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Controlled K -theory and K -homology

Ryo Toyota

Abstract. Motivated by the idea that our access to spacetime is limited by the resolution of our
measuring device, we give a new description of K-homology with a finite resolution. G. Yu intro-
duced a C�-algebra, known as the localization algebra, and showed that for any finite-dimensional
simplicial complex X endowed with the spherical metric, the K-theory of the localization algebra
is isomorphic to the K-homology of X . We give a coarse graining version of this theorem using
controlledK-theory (also known as quantitativeK-theory). Namely, instead of considering families
of operators whose propagations converge to 0 as done in the definition of the localization algebra,
we prove that for each dimension n, there exists a threshold rn > 0 such that theK-homology of an
n-dimensional finite simplicial complex X is isomorphic to a certain group of equivalence classes
of operators whose propagation is less than rn. This picture also enables us to represent any element
in the K-homology group K�.X/ by a finite matrix for a finite simplicial complex X .

1. Introduction

In this paper, we introduce a quantitative picture of the K-homology group K�.X/ for a
finite simplicial complexX , which enables us to present every element in theK-homology
group by a finite-dimensional matrix following the idea of coarse graining in physics as
discussed in [2]. In [2], based on the idea that we can only determine the underlying
metric space up to a finite resolution, A. Connes and W. D. van Suijlekom proposed a non-
commutative geometric framework to encode our limited resolution of physical measure-
ments using a tolerance relation (symmetric and reflexive but not transitive relation). We
approachK-homology based on a tolerance relation RD ¹.x;y/ W d.x;y/ < rº �X �X

for a fixed r > 0.
The K-homology group has already several well-known descriptions. Its first picture

was given by Kasparov in [5]. He introduced the notion of the Fredholm modules and
definedK-homology to be a certain group of equivalence classes of them, which is a topo-
logical invariant. The idea of the Fredholm module originated with a functional analytic
abstraction of elliptic operators by Atiyah [1].

Another picture was given by G. Yu in [12]. It is known that the K-theory of Roe
algebras C �.X/ depends only on the large-scale structure of X , so it is not isomorphic
to K-homology in general. But Yu defined a C �-algebra C �L.X/ called the localization
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algebra generated by uniformly continuous bounded functions f W Œ1;1/! C �.X/ such
that propagations of operators ¹f .t/ºt converge to 0. The underlying idea is that if we
restrict our attention to operators whose propagations are small, then we can recover local
structures of X that we lost by forming the Roe algebra. Actually, he showed that the
K-theory of the localization algebra is isomorphic to K-homology for finite-dimensional
simplicial complexes. In [8], Y. Qiao and J. Roe showed that this holds for any locally
compact metric space if the module is very ample. The goal of this paper is to realize
K-homology using the controlled K-theory groups K";r� .C �.X//. Instead of considering
families of projections or unitaries whose propagations converge to 0, we only consider
projections and unitaries whose propagations are smaller than a fixed threshold r . This is
the coarse graining picture of K-homology in the same spirit as [2]. The recent progress
to approximate KK-theory of C �-algebras by controlled K-theory can be found in [11],
but this paper focuses more on elementary examples (K-homology of finite simplicial
complex) to provide a description using finite matrices.

We recall the notions of quasi-projection and quasi-unitary, which will be used in the
rest of the paper. An operator p over C �.X/ is called an ."; r/ quasi-projection if the
propagation of p is at most r and p satisfies kp2 � pk < " and p D p�. An operator u
over C �.X/ is called an ."; r/ quasi-unitary if the propagation of u is at most r and u
satisfies ku�u � 1k < " and kuu� � 1k < ". The controlled K-groups K";r0 .C �.X//

and K";r1 .C �.X// are defined as certain homotopy classes of ."; r/ quasi-projections
and quasi-unitaries of matrices over C �.X/; see Definition 2.7. For 0 < " � "0 < 1

4
and

0 < r � r 0, we have a canonical forgetful map

�.";r/;."
0;r 0/
W K";r� .C

�.X//! K"
0;r 0

� .C �.X//:

The image �.";r/;."
0;r 0/.K

";r
� .C

�.X/// of this map can be regarded as a group generated
by ."; r/ quasi-unitaries or quasi-projections with a relaxed equivalence relation given by
the larger parameters ."0; r 0/. We denote this group by K.";r/;."

0;r 0/
� .C �.X//. Then we can

state the main theorem.

Theorem 1.1. For each n, there exist a constant �n > 1, a function hn W .0; 1
4�n
/! Œ1;1/

and constants rn and "n depending only on n such that for any n-dimensional finite
simplicial complex X , we have

K�.X/ Š K
.";r/;.�n";hn."/r/
� .C �.X// (1.1)

for all ."; r/ with 0 < " < "n and 0 < r < rn.

The main technical tool in the proof of Theorem 1.1 is an asymptotically exact Mayer–
Vietoris sequence [7] to extract information from simplicial complexes whose dimension
is smaller than that of X . Note that the main idea of the proof appeared in [14], but our
main theorem is the precise statement of [14, Theorem 4.7].
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If X is compact, then its Roe algebra is the set of all compact operators, which is the
inductive limit of matrix algebras. Therefore, eachK-homology element of a finite simpli-
cial complex can be expressed by a finite matrix via the isomorphism (1.1), as explained
in Remark 6.7 with a geometric picture of discretization.

2. Roe algebras and controlled K -theory

In this section, we define some basic concepts such as support of operators, propagation,
Roe algebra, filtered C �-algebra and controlled K-theory.

For any Hilbert space H , we denote the set of all compact operators by K.H/.

Definition 2.1. Let X be a locally compact metric space and HX a separable Hilbert
space. We say HX is an ample X -module if there is a non-degenerate �-homomorphism

� W C0.X/! B.HX /

such that �.f / is not a compact operator for any f 2 C0.X/ n ¹0º. When it is clear from
the context, we will write f in place of �.f /.

Definition 2.2. Let HX be an X -module and HY be a Y -module. For T 2 B.HX ; HY /,
we define a subset supp.T /� Y �X to be the complement of the set of all .y;x/ 2 Y �X
such that there exist two functions f 2 C0.X/ and g 2 C0.Y / such that

gTf D 0; f .x/ ¤ 0; g.y/ ¤ 0:

Also, we define the propagation of T by

prop.T / WD sup¹d.x; y/I .y; x/ 2 supp.T /º 2 Œ0;1�:

We now define a C �-algebra C �.X/, which will be used throughout this paper.

Definition 2.3. Let HX be an ample non-degenerate X -module. We define the following
algebras:

CŒHX � WD ¹T 2 B.HX /ITf 2K.HX / for any f 2 C0.X/ and prop.T / <1º

C �.HX / WD CŒHX �;

where the closure is taken with respect to the operator norm in B.HX /.
When the module HX is clear from the context, we will write C �.X/ instead of

C �.HX /.

Definition 2.4. A filtered C �-algebra A is a C �-algebra equipped with a family .Ar /r>0
of closed linear subspaces parametrized by positive numbers r such that
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(1) Ar � Ar 0 if r � r 0,

(2) A�r D Ar ,

(3) Ar � Ar 0 � ArCr 0 ,

(4) the subalgebra
S
r>0Ar is dense in A.

If A is unital, we also require that the identity 1 is an element of Ar for every positive
number r .

Remark 2.5. A Roe algebra C �.X/ is filtered by propagation of operators, namely
C �.X/r is the closure of the set of operators whose propagation is at most r .

We can define the controlledK-theory for filtered C �-algebras, where “control” refers
to control of propagations.

Definition 2.6. Let A be a unital filtered C �-algebra and " and r be positive numbers. We
define the sets of ."; r/ quasi-projections and ."; r/ quasi-unitaries in A, respectively, by

P ";r .A/ WD ¹p 2 Ar Ip
�
D p; kp2 � pk < "º

U ";r .A/ WD ¹u 2 Ar I ku
�u � 1k < "; kuu� � 1k < "º:

For any positive integer n, we set P ";rn .A/D P ";r .Mn.A// and U ";rn .A/D U ";r .Mn.A//.
Then there are canonical inclusions

P ";rn .A/ ,! P
";r
nC1.A/I p 7!

�
p 0

0 0

�
and

U ";rn .A/ ,! U
";r
nC1.A/I u 7!

�
u 0

0 1

�
:

With respect to these inclusions, their unions are denoted by

P ";r1 D

1[
nD1

P ";rn

and

U ";r1 D

1[
nD1

U ";rn :

Definition 2.7. Let A be a filtered unital C �-algebra, r and " be positive numbers with
" < 1

4
. We define the following equivalence relations on P ";r1 .A/ �N and U ";r1 .A/:

(1) For p; q 2 P ";r1 .A/ and `; `0 2 N, .p; `/ �";r .q; `0/ if there exists a positive
integer k such that diag.p; IkC`0/ and diag.q; IkC`/ are homotopic in P ";r1 .A/.
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(2) For u; v 2 U ";r1 .A/, u �3";2r v if u and v are homotopic in U 3";2r1 .A/.
By these equivalence relations, the controlled K-groups are defined by

K
";r
0 .A/ WD .P ";r1 .A/ �N/=�";r

K
";r
1 .A/ WD U ";r1 .A/=�3";2r :

If A is non-unital, by letting zA D .Ar CC/r be the unitization of A, define

K
";r
0 .A/ WD ¹Œp; `�";r 2 P

";r
1 . zA/ �N=�";r I �.�A.p// D `º

K
";r
1 .A/ WD U ";r1 . zA/=�3";2r ;

where �A W zA � C is the projection onto the scalar and � is the characteristic
function of the interval Œ1

2
;1/. Also, we define the additive structures by

Œp; `�";r C Œq; `
0�";r D Œdiag.p; q/; `C `0�";r

Œu�3";2r C Œv�3";2r D Œdiag.u; v/�3";2r :

Remark 2.8. With these notations, K";r� .A/ is an abelian group. The reason to consider
.3"; 2r/-homotopy is to make K";r1 an abelian group [6, Lemma 1.15 and Remark 1.17].

Remark 2.9. Let A be a filtered unital C �-algebra. For 0 < ı < 1
4

, 0 < " < 1
4

and
r > 0, assume p is an ."; r/ quasi-projection. If p0 2 Ar and kp � p0k < ı, then p0 is
an ."C 5ı; r/ quasi-projection and the homotopy which connects p and p0 linearly is a
homotopy through ."C 5ı; r/ quasi-projections. This is because we have

kp02 � p0k � kp02 � p0pk C kp0p � p2k C kp2 � pk C kp � p0k

< 2ı C 2ı C "C ı D 5ı C ";

and for any t 2 Œ0; 1� by applying the above formula to pt D .tp C .1 � t /p0/,

kp2t � ptk < 5kp � ptk C " � 5ı C ":

The corresponding statement is also true for quasi-unitaries.

Definition 2.10. We have the following maps from the controlled K-theory to K-theory.
Assume A is a unital filtered C �-algebra.

Let � D �Œ 12 ;1/ be the characteristic function of Œ1
2
;1/. If p 2 Mn.A/ is self-

adjoint and satisfies kp2 � pk < 1
4

, then 1
2
… �.p/. By continuous functional calculus,

we have a map

� W K
";r
0 .A/! K0.A/I Œp; `� 7! Œ�.p/� � ` � Œ1�:

If u 2 Mn.A/ satisfies kuu� � 1k < 1
4

and ku�u � 1k < 1
4

, then u is invertible. We
define

� W K
";r
1 .A/! K1.A/I Œu� 7!

�
u

.u�u/
1
2

�
:

These two maps are called the comparison maps after [3, Definitions 4.1 and 4.4].
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3. Overview of quantitative objects

In this section, we introduce a general framework to deal with controlled K-theory as a
family of groups .K";r� .C �.X///";r systematically. Everything up to Definition 3.5 is con-
tained in [7, Section 1]. In Definition 3.6, we introduce a notion of equivalence between
two quantitative objects. By using this concept, for an .n � 1/-dimensional finite sim-
plicial complex Z and an n-dimensional finite simplicial complex zZ, we can replace
K
";r
� .C

�. zZ// by K";r� .C �.Z// in a long exact sequence to use induction hypothesis on
the dimension.

In the subsequent definitions, we define quantitative objects and morphisms between
them abstractly. Main examples of quantitative objects are controlled K-theory of Roe
algebras.

Definition 3.1. A quantitative object is a family O D .O";r /0<"< 1
4 ;r>0

of abelian groups,
together with group homomorphisms

�";"
0;r;r 0
W O";r �! O"

0;r 0

for 0 < " � "0 < 1
4

and 0 < r � r 0 such that

(1) �";";r;r D IdO";r ,
(2) �"

0;"00;r 0;r 00 ı �";"
0;r;r 0 D �";"

00;r;r 00 for any 0 < " � "0 � "00 < 1
4

and 0 < r � r 0 � r 00.

These maps �";"
0;r;r 0 are called structure maps.

Remark 3.2. We apply the abstract terminology of quantitative object to controlled K-
groups O";r D K";r� .C �.X// for locally compact metric space X . In this case, the struc-
ture maps �";"

0;r;r 0 are the forgetful maps which assign an equivalence class Œp; `� to the
equivalence class Œp; `� represented by the same pair .p; `/.

Definition 3.3. A control pair is a pair .�; h/ satisfying

(1) � > 1,
(2) h W .0; 1

4�
/ ! .1;C1/ is a map such that there exists a non-increasing map

g W .0; 1
4�
/! .1;C1/, with h � g.

For two control pairs .�;h/ and .�0;h0/, we define their composition .�;h/ � .�0;h0/D
.��0; h � h0/ by

h � h0 W
�
0;

1

4��0

�
! .1;C1/I " 7! h.�0"/h0."/:

For a control pair .�;h/ and a quantitative object OD .O";r /0<"< 1
4 ;r>0

, we sometimes

write its structure map as �.";r/;.�;h/.";r/ in the sense of �";�";r;h."/r .

Definition 3.4. Let .�;h/ be a control pair, r a positive number and O D .O";s/0<"< 1
4 ;s>0

and O0 D .O 0";s/0<"< 1
4 ;s>0

be quantitative objects. A .�; h/-controlled morphism of
order r

F W O ! O0
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is a family F D .F ";s/0<"< 1
4�
;0<s< r

h."/
of group homomorphisms

F ";s W O";s ! O 0�";h."/s

which are compatible with structure maps.

The next definition is about the exactness of a sequence of morphisms.

Definition 3.5. Let .�; h/ be a control pair, and let O, O0 and O00 be quantitative objects.
Let

F W O ! O0

be an .˛F ; kF /-controlled morphism, and let

G W O0 ! O00

be an .˛G ; kG /-controlled morphism. Then the composition

O
F

�����! O0
G

�����! O00

is said to be .�;h/-exact at O0 of degree r if G ıF D 0 and for any 0 < " < 1
4max¹�˛F ;˛G º

,
any 0 < s < 1

kF .h.�"//r
and any y 2 O 0";s such that G";s.y/ D 0, there exists an element

x 2 O�";h."/s such that

F �";h.�"/s.x/ D �";˛F �";s;kF .h.�"//s.y/;

as the following diagram:

y 2 O 0";s
G";s

�����! O 00˛G ";kG ."/s 3 G";s.y/ D 0

�

??y
x 2 O�";h."/s

F �";h."/s

�����! O 0˛F �";kF .h.�"//s

Next, we define the equivalence between quantitative objects.

Definition 3.6. Let .�; h/ be a control pair. A .�; h/-controlled morphism of degree r
between quantitative objects O D .O";r /0<"< 1

4 ;r>0
and O0 D .O 0

";r
/0<"< 1

4 ;r>0

F W O �! O0

is said to be a .�; h/-controlled equivalence morphism between O and O0 if there exists a
.�; h/-controlled morphism

G W O0 �! O
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such that for all s > 0 with h.�"/h."/s < r , we have

G�";h."/s ı F ";s D �";�
2";s;h.�"/h."/s

F �";h."/s ıG";s D �";�
2";s;h.�"/h."/s :

If such a control pair .�; h/ and .�; h/-controlled morphisms F and G exist, then we say
that the two quantitative objects O and O0 are asymptotically equivalent.

Remark 3.7. In some literature, each subspace Ar is not required to be closed in Defini-
tion 2.4, and we can define the controlled K-theory in the same way without assuming it
(e.g., [6]). Here we remark that this difference is not important K-theoretically. Let A be
a unital filtered C �-algebra with possibly “non-closed” subspaces Ar , and we encode a
different filtration on the same C �-algebra byA0r DAr . Then one can show that two quan-
titative objects .K";r� .A//";r and .K";r� .A0//";r are asymptotically equivalent. We have a
natural map

�";r W K";r� .A/! K";r� .A
0/I Œp; n� 7! Œp; n�:

We show the map

�";r W P ";r1 .A0/! K
2";r
0 .A/I p 7! Œq�

is well defined on theK-theoretic level, where q 2M1.Ar / is any element which satisfies
kp � qk < 1

15
". If we have a homotopy .pt /t through P ";r1 .A0/, then there exists k such

that we have kpt � pt 0k < 1
15
" whenever jt � t 0j � 1

k
. Take a partition of the interval

0 D t0 < t1 < � � � < tk�1 < tk D 1

with tj D
j
k

, and for each j D 0; 1; : : : ; k we can take qj 2Ar such that kptj � qj k<
1
20
".

By linearly interpolating qj ’s at tj , we can define another homotopy .qt /t . Then .qt /t sat-
isfies kpt � qtk < 1

5
" for all t , so especially .qt /t is a homotopy through P 2";r1 .A/ by

Remark 2.9. Therefore, we have a map

�";r W K";r� .A
0/! K2";r� .A/I Œp; n�";r 7! Œq; n�2";r :

Clearly compositions of �";r and �";r are the same as forgetful maps.

Let

O0
F

�����! O1
G

�����! O2

be a sequence of .˛; k/-controlled morphism F and .ˇ; l/-controlled morphism G .
Assume O0i is a controlled object which is asymptotically equivalent to Oi via .�; h/-
controlled morphisms

Hi W Oi �! O0i

Ji W O
0
i �! Oi
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for i D 0; 1; 2. We can define a .�1; h1/ D .�; h/ � .˛; k/ � .�; h/-controlled morphism
F 0 D .F 0";r / and .�2; h2/D .�; h/ � .ˇ; l/ � .�; h/-controlled morphism G 0 D .G0";r / by

F 0";r W O
0";r
0

J
";r
0
��! O

�";h."/r
0

F �";h."/r

�����! O
˛�";k.�"/h."/r
1

H
˛�";k.�"/h."/r
1
���������! O

0�1";h1."/r
1

G0";r W O
0";r
1

J
";r
1
��! O

�";h."/r
1

G�";h."/r

�����! O
ˇ�";l.�"/h."/r
2

H
ˇ�";k.�"/h."/r
2
���������! O

0�2";h2."/r
2

so that the following controlled diagram commutes:

O0
F

�����! O1
G

�����! O2

Š

x?? Š

x?? Š

x??
O00

F 0

�����! O01
G 0

�����! O02

We can easily see that the exactness of .F ;G / passes to .F 0;G 0/.

Lemma 3.8. If .F ;G / is .ı; p/-exact, then there exists a controlled pair .ı0; p0/ such that
.F 0;G 0/ is .ı0; p0/-exact.

4. Functoriality and homotopy invariance of K
";r
� .C �.X//

In this section, we formulate how a coarse map between two locally compact metric spaces
induces a map between their controlled K-groups, and we prove the homotopy invariance
of this induced map under certain conditions. It is well known that the K-theory of the
Roe algebra is a coarse functor: if we have a coarse map between two locally compact
metric spaces X and Y , then we have an induced map

f� W K�.C
�.X//! K�.C

�.Y //:

We give a controlled version of this morphism. After that, we discuss the homotopy
invariance of this functor. This is analogous to [13, Lemma 4.8], which states the homo-
topy invariance of K-theory of a different C �-algebra C �L;0.X/. We show an analogous
statement for C �.X/ by a similar argument.

Definition 4.1. Let .X;dX / and .Y;dY / be locally compact metric spaces and f WX! Y

be a Borel map between them. For each positive number r � 0, we define the expansion
function of f by

!f .r/ WD sup¹dY .f .x1/; f .x2//I dX .x1; x2/ < rº:

We say that f is a coarse map if !f .r/ <1 for each r � 0 and f �1.K/ is a bounded set
for each bounded subset K � Y .
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Definition 4.2. Let X and Y be two locally compact metric spaces, HX and HY be
ampleX and Y -modules, respectively, f WX! Y be a coarse map and ı > 0. An isometry

Vf W HX �! HY

is called a ı-cover of f if d.y; f .x// < ı for any .y; x/ 2 supp.Vf / � Y �X .

Remark 4.3. For any X; Y; f and ı as above, a ı-cover Vf of f exists. This is proven
in [13, Lemma 2.4].

The proof of the next theorem is provided by [4, Proposition 6.3.12].

Theorem 4.4. Under the setting of Definition 4.2, for any ı > 0, a ı-cover Vf exists and
Ad.Vf / restricts to

Ad.Vf / W C �.X/ �! C �.Y /;

and the induced map on K-theory

f� WD Ad.Vf /� W K�.C �.X// �! K�.C
�.Y //

does not depend on ı and a ı-cover Vf of f .

Remark 4.5. Assume f W X ! Y is a coarse map and Vf is a ı-cover of f , then we have

prop.Ad.Vf /.T // < !f .r/C 2ı

for any T 2 B.HX / whose propagation is at most r . Therefore, we can define

Ad.Vf /� W K";r� .C
�.X// �! K

";!f .r/C2ı
� .C �.Y //:

Lemma 4.6. Fix two positive numbers ı and r . Let f W X ! Y be coarse maps with
!f .r/ < R and Vf ; V 0f W HX ! HY be ı-cover maps of f . Then we have

�.";RC2ı/;.";RC8ı/ ı Ad.Vf /� D �.";RC2ı/;.";RC8ı/ ı Ad.V 0f /�;

as maps from K
";r
� .C

�.X// to K";RC8ı� .C �.Y //.

Proof. Let U be the unitary

U D

 
1 � Vf V

�
f

Vf V
0�
f

V 0
f
V �
f

1 � V 0
f
V 0�
f

!
;

which is an element in the multiplier of M2.C
�.Y //, and we have

AdU
�

Ad.Vf /.T / 0

0 0

�
D

 
0 0

0 Ad.V 0
f
/.T /

!
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for any T 2 C �.HX /. Since prop.U / < 2ı, conjugation by the family of unitaries

zUt WD

�
U 0

0 1

��
cos.t/ �sin.t/
sin.t/ cos.t/

�
�

�
1 0

0 U �

��
cos.t/ sin.t/
�sin.t/ cos.t/

�
2M4.C

�.Y //

defines a homotopy between diag.Ad.Vf /.p/; 0; 0; 0/ and diag.0; Ad.V 0
f
/.p/; 0; 0/

through ."; RC 8ı/-projections for any ."; r/ quasi-projection p. Hence,

ŒAd.Vf /.p/� D ŒAd.V 0f /.p/� 2 K
";RC8ı
0 .C �.Y //:

Remark 4.7. For a coarse map f W X ! Y , with !f .r/ < R and any ı > 0, we have a
well-defined homomorphism

Ad.Vf /� W K";r� .C
�.HX // �! K";RC8ı� .C �.HY //

independently of the choice of ı-cover Vf of f .

We use this remark in the following way. Let HX and H 0X be ample X -modules. For
each ı > 0, there exist ı-covers of idX

V1 W HX ! H 0X and V2 W H
0
X ! HX :

Then since V2V1 and V1V2 are 2ı-covers of idX , by Remark 4.7, Ad.V1/� and Ad.V2/�
are asymptotically inverse to each other in the following sense.

Proposition 4.8. Under the above setting,

Ad.V2/� ı Ad.V1/� W K";r� .C
�.HX //! K";rC16ı� .C �.H 0X //! K";rC32ı� .C �.HX //

is equal to the forgetful map �.";r/;.";rC32ı/ and the composition

Ad.V1/� ı Ad.V2/� W K";r� .C
�.H 0X //! K";rC16ı� .C �.HX //! KC";rC32ı� .C �.H 0X //

is equal to the forgetful map �.";r/;.";rC32ı/.

Next, we discuss homotopy invariance.

Definition 4.9. Two coarse maps f;g WX!Y are said to be strongly Lipschitz homotopic
if there exists a continuous homotopy

F W Œ0; 1� �X �! Y

such that

(1) F.t; �/ W X ! Y is a proper map for each t 2 Œ0; 1�,

(2) the family ¹F.t; �/ W X ! Y º is uniformly Lipschitz, namely each F.t; �/ is
Lipschitz with a Lipschitz constant c that is independent of t 2 Œ0; 1�,
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(3) ¹F.�; x/ W Œ0; 1�! Y ºx2X is uniformly equicontinuous,

(4) F.0; �/ D f and F.1; �/ D g.

The next theorem is almost the same as [13, Lemma 4.8], where the analogous
statement for the C �-algebra C �L;0.X/ is shown.

Theorem 4.10. Let f; g W X ! Y be strongly Lipschitz homotopic via F whose uniform
Lipschitz constant is bounded by c and Vf , and let Vg be their ı-covers of f and g,
respectively. Then

Ad.Vf /� D Ad.Vg/� W K";r� .C
�.X// �! K21";5.crC2ı/� .C �.Y //:

Proof. We will show this for � D 1, and a similar argument works for � D 0. We can take
a partition of the interval

0 D t0 < t1 < � � � < tl�1 < tl D 1

such that kF.tj ; x/ � F.tjC1; x/k < ı for all x 2 X and j D 1; 2; : : : ; l � 1 by the
third condition. We write fj WD F.tj ; �/. For each j D 1; 2; : : : ; l , we can take a ı-cover
Vj W HX ! HY of fj . Let u be an ."; r/ quasi-unitary over zC �.X/. Define

ui WD .AdVfi /.u/ .i D 0; 1; : : : ; l/;

where AdVfi is a unital extension of the �-homomorphism AdVfi WC
�.X/!C �.Y /. For

each i , define wi WD uiu�l , and consider .3"; 2.cr C 2ı// quasi-unitary operators acting
on
Ll
iD0.HY ˚HY /:

a WD

lM
iD0

.wi ˚ I / D .w0 ˚ I /˚ .w1 ˚ I /˚ � � � ˚ .wl�1 ˚ I /˚ .wl ˚ I /

b WD

l�1M
iD0

.wiC1 ˚ I /˚ .wl ˚ I /

D .w1 ˚ I /˚ .w2 ˚ I /˚ � � � ˚ .wl ˚ I /˚ .wl ˚ I /

c WD .wl ˚ I /˚

lM
iD1

.wi ˚ I / D .wl ˚ I /˚ .w1 ˚ I /˚ .w2 ˚ I /˚ � � � ˚ .wl ˚ I /:

For t 2 Œ0; 1�, we define an isometry Vi;iC1.t/ W .HX ˚HX /! .HY ˚HY / by

Vi;iC1.t/ D R.t/

�
Vi 0

0 ViC1

�
R.t/�;

where R.t/ is the �
2
t -rotation matrix

� cos. �2 t/ sin. �2 t/
�sin. �2 t/ cos. �2 t/

�
. Note that since Vi;iC1.t/ is a 2ı-

cover of fi with respect to ample modules .HX ˚ HX / and .HY ˚ HY /, the operator
Ad.Vi;iC1.t//.u˚ I / is ."; cr C 4ı/ quasi-unitary and

Ad.Vi;iC1.0//.u˚ I / D ui ˚ I

Ad.Vi;iC1.1//.u˚ I / D uiC1 ˚ I:
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Therefore,  
l�1M
iD0

Ad.Vi;iC1.t//.u˚ I /
M

.ul ˚ I /

!
ı

lM
iD0

.u�l ˚ I /

is a homotopy through .3"; 2.cr C 4ı// quasi-unitaries between a and b. We can
show that b and c are .3"; 2.cr C 2ı// quasi-unitary-homotopic by rotating the first l-
coordinates and the last coordinate. Therefore, a and c are homotopic through .3"; 2.cr C
4ı// quasi-unitaries.

Note that since ku0 � w�l w0ulk � 4", the two .21"; 5.cr C 4ı// quasi-unitaries

.u0 ˚ I /˚

lM
kD1

.I ˚ I / and c�a

 
.ul ˚ I /˚

lM
kD1

.I ˚ I /

!
are homotopic through .21"; 5.cr C 4ı// quasi-unitaries by Remark 2.9. Similarly,

a�a

 
.ul ˚ I /˚

lM
kD1

.I ˚ I /

!
and .ul ˚ I /˚

lM
kD1

.I ˚ I /

are homotopic through .21"; 5.cr C 4ı// quasi-unitaries. We can construct a homotopy
through .6"; 5.cr C 4ı// quasi-unitaries between

c�a

 
.ul ˚ I /˚

lM
kD1

.I ˚ I /

!
and a�a

 
.ul ˚ I /˚

lM
kD1

.I ˚ I /

!
using the homotopy between a and c. This proves that

Ad.Vf /�.Œu�/ D Ad.Vg/�.Œu�/ 2 K
21";5.crC4ı/
1 .C �.HY //:

5. Asymptotic Mayer–Vietoris exact sequence of controlled K -theory

In this section, we decompose an n-dimensional simplicial complex X into two pieces to
obtain a Mayer–Vietoris sequence of controlled K-theories. First, we recall the condition
of decomposition of filtered C �-algebra to obtain a controlled Mayer–Vietoris sequence
following [7], and then we show that this decomposition of a simplicial complex satisfies
the conditions. Our purpose in this section is to build a long asymptotically exact sequence
to obtain information ofK";r� .C �.X// from simplicial complexes whose dimension is less
than dimX . With respect to a different filtration (so-called Lipschitz filtration), the same
technique is used in [9].

We encode the spherical metric on each simplex [10, Definition 7.2.1].
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Definition 5.1 ([7, Definition 2.6 and Remark 2.7]). Let A be a filtered C �-algebra and
let r be a positive number. A completely coercive decomposition pair of degree r for A is
a pair .�1;�2/ of closed linear subspaces ofAr such that there exists a positive number C
satisfying the following:

For any positive number s with s � r , any positive integer n and any x 2 Mn.As/,
there exist y 2Mn.As \�1/ and z 2Mn.As \�2/ with

kyk � Ckxk; kzk � Ckxk and x D y C z:

The constant C is called the coercity of the decomposition.

Definition 5.2 ([7, Definitions 2.8 and 2.13]). Let A be a filtered C �-algebra, r be
any positive number and � be a closed subspace of Ar . A filtered C �-subalgebra
B D .B \ As/s of A is called an r-neighborhood of � if it contains the subspace

N
.r;5r/
� D �C A5r ��C� � A5r C A5r �� � A5r :

Definition 5.3 ([7, Definition 2.15]). Let A be a C �-algebra. A pair .S1; S2/ of sub-
sets of A is said to satisfy the complete intersection approximation (CIA) property if
there exists C > 0 such that for any positive number ", any positive integer n and any
x 2Mn.S1/ and y 2Mn.S2/ with kx � yk � ", there exists z 2Mn.S1 \ S2/ such that

kz � xk � C"; kz � yk � C":

The constant C is called the coercity of the pair .S1; S2/.

Definition 5.4 ([7, Definition 2.16]). Let r be any positive number. An r-controlled weak
Mayer–Vietoris pair for a filtered C �-algebra A is a quadruple .�1; �2; A�1 ; A�2/ such
that

(1) .�1; �2/ is a completely coercive decomposition pair for A of order r with
coercity C ,

(2) A�i is an r-neighborhood of �i for i D 1; 2,

(3) the pair .A�1;s; A�2;s/ has the CIA property for any positive number s � r with
coercity C ,

for a positive number C > 0. The number C is called the coercity of the r-controlled
Mayer–Vietoris pair .�1; �2; A�1 ; A�2/.

Now we can state the main technical tool of this section. For the definition of
.�; h/-exactness, we refer the reader to Definition 3.5.

Theorem 5.5 ([7, Theorem 3.10]). For any positive number C , there exists a control pair
.�;h/ such that for any filtered C �-algebraA, any positive number r and any r-controlled
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weak Mayer–Vietoris pair .�1; �2; A�1 ; A�2/ for A of order r with coercity C , we have
a six-term .�; h/-exact sequence of order r for the quantitative objects:

K0.A�1 \ A�2/ �����! K0.A�1/
L

K0.A�2/ �����! K0.A/

@

x?? @

??y
K1.A/ �����! K1.A�1/

L
K1.A�2/ �����! K1.A�1 \ A�2/

Let X be an n-dimensional simplicial complex. For each n-simplex Y in X , we define

Y1 WD

²
x 2 Y I d.cY ; x/ �

1C 1
10

2

³
Y2 WD

²
x 2 Y I d.cY ; x/ �

1 � 1
10

2

³
;

where cY is the center of Y . We decompose X into two subsets:

X1 WD
[
¹Y1IY is an n-dimensional simplex in Xº

and

X2 WD
[
¹Y2IY is an n-dimensional simplex in Xº

[

[
¹Y IY is a simplex in X with dimY � .n � 1/º:

We denote byWr the r-neighborhood ofW � X . Then .X1/ 1
10

, .X2/ 1
10

and .X1 \X2/ 1
10

are strongly Lipschitz homotopic to a finite 0-dimensional complex Z1 and .n � 1/-
dimensional complexes Z2 and Z, respectively, with a uniform Lipschitz constant cn
depending only on n. Make a choice of strong Lipschitz homotopy equivalence maps:

f1 W .X1/ 1
10
�! Z1; g1 W Z1 �! .X1/ 1

10

f2 W .X2/ 1
10
�! Z2; g2 W Z2 �! .X2/ 1

10

f W .X1 \X2/ 1
10
�! Z; g W Z �! .X1 \X2/ 1

10
:

By Theorem 4.10, .f1;g1/, .f2;g2/ and .f;g/ induce asymptotically inverse maps to each
other on controlled K-theories. We denote

�i WD C
�.Xi /; Ai WD C

�..Xi / 1
10
/

for each i D 1; 2. We show the quadruple .�1; �2; A1; A2/ satisfies the condition to be a
1
50

-controlled Mayer–Vietoris pair for C �.X/.
(1) Show the pair .�1; �2/ is a completely coercive decomposition pair of degree

1
50

. Take any positive number r with 0 < r < 1
50

and x 2 .C �.X//r . We denote …1 D

X1 n .X1 \ X2/, …2 D X1 \ X2 and …3 D X2 n .X1 \ X2/. In terms of this disjoint
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decomposition, we write x D .xi;j /1�i;j�3, where xi;j D �…ix�…j . Since x can be
approximated by operators whose propagation is at most r , x has the form

x D

0@x1;1 x1;2 0

x2;1 x2;2 x2;3
0 x3;2 x3;3

1A :
We define

x1 D

0@x1;1 x1;2 0

x2;1 x2;2 0

0 0 0

1A ; x2 D

0@0 0 0

0 0 x2;3
0 x3;2 x3;3

1A :
Then we have xi 2 �i , x D x1 C x2, kxik � 4kxk for i D 1; 2. If x 2 Mn..C

�.X//r /,
we can regard x as an operator on

Ln
kD1HX with the diagonal module structure so that

we can apply the same argument.
(2) Clearly Ai is a 1

50
-neighborhood of �i .

(3) Show the pair ..A1/r ; .A2/r / has the CIA property for any 0 � r � 1
50

. Let " >
0; x 2 .A1/r and y 2 .A2/r with kx � yk < ". We denote†1 D .X1/ 1

10Cr
n ..X1/ 1

10Cr
\

.X2/ 1
10Cr

/, †2 D .X1/ 1
10Cr
\ .X2/ 1

10Cr
and †3 D .X2/ 1

10Cr
n ..X1/ 1

10Cr
\ .X2/ 1

10Cr
/.

In terms of this disjoint decomposition, we write xD .xi;j /1�i;j�3 and y D .yi;j /1�i;j�3,
where xi;j D �†ix�†j and similarly for y. Then

x � y D

0@x1;1 x1;2 0

x2;1 x2;2 � y2;2 �y2;3
0 �y3;2 �y3;3

1A :
Define

z D
x2;2 C y2;2

2
D

0@0 0 0

0
x2;2Cy2;2

2
0

0 0 0

1A 2 .A1/r \ .A2/r :
Then

kx � zk D








0@x1;1 x1;2 0

x2;1 0 0

0 0 0

1AC0@0 0 0

0
x2;2�y2;2

2
0

0 0 0

1A





 � 4"
and similarly for y. If x and y are matrices, we can reduce it to the case we have
just proven as we did in (1). Therefore, the pair ..A1/r ; .A2/r / has CIA property with
coercity 4.

Therefore, by Theorem 5.5, there exists a control pair .ı; p/ such that we have the
following .ı; p/ exact sequence of order 1

50
:

K1.A1 \ A2/
k

�����! K1.A1/
L

K0.A2/
l

�����! K1.C
�.X//

@

x?? @

??y
K0.C

�.X//
l

 ����� K0.A1/
L

K0.A2/
k

 ����� K0.A1 \ A2/



Controlled K-theory and K-homology 1155

Note that, since the set of operators supported on .X1/ 1
10
\ .X2/ 1

10
, whose propaga-

tions are at most r , is a dense subspace of .A1 \ A2/r , and .X1/ 1
10
\ .X2/ 1

10
is strongly

Lipschitz homotopic to .X1 \ X2/ 1
10

, the quantitative object K�.A1 \ A2/ is asymptoti-
cally equivalent to K�.C

�.Z// with a control pair depending only on the dimension. By
Lemma 3.8 and Theorem 4.10, there exist control pairs .�n; hn/ and .ı0n; p

0
n/ depending

only on n such that there exist .�n; hn/-morphisms k, l and @ in the following sequence,
which are .ı0n; p

0
n/-exact of order sn depending only on n:

K1.C
�.Z//

k
�����! K1.C

�.Z1//
L

K0.C
�.Z2//

l
�����! K1.C

�.X//

@

x?? @

??y
K0.C

�.X//
l

 ����� K0.C
�.Z1//

L
K0.C

�.Z2//
k

 ����� K0.C
�.Z//

(5.1)

6. Quantitative description of K -homology

In this section, we show the main theorem, which states that the K-homology K�.X/ of
a finite simplicial complex X can be realized as an image under a forgetful map of the
controlledK-theoryK";r� .C �.X//. We show this using the asymptotic version of the five-
lemma between Mayer–Vietoris sequences of K-homology and controlled K-theory. For
this purpose, it is convenient to reformulate the Mayer–Vietoris sequence ofK-homology
in terms of controlled K-theory so that the diagram commutes. For the next lemma, we
give the definition of the localization algebra C �L.X/, which is defined in [12].

Definition 6.1. For an ample X -module HX , we define the algebraic localization alge-
bra CLŒHX � to be the algebra consisting of uniformly continuous and bounded functions
from Œ1;1/ to the algebraic Roe algebra CŒHX � and the localization algebra C �L.HX / to
be the completion of CLŒHX � by the sup-norm. Again, when it is clear from the context,
we will write C �L.X/ in place of C �L.HX /. The localization algebra is also filtered by the
supremum of propagations, that is,

C �L.X/r D
°
f 2 CLŒHX �I sup

t2Œ1;1/

prop.f .t// � r
±

or its closure (see Remark 3.7).

Then Yu showed that the K-theory of the localization algebra is isomorphic to
K-homology for any finite-dimensional simplicial complex.

Theorem 6.2 ([12, Theorem 3.2]). If X is a finite-dimensional simplicial complex
endowed with a spherical metric, then we have an isomorphism K�.X/ Š K�.C

�
L.X//.

To use the same Mayer–Vietoris sequence for K-homology and controlled K-theory,
we formulate K-homology in terms of controlled K-theory.
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Lemma 6.3. For any 0 < " < 1
8

and r > 0, we have

K�.C
�
L.X// D K

";r
� .C

�
L.X//:

Proof. Let HX be an ample X -module. Since CLŒHX � is dense in C �L.X/, by [3,
Proposition 4.9], we have an isomorphism

K"�.CLŒHX �/ Š K�.C
�
L.X//;

where K"�.CLŒHX �/ is defined analogously to K
";r
� .A/ by replacing a filtered C �-

algebra A by the filtered algebra CLŒHX � and r by 1 in Definition 2.7. So it suffices
to construct an isomorphism

K";r� .C
�
L.X// Š K

"
�.CLŒHX �/:

We construct an inverse to the forgetful map �";r W K";r� .C �L.X//! K"�.CLŒHX �/. Take
any "-projection .pt /t2Œ1;1/ over CLŒHX �. By the definition of CLŒHX �, there exists
N 2 Œ1;1/ such that

prop.pt / < r for all t � N: (6.1)

We define

�";r W P ";r1 .CLŒHX �/! K2";r� .C �L.X//I Œ.pt /t � 7! Œ.pNCt /t �

independently of the choice of N satisfying (6.1). We show that this is well defined
on the K-theoretic level. Assume we have a homotopy ¹.p.s/t /tºs2Œ0;1� through "-
projections over CLŒHX � parametrized by s. We show �";r .Œp.0/t �/ D �";r .Œp.1/t �/.
The issue is that we cannot take N uniformly for s in general. We take k such that
supt2Œ1;1/k.p.s/t /t � .p.s

0/t /tk <
1
15
" whenever ks � s0k < 1

k
and a partition of the

interval

0 D s0 < s1 < � � � < sk�1 < sk D 1;

with sj D
j
k

for j D 0; 1; : : : ; k. For each j , we can take Nj such that

prop.p.sj /t / < r for all t � Nj :

We define a new path q.s/t by linearly connecting p.sj /’s. Then, by Remark 2.9, q.s/ is
a path through 2"-projections and

prop.q.s/t / < r for all t �M WD max¹Nj ºkjD1:

Therefore, �";r .Œp.0/t �/ D �";r .Œp.1/t �/ 2 K
2";r
� .C �L.X//. So we have a map on K-

theory, which is still denoted by

�";r W K"�.CLŒHX �/! K2";r� .C �L.X//I Œ.pt /t � 7! Œ.pNCt /t �:
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The statement follows from the following commutative diagram:

K"�.CLŒHX �/

K
"
2
� .CLŒHX �/ K

";r
� .C

�
L.X//

Š

�
"
2 ;r

�";r

Definition 6.4. Let X be a locally compact metric space, and let .˛; k/ be a control pair.
We define a new quantitative object K

.˛;k/
� .C �.X// D .K

.˛;k/;.";r/
� .C �.X///";r by

K.˛;k/;.";r/� .C �.X// D �";˛";r;k."/r .K";r� .C
�.X/// � K"˛;k."/r� .C �.X//:

We call the group K.˛;k/;.";r/� .C �.X// the .˛; k/-relaxed ."; r/-controlled K-theory of
C �.X/ because it is generated by the same generators as K";r� .C �.X// with a relaxed
homotopy relation. Let Y be another locally compact metric space and F D .F ";r / be a
.�;h/-controlled morphism from .K

";r
� .C

�.X///";r to .K";r� .C �.Y ///";r . Then we define
a control pair .�; h0/ by

h0."/ D
h.˛"/k."/

k.�"/

and a .�; h0/-controlled morphism F 0 D .F 0";r / as the restriction of

F ˛";k."/r W K˛";k."/r� .C �.X//! K�˛";h.˛"/k."/r� .C �.Y //

from K
.˛;k/;.";r/
� .C �.X// to K.˛;k/;.�";h

0."/r/
� .C �.Y //.

Remark 6.5. The .ı; l/-exactness of K�.�/ passes to the .ı; l 0/-exactness of K
.˛;k/
� .�/,

where

l 0."/ D
l.˛"/k."/

k.ı"/
:

Here we can prove the main theorem: the quantitative description of K-homology.

Theorem 6.6. For each n 2 N, there exist a control pair .�n; hn/ and a pair of positive
numbers ."n; rn/ depending only on n such that for any n-dimensional finite simplicial
complex X endowed with a spherical metric, we have

K�.X/ Š K
.�n;hn/;.";r/
� .C �.X//

for any ."; r/ < ."n; rn/.

Proof. We show this by induction on n. First assume n D 0. In this case, X is a set
of finitely many points X D ¹p1; p2; : : : ; pN º. Let r0 be the minimum of the distances
between any two points:

r0 WD min¹d.pi ; pj /I 1 � i; j � N; i ¤ j º 2 .0;1�:
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(Note that in the spherical metric, the distance between points in different connected com-
ponents is infinite. But for convenience, we allow it to be finite in this theorem, just to
apply the induction hypothesis toZ at a later step.) Since any operator whose propagation
is at most r0 have to be supported on a single point, for any 0 < " < 1

4
and 0 < r < r0, we

have

K";r� .C
�.X// D

NM
jD1

K";r� .C
�.¹pj º// D

NM
jD1

K�.C
�.¹pj º// D

NM
jD1

K�.K.H//;

which is the same as theK-homology group ofX D ¹p1; p2; : : : ;pnº. In this case, we can
take .�0; h0/ D .1; id/ to have K.�0;h0/;.";r/� .X/ Š K�.X/ for 0 < " < 1

4
and 0 < r < r0.

Next assume that the statement holds for dimX D 0; 1; : : : ; n � 1. By the commutative
diagram (5.1) and Remark 6.5, we have the following diagram of .ın; ln/-exact sequence
of .˛n; kn/-morphisms for some control pairs .ın; ln/ and .˛n; kn/ of degree sn�1:

� � � ! K�.Z/ �����! K�.Z1/
L
K�.Z2/!

ev�

??y ev�

??y
� � � !K

.�n�1;hn�1/
� .Z/ �����! K

.�n�1;hn�1/
� .Z1/

L
K
.�n�1;hn�1/
� .Z2/!

! K�.X/ �����! K�C1.Z/! � � �

ev�

??y ev�

??y
!K

.�n�1;hn�1/
� .X/ �����! K

.�n�1;hn�1/
�C1 .Z/! � � �

Note that the Mayer–Vietoris sequence of K-homology comes from that of controlled K-
theory via the isomorphism in Lemma 6.3. The vertical maps are induced by the evaluation
maps at 1:

.ev�/n�1.";r/ W K�.Y / D K
";r
� .C

�
L.Y //! K.�n�1;hn�1/;.";r/� .Y /

for Y D X;Z1; Z2; Z. Therefore, the above diagram is commutative because of the con-
struction after [7, Remark 3.4]. By the induction hypothesis, there exists ."n�1; rn�1/ such
that K.�n�1;hn�1/;.";r/� .Y / is stable and isomorphic to K�.Y / if ."; r/ < ."n�1; rn�1/ and
r < sn�1 for Y D Z;Z1; Z2. We take ."; r/ such that

.�n�1; hn�1/."; r/ < ."n�1; rn�1/ (6.2)

and

.˛n; kn/."; r/ < ."n�1; rn�1/: (6.3)

Then, by diagram chasing, we can show that for any y 2K.�n�1;hn�1/;.";r/� .X/, there exists
x 2 K�.X/ such that

.ev�/n�1.˛nın";kn.ın"/ln."/r/
.x/ D �.";r/;.˛n;kn/�.ın;ln/.";r/.y/:
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So, if we define .�n; hn/ WD .˛n; kn/ � .ın; ln/ � .�n�1; hn�1/,

.ev�/n.";r/ W K�.X/! K.�n;hn/;.";r/� .X/

is surjective for all ."; r/ with (6.2) and (6.3). We now show that .ev�/n.";r/ is injective for
small ."; r/. Let ."0; r 0/ WD

�
�n
�n�1

"; hn."/

hn�1.
�n
�n�1

"/
r
�

so that it satisfies

.�n�1"
0; hn�1."

0/r 0/ D .�n"; hn."/r/: (6.4)

Note that we have a commutative diagram:

K�.Y /
.ev�/";r
�����! K

";r
� .C

�.Y //

.ev�/"0;r 0

??y �";�n";r;hn."/r

??y
K
"0;r 0

� .C �.Y //
�"
0;"0�n�1;r

0;hn�1."1/r
0

��������������! K
�n";hn."/r
� .C �.Y //

By the induction hypothesis, if we choose ."0; r 0/ small enough, then for Y D
Z;Z1; Z2, the composition �"

0;"0�n�1;r
0;hn�1."/r

0

ı .ev�/"0;r 0 is an isomorphism onto

K.�n;hn/;.";r/� .C �.Y // � K�n";hn."/r� .C �.Y //

by (6.4). Therefore,

.ev�/n.";r/ W K�.Y /! K.�n;hn/;.";r/� .Y /

is also isomorphic for ."; r/ with ."0; r 0/ < ."n�1; rn�1/ besides (6.2) and (6.3). Then by
the following diagram chasing of commutative asymptotic exact sequence of degree sn

� � � ! K�.Z/ �����! K�.Z1/
L
K�.Z2/!??y ??y

� � � !K
.�n;hn/
� .Z/ �����! K

.�n;hn/
� .Z1/

L
K
.�n;hn/
� .Z2/!

! K�C1.X/ �����! K�C1.Z/! � � �??y ??y
!K

.�n;hn/
�C1 .X/ �����! K

.�n;hn/
�C1 .Z/! � � �

we can show

.ev�/n.";r/ W K�.X/! K.�n;hn/;.";r/� .X/

is also injective for sufficiently small ."; r/ depending only on n.

Remark 6.7. We continue assuming X is a finite n-dimensional simplicial complex.
Let Y be a countable dense subset of X , which is an inductive limit of finite subsets .Yi /
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of Y , and letH be any infinite-dimensional separable Hilbert space. We take an increasing
sequence .Hi /i of finite-dimensional subspaces Hi of H such that H D

S
i Hi , and we

denote by Qi 2 B.`2.Y /˝H/ the orthogonal projection onto `2.Yi /˝Hi . We have a
unital ample representation of C.X/ on `2.Y /˝H given by a multiplication on `2.Y /
and the identity for H , and this representation can be restricted to each `2.Yi /˝Hi .

In this case, the Roe algebra C �.`2.Y / ˝ H/ is the set of compact operators
K.`2.Y / ˝ H/ D lim

�!
B.`2.Yi /˝Hi /. Therefore, for any ."; r/-projection p over

C �.`2.Y /˝H/ and ı > 0, we can find i such that kp �QipQik � ı. By Remark 2.9, p
and QipQi represent the same element in K.�n;hn/;.";r/0 .X/ for sufficiently small ı.
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