, the existence of non-equivalent tangles with homotopy equivalent Bar-
Natan homology prevents � from being a metric. Still, this pseudometric allows for a
nice formulation of the main step of the proof of Theorem 1.1.

Proposition 3.14. Fix a ball and four end points on its boundary, where one of them
is distinguished as base point. On the set of equivalence classes of unoriented rational
tangles in that ball with fixed connectivity, the pseudometric given by � is in fact equal
to the discrete metric. That is to say, �.S; T / D 1 for inequivalent rational tangles S
and T .

The proof of Proposition 3.14 will be given in Section 5.

3.3. Decomposing ZŒG�-chain complexes into pieces

To analyze the ZŒG�-chain complex JKK of a knot K and compute �.K/, one may
follow a divide-and-conquer strategy and decompose JKK as a direct sum. This moti-
vates the following definition.

Definition 3.15. For a graded ring R, a graded chain complex C of free shifted R-
modules of finite total rank, i.e., C 2 Kom.MR/, is called a piece if it satisfies the
following: C is not contractible (i.e., not homotopy equivalent to the trivial complex),
and if C is homotopy equivalent to C 0˚C 00 with C 0;C 00 2Kom.MR/, then either C 0

or C 00 is contractible. In other words, a piece is an indecomposable object in the
category Kom.MR/=h of chain complexes of finite total rank up to homotopy.

Let us now define the two most common kinds of pieces.

Definition 3.16. For a graded integral domain R, let the pawn piece, denoted by p,
be the chain complex consisting of just one copy R in homological degree 0 and
quantum degree 0. Given a non-trivial prime power z 2 R, we define the z-knight
piece, denoted by N.z/, to be the chain complex

0R
z
�! R¹� deg zº;

where the left subscript denotes the homological degree.
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The names of these pieces, coined by Bar-Natan [5], come from the fact that a p

and N.G/ piece in JKK result in the patterns

Q

Q
and

Q

Q

;

respectively, in unreduced rational Khovanov homology. This can be seen using Corol-
lary 2.18.

Remark 3.17. A complex P is a piece if and only if the ring of endomorphisms of
P up to homotopy has precisely two distinct idempotents, namely, the zero map and
the identity map. Let us use this to check that pawns and knights actually are pieces.
For P D p, the endomorphism ring of P is isomorphic to R, and there are no non-
trivial homotopies. SinceR is assumed to be an integral domain, the only idempotents
are 0 and 1, and 0 ¤ 1. So, p is indeed a piece.

Now, consider P DN.z/. Ignoring the chain complex structure, R-module endo-
morphisms P ! P are given by

�
a b
c d

�
. Which among those maps are chain maps?

To respect homological degree, we must have b D c D 0. To commute with the dif-
ferential, we must have az D dz. Since z ¤ 0 and R is an integral domain, this
implies a D d . So, the endomorphism ring of P consists (as for p) just of mul-
tiples of idP ; i.e., this ring is isomorphic to R. All homotopies are multiples of
hWP1 ! P0, h.1/ D 1. We have h ı d C d ı h D z � idP , and so, the endomorphism
ring of P modulo homotopy is isomorphic to R=.z/. Since z is by assumption a non-
trivial prime power, R=.z/ has no non-trivial idempotents. Thus, N.z/ is indeed a
piece.

In Example 3.18 and Section 4 below, we will claim that various chain complexes
are pieces. This may be checked by similar arguments as above, but since we do not
actually make use of the fact that those complexes are pieces, we omit these arguments
from the text.

If R is a graded PID, then pawns and knights are the only pieces. This fact has
been used previously to analyze homology theories coming from Frobenius algebras
over fields, e.g., by Khovanov [20] or by Morrison [38]10. In the introduction, we have
seen JKK for K D U; T2;3; T3;4, and for those examples, JKK also decomposes into

10Morrison’s “universal Khovanov homology” is equivalent to J � K ˝ Q, i.e., the reduced
theory coming from the Frobenius algebra QŒt; X�=.X2 � tX/ over QŒt �. Since QŒt � is a PID,
the chain complexes coming from that theory are homotopy equivalent to a sum of p and N.tn/

pieces, which Morrison calls E and Cn (or KhC Œn�), respectively. This homology theory can
be calculated with JavaKh [12].
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sum of pawns and knights. Let us consider a further example, which demonstrates
that the pieces of ZŒG�-chain complexes can be significantly more complicated. (In
fact, we do not know a classification of those pieces, cf. [39, Question 1].)

Example 3.18. As one may compute with khoca and homca, the chain complex
JT5;6K is homotopy equivalent to the sum of

0p¹20º ˚ 2N.G/¹24º ˚ 4N.G2/¹26º

and the following four more complicated pieces (where we write R D ZŒG�):

P1D
6R¹28º R¹30º

˚ ˚

R¹30º R¹32º

G

G

2 , P2D

R¹34º

8R¹30º ˚ R¹36º;

R¹36º

G2G2

G3 �2

P3D

R¹36º

10R¹34º ˚ R¹40º;

R¹38º

G25G

G2 �5G

P4D

R¹40º

12R¹36º ˚ R¹42º:

R¹42º

G3G2

G3 �3

Note that P3 is isomorphic to 10N.G2/ ˝N.5G/¹34º. Let us now compute �
of T5;6. We have �.N.Gk// D k for k 2 ¹1; 2º (in fact, for all k � 1) and leave it
to the reader to check that �.Pi ; 0/ � 3 for i 2 ¹1; 2; 3; 4º. Using Corollary 3.5, this
implies �.T5;6/ � 3. To show �.T5;6/ � 3, we rely on the maximal G-torsion order
of homology, denoted by uG . This invariant is discussed in detail in Section 3.4. It
gives a lower bound uG � � (see Lemma 3.27). Consider the homology of P4, the
dual of P4. The annihilator of the class of a generator of �12R¹�36º is the ideal
.3G2; G3/ � ZŒG�, and so, the G-torsion order of that homology class is equal to 3.
Hence, �.T5;6/ D �.�T5;6/ � uG.�T5;6/ � 3, and thus, �.T5;6/ D 3.

Remark 3.19. If R is Noetherian, then every chain complex in Kom.MR/=h can be
written as a sum of finitely many pieces. IfR is a graded PID, then this decomposition
is essentially unique, i.e., unique up to the order of the summands. This is not true
for R D ZŒG�, as the following example demonstrates. So, in this text, we will often
decompose chain complexes JKK as sums of pieces, but we will never rely on this
decomposition being unique.

Let us now give an example of a chain complex that admits two essentially dif-
ferent decompositions as sums of pieces. For any non-zero integer n, let Qn be the
complex

R¹2º

0R¹0º ˚ R¹4º:

R¹4º

�GnG

G2 n
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One computes that the endomorphism ring of Qn modulo homotopy is isomorphic
to R=.G2; nG/. This ring does not admit non-trivial idempotents, and so, Qn is a
piece. Now, the Smith normal form gives us invertible 2 � 2 integer matrices S; T
such that S

�
2 0
0 3

�
T D

�
1 0
0 6

�
. This leads to the following change of basis, which demon-

stratesQ2 ˚Q3 ŠQ1 ˚Q6, giving us the desired example. Note thatQ1 'N.G/:

R¹2º˚2

0R¹0º
˚2 ˚ R¹4º˚2

R¹4º˚2

�G
G
�
2 0
0 3

�

G2
�
2 0
0 3

�
Š

R¹2º˚2

0R¹0º
˚2 ˚ R¹4º˚2

R¹4º˚2

�G
GS

�
2 0
0 3

�
T

G2 S
�
2 0
0 3

�
T

3.4. Torsion orders

When computing � of a knot K, it is fairly simple to find an upper bound k � �.K/
by defining ungraded chain maps

f W JKK! JU K; gW JU K! JKK

such that g ı f and f ı g are homotopic to Gk . In order to compute the exact value
of �, however, one has to find the minimal such k, which can be a hard task. The
invariants described in this subsection give lower bounds for � in terms of the maximal
torsion order in homology.

In 2017, Alishahi and Dowlin [1,2] introduced the following knot invariants which
are lower bounds for the unknotting number: uh is defined as the maximal order of
h-torsion in the unreduced homology with Frobenius algebra F2Œh; X�=.X2 C hX/,
while uX is the maximal X -torsion order in the unreduced homology HQŒt� with
Frobenius algebra QŒt; X�=.X2 � t / (a lift of Lee homology). Note that HQŒt� is a
module over QŒt; X�=.X2 � t /, but that ring is just equal to its subring QŒX�, and
so, we consider HQŒt� as a module over QŒX�. It was then remarked in [8] that for
the latter invariant one can replace Q with Fp for any odd prime p in order to obtain
new bounds u.X;p/. Finally, Gujral [13] introduced a lower bound � for the ribbon
distance: � is the maximal order of .2X � .˛1 C ˛2//-torsion in the ˛-homology of a
knot, which is the unreduced homology with Frobenius algebra ZŒX; ˛1; ˛2�=..X �

˛1/.X � ˛2// over the ground ring ZŒ˛1; ˛2�, introduced in [21].
The following invariant is the analog of those bounds in the ZŒG�-setting.

Definition 3.20. LetK be a knot and consider its ZŒG�-complex JKK2Kom.MZŒG�/.
Since Kom.MZŒG�/ � Kom.ZŒG�-Mod/, we can take the homology H.JKK/ of JKK
in the latter category (see Remark 2.11). Let now a 2 H.JKK/. We say that a is G-
torsion if there is an n 2 Z�0 such that Gn � a D 0. Let the order of a G-torsion
element a, ordG.a/, be the minimal such n and T .H.JKK// the ZŒG�-module of G-
torsion elements.
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Definition 3.21. We define uG.K/ to be the maximal order of a G-torsion element:

uG.K/ WD max
a2T.H.JKK//

ordG.a/:

Proposition 3.22. For all knots K, we have

(i) uG D �,

(ii) uG � uX ,

(iii) � � u.X;p/,

(iv) � � uh.

Proof. (i) By Theorem 1.5, the ˛-chain complex of K is homotopy equivalent to
JKK ˝ZŒG� ZŒX; ˛1; ˛2�=..X � ˛1/.X � ˛2//, where G acts as 2X � ˛1 � ˛2 on
the second tensor factor. Less formally, ˛-homology is just ZŒG�-homology with G
disguised as 2X � ˛1 � ˛2. The statement follows.

(ii) Again by Theorem 1.5, CQŒt�.K/ ' JKK˝ZŒG� QŒX�, where G acts as 2X
on QŒX�. So,X -torsion inHQŒt�.K/ corresponds toG-torsion inH.JKK˝Q/. Thus,
it suffices to show that the maximalG-torsion order in ZŒG�-homology is greater than
or equal to the maximal G-torsion order in QŒG�-homology. So, let a cycle x in the
chain complex JKK˝Q be given that represents a homology class of maximal G-
torsion order in QŒG�-homology, i.e., GuX .K/Œx� D 0 and GuX .K/�1Œx� ¤ 0. Choose
n 2 Z n ¹0º such that nx 2 JKK. Since GuX .K/x is a boundary over Q, one may
choose m 2 Z n ¹0º such that GuX .K/nmx is a boundary over Z. So, nmŒx� is G-
torsion in H.JKK/. Moreover, if GuX .K/�1nmx were a boundary dy in JKK, then
GuX .K/�1x D d.y=.nm// and thus GuX .K/�1Œx�D 0 2H.JKK˝Q/ would follow,
which is a contradiction. So, the G-torsion order of nmŒx� 2 H.JKK/ equals uX .K/,
which implies the claim uG.K/ � uX .K/.

(iii) Let f W JKK ! ZŒG� and gWZŒG� ! JKK be chain maps such that f ı g
and g ı f are homotopic to G�.K/ times the identity of ZŒG� and JKK, respec-
tively. Once again by Theorem 1.5, CFpŒt�.K/ ' JKK ˝ZŒG� FpŒX�, where G acts
as 2X on FpŒX�. So, f and g induce maps fpWHFpŒt�.K/! FpŒX� and gpWFpŒX�!
HFpŒt�.K/ such that fp ı gp and gp ı fp are multiplication with .2X/�.K/ on FpŒX�

and HFpŒt�.K/, respectively. The existence of such maps implies, in the usual way
(see, e.g., the proof of Lemma 3.27 below), that X -torsion orders in HFpŒt�.K/ are at
most �.K/.

(iv) This inequality may be proven similarly as the previous one, using that by
Theorem 1.5, CF2Œh�.K/ ' JKK˝ZŒG� F2Œh�, where G acts as h on F2Œh�.

Note that the inequalities uG � u.X;p/ and uG � uh do not hold in general;
counterexamples are given by the complexes P4 (for u.X;3/) and P2 (for uh) from
Example 3.18.
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As a side note, it is worthwhile to observe, although we will not make use of it,
that uh, uX are also linked to the convergence of the Bar-Natan [51] and the Lee [26]
spectral sequences, respectively. For all knots K, these sequences start at Khovanov
homology ofK (with coefficients in F2 and Q, respectively) and, letting nBN and nLee

be the pages at which they collapse, we have uh.K/ D nBN � 1 and duX .K/=2e D
nLee � 1. As a consequence, the following interesting result holds.

Corollary 3.23 ([2]). The Knight Move Conjecture is true for all knots K with
u.K/ � 2.

In light of Theorem 1.1, we even have the following corollary.

Corollary 3.24. The Knight Move Conjecture is true for all knotsK with uq.K/ � 2.

The connection discussed above between invariants related to � and spectral se-
quences brings us to the following natural question.

Question 3.25. Is there a spectral sequence EG such that, for any knot K, EG.K/
starts at Khovanov homology (with coefficients in Z) and collapses at a page whose
number is determined by uG.K/?

We suspect this question has a positive answer. Namely, consider the chain com-
plex obtained from JKK by setting G D 1. The resulting complex is filtered and gives
rise to a spectral sequence EG.K/ starting at (reduced) Khovanov homology with
integer coefficients. It seems likely that EG.K/ collapses at page uG.K/ � 1.

Lemma 3.26. The invariant uG detects the unknot, i.e., uG.K/D 0 holds if and only
if K is trivial.

Proof. We start by noticing that uG.U / D 0: this is clear since H.JU K/ D ZŒG� is
torsion free. Note that

HQŒt�.K/ Š QŒX�˚ T .HQŒt�.K//;

where T .HQŒt�.K// is the X -torsion part. Since Khovanov homology detects the
unknot we have T .HQŒt�.K// D ¹0º only if K D U . This implies that if K is not
the unknot, then uG.K/ � uX .K/ > 0.

Lemma 3.27. Let K be a knot. Then, uG.K/ � �.K/.

Proof. Let nD �.K/, and let f W JKK! JU K, gW JU K! JKK be ungraded chain maps
such that g ı f ' Gn � idJKK and f ı g ' Gn � idJU K. Then, for every a 2 H.JKK/,

ordG
�
f�.a/

�
� ordG

�
g� ı f�.a/

�
D ordG

�
Gn � a

�
� ordG.a/ � n:
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Taking the maximum over T .H.JKK//, we get

0 D uG.U / D max
a2T.H.JKK//

ordG
�
f�.a/

�
� max
a2T.H.JKK//

ordG.a/ � n D uG.K/ � n:

This shows that uG.K/ � n D �.K/.

The two previous lemmas, combined with the fact that clearly �.U /D 0 (using the
maps f D g D idJU K), show that � detects the unknot, as claimed in Proposition 1.8.
A more direct proof may also be given as follows.

Proof of Proposition 1.8. Let K be a knot. It follows from the definition of � that
�.K/ D 0 if and only if JKK is ungraded chain homotopy equivalent to JU K. Since,
even as an ungraded module, Khovanov homology detects the unknot, the latter con-
dition holds if and only if K D U .

In Definition 3.2, we saw how to define � for any ZŒG�-complex. Similarly, one
can define the invariants uG , uh, uX , u.X;p/ on chain complexes over MR, where R
is equal to ZŒG�, F2Œh�, QŒX�, FpŒX�, respectively. Namely, if C 2 Kom.MR/ and
�DG;h;X and .X;p/, then u�.C / is the maximal order of �-torsion in the homology
H.C/ 2 R-Mod of C . Lemma 3.27 also holds for complexes over MZŒG�.

We now state a few properties of uG , uh, uX , u.X;p/.

Lemma 3.28. LetRG DZŒG�,RhD F2Œh�,RX DQŒX�,R.X;p/D FpŒX�, and letA,
B be chain complexes over MR� for � D G; h;X and .X; p/. We have the following.

(i) u�.A˚ B/ D max.u�.A/;u�.B//.

(ii) For � D h;X and .X; p/,

u�.A˝ B/ D

8̂̂̂̂
<̂
ˆ̂̂:

max.u�.A/;u�.B// if pA > 0 and pB > 0;

u�.A/ if pA D 0 and pB > 0;

u�.B/ if pA > 0 and pB D 0;

min.u�.A/;u�.B// if pA D pB D 0;

where, given a complex C over MR� , pC is the number of pawn summands
in the decomposition of C into pawns and knights.

Proof. The first statement is clear. For the second one, we use the fact that R� is a
PID. As noted in Section 3.3, this implies that

A ' p˚pA ˚N.a1/˚ � � � ˚N.an/;

with ai D Xki (if � D X or .X; p/) or ai D hki (if � D h) and ki � kiC1. Similarly,

B ' p˚pB ˚N.b1/˚ � � � ˚N.bm/;
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with bj D X lj or bj D hlj and lj � ljC1. One checks that

u�.p/ D 0 and u�.N.ai // D ki I

therefore, by point (i), u�.A/Dmax.u�.p/;u�.N.a1//; : : : ;u�.N.an///D kn. Sim-
ilarly, u�.B/ D lm. Now,

A˝ B '
M

i2¹0;:::;nº
j2¹0;:::;mº

Ai ˝ Bj ;

with A0 D p˚pA , B0 D p˚pB and Ai D N.ai /, Bj D N.bj / for i; j > 0. It is a
simple exercise to check that u�.N.ai /˝N.bj // D min.ki ; lj /. It follows that

u�.A˝ B/

D max
i;j
.u�.Ai ˝ Bj //

D max.u�.A0 ˝ Bm/;u�.An ˝ B0/;u�.An ˝ Bm//

D max.u�.p˚pA ˝N.bm//;u�.N.an/˝ p˚pB /;u�.N.an/˝N.bm///:

Then, statement (ii) can be deduced from the following:

u�.p
˚pA ˝N.bm// D

´
u�.N.bm// D lm if pA > 0;

0 if pA D 0;

u�.N.an/˝ p˚pB / D

´
u�.N.an// D kn if pB > 0;

0 if pB D 0;

u�.N.an/˝N.bm// D min.kn; lm/:

Remark 3.29. As a consequence, of (ii) of Lemma 3.28, if � D h; X or .X; p/ and
K and J are two knots,

u�.K#J / D max.u�.K/;u�.J //; (3.1)

as the unreduced chain complexes over MR� associated to knots always contain a
pawn summand (more precisely, exactly one pawn summand if � D X or .X; p/, and
exactly two if � D h).

Note that neither statement (ii) of Lemma 3.28 nor equation (3.1) holds in general
for uG . This is due to the fact that, for �¤ G, the u� are defined over PIDs, while uG
is not (cf. Section 3.3). Later on in this article, Remarks 4.5 and 4.9 will provide us
with examples of knotsK;J such that uG.K#J / < max.uG.K/;uG.J //, and others
where uG.K#J / > max.uG.K/; uG.J //: if K1; K2 satisfy (1) of Proposition 4.4
and J satisfies (2), then

uG.K1/ D uG.K2/ D uG.J / D 1;
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but uG.K1#K2/ D 2 D uG.K1/C uG.K2/ and

uG..K1#K2/#J / D 1 D uG.K1#K2/ � uG.J /:

Therefore, the best that we can hope for is that uG.K#J / � uG.K/C uG.J /.

3.5. � of thin knots

For a homogeneous element x of a doubly graded chain complex, with quantum
degree q and homological degree t , let the ı-degree of x be q � 2t . It was noted early
on in the development of Khovanov homology that the rational Khovanov homology
of alternating links is supported in a single ı-degree [26]. This led to various different
notions of thinness and homological width of links; see, e.g., [47, 48]. In this arti-
cle, we call a knot thin if their reduced integral Khovanov homology consists of free
modules supported in a single ı-degree (as already defined in the introduction). Let
us prove in this subsection that � of non-trivial thin knots is 1.

Lemma 3.30. If a chain complex C 2 Kom.MZŒG�/ decomposes (ignoring gradings)
as a sum of one p and finitely many N.G/ pieces, then �.C / � 1.

Proof. Since �.p/ D 0 and �.N.G/; 0/ D 1, this follows from Corollary 3.5.

Lemma 3.31. LetK be a knot whose reduced integral Khovanov homology is torsion
free. Then, JKK is homotopy equivalent to a chain complex C 2 Kom.MZŒG�/ of free
shifted ZŒG�-modules such that the Poincaré polynomial of C is equal to the Poincaré
polynomial of reduced integral Khovanov homology of K.

Proof. Start by picking an arbitrary chain complex C 0 2 Kom.MZŒG�/ that is homo-
topy equivalent to JKK. Consider the chain complex C 0 ˝ZŒG� ZŒG�=.G/. This is a
chain complex over the integers, whose homology is isomorphic to reduced integral
Khovanov homology ofK. In particular, it has torsion-free homology by assumption.
One may select bases for the chain groups of the complex C 0 ˝ZŒG� ZŒG�=.G/, with
respect to which the matrices of the differentials are in Smith normal form. Because
homology is torsion free, all the entries of these matrices are 0 or 1. Gaussian elimina-
tion (see, e.g., Lemma 5.8) of all the entries equal to 1 yields a homotopy equivalence
between C 0 ˝ZŒG� ZŒG�=.G/ and a complex Z with trivial differentials. So, Z is
isomorphic to the reduced integral Khovanov homology of K.

Now, one may lift the bases of C 0 ˝ZŒG� ZŒG�=.G/ to homogeneous bases of C 0.
Since the matrices of the differentials of C 0 have homogeneous entries, it follows that
if a matrix entry of a differential ofC 0˝ZŒG� ZŒG�=.G/ equals 1, then the correspond-
ing matrix entry of the corresponding differential of C 0 also equals 1. Therefore, one
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may lift the homotopy equivalence constructed above, obtaining a homotopy equiva-
lence between C 0 and a complex C 2 Kom.MZŒG�/ such that C ˝ZŒG� ZŒG�=.G/ is
isomorphic to Z. It follows that C and the reduced integral Khovanov homology of
K have the same Poincaré polynomial, as desired.

Lemma 3.32. For all thin knotsK, JKK is up to degree shifts homotopy equivalent to
a sum of one p piece and finitely many N.G/ pieces.

Proof. By Lemma 3.31, we may pick a chain complex C 2 Kom.MZŒG�/ that is
homotopy equivalent to JKK and has the same Poincaré polynomial as reduced inte-
gral Khovanov homology of K. Since the latter is supported on a single ı-degree,
so is C . Choosing arbitrary bases for the chain modules of C , it follows that every
entry of the matrices of the differentials is an integer multiple of G. Similarly, as in
the proof of Lemma 3.31, one may choose new bases for the modules of C such that
the matrices of the differentials equal G times a matrix in Smith normal form. Conse-
quently, ignoring gradings C decomposes into a direct sum of p and N.aG/ pieces,
with a priori varying a 2 Z>0. By Proposition 2.20, there is exactly one p piece, and
all other pieces are N.G/ pieces.

Proof. Lemmas 3.32 and 3.30 imply �.K/ � 1, whereas Proposition 1.8 implies
�.K/ � 1.

Remark 3.33. Note that Lemma 3.32 also provides a proof (at least for knots) for
Bar-Natan’s ‘structural conjecture’ that all alternating links are ‘Khovanov basic’ [5,
Conjecture 1].

In [8], upper bounds for uX , uh, and u.X;p/ are given in terms of the homological
width of Khovanov homologies. This motivates the following question.

Question 3.34. Let K be a knot such that JKK is homotopy equivalent to a complex
supported in n adjacent ı-degrees. Does then �.K/ � n follow?

4. Calculations of ZŒG�-homology and the �-invariant

4.1. Proof of Theorem 1.2: � can be arbitrarily big

The purpose of this subsection is to show that our invariant � can grow arbitrarily.
More precisely, as claimed in Theorem 1.2, for all n 2 N, we will define a knot K
such that �.K/ D n.

We saw that ZŒG�-homology is bigraded. However, our invariant � does not de-
pend on the quantum grading; therefore, we will omit quantum shifts in this section.
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R1 RnC2

˚ ˚

R2 RnC3

˚ ˚

:::
:::

:::

˚ ˚

Rn R2nC1

˚

RnC1

2

2

G

2

G

Figure 10. The staircase Sn of rank 2nC 1. Here, Ri D ZŒG� for all i .

Definition 4.1. For every n 2 Z>0, the staircase of rank 2nC 1, denoted by Sn, is
defined as the chain complex

0! C0
dSn
��! C1 ! 0;

where C0 D .ZŒG�/nC1; C1 D .ZŒG�/n, and

dSn D

0BBB@
2 G

2 G

0

0

1CCCA:
We can represent a staircase Sn as shown in Figure 10.

Let us prove a few lemmas about staircases.

Lemma 4.2. Let Sn be a staircase of rank 2nC 1. Then, �.Sn/ D uG.Sn/ D n.

Proof. We will first show that �.Sn/ � n by finding ungraded chain maps f W Sn !
JU K, gW JU K! Sn such that f ı g ' Gn � idJU K and g ı f ' Gn � idSn .

Since f , g need not respect the homological degree, we will simply consider Sn
as a pair .Sn D R1˚ � � � ˚R2nC1; d WSn! Sn/, withRi D ZŒG� as in Figure 10 and

d D

0BBB@
nC1 0 0

n dSn 0

nC1 n

1CCCA:
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Define

f D
�
1 0 � � � 0

�
;

g D
�
Gn �2Gn�1 4Gn�2 � � � .�2/n 0 � � � 0

�T
:

It is easy to check that f and g are ungraded chain maps (interestingly, they also
respect the homological degree, so they are actually graded chain maps) and f ı g D
Gn � idJU K. We need to verify that g ı f ' Gn � idSn . We have

g ı f D

0BBBBBBBBBBB@

2n

Gn

�2Gn�1

.�2/n 2nC1

0

0

0

1CCCCCCCCCCCA
;

so let us show that

Gn � idSn �g ı f D

0BBBBBBBBBBB@

0 0 0

2Gn�1 Gn

�.�2/n 2nC1

0

0 Gn

2n

0

0

1CCCCCCCCCCCA
is nullhomotopic. We define hWSn ! Sn as

h D

0BBBBBBBBBBBBB@

nC1

0

Gn�1

�2Gn�2 nC1

.�2/n�1 �2Gn�2 Gn�1

n

n

0
0

0 0

1CCCCCCCCCCCCCA
:
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It is easy to see that
d ı hC h ı d D Gn � idSn �g ı f:

Therefore, Gn � idSn �g ı f is nullhomotopic and g ı f ' Gn � idSn .
We now show that �.Sn/ � n. Since � � uG , it is enough to find an element

x 2H.JSnK/ that hasG-torsion order n. Let xD .1 0 � � � 0/T 2C1.Sn/DZŒG�n.
Since

Gn � x D dSn
��
0 Gn�1 �2Gn�2 � � � .�2/n�1

�T�
;

clearly ordG.x/ � n. We will now show that the inequality ordG.x/ � n also holds,
i.e., that Gk � x ¤ 0 for k < n. Let k 2 Z�0 and a D .a1 � � � anC1/

T 2 C0.Sn/ D

ZŒG�nC1 such that
dSn.a/ D G

k
� x:

Let us prove that this implies k � n. The equation0BBB@
2a1 CGa2

2a2 CGa3
:::

2an CGanC1

1CCCA D dSn.a/ D Gk � x D
0BBB@
Gk

0
:::

0

1CCCA
yields the following:

2an CGanC1 D 0 ) anC1 D �2bn; an D Gbn for bn 2 ZŒG�

2an�1 CGan D 0 ) an D �2Gbn�1; an�1 D G
2bn�1 for bn�1 2 ZŒG�

:::
:::

:::

2a2 CGa3 D 0 ) a3 D �2G
n�2b2; a2 D G

n�1b2 for b2 2 ZŒG�

2a1 CGa2 D G
k
) 2a1 CG

nb2 D G
k
) k � n:

This proves that ordG.x/ D n, so �.Sn/ � uG.Sn/ � n. It follows that

�.Sn/ D uG.Sn/ D n:

Lemma 4.3. Forgetting about quantum shifts, we have

S1 ˝ Sn Š SnC1 ˚ .N.G/˝N.2//˚n:

Proof. Let C D S1 ˝ Sn. The complex C is isomorphic to

.ZŒG�/2nC2 .ZŒG�/3nC1 .ZŒG�/n:

= = =

C0 C1 C2

A B
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In order to describe the maps A, B , we have to choose a basis for C0, C1, C2. Let us
follow the notation of Figure 10 for S1 and Sn, and denote by ai the generators of the
Ri belonging to S1 and by bi the generators of the Ri in Sn. Then, C0, C1, C2 are,
respectively, generated by

0BBBBBBBBB@

a1 ˝ b1

a1 ˝ bnC1

a2 ˝ b1

a2 ˝ bnC1

1CCCCCCCCCA
;

0BBBBBBBBBBBBBBBB@

a1 ˝ bnC2

a1 ˝ b2nC1

a2 ˝ bnC2

a2 ˝ b2nC1

a3 ˝ b1

a3 ˝ bnC1

1CCCCCCCCCCCCCCCCA
;

0B@ a3 ˝ bnC2

a3 ˝ b2nC1

1CA:

We can now write out the differentials of C :

A D

0BBBBBBBBBBBB@

nC1 nC1

n

dSn n

2 � 1nC1 G � 1nC1 nC1

dSn 0

0

1CCCCCCCCCCCCA
; B D

0B@
n n nC1

2 � 1n G � 1n �dSn n

1CA ;

where dSn is the n � .nC 1/-matrix introduced in Definition 4.1.
Let now

C 0 D SnC1 ˚ .N.G/˝N.2//˚n:

This complex is given by

.ZŒG�/nC2 .ZŒG�/nC1

˚ ˚

.ZŒG�/n .ZŒG�/2n .ZŒG�/n

= = =

C 00 C 01 C 02

dSnC1

A00 B00

A0 B0
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where

A00 D

0BBBBBBBBBBB@

G

2

G

2

G

2

0

0

1CCCCCCCCCCCA
;

B 00 D

0BBB@
�2 G

�2 G

�2 G

0

0

1CCCA
and

A0 D

0BBB@
nC2 n

nC1 dSnC1 0

2n 0 A00

1CCCA;

B 0 D

0B@
2n

B 00 n

nC1

0

1CA :

Our goal is therefore to find a change of basis to obtain C 0 from C . We will do this in
two steps: we first define a change of basis from C to SnC1 ˚ zC for some complex

zC D . zC0
zA
�! zC1

zB
�! zC2/I

then, we do a second change of basis that yields .N.G/˝N.2//˚n from zC .
For the first step, we have to find two invertible matrices M , N (over ZŒG�) of

dimension 2nC 2 and 3nC 1, respectively, such that

NAM D

0BBB@
dSnC1 0

0 zA

1CCCA D
0BBBBBBBB@

2 G

nC1

2 G

2n

nC2 n

0

0 zA

1CCCCCCCCA
(4.1)
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and

BN�1 D

0B@
nC1 2n

zB n0

1CA : (4.2)

We define M as follows:

M D

0BBBBBBBBB@

nC1

0 1 1

nC1

1

0 1

nC1 nC1

1nC1 0

1CCCCCCCCCA
:

We get

AM D

0BBBBBBBBBBBBBBBBBBBB@

2 G 0

n

2 G 0

0 2 G G 2

G n

0 2 G 2

2 G 0 G

n

2 G 0 G

0 0 2 G 0 0

nC2 n

0

1CCCCCCCCCCCCCCCCCCCCA

:

In order to obtain the right-hand side of equation (4.1) from AM , we have to cancel
all the pairs 2 G in the blocks highlighted in light red (this can be easily done by sub-
tracting rows of the dark blue blocks), move r3nC1 to row nC 1 (where ri indicates
the i -th row), and slide down rnC1; : : : ; r3n consequently. Let us call N the matrix
expressing these operations, i.e.,

N D Q � P 3nn � � �P
2nC1
1 � P 2n3nC1 � P

2n�1
n � � �P nC12 ;

where P a
b

is obtained from 13nC1 by replacing ra with ra � rb , and Q is the matrix
expressing the appropriate reordering of rows rnC1; : : : ; r3nC1. It is thus clear that
N satisfies equation (4.1). It is straightforward to check that N�1 also satisfies (4.2).
Thus, we showed that

S1 ˝ Sn Š SnC1 ˚ zC :
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The next step is to define a change of basis from zC to .N.G/ ˝N.2//˚n. For
that purpose, we have to explicitly describe zA and zB:

zA D

0BBBBBBBBBBBB@

G 2

G n

2

G

n

G

1CCCCCCCCCCCCA
; zB D

0BBB@
G �2 �G

�G

G �2

n n 1CCCA:

We can easily obtain A00 from zA by removing the G entries in the light red block (by
subtracting rows of the dark blue block) and then reordering the rows appropriately.
These operations are expressed by the matrix

L D zQ � P n�12n � � �P
1
nC2;

where P a
b

is obtained from 12n by replacing ra with ra � rb and Q is the matrix
expressing the appropriate reordering of the rows. One can check that L zA D A00 and
zBL�1 D B 00. This concludes the proof of the lemma.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Lemmas 4.2 and 4.3, together with the fact that

JK1#K2K Š JK1K˝ JK2K

for any two knots K1, K2 (see (2.4)), are enough to construct knots with arbitrarily
big �. Indeed, let us consider the knotK D 14n19265. This knot was used by Seed to
show that s.K/ ¤ sF2.K/ [31, 46], where s is the classical Rasmussen invariant over
Q and sF2 is the invariant computed over F2. We observe using khoca and homca
that the ZŒG�-complex JKK decomposes into a sum of a staircase S1 and finitely
many N.G/ and N.G/˝N.2/. Therefore, by Corollary 3.5,

�.K/ � max.�.S1/; �.N.G/; 0/; �.N.G/˝N.2/; 0// D 1:

Since K ¤ U , it follows that �.K/ D 1. By Proposition 1.9, given n 2 Z>0, we then
have

�.K#n/ � n � �.K/ D n:

On the other hand, it follows from Lemma 4.3 that JK#nK Š Sn ˚ C for some chain
complex C . We know that uG.Sn ˚ C/ D max.uG.Sn/;uG.C // (cf. Lemma 3.28),
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so

�.K#n/ D �.Sn ˚ C/ � uG.Sn ˚ C/ � uG.Sn/ D n:

This proves that �.K#n/ D n for all n � 0.

The fact that �.K#n/ D n will also follow from Proposition 4.4.

4.2. Further calculations

Proposition 4.4. Let K1; : : : ; Kn and J1; : : : ; Jm be knots such that

(1) for all i D 1; : : : ; n the complex JKiK splits as a sum of one staircase S1 and
finitely many N.G/ and N.G/˝N.2/ pieces,

(2) for all j D 1; : : : ; m the complex JJj K decomposes into a sum of one dual
staircase S1 and finitely many N.G/ and N.G/˝N.2/.

Let the empty # be equal to the unknot. Then,

�
�

#
i�n
Ki # #

j�m
Jj
�
D

8̂̂<̂
:̂
jn �mj if n ¤ m and m; n � 0;

1 if n D m ¤ 0;

0 if n D m D 0:

Remark 4.5. Using khoca and homca, one finds that there are many knots satisfying
requirements (1) or (2) of Proposition 4.4. For instance, one can take any knot with
up to 15 crossings such that sF2 ¤ sF3 . One of those is the above-mentioned knot
14n19265, and a complete list is given in [44, 45].

We also note that if a knot K satisfies condition (1) of Proposition 4.4, then its
mirror image �K will satisfy condition (2), and vice versa.

For the proof of Proposition 4.4, we will need the following lemmas.

Lemma 4.6. Ignoring quantum shifts, we have

N.G/˝ Sn Š N.G/˝ Sn Š .N.G/˝N.2//˚n ˚N.G/

and
N.2/˝ Sn Š N.2/˝ Sn Š .N.G/˝N.2//˚n ˚N.2/:

Proof. We proceed very similarly to the proof of Lemma 4.3. We will only prove that

N.G/˝ Sn Š .N.G/˝N.2//˚n ˚N.G/;

as the proofs of the remaining statements are very similar.
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The complex N.G/˝ Sn is isomorphic to

.ZŒG�/nC1
A
�! .ZŒG�/2nC1

B
�! .ZŒG�/n

with

AD

0BBBBBBBBBBBBBBBB@

2 G

n

2 G

G

nC1

G

1CCCCCCCCCCCCCCCCA
; BD

0BBB@
G �2 �G

G �2 �G

n nC1 1CCCA

and basis given by

0B@ a1 ˝ b1

a1 ˝ bnC1

1CA;
0BBBBBBBBB@

a1 ˝ bnC2

a1 ˝ b2nC1

a2 ˝ b1

a2 ˝ bnC1

1CCCCCCCCCA
;

0B@ a2 ˝ bnC2

a2 ˝ b2nC1

1CA:

(Here, bi denotes the generator ofRi in Sn and a1, a2 are, respectively, the generators
of ZŒG� in homological degrees 0 and 1 of N.G/.)

The statement of the lemma holds if we can find a change of basis N such that

NA D

0BBBBBBBBBBBBBBB@

G 0

2

G

2

G

2 0

0 0 G

1CCCCCCCCCCCCCCCA
(4.3)

and

BN�1 D

0BBB@
�2 G 0

�2 G

�2 G 0

1CCCA: (4.4)
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In order to obtain the right-hand side of (4.3) from A, we need to perform the fol-
lowing operations: get rid of the G entries in the light red block of A (by subtracting
rows of the dark blue block) and then reorder the rows appropriately. (Let us call Q
the matrix expressing this second step.) Then, the change of basis

N D Q � P n2nC1 � � �P
1
nC2

clearly satisfies equation (4.3). Some simple calculations show that N also satis-
fies (4.4).

Lemma 4.7. Let z 2 ZŒG� and a; b 2 Z�0 with a � b. Then,

N.za/˝N.zb/ Š N.za/˚N.za/

(quantum shifts are omitted).

Proof. The complex N.za/˝N.zb/ is isomorphic to

ZŒG�
.zb za/T

�����! ZŒG�˚ ZŒG�
.za �zb/
������! ZŒG�:

Consider the matrix N D
�
1 �zb�a

0 1

�
. We have

N �

 
zb

za

!
D

 
0

za

!
;

�
za �zb

�
�N�1 D

�
za 0

�
:

The matrix N is therefore the desired change of basis from N.za/ ˝ N.zb/ to
N.za/˚N.za/.

Lemma 4.8. The following are isomorphisms of (ungraded) chain complexes:

S1 ˝ S1 Š .N.G/˝N.2//˚2 ˚ p; (4.5)

.N.G/˝N.2//˝ S1 Š .N.G/˝N.2//˝ S1 Š .N.G/˝N.2//˚3; (4.6)

.N.G/˝N.2//˝ .N.G/˝N.2// Š .N.G/˝N.2//˚4; (4.7)

N.G/˝ .N.G/˝N.2// Š .N.G/˝N.2//˚2: (4.8)

Proof. The chain complex S1 ˝ S1 can be written as

.ZŒG�/2
A
�! .ZŒG�/5

B
�! .ZŒG�/2;

where

A D

0BBBBB@
G 0

2 0

0 G

0 2

2 G

1CCCCCA ; B D

 
2 0 G 0 �G

0 2 0 G �2

!
:
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Consider the change of basis matrices

L D

 
1 0

0 �1

!
; M D

0BBBBB@
1 0 0 0 0

0 1 0 0 �1

0 0 �1 0 �1

0 0 0 �1 0

0 1 �1 0 �1

1CCCCCA
and let A0 DM�1AL and B 0 D BM . One can verify that A0 and B 0 are the differen-
tials of the chain complex

.N.2/˝N.G//˚2 ˚ p Š .N.G/˝N.2//˚2 ˚ p;

which proves equation (4.5).
The first isomorphism of equation (4.6) is given by Lemma 4.6. The following

shows that .N.G/˝N.2//˝ S1 Š .N.G/˝N.2//˚3:

N.G/˝N.2/˝ S1 Š N.G/˝ ..N.G/˝N.2//˚N.2//

Š .N.G/˝N.G/˝N.2//˚ .N.G/˝N.2//

Š ..N.G/˚N.G//˝N.2//˚ .N.G/˝N.2//

Š .N.G/˝N.2//˚ .N.G/˝N.2//˚ .N.G/˝N.2//

Š .N.G/˝N.2//˚3;

where the first isomorphism is given by Lemma 4.6 and the third by Lemma 4.7.
Lastly, equations (4.7) and (4.8) follow easily from Lemma 4.7.

We can now turn to the proof of Proposition 4.4.

Proof of Proposition 4.4. We remind the reader that for two knots K1, K2 we have
JK1#K2K Š JK1K˝ JK2K (see (2.4)). Let L D #

i�n
Ki # #

j�m
Jj . If n D m D 0, then

�.L/ D �.U / D 0:

We now consider ¹n;mº¤¹0º. Using equations (4.5) to (4.8), Lemmas 4.6 and 4.7,
we find that for all i; j � 1 the complex JKi#Jj K splits as a sum of the following
pieces:

p; N.G/; N.G/˝N.2/:

The same pieces also give a decomposition of J #
i;j�1

.Ki#Jj /K.

If n D m ¤ 0, then L D #
1�i�m

.Ki#Ji /. Using Corollary 3.5 and the fact that

�.N.G/; 0/ D �.N.G/˝N.2/; 0/ D 1;
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one obtains

�.L/ D �
�

#
1�i�m

.Ki#Ji /
�
� max

�
�.p/; �.N.G/; 0/; �.N.G/˝N.2/; 0/

�
D 1:

We also have �.L/ � 1 by Proposition 1.8, since L ¤ U . This shows that �.L/ D 1.
Let now n > m � 0. We have

L D #
j�m

.Kj #Jj / # #
mC1�i�n

Ki :

It is easy to see, using equations (4.6) to (4.8), Lemmas 4.3, 4.6, and 4.7 that
J #
mC1�i�n

KiK splits as a sum of

N.G/; N.G/˝N.2/; Sn�m:

Now,
JLK Š J #

j�m
.Kj #Jj /K˝ J #

mC1�i�n
KiK;

therefore equations (4.6) to (4.8), along with Lemmas 4.6 and 4.7, show that the same
pieces also give a decomposition of JLK. Thus, in order to prove that �.L/ � n �m,
all we have to do is apply Corollary 3.5, which yields

�.L/ � max.�.Sn�m/; �.N.G/; 0/; �.N.G/˝N.2/; 0// D n �m:

The inequality �.L/ � n �m also holds: the complex J #
j�m

.Kj #Jj /K has a p piece,

and J #
mC1�i�n

KiK has a Sn�m piece, so there is a piece Sn�m Š p˝ Sn�m in JLK.

Using that uG.Sn�m/ D n �m (cf. Lemma 4.2) and Lemma 3.28, one finds �.L/ �
uG.L/ D n �m. It follows that �.L/ D n �m.

Lastly, let m > n � 0. Then,

L D #
i�n
.Ki#Ji / # #

nC1�j�m
Jj ;

and the only pieces appearing in JLK are

N.G/; N.G/˝N.2/; Sm�n:

It follows that the pieces appearing in J�LK D xJLK are

N.G/; N.G/˝N.2/; Sm�n:

Hence, by Proposition 1.9 and looking at the proof of the case n > m just above, one
finds �.L/ D �.�L/ D m � n.
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Remark 4.9. It is easy to see from the above proof that a similar result as Proposi-
tion 4.4 also holds for uG . Namely, if K1; : : : ; Kn, J1; : : : ; Jm satisfy conditions (1)
and (2) of Proposition 4.4, we have

uG
�

#
i�n
Ki # #

j�m
Jj
�
D

8̂̂<̂
:̂
n �m if n > m � 0;

1 if n D m ¤ 0 or m > n � 0;

0 if n D m D 0:

The partial difference is due to the fact that uG.Sk/ D 0, while �.Sk/ D �.Sk/ D k
for all k � 1.

4.3. � of small knots

We start this subsection by computing � for all knots with up to 10 crossings.

Proposition 1.14. For all knots up to 10 crossings, we have � D 1, except for the
knots 819, 10124, 10128, 10139, 10152, 10154, 10161, where � D 2.

Proof. By Proposition 1.10, if a knot is thin, then �D 1, so it suffices to look at knots
which are not thin. Among the knots with up to 10 crossings, there are twelve knots
that are thick:

819; 942; 10124; 10128; 10132; 10136; 10139; 10145; 10152; 10153; 10154; 10161:

Using khoca and homca, one can compute that the ZŒG�-complex of the knots 942,
10132, 10136, 10145, 10153 decomposes into a sum of a p and several N.G/ pieces;
hence, � D 1 by Lemma 3.30. The ZŒG�-complex of the remaining knots 819, 10124,
10128, 10139, 10152, 10154, 10161 decomposes into a sum of a p, several N.G/ pieces,
and a single N.G2/ piece. Using Corollary 3.5 and Lemma 3.28, one obtains � D 2
for these knots.

A natural question to ask when introducing a new invariant is how it compares to
other already existing invariants. For example, how does � compare to the classical
3-genus g of a knotK? We know that � is a lower bound for the unknotting number u,
while g can be a lower or upper bound for u depending on the knot. For instance, Lee–
Lee [25] showed that, for all knots with braid index � 3, the inequality u.K/ � g.K/
holds. However, this is no longer true for knots with braid index � 4: as pointed out
in their work, there are six knots with braid-index 4 and at most 9 crossings for which
u > g holds. How does � fit into this scheme? For knots up to 12 crossings, we can
provide the following answer.

Proposition 4.10. For all knots up to 12 crossings, the 3-genus g is an upper bound
for �.
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K u.K/ g.K/

946 2 1

11n139 2 1

12n203 3 or 4 3

12n260 2 or 3 2

12n404 2 or 3 2

12n432 2 or 3 2

12n554 3 2

12n642 3 or 4 2

12n764 3 or 4 3

12n809 1, 2 or 3 2

12n851 3 or 4 3

Table 1. Non-quasi-alternating prime knots with up to 12 crossings for which (possibly) g < u
holds.

Proof. Since � is a lower bound for the unknotting number u, it is sufficient to con-
sider knots with up to 12 crossings for which (possibly) g < u holds. Using that quasi-
alternating knots are thin and that for thin knots � D 1 (cf. Proposition 1.10), there
are 11 non-quasi-alternating knots with at most 12 crossings with (possibly) g < u.
They were found using Livingston’s wonderful KnotInfo [32] and Jablan’s table of
quasi-alternating knots for up to 12 crossings [16]. The knots are listed in Table 1.

A computation using khoca and its extension homca showed that the ZŒG�-com-
plex of all knots in Table 1 decomposes into p and N.G/ summands. By Lemma 3.30,
this implies that � D 1 for all knots in Table 1.

Proposition 4.10 raises the following question.

Question 4.11. Does �.K/ � g.K/ hold for all knots K?

5. Rational tangles and the �-invariant

5.1. The ZŒG�-homology of rational tangles

Definition 5.1. A 4-ended (oriented or unoriented) tangle T is called rational if the
pair .B; T / is homeomorphic to .D2 � Œ0; 1�; ¹.�1

2
; 0/; .1

2
; 0/º � Œ0; 1�/, drawn in

Figure 11.
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Figure 11. The rational tangle .D2 � Œ0; 1�; ¹.�1
2
; 0/; .1

2
; 0/º � Œ0; 1�/.

D R.0/ (5.1)

D R.1/ (5.2)

R.x/ D R.x C 1/ (5.3)

R.x/ mirrored at
plane he1 � e2; e3i

D R

�
1

x

�
(5.4)

D R.1/ (5.5)

D R.�1/ (5.6)

R.x/

D R

�
x

x C 1

�
(5.7)

R.x/ mirrored
at plane he1; e2i

D R.�x/ (5.8)

Figure 12. The recursive definition of the bijectionR between Q[ ¹1º and equivalence classes
of unoriented rational tangles. In (5.4) and (5.8), e1, e2, e3 denote the standard basis vectors
of R3.

Let us briefly summarize Conway’s famous one-to-one correspondence

RWQ [ ¹1º ! ¹unoriented rational tanglesº=equivalence:

See, e.g., [9] for an introduction to this topic. Let us work with unoriented tangles
in the unit ball B0 � R3 � S3 with the four end points .˙1=

p
2;˙1=

p
2; 0/ and

base point .�1=
p
2;�1=

p
2; 0/. Generically, the projection toD2 � ¹0º yields tangle

diagrams; these are the tangle diagrams we consider in what follows. Then, R may be
defined by the rules in Figure 12 (where we set 1=1D 0 and 1=0 D1 D1C 1 D
�1). By a slight abuse of notation, we denote by R.x/ both the tangle and the tangle
diagram (both well defined up to equivalence).

As stated, these rules are consistent and determine the correspondence R com-
pletely, but they are somewhat redundant: for example, (5.5) to (5.7) can be derived
from the other rules. For simplicity, we will now focus on rational tangles T such
that R�1.T / 2 QC D ¹x 2 Q j x > 0º (in particular excluding R.0/ and R.1/).
The one-to-one correspondence between such rational tangles and QC is completely
determined by (5.2), (5.3), (5.4), or by (5.2), (5.3), (5.7).

Thompson [50] has computed Khovanov homology of all oriented rational tan-
gles. More precisely, he shows that the complex of a rational tangle in Bar-Natan’s
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category of cobordisms with dots is homotopy equivalent to a so-called zigzag com-
plex, which may be computed recursively. As a crucial ingredient for the proof of
Theorem 1.1, we require the analog of Thompson’s theorem for Bar-Natan’s theory
without dots (stated below as Theorem 5.6), which is more general than the dotted the-
ory. Fortunately, Thompson’s proof carries over mutatis mutandis to that more general
homology theory.

Let us mention that Kotelskiy, Watson, and Zibrowius have given an elegant way
to compute the Bar-Natan complex over F2 of rational tangles using immersed curves
[22, Example 6.2]. Potentially, their methods also work over the integers, which would
give an alternative proof of Theorem 5.6.

Let us now have a look at the category Cob3;�=l .4/ of 4-ended crossingless tan-
gle diagrams with base point and cobordisms between them. Recall that for two end
points, we have found that Cob3;�=l .2/ is equivalent to MZŒG� (see Section 2). For four
end points, a similar strategy of delooping and simplifying cobordisms leads to the
following, which is just a reformulation of [22, Theorem 1.1].

Theorem 5.2. Consider the ZŒG�-enriched category with the two objects and ,
and graded ZŒG�-morphism modules generated by the identity cobordisms, which we
both denote by I , and the saddle cobordisms

! and ! ;

which we both denote by S , and compositions of these morphisms, modulo the rela-
tions

S3 D GS:

Then, the inclusion of the additive graded closure of this category into Cob3;�=l .4/ is
an equivalence of categories.

This theorem gives us a compact notation for Cob3;�=l .4/: objects are isomorphic
to shifted sums of and , and morphisms are equal to ZŒG�-linear combinations
of I , S , and S2. For convenience, we write D WD S2 �G (following [22]). Note that

SD D DS D 0 and D2
D �GD:

For the rest of the section, we will for the most part omit homological and quantum
gradings without further mention.

Definition 5.3. A zigzag complex is a graded chain complex .
Ln
iD0 Ai ;

Pn
iD1 di /

over Mat.Cob3;�=l .4// satisfying the following.

(i) Each Ai is either or with a quantum and homological degree shift.
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(ii) Each di has domain and target Ai�1 ! Ai or Ai ! Ai�1 and is one of the
following five maps:

S W ! ; S2W ! ; DW ! ;

S2W ! ; DW ! :

(iii) Two consecutive differentials di , diC1 (no matter what their domain and
target are) are either S and D, or S2 and D.

(iv) There is at least one differential S .

TheAi and di are considered as part of the data of the zigzag complex. We say that
the zigzag complex .

Ln
iD0An�i ;

Pn
iD1dnC1�i / is obtained from .

Ln
iD0Ai ;

Pn
iD1di /

by reindexing. Note that reindexing does not change the isomorphism type of the chain
complexes.

We would like to depict zigzag complexes using the following type of graphs.

Definition 5.4. Let us consider a directed finite graph with two types of vertices, �
and ı. Let us call an edge connecting a � and a ı vertex a saddle edge. Such a graph
is called a zigzag graph if it satisfies the following conditions.

(i) The graph has the shape of a line; i.e., there are exactly two vertices of
valency 1 (which we call the ends), and all other vertices have valency 2.

(ii) There is a partition of edges into odd and even edges such that all saddle
edges are odd, and if two edges are adjacent, then one of them is odd and
the other one even.

(iii) All saddle edges are directed like this: ı ! �.

(iv) There is at least one saddle edge.

Note that because there is at least one saddle edge, the partition of edges into odd
and even edges is unique.

Definition 5.5. The graph of a zigzag complex is the zigzag graph with a vertex � or
ı corresponding to each Ai that is a shift of or , respectively, and one directed
edge corresponding to each di .

One easily checks that the graph of a zigzag complex really is a zigzag graph.
Moreover, every zigzag graph is the graph of a zigzag complex; and the graph of a
zigzag complex determines the zigzag complex up to reindexing, and up to global
shifts in homological and quantum degree. The correspondence between zigzag com-
plexes and zigzag graphs is summarized in Figure 13.
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! ı �

! � �

! � �

! ı ı

! ı ı

S saddle
odd

S2

odd

D
even

S2

odd

D
even

Figure 13. Summary of the correspondence between objects and differentials of zigzag com-
plexes (left column) and vertices and edges of zigzag graphs (right columns).

Let us now recursively define a zigzag graph zz.x/ for all positive rational num-
bers x 2 QC by the following rules:

(ZZ1) zz.1/ D ı ! �.

(ZZ2) zz.1=x/ is obtained from zz.x/ by switching ı and � and reversing the
directions of all edges.

(ZZ3) zz.x C 1/ is obtained from zz.x/ by replacing each edge as shown in
Table 2.11

Note that these cases are exhaustive, since two adjacent �-vertices cannot both be
ends (because there is at least one saddle edge), and since a saddle edge is always
directed from ı to �.

Let us check that zz is well defined. Indeed, ı ! � is a zigzag graph, and one
may verify that (ZZ2) and (ZZ3) map zigzag graphs to zigzag graphs. Every positive
rational number can be obtained from 1 by a sequence of x 7! 1=x and x 7! x C 1.
Moreover, that sequence is unique up to inserting or removing two consecutive x 7!
1=x. Since applying (ZZ2) twice has no effect, (ZZ1), (ZZ2), and (ZZ3) indeed define
zz.x/ for every positive rational x.

We are now ready to state our generalization of Thompson’s theorem.

Theorem 5.6. Let R.x/ be the unoriented rational tangle corresponding to a posi-
tive rational number x. Let T be the tangle R.x/ equipped with some orientation o.
Then, the Bar-Natan complex ŒT �� is homotopy equivalent to a zigzag complex with
graph zz.x/.

11After the article at hand had appeared as a preprint, it was observed that the left-hand side
of the fourth row in Table 2 (end � �even not an end) does not actually occur in any zz.x/,
and so, the fourth row may be disregarded [29, Lemma A.1].
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Replace by

� �
odd

� ı ı �

not an end � �even not an end � �

not an end � �even end � � ı

end � �even not an end ı � �

ı � ı ı �

ı ı ı ı

Table 2. How to obtain zz.x C 1/ from zz.x/: each edge e in zz.x/ falls into a unique one of
the six cases shown in the left column of the table. Apply the rule, i.e., replace e by the graph
�e in the right column in the same row. In this way, each of the two vertices v; w adjacent to e
in zz.x/ are replaced by vertices ve; we in zz.x C 1/, namely, the leftmost and the rightmost
vertex in �e . If two edges e and f of zz.x/ are adjacent to a common vertex v, identify the
vertices ve and vf in zz.x C 1/. Note that this is possible since ve and vf always have the
same type: in fact, ve has the same type as v if v (or equivalently, ve) is not an end.11

Remark 5.7. Since the Bar-Natan complex of the mirror image of a tangle is isomor-
phic to the dual of the Bar-Natan complex of that tangle, Theorem 5.6 yields a rather
simple representative of the homotopy equivalence class of the Bar-Natan complex
of any rational tangle, up to global shifts in homological and quantum degree. These
shifts depend on the orientation of the tangle; since they do not matter for our work
on �, we will neglect them. Thompson computes the shifts in [50, Theorem 5.1].

The proof will use Bar-Natan’s computation method of delooping and Gaussian
elimination [6]. We have described delooping in Figure 5 in Section 2.3. By Gaussian
elimination, we mean the following.

Lemma 5.8. Assume that .C; d/ is a chain complex in some additive category taking
the following form:

X Z

� � � Ci�1 ˚ ˚ CiC2 � � �

Y W

c

d ga

b

e

f
h
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zz(3/7) =

�

�

�

ı

ı

�

�

�

�

ı

" #�
'

A9D ¹12º

A8D ¹10º

A7D ¹8º

A6D ¹7º

A5D ¹5º ˚ ˚

A4D ¹6º

˚ ˚ A3D ¹8º

A2D ¹6º

A1D ¹4º

0A0D ¹3º

d9DS
2

d8DD

d7DS

d6DD

d5DS

d4DD

d3DS
2

d2DD

d1DS

Figure 14. An illustration of the correspondence between zigzag graphs and zigzag complexes
and of Theorem 5.6. On the top is shown the zigzag graph zz.3=7/; on the bottom is shown
a zigzag complex that is homotopy equivalent to the Bar-Natan complex of the rational tangle
R.3=7/ endowed with some orientation. The left subscript gives the homological degree.
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with e an isomorphism. Then, C is homotopy equivalent to

� � � ! Ci�1
a
�! X

c�fe�1d
������! Z

g
�! CiC2 ! � � � :

Using Gaussian elimination as stated in the above lemma, one may eliminate the
domain and target of an isomorphism in a chain complex by paying the price of intro-
ducing a new differential f ı e�1 ı d .

Proof of Theorem 5.6. We proceed by induction over the number of transformations

y 7! 1=y and y 7! y C 1

necessary to reach x from 1. For x D 1, observe that ŒT �� is homotopy equivalent (in
fact isomorphic) to a zigzag complex with graph equal to zz.1/, by the definition of
the Bar-Natan complex of a tangle consisting of a single crossing.

So, let us now assume that the statement holds for x. To show that the statement
also holds for 1=x, observe that the tangle diagrams R.x/ and R.1=x/ are related by
mirroring at the line R

�
1
�1

�
. Equivalently, one may first rotate R.x/ by �=2, getting a

tangle diagramDT , and then switch all crossings inDT , gettingR.1=x/. For all three
tangle diagrams R.x/, DT , and R.1=x/, the base point is the lower left end point (as
it is for all four-ended tangles, by the convention fixed at the beginning of this sec-
tion). Let C be the zigzag complex homotopy equivalent to ŒR.x/��, provided by the
induction hypothesis. Since the Bar-Natan complex is defined geometrically, a com-
plex C 0 homotopy equivalent to ŒDT �� may be obtained from C simply by rotating
all crossingless tangle diagrams and all cobordisms in C by �=2. This switches
and . The effect on cobordisms is a little more subtle: since the base point always
remains at the lower left end point, rotation by �=2 does not commute with the action
of G. Thus, one finds (using the 4T u-relation, see Figure 3) that the rotation sends I
to I , S to S , DW ! to DW ! , but sends

DW ! to �DW ! :

However, because of the linear shape of C 0, there is a simple change of basis that
gets rid of the introduced minus signs, yielding a complex C 00 isomorphic to C 0.
Finally, ŒR.1=x/�� is homotopy equivalent to the dual of C 00; naively, the dual of C 00

is obtained by simply reversing the direction of all differentials. As an upshot of this
discussion, the dual of C 00 is a zigzag complex corresponding to the zigzag graph
obtained from zz.x/ by switching ı and � (the effect of the rotation) and redirecting
all arrows (the effect of switching all crossings). This shows that the statement holds
for 1=x.
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C6;0 C5;0 C4;0 C3;0 C2;0 C1;0 C0;0

C6;1 C5;1 C4;1 C3;1 C2;1 C1;1 C0;1

ˇ0;0

�

S S

�

D S D S D S2

ˇ0;1

Figure 15. An example of a grid complex appearing in the proof of Theorem 5.6. The lower
row is a zigzag complex corresponding to zz.5=2/.

Let us now show that the statement holds for xC 1. Let T 0 be the tangleR.xC 1/
equipped with the orientation induced by the orientation of T . Let D be the 2-input
planar arc diagram

* **
:

Then, T 0 is equivalent to D.T; R.1//, and so, ŒT 0�� ' D.ŒT ��; B/, for B the Bar-
Natan complex of a single crossing, which is, up to global shifts, equal to

B0 D
S
�! ¹1º D B1:

Less formally, ŒT 0�� is homotopy equivalent to the chain complex obtained by taking
the tensor product of the chain complexes ŒT �� and B , while at the same time (on
the level of tangles) gluing two pairs of end points. By the induction hypothesis, ŒT ��

is homotopy equivalent to a zigzag complex .
Ln
iD0 Ai ;

Pn
iD1 di / with graph zz.x/.

Thus, the complex ŒT 0�� is homotopy equivalent to the complexM
i2¹0;:::;nº
j2¹0;1º

Cij

with Cij D Ai ˝ Bj and the following differentials:

˛i WCi;0 ! Ci;1

given by .�1/i idAi ˝S , and ˇi;j a map Ci;j ! Ci�1;j or Ci�1;j ! Ci;j given by
di ˝ idBj . One may conveniently depict this complex in a grid with two rows and
nC 1 columns. An example is shown in Figure 15. The lower row of this grid is the
subcomplex .Ci;1; ˇi;1/, which equals the complex .Ai¹1º; di /. In the upper row, on
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Edge
in zz.x/

Square in Cij Square in C 0ij Square in C 00ij

ı � ˙ �S

S

˚2

˙.D I /

. 0 I /

�S

S 0

�D

�S

� �
odd ˙S

G

�S

S2

same as Cij same as Cij

� �even ˙S �S

D

same as Cij same as Cij

ı ı
odd ˙ �

S2

˚2 ˚2

˙.D I /

�
0 I
0 G

�

�.D I /

S2
0 0

�D

ı ıeven ˙

�

�

D

˚2 ˚2

˙.D I /

�
�G I
0 0

�

�.D I /

D
0 0

�S2

Table 3. Simplifications done in the proof of Theorem 5.6.

the other hand,Ci;0D ifAi D andCi;0D ifAi D ; moreover, one easily
checks the correspondence between maps in the lower row and the upper row shown
in the first two columns of Table 3. Note that for these and the following calculations,
it matters where the base point is (in the south west), and where the single crossing is
attached to T to form T 0 (on the right). Our strategy is now to simplify Cij step by
step: first by delooping, then by Gaussian elimination, and finally by basis changes.
Thereby, we will produce a homotopy equivalence between Cij and a zigzag complex
with graph zz.x C 1/.
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Let us first simplify Cij by delooping. This yields another grid complex C 0ij with
identical objects, except that is replaced by C 0i0 D ˚ . The lower rows
C 0i0 and Ci0 are identical, including the differentials. The third column of Table 3
shows how the upper row C 0i1 is determined by the lower row C 0i0. All of the vertical
differentials ˛0i WC

0
i1 ! C 0i0 are either .�1/iS or equal to

.�1/i
�
D I

�
:

We leave it to the reader to verify these calculations.
As a second step, let us simultaneously eliminate all the I entries in ˛0i by Gaus-

sian elimination and denote the resulting grid complex by C 00ij . Table 3 shows how C 00ij
is determined by C 0ij . Once again, we invite the reader to check these calculations.
Note that if there is a differential ı in C 0ij whose target is one of the objects in the
lower row, then there are only two possible cases. The first case is that the domain of
ı is equal to the domain of one of the maps I that are being eliminated. In that case,
Gaussian elimination produces a new differential, which is the reason that the squares
of C 00ij shown in the last two rows of Table 3 are �D and �S2. The second case is
that the domain of ı is another object in the lower row. (Since there are no edges
� ! ı in zz.x/, it cannot be a object.) But in that case, the domain itself is being
eliminated, so in this case, Gaussian elimination does not produce new differentials.

The third step is to apply changes of basis. At each square W of C 00ij arising from
an odd edge in zz.x/ between � vertices, i.e., a square

;

˙S

G

�S

S2

we apply the change of basis shown in Figure 16. Note that Figure 16 also shows the
two squares adjacent to W . Of course, if W is at one end of the complex, then one
of those squares does not exist. The point is that several of those basis changes are
compatible and may be made simultaneously because the basis change maps on the
adjacent objects are the identity I .

This results in a grid complex C 000ij . Since C 000ij is homotopy equivalent to Cij ,
it just remains to verify that C 000ij is isomorphic to a zigzag complex corresponding
to zz.x C 1/. The first two columns of Table 4 summarize how C 000ij is determined
by zz.x/. From that table, it should be evident that C 000ij is a ‘linear’ complex; i.e., it is
isomorphic to a chain complex of the form .

L
i Ai ;

P
i di /, with each Ai either

or , and each di a map Ai�1! Ai or Ai ! Ai�1. It is not quite a zigzag complex,
yet, since the differentials are equal to ˙S , ˙S2, ˙D. However, due to the linear
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˙S

G

�S ˙S �S

D

S2

˙S

D

˙S �S ˙S �S

D

�S

�D

D

Figure 16. The change of basis that is required in the proof of Theorem 5.6. The back face is
the complex C 00

ij
, and the front face is the simplified complex C 000

ij
. Differentials are drawn in

black. The light and dark blue arrows show mutually inverse isomorphisms between those two
complexes. Unlabeled arrows signify identity maps I . The arrows labeledD on the lower level,
on the left, have no arrowhead because they may point in either direction (either both point to
the right, or both to the left). The same holds for the arrows labeledD on the lower level, on the
right.

shape of the complex, one easily finds a basis change that gets rid of all minus signs.
So, C 000ij truly is the zigzag complex of some zigzag graph � .

How edges of zz.x/ determine small subgraphs of � is shown in the third column
of Table 4. However, the way these subgraphs fit together is somewhat cumbersome:
subgraphs coming from adjacent edges in zz.x/ need to be glued together either along
a single ı-vertex, or along a vertical downwards edge from ı to �. As a remedy, we
remove the two ı-vertices from the subgraph induced by an even � ! � edge, unless
those ı-vertices are at one of the ends of the graph. After this reinterpretation, we
obtain the subgraphs shown in the fourth column of Table 4. (In the fourth column,
we also disregard the grid structure, which was still shown in the third column.) To
form � from the subgraphs in the fourth column, one simply glues along a single
vertex. Now, the first and fourth column of Table 4 are precisely identical with the
rules of Table 2. This shows that

� D zz.x C 1/;

concluding the proof.

5.2. The �-distance between rational tangles

Next, let us turn to Theorem 1.1. Let us break up the proof into a sequence of lemmas.
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Edge
in zz.x/

Square in C 000ij Subgraph of �
Subgraph of � ,

reinterpreted

ı �

0

�D

�S

ı ı

�

ı ı �

� �
odd ˙S

�D

�S

ı ı

� �

� ı ı �

� �

x y
even

˙S �S

D

ı ı

� �

� � ı if y is end

ı � � if x is end

� � else

ı ı
odd

0 0

�D
ı ı

ı ı

ı ıeven

0 0

�S2
ı ı

Table 4. From zz.x/ to zz.x C 1/ in the proof of Theorem 5.6.

Lemma 5.9. Let x 2 QC. For every non-saddle edge e of the zigzag graph zz.x/,
there is a subgraph �e of zz.x/ as follows for some n � 1 (in what follows, a missing
arrowhead means that the edge’s direction is unknown):

�e D

A1 A2 � � � An

B1 B2 � � � Bn

e

such that, for each i with 1 � i < n, the vertices Ai and Bi are of the same type
(ı or �), and the edges between Ai and AiC1 and between Bi and BiC1 are either
both directed to the right, or both to the left (in the above drawing of �e); and such
that moreover, one of the following statements is true
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(i) An and Bn are of the same type, An has no outgoing external edge (i.e., an
edge towards a vertex in zz.x/ n �e), and Bn has no incoming external
edge.

(ii) n � 2, and

An�1 An

Bn�1 Bn

looks like
ı ı

ı �:

(iii) n � 2, and

An�1 An

Bn�1 Bn

looks like
� ı

� �:

Proof. We proceed by induction over the number of transformations y 7! 1=y and
y 7! y C 1 necessary to reach x from 1. For x D 1, there is no non-saddle edge
in zz.x/, so the statement is trivially true.

Now, assume that the statement holds for zz.x/, and let us show that it holds
for zz.1=x/ too. Since zz.1=x/ arises from zz.x/ by reversing edge directions and
switching ı and �, there is a canonical one-to-one correspondence between edges e
of zz.x/ and edges f of zz.1=x/. The subgraph �e of zz.x/ then corresponds to
a subgraph �f of zz.1=x/. Note that in order for f to be pointing downwards, one
needs to turn �f upside down. Then, one sees that �e satisfies (i), (ii), (iii) if and only
if �f satisfies (i), (iii), (ii), respectively.

Finally, assume that the statement holds for zz.x/, and let us prove the statement
for zz.xC 1/. Every edge of zz.xC 1/ comes from some edge e of zz.x/ by applying
the rules in Table 2. So, let us consider the six rules shown in Table 2 case by case.12 In
each case, e gives rise to some number (between one and three) of edges in zz.xC 1/,
exactly one of which is a non-saddle edge. That edge, which we denote by f , is the
one for which we need to check the existence of a subgraph �f as in the statement of
the lemma. In each case (except when e is a saddle edge), denote by �e a subgraph
of zz.x/ as in the statement of the lemma, satisfying (i), (ii), or (iii).

12We invite the reader who is eager to check the following proof in detail to have a printed
copy of Table 2 handy. Also, they might be well advised to prepare themself a modified version
of Table 2, in which all subgraphs are rotated by 180ı so that they can quickly find out the fate
of edges pointing to the left.
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(1) e is an odd edge between �-vertices. Applying the rules in Table 2 to every
edge in the subgraph

�e D

� A2 � � � An

� B2 � � � Bn;

e

transforms it into a subgraph � 0 of zz.x C 1/ that looks as follows:

� 0 D

ı � A03 � � � A0
k

ı � B 03 � � � B 0
`
:

f

We consider the following list of exhaustive subcases.

(a) �e satisfies (i) with n odd. In this case, let us show that �f D � 0 satis-
fies (i). Firstly, since the top and bottom row of �e look the same and the
last edge in each row is not an even edge between � vertices, the top and
bottom rows of � 0 look the same too. More precisely, we have k D `, A0i ,
and B 0i are of the same type for 3 � i � k, and horizontal edges in the
first and second rows of � 0 point in the same directions. Secondly, since
An has no outgoing external edge, neither does A0

k
. And since Bn has

no incoming external edge and no outgoing external odd edge between �
vertices, B 0

k
has no incoming external edge either. So, � 0 satisfies (i).

(b) �e satisfies (i) with n even, and both An�1 and An are of type ı, same as
case (a).

(c) �e satisfies (i) with n even, An�1 and An are both of type �, and An
and Bn are ends, same as case (a).

(d) �e satisfies (i) with n even, An�1 and An are both of type �, An is an
end, and Bn is not. Since Bn is not an end and has no external incoming
edge, it must have an external outgoing edge h, which must go to a vertex
BnC1 of type �. Applying the rules of Table 2 to �e [ ¹h; BnC1º yields
the following (note that k D `C 1):

�e

� � � � �
end

� � � � � �

even

h

 � 0

B0
k

� � � � � ı
end

� � � � � ı ı �
h0

Now, �f D � 0 [ ¹h0; B 0kº satisfies (i).
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(e) �e satisfies (i) with n even, An�1 and An are both of type �, An is not
an end, and Bn is. Since An is not an end and has no external outgoing
edge, it must have an external incoming edge g from a vertex AnC1.
Applying the rules of Table 2 to �e [ ¹g; AnC1º yields the following
(note that ` D k C 1):

�e

� � � � � AnC1

� � � � �
end

even
g

 � 0

A0
`� � � � � ı ı � � �

� � � � � ı
end

g0

Now, �f D � 0 [ ¹g0; A0`º satisfies (i).

(f) � satisfies (i) with n even, An�1 and An are both of type �, and neither
An nor Bn are ends. This is basically the synthesis of the two previ-
ous cases. As before, there are an external incoming edge g from some
vertex AnC1 to An and an external outgoing edge h from Bn to some
vertex BnC1. Applying the rules of Table 2 to �e [ ¹g; AnC1; h; BnC1º
yields the following (note that k D `):

�e

� � � � � AnC1

� � � � � �

even
g

h

 � 0

A0
kC1

A0
kC2

B0
kC1

B0
kC2

� � � � � ı ı � � �

� � � � � ı ı �

g0

h0

Now, �f D � 0 [ ¹g0; A0kC1; h
0; B 0

kC1
º satisfies (i).

(g) � satisfies (ii). In this case, we have ` D k C 1 and

� 0 D � � �

A0
k�2

ı ı

B 0
k�2

ı ı �
h0

If An does not have an external outgoing edge, then neither does A0
k

, and
thus,

�f D �
0
n ¹B 0kC1; h

0
º

satisfies (i). IfAn has an external outgoing edge g towards a vertexAnC1,
then A0

k
also has an external outgoing edge g0 towards a vertex A0

kC1
,

which must be of type ı. Then,

�f D �
0
[ ¹g0; A0kC1º

satisfies (ii).
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(h) �e satisfies (iii). In this case, we have ` D k C 1 and

� 0 D � � �

A0
k�3

� ı ı

B 0
k�3

� ı ı �
h0

We may proceed exactly as in case (g) above.

(2) e is an even edge between �-vertices, none of which are an end. Applying the
rules in Table 2 to every edge in the subgraph

�e D

� A2 � � � An

� B2 � � � Bn

e

transforms it into a subgraph � 0 of zz.x C 1/ that looks as follows:

� 0 D

� A02 � � � A0
k

� B 02 � � � B 0
`
:

f

Now, one may proceed exactly as in case (1).

(3) e is an even edge between �-vertices, directed towards an end. In �e , B1 is
an end. Thus, we must have n D 1 and � satisfying (i). So, in zz.x/, there
is an edge between A1 and a vertex A2, directed towards A1. The rules of
Table 2 transform A2! A1! B1 into a subgraph � 0 of zz.xC 1/ that looks
as follows:

� 0 D

� ı ı � � �

� ı end.

f

Depending on the type of A2, the first row may have a fourth column, or not.
But either way, the first two columns of � 0 form a subgraph �f of zz.x C 1/
satisfying (i) with n D 2.

(4) e is an even edge between �-vertices, directed away from an end. In � , A1 is
an end. Thus, we must have n D 1 and � satisfying (i). So, in zz.x/, there is
an edge between B1 and a vertex B2, directed away from B1. Since B1 is a
�-vertex, so is B2. Let us inspect the transformation given by Table 2:

� end

� �

e Ý
� ı end

� ı ı �

f
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The first two columns of the right-hand side form a subgraph �f of zz.xC 1/,
satisfying (i) with n D 2.

(5) e is a saddle edge. Note that we do not have a graph �e in this case. Nev-
ertheless, let us denote by A1 the ı-vertex adjacent to e. Let us inspect the
transformation given by Table 2 in each of the three cases that (a) A1 is an
end, (b) A1 has an incoming edge, and (c) A1 has an outgoing edge:

.a/

ı end

�

e Ý
ı end

ı �

f

.b/

ı ı

�

e Ý
ı ı

ı �

f

.c/

ı ı

�

e Ý
ı ı

ı �

f

In cases (a) and (b), the edge f and its end points form a subgraph �f
of zz.x C 1/ satisfying (i), with n D 1. In case (c), the whole right-hand
side is a subgraph �f of zz.x C 1/, satisfying (ii) with n D 2.

(6) e is an edge between two ı-vertices. Treat this case similarly as (1) and (2).

Lemma 5.10. Let x 2 QC, and let .C; d/ D .
Ln
iD0 Ai ;

Pn
iD1 di / be a zigzag com-

plex corresponding to zz.x/. Then, for every i 2 ¹1; : : : ; nº, there exists a homotopy
hWC ! C such that h ı d C d ı h D f � .idAi C idAi�1/ with f D S2 if di is odd
(i.e., di D S or di D S2), and f D D if di is even, i.e., di D D.

Proof. By reindexing C if necessary, we assume without loss of generality that di is
a map Ai�1 ! Ai .

If di is S , then let h be given by S WAi ! Ai�1. Then, for h ı dj to be non-
zero, the target of dj and the domain of h must match; this happens only if j D i ,
or j D i C 1 � n and diC1 is a map AiC1 ! Ai . In the latter case, we nevertheless
have h ı diC1 D 0, since h is S and diC1 is D. Similarly, one sees that dj ı h D 0
unless j D i . Overall, we find

h ı d C d ı h D

nX
jD1

h ı dj C dj ı h D h ı di C di ı h D S
2
� .idAi C idAi�1/

as desired.
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If di is not S , denote by e the edge in zz.x/ corresponding to di . Since e is not
a saddle edge, by the previous Lemma 5.9, there is a subgraph � satisfying (i), (ii),
or (iii). The part of C corresponding to � is the following (drawn in black):

Ai�1 Ai�2 � � � Ai�k

Ai AiC1 � � � AiCk�1:

di�1

di

di�kC1

diC1

h0 h1

diCk�1

hk�1 (5.9)

Let the homotopy h, drawn in (5.9) in red and dashed, be defined as the sum

h D

k�1X
jD0

hj WAiCj ! Ai�j�1

with hj equal to .�1/i�j times the identity cobordism if the domain and target of hj
are both or both and hj equal to .�1/i�j times S if one of the domain and
target of hj is , and the other is . Note that the latter case only happens if �
satisfies (ii) or (iii) and

j D k � 1:

Now, h ı d C d ı h is equal to the sum of the following terms ˛; ǰ ; 
j ; ı (all other
compositions of hj and dk vanish because target and domain do not match):

di ı h0 C h0 ı di„ ƒ‚ …
˛

C

k�1X
jD1

di�j ı hj�1 C hj ı diCj„ ƒ‚ …
ǰ

C

k�1X
jD1

di�j ı hj C hj�1 ı diCj„ ƒ‚ …

j

C di�k ı hk�1 C hk�1 ı diCk„ ƒ‚ …
ı

:

Now, observe that ˛ equals f � .idAi C idAi�1/ with f D S2 if di is S2 and f D D
if di is D. So, it just remains to show that the terms ǰ , 
j , and ı are 0. For each j ,
one of ǰ and 
j is 0 because targets and domains do not match; and the other term
is 0 because the squares in (5.9) anticommute. (Remember that di�j and diCj both
point to the left, or both to the right.) This is also true for the last square in case that
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� satisfies (ii) or (iii), in which case that square, respectively, looks like

S2

S

˙1 �S or

:

S

S2

˙1 �S

Finally, in case � satisfies (i), ı is 0 because targets and domains mismatch. If �
satisfies (ii) or (iii), ı is 0 either for the same reason, or because hk�1 is S and di�j
and diCj are D.

The following lemma is well known (see, e.g., [7,23]), and it can easily be checked
inductively.

Lemma 5.11. For i 2 ¹1; 2º, let pi and qi be coprime integers. Then, R.p1=q1/
andR.p2=q2/ have the same connectivity if and only if p1�p2 .mod 2/ and q1� q2
.mod 2/.

Let us call an end of a zigzag graph even or odd depending on whether the unique
edge adjacent to it is even or odd.

Lemma 5.12. Let x D p=q with p; q positive and coprime. Then, the following hold.

(i) zz.x/ has an even end iff p or q is even.

(ii) zz.x/ has an odd ı-end iff p is odd.

(iii) zz.x/ has an odd �-end iff q is odd.

Proof. Let us show this by induction over the number of transformations y 7! 1=y

and y 7! y C 1 necessary to reach x from 1. For x D 1, zz.x/ has both a ı-end and
a �-end, and p D q D 1 are both odd, so the statement holds. Let us now assume
that the statement holds for x. The zigzag graph zz.1=x/ is obtained from zz.x/ by
switching ı and � and reversing all edges. This switches ı- and �-ends and does not
change the parity of edges. This corresponds to the fact that

x 7! 1=x

switches the parity of p and q. Thus, the statement holds for 1=x.
To check the statement for x C 1, one needs to analyze the effect of (ZZ3) on

parity and the type of ends (� or ı). The possible configurations for zz.x/ are listed
in the first two columns of Table 5.

The third and fourth columns show the respective resulting configurations for
zz.x C 1/. The third column is straightforward. To verify the fourth column, one
needs to refer to Table 2. From the above table, one sees that the induction statement
holds for x C 1. This concludes the proof.
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parities of p, q ends of zz.x/ parities of p C q, q ends of zz.x C 1/

odd, odd odd ı, odd � even, odd even ı, odd �

even, odd even ı, odd � odd, odd odd ı, odd �

even, odd even �, odd � odd, odd odd ı, odd �

odd, even even �, odd ı odd, even even ı, odd ı

odd, even even ı, odd ı odd, even even ı, odd ı

Table 5. Effect of x 7! x C 1 on parities and ends.

The next lemma is the heart of the proof. It is the analog of [2, Lemmas 3.1
and 3.2].

Lemma 5.13. Let p=q 2 QC with both p and q odd, and let C be a zigzag complex
corresponding to zz.p=q/. Let C 0 be the complex

C 00 D
S
�! ¹1º D C 01;

which is (up to global shifts) the Bar-Natan complex of R.�1/ equipped with some
orientation. Then, there are ungraded chain maps f WC ! C 0 and gWC 0 ! C such
that

g ı f ' G � idC and f ı g ' G � idC 0 :

Proof. Let us write

.C; d/ D

 
nM
iD0

Ai ;

nX
iD1

di

!
:

By reindexing this zigzag if necessary, we may assume that the end of � correspond-
ing to A0 is the ı-end. We are going to define f as sum of two ungraded chain maps
˛WA0! C 01 and 
 WAn! C 00 and g as sum of two ungraded chain maps ˇWC 01! A0

and ıWC 00 ! An. See Figure 17 for an example. Namely, let ˇ and 
 be �D, and let
˛ and ı be 1. One may check inductively using Table 2 (see [15, Remark 12.14] for
details) that the ı-end of � has an outgoing differential, and the �-end has an incom-
ing differential; in other words, d1 is a map A0 ! A1, and dn is a map An�1 ! An.
Combined with the fact that d1 and dn are both S or S2, this implies that f and g are
ungraded chain maps. Now, one calculates that

f ı g D ˛ ı ˇ C 
 ı ı

D .�DWC 00 ! C 00/C .�DWC
0
1 ! C 01/:
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A0 A9

C 0
1

C 0
0

S

S

1

D

�1

�1

S2

1

S

D

�1

�1

S

S

1

D

�1

S

S

D

�1

S2

1

S

S

1

˛

�D

ˇ

�D




1

ı

Figure 17. Illustration of the proof of Lemma 5.13. In the top row is shown a zigzag complex C
with graph zz.3=7/ (compare Figure 14). In the bottom row is shown the complex C 0. In light
and dark blue are shown the ungraded chain maps f WC ! C 0 (going down) and gWC 0 ! C

(going up). In red and dashed are indicated the required homotopies. Homological and quantum
degree shifts are omitted from the diagram.

Let h0WC 0! C 0 be S WC 01! C 00. Then, d 0 ı h0 C h0 ı d 0 D G � idC 0 �f ı g, so f ı g
is homotopic to G, as desired.

Similarly, one finds g ıf D .�DWA0!A0/C .�DWAn!An/. By Lemma 5.10,
for each i , there exists a homotopy hi W C ! C such that hi ı d C d ı hi equals
u � .idAi C idAi�1/ with u D S2 if di is odd and u D D if di is even. Let h DP
i .�1/

iC1hi . Now, one sees that

h ı d C d ı h D G � idC �g ı f;

which concludes the proof.

We now need to examine rational replacements (first seen in Definition 1.3) more
closely.

Definition 5.14. Two unoriented links L;L0 � S3 are related by a rational replace-
ment if, after an isotopy, there exists a ball B � S3 whose boundary sphere intersects
L and L0 transversely such that L n Bı D L0 n Bı, and the two tangles T D L \ B
and T 0 D L0 \B are rational. If T and T 0 have the same connectivity, we say that the
rational replacement is proper. If there is a homeomorphism between B and the unit
ball that sends T to R.x/ and T 0 to R.y/ for some x; y 2 Q [ ¹1º, we speak of an
x by y rational replacement.

It is a frequently used fact that a crossing change may be seen as �1 by 1 rational
replacement, but also as 0 by 2 rational replacement. The following lemma generalizes
this.
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Lemma 5.15. Let S , T be rational tangles in a ball B , let x; y 2 Q [ ¹1º, and
let ' be a homeomorphism of B to the unit ball B0 such that '.S/ D R.x/ and
'.T /DR.y/. Then, there exist z 2 ¹�1º [ Œ0;1/ and a homeomorphism '0WB!B0

such that '0.S/ D R.�1/ and '0.T / D R.z/.

Proof. Let  1 be a homeomorphism of B0 with  1.R.x// D R.1/. Then,

 1.R.y// D R.y
0/

for some y0. Let  2 be a homeomorphism of B0 such that  2.R.1// D R.1/

and  2.R.y0// D R.y00/ with y00 2 .0; 1� [ ¹1º. Such a  2 may be constructed by
adding a certain number of twists to the right side of the ball. Finally, let  3 be the
homeomorphism of B0 that sends R.w/ to R.1=w � 1/ for all w 2 Q [ ¹1º. Then,
 3 ı 2 ı 1 ı'.S/DR.�1/ and 3 ı 2 ı 1 ı'.T /DR.z/ for z 2 ¹�1º[ Œ0;1/,
as desired.

Proposition 3.14. Fix a ball and four end points on its boundary, where one of them
is distinguished as base point. On the set of equivalence classes of unoriented rational
tangles in that ball with fixed connectivity, the pseudometric given by � is in fact equal
to the discrete metric. That is to say, �.S; T / D 1 for inequivalent rational tangles S
and T .

Proof. By Lemma 5.15, there exist x 2 ¹�1º [ Œ0;1/ and a homeomorphism that
sends S to R.�1/ and T to R.x/. Since S and T are not equivalent, we have x ¤�1.
Since the connectivities of S and T are the same, Lemma 5.11 implies that x D p=q
with both p and q odd (in particular, p=q ¤ 0). By Proposition 3.10, � is equivariant
under homeomorphisms, and so, we have �.S; T / D �.R.�1/; R.x//. So, it will be
sufficient to show that �.R.�1/; R.x// D 1.

By Theorem 5.6, ŒR.x/�� is homotopy equivalent to a zigzag complex C with
graph zz.x/. By Lemma 5.13, there are ungraded chain maps f W ŒR.�1/�� ! C

and gW C ! ŒR.�1/�� with g ı f ' G � idŒR.�1/�� and f ı g ' G � idC , showing
�.R.�1/; R.x// � 1.

Let D be the following 2-input planar arc diagram:

* *

Then, D.R.�1/; R.2// is the unknot, and D.R.x/; R.2// is the two-bridge knot K
corresponding to xC 2D .pC 2q/=q. Since xC 2 > 1, this is a non-trivial knot, and
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so, we have �.K/ > 0 because � detects the unknot (see Proposition 1.8).13 Overall,
using Lemma 3.7, we get

�.R.�1/; R.x// � �.D.R.�1/; R.2//;D.R.x/; R.2/// D �.K/ > 0:

This concludes the proof.

Proof of Theorem 1.1. To show �.K/ � uq.K/, it is sufficient to show the following:
if two knots K and J are related by a proper rational replacement, then �.K; J / � 1.
So, let knots K, J related by a proper rational replacement be given. By definition,
there exists a 4-ended tangle T such that K is the union of T with a rational tangle S
and J is the union of T with a another rational tangle S 0. Since the replacement is
proper, S and S 0 have the same connectivity. So, �.S; S 0/ � 1 by Proposition 3.14,
and thus, �.K; J / � 1 by Proposition 3.12.

A. Proof of Proposition 2.8

This appendix is devoted to the proof of the following proposition.

Proposition 2.8. The functor BWMat.E/! Mat.Cob3=l.2// given by inclusion is an
equivalence of categories.

Proof. We need to check that B is faithful, full, and dense. As explained before,
density of B follows directly from delooping. To show that B is faithful and full, we
are going to look at the morphism spaces

homE.DT0 ;DT0/;

homCob3.2/.B.DT0/; B.DT0//;

homCob3=l .2/
.B.DT0/; B.DT0//;

where DT0 is the diagram of the trivial 2-ended tangle T0.
Let G; †i , i 2 Z�0 be formal variables. We introduce a grading on ZŒG� and

ZŒG;†0; †1; †2; : : :� by setting degG D �2 and deg†i D 2 � 2i . Then, there is an
isomorphism of graded Abelian groups14

homE.DT0 ;DT0/ Š ZŒG�

13Here, we do not even need Kronheimer–Mrowka’s theorem that Khovanov homology
detects the unknot, but only the (much easier) theorem that Khovanov homology detects the
unknot among two-bridge knots. (In fact, already the Jones polynomial can be seen to accom-
plish that.)
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+ + = + +

Figure 18. The 3S2-relation.

given by mapping a connected cobordism of genus k to Gk . Similarly, there is an
isomorphism of graded Abelian groups14

homCob3.2/.B.DT0/; B.DT0// Š ZŒG;†0; †1; †2; : : :�;

given by mapping a cobordism, which consists of the marked component with genus
k and a disjoint union of ni many closed surfaces of genus i , to the product

Gk
1Y
iD0

†
ni
i :

In order to determine homCob3=l .2/
.B.DT0/; B.DT0//, we need to understand how

the local relations S , T , and 4T u in Cob3=l.2/ affect the ring ZŒG; †0; †1; †2; : : :�.
Introducing S and T translates to †0 D 0 and †1 D 2. Next, we replace 4T u with
the equivalent 3S2 relation (cf. [5, Section 11.4] and Figure 18) which is easier to
handle as there are at most three surfaces involved. We name the surfaces in the
relation A, B , C in a clockwise manner starting top left. Suppose that g.A/ D a,
g.B/ D b, g.C / D c. Let Mn be the curtain with genus g.Mn/ D n.

Suppose first that A D B DM0 ¤ C . In this case, the 3S2 relation translates to

G†c CG
c
CGc D †cC1 CG†c CG†c , †cC1 D 2G

c
�G†c :

By the S relation, we have †0 D 0 and thus †1 D 2G0 �G � 0 D 2, which coincides
with the T relation. By induction, we therefore obtain the relation

†c D

´
2Gc�1; c odd;

0; c even;
(*)

giving us a surjection homCob3=l .2/
.B.DT0/; B.DT0//� ZŒG�. We claim that there

are no other relations introduced, i.e., that this surjection is an isomorphism. For this,
we check all possible general cases of the 3S2 relation.

14This is in fact an isomorphism of graded rings if we declare multiplication in homE

(resp., homCob3.2/) as composition of cobordisms.
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Case 1: A, B , C are three different closed surfaces (i.e., none of them is a cur-
tain Mn). In this case, 3S2 translates to

†aCb†c C†aCc†b C†bCc†a D †aC1†b†c C†a†bC1†c C†a†b†cC1:

If all a � b � c mod 2 or if a is odd and b, c are even, both sides of the equation
vanish after applying (*). On the other hand, if a is even and b, c are odd, then (*)
gives us

4GaCbCc�2 C 4GaCbCc�2 C 0 D 8GaCbCc�2 C 0C 0;

showing that there is no new relation introduced. Since 3S2 is symmetric in A, B , C ,
no other parities of a, b, c need to be checked in this case.

Case 2: A D B ¤ C and none of them is a curtain Mn. In this case, we have

†aC1†c C†aCc C†aCc D †a†cC1 C†aC1†c C†aC1†c :

If a � c mod 2, both sides of the equation vanish after applying (*). If a is even and
c is odd, we obtain

4GaCc�1 C 0C 0 D 0C 2GaCc�1 C 2GaCc�1;

showing that there is no new relation introduced. Again, by symmetry of the 3S2
relation, no other cases of a and c need to be checked.

Case 3: A D B D C and none of them is a curtain Mn. In this case, we have

3†aC1 D 3†aC1;

showing immediately that there are no new relations introduced.

Case 4: A DMa, B , C are three different surfaces. The 3S2 relation translates to

GaCb†c CG
aCc†b CG

a†b C c D GaC1†b†c CG
a†bC1†c CG

a†b†cC1:

If b, c are even, both sides vanish after applying (*). If b is even and c is odd, we
obtain

2GaCbCc�1 C 0C 2GaCbCc�1 D 0C 4GaCbCc�1 C 0;

and if b is odd and c is even, we get

0C 2GaCbCc�1 C 2GaCbCc�1 D 0C 0C 4GaCbCc�1:

In both cases, no new relations are introduced.
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Case 5: A D B DMa ¤ C . In this case, we get

GaC1†c CG
aCc
CGaCc D GaC1†c CG

aC1†c CG
a†cC1:

If c is odd, applying (*) yields

2GaCc CGaCc CGaCc D 2GaCc C 2GaCc C 0;

and if c is even,
0CGaCc CGaCc D 0C 0C 2GaCc :

In both cases, no new relations are introduced.

Case 6: A DMa, B D C DMc , Ma ¤Mc . We have

GaCc CGaCc CGa†cC1 D G
aC1†c CG

a†cC1 CG
a†cC1:

If c is odd, we obtain after applying (*)

GaCc CGaCc C 0 D 2GaCc C 0C 0;

and if c is even,

GaCc CGaCc C 2GaCc D 0C 2GaCc C 2GaCc :

In both cases, no new relations are introduced.

Case 7: A D B D C DMa. As in the third case, we have

3Ga D 3Ga;

showing immediately that there are no new relations introduced.
The above shows that there are isomorphisms

' W homE.DT0 ;DT0/
Š
�! ZŒG�;

 W homCob3=l .2/
.B.DT0/; B.DT0//

Š
�! ZŒG�:

Consider the diagram

ZŒG�

homE.DT0 ;DT0/ homCob3=l .2/
.B.DT0/; B.DT0//:

'  

B

By construction, this diagram commutes, i.e., B ı ' D  . Since both ' and  are
isomorphisms, B has to be an isomorphism as well.
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