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The Radul cocycle, the Chern–Connes character, and
manifolds with conical singularities

Rudy Rodsphon

Abstract. The present work is a continuation of a previous article of ours. First, we aim to explain
how the residue index cocycle we had obtained, via pseudodifferential extensions, zeta functions
and the boundary map in periodic cyclic cohomology, relates to the Connes–Moscovici residue
cocycle. On the other hand, we explore the case of manifolds with conical singularities, and explain
why J.-M. Lescure’s construction of a regular spectral triple in this situation cannot be significantly
improved.

Introduction

In a former article [12], we established a formula calculating the Chern character (in
K-homology) of an abstract pseudodifferential extension in terms of residues of zeta
functions via a so-called Radul cocycle. We direct the reader to the aforementioned arti-
cle for further references on the history of such a formula (see, e.g., [8]), and recent
applications (see, e.g., [9–11]). The present note is a modest complement of this work,
where we explain the relationship between our formula and Connes–Moscovici’s residue
cocycle [1], and also expand on the motivations behind our work. More precisely, we
establish the following results:

• We prove that the Connes–Moscovici residue cocycle is a pull-back of the Radul cocy-
cle via a morphism of extensions that involve a pseudodifferential extension and a
certain ‘truncation’ of it. See Theorem 3.1.

• We prove that zeta functions associated to pseudodifferential calculus in a Melrose-
type calculus on conical manifolds may exhibit triple poles, slightly expanding a result
of J.-M. Lescure [5] that provides a regular spectral triple in this context. We also
explain why his result cannot really be improved, in the sense that enlarging the alge-
bra of his spectral triple destroys regularity. We then discuss the modification of the
Radul cocycle in this context. This is the content of Theorem 4.11, Corollary 4.12 and
Sections 4.2, 4.3.

• Example 2.3 corrects a sign mistake contained in [12] for the operator F .

Mathematics Subject Classification 2020: 19K56 (primary); 58B34 (secondary).
Keywords: cyclic cohomology, extensions, conical manifolds, b-calculus.

https://creativecommons.org/licenses/by/4.0/


R. Rodsphon 1324

In Section 1, we recall some material from an article by Higson [4], which introduces
a formalism of abstract differential operators based on the work of Connes–Moscovici,
and proposes a conceptual view of the notion of regular spectral triple. This naturally
yields an abstract pseudodifferential extension, and we recall in Section 2 the derivation
of its Chern character in the form of a cyclic 1-cocycle generalizing the Radul cocycle,
applicable to contexts where the zeta function exhibits multiple poles. After mentioning
basic examples, we establish in Section 3 the first aforementioned main result, and the
second one in the final section of the paper. Background material on the subject, notably
on Melrose’s pseudodifferential calculus, is provided throughout.

1. Abstract differential operators and traces

In this section, we review the abstract differential operators formalism developed by
Higson [4] (see also [13]), introduced in order to conceptualize the proof of the Connes–
Moscovici local index formula [1]. Using this language, we then explain how the latter is
connected to the calculation of a boundary map in periodic cyclic cohomology associated
to a pseudodifferential extension.

1.1. Abstract differential operators

Let H be a complex Hilbert space and let � be an unbounded, positive and self-adjoint
operator acting on it, with domain dom.�/. Suppose that � has a compact resolvent.

Introduce the following space H1:

H1 D

1\
kD0

dom.�k/

which, according to Sobolev space theory, plays the role of smooth functions.

Definition 1.1. An algebra D.�/ of abstract differential operators associated to � is an
algebra of operators on H1 satisfying the following conditions:

(i) The algebra D.�/ is filtered, i.e., it comes with an increasing sequence of vector
spaces .Dq.�//q2N such that

D.�/ D

1[
qD0

Dq.�/

and Dp.�/ �Dq.�/ �DpCq.�/, for every p; q 2 N. An element X 2Dq.�/

is an abstract differential operator of order at most q.

(ii) There is an r > 0 (the order of �) such that for every X 2 Dq.�/, Œ�; X� 2
DrCq�1.�/.
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(iii) Elliptic estimate. For s � 0, define the s-Sobolev space H s as the subspace
dom.�s=r / of H , which is a Hilbert space when equipped with the norm

kvks D .kvk
2
C k�s=rvk2/1=2:

If X 2 Dq.�/, then there is a constant " > 0 such that

kvkq C kvk � "kXvk; 8v 2 H
1:

Following Sobolev space theory, the elliptic estimate tells that�1=r should be thought
as an ‘abstract elliptic operator’ of order 1. It also means that a differential operator X of
order q extends to a bounded operator from H sCq to H s , which leads to a pseudodiffer-
ential calculus. The main example to keep in mind is of course the case in which � is a
Laplace-type operator on a closed Riemannian manifold M .

1.2. Correspondence with spectral triples

Let .A;H;D/ a spectral triple (cf. [1] or [4]). The associated algebra of abstract differ-
ential operators D DD.A;D/ is the smallest algebra containing A, ŒD;A�, and which is
closed under the operation ad.�/ D Œ�; ��. A natural filtration is defined as follows:

D0 D algebra generated by A and ŒD;A�;

D1 D D0 C Œ�;D0�CD0Œ�;D0�;

:::

Dk D Dk�1
C

k�1X
jD1

Dj �Dk�j C Œ�;Dk�1�CD0Œ�;Dk�1�:

Let ı be the unbounded derivation adjDj D ŒjDj; : � on B.H/. The spectral triple
.A;H;D/ is said regular if A and ŒD; A� are contained in

T1
nD1 dom ın. The following

result relates algebras of abstract differential operators and spectral triples.

Theorem 1.2 (Higson [4]). Suppose that A (seen as a subalgebra of bounded operators
on H ) maps H1 into itself. Then, the spectral triple .A;H;D/ is regular if and only if
the elliptic estimate of Definition 1.1 holds.

1.3. Zeta functions

Let D.�/ be an algebra of abstract differential operators. To keep the exposition simple,
suppose throughout that � is invertible; we refer the reader to [4, Section 6] for details
about how to remove this hypothesis. For z 2 C, one defines the complex power ��z of
� using functional calculus,

��z D
1

2�i

Z
��z.� ��/�1 d�;
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where the contour of integration is a vertical line pointing downwards separating 0 and
the (discrete) spectrum of �. This converges in the operator norm when Re.z/ > 0, and
using the semi-group property, all the complex powers can be defined via multiplication
with �k , for k 2 N large enough.

We suppose that there exists d � 0 such that for everyX 2Dq.�/, the operatorX��z

extends to a trace-class operator on H for z on the half-plane Re.z/ > .q C d/=r , where
r > 0 is the order of �. The zeta function of X is

�X .z/ D Tr.X��z=r /:

The smallest d verifying the above property is called the analytic dimension of D.�/. In
this case, the zeta function is holomorphic on the half-plane Re.z/ > q C d . We shall say
that D.�/ has the analytic continuation property if for every X 2 D.�/, the associated
zeta function extends to a meromorphic function of the whole complex plane.

Example 1.3. These notions come from properties of the zeta function on a closed
Riemannian manifold M : it is well known that the algebra of differential operators on
M has analytic dimension dim.M/ and the analytic continuation property. Its extension
to a meromorphic function has at most simple poles at the integers less or equal than
dim.M/.

1.4. Abstract pseudodifferential operators

Suppose that the algebra of abstract differential operators D.�/ has analytic dimension d .
To define a notion of pseudodifferential operator, we need a general notion of order that
covers the one induced by the filtration of D.�/.

Definition 1.4. An operator T W H1 ! H1 is said to have pseudodifferential order
m 2 R if for every s � 0, it extends to a bounded operator fromHmCs toH s . In addition,
we require that operators of analytic order strictly less than �d are trace-class operators.

That this notion of order covers the differential order is due to the elliptic estimate,
as already remarked in Section 1.1. The space of such operators, denoted Op.�/, forms
an R-filtered algebra. As in standard pseudodifferential calculus, one defines smoothing
operators as the elements of the (two-sided) ideal of operators of all order.

Example 1.5. For every � 2 C not contained in the spectrum of �, the resolvent
.� � �/�1 has analytic order r . Moreover, by spectral theory, its norm as an operator
between Sobolev spaces is a O.j�j�1/.

The following notion is due to Uuye, cf. [13]. We just added an assumption on the zeta
function which is necessary for what we do.

Definition 1.6. An algebra of abstract pseudodifferential operators is an R-filtered sub-
algebra ‰.�/ of Op.�/, also denoted ‰ when the context is clear, satisfying

�z=r‰m � ‰Re.z/Cm; ‰m�z=r � ‰Re.z/Cm
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and which commutes, up to operators of lower order, with the complex powers of �1=r ,
that is, for all m 2 R, z 2 C,

Œ�z=r ; ‰m� � ‰Re.z/Cm�1:

Moreover, we suppose that for every P 2 ‰m.�/, the zeta function

�P .z/ D Tr.P��z=r /

is holomorphic on the half-plane Re.z/ > mC d , and extends to a meromorphic function
of the whole complex plane. The ideal of (abstract) smoothing operators is

‰�1 D
\
m2R

‰m:

We end this part with a notion of asymptotic expansion for abstract pseudodifferential
operators.

Definition 1.7. Let T and T˛ (˛ in a set A) be operators on ‰. We shall write

T Ï
X
˛2A

T˛

if there exist c > 0 and a finite subset F � A such that for all finite sets F 0 � A contain-
ing F , the map

z 7! Tr
��
T �

X
˛2F 0

T˛

�
�z=r

�
is holomorphic in a half-plane Re.z/ > �c (which contains z D 0).

Therefore, being asymptotic simply means only a finite number of terms survive
under the residue. The observation that follows is basically the cornerstone of Connes–
Moscovici’s local index formula.

Lemma 1.8 (Connes–Moscovici’s trick, [1, 4]). Let Q 2 ‰.�/ be an abstract pseudo-
differential operator. Then, for any z 2 C, we have

Œ��z ;Q� Ï
X
k�1

�
�z

k

�
Q.k/��z�k

where we denote Q.k/ D ad.�/k.Q/, ad.�/ D Œ�; ��.

The proof relies on the following identity, for z 2 C with Re.z/ large enough (cf.
[4, Lemma 4.20]):

��zQ �Q��z D

NX
kD1

�
�z

k

�
Q.k/��z�k

C
1

2�i

Z
��z.� ��/�1Q.NC1/.� ��/�N�1 d�: (1.1)



R. Rodsphon 1328

1.5. Higher traces on the algebra of abstract pseudodifferential operators

We review in this paragraph a simple generalization of the Wodzicki residue trace in the
case where the zeta function of the algebra D.�/ has poles of arbitrary order, introduced
in [1, 12].

Proposition 1.9. Let‰.�/ an algebra of abstract pseudodifferential operators, following
the context of the previous paragraphs. Suppose that all the associated zeta functions have
a pole of order at most p � 1 at 0. Then, the functional« p

P D ReszD0zp�1Tr.P��z=r /

defines a trace on ‰.�/.

Example 1.10. We recall the example of the usual Wodzicki residue trace [14] on the
algebra of (classical) pseudodifferential operators‰cl.M/ on a closed (Riemannian) man-
ifold M ; here � is the Laplace operator and r D 2. (In fact, in the zeta function, one may
replace�1=2 by any elliptic operator of order 1.) In this case, the zeta function has simple
poles. Recall also that when the classical symbol �P of P 2 ‰mcl .M/ has the following
asymptotic expansion:

�P .x; �/ Ï
X
j�0

�m�j .x; �/;

where �k.x; �/ are homogeneous of order k 2 Z in � (for j�j large enough), then the
residue at z D 0 has the following expression:«

P D ReszD0Tr.P��z=2/ D
1

.2�/n

Z
S�M

�L

�
��n.x; �/

!n

nŠ

�
where S�M is the cosphere bundle ofM , ! is the standard symplectic form of T �Rn, and
L is the generator of the dilations (on covectors). The quantity

ª
P is called the Wodzicki

residue of P . The latter formula makes it clear that the residue of a smoothing operator
vanishes, therefore,

ª
passes to the quotient Scl.M/D  cl.M/=‰�1.M/, also called the

algebra of formal (or full) symbols.

Examples involving higher order poles will be discussed in the last section of the
paper.

2. The Radul cocycle for abstract pseudodifferential operators

2.1. Abstract index theorems

Let A be an associative algebra over C, possibly without unit, and let I be a two-sided
ideal in A. The extension

0! I ! A! A=I ! 0
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gives rise to the following diagram relating algebraic K-theory and periodic cyclic homo-
logy:

K
alg
1 .A=I /

Ind //

ch1
��

K
alg
0 .I /

ch0
��

HP1.A=I /
@ // HP0.I /:

The vertical arrows are respectively the odd and even Chern character.
By a slight abuse of language, denote @ W HP0.I /! HP1.A=I / the boundary map in

cohomology. As mentioned in [8], for Œ� � 2 HP0.I /, Œu� 2 K1.A=I /, one has the equality

hŒ� �; ch0IndŒu�i D h@Œ��; ch1Œu�i: (2.1)

A standard procedure to express the boundary map @ goes as follows. If Œ� � 2 HP0.I /
is represented by a hypertrace � W I ! C, i.e., a linear map satisfying the condition
�.ŒA; I �/ D 0, then choose a lift z� W A! C of � , such that z� is linear (in general, this
is not a trace), and a linear section � W A=I ! A such that �.1/ D 1, after eventually
adjoining a unit whenever necessary. Then, @Œ�� is represented by the following cyclic
1-cocycle:

c.a0; a1/ D bz�.�.a0/; �.a1// D z�.Œ�.a0/; �.a1/�/

where b is the Hochschild coboundary.

2.2. The generalized Radul cocycle

Let D.�/ be an algebra of abstract differential operators and ‰ be an algebra of abstract
pseudodifferential operators. We consider the extension

0! ‰�1 ! ‰ ! S ! 0

where S is the quotient ‰=‰�1. The operator trace on ‰�1 is well defined, and
Tr.Œ‰�1; ‰�/ D 0.

Theorem 2.1 (Cf. [12]). Suppose that the pole in zero of the zeta function is of order
p � 1. Then, the cyclic 1-cocycle @ŒTr� 2 HP1.S/ is represented by the following func-
tional:

c.a0; a1/ D

« 1

a0ı.a1/ �
1

2Š

« 2

a0ı
2.a1/C � � � C

.�1/p�1

pŠ

« p

a0ı
p.a1/

where ı.a/D Œlog�1=r ; a� and ık.a/ D ık�1.ı.a// for every k 2 N. We call this cocycle
the generalized Radul cocycle.

Here, the commutator Œlog�1=r ;a� is defined as the non-convergent asymptotic expan-
sion

Œlog�1=r ; a� Ï
1

r

X
k�1

.�1/k�1

k
a.k/��k
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where a.k/ has the same meaning as in Lemma 1.8. This expansion arises by first using
functional calculus,

log�1=r D
1

2� i

Z
log�1=r .� ��/�1 d�;

and then, reproducing the same calculations made in the proof of Lemma 1.8 to obtain the
formula (cf. [4] for details). In particular, note that log�1=r D 1

r
log�.

Another way to write the expansion is as follows:

Œlog�1=r ; a� Ï
X
k�1

.�1/k�1

k
aŒk���k=r

where aŒ1� D Œ�1=r ; a�, and aŒkC1� D Œ�1=r ; aŒk��. The lifting of the operator trace on
‰�1 to a linear map z� on ‰ uses a zeta function regularization by ‘Partie Finie’,

z�.P / D PfzD0Tr.P��z=r /

for any P 2 ‰. The ‘Partie Finie’ Pf is defined as the constant term in the Laurent expan-
sion of a meromorphic function.

Example 2.2. As a first concrete example, let us reprove the Noether index theorem.
Let M D S1 be the unit circle. Consider the operators D D 1

i
d
dt

, F D DjDj�1 and
P D 1CF

2
acting on the Hardy space H 2.S1/. The cosphere bundle of S1 is S�S1 D

S1 � ¹1º [ S1 � ¹�1º. Then, observe that P is a pseudodifferential operator of order 0,
its symbol defined on T �S1 is �F .t; �/D

1C�j�j�1

2
, where j:j denotes the Euclidean norm.

Then, let u 2 C1.S1/ be a nowhere vanishing smooth function. We extend the asso-
ciated Toeplitz operator PuP to L2.S1/ by considering the (Toeplitz) operator Tu D
PuP � .1 � P /, which is an elliptic pseudodifferential operator of order 0 with symbol
given by ´

u.t/ on S1 � .0;1/;

1 on S1 � .�1; 0/:

Then, using the star-product formula, one sees that the part of order �1 in the symbol of
Tu�1 ŒlogD;Tu� is ´

1
i�
u0.t/
u.t/

on S1 � .0;1/;

0 on S1 � .�1; 0/:

Using the symbol formula for the Wodzicki residue yields

Ind.Tu/ D �
1

2� i

Z
S1
u�1 du:

Example 2.3. We now consider the extension associated to the classical pseudodifferen-
tial calculus on Rn,

0! ‰�1c .Rn/! ‰0cl;c.R
n/! Scl;c.Rn/! 0I



The Radul cocycle, the Chern–Connes character, and manifolds with conical singularities 1331

where the subscript ‘c’ stands for ‘compact support’; ‰�1c .Rn/ is the ideal of smooth-
ing operators in the algebra of classical pseudodifferential operators ‰0cl;c.R

n/ (of order
� 0), and S0cl;c.R

n/ is the algebra of formal symbols (of order � 0), i.e., the quotient
‰0cl;c.R

n/=‰�1c .Rn/.
Since zeta functions also exhibit simple poles in this context, the Radul cocycle is also

given by the following cyclic 1-cocycle on S0cl;c.R
n/:

c.a0; a1/ D

«
a0Œlog j�j; a1� D

«
a0ıa1:

Then, proceeding exactly as in [12] with the classical Wodzicki residue and the generator
of dilations L D

Pn
jD1 �j @�j on T �Rn instead, and correcting the sign mistake in the

definition of the operator F by defining it instead as F D
Pn
jD1.�jdxj � xjd�j /, one

shows that in the .B; b/-complex, the Radul cocycle is cohomologous to the fundamental
class on S�Rn (up to a sign depending on the choice of orientation),

 2n�1.a0; : : : ; a2n�1/ D �
1

.2� i/n.2n � 1/Š

Z
S�Rn

�.a0/ d�.a1/ � � � d�.a2n�1/:

More generally, a generalization of the above calculation (requiring a substantial amount
of work) shows that on a closed manifold, the Radul cocycle identifies the Poincaré dual
of the Todd class. This can be found in the work of Perrot [9]. Further generalizations of
this result may be found in [10, 11].

3. Relation to the Chern–Connes character

In this section, we establish a relationship between the Radul cocycle and the Chern–
Connes character of a spectral triple.

Let .A;H; F / be a (trivially graded) p-summable Fredholm module. In addition, let
‰ D ‰.�/ be an abstract algebra of pseudodifferential operators, such that

(1) ‰0 is an algebra of bounded operators on H containing the representation of A,

(2) ‰�1 is a two-sided ideal consisting of p-summable operators on H ,

(3) F is a multiplier of ‰0 and ŒF;‰0� � ‰�1.

We have an abstract principal symbol exact sequence,

0! ‰�1 ! ‰0 ! ‰0=‰�1 ! 0; (3.1)

‰0=‰�1 should be viewed as an ‘abstract cosphere bundle’. This extension is related to
the one involving smoothing operators, as the inclusion of ideals  �1 �  �1 yields the
following morphism of extensions:
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0 ‰�1 ‰0 S0 D ‰0=‰�1 0

0 ‰�1 ‰0 ‰0=‰�1 0:

Then, the cyclic cohomology class of the operator trace ŒTr� 2 HP0.‰�1/ extends to
a cyclic cohomology class Œ� � 2 HP0.‰�1/, represented for any choice of integer k > p
by the following cyclic k-cocycle on  �1:

�k.x0; : : : ; xk/ D Tr.x0 � � � xk/:

By naturality of excision, the image of the trace @ŒTr� 2 HP1.S0/ by excision is the pull-
back of the class @Œ�� 2 HP1.‰0=‰�1/. We shall then make a slight abuse of notation by
identifying both.

Let P D 1
2
.1C F /. Then ŒP; a� 2 ‰�1 for every a 2 A. The linear map

�F W A! ‰0=‰�1; �F .a/ D PaP mod ‰�1;

is an algebra homomorphism since Pa1Pa2P D Pa1a2P mod ‰�1 for all a1; a2 2 A.

Theorem 3.1. The Chern–Connes character of the Fredholm module .H; F / is given by
the odd cyclic cohomology class over A

ch.H; F / D ��F ı @.ŒTr�/

where ŒTr� 2HP0.‰�1/ is the class of the operator trace, @ WHP0.‰�1/!HP1.‰0=‰�1/
is the excision map associated to extension (3.1), and ��F W HP1.‰0=‰�1/! HP1.A/ is
induced by the homomorphism �F .

Proof. Consider the algebra E D ¹.Q; a/ 2 ‰0 ˚ AI Q D PaP mod ‰�1º. The homo-
morphism

.Q; a/ 2 E ! a 2 A

yields an extension
0! ‰�1 ! E ! A! 0:

The Chern–Connes character ch.H; F / 2 HP1.A/ is the image of the operator trace by
the boundary map of this extension (cf., for instance, Cuntz’ survey in [2]). On the other
hand, the homomorphism E ! ‰0, .Q; a/ 7! Q yields a morphism of extensions

0 ‰�1 E A 0

0 ‰�1 ‰0 ‰0=‰�1 0:

�F

The conclusion then follows from the naturality of the boundary map.
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4. Discussion on manifolds with conical singularities

Manifolds with conical singularities were actually the main motivation for studying cases
when the zeta function exhibits multiple poles, which is well known, for instance, since
the work of Lescure [5]. We first start with relevant background material on the analysis of
manifolds with conical singularities, i.e., pseudodifferential calculus, residues and results
on the associated zeta functions.

4.1. Generalities on b-calculus and cone pseudodifferential operators

We review some elements of Melrose’s b-calculus and its application to conical manifolds.
The standard reference for Melrose’s work on manifolds with boundary is [6]. As for the
adaptation to manifolds with conical singularities, we essentially follow the presentation
of [3].

In our context, manifolds with conical singularities are manifolds with boundary with
an additional structure given by a suitable algebra of differential operators.

More precisely, let M be a compact n-manifold with (connected) boundary, and let
r W M ! RC be a boundary defining function, i.e., a smooth function vanishing on @M
whose differential is non-zero at every point of @M . We work in a collar neighborhood
Œ0; 1/r � @Mx of the boundary, subscripts referred to symbols used for local coordinates.

Definition 4.1. A Fuchs-type differential operator P of orderm 2 N and weight �p � 0
is a differential operator on M which can be written in the form

P.r; x/ D r�p
X

jCj˛j�m

aj;˛.r; x/.r@r /
j @˛x

in the collar Œ0; 1/r � @Mx . The space of such operators will be denoted r�pDiffmb .M/.

Diffmb .M/ denotes the algebra of b-differential operators in Melrose’s b-calculus for
manifolds with boundary, which consists of differential operators that can be written as
follows in the collar Œ0; 1/r � @Mx :X

jCj˛j�m

aj;˛.r; x/.r@r /
j @˛x :

Geometrically, this means that differential operators of order 1 in this calculus consist of
vector fields that are tangent to the boundary when r ! 0. We now recall the associated
small b-pseudodifferential calculus ‰b.M/.

The b-stretched product M 2
b

of M is the manifold with corners obtained by blowing-
up the corner @M 2 within M 2. See Figure 1 for an illustration. Locally, we can describe
M 2
b

as follows: on M 2 n @M 2, its local charts are the usual ones, whereas near the corner
@M 2 in M 2, it is parametrized in polar coordinates as follows: writing M �M near
r D r 0 D 0 as

M 2
D Œ0; 1/r � @Mx � Œ0; 1/r 0 � @Mx0 ' Œ0; 1/r � Œ0; 1/r 0 � @Mx � @Mx0 ;
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the factor Œ0; 1/r � Œ0; 1/r 0 is parametrized by

r D � cos �; r 0 D � sin �

for � > 0, � 2 Œ0;�=2�. The right and left boundary faces are respectively the points where
� D 0 and � D �=2. Hence, the b-stretched product clearly appears as a smooth version
of the algebraic blow-up, in which one would replace the corner @M 2 by its projective
normal bundle in M 2.

Let �b be the b-diagonal of M 2
b

, that is, the lift of the diagonal in M 2. In the afore-
mentioned coordinate system, it corresponds near the corner @M 2 � M 2 to the slice at
� D �=4.

Naturally, �b is diffeomorphic to M , and any local chart on �b can be considered as
a local chart onM : a convenient way to describe this identification is to replace the factor
Œ0; 1/r � Œ0; 1/r 0 with Œ0; 1/r �Rz and z D log.r=r 0/D log.cotan�1�/ (i.e., a logarithmic
version of projective coordinates). In this description, we can locally write

M 2
' Œ0; 1/r � @Mx �Rz � @Mx0

and�b corresponds near the corner to Œ0; 1/r � ¹0ºz � @M , which is diffeomorphic to the
collar Œ0; 1/r � @M .

Definition 4.2. The algebra of b-pseudodifferential operators of order m, denoted
‰m
b
.M/, consists of operators P W C1.M/ ! C1.M/ having a Schwartz kernel KP

such that

(i) away from �b , KP is a smooth kernel vanishing to infinite order on the right
and left boundary faces;

(ii) in an open neighborhood U.r;x/ � Rz � @Mx0 of �b � M 2
b

such that U.r;x/ �
¹0º.z;x0/ � �b , we have

KP .r; x; r
0; x0/ D

1

.2�/n

Z
ei.log.r=r 0/��C.x�x0/��/a.r; x; �; �/ d� d�

where a.y; �/, with y D .r; x/ and � D .�; �/, is a classical pseudodifferential
symbol of order m.

Figure 1. The b-stretched product M 2
b
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Technically, to involve x � x0 or even write ¹0º.z;x/, we should consider that x; x0

are located in coordinate patches Rn�1 for @M ; we tacitly presuppose this is the case
whenever necessary for notational simplicity. On the other hand, observe that log.r=r 0/ is
singular at r D r 0 D 0; the role of the b-stretch product M 2

b
is to blow-up this singularity.

To such an operator P 2 r�p‰m
b

, we define a local density on the chart U � �b
(which is seen as a chart in M via the identification �b 'M described above),

!.P /.r; x/ D

�Z
j�jD1

a�n.r; x; �; �/�Ld�d�

�
�
dr

r
dx

where � D .�; �/ any covector at .r; x/ 2 Œ0; 1/ � @M , and L is the generator of the dila-
tions.

Let �b denote the bundle of b-densities on M , that is, the trivial line bundle with
local basis .dr=r/dx over a coordinate chart of the collar of @M . It turns out (but this is
not obvious) that !.P /.r; x/, which is a priori defined only locally, does not depend on
the choice of coordinates on M . Therefore, it defines a globally defined smooth b-density
!.P / 2 C1.M;�b/ that we call the Wodzicki residue density. Note that !.P /D 0 when
p … Z.

The integral on M of this density does not converge in general because of the factor
1=r , r 2 Œ0; 1/, but it can be regularized thanks to the following lemma (see [3]).

Lemma 4.3. Let u 2 r�pC1.M;�b/, and p 2 R. Then, the function

z 2 C 7!

Z
M

rzu

is holomorphic on the half plane Re.z/ > p, and extends to a meromorphic function with
only simple poles at z D p; p � 1; : : : If p 2 N, its residue at z D 0 is given by

ReszD0

Z
M

rzu D
1

pŠ

Z
@M

@pr .r
pu/rD0:

The expression @pr .rpu/rD0 is defined as follows: in a collar Œ0;1/r � @Mx , rp!.P /D
f .r/dr=r , where .f .r//r2Œ0;1/ is a smooth family of densities on @M ; we then set
@
p
r .r

pu/rD0 D @
p
r f .0/.

Traces on conical pseudodifferential operators

We define different algebras of pseudodifferential operators, introduced by Melrose and
Nistor in [7]. The main algebra that we shall consider is the algebra of conic pseudodif-
ferential operators,

A D r�Z‰Z
b .M/ D

[
p2Z

[
m2Z

r�p‰m.M/

which clearly contains the algebra of Fuchs-type operators. The opposite signs in the
exponents are here to emphasize that

I D r1‰�1b .M/ D
\
p2Z

\
m2Z

r�p‰m.M/
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is the ideal of smoothing operators. In a similar vein, define

r1‰Z
b .M/ D

\
p2Z

[
m2Z

r�p‰mb .M/I rZ‰�1b .M/ D
[
p2Z

\
m2Z

r�p‰mb .M/

and consider the following quotients:

I� D r
1‰Z

b .M/=I I I@ D r
Z‰�1b .M/=I:

Loosely speaking, I� may be viewed of as an extension of the algebra of symbols in the
interior ofM , more precisely as symbols onM that vanish to infinite order on the bound-
ary. The algebra I@ has the following interpretation: if we identify the collar .0; 1/r � @Mx

to R1=r � @Mx , a Taylor expansion calculation identifies I@ to the space of Laurent series
in r , whose coefficients are R-translation-invariant smoothing operators on R � @M (cf.
the appendix of [7] for further details on these interpretations). We finally define

A� D A=I@I A@ D A=I� I A@;� D A=.I@ C I� /;

which have analogous interpretations to their counterparts I� and I@. To expand slightly
further,A� may basically be identified to symbols onM containing factors that are powers
of 1=r ; on the other hand, A@ may be identified to the space of Laurent series in r , whose
coefficients are R-translation-invariant pseudodifferential operators on R � @M .

We now define diverse functionals on these algebras.

Definition 4.4. Let P 2 r�p‰m
b
.M/ be a conical pseudodifferential operator, with p;m

2 Z. According to Lemma 4.3, define the functionals Tr@;� , Tr� to be

Tr� .P / D PfzD0

Z
M

rz!.P /;

Tr@;� .P / D ReszD0

Z
M

rz!.P / D
1

pŠ

Z
@M

@pr .r
p!.P //rD0;

where Pf denotes the constant term in the Laurent expansion of a meromorphic function.

Remark 4.5. Using Lemma 4.3, one can show that Tr@;� .P / does not depend on the
choice of the boundary defining function r . This is not the case for Tr� .P /, but its depen-
dence on r can be determined explicitly, cf. [3].

The Partie Finie regularization of a trace does not give in general a trace, and this
is indeed the same for the functional Tr� .P / acting on these algebras, the obstruction
to that is precisely the presence of the boundary. However, by definition, Tr� .P / clearly
defines an extension of the Wodzicki residue, so one can expect it to be a trace on I� D
r1‰Z.M/=I .

Theorem 4.6 (Melrose-Nistor, [3, 7]). Tr� is, up to a multiplicative constant, the unique
trace on the algebra I� .
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By Lemma 4.3 and a standard commutator calculation, one sees without much diffi-
culty that the defect of Tr� to be a trace is precisely measured by Tr@;� .P /, which can
therefore be viewed as a restriction of the Wodzicki residue to the boundary @M . Another
way to see this is to Taylor-expand !.P / near the boundary. Then, the following proposi-
tion seems natural.

Theorem 4.7 (Melrose-Nistor, [3,7]). Tr@;� is, up to a multiplicative constant, the unique
trace on the algebras A@, A� and A@;� .

These two traces may be seen as ‘local’ terms, since they only depend on the symbol of
the pseudodifferential operator considered. The first can be seen as a trace on the interior
of M , the second is related to the boundary @M . There is a last trace to introduce, which
is not local.

Fix a holomorphic family Q.z/ 2 r˛z‰ˇz
b
.M/, with ˛; ˇ 2 R, such that Q is the

identity at zD 0. TakeP 2 r�p‰m
b
.M/, with p;m2Z and let .PQ.z//� be the restriction

to the diagonal� ofM 2 of the Schwartz kernel ofPQ.z/. Melrose and Nistor prove in [7]
that .PQ.z//� is meromorphic in C, with values in r˛z�pC1.M/ and eventual simple
poles in the set ²

�n �m

ˇ
;
�n �mC 1

ˇ
; : : :

³
:

Definition 4.8. Let P 2 r�p‰m
b
.M/ be a conical pseudodifferential operator, with p 2Z.

Then, we define

Tr@.P / D
1

pŠ

Z
@M

@pr .r
pPfzD0.PQ.z//�/rD0 dx:

If p … Z then define Tr@.P / to be 0.

Remark 4.9. Tr@.P / depends on the choice of the operator Q, but the dependence can
be explicitly determined, see [7].

There is an interpretation of Tr@ analogous to those of Tr@;� : if the order of P is less
than the dimension ofM , then Tr@ may be viewed as an L2-trace on the boundary, as seen
from the result below.

Theorem 4.10 (Melrose-Nistor, [3, 7]). Tr@.P / is, up to a multiplicative constant, the
unique trace on the algebra

I@ D r
Z‰�1.M/=I:

Heat kernel expansion and zeta function

Let �g 2 r�2Diff2b.M/ be the Laplace–Beltrami operator associated to a cone Riemann-
ian metric g on M , i.e., the metric writes g D dr2 C r2g@M in the collar neighborhood
Œ0; 1/r � @M of the boundary, where g@M is a Riemannian metric on @M . Let � 2
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r�2Diff2b.M/ be the operator defined as follows:

� D �rn=2�1
�
�g C

a2

r2

�
r�n=2C1 D

1

r2

�
.r@r /

2
��@M C

.n � 2/2

4
C a2

�
(4.1)

where a > 1 and n D dim.M/.
One shows that the heat kernel e�t� of � is well defined for t > 0, and that for every

P 2 r�p‰m
b
.M/, operators of the type P��z are trace-class on r1�mL2.M;�b/, and for

every z in the half-plane Re.z/ > max¹mCn
2
; p
2
º.

The traces introduced in the previous paragraph allow to express the coefficients of
the asymptotic expansion of Tr.Pe�t�/ when t ! 0.

Theorem 4.11 (Gil–Loya, [3]). P 2r�p‰m
b
.M/ and let�2r�2Diff2b.M/ be the Laplace-

type operator defined above. Then,

Tr.Pe�t�/ Ït!0

X
k�0

akt
.k�p/=2

C .bk C ˇk log t /tk

C .ck C 
k log t C ık.log t /2/t .k�m�n/=2

where ak ; bk ; ck ; ˇk ; 
k and ık are constants. The constants ˇk ; 
k and ık associated to
the log-terms are explicit linear functions of Tr� , Trı , Tr@;� evaluated on operators of the
form P � power of �.

The coefficient of log t is

�
1

2
Tr� .P / �

1

2
Tr@.P / �

1

4
Tr@;� .P /

and the coefficient of .log t /2 is

�
1

4
Tr@;� .P /:

Using a Mellin transform, we can write

Tr.P��z=2/ D
1

�.z=2/

Z 1
0

tz�1Tr.Pe�t�/ dt;

and knowing, that z 7!
R1
1
tz�1Tr.Pe�t�/ dt is entire, the asymptotic expansion of the

previous proposition gives the following corollary on the zeta function.

Corollary 4.12. The zeta function z 7! Tr.P��z=2/ is holomorphic in the half-plane
Re.z/ >max¹mC n;pº, and extends to a meromorphic function with at most triple poles,
whose set is discrete. At z D 0, there are simple and double poles only, which are respec-
tively given by the terms of log t and .log t /2 in the heat kernel expansion of Tr.Pe�t�/.

4.2. Spectral triple and (non-)regularity

In this paragraph, we will see what the algebra of Fuchs-type operators misses to be an
abstract algebra of differential operators (in the sense of the first section), and discuss what
kind of information may remain nonetheless.
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Let M be a manifold with connected boundary, with boundary defining function r ,
equipped with the algebra of Fuchs-type differential operators. The points (i), (ii) of Def-
inition 1.1 are verified, if for example we take for � the fully-elliptic operator of order 2
given in Example 4.1, and require that the order is given by the differential order. More
generally, working locally in a collar neighborhood Œ0; 1/r � @Mx of the boundary @M ,
one easily observes that

ŒrpDiffmb .M/; rp
0

Diffm
0

b .M/� � rpCp
0

DiffmCm
0�1

b
.M/: (4.2)

For that reason, the order in r does not decrease in commutators, and cannot be considered
as a suitable notion of differential order; this is precisely the main issue when it comes to
the elliptic estimate. In the literature, one usually introduces suitable weighted Sobolev
spaces to fix this problem, see [3] and references therein for more details.

Consequently, the formalism of abstract differential operators, and in particular the
formula of Lemma 1.8 do not apply directly. Indeed, if b.r; x/D rp with p 2 Z�0, obser-
vation (4.2) shows that the terms b.k/ are in rp�2kDiffkb.M/, but by the properties of the
zeta function given in Corollary 4.12, the function

z 7! Tr.b.k/��k�z/

is holomorphic for Re.z/C k > max¹nCk
2
; 2k�p

2
º, which is equivalent to Re.z/ >

max¹n�k
2
;�p

2
º. Hence, if p � 0, the function above is in general not holomorphic at

0 for large k.
However, we may still recover interesting information on M from higher Wodzicki

residues (cf. Proposition 1.9). Note, for instance, that
ª 2 is the trace Tr@;� (up to some

irrelevant constant);
ª 1 is, modulo some constant terms, the sum of the three function-

als Tr@;� , Tr� , Tr@, which illustrates that it is no more a trace on the algebra of conical
pseudodifferential operators. We discuss this point further in the next subsection.

Let us denote by rpC1.@M/ the subalgebra of C1.M/ of functions f which have
an asymptotic expansion

f .r; x/ Ï rpfp.x/C r
pC1fpC1.x/C � � �

in a neighborhood of r D 0, where the coefficients fj are smooth functions on @M . Here,
the Ï means that the remainder of such an expansion is of the form rNfN .r; x/, with fN
bounded in the collar Œ0; 1/ � @M . The case p D 0 corresponds to the smooth functions
on the collar.

Previous discussion shows that it is not possible to build a regular spectral triple from
such an algebra if we consider any weight p. However, we see that the aforementioned
problem concerning the zeta function disappears if we consider functions b 2 C1c . VM/˚

C. This is the approach adopted by J.-M. Lescure [5] (the operator he considers is a Dirac-
type operator, whose associated Laplacian is similar to �). In other words, if we restrict
our attention to Fuchs operators whose coefficients are either r-compactly supported in
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restriction to a collar .0; 1/r � @M or constant with respect to r , then the elliptic estimates
hold and we do have an algebra of abstract differential operators. (This is just a tedious
way of saying that removing the boundary removes the main issue . . .).

4.3. A non-local index formula

We now analyze how to modify Theorem 2.1 for conical manifolds.
Consider the extension

0! r1‰�1b .M/! r�Z‰Z
b .M/! r�Z‰Z

b .M/=r1‰�1b .M/! 0:

Here, by an elliptic pseudodifferential operator P 2 r�Z‰Z
b
.M/, we shall mean that P

is invertible in the quotient A D r�Z‰Z
b
.M/=r1‰�1

b
.M/. Being fully elliptic (in the

sense of Melrose) is an extra condition which roughly says that the normal operator is a
family of invertible operators, guaranteeing thatP is Fredholm (when considering suitable
Sobolev spaces). We shall not enter into these details: what we want to investigate is the
pairing given in equation (2.1). In particular, if P is fully elliptic, then the pairing really
calculates a Fredholm index.

Now, let P;Q 2 r�Z‰Z
b
.M/. Going back to the ‘Partie Finie’ regularization given in

the paragraph following Theorem 2.1, we still write

c.P;Q/ D PfzD0Tr.ŒP;Q���z/

D ReszD0Tr
�
P �

�
Q ���zQ�z

z

�
��z

�
:

The remainder term in Lemma 1.8 is no more negligible, but algebraically formula (1.1)
still holds. So, for any integer N � 0, we have

Q ���zQ�z D

NX
kD1

Q.k/��k C
1

2� i

Z
��z.� ��/�1Q.NC1/.� ��/�N�1 d�:

Because the traces Tr� and Tr@;� vanish when the differential order of the operators is less
that the dimension of M , we obtain the following result.

Theorem 4.13. Then, the Radul cocycle associated to the pseudodifferential extension

0! r1‰�1b .M/! r�Z‰Z
b .M/! r�Z‰Z

b .M/=r1‰�1b .M/! 0

is given by the following non-local formula:

c.a0; a1/ D .Tr@;� C Tr� /.a0Œlog�; a1�/ �
1

2
Tr@;� .a0Œlog�; Œlog�; a1��/

C Tr@

�
a0

NX
kD1

a
.k/
1 ��k

�
C

1

2� i
ReszD0Tr

�Z
��za0.� ��/

�1a
.NC1/
1 .� ��/�N�1

�
d�

for a0; a1 2 r�Z‰Z
b
.M/=r1‰�1

b
.M/.
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On the right-hand side, the first line consists of local terms depending only on the
symbol of P , the second and third line shows the non-local contributions. Using the tech-
niques in the article [3], one can prove that the last term containing the contour integral is
a meromorphic function.

If P 2 r�Z‰Z
b
.M/ is an elliptic operator, so that P defines an element in the odd

K-theory group Kalg
1 .A/, and Q an inverse of P modulo A, we then obtain a formula for

the index of P . The second and third line of the formula above should be a part of the eta
invariant, but we do not know how to establish a precise relationship with it.
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