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Enlargeable foliations and the monodromy groupoid

Guangxiang Su and Zelin Yi

Abstract. Let M be a closed spin manifold, the Dirac operator with coefficient in the universal flat
Hilbert C��1-module determines a Rosenberg index element which, according to B. Hanke and
T. Schick, subsumes the enlargeability obstruction of positive scalar curvature on M . In this paper,
we generalize this result to the case of spin foliation. More precisely, given a foliation .M; F / with
F spin, we will define a foliation version of Rosenberg index element and prove that it is nonzero
in the presence of enlargeability of .M; F /. As a consequence, the foliation version of Rosenberg
index element subsumes the enlargeability obstruction to the existence of leafwise positive scalar
curvature metric.

1. Introduction

1.1. Enlargeable manifold

Enlargeability [11] is an important notion in studying which manifold admits positive
scalar curvature metric. A famous theorem of Gromov and Lawson states that closed spin
enlargeable manifolds cannot carry positive scalar curvature metric.

If M is an even dimensional spin manifold with the fundamental group �1 and the
Dirac operator

D W C1c .M; S
C/! C1c .M; S

�/;

according to [18], the Dirac-type operator twisted by the canonical flat C ��1-bundle

zM ��1 C
��1 (1.1)

determines an element Œ˛.M/� (we will simply write Œ˛� when there is no confusion) in
K0.C

��1/ which is usually called the Rosenberg index element. In fact, if M is of odd
dimensional, by replacing M with M � S1, Œ˛� 2 K1.C ��1/ can also be defined. The
main result of [12, 13] is the following theorem.

Theorem 1.1 ([12, Proposition 4.2] and [13, Theorem 1.2]). If M is an enlargeable spin
manifold, then Œ˛� ¤ 0 in Kn.C ��1/, where n is the dimension of M .
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1.2. Previous approach

The main idea of [12] is as follows: ifM is compactly enlargeable, letE! Sn be a vector
bundle whose top degree Chern class is not zero while all other Chern classes are zero. The
pullback f �" E! zM" can be “wrapped up” to a finite dimensional vector bundleE"!M .
As " range over 1;1=2; : : : ; 1=n; : : : , we get a sequence of leafwise increasingly flat vector
bundles ¹Eiºi2N over M whose Chern classes vanish except the top degree one. Denote
by di the dimension of Ei . Let Pi be the principal frame bundle of Ei , K be the C �-
algebra of compact operators. Unitary matrices act on K by the inclusion U.di / ,! K .
Denote by qi the image of 1 2 U.di / inside K . The associated product

Pi �U.di / K (1.2)

is a Hilbert K-module bundle.

Definition 1.2. Let A be the C �-algebra of bounded sequence of compact operators.
Namely,

A D

²
.ai / 2

Y
N

K W sup
i2N
kaik <1

³
:

Let Ai � A be the subalgebra of sequences such that all but the i th component vanish. It
is clear that Ai ŠK for all i 2 N. Let A0 � A be the subalgebra consisting of sequences
that converge to zero. In other word, A0 is the closure of

L
K � A: LetQ be the quotient

C �-algebra A=A0.

Thanks to the boundedness of the curvatures of Ei ’s, the sequence of Hilbert module
bundlesPi �U.di / K can be assembled into a HilbertA-module bundle V . The almost flat-
ness ofEi is reflected in the fact that the curvature of V is endomorphism of A which take
value in hom.A;A0/. Therefore, V can be reduced into a genuinely flat HilbertQ-module
bundle W D V=A0. As a consequence of the flatness of W , there is a holonomy represen-
tation of the fundamental group �1 and correspondingly, a C �-algebras homomorphism
C ��1!Q. To detect the non-vanishing of Œ˛�, it is enough to show the non-vanishing of
its image under the map

K0.C
��1/! K0.Q/: (1.3)

It is known (see [12, Proposition 3.6]) that the K-theory of Q is explicitly computable
as a quotient of

Q
Z, and the i th argument of Œ˛� in K0.Q/ is computed as the index of

the Dirac-type operator twisted by Ei . The non-vanishing of Œ˛� then follows from the
non-vanishing of the top degree Chern class and the Atiyah–Singer index theorem.

1.3. Difficulty with noncompactness

The main difficulty with non-compactly enlargeable foliation is that the covering spaces
zM" are non-compact so that the “wrapped up” bundles E"!M are infinite dimensional.

To get some useful information out ofE"’s, Hanke and Schick [13] organize these bundles
into some Hilbert module bundles in the following novel way.
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LetG andH" be the fundamental groups forM and zM", respectively. Then, each fiber
of the covering zM"!M can be parameterized byG=H". We fix such a parameterization.
The C �-algebras CT ; CS and CS;T are as in [13] except that we will add a superscript "
to indicate its dependence on ".

Definition 1.3. Let C "T � B.`2.G=H"/ ˝ Cd / be the C �-algebra generated by G=H"
families of matrices Md .C/ all but finitely many of which are zero. Let us assume that
C "S �B.`2.G=H"/˝Cd / be the C �-algebra generated by permutations ofG=H" and let
C "S;T be the C �-algebra generated by C "S and C "T . Notice here C "T is isomorphic to the
C �-algebra of compact operators and is a two-sided ideal in C "S;T .

Fix " and let �" W zM"!M be the covering map, let ¹U˛º be a finite open cover of M
such that f �" E is trivial on ��1" .U˛/ for all ˛. Fix these trivializations:

f �" Ej��1" .U˛/

'˛
�! ��1" .U˛/ �Cd : (1.4)

The transition functions

��1" .U˛ \ Uˇ / �Cd
'˛ˇ
��! ��1" .U˛ \ Uˇ / �Cd (1.5)

can be viewed as a map from U˛ \ Uˇ to C "S;T , which, used as new set of transition
functions, build the Hilbert C "S;T -module bundle E" !M .

Apart from Hilbert module bundle structure, one more ingredient is needed to tackle
the noncompactness of zM", that is relative index. Let R.C "S;T / be the C �-algebra defined
by R.C "S;T / D ¹.c1; c2/ 2 C

"
S;T � C

"
S;T j c1 � c2 2 C

"
T º. Inspired by Roe’s approach to

relative index [22], Hanke and Schick organize the virtual bundleE" �C "S;T into a Hilbert
R.C "S;T /-module bundle. Then, the index of the twisted Dirac operatorDE"�C "S;T belongs
to K0.R.C "S;T //.

Definition 1.4. Let A �
Q
i R.C

1=i
S;T / be the C �-algebra of bounded sequences, A0 � A

be the subalgebra consisting of sequences that converge to zero and Q D A=A0.

As in the compact case, we may assemble the sequence of bundles ¹Eiº into a Hilbert
A-module bundle V . Its quotient V=A0 is a flat HilbertQ-module bundle which determines
a homomorphism �1.M/ ! Q. The advantage of R.C "S;T / is that its K-theory splits
out a Z-component which can be computed by a generalization of Mischenko–Fomenko
index theorem [23] plus a trace calculation. Then, an analogous map as (1.3) detects the
nonvanishing of Œ˛�.

1.4. Present work

In this paper, we will first define a foliation version of Rosenberg index element (Def-
inition 4.3) and then generalize Theorem 1.1 to the case of enlargeable foliations. The
following is the main theorem of this paper.
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Theorem 1.5. If .M; F / is an enlargeable foliation (the precise definition is given in
Definition 1.6) with F spin, then the foliation version of the Rosenberg index element is
not zero.

On the other hand, we will see that the existence of leafwise positive scalar curva-
ture metric forces the Rosenberg index to be zero (Proposition 4.4). Together with the
above main theorem, the foliation version of the Rosenberg index element subsumes the
enlargeability obstruction to the existence of the leafwise positive scalar curvature metric.

We will first verify the main theorem in the compactly enlargeable case and then
reduce the general case back to the compact case.

In fact, there are several notions of enlargeability for foliation in the literatures. We
will use the following definition.

Definition 1.6. LetM be a compact Riemannian metric. A foliation .M;F / is compactly
enlargeable if there is C > 0 such that for any " > 0, there is a compact covering zM" of
M and a smooth map

f" W zM" ! Sn

with

• jf";�X j � "jX j for all X 2 C1. zM"; zF"/, where zF" is the lifting of F to zM";

• jf";�X j � C � jX j for all X 2 C1. zM"; T zM"/;

• f" has nonzero degree.

A foliation .M;F / is enlargeable if the above condition holds with possibly non-compact
coverings zM" and f" is constant outside some compact subset K" � zM".

Remarks 1.7. The notion of enlargeability given in the above definition is, in some
sense, in between that of [25, Definition 0.1] and [3, Definition 1.5]. More precisely, the
enlargeability used in [3, Definition 1.5] requires the "-contracting condition in all tangent
directions while the one used in [25, Definition 0.1] only needs the "-contracting condi-
tion in the leafwise direction. In the above definition, the second bullet point replaces the
"-contracting condition in the transverse direction by a uniformly bounded condition.

The definition above of enlargeability explicitly uses the Riemannian metric on M .
However, as shown in [17, Chapter IV, Theorem 5.3], the enlargeability is independent
of the Riemannian metric. More precisely, any compact foliated manifold .N; F 0/ which
admits a map of nonzero degree onto an enlargeable .M; F / that sends F 0 into F is
enlargeable. The proof given in [17, Chapter IV, Theorem 5.3] can be applied verbatim.

Let .M; F / be a compactly enlargeable foliation with F spin, let GM and GH be the
monodromy groupoid and the holonomy groupoid of .M; F /, respectively. The leafwise
Dirac operator

D W C1.M; SC.F //! C1.M; S�.F //

defines a K-theory element Œ˛.M; F /� (we will simply write Œ˛� when there is no confu-
sion) in K0.C �GM /.
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Definition 1.8. Recall that qi2K is the image of 12U.di / inside K . Let qD.q1; q2; : : :/2
A, then qAq is an unital C �-algebra. We will write qA0q D A0 \ qAq which is an ideal in
qAq. Finally,

qQq D qAq=qA0q:

As in the unfoliated case, the enlargeability condition gives a sequence of leafwise
almost flat vector bundles ¹Eiº of dimension di whose Chern classes vanish except the
top degree part. The sequence of principal frame bundles and their associated product with
the truncated compact operators qiKqi can be defined in the same way as in (1.2). The
sequence ¹Eiº can be assembled into a Hilbert qAq-module bundle V , and the almost
leafwise flatness will be reflected in a genuinely leafwise flat Hilbert qQq-module bundle
W D V=qA0q. However, to the best of the authors’ knowledge, there is no characterization
of leafwise flat vector bundle in the form of (1.1). To find the counterpart of (1.3), we will
make use of basic KK-theory.

The foliation counterpart of universal cover and fundamental group is the monodromy
groupoid GM . The role of C �-algebras A;A0; Q will be played by three crossed product
C �-algebras C �.GM ; qAq/; C �.GM ; qA0q/ and C �.GM ; qQq/ which are constructed
by taking the completion of the algebra of compactly supported smooth functions on
GM with values in the corresponding C �-algebras. The fact that qAq is an unital C �-
algebras is crucial in the corresponding pseudodifferential calculus that we will need. If
W is a leafwise flat Hilbert qQq-module bundle over M , the space of smooth compactly
supported sections of the pullback bundle r�W ! GM can be completed into a Hilbert
C �.GM ; qQq/-module EW . It can be shown, due to the leafwise flatness, this module also
has a left C �GM -action which, together with the zero operator, determines a KK-theory
element in

KK.C �GM ; C
�.GM ; qQq//: (1.6)

This KK-element will play the role of the map (1.3). The sequence of C �-algebras

0! C �.GM ; qA
0q/! C �.GM ; qAq/! C �.GM ; qQq/! 0

is exact (see Proposition 3.8) and induces the following exact sequence at the level of
K-theory:

K0.C
�.GM ; qA

0q//! K0.C
�.GM ; qAq//! K0.C

�.GM ; qQq//: (1.7)

The image of Œ˛� under the map

K0.C
�GM /! K0.C

�.GM ; qQq//;

which is induced by Kasparov product with theKK-element (1.6), is given by the twisted
leafwise Dirac operator ŒDW�qQq� 2 K0.C �.GM ; qQq// twisted by the virtual bundle
W � qQq. It can be lifted, through the second map of (1.7), to the element in ŒDV�qAq� 2
K0.C

�.GM ; qAq// given by the leafwise Dirac operator twisted by the virtual bundle
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V � qAq. To see the nonvanishing of Œ˛�, it suffices to show that ŒDV�qAq� is not in the
image of the first map of (1.7). Consider the following diagram:

K0.C
�.GM ; qA

0q//

��

//
L
K0.C

�GM /

��

�
//
L

C

��

K0.C
�.GM ; qAq//

Q
pi //

Q
K0.C

�GM /
�
//
Q

C;

(1.8)

where the first vertical arrow is precisely the first map of (1.7), the horizontal arrows from
the first column to the second column are induced from the projections A! K into the
each component and the � maps are given by the Connes’ transversal fundamental class.
Then, the image of ŒDV�qAq� under the lower horizontal line is given by

.h yA.F / ch.Ei �Cdi /; ŒM �i/i2N ;

which, according to the assumption on Chern classes, has infinitely many nonzero terms.
Thus, it cannot be in the image of the first horizontal line.

1.5. Reduction to compact case

For general enlargeable foliation, the situation can be reduced back to the compactly
enlargeable case by the following observation.

Observation 1.9. As C "T � C
"
S;T is an ideal, the C �-algebra C "S;T can be mapped to the

multiplier algebra of C "T ,
C "S;T !M.C "T /; (1.9)

the compositions of the set of transition functions (1.5) and the map (1.9) can be taken as
a new set of transition functions. Together with trivializations U˛ �C "T , it builds a Hilbert
C "T -module bundle E".

Now, the difficulty of non-compactness is reflected in the fact that C "T Š K is not
unital so that the KK-theory element construction (1.6) cannot be applied directly. We
need the relative index theorem to overcome the difficulty. The virtual bundle

E" � C
"
T (1.10)

can be organized into an element in the group K0.C.M/˝ C "T /. Under the light of KK-
equivalence between K and C the difference bundle (1.10) can be reduced to a finite
dimensional virtual bundle E0" �Cd" with d" D dim.E0" /. The advantage of E0" over E"
is that, apart from being asymptotic flat as "! 0, it is finite dimensional vector bundle
so that the construction of (1.6) can be applied. The Chern characters of E0" ’s can be
calculated to satisfy

h yA.F / ch.E0" �Cd"/; ŒM �i D h yA. zF"/ ch.f �" E �Cd /; Œ zM"�i: (1.11)

From here on, exactly the same methods in the compactly enlargeable case can be applied,
and the result follows.
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1.6. Organization

This paper is organized as follows. In Section 2, we briefly recall the definition of mon-
odromy groupoids and holonomy groupoids of a foliated manifold. In Section 3, we
review the notion of Haar system on Lie groupoids, the construction of full and reduced
groupoid C �-algebras and introduce C �.G; A/ groupoid C �-algebras with coefficient in
another C �-algebra. In Section 4, under the assumption that .M; F / is a foliation with
F spin and even dimensional, we define the foliation counterpart of Rosenberg index
Œ˛� 2 K0.C

�GM / and relate it to the longitudinal index element. In Section 5, we define
the Rosenberg index twisted by a Hilbert C �-module bundle. In Section 6, we construct a
Hilbert module in the presence of a leafwise flat Hilbert Q-module bundle. This Hilbert
module will later determines aKK-theory element which play the role of (1.3). In Section
7, we write down the definition of the genuinely leafwise flat Hilbert Q-module bundle
out of the compactly enlargeability of .M; F / and prove the non-vanishing of Œ˛�. In
Section 8, we construct the finite dimensional vector bundles E0" , calculate their curva-
tures and Chern characters and explain how to reduce the general enlargeable case to the
compactly enlargeable case. In Section 9, we deal with odd dimensional F . We define
Œ˛� 2 K1.C

�GM / and show how to reduce the non-vanishing problem to the even dimen-
sional case.

2. Monodromy groupoids and holonomy groupoids

Let .M; F / be a compact foliation, we will denote the monodromy groupoid by GM
and the holonomy groupoid by GH . The unit space of GH is the compact manifold M ,
the morphism space is the set of holonomy classes of curves along leaves of .M;F /. The
range map and the source map r; s WGH !M are given by sending curves to their terminal
and initial points, respectively. Groupoid multiplications are given by concatenation of
curves.

Proposition 2.1 ([19, Proposition 5.6]). The morphism space of holonomy groupoid GH
has a manifold structure.

Proof. Let 
 2 GH be some curves in a leaf of the foliation .M;F /. We will construct an
open neighborhood of 
 which is homeomorphic to some Euclidean space.

Assume that r.
/ D x and s.
/ D y. Pick local foliation charts x 2 U D T1 �L1!
Rp �Rq with x D .xT ; xL/ 2 U and y 2 V D T2 �L2!Rp �Rq with y D .yT ; yL/ 2
V . If we pick two foliation charts small enough, there is a smooth map

H W T1 � Œ0; 1�! T2 (2.1)

such thatH.xT ; t /D 
.t/ andH.�; t / is a curve within some leaves connectingH.�; 0/ 2
T1 and H.�; 1/ 2 T2. Now, we can define a map

T1 � L1 � L2 ! Hol.M;F /; (2.2)
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which assign .a; b; c/ 2 T1 � L1 � L2 the curve � ı H.a; t/ ı � where � is any curve
connecting .a; b/ to .a; xL/ in U ,H is the smooth map described in (2.1) withH.a; 0/D
.a; xL/ and � is any curve connecting H.a; 1/ with .yT ; c/ in V. The map (2.2) is well-
defined since the holonomy class of � ıH.a; t/ ı � is independent of the choice of �;H;�.
It is also clear that (2.2) is injective, and form a topological basis. In this way, we define
the local Euclidean structure, and hence, a manifold structure of GH .

Remark 2.2. As for the monodromy groupoid GM , the unit space is given by M , the
morphism space is the set of homotopy classes of curves along leaves of .M; F /, the
manifold structure and the source and range maps are given in a similar way.

The source fibers of GH and GM over x 2 M is the holonomy cover and universal
cover of the leaf passing through x 2M , respectively.

Example 2.3. If F D TM , the holonomy groupoid degenerates into the pair groupoid,
namely,GH DM �M . Under the same assumption F D TM , the morphism space of the
monodromy groupoid is given by the space of homotopy classes of all curves inM . In this
particular case,GM is usually called fundamental groupoid and denoted by….M/�M .
It can be shown that the fundamental groupoid is Morita equivalent to fundamental group
taken as groupoid over a single point. Hence, their corresponding groupoid C �-algebras
are Morita equivalent.

3. Groupoid C �-algebras

Parallel to the notion of Haar measures on locally compact topological groups, there is a
notion of Haar systems on Lie groupoids.

Definition 3.1. LetG �G.0/ be a Lie groupoid, a family of measures ¹�xºx2G0 is called
a Haar system on G if the following statements hold.

(1) The measure �x is supported on the source fiber Gx .

(2) For any smooth compactly supported function f on G, the function on the unit
space G.0/ given by the assignment

x 7!

Z
Gx

f .
/d�x.
/

is smooth.

(3) Let � 2 G, f be any smooth compactly supported function on G; then,Z
Gs.�/

f .
/d�s.�/.
/ D

Z
Gr.�/

f .
 ı �/d�r.�/.
/:

The above family of measures is sometimes referred to as right invariant Haar system.
Left invariant Haar system ¹�xºx2G0 can be defined in a similar way where we replace
the source fibers Gx with the range fibers Gx .
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Example 3.2. Fix a metric on F ; then, there is an induced measure ¹�xºx2M on each leaf
Lx � M . The leafwise measures, in turn, determine measures ¹�Hx º on their holonomy
covers GH;x and measures ¹�Mx º on universal covers GM;x accordingly. One can check
that these measures form Haar systems on GH and GM , respectively.

In the presence of a Haar system ¹�xºx2G.0/ , the space of compactly supported smooth
functions on groupoid G can be made into an algebra. Let f; g 2 C1c .G/, the multiplica-
tion f � g is given by

f � g.
/ D

Z

12Gs.
/

f .
 ı 
�11 /g.
1/d�s.
/.
1/; (3.1)

and the adjoint is given by
f �.
/ D f .
�1/:

Remark 3.3. In general, the monodromy groupoid GM and the holonomy groupoid GH
may not be Hausdorff. We need to be careful with the definition of C1c .G/. SinceGM and
GH all have smooth manifold structure, every point in the groupoid have Hausdorff local
coordinate chart. According to [6], the space C1c .G/ is defined to be the span of functions
each of which is smooth on a Hausdorff chart of G and vanishes outside a compact subset
of the Hausdorff chart. More precisely, a typical function in C1c .G/ can be written as
finite sum

f D
X
i

fi ;

where fi is smooth function on a Hausdorff chart Ui � G that vanishes outside a compact
subset of Ui . If G is indeed Hausdorff, then so defined C1c .G/ has its usual meaning
(see [20] for more details).

Definition 3.4. Let f 2 C1c .G/ and define

kf kI D sup
x2G.0/

²Z
Gx

jf .
/jd�x.
/;

Z
Gx

jf .
�1/jd�x.
/

³
:

It is easy to check that k � kI is a norm. We will say a representation ' W C1c .G/!B.H'/

is bounded if it satisfies
k'.f /kB.H'/ � kf kI

for all f 2 C1c .G/. The full groupoid C �-algebra is the completion of C1c .G/ with
respect to the norm

sup
'
k'.f /kB.H/;

where ' ranges over all bounded representations ofC1c .G/. The full groupoidC �-algebra
is usually denoted by C �G.

Analogous to the fact that the holonomy group at a fixed point is a quotient of the
fundamental group of the leaf passing through the fixed point, there is a canonical quotient
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map � WGM !GH which sends the universal cover of a leaf to its holonomy cover. There
is a homomorphism of algebras ˆ W C1c .GM /! C1c .GH / which is given by

ˆ.f /.�/ D
X

�.
/D�

f .
/:

Proposition 3.5. The mapˆ extends to aC �-algebras homomorphismC �GM !C �GH .

Proof. It is straightforward to check that kˆ.f /kC�GH � kˆ.f /kI � kf kI .

Within the set of bounded representations of groupoid algebra C1c .G/ there is a dis-
tinguished one called regular representation which is described as follows. Let ¹�xº be
a right Haar system on the groupoid G. For any x 2 G.0/, the groupoid algebra C1c .G/
acts on the Hilbert space L2.Gx ; �x/ as follows:

�x.f /�.
/ D

Z
�2Gx

f .
 ı ��1/�.�/d�x.�/:

It is easy to check that this is a bounded representation. The completion of C1c .G/ with
respect to the norm

kf k D sup
x2G.0/

k�x.f /k

is denoted by C �r G and called the reduced groupoid C �-algebra. By definition k � kC�r G �
k � kC�G , so there is a canonical map C �G ! C �r G.

Following the construction of groupoid C �-algebra, we will consider a construction of
crossed product C �-algebra. This algebra will be useful in the following sections. Let B
be a C �-algebra, notice that the Cc.G;B/ has a �-algebra structure whose multiplication
is given in the same way as in (3.1) and the adjoint is given by f �.
/ D f .
�1/�.

Definition 3.6. LetB be aC �-algebra, let f 2Cc.G;B/, define a norm k � kI onCc.G;B/:

kf kI D sup
x2G.0/

²Z
Gx

kf .
/kBd�x.
/;

Z
Gx

kf .
�1/kBd�x.
/

³
:

A representation ' W Cc.G;B/! B.H'/ is called bounded if

k'.f /kB.H'/ � kf kI

for all f 2 Cc.G; B/. The C �-algebra C �.G; B/ is defined to be the completion of
Cc.G;B/ with respect to the norm

kf kC�.G;B/ D sup
'
k'.f /kB.H'/;

where ' ranges over all bounded representations.

Proposition 3.7. Let B ! C be a homomorphism between C �-algebras , then it induces
a homomorphism C �.G;B/! C �.G; C /.
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Proof. It is clear that the homomorphism B ! C induces a �-homomorphism at the
level of continuous maps � W Cc.G; B/ ! Cc.G; C /. Let ' W Cc.G; C / ! B.H'/ be
any bounded representation. Then, the composition

Cc.G;B/! Cc.G; C /! B.H'/ (3.2)

is also a representation. For any f 2 Cc.G;B/, we have the following estimate:

k'.�.f //kB.H'/ � k�.f /kI � kf kI ;

where the first inequality is a consequence of the boundedness assumption on ' and the
second inequality is implied by the fact that homomorphism between C �-algebra is con-
tractive. Therefore, the composition (3.2) is still a bounded representation of Cc.G; B/
and kf kC�.G;B/ � k�.f /kC�.G;C/ for all f 2 Cc.G:B/. This completes the proof.

Proposition 3.8. Let B be a C �-algebra, J � B an ideal. If G.0/ is compact, the exact
sequence of C �-algebras 0! J ! B ! B=J ! 0 induces an exact sequence

0! C �.G; J /! C �.G;B/! C �.G;B=J /! 0: (3.3)

Proof. We first notice that the sequence at the level of continuous maps

0! Cc.G; J /! Cc.G;B/! Cc.G;B=J /! 0

is exact. Indeed, the injectivity of the second arrow and the exactness in the middle term
is clear. We only need to show the surjectivity of the third arrow. Pick a f 2 Cc.G;B=J /
whose support is a compact subset K of a coordinate chart U � G. There is an open
neighborhood U 0 of K such that the closure of U 0 is contained in U and is compact.
Then, f 2 C0.U 0/˝ B=J . Since C0.U 0/˝ B ! C0.U

0/˝ B=J is surjective (see [4,
Section 3.7], for example), there is a preimage in C0.U 0/˝ B � Cc.U; B/ � Cc.G; B/.
General elements in Cc.G; B/ are spanned by those f ’s. This proves the surjectivity of
Cc.G;B/! Cc.G;B=J /.

It is clear that any bounded representation of Cc.G; B/ restricts to a bounded repre-
sentation of Cc.G; J /. The C �-norm k � kC�.G;J / on Cc.G; J / is greater than or equal to
the restriction of k � kC�.G;B/ to Cc.G; J /. To show the injectivity of the second arrow
in (3.3), it suffices to show that any bounded representation of Cc.G; J / extends to a
bounded representation of Cc.G; B/. Indeed, let ' W Cc.G; J /! B.H'/ be a bounded
representation of Cc.G; J /, let

H 0 D closure of span
®
'.f /h j f 2 Cc.G; J /; h 2 H'

¯
� H'

be the Hilbert subspace of H' . The algebra Cc.G;B/ acts on H 0 in the following way:

g � '.f /h D '.gf /h (3.4)

for all g 2 Cc.G;B/ and f 2 Cc.G; J /. To proceed, we need the following lemma.
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Lemma 3.9. The representation (3.4) is bounded.

Proof of Lemma 3.9. Let g 2 Cc.G; B/ and f 2 Cc.G; J /. Since ' is a bounded repre-
sentation, we have k'.gf /k � kgkI � kf kI . Moreover, k'.gf /k2 D k'.f �g�/'.gf /k �
k'.f /k � kgk2I � kf kI . By induction, we have k'.gf /k2

k
� k'.f /k2

k�1 � kgk2
k

I � kf kI

for all integers k. Taking the 2k th root, we have k'.gf /k � k'.f /k1�2
�k
� kgkI � kf k

2�k

I

for all k 2 N. Let k !1, we get

k'.gf /k � kgkI � k'.f /k: (3.5)

Let ¹eiº be norm 1 approximate identity of C �.G; J /. Choose a sequence ¹viº from
Cc.G; J / such that kvi � eikC�.G;J / � 1=i . Then, according to (3.5), we have

'.gf /v D lim
i!1

'.gvif /v:

Moreover,

k'.gvif /vk � k'.gvi /k � k'.f /vkH'
� kgkI � k'.vi /k � k'.f /vkH'

:

Taking the limit i !1, we have

k'.gf /vkH'
� kgkI � k'.f /vkH'

:

Since elements of the form '.f /v form a dense subspace of H 0, the above estimate com-
pletes the proof of the lemma.

This shows that for any f 2 Cc.G; J /, we have kf kC�.G;J / D kf kC�.G;B/. Hence,
the second arrow of (3.3) is injective. Since the range of homomorphism between C �-
algebras is closed, the third map of (3.3) is surjective. It remains to show the exactness in
the middle of (3.3).

A priori, the sequence (3.3) is only a complex, namely, the composition of the second
arrow and the third arrow is zero in (3.3). There is a quotient map

C �.G;B/=C �.G; J /! C �.G;B=J /: (3.6)

On the other hand, Cc.G;B/=Cc.G;J /Š Cc.G;B=J / sits inside C �.G;B=J /. So, there
is a dense embedding

Cc.G;B=J / ,! C �.G;B/=C �.G; J / (3.7)

of algebras. Pick any faithful representation ‰ W C �.G; B/=C �.G; J /! B.H‰/, then
the composition with (3.7) gives a representation � of Cc.G; B=J /. We will now prove
that � is a bounded representation. Let f 2 Cc.G; B=J / and Nf 2 Cc.G; B/ be a lift of
f . Then, we have

k�.f /kB.H‰/ D kf kC�.G;B/=C�.G;J /

D inf
h2C�.G;J /

k Nf C hkC�.G;B/:
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Let ¹viº be approximate identity of J such that 0 < vi � vj < 1 in the unitalization of J
if i � j . Then, for any h 2 Cc.G;J /, we have h�.x/.1� vi /h.x/ � h�.x/.1� vj /h.x/ if
i � j which implies k.1 � vi /1=2h.x/kJ � k.1 � vj /1=2h.x/kJ if i � j . Therefore, the
function

gi .u/ D

Z
Gu
k.1 � vi /

1=2h.x/kJdx

is continuous in u and decreasing in i . According to the monotone convergence theorem,
the function gi .u/ pointwise converge to zero function. On the other hand, since G.0/ is
compact, according to the Dini theorem, gi .u/ converges uniformly to zero function. This
implies that .1 � vi /1=2f ! 0 in I -norm and also in the norm of C �.G; J /. To proceed,
we need the following lemma.

Lemma 3.10. We have kf kC�.G;B/=C�.G;J / D limi!1 k.1 � vi /
1=2 Nf kC�.G;B/.

Proof of Lemma 3.10. Fix " > 0, there is h 2 Cc.G; J / such that

k Nf � hkC�.G;B/ � kf kC�.G;B/=C�.G;J / C ":

Then,

k.1 � vi /
1=2 Nf kC�.G;B/ � k.1 � vi /

1=2. Nf � h/kC�.G;B/ C k.1 � vi /
1=2hkC�.G;B/:

Using the method of Lemma 3.9, we can show that

k.1 � vi /
1=2. Nf � h/kC�.G;B/ � k.1 � vi /

1=2
k � k Nf � hkC�.G;B/:

Therefore, choosing i sufficiently large, we can arrange that

k.1 � vi /
1=2 Nf kC�.G;B/ � kf kC�.G;B/=C�.G;J / C 2":

This completes the proof of the lemma.

Thanks to the above lemma, we have k�.f /kB.H‰/ � limi!1 k.1 � vi /
1=2 Nf kI .

Again, let

gi .u/ D

Z
Gu
k.1 � vi /

1=2 Nf .x/kBdx

and apply the Dini theorem once again, we have gi .u/ is uniformly convergent in u and

lim
i!1

sup
u
gi .u/ D sup

u

Z
Gu
kf kB=J :

Overall, we have k�.f /kB.H‰/ �kf kI . So, � is a bounded representation. Therefore, the
norm on C �.G;B/=C �.G;J / is less than or equal to the norm on C �.G;B=J /. Together
with the fact that homomorphism between C �-algebra is contractive, we have (3.6) is an
isomorphism. This completes the proof.
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4. Rosenberg index

From this section on, except the last section, we will assume that F !M is a spin vector
bundle of even dimension with spinor given by S D SC.F / ˚ S�.F /. Let DC be the
positive part of the leafwise Dirac operator acting on S , which means the following:

• DC W C
1.M; SC/! C1.M; S�/ is a usual differential operator.

• For any smooth section � of SC!M and any leafL of .M;F /, the restrictionDC�jL
only depends on the restriction �jL.

• For any leaf L of M , DCjL W C1c .L; S
C/! C1c .L; S

�/ is the classical Dirac oper-
ator on L.

The notion of leafwise Dirac type operator or more generally, the notion of leafwise ellip-
tic differential operator can be defined in a similar way (see [8, Chapter 2, Section 9]).

The Dirac operator DCjL can be lifted to universal covers D
C;zL W C

1
c .
zL; ��SC/!

C1c .
zL;��S�/ where � W zL! L is the covering map. All thoseD

C;zL’s can be assembled
to an operator DC W C1c .GM ; r

�SC/! C1c .GM ; r
�S�/ such that

DCf .
/ D .DC;zLs.
/
f /.
/;

where f 2 C1c .GM ; r
�SC/ and zLs.
/ is the universal cover of the leaf passing through

s.
/ 2 M . Similarly, the operator D� W C1c .GM ; r
�S�/ ! C1c .GM ; r

�SC/ can be
defined.

Proposition 4.1. The space C1c .GM ; r
�S/ can be completed into a Hilbert C �GM -

module which will be denoted by E .

Proof. Let '; 2 C1c .GM ; r
�S/ and 
 2 GM , the formula

h'; i.
/ D

Z

12GM;s.
/

h'.
1 ı 

�1/;  .
1/id�s.
/.
1/

defines a C �GM -valued inner product on C1c .GM ; r
�S/. Let f 2 C1c .GM /, it acts on

C1c .GM ; r
�S/ by

' � f .
/ D

Z

12GM;s.
/

'.
 ı 
�11 /f .
1/d�s.
/.
1/:

It is easy to check that this inner product satisfies the pre-Hilbert module condition and
h'; 'i D 0 implies ' D 0. The completion of C1c .GM ; r

�S/ under the norm

k'k2E D kh'; 'ikC�GM

is a Hilbert C �GM -module.

The same constructions can be done for SC and S� and the corresponding Hilbert
C �GM -modules will be denoted by EC and E�, respectively. Clearly, E D EC ˚ E�.
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Proposition 4.2. The operators DC and D� are formal adjoint to each other. Namely,
for any f 2 C1c .GM ; r

�SC/ and g 2 C1c .GM ; r
�S�/, we have

hDCf; gi D hf;D�gi:

Proof. Indeed,

hDCf; gi.
/ D

Z

12GM;s.
/

hDCf .
1 ı 

�1/; g.
1/id�s.
/.
1/

D

Z

12GM;s.
/

h.D
C;zLr.
/

f /.
1 ı 

�1/; g.
1/id�s.
/.
1/

D hD
C;zLs.
/

.U
�1f /; gi D hU
�1f;D�;zLs.
/
gi D hf;D�gi.
/;

where U
 is the translation operator U
f .
1/ D f .
1 ı 
/. In the last line, the first two
inner products are given by the L2 inner product of the space C1c .zLs.
/; �

�S/. The first
two terms in the last line are the same becauseDC is formal adjoint toD� on the universal
cover of leaves.

In the following discussion, we will use DC; D� for their closure. According to [24,
Proposition 21, Lemma 22],DC andD� can be taken as unbounded regular operators and
D�� D DC. So,

D D

�
0 D�
DC 0

�
W E ! E

is self-adjoint and regular. SinceD˙ iI is a first order elliptic operator, there is a smooth-
ing operator R and pseudodifferential operator Q of order negative one such that

.D ˙ iI /Q D I CR:

Multiply .D ˙ iI /�1 on both sides, we get .D ˙ iI /�1 is compact. So, the functional
calculus f .D/ (see [16], for example) is compact for all f 2 C0.R/.

Recall that in [14, Chapter 10], a continuous function f W R! Œ�1; 1� is called nor-
malizing if

• f is odd;

• f .c/ � 0 if c � 0;

• limc!˙1 f .c/!˙1.

Definition 4.3. The Rosenberg index of D is an element Œ˛� in K0.C �GM / which is
given by the Kasparov module .E; f .D// for any normalizing function f .

Proposition 4.4. If F is spin and .M; F / admits leafwise positive scalar curvature, then
Œ˛� D 0 as a K-theory element in K0.C �GM /.

Proof. By Lichnerowicz formula, if .M; F / has leafwise positive scalar curvature, the
leafwise Dirac D is invertible. It has a spectrum gap around 0 2 R. We can choose the
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normalizing function f such that f 2 D 1 on spectrum of D. Under this circumstances,
the Kasparov module .E; f .D// is degenerate.

Remark 4.5. In [9], the authors define the longitudinal index as an element inK0.C �r GH /.
Following their method, we set the Rosenberg index to live in K0.C �GM /. In fact, under
the map

C �GM ! C �GH ! C �r GH ; (4.1)

the Rosenberg index defined above is mapped to the longitudinal index.

5. Twisted Rosenberg index

In this section, we assume B to be a C �-algebra with unit. The theory of pseudodiffer-
ential operators over unital C �-algebras can be found in [18]. In [18] the author define
pseudodifferential operators over unital C �-algebras for compact smooth manifolds, the
method there also works for paracompact manifold. One can choose locally finite partition
of unity in the formula (3.12) in [18].

Let Sm.A�G;B/ be the set of all a 2C1.A�G;B/ such that for every compact subset
K � G0 and every multi-indices ˛; ˇ there is constant C˛;ˇ;K > 0 with the following
inequality:

k@˛x@
ˇ

�
a.x; �/kB � C˛;ˇ;K � .1C j�j/

m�jˇ j

for all x 2 K. Let Smphg.A
�G; B/ be the set of all a 2 Sm.A�G; B/ such that for every

j 2 N one can find am�j 2 C1.A�G;B/ with the property am�j .x; t�/ D tm�ja.x; �/
for all t > 0, k�k � 1 and

a �

N�1X
jD0

am�j 2 S
m�N .A�G;B/

for all N 2 N.

Definition 5.1. A pseudodifferential operator of order m on Lie groupoid G with values
in B is a compactly supported G-operator ¹Pxºx2G.0/ in the sense of [24, Section 3.3]
such that

• each Px is a pseudodifferential operator on source fiber s�1.x/ of order m over a
C �-algebra B;

• for each trivializing open subset U � V Š � � G to which the source map restricts
to the projection onto the first factor, and for all �;  2 Cc.�/ the operator �Px is
given by a symbol a.x; y; �/ 2 Smphg.U � V �Rn; B/.

If, in addition, the distributional kernel of ¹Pxº is compactly supported, the pseudodiffer-
ential operator is called compactly supported. The principal symbol �P 2 S�phg.A

�G;B/

of a pseudodifferential operator P is defined by

�P .x; �/ D �.Px/.x; �/;



Enlargeable foliations and the monodromy groupoid 1303

where �.Px/ 2 S�.T �Gx ;B/ is the principal symbol of Px as pseudodifferential operator
on the source fiberGx . From the definition, it is clear that if P;Q are compactly supported
pseudodifferential operators, then PQ is still a pseudodifferential operator and �PQ D
�P � �Q.

Proposition 5.2. Pseudodifferential operators on G with compact support of order less
than or equal to zero extend to morphisms betweenC �.G;B/ and pseudodifferential oper-
ators with compact support of order strictly less than zero extend to elements ofC �.G;B/.

Proof. See [10, Proposition 3.4]. We first assume that the pseudodifferential operator P
has order less than or equal to p D dimG.0/ � dimG. Then, for any trivializing open
subset U � V Š � � G and any �;  2 Cc.�/ the operator �Px has smooth integral
kernel. Therefore, P has compactly supported smooth kernel which clearly extends to an
element of C �.G;B/.

IfP has order�p=2, then kPf k2
C�.G;B/

�khPf;Pf ikC�.G;B/�kP
�P k � kf k2

C�.G;B/

which implies that P is a multiplier of C �.G; B/. Since P �P extends to an element
of C �.G; B/, it follows that P 2 C �.G; B/. By induction, if P has order � p=2k for
some integer k, then P 2 C �.G;B/. This proves compactly supported pseudodifferential
operators of negative order extend to an element of C �.G;B/.

Now, assume that P is of order 0 with principal symbol �P 2 S0phg.A
�G;B/. Let c 2

RC such that c >�p.x;�/ for all .x;�/2A�G. Put b.x;�/D .c2C 1� j�p.x;�/j2/1=2 and
let Q be pseudodifferential operator with principal symbol b.x; �/. Then, P �P CQ�Q
has principal symbol 1C c2 and is bounded. A direct calculation

kPf k2C�.G;B/ � khPf;Pf ikC�.G;B/ � kh.P
�P CQ�Q/f; f ikC�.G;B/

shows that P is bounded. This completes the proof.

Given a 2 Smphg.A
�G;B/, a pseudodifferential operator Pa W C1c .G;B/! C1c .G;B/

can be defined by the formula in [24, Proposition 14]. Namely, we fix a diffeomorphism �

from a tubular neighborhood of G.0/ � G to an open neighborhoodW of the zero section
of AG. Let � be a function with values in Œ0; 1�, whose restriction to G.0/ equals 1 and its
support is contained in W . Let � 2 A�G; 
 2 G, and e�.
/ D �.
/ exp.ih�.
/; �i/, then
Pa is given by the distributional kernel

k.
/ D
1

.2�/n

Z
A�
r.
/

G

e��.

�1/a.r.
/; �/d�:

Then, Pa is a pseudodifferential operator on G of order m whose principal symbol is a.

Remark 5.3. The above discussion also applies to pseudodifferential operators between
finitely generated projective Hilbert B-module bundles.

Let G.0/ be compact. A pseudodifferential operator is called elliptic if its principal
symbol a 2 Smphg.A

�G;B/ is invertible outside a compact neighborhood of the zero section
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G.0/ �A�G. Then, there is a0 2 S�mphg .A
�G;B/which agrees with the inverse of a outside

a compact neighborhood of G.0/ � A�G.
Now, let E be a finitely generated projective Hilbert B-module bundle over M . The

space C1c .GM ; r
�E/ can be completed into a Hilbert C �.GM ; B/-module in the same

way as Proposition 4.1. Notice that SC ˝ E (S� ˝ E; S ˝ E, respectively) is still a
finitely generated projective Hilbert B-module bundle over M , the corresponding Hilbert
module will be denoted by EC;B (E�;B ;EB , respectively). Notice that EB DEC;B ˚E�;B .
LetDC;E WC1c .GM ; r

�SC˝ r�E/!C1c .GM ; r
�S�˝ r�E/ denote the leafwise Dirac

type operator twisted byE which is a first order elliptic differential operator. The operator
DC;E can be taken as an unbounded operator from EC;B to E�;B . We will use the same
notation for its closure.

Proposition 5.4. The operator DC;E W EC;B ! E�;B is regular and D�
C;E D D�;E .

Proof. Since DC;E is elliptic, there is a pseudodifferential operator Q of order �1 such
that DC;EQ � I D R and QDC;E � I D S are smoothing operators. Then, the proof in
[24, Proposition 21] works verbatim.

Let DE D
h

0 D�;E
DC;E 0

i
W EB ! EB . It is a self-adjoint regular operator. It can be

checked that the operator .DE ˙ i/�1 W EB ! EB is compact.

Proposition 5.5. Let f be a normalizing function, then the pair .EB ; f .DE // forms a
Kasparov module and determines an element in K0.C �.GM ; B//. This element will be
called twisted Rosenberg index and denoted by ŒDE �.

Proof. It suffices to show that if g vanishes at infinity, g.DE / W EB ! EB is a compact
operator. The result follows from the fact that C0.R/ is generated by .x ˙ i/�1 as C �-
algebra.

6. The Hilbert module out of leafwise flat bundles

The basic theory of Hilbert C �-module and Hilbert C �-module bundle can be found
in [23]. Let B be an unital C �-algebra, let W be a leafwise flat, finitely generated projec-
tive Hilbert B-module bundle over M .

The space C1c .GM ; r
�W / has a C1c .GM ; B/ � C

�.GM ; B/-valued inner product
given by

h'; i.
/ D

Z

12GM;s.
/

h'.
1 ı 

�1/;  .
1/id�s.
/.
1/; (6.1)

where ';  2 C1c .GM ; r
�W /. Assume EW be the completion of C1c .GM ; r

�W / under
k'kEW Dkh';'ik

1=2

C�.GM ;B/
. The space C1c .GM ; r

�W / has an obvious right C1c .GM ;B/
action which is given by

' � f .
/ D

Z

12GM;s.
/

'.
 ı 
�11 /f .
1/d�s.
/.
1/; (6.2)
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where ' 2 C1c .GM ; r
�W / and f 2 C1c .GM ; B/. The action (6.2) extends to a right

C �.GM ; B/ action on EW . As a consequence, EW has a Hilbert C �.GM ; B/-module
structure.

There is a left C0.M/-action on C1c .GM ; r
�W / which is given by

h � '.
/ D h.r.
// � '.
/ (6.3)

for all h 2 C0.M/ and ' 2 C1c .GM ; r
�W /.

Proposition 6.1. For any h 2 C0.M/ and ' 2 C1c .GM ; r
�W /, we have

kh � 'k � khk � k'kEW ;

where khk is the sup-norm of h in C0.M/.

Proof. We will use the estimate in [21, Lemma 1.1.13]. Let k 2 C0.M/ be the function
defined by

k.m/ D .khk2 � jh.m/j2/1=2:

Then, it is easy to check the following:

kh:'k2 D khh � '; h � 'ik

D kkhk2h'; 'i � hk � '; k � 'ik

� khk2kh'; 'ik;

which completes the proof.

Corollary 6.2 ([21, Proposition 2.1.14]). The action (6.3) extends to a �-homomorphism
C0.M/! L.EW /.

Proof. Thanks to the above proposition, the action extends to the Hilbert module EW . It
is a matter of direct calculation to check that it preserves the �-operation.

We will show, in the rest of this section, the Hilbert module EW determines a KK-
theory element inKK.C �GM ;C �.GM ;B//. There is a left C1c .GM / action on the space
C1c .GM ; r

�W / which is given by

f � '.
/ D

Z

12GM;s.
/

f .
 ı 
�11 /.
 ı 
�11 / � '.
1/d�s.
/.
1/; (6.4)

where .
 ı 
�11 / � '.
1/ is the image of '.
1/ under the parallel translation along the curve

 ı 
�11 . Thanks to the leafwise flatness of W , this parallel translation is well defined. It
is also convenient to have an alternative description of the action (6.4).

Let �D ¹�xº be a right invariant Haar system onGM . The inverse map � WGM !GM
induces a left invariant Haar system which we denote by z�. The space C1c .GM / can be
completed into Hilbert C0.M/-modules in two ways given by two inner products

hf; gis.m/ D

Z
s.
/Dm

f .
/ � g.
/d�.
/
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and
hf; gir .m/ D

Z
r.
/Dm

f .
/ � g.
/d z�.
/;

where f; g 2 C1c .GM /. Following [5], we will denote the completions by L2.GM ; s; �/
and L2.GM ; r; z�/, respectively. According to Corollary 6.2, we can form the inner ten-
sor product L2.GM ; s; �/ ˝C0.M/ EW and L2.GM ; r; z�/ ˝C0.M/ EW . We denote by
C1c .GM /˝alg C

1
c .GM ; r

�W / the dense subset of L2.GM ; s;�/˝C0.M/ EW consists of
linear span of elements of the form f ˝ ' with f 2 C1c .GM / and ' 2 C1c .GM ; r

�W /.

Proposition 6.3. There is U W C1c .GM /˝alg C
1
c .GM ; r

�W /! L2.GM ; r; z�/˝C0.M/

EW given by
U.F /.
1; 
2/ D 
1 � F.
1; 


�1
1 ı 
2/; (6.5)

where 
1� is the parallel translation of W along 
1.

Proof. We have to show that U.F / 2 L2.GM ; r; z�/˝C0.M/ EW . It is enough to verify
the case where F D f ˝ '. For 
1; 
2 2 GM with r.
1/ D r.
2/, we have

U.F /.
1; 
2/ D f .
1/ � 
1 � '.

�1
1 ı 
2/:

By using the fact that C1c .GM ; r
�W / is a finitely generated projective module over

C1c .GM ; B/, the above equation can be written as a finite sum,

U.F /.
1; 
2/ D
X
i

Fi .
1; 
2/'i .r.
2//;

where Fi are compactly supported smooth functions on

H D
®
.
1; 
2/ 2 GM �GM j r.
1/ D r.
2/

¯
with values in B and 'i are smooth compactly supported sections of W !M . Since the
image of C1c .GM /˝alg C

1
c .GM ; B/! C1c .H; B/ is dense in the inductive topology,

there is a sequence F ki 2 C
1
c .GM /˝alg C

1
c .GM ;B/ such that F ki ! Fi in the inductive

topology of C1c .H;B/ for all i . Therefore, for any " > 0 there is N 2 N such that



X
i

.F ki � F
k0

i / � r
�'i






L2.GM ;s;�/˝C0.M/EW

� ";

whenever k; k0 > N . As a consequence,X
i

F ki � r
�'i 2 C

1
c .GM /˝alg C

1
c .GM ; r

�W /

is a Cauchy sequence parametrized by k and converging to U.F / in the topology of
L2.GM ; s; �/˝C0.M/ EW .
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Proposition 6.4. If F;G belong either to C1c .GM /˝alg C
1
c .GM ; r

�W / or the image of
C1c .GM /˝alg C

1
c .GM ; r

�W / under U , then

hF;GiL2.GM ;r;z�/˝C0.M/EW
2 C1c .GM ; B/

and

hF;GiL2.GM ;r;z�/˝C0.M/EW
.
/

D

Z
s.
1/Ds.
/;r.
2/Dr.
1/

hF.
2; 
1 ı 

�1/; G.
2; 
1/id�.
1/d�.
2/: (6.6)

Proof. If F;G both belong to C1c .GM /˝alg C
1
c .GM ; r

�W / equation (6.6) is obvious. If
at least one of them belongs to the image ofU , then F;G can be approximated by Fi ;Gi 2
C1c .GM /˝alg C

1
c .GM ; r

�W / as constructed in Proposition 6.3. Moreover, hFi ; Gi i !
hF;Gi in the inductive topology of C1c .GM ; B/. This completes the proof.

Proposition 6.5. We have

hU.F /; U.F /iL2.GM ;r;z�/˝C0.M/EW
D hF;F iL2.GM ;s;�/˝C0.M/EW

for all F 2 C1c .GM /˝alg C
1
c .GM ; r

�W /.

Proof. According to (6.6), we have

hU.F /; U.F /i.
/ D

Z
h
2 � F.
2; 


�1
2 ı 
1 ı 


�1/; 
2 � F.
2; 

�1
2 ı 
1/id�.
1/d�.
2/

D

Z
hF.
2; 


�1
2 ı 
1 ı 


�1/; F .
2; 

�1
2 ı 
1/id�.
1/d�.
2/

D hF;F i.
/;

where from the first line to the second line we use the fact that parallel translation is unitary
and from the second line to the third line we use the right invariance of Haar system (see
Definition 3.1 (iii)).

Therefore, the map U can be extended to an isometry

U W L2.GM ; s; �/˝C0.M/ EW ! L2.GM ; r; z�/˝C0.M/ EW :

Let f 2 C1c .GM /, let Tf W EW ! L2.GM ; s; �/˝C0.M/ EW denote the Hilbert module
map x 7! f ˝ x and T �

f
W L2.GM ; r; z�/˝C0.M/ EW ! EW be the operator which sends

g ˝ x to hf; gir � x. Choose f1; f2 2 C1c .GM / such that f D Nf1 � f2, where � is the
point-wise multiplication.

Proposition 6.6. The action (6.4) can be realized as T �
f1
UTf2 .
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Proof. Let '; 2 C1c .GM ; r
�W /. Then,

hT �f1UTf2'; i.
/ D hU.f2 ˝ '/; f1 ˝  i.
/

D

Z
hU.f2 ˝ '/.
2; 
1 ı 


�1/; f1 ˝  .
2; 
1/id�.
1/d�.
2/

D

Z
hf2.
2/ � 
2 � '.


�1
2 ı 
1 ı 


�1/; f1.
2/ .
1/id�.
1/d�.
2/

D

Z
hf .
2/
2 � '.


�1
2 ı 
1 ı 


�1/;  .
1/id�.
1/d�.
2/

D hf � '; i.
/;

here from the first line to the second line we use (6.6). This completes the proof.

Let E be a finitely generated projective Hilbert B-module and let E� be the space of
adjointable operators between E and B . It has naturally a left B-action which is given by
.b � '/.e/ D b � '.e/ for b 2 B; e 2 E and ' 2 E�.

Lemma 6.7. E� can be given a Hilbert B-module structure and E� and E are isomor-
phic. The isomorphism E ! E� is given by sending e 2 E to the adjointable operator

E 3 e0 7! he; e0iE 2 B:

Moreover, E ˝B E� ŠKB.E/.

Proof. If E D Bn for some integer n, an adjointable map E ! B is determined by the
images of .1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; : : : ; .0; 0 : : : ; 0; 1/ in B which we will denote by
b1; b2 : : : ; bn. In this case,E�DBn, and the isomorphism is given by sending .b1; b2; : : : ;
bn/ 2 E to v 7! hv; .b1; b2; : : : ; bn/i. In general, E is finitely generated and projective,
there is an orthogonal complemented Hilbert B-module bundle E? with E ˚E? D Bn.
An adjointable operator E ! B can be complemented to an adjointable operator Bn !
B and is given by taking the inner product with some element w 2 Bn. Let p be the
projection from Bn to E, then the restriction of the adjointable operator Bn ! B to
E is given by sending v 2 E to hv; pwi. Therefore, there is an isomorphism E Š E�.
The space E� is a left B-module and right Hilbert KB.E/-module, and the inner tensor
product E ˝B E� ŠKB.E/.

Lemma 6.8. If E1 and E2 are two finitely generated projective Hilbert modules over
some unital C �-algebra, then the set of compact operators between E1 and E2 equals the
set of adjointable operators between E1 and E2.

Proof. LetE1;E2 be finitely generated projective Hilbert modules over unital C �-algebra
B . Then, there are complemented Hilbert modulesE?1 ;E

?
2 withEi ˚E?i DB

n for some
n 2 N and i D 1; 2. Then,

KB.E1 ˚E
?
1 ; E2 ˚E

?
2 / D

�
KB.E1; E2/ KB.E1; E

?
2 /

KB.E
?
1 ; E2/ KB.E

?
1 ; E

?
2 /

�
: (6.7)
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On the other hand, since B is unital, KB.E1 ˚ E
?
1 ; E2 ˚ E

?
2 / D LB.E1 ˚ E

?
1 ; E2 ˚

E?2 / and

LB.E1 ˚E
?
1 ; E2 ˚E

?
2 / D

�
LB.E1; E2/ LB.E1; E

?
2 /

LB.E
?
1 ; E2/ LB.E

?
1 ; E

?
2 /

�
: (6.8)

By comparing (6.7) with (6.8), we have KB.E1; E2/ D LB.E1; E2/.

Proposition 6.9. The action (6.4) extends to a �-homomorphism C �GM !L.EW / whose
image is contained in the algebra of compact operators on EW .

Proof. According to the above discussion, we have

kf � 'k � kT �f1k � kTf2k � k'k; (6.9)

where we omit the norm of U since it is an isometry. It is easy to check that

kTf k D kf kL2.GM ;s;�/ D sup
x2G

.0/
M

ˇ̌̌̌ Z
s.
/Dx

jf .
/j2d�.
/

ˇ̌̌̌1=2
and

kT �f k D kf kL2.GM ;r;z�/ D sup
x2G

.0/
M

ˇ̌̌̌ Z
r.
/Dx

jf .
/j2d z�.
/

ˇ̌̌̌1=2
:

Let f1.
/ D jf .
/j1=2, f2.
/ D f .
/=f1.
/ if f .
/ ¤ 0 and f2.
/ D 0 if f .
/ D 0.
In this way, we have f D f1 � f2 and jf1j2 D jf2j2 D jf j. According to the definition
kf kI D max¹kTf2k

2; kT �
f1
k2º. Therefore, the inequality (6.9) becomes

kf:'k � kf kI � k'k;

which completes the extension part of the proof.
Since B is unital, according to Lemma 6.8 the parallel translation along a curve 
 2

GM is an element of the space of compact operators K.Ws.
/; Wr.
//. Therefore, the
action of C1c .GM / is given by convolution multiplication with an element in C1c .GM ;
r�W ˝B s

�W �/.
It suffices to show that the operator given by convolution multiplication with element

in C1c .GM ; r
�W ˝B s

�W �/ is a compact operator. Let '0;  0 be sections of W !
M , f 2 C1c .GM ; B/, and denote by  �0 the section of W � ! M which is given by
 �0 .'0/ D h 0; '0iW . Since W is a finitely generated projective Hilbert module bundle
over M , C1c .M;W / is a finitely generated projective module over C1c .M; B/. Hence,
C1c .GM ; r

�W /,C1c .GM ; s
�W �/ are finitely generated projective modules over the space

C1c .GM ;B/. More precisely, let ¹'iº be a finite sequence of smooth sections ofW !M

such that the span of ¹'i .m/º isWm for allm 2M . Then, C1c .GM ; r
�W / can be obtained

as span of fi � r�'i where fi 2 C1c .GM ; B/. Similar result holds for C1c .GM ; s
�W �/.
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Accordingly, ¹'i .m/˝ '�j .n/º span the vector space Wm ˝W �n for all m 2 M and
n 2M . Therefore, elements in C1c .GM ; r

�W ˝B s
�W �/ can be written as span of

r�' ˝ f ˝ s� �; (6.10)

where '; 2 C1c .M;W /,  
� 2 C1c .M;W

�/ and f 2 C1c .GM ; B/. It suffices to show
the operator T';f; which is given by convolution multiplication with elements of the
form (6.10) is a compact operator.

If there are f1; f22C1c .GM ; B/ such that f1 � f2Df , we pick '12C1c .GM ; r
�W /

which is given by '1.
/ D '.r.
//f1.
/ and  1 2 C1c .GM ; r
�W / which is given by

 1.

�1/ D  .s.
//f2.
/. Then, �'1; 1h.
/ equals

'1 � h 1; hi.
/

D

Z

12GM;s.
/

'1.


�1
1 /h 1; hi.
1/d�s.
/.
1/

D

Z

12GM;s.
/

'1.


�1
1 /d�s.
/.
1/

Z

22GM;s.
1/

h 1.
2

�1
1 /; h.
2/id�s.
1/.
2/

D

Z
'.r.
//f1.



�1
1 /h .r.
2//f2.
1


�1
2 /; h.
2/id�s.
/.
1/d�s.
1/.
2/

D

Z
'.r.
//f .

�12 / �.r.
2//h.
2/d�s.
/.
2/

D

Z

22GM;s.
/

.r�' ˝ f ˝ s� �/.

�12 /h.
2/d�s.
/.
2/;

where from the first line to the second line we use equation (6.2), from the second line to
the third line we use equation (6.1), from the third line to the fourth line we plug-in the
definition of '1 and  1 and from the fourth line to the fifth line we use the assumption that
f D f1 � f2. Therefore, the operator T';f; which is the convolution with the element of
the form (6.10) is a compact operator.

In general, since C �-algebras have approximate identity and C1c .GM ; B/ is dense in
C �.GM ; B/, any f 2 C1c .GM ; B/ can be approximated by elements of the form f1 � f2
in norm k � kC�.GM ;B/. It can be checked that the operator norm of r�' ˝ f ˝ s�'� is
less than or equal to

k'k1 � kf kC�.GM ;B/ � k k1;

where k'k1 D supm2M k'.m/kW and k k D supm2M k .m/kW . Then, for any " > 0
there is f1; f2 2 C1c .GM ; B/ such that

kf � f1 � f2kC�.GM ;B/ < "=.k'k1 � k k1/;

and there is a compact operator �" such that k�" � T';f; k � ". This completes the proof.

Corollary 6.10. The Hilbert module EW together with the zero operator .EW ; 0/ form a
Kasparov module which defines an element in KK.C �GM ; C �.GM ; B//.
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7. Compactly enlargeable foliation

Pick a complex vector bundle E over sphere Sn such that all its Chern classes vanish
except the top-degree one cn.E/ ¤ 0. Let zM" be the compact cover with fundamental
group H" , the pull back bundle f �E can be extended to a G=H"-equivariant bundleM

g2G=H"

g�.f �E/! zM";

which can be reduced to a vector bundle E" over M . As a result all Chern classes of E"
vanish except the top degree one cn.E"/ ¤ 0. As " ranges over 1; 1=2; 1=3; : : : , we get a
sequence of bundles Ei . We will denote by Pi !M the frame bundle of Ei which are by
themselves principal U.di / bundles. They are equipped with natural connections whose
leafwise curvatures tend to zero as i !1.

In the following discussion, we will make use of several C �-algebras A; A0; Q and
their variations. The definitions are given in Definition 1.2 and Definition 1.8. Let qi
denote the image of 1 2 U.di / on K . We will consider the family of Hilbert qiKqi Š

Mdi .C/-module bundles
Vi D Pi �U.di / qiKqi ; (7.1)

where U.di / acts on K by matrix multiplications. We will briefly explain how they can be
assembled into a leafwise flat Hilbert qQq-module (see [12, Section 2] for a detailed con-
struction). Indeed, let ¹U˛º be an open cover of M over which each Vi is trivializable and
each U˛ is homeomorphic to an unit open disc .0; 1/n. We can choose local trivializations

 ˛;i W Vi jU˛ ! U˛ � qiKqi (7.2)

as in [12, Section 2] such that
r
i
@
@xk

s D 0 (7.3)

if s is a smooth section which is constant, under the trivialization, in Œ0; 1�k � ¹0º � � � � �
¹0º the first k variable of U˛ . Here, ri is the connection on Vi .

The corresponding transition functions is denoted by

'˛;ˇ;i W U˛ \ Uˇ ! End.qiKqi / Š qiKqi :

Since the norm of curvature of Vi is universally bounded with respect to i 2N. According
to [12, Lemma 2.3, Lemma 2.5, and Proposition 2.6], '˛;ˇ;i is a Lipschitz function with
Lipschitz constant independent of i . Therefore, the transition functions can be assembled
into

'˛;ˇ D .'˛;ˇ;1; '˛;ˇ;2; : : : ; '˛;ˇ;i ; : : :/; (7.4)

which is a Lipschitz map from U˛ \ Uˇ to qAq. It determines a Lipschitz Hilbert qAq-
module bundle over M which can be approximated by a smooth Hilbert qAq-module
bundle V over M .

The properties of bundle V are summarized in the following.
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Proposition 7.1. There is a Hilbert qAq-module bundle V over M such that

• Vi , defined in (7.1), is isomorphic to V � qiAiqi as Hilbert K-module bundle;

• the connection of V preserves subbundle Vi ;

• the leafwise curvature takes values in hom.qAq; qA0q/.

Therefore, the bundleW DV=qA0q is a leafwise flat Hilbert qQq-module bundle which,
according to Corollary 6.10, determines an element in KK.C �GM ; C �.GM ; qQq//. The
KK-element induces .�1/� W K0.C �GM /! K0.C

�.GM ; qQq//. The above procedure
can be replicated if we start with a sequence of trivial principal bundles ¹P 0i º with P 0i D
M �Mdi .C/. We will get a new KK-theory element in KK.C �GM ; C �.GM ; qQq//
and corresponding .�2/� W K0.C �GM /! K0.C

�.GM ; qQq//. Let

�� D .�1/� � .�2/�: (7.5)

Recall that the Rosenberg index Œ˛� 2 K0.C �GM / is given in Definition 4.3.

Proposition 7.2. Let ŒDW � 2 K0.C �.GM ; qQq// denote the image of Œ˛� 2 K0.C �GM /
under the map .�1/� W K0.C �GM /! K0.C

�.GM ; qQq//. Then, ŒDW � coincides with
the Rosenberg index twisted by the leafwise flat Hilbert qQq-module bundle W .

Proof. Œ˛� is given by the Kasparov module .E; f .D//, while the KK-theory element
is given by the Kasparov module .EW ; 0/. Their Kasparov product is given by the pair
.E ˝C�GM EW ; f .D/˝ 1/. According to the definition, the inner tensor product is com-
pletion of E ˝alg EW =N , where N is the span of elements of the form

' � a˝  � ' ˝‚.a/ 

with ' 2 E; a 2 C �GM ;  2 EW and ‚ W C �GM ! L.EW / being the map defined in
Proposition 6.9. Consider the following map � W C1c .GM ; r

�S/˝alg C
1
c .GM ; r

�W /!

C1c .GM ; r
�S ˝ r�W / given by

�.' ˝  /.
/ D

Z
GM;s.
/

'.
 ı 
�11 /˝ .
 ı 
�11 / �  .
1/d�.
1/; (7.6)

where ' 2 C1c .GM ; r
�S/; 2 C1c .GM ; r

�W / and .
 ı 
�11 /: .
1/ is the parallel trans-
lation of  .
1/ along the curve 
 ı 
�11 . It is a matter of direct calculation to check that �
vanishes on C1c .GM ; r

�S/˝alg C
1
c .GM ; r

�W / \N and preserves the inner product if
taken as a map from E ˝C�GM EW to the completion of C1c .GM ; r

�S ˝ r�W /.
The covariant derivative on S ˝W is given by rS˝W DrS ˝ 1C 1˝rW . We have

r
S˝W
ei

�.' ˝  /.
/ D

Z
GM;s.
/

r
S
ei
'.
 ı 
�11 /˝ .
 ı 
�11 / �  .
1/d�.
1/;

where 1˝ rW does not appear because .
 ı 
�11 /: .
1/ is, by definition, parallel with
respect to the curve 
 and the connection rW . So, the operator f .D/ ˝ 1 is precisely
f .DW / under the identification (7.6).
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By the same reason, the image of Œ˛� under the map .�2/� is the Rosenberg index
ŒDqQq� twisted by the trivial bundle M � qQq. Let � W A! Q be the canonical pro-
jection, it induces �� W K0.C �.GM ; qAq//! K0.C

�.GM ; qQq//. Let ŒDV �; ŒDqAq� 2
K0.C

�.GM ; qAq// be the elements defined by the leafwise Dirac-type operators twisted
by the non-flat bundle V and the trivial bundleM � qAq, respectively. Then, it is straight-
forward to verify that we have ��ŒDV � D ŒDW � and ��ŒDqAq� D ŒDqQq� (see also [12,
Lemma 3.1]).

Consider the following composition:

K0.C
�.GM ; qAq//! K0.C

�GM /! K0.C
�
r GH /; (7.7)

where the first arrow is given by the homomorphism sending A to its i th component K ,
and the second arrow is given by (4.1).

Proposition 7.3. The image of ŒDV � under the map (7.7) is computed by the longitudinal
index element corresponding to DEi .

Proof. It is a consequence of Remark 4.5.

Proposition 7.4. We have K0.C �.GM ; qA0q// D
L
K0.C

�GM /.

Proof. By the Dini theorem, the subspaceM
C1c .GM ; qiKqi / � C

1
c .GM ; qA

0q/

is dense in the I-norm. It is clear that
Lk
iD1 qiKqi is an ideal in qA0q for all k 2 N.

According to Proposition 3.8, we have
Lk
iD1 C

�.GM ; qiKqi / � C
�.GM ; qA

0q/ for
all k 2 N. Therefore, the C �-algebra C �.GM ; qA0q/ can be realized as direct limit ofL
C �.GM ; qiKqi /.

Proposition 7.5. Let �� W K0.C �GM / ! K0.C
�.GM ; qQq// be defined as in (7.5).

Then, ��Œ˛� ¤ 0 in K0.C �.GM ; qQq//.

Proof. By Proposition 7.2, the image of ŒDV � � ŒDqAq� 2 K0.C �.GM ; qAq// under the
map

�� W K0.C
�.GM ; qAq//! K0.C

�.GM ; qQq//

is precisely ��Œ˛�. By the exact sequence (3.3), it suffices to show that ŒDV � � ŒDqAq� 2
K0.C

�.GM ; qAq// does not come from the image of K0.C �.GM ; qA0q//.
Consider the following commutative diagram:

K0.C
�.GM ; qA

0q// //

))

K0.C
�.GM ; qAq//

��Q
K0.C

�GM /;
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where the downward arrows are given by sendingA andA0 toAi ’s. By the Proposition 7.4,
it then suffices to show the image of ŒDV � � ŒDqAq� under the vertical downward arrow
has infinitely many nonzero terms.

Indeed, according to Proposition 7.3, the image of the i th component of ŒDV � �
ŒDqAq� under the map K0.C �GM / ! K0.C

�
r GH / is given by the longitudinal index

of the Dirac type operator twisted by the virtual bundle Ei � Cdi . And according to
Connes [7], there is a transverse fundamental class � such that

�.ŒDEi�Cdi �/ D h yA.F / ch.Ei �Cdi /; ŒM �i;

where ŒM � is a fundamental class of M . Our non-vanishing assumption on top Chern
classes ensure that the sequence �.ŒDEi�Cdi �/ is nonzero for all i .

The above proposition directly implies the following theorem.

Theorem 7.6. If .M;F / is a compactly enlargeable foliation in the sense of Definition 1.6
with F spin and even dimensional, then Œ˛� ¤ 0 in K0.C �GM /.

8. Reduction to compact case

By the definition of enlargeability, the pullback f �" E ! zM" and the trivial bundle Cd !

zM" are isomorphic outside the compact subset K" � zM". Since zM" is locally compact,
there is an open neighborhood K" � K 0" whose closure is compact. Let �" W f �" E ! Cd

be the unitary outside K 0" which, according to the Tietze extension theorem, admits an
extension to zM". We will use the same notation to denote the extension.

f �" E
�" //

��

Cd

��

E"
�K
" //

��

C "T

��
zM"

id // zM" M
id // M

Proposition 8.1. There is a bundle map

�K
" W E" ! C "T

such that the restriction �K
" jU˛ is given by left multiplication of element in C.U˛; C

";C
T /

for all ˛. Here, we denote by C ";CT the one-point unitlization.

Proof. Under the trivializations (1.4), the bundle map �" W f �" E ! Cd is given by

�"j��1" .U˛/
ı '�1˛ ;

which can be taken as aG=H" family ofM.Cd / all but finitely many are 1. In other words,
it can be taken as a map from U˛ to C ";CT . Define �K

" to be the left multiplication with
�"j��1" .U˛/

ı '�1˛ over U˛ for all ˛. It is clear that this definition of �K
" is invariant under

the transition functions of E".
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Proposition 8.2. Denote by C.M; E" ˚ C "T / the graded Hilbert module over C.M/˝

C "T whose even part is given by E" and the odd part is given by the trivial bundle C "T .
Then, the triple  

C.M;E" ˚ C
"
T /;

�
1 0

0 1

�
;

"
0 �

K;�
"

�K
" 0

#!
(8.1)

is a Kasparov module in KK.C; C.M/˝ C "T /.

Proof. It suffices to check that
h
0 �

K;�
"

�K
" 0

i2
� 1 is a compact operator. Indeed, according

to Proposition 8.1, �K
" �

K;�
" � 1 and �K;�

" �K
" � 1 are given by left multiplication with

elements in C1.M;C "T / and C.M;K.E"//, respectively.

Let H be the standard separable Hilbert space. Analogous to the observation 1.9, the
same set of transition functions (1.5) together with the trivializations U˛ � H build a
bundle of Hilbert spaces H", and parallel to Proposition 8.1, there is a bundle map �H

" W

H" ! H �M such that �H
" �

H ;�
" � 1 and �H ;�

" �H
" � 1 are given by compact operators.

TheKK-equivalence between K and C is implemented by the elements xD.H ; 1; 0/2

KK.K;C/ and y D .K; p1; 0/ 2 KK.C;K/, where p1 2 K is some rank one projec-
tion. Under the Kasparov product KK.C; C.M/˝K/˝KK.K;C/! K0.C.M// the
Kasparov module (8.1) becomes 

C.M;H" ˚H /;

�
1 0

0 1

�
;

"
0 �

H ;�
"

�H
" 0

#!
: (8.2)

We recall a trick used in [2], to find an equivalent finite dimensional virtual bundle to
(8.2). This trick has its root in Atiyah–Jänich theorem [1, 15].

Proposition 8.3. There is a finite set of sections ¹s1; s2; : : : ; sqº of H �M ! M such
that the map x�" W C.M;H" ˚Cq/! C.M;H / given by

.u; �1; �2; : : : ; �q/ 7! �H
" .u/C

qX
iD1

�isi

is surjective and whose kernel is a sub-bundle of H" ˚ Cq . Moreover, the K-theory ele-
ment (8.2) is equivalent to the virtual bundle ŒKer.x�"/� � ŒM �Cq� in K0.C.M//.

Proof. For any m0 2 M , there is an open neighborhood Um0 where the bundle H" is
trivial. Then, the restriction �H

" jUm0
can be identified with a map

Um0
�H
"
��! F .H /;

here, F .H / denotes the set of Fredholm operators on Hilbert space H . Let us assume that
V0 D ker.�H ;�

" .m0//, and define T 0m W H" ˚ V0 ! H to be

T 0m.u˚ v/ D �
H
" u.m/C v:
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It is surjective at m D m0, and therefore, surjective in an open neighborhood W0 of m0.
SinceM is compact, it can be covered by finitely many such open setsWi where the maps

T im W H" ˚ Vi ! H

are surjective. Let �i be the partition of unity associated to the cover ¹Wiº. Define

x�" W C
�
M;H"

M
˚iVi

�
! C.M;H /

to be
x�".u; vi /.m/ D

X
i

�i .m/T
i
m.u; vi /;

which is clearly surjective.

Over the open subset Um0 , x�" can be identified with Um0
x�"
�!B.H ˚Cq;H /. Its com-

position with B.H ˚Cq;H /! B.ker.x�".m0//?;H / is invertible at m0, and therefore,
invertible on an open neighborhood of m0 where the kernel of x�" is trivial.

Now, we will verify the equality

The Kasparov module (8.2) D .ker.x�"/˚ C.M;Cq/; 1; 0/

in KK.C; C.M//. Indeed, by adding degenerate Kasparov module, we have

The Kasparov module (8.2) D

 
C.M;H" ˚Cq

˚H ˚Cq/; 1;

"
0 �

H ;�
"

�H
" 0

#!

D

 
C.M;H" ˚Cq

˚H ˚Cq/; 1;

�
0 x��"
x�" 0

�!
;

here from the first line to the second line is a compact perturbation. Decomposing accord-
ing to x�", the above equation continues

D

 
ker.x�"/˚ ker.x�"/? ˚ C.M;H /˚ C.M;Cq/; 1;

�
0 x��"
x�" 0

�!

D .ker.x�"/˚ C.M;Cq/; 1; 0/
M

.ker.x�"/? ˚ C.M;H /; 1;

�
0 x��"
x�" 0

�!
:

It suffices to show that the second summand is a degenerate Kasparov module. Indeed, let
U" D x�".x�

�
"
x�"/
�1=2 be the unitary, and according to the polar decomposition

x�" D U".x�
�
"
x�"/

1=2;

and the fact that .x��" x�"/
1=2 � 1 take value in compact operators, the operator

h
0 x��"
x�" 0

i
is a

compact perturbation of
h
0 U �"
U" 0

i
. This completes the proof.
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Definition 8.4. Let E0" be the finite dimensional vector bundle ker.x�"/.

The Hilbert bundle H" has connection induced from that of f �" E in the following way:
the trivializations (1.4) can be viewed as G=H"-families of U˛ �Cd . The connection has
local form d C ! on each connected component. So, these connection 1-forms !’s can be
assembled into a single 1-form with value in G=H"-families of Md .C/. This can be used
as a connection rH" on H" whose curvature converges to zero as "! 0.

Notice that U" extends to a map from C.M;H" ˚ Cq/ to C.M;H / whose kernel is
ker.x�"/. Let U�1" be the inverse map from C.M;H /! C.M;H" ˚ Cq/ whose range is
ker.x�"/?. Then, U"U�1" D idC.M;H/. Let s be a section of ker.U"/, then U".s/ D 0 and

0 D rH .U".s// D r
B.H"˚Cq ;H/.U"/.s/C U".r

H"˚Cq

s/:

Therefore, the subbundle E0" D ker.x�"/ D ker.U"/ can be equipped with the following
connection:

s 7! rH"˚Cq

s C U�1" .rB.H"˚Cq ;H/U"/s: (8.3)

It has curvature
r

H"˚Cq ;2
C U�1" .rB.H"˚Cq ;H/;2U"/;

which clearly converges to zero as "! 0.
The natural connection on H" induced from that of E! Sn have curvature�H" with

value inG=H"-families ofMd .C/ all but finitely many are zero. Therefore, exp.��H"/-1
is of trace class. Define the Chern form ch.rH" ;rH / to be tr.exp.��H"/� exp.��H //.

Proposition 8.5. The cohomology class determined by ch.rH" ;rH / is the same as that
of ch.E0" �Cq/.

Proof. This follows from the standard transgression argument. Let rE
0
" be the connection

onE0" defined by the equation (8.3), rE
0;?
" be the trivial connection onE0;?" that is pulled

back from that of H by U" and rE
0
"˚E

0;?
" be the direct sum.

Let At ; 0 � t � 1 be a family of connections on H" ˚ Cq that is defined by At D
trH"˚Cq

C .1� t /rE
0
"˚E

0;?
" ; 0 � t � 1. Notice that the connection 1-forms of rH"˚Cq

,
rE

0
"˚E

0;?
" and the curvatures of At are finite rank operators, therefore, exp.�A2t /� 1 are

of trace class. Then,

d

dt
tr.exp.�A2t / � exp.��H // D tr

�
�
dA2t
dt

exp.�A2t /
�

D tr
�
�

h
At ;

dAt

dt
exp.�A2t /

i�
D d tr

�
�
dAt

dt
exp.�A2t /

�
:

Here, dAt=dt is a 1-form rH"˚Cq
�rE

0
"˚E

0;?
" with value in finite rank operators, so the

expressions on the left-hand side of the equations are of finite rank and, in particular, trace
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class. As a consequence,

ch.rH" ;rH / � tr.exp.�.rE
0
"˚E

0;?
" /2/ � exp.��H // D d

Z 1

0

tr
�
�
dAt

dt
exp.�A2t /

�
:

Therefore, the Chern form ch.rH" ;rH / determines the same class as

tr.exp.�.rE
0
"˚E

0;?
" /2/ � exp.��H //;

which is easily computed to be equal to ch.E0" �Cq/.

As a consequence of the above proposition,

h yA.F / ch.E0" �Cq/; ŒM �iDh yA.F / tr.exp.��H"/ � exp.��H //; ŒM �i:

Over each local trivialization U˛ , the above integral is equal toZ
U˛

yA.F / tr.exp.��H"/ � exp.��H //

D

Z
��1" .U˛/

yA. zF"/ tr.exp.��f
�
" E / � exp.��H //:

A partition of unity argument proves equation (1.11). This proves the following theorem.

Theorem 8.6. If .M; F / is an enlargeable foliation in the sense of Definition 1.6 with F
spin and even dimensional, then Œ˛� ¤ 0 in K0.C �GM /.

9. Odd dimensional case

If the foliation F ! M is of odd dimensional, the exterior product of vector bundles
F � TS1 ! M � S1 defines an even dimensional foliation. Moreover, the monodromy
groupoid of .M � S1; F � TS1/ is the direct product of monodromy groupoid of .M;F /
and the fundamental groupoid of S1. Accordingly, the corresponding maximal groupoid
C �-algebra is C �GM ˝K ˝ C �Z whose K-theory is computed by the universal coeffi-
cient theorem

K�.C
�GM ˝K ˝ C �Z/ D K�.C

�GM /˝K�.C
�Z/:

Here, K is the C �-algebra of compact operators and C �Z is the group C � algebra of Z.
In particular, we have

K0.C
�GM ˝K ˝ C �Z/ D K0.C

�GM /˝ 1˚K1.C
�GM /˝ e;

where 1 is the generator of K0.C �Z/ and e is the generator of K1.C �Z/. As in [12],
Œ˛.M;F /� 2 K1.C

�GM / is defined by requiring

Œ˛.M;F /�˝ e D Œ˛.M � S1; F � TS1/� 2 K0.C
�GM ˝K ˝ C �Z/:
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Proposition 9.1. The foliation .M � S1; F � TS1/ is enlargeable if .M; F / is enlarge-
able.

Proof. Assume that .M; F / is enlargeable. Then, for any " > 0 there is a covering space
zM" ! M and map f" W zM" ! Sn with the properties given in Definition 1.6. Since S1

is also enlargeable, there is g" W S1" ! S1 with the properties of Definition 1.6. Fix a
degree one map ' W Sn � S1! SnC1 and let C1 D max j'�j, we claim that the following
composition:

zM" � S
1
"

.f";g"/
����! Sn � S1

'
�! SnC1

has the wanted property. Indeed, let zF be the lifting of F to zM" and ˆ D ' ı .f"; g"/,
then

jˆ�.X; Y /j D j'�.f";�X; g";�Y /j � "C1j.X; Y /j

for .X; Y / 2 C1. zM" � S
1
" ;
zF � TS1" / and

jˆ�.Z; Y /j � CC1j.Z; Y /j

for any tangent vector .Z; Y / of zM" � S
1
" . This completes the proof.

According to Theorem 8.6 and Proposition 9.1, Œ˛.M � S1; F � TS1/� is nonzero,
so Œ˛.M;F /� is also nonzero.
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