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Murasugi sum and extremal knot Floer homology

Zhechi Cheng, Matthew Hedden, and Sucharit Sarkar

Abstract. The aim of this paper is to study the behavior of knot Floer homology under Mura-
sugi sum. We establish a graded version of Ni’s isomorphism between the extremal knot Floer
homology of Murasugi sum of two links and the tensor product of the extremal knot Floer
homology groups of the two summands. We further prove that � D g for each summand if
and only if � D g holds for the Murasugi sum (with � and g defined appropriately for multi-
component links). Some applications are presented.

1. Introduction

The Murasugi sum is an operation that one can perform on isotopy classes of oriented
surfaces with non-empty boundary embedded in 3-manifolds. Applying it to Seifert
surfaces yields an operation on isotopy classes of oriented links. As the name sug-
gests, the operation was introduced by Murasugi [18, 19], whose motivation was a
calculation of the genus of an alternating link by means of the degree of its Alexan-
der polynomial. An important point to be made about the Murasugi sum is that it not
a well-defined binary operation on the set of oriented links. Indeed, many essential
choices are made in its definition; not only the isotopy classes of the chosen Seifert
surfaces, but also the polygons embedded therein along which the sum is performed.
Despite these choices, one can easily show that the coefficient of the Alexander
polynomial corresponding to the first Betti number of the surfaces in question is
multiplicative under Murasugi sum. Gabai later showed that Seifert genus behaves
additively under Murasugi sum, extending the well-known special case of the additiv-
ity of genus under connected sum. Indeed, he showed that the Murasugi sum of two
surfaces is minimal genus if and only the two summands are minimal genus [5, 6].
Note, however, that pathology arises if one considers non-minimal genus surfaces;
for instance, Thompson showed that one can sum two unknots along genus one sur-
faces to get a trefoil or sum two figure eights to get the unknot [35], and Able and
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Hirasawa have recently shown that in fact any knot can be obtained as a Murasugi
sum of any other two knots along (typically) non-minimal genus Seifert surfaces [1].

In light of the connections between the knot Floer homology groups and both
the Alexander polynomial (through their Euler characteristic [25, 32]) and the genus
(through their breadth [24]), one might wonder about the behavior of the extremal
knot Floer homology under Murasugi sum. Here, “extremal” refers to the knot Floer
homology group in Alexander grading given by negative the genus of the surfaces
used. (Modulo a well-understood grading shift, this is isomorphic to the knot Floer
homology group in Alexander grading given by the genus, a group often referred to
as the “top” group) For instance, the knot Floer homology groups of a connected sum
are a bigraded tensor product of those of the summands [25, Theorem 7.1]. Simple
examples exploiting the non-uniqueness of Murasugi sum show that this cannot hold
for general Murasugi sums and, in fact, there can be no closed formula for the knot
Floer homology of the Murasugi sum of links in terms of the knot Floer homology
of the summands. Despite this, it would be reasonable to conjecture that the extremal
knot Floer homology of a Murasugi sum is a tensor product of the extremal terms of its
summands. Ni proved that this is indeed the case for ungraded knot Floer homology
groups with field coefficients [22, Theorems 1.1,4.5] (cf. [15, Corollary 8.8]). Since an
ungraded vector space over a field is determined up to isomorphism by its dimension,
this result is equivalent to saying that the rank of the extremal knot Floer homology is
multiplicative under Murasugi sum. It is natural to wonder if Ni’s result extends in a
(Maslov) graded fashion, and our first result confirms that this is indeed the case. To
state it, we define the index of a (possibly disconnected) surface R to be the quantity
i.R/ WD j@Rj��.R/

2
.

Theorem 1.1. For i 2 ¹1; 2º, let Li be an li -component oriented link and let Ri
be a Seifert surface for Li . Let R1 � R2 be a Murasugi sum of R1 and R2, and let
@.R1 � R2/ D L D L1 � L2 be the corresponding l-component oriented link. Then
with F2-coefficients, we have a graded isomorphism

bHFK.L;�i.R1 �R2//Œl � 1�
Š bHFK.L1;�i.R1//Œl1 � 1�˝ bHFK.L2;�i.R2//Œl2 � 1�:

We should note that it is not clear how to extend Ni’s argument, nor the argument
using the decomposition theorem for sutured Floer homology presented by Juhász, to
yield the graded statement given above (despite some effort to do so). On a superficial
level, though, our proof follows the same strategy as its antecedents; namely, we find
particular Heegaard diagrams adapted to Seifert surfaces and their Murasugi sum,
and then analyze the resulting Floer complexes in detail. The diagrams we end up
using are more specialized, however, and yield more control over the combinatorics
and homotopy theoretic aspects of the associated chain complexes. This increase in
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control further allows us to glean some information about the rest of the knot Floer
homology filtration, in the form of the following result about the integer-valued con-
cordance invariant � [23] (for the extension of � to links, see [4, 13, 31]).

Theorem 1.2. If the oriented link L is the Murasugi sum of oriented links L1 and L2
along minimal index Seifert surfaces, then �.Li /D g.Li / for all i 2 ¹1; 2º if and only
if �.L/ D g.L/. (Here � denotes �top from [13] when discussing links with more than
one component.)

A large class of links for which �.L/D g.L/ is provided so-called strongly quasi-
positive links. These links possess a Seifert surface which is properly isotopic into the
4-ball onto a piece of an algebraic curve and which therefore minimizes the smooth
4-genus. Rudolph gave a partial extension of Gabai’s results to 4-genera, by showing
that the Murasugi sum of oriented links along Seifert surfaces is strongly quasipositive
if and only if the two summands are. Our result strengthens the resulting implications
for the 4-genus.

Our results lead to topological restrictions on which link types can be expressed
as Murasugi sums of others along minimal index Seifert surfaces. Some of the com-
plexity of this problem, and the restrictions offered by our theorems, can be alge-
braically distilled by defining a Grothendieck group of oriented links. Recall that the
Grothendieck group K.M/, of a commutative monoid M is the quotient of the free
abelian group on the set M by the relations Œx C y� D Œx�C Œy�, where on the left
“C” is taken with respect to the monoidal operation and on the right within the free
abelian group. While the Murasugi sum � is not a monoidal operation on oriented
links (relying as it does on the choice of Seifert surface and embedded 2n-gon), we
can nonetheless define a group

K.links;�/ D Zh¹Isotopy classes of oriented linksºi
ŒL1 � L2� D ŒL1�C ŒL2�

which we call the Grothendieck group of oriented links under Murasugi sum along
minimal index surfaces. It is simply the quotient of the free abelian group on the set
of isotopy classes of oriented links by the relations ŒL1 � L2� D ŒL1�C ŒL2�, where
� denotes any Murasugi sum along any 2n-gon in any minimal index Seifert surface
for the links in question. Thus,K.links;�/ consists of equivalence classes of oriented
links, where two links are equivalent if they become isotopic after iteratively Murasugi
summing both of them with some collection .R1; : : : ; Ri / of minimal index Seifert
surfaces (along any 2n-gons embedded therein, and in any order). Fibered links,
endowed with their (unique) minimal index Seifert surface, form an important class
of links which is closed under Murasugi sums by Gabai’s work [5] (see also [34] for
the closure under plumbing). If one considers their associated Grothendieck subgroup
K.fibered links;�/ < K.links;�/, a deep theorem arising from the Giroux correspon-
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dence asserts thatK.fibered links;�/ŠZ˚Z, generated by the positive and negative
Hopf links [7]. One might hope that all links could similarly be generated by a small
family, given the complexity allowed by choices of Seifert surfaces and embedded
2n-gons.

Multiplicativity of the rank of the extremal knot Floer homology under Murasugi
sum shows that K.links;�/ is infinitely generated. Indeed, if we consider the rank of
the top group as map from the set of links to the natural numbers N�, viewed as a
multiplicative monoid, then its multiplicativity under Murasugi sums implies that this
map descend to a group homomorphism K.links; �/! K.N�/ Š Q�>0. Non-trivial
twist knots have top group of rank equal to the number of twists, showing that the map
to N� is surjective, hence the map to Q�>0 is surjective as well.K.links;�/ is therefore
infinitely generated as an abelian group. One could still hope, however, that some
simple infinite family of knots such as twist knots generates all knots under Murasugi
sum and de-summing. Our result dashes this hope, and indicates that K.links; �/ is
quite complicated.

Corollary 1.3. The Poincaré polynomial of the top group of knot Floer homology
induces a homomorphism

P WK.links;�/! Q�>0.t/;

where the codomain is the multiplicative group of rational functions in t with positive
rational coefficients.

It would be interesting to identify the image of P , a problem in the realm of
geography questions for knot Floer homology. In particular, we have the following
natural question.

Question 1.4. Is every Laurent polynomial with N coefficients realized as the Poin-
caré polynomial of the top group of knot Floer homology for some link in the 3-sphere?

Obstructions for a bigraded collection of abelian groups to arise as knot Floer
homology groups were obtained in [2, 14], but these place no restriction on the top
group.

Despite a lack of understanding of the geography question for the top group of
knot Floer homology, our results indicate that any collection of knots whose Poincaré
polynomials are coprime are linearly independent in the Grothendieck group, even if
their total rank is the same. In particular, the kernel of the homomorphism Q�>0.t/!
Q�>0 induced by setting t equal 1 intersects the image of P non-trivially. Perhaps
more concretely, we have the following result.
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Corollary 1.5. Suppose the Poincaré polynomial of the top group of knot Floer
homology of an oriented link L � S3 is irreducible, viewed as a Laurent polynomial
over Z. If L is a Murasugi sum of links L D L1 � L2 along minimal index Seifert
surfaces, then one of Li is fibered.

As another quick corollary, we can show that alternating links or, more generally,
links with thin Floer homology, are far from generating all links under Murasugi sum.

Corollary 1.6. Suppose the top group of the knot Floer homology of L � S3 is non-
trivial in more than one Maslov grading. Then L is not a Murasugi sum of alternating
links nor is any link which contains L as a Murasugi summand, with all Murasugi
sums taken along minimal index Seifert surfaces.

For instance, the top group of the Kenoshita–Terasaka knot and its mutant, the
Conway knot, have Poincaré polynomials given by 1C t , up to multiplication by tk

(with k D 2 for the KT knot and k D 3 for the Conway knot) [28, Theorems 1.1
and 1.2]. Therefore, neither can be realized as a Murasugi sum of alternating links,
nor is there any way to iteratively Murasugi sum them with other links to eventually
arrive at a Murasugi sum of alternating (or thin) links.

As a final corollary, our results can be used in conjunction with the literature to
calculate the top group of an arbitrary cable knot.

Corollary 1.7. Let Kp;q be the .p; q/ cable of a knot K with Seifert genus g. Then,
for any p > 0, we have the following:

(1) if q > 0, then bHFK�.Kp;q; pg C .p�1/.q�1/
2

/ Š bHFK�.K; g/;

(2) if q < 0, then bHFK�.Kp;q; pgC .p�1/.q�1/
2

/ Š bHFK��.p�1/.2g�q�1/.K; g/.

The key observation, due to Neumann and Rudolph, is that Kp;q Š Kp;sign.q/ �
Tp;q , where sign.q/ is ˙1 depending on whether q is positive or negative [20, Fig-
ure 4.2]. Since Tp;q is fibered, our main result indicates that the top group of a cable
knot is isomorphic to that of Kp;sign.q/ shifted by the grading of the top group of the
corresponding torus knot. As the latter is well known to be 0 if q > 0 and .p�1/.�q�1/

2

if q < 0, the corollary can then be deduced if the top group is known for two partic-
ular examples of Kp;q; one with q positive, and one with q negative. But the results
of [8, 11] (cf. [9]) indicate that the top group of Kp;pnC1 is isomorphic to that of K
and the bottom group of Kp;�pnC1 is isomorphic to that of K, provided in both cases
that n� 0. Together with the symmetry between the top and bottom groups of knot
Floer homology, and the observations above, the corollary follows. This is essentially
the argument for the special case of fibered cable knots from [10].

We conclude this introduction by highlighting a few problems and questions raised
by our work. Perhaps the most interesting and challenging is the following.
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Problem 1.8. Determine the isomorphism type of K.links;�/.
Solving this would, ideally, yield an explicit presentation forK.links;�/ by gener-

ators and relations. Note that Gabai’s work implies that the link invariant bmin
1 obtained

by minimizing the first Betti number over all Seifert surfaces for a given link, is addi-
tive under Murasugi sums. Hence, it descends to a homomorphism

Bmin
1 WK.links;�/! K.NC/ Š Z:

An affirmative answer to the following question would solve the following problem.

Question 1.9. Is the homomorphism P ˚ Bmin
1 WK.links; �/! Q�>0.t/˚ Z an iso-

morphism?

Note that an affirmative answer would require an affirmative answer to the geog-
raphy problem raised by Question 1.4. Moreover, combined with any of the known
algorithms to compute knot Floer homology (e.g., [3, 17, 30]), one would also arrive
at a solution to the isomorphism problem in K.links;�/ and, presumably, a presenta-
tion. While we are inclined to believe the answer is no, the restriction of P ˚ Bmin

1

to the subgroup generated by fibered links is an isomorphism onto its image. Indeed,
the image of P on the fibered subgroup is the multiplicative subgroup ¹tnºn2Z and
the power n associated to a given fibered link is the Hopf invariant of the 2-plane
field associated to its corresponding open book decomposition (up to normalization,
the Hopf invariant is equal to Rudolph’s enhancement of the Milnor number [33]).
To conclude with a more tractable question, we leave the reader with the following
question

Question 1.10. Does the Poincaré polynomial homomorphism

P WK.links;�/! Q�>0.t/

contain an infinite rank subgroup in the kernel of the rank homomorphism obtained
by setting t D 1 in the Poincaré polynomial?

Outline. The paper is organized as follow. In Section 2, we review the knot Floer
homology for links, recall the definition for Murasugi sum, construct Heegaard dia-
grams associated to Seifert surfaces, and describe the Murasugi sum operation in
terms of Heegaard diagrams. In Section 3, we study some local isotopies on Heegaard
diagrams which will largely reduce the number of generators; moreover, we prove
that there is a subcomplex that remains unchanged when applying these isotopies if
some technical conditions are satisfied. In Section 4, we use the simplifications from
the previous section to prove the main results.
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2. Heegaard diagrams adapted to Seifert surfaces

2.1. Heegaard diagrams

We begin with a quick review of Heegaard diagrams. Most of what follows extends in
a straightforward manner to arbitrary closed connected oriented three-manifolds, but
since we are primarily concerned with the operation of Murasugi sum in S3 we will
specialize our definitions and constructions to this situation. We begin by recalling the
definition of a Heegaard diagram.

Definition 2.1. A Heegaard diagram for S3 is a 4-tuple

H D .†.g/; ˛.gCk�1/; ˇ.gCk�1/; w.k//

where

• † � S3 is an oriented surface of genus g whose complement has two components,
the closures of which are genus g handlebodiesU˛ andUˇ with†D @U˛ D�@Uˇ ;

• ˛.gCk�1/ D .˛1; : : : ; ˛gCk�1/ (respectively, ˇ.gCk�1/ D .ˇ1; : : : ; ˇgCk�1/) is a
collection of disjoint simple closed curves on †, each bounding a disk in the han-
dlebody U˛ (respectively, Uˇ ), such that † n ˛ (respectively, † n ˇ) has exactly k
components;

• the ˛ circles are transverse to the ˇ circles;

• w D .w1; : : : ; wk/ is a collection of markings on †, such that each component of
† n ˛ contains a w marking, and each component of † n ˇ contains a w marking.

Unless otherwise mentioned, we will assume our Heegaard diagrams to satisfy a
certain technical condition called (weak) admissibility [29, Definition 3.5] (cf. [27,
Definition 4.10]). A generator is a .gC k � 1/-tuple x D .x1; : : : ; xgCk�1/ of points
in †, called the coordinates of x, such that each ˛ and ˇ circle contain exactly one of
the coordinates; we will denote the set of generator by GH .

Let L � S3 be an l-component link and R a Seifert surface for L, not necessarily
connected. Links and Seifert surfaces will always be oriented in this paper, even if we
do not mention it explicitly. We have the following notion of a diagram adapted to R
[12, 15, 22, 26],

Definition 2.2. A Heegaard diagram adapted to R is a 6-tuple

H D .†.g/; ˛.gCk�1/; ˇ.gCk�1/; z.k/; w.k/; S/

satisfying

• .†; ˛; ˇ;w/ and .†; ˛; ˇ; z/ are both Heegaard diagrams for S3;
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• S � † is an oriented surface-with-boundary which is isotopic to R in S3;

• each generator has at most .k � �.R// coordinates inside R;

• the 2k markings z D .z1; : : : ; zk/ and w D .w1; : : : ; wk/ all lie on @S ;

• each component of @S contains at least one marking, and on each component of
@S , the z markings and the w markings alternate;

• the oriented arcs in @S joining each z marking to the next w marking are disjoint
from the ˛ circles, and the arcs in @S joining each w marking to the next z marking
are disjoint from the ˇ circles.

Given a Seifert surfaceR for an l-component linkL� S3, we can employ the fol-
lowing slightly enhanced version of the algorithm from [12], or a further modification
thereof, to construct a Heegaard diagram adapted to R.

Algorithm 2.3. Adapting a Heegaard diagram to a Seifert surface R � S3.

(H-1) Embed a graph G with n vertices and .n � �.R// edges in the interior of
the surface R, such that R deform retracts to G. Therefore, R is isotopic to
nbdR.G/, the closure of a regular neighborhood of G in R. This is essen-
tially a band presentation of R.

(H-2) Consider nbdS3.G/, the closure of a regular neighborhood of G in S3.
Although nbdS3.G/ is a union of handlebodies, its complement in S3

is usually not. Rectify this by tunneling out some one-handles from the
complement and adding them to nbdS3.G/, so as to get a Heegaard decom-
position of S3.

(H-3) Let U˛ be the handlebody obtained from nbdS3.G/ by adding these new
handles, and let Uˇ be complementary handlebody. Let † be the dividing
Heegaard surface, oriented as the boundary of U˛ .

(H-4) Push off nbdR.G/ towards † to get a surface S � † in a way so as to
ensure that the orientation on S induced by R agrees with the one induced
by †.

(H-5) Place 2k distinct markings z D .z1; : : : ; zk/ and w D .w1; : : : ; wk/ on @S
such that each component of @S contains at least one z andw marking, and
on each component of @S , the z markings and the w markings alternate.

(H-6) If the surface† has genus g, then draw .gCk�1/ ˛ circles and .gCk�1/
ˇ circles on † n .z [ w/ such that the following holds:

(a) the ˛ circles are disjoint from one another;

(b) the ˇ circles are disjoint from one another;

(c) the ˛ circles intersect the ˇ circles transversally;
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(d) each component of† n ˛ contains one z marking and one w marking;

(e) each component of† n ˇ contains one z marking and one w marking;

(f) exactly .k � �.R// ˛ circles intersect S .

(H-7) From each w marking, as one travels along �@S to the next z marking,
isotope all the ˛ circles that one encounters, by finger moves, across the z
marking. Similarly, from eachw marking, as one travel along @S to the next
z marking, isotope all the ˇ circles that one encounters, by finger moves,
across the z marking.

(H-8) Finally, perform isotopies of the ˛ circles and the ˇ circles in † n .z [ w/
to make the diagram admissible.

Note that such a Heegaard diagram is indeed adapted to R. In particular, (H-6f)
ensures that each generator has at most .k � �.R// coordinates inside R.

We now spell out an explicit way of making all the choices alluded to in the
previous list. The process is best understood in conjunction with an explicit example,
as illustrated in Figure 2.1. At various points it will be useful to make minor alterations
to these choices, but for the sake of brevity (and sanity), we will not explicitly describe
all the choices made each time a Heegaard diagram is constructed.

Algorithm 2.4. Explicit diagram adapted to a planar projection of an embedded
Seifert surface R � S3.

(E-1) Given a Seifert surface R for an l-component link L � S3, view it as a
surface lying in R3. Consider a projection � WR3 ! R2, and assume that
�jR is generic and the image �.R/ is connected.

(E-2) If R has n components, let G be a graph with n vertices and .n � �.R//
edges, embedded in the interior of R, such that the following holds:

(a) R deform retracts to G;

(b) the vertex v is a regular point of �jR;

(c) �jG is an immersion with no triple points, and all the preimages of
the double points lie in the interior of the edges.

(E-3) Let U˛ D nbdS3.�.G// be a genus g handlebody and let

Uˇ D S3 n nbdS3.�.G//

be the complementary handlebody. Let†D @U˛ be the Heegaard surface.

(E-4) Designate g of the .g C 1/ circles in † \R2 as ˇ circles.

(E-5) For each of the .n� �.R// edges of G, choose a point in the image of the
interior of the edge that is not a double point, and draw an ˛ circle on †
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which is the boundary of a normal disk to G inside U˛ D nbdS3.�.G//.
Draw an additional ˛ circle near each of the .gC �.R/� 1/ double points
of �jG , such that the ˛ circle bounds a disk in U˛ near the double point,
and if the disk were removed by a surgery, then U˛ locally would have
two components, corresponding to the two preimages of the double point,
with the same crossing information.

(E-6) For each vertex vi of G, let pi 2 † be the unique point such that �.pi / D
�.vi / and jd�j†.pi /j has the same sign as jd�jR.vi /j. Let Di � † be a
small disk containing pi ; let D DSi Di .

(E-7) For each of the .n � �.R// edges of G, attach a band to D lying in
† n .˛ circles near the double points/. Choose each band so that it defor-
mation retracts onto an arc that projects to the corresponding edge under
� , and so that the surface framing of the band in † is same as the sur-
face framing of the corresponding edge in R. Let S � † be the surface
obtained from D by adding the bands.

(E-8) Put 2l markings z D .z1; : : : ; zl/ andw D .w1; : : : ;wl/ on @S \ @D, such
that each component of @S contains exactly one z marking and exactly one
w marking, and the l arcs b1; : : : ; bl � @S , which join the w markings to
the z markings, are supported inside @S \ @D.

(E-9) For each disk Di , add an ˛ circle around all but one of the bj ’s supported
in Di . This adds a total of .l � n/ ˛ circles.

(E-10) For 2 � i � l , add a ˇ circles around bi .

(E-11) Perform finger moves on the ˛ circles, as described in (H-7), to obtain the
final Heegaard diagram. One can check that the diagram thus obtained is
admissible. Furthermore, since the surface S was disjoint from the .g C
�.R/ � 1/ ˛ circles near the double points, see (E-7), it remains disjoint
from them even after the finger moves, and consequently, it only intersects
.g C l � 1/ � .g C �.R/ � 1/ D .l � �.R// ˛ circles.

2.2. Knot Floer homology

We briefly recall the definition of the “tilde” version of Heegaard Floer homology,
essentially following [29, Section 6.1], cf. [17, Proposition 2.5]. Given a Heegaard
diagram for S3, H D .†.g/; ˛.gCk�1/; ˇ.gCk�1/; w.k//, the chain complex fCFH is
the F2-module freely generated by the elements of GH .

Given generators x; y 2 GH , a domain joining them is a 2-chain D generated by
the elementary regions of H such that @.@D \ ˛/D y � x; here, an elementary region
is the closure of a component of † n .˛ [ ˇ/, and we are thinking of the generators



Murasugi sum and extremal knot Floer homology 805

Figure 2.1. An algorithm for constructing a Heegaard diagram adapted to a Seifert surface.
As usual, the red circles are ˛ and the blue ones are ˇ. The surface S is orange. The magenta
dots are w-markings and the green dots are z-markings. In the last diagram, the ˛ circles are
represented by train tracks, with the thin red lines denoting curves.
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as formal linear sums of their coordinates. The set of all the domains joining x to y is
denoted by D.x; y/. A domain D is said to be positive if all its coefficients are non-
negative, and at least one of the coefficients is positive. Given a point p 2† n .˛ [ ˇ/,
let np.D/ denote the coefficient of D at the elementary region containing the point
p; let nw.D/ D

Pk
iD1 nwi .D/. Domains with nwi .D/ D 0 for all i are called empty

domains, and the set of all empty domains joining x to y is denoted by D0.x; y/.
Elements of GH carry a well-defined grading called the absolute Maslov grading M ,
which serves as the homological grading of fCFH . The difference in Maslov gradings
can be computed as

M.x/ �M.y/ D �.D/ � 2nw.D/;

where D 2 D.x; y/ is any domain, and �.D/ denotes its Maslov index.
After choosing a generic path of almost complex structures on SymgCk�1.†/,

sufficiently close to the constant path of one induced from a complex structure on †,
one can define the contribution function c, from the set of all empty Maslov index
one domains, to F2, given by c.D/ D jM.D/=Rj, the number of points in a certain
unparameterized moduli space. The function c has the property that it evaluates to 1
only if

(a) the domain is positive [27, Lemma 3.2], and

(b) the closure of the union of the elementary regions where the domain is sup-
ported is connected [32, Corollary 9.1].

Then the boundary map on the chain complex fCFH is given by

@x D
X
y2GH

X
D2D0.x;y/
�.D/D1

c.D/y:

(The chain complex fCFH usually depends on the choice of the path of almost complex
structures on SymgCk�1.†/; nevertheless, we will suppress this from the notation.)

Theorem 2.5 ([17,29]). The homology fHFH of the chain complex fCFH coming from
a Heegaard diagram H D .†.g/; ˛.gCk�1/; ˇ.gCk�1/;w.k// for S3 is isomorphic, as
graded F2-modules, to˝k�1.F2 ˚ F2Œ�1�/, where Œi � denotes a grading shift by i .

The tilde version of knot Floer homology or link Floer homology [25, 29, 32]
is a refinement of Heegaard Floer homology. Let H D .†.g/; ˛

.gCk�1/; ˇ.gCk�1/;

z.k/;w.k/;S/ be a Heegaard diagram adapted to a Seifert surfaceR of an l-component
linkL� S3. Consider the Heegaard diagram H0 D .†.g/; ˛.gCk�1/;ˇ.gCk�1/;w.k//
obtained by forgetting S and the z markings. The set of generators GH is same as GH0 ,
and they carry the same absolute Maslov grading. Given a 2-chain D generated by
the elementary regions of H , let nz.D/ D

Pk
iD0 nzi .D/. The elements of GH carry
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another well-defined grading called the absolute Alexander grading A, such that for
any domain D 2 D.x; y/, A.x/ � A.y/ D nz.D/ � nw.D/.
Proposition 2.6. If x 2 GH is a generator in H D .†.g/; ˛.gCk�1/; ˇ.gCk�1/; z.k/;
w.k/; S/, then its absolute Alexander grading is given by

A.x/ D .number of x-coordinates inside S/ � 1
2
.2k � l � �.R//:

In particular, the Alexander grading satisfies

�1
2
.2k � l � �.R// � A.x/ � 1

2
.l � �.R//:

Proof. The Alexander grading of a generator x 2 GH is given by 1
2
hc1.s.x//; ŒR;@R�i.

If the generator has no coordinate inside S (called outer in [15]), we can evaluate it
as 1

2
c.S/ where c.S/ is the quantity defined in [15, Section 3]. Then, using [15,

Lemma 3.9], we see that

c.S/ D �.S/C I.S/ � r.S/ D �.S/ � k � .k � l/ D �.R/C l � 2k;

where I.S/ equals minus half the number of sutures (which are basepoints in our
setting) and r.S/ is 0 if there is exactly one pair of sutures on each boundary and
increases by one for each additional pair of sutures.

For generators which are not disjoint from S , we only need to notice that we have
c1.s.x//� c1.s.y//D 2PD.˛/, where ˛ D @D for any domainD 2D.x;y/. It is not
hard to see that the algebraic intersection number of ˛ with @S equals the number of
x-coordinates inside S minus the number of y-coordinates inside S , and therefore,

A.x/ D 1

2
.�.R/C l � 2k/C .number of x-coordinates inside S/:

This proves the left-hand side of the inequality. For the right-hand side, we only need
to use the following fact:

.number of x-coordinates inside S/ � .number of ˛ circles intersecting S/

D k � �.R/:

In view of the above proposition, we make the following definitions.

Definition 2.7. Given a compact surface R (possibly disconnected), define its index
to be i.R/ D 1

2
.j@Rj � �.R//. Call a Seifert surface R for a link L minimal if it

minimizes the index, and define the genus of the link, g.L/, to be this minimal index.

It is easy to see that the chain complex fCFH D fCFH0 is filtered by the Alexander
grading. Let the filtration level FH .m/ � fCFH denote the subcomplex generated by
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the generators with Alexander grading m or less. We call such an .M; A/-bigraded
complex, where the differential decreases M by one and does not increase A, an
M -graded-A-filtered complex.

Theorem 2.8 ([25, 29, 32]). To an l-component link L � S3, one can associate (the
filtered chain homotopy type of) an M -graded-A-filtered complex CFK.L/ such that
the chain complex fCFH , coming from any Heegaard diagram H D .†.g/; ˛.gCk�1/;
ˇ.gCk�1/; z.k/;w.k/;S/ adapted to any Seifert surfaceR forL, is filtered chain homo-
topy equivalent to CFK.L/˝k�l .F2 ˚ F2Œ�1;�1�/, where Œi; j � denotes the .M;A/
bi-grading shift by .i; j /.

It is clear from Proposition 2.6 and Theorem 2.8 that the subcomplex of CFK.L/
in Alexander grading less than �i.R/ is filtered chain homotopy equivalent to zero.
Let bCFK.L;�i.R// denote the subcomplex of CFK.L/ in Alexander grading less
than or equal to �i.R/. If R is minimal, then its homology, bHFK.L;�g.L//, is non-
zero [21,24] carrying a single grading coming from the Maslov grading, and is called
the extremal knot Floer homology.

Instead of studying the full filtration on CFK.L/, we will restrict our attention to
the two-step filtration bCFK.L;�i.R//�CFK.L/. Recall that a two-step filtered com-
plex is simply a pair .S;C / where C is a chain complex and S � C is a subcomplex.
A filtered chain map f from .S; C / to .S 0; C 0/ is a chain map f WC ! C 0 so that
f .S/ � S 0. A filtered chain map f from .S;C / to .S 0; C 0/ is a quasi-isomorphism if
both f WC ! C 0 and f jS WS ! S 0 induce isomorphisms on homology. We will make
use of the following corollary of Theorem 2.8

Corollary 2.9. Let H D .†.g/; ˛
.gCk�1/; ˇ.gCk�1/; z.k/; w.k/; S/ be a Heegaard

diagram adapted to a minimal Seifert surface R for L. Then there is a quasi-isomor-
phism of pairs

.FH .�i.R/ � k C l/;fCFH /

Š .bCFK.L;�g.L//˝k�l .F2Œ�1;�1�/;CFK.L/˝k�l .F2 ˚ F2Œ�1;�1�//:

In particular, the extremal knot Floer homology is isomorphic to the homology of
FH .�i.R/� k C l/Œk � l �. Moreover, the maps on homologies, bHFK.L;�g.L//!
H�.CFK.L// and H�.FH .�i.R/ � k C l//! fHFH have the same rank.

We conclude this section by describing how the extremal knot Floer homology
is related to the � -invariant. Ozaváth and Szabó originally defined the � -invariant for
knots in S3; there are a number of generalizations of this invariant to links, and we will
concentrate on �bot and �top which, by [13, Proposition 5.16] correspond to the smallest
and largest of all the possible � invariants for links (For a knot K, �.K/ D �bot.K/ D
�top.K/.) For now, we only need the following properties of these invariants.
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Proposition 2.10. Ifm.L/ denotes the mirror of L, then �bot.m.L//D ��top.L/. The
invariant �bot satisfies �g.L/ � �bot.L/ � g.L/ with �bot.L/ D �g.L/ if and only if
the map bHFK.L;�g.L//! H�.CFK.L// is non-zero.

Proof. The relationship between �bot and �top under mirroring follows from their def-
inition, a duality property satisfied by generalized � invariants [13, Proposition 2.5].
That �bot is bounded by the genus of L follows from the fact that it is correspondingly
bounded by the “slice genus” [13, Proposition 5.14]. The final statement is a con-
sequence of the definition of �bot, and the monotonicity of the � invariants for links
established in [13, Proposition 5.16]. See [13, Theorem 2 and Section 5.3] for more
details.

Proposition 2.11. Let H D .†.g/; ˛.gCk�1/; ˇ.gCk�1/; z.k/;w.k/; S/ be a Heegaard
diagram adapted to a minimal Seifert surface R for a knot L � S3. Then �bot.L/ D
�g.L/ if and only if the map on homologyH�.FH .�g.L/� kC l//!fHFH induced
from the inclusion FH .�g.L/ � k C l/ ,! fCFH is non-trivial.

Proof. This follows immediately from Proposition 2.10 and Corollary 2.9.

2.3. Triangle maps

We briefly introduce the definition of triangle maps in our restricted setting, once
again following the original definitions from [27]. Let H D .†.g/; ˛

.gCk�1/;

ˇ.gCk�1/; 
 .gCk�1/;w.k// be a triple Heegaard diagram, that is, H˛ˇ D .†;˛;ˇ;w/
and H
ˇ D .†; 
; ˇ; w/ are Heegaard diagrams for S3; ˛i is disjoint from 
j for
i ¤ j ; ˛i is transverse to 
i and they intersect each other in exactly two points, none
of which lies on the ˇ curves; furthermore, if j̨ bounds a disk Dj in the ˛-handle-
body U˛ , then 
i is isotopic to ˛i in nbdU˛ .

S
j¤i Dj / [ .† n w/, that is, 
i can be

isotoped to ˛i after sliding it over some other ˛ circles in the complement of the w
markings. We will once again assume that the triple Heegaard diagram is admissible.

Orient ˛i arbitrarily, and then orient 
i in the same direction, induced from the
isotopy joining 
i to ˛i . Let �i be the positive intersection point in 
i \ ˛i , and let
� D .�1; : : : ; �gCk�1/. It is usually called the top generator. Note that .†; 
; ˛;w/ is
a Heegaard diagram for #g.S1 � S2/ on which .k � 1/ index 0/3 stabilizations have
been performed, and � is its unique generator of highest Maslov grading.

Elementary regions of H are closures of the components of † n .˛ [ ˇ [ 
/;
a triangular domain joining a generator x 2 GH˛ˇ to a generator y 2 GH
ˇ is a 2-chain
D generated by the elementary regions such that @.@D \ ˛/ D � � x and @.@D \
ˇ/ D x � y; a triangular domain is said to be positive if all its coefficients are non-
negative. Given a triangular domain D, let nw.D/ D

P
i nwi .D/, where nwi .D/ is

the coefficient of the elementary region containing wi , in the 2-chain D. Let T .x; y/



Z. Cheng, M. Hedden, and S. Sarkar 810

be the set of all triangular domains joining x 2 GH˛ˇ to y 2 GH
ˇ , and let T0.x; y/ be
the subset consisting of the empty triangular domains, that is, triangular domains with
nwi D 0 for all i . The Maslov grading �.D/ of any triangular domain D 2 T .x; y/

satisfies �.D/ � 2nw.D/ DM.y/ �M.x/.
Choosing an appropriate family (parametrized by the 2-simplex) of almost com-

plex structures on SymgCk�1.†/, we can define a contribution function c from the
set of all Maslov index zero triangular domains to F2. Picking the family of almost
complex structures to be integrable near a collection of hypersurfaces specified by
basepoints in the elementary regions ensures that the contribution function has non-
zero support only on the positive triangular domains. Then the following map is a
graded quasi-isomorphism from fCFH˛ˇ to fCFH
ˇ :

f .x/ D
X

y2GH
ˇ

X
D2T0.x;y/
�.D/D0

c.D/y:

We will reprove a special case of this fact in Theorem 3.3.

2.4. Murasugi sum

We are now prepared to discuss the Murasugi sum operation. Let S2 � S3 be the
standard 2-sphere. We will mentally “one-point-decompactify” the picture, and draw
it as R2 � R3. There are two components in S3 n S2, the “inside” B1 and the “out-
side” B2, such that S2 is oriented as @B1. Let A1A2 : : : A2n be a 2n-gon lying on
S2. For i 2 ¹1; 2º, let Ri be a Seifert surface for an li -component link Li � Bi , such
that Ri \ S2 is A1A2 : : : A2n with the same orientation; L1 \ S2 is the union of the
oriented segments A1A2, A3A4, . . ., A2n�1A2n; and L2 \ S2 is the union of the ori-
ented segments A2A3, A4A5, . . ., A2nA1. Then the Murasugi sum L D L1 � L2 is
the link .L1 [ L2/ n S2, and it bounds the Seifert surface R1 � R2 D R1 [ R2. The
special cases when nD 1 is just the connected sum and nD 2 is a plumbing. The case
n D 2 is illustrated in Figure 2.2.

We need the following quantities, ı1; ı2; ı, which will simplify certain expressions
later on. Define ı1 (respectively, ı2; ı) to be nminus the number of components of L1
(respectively, L2, L) that intersect the 2n-gon. Note, .l C ı � n/ D .l1 C ı1 � n/C
.l2 C ı2 � n/.

We will now describe how to draw Heegaard diagrams adapted to R1 and R2, and
how they can be combined to form a Heegaard diagram for R1 �R2. The procedures
closely follow the outline from Section 2.1 with a few differences. The most important
feature of the following construction is that the roles of ˛ and ˇ are reversed while
constructing the Heegaard diagrams adapted to R1 and R2.
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A1

A2

A3

A4

Figure 2.2. The Murasugi sum operation. The linkL is obtained by plumbing the linkL1 below
the plane with the link L2 above the plane along the rectangle A1A2A3A4.

A3

A4

A2

A1 A3

A4

A2

A1

A3

A4

A2

A1

Figure 2.3. Embedding a graphG in the Seifert surface. In each case, the Seifert surface deform
retracts to a neighborhood of G that contains A1A2A3A4.

(M-1) We first embed a graph Gi in Ri so that Ri deform retracts to Gi , and Gi
intersects the 2n-gon in a single vertex with exactly n edges going out to
n of its edges. This is easy to ensure, see Figure 2.3.

(M-2) Then consider the handlebody B3�i [ nbdBi .Gi \ Bi /. Its complement
need not be a handlebody, so we add a few tunnels, none intersecting S2, to
complete this to a Heegaard decomposition of S3. Let †i be the resulting
Heegaard surface, oriented so that its orientation agrees with the orienta-
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tion of S2 D @B1 on S2 \ †i . Let U˛;i and Uˇ;i be the components of
S3 n†i , so that †i is oriented as the boundary of U˛;i .

(M-3) Construct a surface Si � †i , such that Si is isotopic to Ri and Si \ S2 is
the 2n-gon A1A2 : : : A2n \†i .

(M-4) Put z markings at A1; A3; : : : ; A2n�1, and put w markings at A2; A4; : : : ;
A2n. On every other component of @Si , put a z marking and a w marking
right next to one another, such that a small arc in .�1/i@Si joins the w
marking to the z marking. Therefore, the total number of z (orw) markings
is li C ıi .

(M-5) Then draw ˛ circles and ˇ circles on†i n .z [w/, such that the following
hold.

(a) The ˛ circles and ˇ circles are transverse to each other and to @Si .

(b) The ˛ circles are pairwise disjoint and they span a half-dimensional
subspace of H1.†i /; each component of †i n ˛ contains a z marking
and a w marking.

(c) The ˇ circles are pairwise disjoint and they span a half-dimensional
subspace ofH1.†i /; each component of †i n ˇ contains a z marking
and a w marking.

(d) Each component of †1 n ˛ (respectively, †2 n ˇ) has an oriented arc
in .�1/i@Si joining the w marking to the z marking.

(e) Exactly .li C ıi � �.Ri // ˇ (respectively, ˛) circles intersect S1
(respectively, S2).

(f) There are exactly .n � 1/ ˛ circles lying entirely inside the 2-sphere
S2, and they encircle the edges A3A4, A5A6, . . ., A2n�1A2n. There
are exactly .n� 1/ ˇ circles lying entirely inside the 2-sphere S2, and
they encircle the intervals A4A5, A6A7, . . ., A2nA1. Moreover, the
consecutive ˛ and ˇ circles intersect each other at exactly two points.

(g) Other than the above circles, there are no ˇ (respectively, ˛) circle
of †1 (respectively, †2) that intersects S2. There could be some ˛
(respectively, ˇ) arcs of †1 (respectively, †2) that intersect S2; in
that case, their intersection with S2 lies entirely inside Si \ S2; and
we can also ensure that there are at most .n � 1/ of such ˛ (respec-
tively, ˇ) arcs.

(M-6) We then do finger moves on the ˇ (respectively, ˛) circles on †1 (respec-
tively, †2) to convert this to a Heegaard diagram H1 (respectively, H2)
adapted to the Seifert surface R1 (respectively, R2). These final diagrams,
in the case when n D 2, are shown in Figure 2.4. In the case when n D 3,
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Figure 2.4. The Heegaard diagrams H1 and H2. We continue to representw and z markings by
magenta and green dots, respectively. Once again, the thin lines are curves, and the thick lines
are train tracks, representing some (possibly zero) curves running in parallel.

the diagrams are also shown in the first two figures of the top row of Fig-
ure 4.1 (where X denotes a handle going down into B1 and O denotes a
handle coming up into B2).

(M-7) The first two figures in the third row of Figure 4.1 represent slightly mod-
ified Heegaard diagrams H 00i that are obtained from Hi by deleting the
z-markings, modifying the surface Si , and performing small isotopies
to reduce the number of intersections between ˛ and ˇ circles. We will
assume that we have already performed some isotopies on the ˛ and ˇ cir-
cles on Hi away from S2 so as to ensure that these modified diagrams H 00i ,
and hence Hi itself, is already admissible.

We can now “combine” the Heegaard diagram H1 adapted to R1 and H2 adapted
toR2 to form a Heegaard diagram H1 �H2 adapted toR1 �R2. Recall that in H1, the
˛-handlebody U˛;1 is obtained by tunneling out a few one-handles from B1, and the
ˇ-handlebody Uˇ;1 is obtained by attaching those corresponding one-handles to B2.
Similarly, in H2, the ˛-handlebody U˛;2 is obtained by attaching a few one-handles
to B1, and the ˇ-handlebody Uˇ;2 is obtained by tunneling out those corresponding
one-handles from B2. In the “combined” Heegaard diagram H1 � H2, the ˛-han-
dlebody U˛;1 � U˛;2 is obtained from B1 by tunneling out all the one-handles that
were tunneled out in U˛;1 and by attaching all the one-handles that were attached
in U˛;2, and the ˇ-handlebody Uˇ;1 � Uˇ;2 is the closure of its complement. The
Heegaard surface †1 � †2 is the oriented boundary of U˛;1 � U˛;2. There is a sur-
face S1 � S2 � †1 �†2, isotopic to R1 � R2, which is obtained from S1 � †1 and
S2 � †2. The w and z basepoints, and the ˛ and ˇ circles on †1 � †2 are induced
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Figure 2.5. The Heegaard diagram H1 �H2. This diagram is obtained by combining the Hee-
gaard diagrams H1 and H2 from Figure 2.4

from the corresponding objects in †1 and †2. The Heegaard diagram H1 �H2, in
the case when n D 2, looks like Figure 2.5, and in the case n D 3, looks like the
third figure in the top row of Figure 4.1. Since the modified diagrams H 001 and H 002
are admissible, it follows that the corresponding modified diagram .H1 �H2/

00 (third
figure in the third row of Figure 4.1), and hence H1 �H2 itself, is also admissible.

3. Certain local isotopies

Let H˛ˇ D .†.g/; ˛.gCk�1/; ˇ.gCk�1/; w.k// be a Heegaard diagram for S3, which
possibly is non-admissible, and S �† be an open subsurface. Let AH˛ˇ ;S � GH˛ˇ be
the set of all the generators, none of whose coordinates lie inside S , and let BH˛ˇ ;S D
GH˛ˇ nAH˛ˇ ;S denote the rest of the generators. Let us assume that S contains a disk
D that looks like the first part of Figure 3.1 (with the train track convention): there
are b ˇ arcs, all parallel to each other, with b � 1; there are a1 C 1 C a2 ˛ arcs,
all parallel to each other, with a1; a2 � 0, such that a2 of them are disjoint from the
ˇ arcs, and each of the a1 C 1 others, intersect each of the b ˇ arcs in exactly two
points; there is a w marking, such that the oriented boundary of the component of
D n .˛ [ ˇ/ containing the w marking, is an ˛ arc followed by a ˇ arc followed by
an arc in @D. Note that these b ˇ arcs need not belong to b different ˇ circles, and
these a1 C 1C a2 ˛ arcs need not belong to a1 C 1C a2 different ˛ circles.

Let H
ˇ D .†; 
; ˇ; w/ be the Heegaard diagram (also possibly non-admissible)
obtained from H after the local isotopy as shown in Figure 3.1. The surface †, the
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a1 a1

a2 a2

1 1

b b

w w

Figure 3.1. The disk D in the Heegaard diagrams H˛ˇ and H
ˇ . The ˛, ˇ, and 
 arcs are
represented by red, blue, and pink train tracks, respectively, with thin lines denoting curves.
The number of arcs in each train track is also shown.

ˇ circles, the w markings, and the subsurface S are unchanged. The ˛ circles are
replaced by the 
 circles, which for the most part, are small perturbations of the cor-
responding ˛ circles, except for one of the arcs in the diskD. There are a1C 1C a2 

arcs inD � S � † in H
ˇ , of which 1C a2 of them are disjoint from the ˇ arcs, and
each of the remaining a1 of them intersect each of the b ˇ arcs in exactly two points.
This is shown in the second part of Figure 3.1, with the 
 train tracks and arcs being
denoted by thick and thin pink lines respectively. Once again, let AH
ˇ ;S � GH
ˇ be
the set of all the generators, none of whose coordinates lie inside S , and let

BH
ˇ ;S D GH
ˇ nAH
ˇ ;S

denote the rest of the generators. There is an obvious bijection AH˛ˇ ;S

Š�! AH
ˇ ;S ,
and we will always implicitly identify them by this bijection; there is an obvious
injection BH
ˇ ;S ,! BH˛ˇ ;S , and we will always implicitly treat BH
ˇ ;S as a subset
of BH˛ˇ ;S by this injection.

Proposition 3.1. If there are no empty positive domains from AH˛ˇ ;S to BH˛ˇ ;S ,
then there are no empty positive domains from AH
ˇ ;S to BH
ˇ ;S .

Proof. We will prove the contrapositive of the statement. The basic idea is that any
positive domain from AH
ˇ ;S to BH
ˇ ;S induces a corresponding positive domain
in the original diagram, simply by tracing multiplicities through the reversal of the
isotopy. To make this precise, let us assume that D1 2 D0.x; y/ is a positive domain,
from some generator x 2 AH
ˇ ;S to some generator y 2 BH
ˇ ;S . Let Nx 2 AH˛ˇ ;S

and Ny 2 BH˛ˇ ;S be the images of x and y under the bijection AH
ˇ ;S

Š�! AH˛ˇ ;S
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m0

m1m1

mb 1

mb mb

ub 1

ub ub

u0D0 u0D0

s

sCm1 m0

sCmb 1 m0

sCmb m0

mb 1 mb 1

m0

m0

u1 u1

ub 1

m1

s

Figure 3.2. The local coefficients of D1 and D2 in H
ˇ and H˛ˇ . We prove that if D1 is a
positive domain, then so is D2, which follows once we show that s Cmi �m0 � s C ui .

and the injection BH
ˇ ;S ,! BH˛ˇ ;S , respectively. The empty domain D1 gives rise
to another empty domain D2 2 D0. Nx; Ny/. The local coefficients of D1 and D2 are
shown in Figure 3.2. We will simply show that D2 is also a positive domain.

Towards this end, we will prove that none of the coefficients m1; : : : ; mb are
smaller than the coefficientm0. We will prove this by showing that ui �mi �m0, for
all 0 � i � b. Since each ui � 0, this will complete the proof.

We will prove ui �mi �m0 by an induction on i . Since, u0 D 0Dm0 �m0, the
base case is trivial. Assume by induction that the statement is true for i . Before we
prove the statement for i C 1, let us make one small observation about the domainD1.

Since @.@D1 \ ˇ/ D x � y, and since none of the coordinates of x lie in the disk
D, we therefore have that @.@D1 \ ˇ/, viewed as a 0-chain, does not contain any
point with positive sign in the local neighborhood D. Let � be an oriented arc, which
is a subspace of a ˇ circle, and is supported entirely inside D. Let the coefficient of
@D1 \ ˇ near the beginning of � be c > 0. The observation that @.@D1 \ ˇ/ does
not contain any positively signed point in D, implies that the coefficient of @D1 \ ˇ
near the end of � is greater than or equal to c. We summarize this observation by the
statement that “@D1 \ ˇ does not stop inside D.”

Now, we are all set to prove the induction statement for i C 1. In the Heegaard
diagram H
ˇ , let ˇ1 be the ˇ circle that separates the elementary region with coeffi-
cient miC1 from the elementary region with coefficient mi , and let � be an oriented
subarc of ˇ1, running from the elementary region with coefficient mi to the elemen-
tary region with coefficient ui . Therefore, the signed coefficients of @D1 \ ˇ near the
beginning and the end of � are mi � miC1 and ui � uiC1 respectively, as shown in
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miC1

mi

uiC1

ui

ui uiC1

mi miC1

Figure 3.3. The induction step. Assuming ui � mi � m0, we prove uiC1 � miC1 � m0 by
showing uiC1 � ui � miC1 �mi . The coefficients of D1 and the coefficients of @D1 \ ˇ are
shown.

Figure 3.3. (These coefficients could be negative, but that does not affect the proof.)
In light of the observation above that @D1 \ ˇ does not stop inside D, it follows that
coefficient of @D1 \ ˇ near the end of � is greater than or equal to that at the end:

mi �miC1 � ui � uiC1:

Subtracting m0 from both sides of the inequality, and rearranging, we have

uiC1 Cmi �m0 � ui � miC1 �m0

But the inductive hypothesis is that 0 � mi �m0 � ui , hence uiC1 � miC1 �m0, as
desired.

Now, we prove a similar statement for triangular domains. Let H˛ˇ
 D .†; ˛; ˇ;

;w/ be the triple Heegaard diagram, obtained by combining the above two diagrams;
it is also possibly non-admissible. We assume that 
i is a small translate of ˛i , inter-
secting it transversely in exactly two points, so that 
i is disjoint from j̨ for i ¤ j .
Let ˛1 be the ˛ circle that is changed to the 
 circle 
1 in Figure 3.4. Therefore, a
neighborhood Ni of ˛i [ 
i for i ¤ 1 looks like the first part of Figure 3.5, with none
of the two intersection points in ˛i \ 
i lying in the neighborhood D. A neighbor-
hoodN1 of ˛1 [ 
1 looks like the second part of Figure 3.5, with both the intersection
points in ˛1 \ 
1 lying in the neighborhood D. The coordinates of the top generator
� are shown.

Proposition 3.2. If there are no empty positive domains from AH˛ˇ ;S to BH˛ˇ ;S ,
then there are no empty positive triangular domains from AH˛ˇ ;S to BH
ˇ ;S .
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˛1

1

Figure 3.4. The Heegaard diagram H˛ˇ
 in the neighborhood D. As before, ˛, ˇ, 
 are red,
blue, and pink, respectively. A thin brown curve denotes a train track which is pair of parallel ˛
and 
 curves, and a thick brown curve is a train track of such train tracks.

Proof. Let D1 2 T0.x; y/ be a positive triangular domain, for some x 2 AH˛ˇ ;S and
y 2 BH
ˇ ;S . Let Ny 2 BH˛ˇ ;S be the image of y under the injection BH
ˇ ;S ,!
BH˛ˇ ;S . It is easy to see that there is a unique empty triangular domainD2 2 T0. Ny;y/,
whose non-zero coefficients are supported inside the neighborhoods Ni , such that
@D2 \ 
 D @D1 \ 
 ; this domain D2 typically will have both positive and negative
coefficients. Then, the 2-chain D3 D D1 � D2 is a domain in D0.x; Ny/. We will
show that D3 is also a positive domain, establishing the contrapositive of the given
statement.

The coefficients ofD2 are zero outside
S
i Ni , and the neighborhoodsNi for i ¤ 1

can be considered as special cases of the neighborhood N1. Therefore, we only need
to concentrate on the coefficients of D3 in N1. Figure 3.6 shows the coefficients of
D1, @D1 \ 
1 and D3 in this neighborhood. The coordinates of � and y on 
1 are
shown. The coefficient of @D1 \ 
1 is either r or r C 1 (which need not be positive),
as shown.

Since D1 is a positive domain, and since the region with coefficient q` in D1 has

1 on its boundary with coefficient r C 1, we must have q` � r C 1 for all 1 � ` � d .
Similarly, we must have p` � r for all 1 � ` � c and m0 � �r . Therefore, in order
to show that D3 is also a positive domain, we only need to show that each of the
coefficients m1; : : : ; mb are greater than or equal to �r . However, exactly as in the
proof of Proposition 3.1, using the fact that x has no coordinates inside the disk D,
we can show that none of the coefficients m1; : : : ; mb are smaller than m0, and this
completes the proof.



Murasugi sum and extremal knot Floer homology 819

˛

1

˛1

1

Figure 3.5. Neighborhoods Ni of ˛i [ 
i . For i ¤ 1 (left), the small bigon region is disjoint
from D, while for i D 1 (right), the small bigon region is contained inside D. The coordinates
of the top generator � are shown by white dots.

r + 1
r

qd

pc

q1

m0

m1

mb

m1 C r
mb C r

pc r

p1 r
q1 r 1

qd r 1

m0 C r

r

r

Figure 3.6. Coefficients of D1 (left) and D3 (right) in the neighborhood N1 of ˛1 [ 
1. The
coordinates of � and y are shown by white dots. The coefficients of @D1 \ 
1 are also shown
on the left.

Let us henceforth assume that the Heegaard diagram H
ˇ is admissible. Then
H˛ˇ and H˛ˇ
 are also admissible, and in that case, fCFH˛ˇ and fCFH
ˇ are the chain
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complexes, freely generated over F2, by GH˛ˇ and GH
ˇ , respectively. Let fSFH˛ˇ ;S

andfSFH
ˇ ;S be the F2-submodules, freely generated by AH˛ˇ ;S and AH
ˇ ;S , respec-
tively.

Theorem 3.3. Assume that there are no empty positive domains from AH˛ˇ ;S to
BH˛ˇ ;S . Then fSFH˛ˇ ;S is a subcomplex of fCFH˛ˇ , fSFH
ˇ ;S is a subcomplex offCFH
ˇ , and the chain map from fCFH˛ˇ to fCFH
ˇ induces a chain map from fSFH˛ˇ ;S

tofSFH
ˇ ;S . Furthermore, the chain maps fCFH˛ˇ!fCFH
ˇ andfSFH˛ˇ ;S!fSFH
ˇ ;S

are quasi-isomorphisms.

Proof. Proposition 3.1 implies that there are no empty positive domains from AH
ˇ ;S

to BH
ˇ ;S , and Proposition 3.2 implies that there are no empty positive triangular
domains from AH˛ˇ ;S to BH
ˇ ;S . Since the non-zero terms in the boundary maps onfCFH˛ˇ and fCFH
ˇ come only from empty positive domains, and the non-zero terms
in the chain map from fCFH˛ˇ to fCFH
ˇ come only from empty positive triangular
domains, fSFH˛ˇ ;S ,! fCFH˛ˇ is a subcomplex, fSFH
ˇ ;S ,! fCFH
ˇ is a subcomplex,
and the chain map fCFH˛ˇ ! fCFH
ˇ induces a chain map fSFH˛ˇ ;S ! fSFH
ˇ ;S ,
resulting in the following commuting square:

fSFH˛ˇ ;S

fSFH
ˇ ;S

fCFH˛ˇ

fCFH
ˇ

We will now show that the vertical arrows induce isomorphisms on homology. A
2-cochain on a Heegaard diagram or a triple Heegaard diagram is a map which assigns
real numbers to the elementary regions; a non-negative 2-cochain is a 2-cochain which
only assigns non-negative numbers; and a positive 2-cochain is a 2-cochain which
only assigns positive numbers. Since H
ˇ is admissible, by repeating the proof of [27,
Lemma 4.12], there exists a positive 2-cochain C0 on H
ˇ , which evaluates to zero on
all empty periodic domains in H
ˇ . Indeed, while we use the notion of admissibility
for Heegaard diagrams arising from Morse functions with additional index 0 and 3
critical points [29, Definition 3.5], the proof of [27, Lemma 4.12] carries through
verbatim.

A cochain in H˛ˇ
 induces cochains in H˛ˇ and H
ˇ , by forgetting the 
 cir-
cles and the ˛ circles, respectively, as well as the coefficients of the cochain on the
thin elementary regions that lie entirely inside the neighborhoods Ni . We will now
construct a non-negative cochain C on H˛ˇ
 , such that C assigns zero precisely to
the elementary regions that lie entirely in the neighborhoods Ni ; and C induces the
positive cochain C0 in H
ˇ . Since the empty periodic domains in H˛ˇ
 are generated
by the empty periodic domains in H
ˇ and the periodic domains that are supported
in
S
i Ni , this would imply that C evaluates to zero on any empty periodic domain in
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H˛ˇ
 . The way to constructC is fairly straightforward. LetR be an elementary region
in H
ˇ , and let r be the assignment of C0 on R. The region R might get cut up into
several elementary regions R1; : : : ; Rn in H˛ˇ
 , and some of them might lie entirely
in the neighborhoods Ni , but at least one of them does not. Choose non-negative real
numbers r1; : : : ; rn, such that,

P
i ri D r and ri D 0 if and only if Ri lies entirely inS

i Ni . Then assign the number ri to the elementary region Ri in the 2-cochain C .
This non-negative 2-cochain C gives rise to filtrations on the mapping conesfSFH˛ˇ ;S ! fSFH
ˇ ;S and fCFH˛ˇ ! fCFH
ˇ , as follows: given any two generators

x; y 2 GH˛ˇ [ GH
ˇ , the relative filtration grading between them is hC;Di, for any
D in D0.x;y/ or T0.x;y/ as the case may be. On the associated graded level, we only
count domains or triangular domains that lie entirely inside these neighborhoods Ni ,
and then it is fairly straightforward to check that the associated graded maps on the
associated graded objects are isomorphisms, and therefore, the original chain maps
must have been quasi-isomorphisms as well.

4. Main theorems

Proof of Theorem 1.1. Following the notations from Section 2.4, let H1, H2 and H1 �
H2, as shown in Figures 2.4 and 2.5, be the Heegaard diagrams adapted to Seifert
surfacesR1,R2 andR1 �R2 for the linksL1,L2 andLDL1 �L2, respectively. The
corresponding Heegaard surfaces contain embedded subsurfaces S1, S2 and S1 � S2,
which represent R1, R2 and R1 � R2, respectively. Furthermore, H1 has .l1 C ı1/
w-markings, H2 has .l2 C ı2/ w-markings, H1 �H2 has .l C ı/ w-markings.

Thanks to Corollary 2.9, we only need to produce an isomorphism of graded chain
complexes

FH1�H2

�
�1
2
.l C 2ı � �.R1 �R2//

�
Œl C ı � 1�

Š FH1

�
�1
2
.l1 C 2ı1 � �.R1//

�
Œl1 C ı1 � 1�

˝ FH2

�
�1
2
.l2 C 2ı2 � �.R2//

�
Œl2 C ı2 � 1�;

or in terms of the notation from Section 3, since .l C ı � n/ D .l1 C ı1 � n/C .l2 C
ı2 � n/, fSFH1�H2;S1�S2 Œn � 1� ŠfSFH1;S1 Œn � 1�˝fSFH2;S2 Œn � 1�: (4.1)

Let .H ; S/ denote any of .H1; S1/, .H2; S2/, or .H1 �H2; S1 � S2/, as shown
in the first row of Figure 4.1. The sphere S2 of the Murasugi sum is represented by
the squares on the page, with L1 lying below the page and L2 lying above. Let † be
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O
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O
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X

O
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X

O

O

O

X

X

X

O

O
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Figure 4.1. The Heegaard diagrams appearing in the proof of Theorems 1.1 and 1.2. The left,
middle, right columns represent diagrams obtained from H1, H2, H1 �H2, respectively; the
consecutive rows represent the diagrams H , H 0, H 00, and H 000; X and O denote handles going
down (into the page) and up (towards the reader), respectively.
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the Heegaard surface and let †1 (respectively, †2) be the portion of † that lies inside
(respectively, outside) the sphere S2.

Let H 0 be the Heegaard diagrams for S3 obtained from H by forgetting the z
markings, and let S 0 be the open subsurface of the Heegaard surface of H , obtained by
slightly modifying S in a neighborhood of the 2n-gon A1A2 : : : A2n so as to include
all the intersections between ˛ and ˇ circles near the erstwhile z-markings. These
modified diagrams .H 0; S 0/ are shown in the second row of Figure 4.1.

Since we have not changed the underlying Heegaard diagrams, clearly, fCFH 0 DfCFH . Next we claim that any generator x 2 GH that does not have any coordinate
in S cannot have any coordinate in S 0 either. This is a simple counting argument.
Indeed, let us say Hi has total of ni ˛-circles and ni ˇ-circles; of them, exactly
.n � 1/ ˛-circles and .n � 1/ ˇ-circles lie entirely inside the S2. Then H1 � H2

has a total of .n1 C n2 � n C 1/ ˛-circles and .n1 C n2 � n C 1/ ˇ-circles, again
with exactly .n � 1/ ˛-circles and .n � 1/ ˇ-circles lying entirely inside the S2. For
H ¤ H2, we see that .n1 � nC 1/ ˛ circles of H lie entirely within †1 [ S , and
so x must have at least .n1 � nC 1/ coordinates in †1 (as it avoids the surface S ,
by assumption). Similarly, for H ¤ H1, we see that .n2 � nC 1/ ˇ circles of H lie
entirely within †2 [ S , and so x must have at least .n2 � nC 1/ coordinates in †2.
Therefore, in all cases, x has at most .n � 1/ coordinates in the sphere S2. It follows
that, in fact, x must have exactly .n � 1/ coordinates in the sphere, occupied by the
.n � 1/ ˛ and ˇ circles that lie entirely therein. Specifically, they must be the white
dots as shown in the first row of Figure 4.1. Therefore, we get that fSFH 0;S 0 DfSFH ;S .
Moreover, since there are no positive domains from generators of fSFH ;S to the other
generators of fCFH due to Alexander grading, there are no positive domains from
the generators of fSFH 0;S 0 to the other generators of fCFH 0 as well, and we have the
following identification of subcomplexes:

fSFH ;S

fSFH 0;S 0

fCFH

fCFH 0

= = (4.2)

As in Section 3, we perform local isotopies to separate the ˛ and ˇ curves in the
neighborhood of the erstwhile z-markings so that we obtain the Heegaard diagrams
in the third row of Figure 4.1, which we denote by .H 00; S 0/. The aforementioned
isotopies are supported inside S 0, and there are no domains from the generators offSFH 0;S 0 to the other generators of fCFH 0 . Recalling that the Heegaard diagrams were
constructed to ensure that H 00 is admissible (see (M-7)), we see that the hypotheses
of Theorem 3.3 are satisfied, and therefore, we obtain a quasi-isomorphism between
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the following two-step filtered complexes:

fSFH 0;S 0

fSFH 00;S 0

fCFH 0

fCFH 00

q.i. q.i. (4.3)

Next, we claim that for any generator x of fCFH 00 , all its coordinates in S2 must
be the white or black dots from the third row of Figure 4.1. It is once again a counting
argument, but with the roles of ˛ and ˇ reversed. For H 00¤H 002 , we see that .n1 � nC
1/ ˇ circles of H 00 have no intersections with ˛ circles in S2, so x must have at least
.n1 � nC 1/ coordinates in †1. Similarly, for H 00 ¤ H 001 , we see that .n2 � nC 1/
˛ circles of H 00 have no intersections with ˇ circles in S2, so x must have at least
.n2 � nC 1/ coordinates in †2. In all cases, x has at most .n � 1/ coordinates in the
sphere S2, and therefore, they must be occupied by the .n� 1/ ˛ and ˇ circles that lie
entirely in S2; moreover, they must be the white or black dots as shown in the third
row of Figure 4.1.

After numbering the ˛ circles that lie entirely in S2 arbitrarily (but consistently
across Heegaard diagrams) from 1 to n � 1, each generator x can be represented
as a pair .Ea; xo/, where Ea D .a1; : : : ; an�1/ 2 ¹0; 1ºn�1 with ai D 0 if and only if
˛i contains the white dot, and xo denotes the coordinates of x that lie outside S2.
Consider the usual partial order on ¹0; 1ºn�1 with Ea � Eb if ai � bi for all i , and the
usual L1-norm on ¹0; 1ºn�1 given by jEaj DPi ai . Since empty positive domains are
not allowed to pass through the w markings, we see that if D 2 D0..Ea; xo/; .Eb; yo//
is an empty positive domain, then Eb � Ea. Let fCFW

H 00 denote the subcomplex of fCFH 00
spanned by generators with Ea D 0, that is, generators with only white dots. Then we
have nested subcomplexes fSFH 00;S 0 ,! fCFWH 00 ,! fCFH 00 :

For any generator x of fCF.H1�H2/00 , let xi be all its coordinates that lie in †i . Then
the map

.E0; x1; x2/ 7! .E0; x1/˝ .E0; x2/
produces the following identification between the following chain groups:

fSF.H1�H2/00;.S1�S2/0

fSFH 00
1
;S 0
1
˝fSFH 00

2
;S 0
2

fCFW
.H1�H2/00

fCFW
H 00
1

˝ fCFW
H 00
2

Š Š (4.4)



Murasugi sum and extremal knot Floer homology 825

Let us now prove that the vertical arrows are relative Maslov grading preserving
chain maps—that is, the above identifications are identifications of chain complexes,
up to a single absolute Maslov grading shift. Let .E0; x1; x2/ and .E0; y1; y2/ be two
generators of fCFW

.H1�H2/00 and letD 2D..E0;x1;x2/; .E0;y1;y2// be an empty positive
domain in .H1 �H2/

00 connecting them. Such a domain has to be disjoint from S2.
Indeed, the fact the domain has no corner points in S2 forces it to restrict to a periodic
domain therein, which the admissibility condition then ensures is the trivial domain
with zero multiplicities. It follows thatD splits as a disjoint unionD1 [D2 of empty
positive domains, with Di 2 D..E0; xi /; .E0; yi // in H 00i . Recall from Section 2.2 that
D can only contribute to the differential if one of D1 and D2 is the trivial domain.
Furthermore, since such domains avoid S2, we may choose complex structures (and
their perturbations) for the three Heegaard diagrams so that they agree on †1 and †2

(and their corresponding symmetric products); therefore, if D1 (respectively, D2)
is the trivial domain, then the contribution of D will agree with the contribution
of D2 (respectively, D1). This is an instance of the localization principle [32, Sec-
tion 9.4], and it establishes that the vertical arrows are chain maps, and indeed chain
isomorphisms. To see that the vertical arrows also respect the relative Maslov grad-
ings, consider generators .0; xi /; .0; yi / of fCFW

H 00
i

, and choose empty domains Di in

H 00i (not necessarily positive) connecting them. In H 001 (respectively, H 002 ) consider the
.n � 1/ ˛ (respectively, ˇ) circles that lie entirely inside S2; each of them bounds a
disk also entirely inside S2, and each such disk is comprised of two bigon-shaped
elementary regions—one containing a basepoint, and one without. By adding some
number of copies of these disks to the domain Di , we can get a domain Ei (not nec-
essarily empty) connecting .0; xi / to .0; yi / in H 00i , which has coefficient zero in the
bigon region that does not contain the basepoint. Simply by adding the underlying
2-chains, these two domains E1 and E2 induce a domain E in .H1 �H2/

00 connect-
ing .0; x1; y1/ to .0; x2; y2/. It follows from Lipshitz’ Maslov index formula [16] that
�.E/D�.E1/C�.E2/, and it is immediate that nw.E/D nw.E1/C nw.E2/. Con-
sequently, the relative Maslov grading is preserved. Therefore, in order to finish the
proof, we only need to calculate the absolute Maslov grading shift under the given iso-
morphism of relatively Z-graded chain complexes. We will calculate this shift using
the triangle maps associated to handleslides of the circles in S2 over curves in the
remainder of the diagram.

Towards this end, modify the Heegaard diagrams H 00 once more to get the
Heegaard diagrams H 000 of the fourth row of Figure 4.1. Namely, we slide the ˛ cir-
cles inside S2 off the attaching handles of †2 (the ones marked O in Figure 4.1) and
we slide the ˇ circles inside S2 off the attaching handles of†1 (the ones marked X in
Figure 4.1). There is an obvious identification between ˛ circles, ˇ circles, and gener-
ators .Ea;xo/ of H 00 and the corresponding objects of H 000; let N̨ , Ň, and .Ea; Nxo/ denote
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the corresponding objects in H 000. Then each ˛ circle only intersects the correspond-
ing N̨ circle, and does so at two points. So, the Heegaard diagram .†; ˛; ˇ; N̨ / is of
the type as described in Section 2.3. The top generator � has coordinates just next the
white dots of H 00 and H 000, and indeed, there is a small Maslov index zero triangular
domain connecting .E0; xo/ and .E0; Nxo/. Therefore, the Maslov grading of .E0; xo/ is
same as the Maslov grading of .E0; Nxo/. A similar argument, but with the roles of ˛
and ˇ reversed, proves that the Maslov grading is preserved under the handleslides of
the ˇ-circles as well.

Now, fCFH 000 decomposes into 2n�1 direct summands, one for each Ea 2 ¹0; 1ºn�1.
Moreover, the map .0; xo/ 7! .Ea; xo/ is an isomorphism between fCFW

H 000 ŒjEaj� and
the summand corresponding to Ea. Let H 000

d
denote the Heegaard diagram destabilized

n� 1 times, obtained from H 000 by removing the .n� 1/ ˛ and ˇ circles that lie inside
S2, and the .n � 1/ w-markings enclosed by them. Then, by Theorem 2.5,fCFWH 000 Œn � 1� Š fCFH 000

d
(4.5)

via the map .E0; xo/ 7! xo.
Now, the map .x1; x2/ 7! x1 ˝ x2 produces an identification of chain groups

following a similar but simpler argument of equation 4.4:fCF.H1�H2/
000
d
Š fCF.H1/000d ˝ fCF.H2/000d : (4.6)

Moreover, this map is a relative Maslov grading preserving chain map, using a similar
(but easier) localization principle argument to that above. However, .H1/

000
d

, .H2/
000
d

,
and .H1 �H2/

000
d

are Heegaard diagrams for S3 with .l1 C ı1 � nC 1/, .l2 C ı2 �
nC 1/, and .l C ı � nC 1/ basepoints, respectively; therefore, by Theorem 2.5 (and
since .l1 C ı1 � n/C .l2 C ı2 � n/ D .l C ı � n/), either side of the equation has
homology˝lCı�n.F2˚ F2Œ�1�/, so the chain isomorphism (4.6) preserves absolute
Maslov grading as well.

Combining this with equation (4.5) and the previous fact that corresponding gen-
erators in H 00 and H 000 have equal Maslov gradings, we conclude that the isomorphism
from equation (4.4) shifts gradings by n � 1. Then with the aid of equations (4.2)
and (4.3), we arrive at the desired graded isomorphism equation (4.1).

We turn now to Theorem 1.2, which states that �top of a Murasugi sum is maximal
if and only if �top of each summand is maximal.

Proof of Theorem 1.2. By Proposition 2.10, we may take mirrors and prove the fol-
lowing statement for �bot: if L is a Murasugi sum of links L1 and L2 along minimal
index Seifert surfaces, then �bot.Li /D�g.Li / for all i 2 ¹1;2º if and only if �bot.L/D
�g.L/.
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We will continue from the previous proof, and re-use the same notation. Thanks
to Corollary 2.9 and Proposition 2.10, we only need to prove that, for both i D 1; 2,
the inclusion fSFHi ;Si ,! fCFHi

induces a non-zero map on homology if and only if the inclusionfSFH1�H2;S1�S2 ,! fCFH1�H2

induces a non-zero map on homology.
Thanks to equations (4.2) and (4.3), it is enough to prove the above for .H 00; S 0/,

that is,

8i.H�.fSFH 00
i
;S 0
i
/! H�.fCFH 00

i
/ is non-zero/

() H�.fSFH 00
1
�H 00

2
;S 0
1
�S 0
2
/! H�.fCFH 00

1
�H 00

2
/ is non-zero: (4.7)

Recall that we have nested subcomplexesfSFH 00;S 0 ,! fCFWH 00 ,! fCFH 00 :

We claim the map fCFW
H 00 ,! fCFH 00 is injective on homology for H 00 D H 001 , H 002 , or

H 001 �H 002 . For each of the three diagrams, the homology of fCFW
H 00 is isomorphic, up to

a grading shift, to the homology of the .n� 1/-times destabilized diagrams H 000
d

(recall
equation (4.5)); let ! denote its rank. By counting the number of basepoints, in each
of the three cases, the homology of fCFH 00 has rank 2n�1!. As before, the generators
of fCFH 00 can be represented as pairs .Ea; xo/ where Ea 2 ¹0; 1ºn�1, and the differential
is filtered with respect to Ea. The associated graded complex of this filtration has 2n�1

summands, each isomorphic to fCFW
H 00 . By a spectral sequence argument, the homol-

ogy of the quotient complex fCFH 00=fCFW
H 00 has rank at most .2n�1 � 1/!. Therefore,

in the exact triangle

H�.fCFW
H 00/

H�.fCFH 00/

H�.fCFH 00=fCFW
H 00/

the three terms have ranks !, 2n�1!, and at most .2n�1 � 1/!, which implies that the
map H�.fCFW

H 00/! H�.fCFH 00/ is injective.
Thanks to this, instead of equation (4.7), it is enough to prove

8i.H�.fSFH 00
i
;S 0
i
/! H�.fCFW

H 00
i

/ is non-zero/

() H�.fSFH 00
1
�H 00

2
;S 0
1
�S 0
2
/! H�.fCFW

H 00
1
�H 00

2
/ is non-zero;

which follows from equation (4.4).
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Remark 4.1. We remark that one direction of the theorem (maximality of �top of
a Murasugi sum implies maximality for its summands) could be deduced from the
fact that maximality of �top is preserved under taking subsurfaces of a minimal index
Seifert surfaces. The latter fact is a consequence of a bound satisfied by �top for cobor-
disms between links, analogous to [13, Theorem 1].
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