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Quadratic algebras associated with exterior 3-forms

Michel Dubois-Violette and Blas Torrecillas

Abstract. This paper is devoted to the study of the quadratic algebras with relations generated by
superpotentials which are exterior 3-forms. Such an algebra is regular if and only if it is Koszul and
is then a 3-Calabi–Yau domain. After some general results, we investigate the case of the algebras
generated in low dimensions n with n � 7. We show that whenever the ground field is algebraically
closed, all these algebras associated with 3-regular exterior 3-forms are regular and are thus 3-
Calabi–Yau domains. This result does not generalize to dimensions n with n � 8: we describe a
counterexample in dimension n D 8.

1. Introduction

Throughout K is a field and all vector spaces, algebras, tensor products, etc. are over K.
By an algebra without other specifications, we mean a unital associative K-algebra. We
use the Einstein convention of summation over repeated up-down indices in the formulas.

Let A D
L
n�0 An be an N-graded connected algebra; A0 D K1 is the trivial mod-

ule and is identified with K. The projective dimension of the trivial module is the global
dimension of A and is also its Hochschild dimension (in homology as well as in coho-
mology) [2, 6]. The algebra A is said to be regular if its global dimension is finite, say,
gldim.A/ D D .2 N/, and if

Extk.K;A/ D

´
K if k D D;

0 if k 6D D;

i.e., Extk.K;A/ D ıkDK.
In the following, we will be concerned about the connected algebras freely finitely

generated in degree 1 with a finite number of relations ri of degrees � 2, thus by algebras
of the form

A D Khx1; : : : ; xni=Œ¹riº�;

where Khx1; : : : ; xni is the free connected algebra generated by the xk .k 2 ¹1; : : : ; nº/
and where ŒS� denotes the ideal of Khx1; : : : ; xni generated by S �Khx1; : : : ; xni. Notice
that Khx1; : : : ; xni is canonically isomorphic to the tensor algebra T .Kn/ of Kn. When
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all the relations ri are of the same degree N , A is said to be an N -homogeneous algebra.
One has the following result [3].

Proposition 1. Let A be a regular algebra of global dimension D.

(i) If D D 2, then A is quadratic and Koszul.

(ii) If D D 3, then A is N -homogeneous with N � 2 and Koszul.

The notion of Kozulity introduced in [19] for quadratic algebras has been extended in
[1] for N -homogeneous algebras with N � 2.

For the case D D 2, one has the following complete description [23].

Proposition 2. Let A be a regular algebra of global dimension 2; then,

A D Khx1; : : : ; xni=Œbijx
i
˝ xj �; (1.1)

where bij D b.ei ; ej / are the components of a nondegenerate bilinear form b on Kn.
Conversely, if b is a nondegenerate bilinear form on Kn, Formula (1.1) defines a regular
algebra of global dimension 2.

In order to state the similar result of the first part of the above proposition for the
case of the global dimension D D 3, let us remind some definitions of [10] concerning
multilinear forms on Kn.

Let Q 2 GL.n;K/, and let m be an integer with n � m � 2. Then, an m-linear form
w on Kn is said to be Q-cyclic if one has

w.X1; : : : ; Xm/ D w.QXm; X1; : : : ; Xm�1/

for anyX1; : : : ;Xm 2Kn. Anm-linear formw on Kn is said to be preregular if it satisfies
the following conditions:

(i) w.X;X1; : : : ; Xm�1/ D 0 for any X1; : : : ; Xm�1 2 Kn implies X D 0,

(ii) there is an element Qw 2 GL.n;K/ such that w is Qw -cyclic.

In view of (i), Qw is then unique and this twisted cyclicity implies that whenever
w.X1; : : : ; Xk ; X; XkC1; : : : ; Xm�1/ D 0 for any X1; : : : ; Xm�1 2 Kn then X D 0; this
latter condition will be referred to as 1-site nondegeneracy.

It is worth noticing here that a bilinear form on Kn is preregular if and only if it is
nondegenerate. Finally, we need another definition of [10]; namely, an m-linear form w

on Kn will be said to be 3-regular if it is preregular and satisfies the following.

(iii) If L1; L2 2 End.Kn/ are such that

w.L1X1; X2; X3; : : : ; Xm/ D w.X1; L2X2; X3; : : : ; Xm/

for any X1; : : : ; Xm 2 Kn, then L1 D L2 D �1 for some � 2 K.

We can now formulate the global dimension 3 version of the first part of Proposition 2
[9–11].
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Proposition 3. Let A be a regular algebra of global dimension 3; then,

A D Khx1; : : : ; xni=Œ¹wi i1���iN x
i1 ˝ � � � ˝ xiN º�;

where wi0i1���iN D w.ei0 ; : : : ; eiN / are the components of a 3-regular .N C 1/-linear form
w on Kn with N � 2.

We write for the relations in Proposition 3

@iw D wi i1���iN x
i1 ˝ � � � ˝ xiN

for i 2 ¹1; : : : ; nº. This is a sort of derivative of w identified with

w D wi0���iN x
i0 ˝ � � � ˝ xiN

which is the generalization of the volume form and is referred to as the superpotential
[4, 5, 22]. For the interpretation in terms of noncommutative volume, see [10, Proposition
10].

Propositions 2 and 3 generalize to higher global dimensions, but one has then to
assume the N -Koszul property and one has to take higher-order derivations of the super-
potential (a preregular multilinear form) to write the relations; see in [9, Theorem 4.3] and
in [10, Theorem 11] and [5] for the generalization to the quiver case.

2. Exterior 3-forms

Let .ei /i2¹1;:::;nº be the canonical basis of Kn, and let us equip Kn with the unique scalar
product for which the canonical basis is orthonormal, that is, for which one has

.ei ; ej / D ıij

for i; j 2 ¹1; : : : ; nº. In the following, we assume that n � 3 since we are interested in
exterior 3-forms.

Let ˛ be an exterior 3-form on Kn. To ˛ 2
V3 Kn one associates n endomorphisms

Ak of Kn by setting
Akei D

X
j

j̨kiej D .Ak/
j
i ej (2.1)

for k; i 2 ¹1; : : : ; nº, where j̨ki D ˛.ej ; ek ; ei / are the components of ˛. Since they
are antisymmetric, the Ak are n elements of the Lie algebra so.n;K/ of SO.n;K/. The
3-form ˛ is cyclic and therefore ˛ is preregular if and only if it is nondegenerate, that is,

iX .˛/ D 0) X D 0 (2.2)

for X 2 Kn, where the 2-form iX .˛/ is defined by

iX .˛/.Y;Z/ D ˛.X; Y;Z/
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for Y;Z 2 Kn. Condition (2.2) reads

AkX D 0 8k) X D 0

in terms of the Ak . Finally, ˛ is 3-regular if and only if

MAk D AkN 8k)M D N D �1

forM;N 2 End.Kn/with � 2K. Thus, if ˛ is 3-regular, the system .Ak/ is irreducible (in
view of the Schur lemma) which implies in particular that the Ak 2 so.n;K/ generate the
algebra End.Kn/ of the endomorphisms of Kn which contains as subspace the whole Lie
algebra so.n;K/ of the antisymmetric endomorphisms of Kn. However, one should be
aware of the fact that this does not mean that so.n;K/ is generated as Lie algebra by the
Ak . For instance, the Lie algebra g2.K/ has an irreducible representation in K7 although
it is a proper Lie sub-algebra of so.7;K/. In our general setting, there is no rule as shown
by the 2 families of examples given below.

In the next section, we will define exterior 3-forms ˛.p/ in dimensions 2p C 1 which
are 3-regular and such that the corresponding A.p/

k
2 so.2p C 1;K/ generate the whole

Lie algebra so.2pC 1;K/ of antisymmetric .2pC 1/� .2pC 1/matrices with coefficient
in K.

On the other hand, let ˛ijk be the structure constants of the compact real form of a
simple complex Lie algebra g of dimension n in its standard orthonormal basis. Then,
the ˛ijk define a real 3-regular 3-form ˛ 2

V3 Rn and the associated Ak span the adjoint
representation of g, that is, the corresponding Lie-sub-algebra a of so.n;R/. The Jacobi
identity reads then

.Ak/
j
i1 j̨ i2i3 C .Ak/

j
i2
˛i1j i3 C .Ak/

j
i3
˛i1i2j D 0

for any k 2 ¹1; : : : ; nº, which means that the Lie sub-algebra a of so.n;R/ generated
by the Ak preserves the exterior 3-form ˛. This is clearly not the case for the whole Lie
algebra so.n;R/ except for the dimension nD 3, i.e., for gD a1 which corresponds to the
exterior 3-form ˛.1/. The 3-regularity of ˛ follows from the irreducibility of the adjoint
representation of g.

Remark. The dimension 4 is an exception since any 3-form ˛ 2
V3 K4 is of the form

˛ D iX .vol4/ for some X 2 K4, where the volume form vol4 2
V4 K4 is defined by

vol4.e1; e2; e3; e4/ D 1 which implies that vol4.ei ; ej ; ek ; e`/ D "ijk`. Therefore, an ele-
ment ˛ D iX .vol4/ 2

V3 K4 is degenerate since then iX .˛/ D 0 for X 2 K4 with X 6D 0
if ˛ 6D 0 and thus no nontrivial ˛ 2

V3K4 can be 3-regular. This has a counterpart on the
side of the Lie algebra so.4;K/which is not simple since so.4;K/D so.3;K/˚ so.3;K/
while so.3;K/ and so.n;K/ for n � 5 are simple Lie algebras.

The first interesting nontrivial case can only occur in dimension 5, and it turns out that
it consists in the GL.5;K/ orbit of the exterior 3-form ˛.2/.
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3. Exterior 3-forms as superpotentials

In this paper, we are interested in the regularity of quadratic algebras with relations gen-
erated by exterior 3-forms, that is, by algebras of the form

A D Khx1; : : : ; xni=Œ¹˛ijkx
j
˝ xkº�; (3.1)

where the ˛ijk are the components of an exterior 3-form ˛, i.e., are completely antisym-
metric. Since by Proposition 3 we know that the 3-regularity of ˛ is a necessary condition
for the regularity of A, we are led to introduce a list of 3-regular 3-forms ˛ in Kn and to
study the regularity of the corresponding quadratic algebras given by (3.1). We will use
freely the following lemma.

Lemma 4. Let ˛ be an exterior 3-regular 3-form on Kn. Then, the quadratic algebra

A D Khx1; : : : ; xni=Œ¹@i˛º�

is a domain and the following statements are equivalent:

(i) A is Koszul,

(ii) A is regular,

(iii) A is 3-Calabi–Yau.

Sketch of proof. The algebra A is a domain because it is the universal enveloping alge-
bra of a Lie algebra since the relations involve only commutators [15]. The equivalence
(i),(ii) follows directly from [10, Proposition 16]. Concerning the last equivalence, since
˛ is cyclic, A is Calabi–Yau [12] whenever it is regular [4].

Let ˛ 2
V3 Kn, and let A be the quadratic algebra defined by (3.1). One defines an

antisymmetric n � n-matrix A.x/ with entries in A by setting

A.x/ D Akx
k ; (3.2)

where the Ak are the matrices given by (2.1), that is, by .Ak/ij D ˛ikj . The relations @i˛
of A can be expressed as 0B@@1˛:::

@n˛

1CA D A.x/
0B@x

1

:::

xn

1CA (3.3)

or simply by @x D A.x/x, where @x and x denote the corresponding columns. Let us
assume now that ˛ is 3-regular; then, the augmented Koszul complex of A reads as follows
from [10]:

0! A
xt

�! An A.x/
���! An x

�! A
"
�! K! 0;
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where xt means multiplication in A by the transposed xt of the column x, A.x/ means
multiplication in A of the line An of elements of A with the n � n-matrix A.x/ of ele-
ments of A, x means multiplication in A of the line An of elements of A by the column
x while " is the projection onto degree 0.

The exactness of the sequence

0! A
xt

�! An

follows from the fact that A is a domain while the exactness of the sequence

An A.x/
���! An x

�! A
"
�! K! 0

just expresses the definition of A by generators and relations. Therefore, A is Koszul if
and only if the sequence

A
xt

�! An A.x/
���! An

is exact.
It is clear that the quadratic algebras A of the form (3.1) do only depend up to iso-

morphism on the 3-forms ˛ up to the GL.n;K/ action. Thus, we are only interested in the
GL.n;K/ orbits of 3-forms in Kn. Notice that the 3-regularity of a 3-form is an invariant
notion as well as the regularity of the corresponding algebra. In Section 4, we will analyze
the orbits of nondegenerate exterior 3-forms for KD C by choosing a convenient element
in each orbit for dimension n with 3 � n � 7, using the results of [8]. We will then select
the 3-regular orbits and corresponding 3-regular representative exterior 3-forms. The reg-
ularity of the corresponding quadratic algebras will be investigated in Section 5.

We now analyze a particular family of exterior 3-forms ˛.p/ 2
V3 K2pC1 and show

that the corresponding quadratic algebras A.p/ are regular of global dimension 3. Let us
define ˛.p/ by

˛.p/ D

pX
mD1

�m ^ �mCp ^ �2pC1 D ˛ijk�
i
˝ �j ˝ �k ; (3.4)

where .� i / is the dual basis of the basis .ej / of K2pC1. It is easily verified that ˛.p/ is 3-
regular. The corresponding superpotential is ˛.p/ D ˛ijkxi ˝ xj ˝ xk , and the relations
@i˛

.p/ of the corresponding quadratic algebra A.p/ read

@m˛
.p/
D xmCp ˝ x2pC1 � x2pC1 ˝ xmCp;

@mCp˛
.p/
D x2pC1 ˝ xm � xm ˝ x2pC1

(3.5)

for 1 � m � p and

@2pC1˛
.p/
D

pX
rD1

xr ˝ xrCp � xrCp ˝ xr (3.6)
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and imply that x2pC1 is in the center of A.p/ in view of (3.5) and that the x` for ` 2
¹1; : : : ; 2pº span the quadratic sub-algebra

B.p/
D Khx1; : : : ; x2pi=Œ@2pC1˛

.p/� (3.7)

of A.p/. Since @2pC1˛.p/ given by (3.6) is obviously the superpotential corresponding
to a nondegenerate bilinear form on K2p , B.p/ is a regular quadratic algebra of global
dimension 2. Thus, one has

A.p/
D B.p/

˝KŒx2pC1�;

which implies that A.p/ is regular of global dimension 3.
Let us now show that the .2pC 1/� .2pC 1/ antisymmetric matricesA.p/

k
2 so.2pC

1;K/ associated (via (2.1)) to ˛.p/ 2
V3 K2pC1 generate as Lie algebra the whole Lie

algebra so.2p C 1;K/. One defines

A.u/ D

0BBBBBBBBBBBBBBB@

0p �u2pC11p

u2p

:::

upC1

u2pC11p 0p

�u1

:::

�up

�u2p � � � � upC1 u1 � � �up 0

1CCCCCCCCCCCCCCCA
by setting

A.u/ D A
.p/

k
uk

for u 2 K2pC1. Then, by computing the commutator ŒA.u/; A.v/� for u; v 2 K2pC1, one
verifies that the components of the antisymmetric matrix ŒA.u/; A.v/� are just a permu-
tation of the components of the exterior product u ^ v. It is clear that the linear span of
the u ^ v for u; v 2 K2pC1 is the whole Lie algebra so.2p C 1;K/ of antisymmetric
.2p C 1/ � .2p C 1/-matrices, which is therefore also the case for the ŒA.u/; A.v/� for
u; v 2 K2pC1.

We summarize the above results concerning the ˛.p/ by the following proposition.

Proposition 5. Let ˛.p/ 2
V3 K2pC1 be defined by (3.4), and let A.p/ be the associated

quadratic algebra as in (3.1) and A.p/
k

the corresponding endomorphisms of K2pC1 as
in (2.1). Then, one has the following.

(1) The quadratic algebra A.p/ is regular of global dimension 3.

(2) The A.p/
k

, k 2 ¹1; : : : ; 2p C 1º generate the Lie-algebra so.2p C 1;K/.
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4. Exterior 3-forms in Kn with 3 � n � 7

In this section, K is algebraically closed. We will use the results of [8] for 3 � n � 7 and
the choices of representative elements in

V3Kn for the GL.n;K/-orbits of nondegenerate
(i.e., preregular) exterior 3-forms; see also in [13]. However, the analysis of the regularity
of these elements is independent of the assumption that K is algebraically closed.

In dimension n D 3, the only nontrivial orbit is the one of ˛.1/ D �1 ^ �2 ^ �3. The
corresponding superpotential is

˛.1/ D "ijkx
i
˝ xj ˝ xk ;

and the quadratic algebra A.1/ is the commutative algebra

A.1/
D KŒx1; x2; x3�

of polynomials in the xi , i 2 ¹1; 2; 3º. By setting A.1/.x1; x2; x3/ D A.1/
k
xk , one has

A.1/.x1; x2; x3/ D

0@ 0 �x3 x2

x3 0 �x1

�x2 x1 0

1A (4.1)

for the corresponding matrix.

In dimension n D 4, all exterior 3-forms are degenerate.

In dimension n D 5, the only orbit of nondegenerate exterior 3-forms is the one of
˛.2/ D .�1 ^ �3 C �2 ^ �4/ ^ �5 D ˛

.2/

ijk
� i ^ �j ^ �k which is 3-regular. Moreover, the

associated quadratic algebra A.2/ is regular of global dimension 3 (see the last section).

In dimension n D 6, there are 2 orbits of nondegenerate exterior 3-forms: namely, the
orbit of 
 D �1 ^ �2 ^ �3 C �4 ^ �5 ^ �6 and the orbit of

! D �1 ^ �2 ^ �6 C �3 ^ �1 ^ �5 C �2 ^ �3 ^ �4:

None of these 3-forms is 3-regular, so the associated quadratic algebras A
 and A! cannot
be regular. Indeed, 
 is disconnected, that is, the sum of two exterior 3-forms in two
different spaces K3 with bases (e1; e2; e3) and (e4; e5; e6), respectively, so the commutant
of the corresponding

A
 .x/ D

 
A.1/.x1; x2; x3/ 03

03 A.1/.x4; x5; X6/

!
contains the matrices �

�13 03
03 �13

�
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for any �;� 2 K which implies that 
 is not 3-regular, while for !, one has

A!.x/ D

 
A.1/.x4; x5; x6/ �A.1/.x1; x2; x3/t

A.1/.x1; x2; x3/ 03

!
;

where A.1/ is defined by (4.1), so one has for any � 2 K�
03 �13
03 03

�
A! D A!

�
03 03
�13 03

�
;

which implies that ! is not 3-regular.

In dimension n D 7, the situation is much more elaborated. There are five orbits of non-
degenerate exterior 3-forms, namely, the orbits of the following exterior 3-forms:

� D �1 ^ �2 ^ �3 C �2 ^ �4 ^ �6 C �3 ^ �5 ^ �7;

ˇ D .�1 ^ �3 C �2 ^ �4/ ^ �5 C �1 ^ �7 ^ �2 C �3 ^ �6 ^ �4;

˛.3/ D .�1 ^ �4 C �2 ^ �5 C �3 ^ �6/ ^ �7;

˛.3/0 D ˛.3/ C �1 ^ �2 ^ �3;

˛.3/00 D ˛.3/ C �1 ^ �2 ^ �3 C �4 ^ �5 ^ �6;

where we have used the notation of Section 3 for ˛.3/. It is worth noticing here that one
can also express ˇ as

ˇ D ˛.2/ C �1 ^ �7 ^ �2 C �3 ^ �6 ^ �4

with the notation of Section 3. The correspondence with the notations of [8] is ˛.1/ D
f1; ˛

.2/ D f2; 
 D f3; ! D f4; � D f5; ˇ D f7; ˛
.3/ D f8; ˛

.3/0 D f6, and ˛.3/00 D f9.
The exterior 3-forms � and ˇ are 3-regular while ˛.3/, ˛.3/0, and ˛.3/00 span an affine

plane
˛.t0;t1;t2/ D t0˛

.3/
C t1˛

.3/0
C t2˛

.3/00; t0 C t1 C t2 D 1

of 3-regular exterior 3-forms to which are associated a corresponding family A.t0;t1;t2/ of
quadratic 3-Calabi–Yau algebras of the type investigated in [14]. Namely, the A.t0;t1;t2/ are
the cross-products of the 2-Calabi–Yau algebra B.3/ defined by (3.7) with the derivations
t1ı1 C t2ı2, (i.e., are the Ore extensions of B.3/ associated with data .I; t1ı1 C t2ı2/).
Notice that ˛.3/00 is in the orbit of the generic 3-forms, so the associated quadratic algebra
is isomorphic to the algebra with G2-symmetry defined in [21].

For ˛ D �, the matrix A.x/ given by (3.2) reads

A�.x/ D

0BBBBBBBBB@

0 �x3 x2 0 0 0 0

x3 0 �x1 �x6 0 x4 0

�x2 x1 0 0 �x7 0 x5

0 x6 0 0 0 �x2 0

0 0 x7 0 0 0 �x3

0 �x4 0 x2 0 0 0

0 0 �x5 0 x3 0 0

1CCCCCCCCCA
(4.2)
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and the relations of the associated quadratic algebra A� read

@1� D x
2
˝ x3 � x3 ˝ x2;

@2� D x
3
˝ x1 � x1 ˝ x3 C x4 ˝ x6 � x6 ˝ x4;

@3� D x
1
˝ x2 � x2 ˝ x1 C x5 ˝ x7 � x7 ˝ x5;

@4� D x
6
˝ x2 � x2 ˝ x6;

@5� D x
7
˝ x3 � x3 ˝ x7;

@6� D x
2
˝ x4 � x4 ˝ x2;

@7� D x
3
˝ x5 � x5 ˝ x3:

One can show by direct computation (or by using computer) that, for matrices M;N 2
M7.K/, the relation

MA�.x/ D A�.x/N

implies that M D N D �17 for some � 2 K, so the exterior 3-form � is 3-regular.
For ˛ D ˇ, one has for the corresponding matrix A.x/ D Aˇ .x/

Aˇ .x/ D

0BBBBBBBBB@

0 x7 �x5 0 x3 0 �x2

�x7 0 0 �x5 x4 0 x1

x5 0 0 x6 �x1 �x4 0

0 x5 �x6 0 �x2 x3 0

�x3 �x4 x1 x2 0 0 0

0 0 x4 �x3 0 0 0

x2 �x1 0 0 0 0 0

1CCCCCCCCCA
; (4.3)

and the relations of the associated quadratic algebra Aˇ read

@1ˇ D x
3
˝ x5 � x5 ˝ x3 C x7 ˝ x2 � x2 ˝ x7;

@2ˇ D x
4
˝ x5 � x5 ˝ x4 C x1 ˝ x7 � x7 ˝ x1;

@3ˇ D x
5
˝ x1 � x1 ˝ x5 C x6 ˝ x4 � x4 ˝ x6;

@4ˇ D x
5
˝ x2 � x2 ˝ x5 C x3 ˝ x6 � x6 ˝ x3;

@5ˇ D x
1
˝ x3 � x3 ˝ x1 C x2 ˝ x4 � x4 ˝ x2;

@6ˇ D x
4
˝ x3 � x3 ˝ x4;

@7ˇ D x
2
˝ x1 � x1 ˝ x2:

Thus, it follows that Aˇ has 2 non-intersecting sub-algebras, namely, the quadratic
sub-algebra B generated by x1, x2, x3, x4 with relations @5ˇ, @6ˇ, @7ˇ and the sub-
algebra C D Khx5; x6; x7i freely generated by x5; x6; x7 which is isomorphic to the
tensor algebra T .K3/ and is a Koszul algebra of global dimension one. Concerning the
sub-algebra B, it is a Koszul algebra of global dimension 2. Indeed, by introducing the



Quadratic algebras associated with exterior 3-forms 1525

3 � 4-matrix B.x/ with coefficients in B defined by

B.x/ D

0@�x3 �x4 x1 x2

0 0 x4 �x3

x2 �x1 0 0

1A ;
the augmented Koszul complex of B reads

0! B3 B.x/
���! B4 x

�! B
"
�! K! 0

and, by using the fact that B is a domain since it is a universal enveloping algebra of a
Lie algebra, it is easy to show that this is an exact sequence, that is, that the mapping
B3 ! B4 is injective. Thus, Aˇ is generated by the two non-intersecting sub-algebra
B and C which are Koszul of global dimensions gldim.B/ D 2 and gldim.C/ D 1. The
relations @1ˇ, @2ˇ, @3ˇ, @4ˇ give commutation relations between the generators of B and
generators of C D Khx5; x6; x7i.

Finally, one can show by using computer that for matricesM;N 2M7.K/ the relation

MAˇ .x/ D Aˇ .x/N

implies M D N D �17 for some � 2 K, which means that ˇ is 3-regular.
We now discuss the cases of ˛.3/0 and ˛.3/00.
For ˛.3/, this is the discussion of Section 3 for p D 3. One has A.3/ D B.3/ ˝KŒx7�

which is the cross product of B.3/ with the trivial derivation ı0 D 0.
For ˛.3/0, one has

A.3/0.x/ D

0BBBBBBBBB@

0 �x3 x2 �x7 0 0 x4

x3 0 �x1 0 �x7 0 x5

�x2 x1 0 0 0 �x7 x6

x7 0 0 0 0 0 �x1

0 x7 0 0 0 0 �x2

0 0 x7 0 0 0 �x3

�x4 �x5 �x6 x1 x2 x3 0

1CCCCCCCCCA
for the corresponding matrixA.x/DA.3/0.x/, and the relations of the associated quadratic
algebra A.3/0 read

@1˛
.3/0
D x4 ˝ x7 � x7 ˝ x4 C x2 ˝ x3 � x3 ˝ x2;

@2˛
.3/0
D x5 ˝ x7 � x7 ˝ x5 C x3 ˝ x1 � x1 ˝ x3;

@3˛
.3/0
D x6 ˝ x7 � x7 ˝ x6 C x1 ˝ x2 � x2 ˝ x1;

@4˛
.3/0
D @4˛

.3/
D x7 ˝ x1 � x1 ˝ x7;

@5˛
.3/0
D @5˛

.3/
D x7 ˝ x2 � x2 ˝ x7;

@6˛
.3/0
D @6˛

.3/
D x7 ˝ x3 � x3 ˝ x7;

@7˛
.3/0
D x1 ˝ x4 � x4 ˝ x1 C x2 ˝ x5 � x5 ˝ x2 C x3 ˝ x6 � x6 ˝ x3

D @7˛
.3/:
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Now, let B.3/ be the quadratic algebra B.p/ of Section 3 for p D 3, that is,

B.3/
D Khx1; : : : ; x6i=Œ@7˛

.3/�

which is a regular algebra of global dimension 2; then,

ı1x
1
D x2 ˝ x3 � x3 ˝ x2; ı1x

2
D x3 ˝ x1 � x1 ˝ x3; ı1x

3
D x1 ˝ x2 � x2 ˝ x1;

ı1x
4 D 0, ı1x5 D 0, and ı1x6 D 0 defines a derivation of degree 1 of Khx1; : : : ; x6i

which satisfies
ı1.@7˛

.3// D 0

in view of the associativity of the tensor product. It follows that ı1 defines a derivation of
degree 1, again denoted by ı1, of B.3/. Then, the relations of A.3/0 imply that A.3/0 is the
cross product

A.3/0
D B.3/ Ìı1 KŒx7�

of B.3/ with the derivation ı1, the corresponding new generator being x7, .ı1 D ad.x7//.
One proceeds similarly for ˛.3/00; one has

A.3/00.x/ D

0BBBBBBBBB@

0 �x3 x2 �x7 0 0 x4

x3 0 �x1 0 �x7 0 x5

�x2 x1 0 0 0 �x7 x6

x7 0 0 0 �x6 x5 �x1

0 x7 0 x6 0 �x4 �x2

0 0 x7 �x5 x4 0 �x3

�x4 �x5 �x6 x1 x2 x3 0

1CCCCCCCCCA
while the relations of A.3/00 read

@1˛
.3/00
D @1˛

.3/0
D x4 ˝ x7 � x7 ˝ x4 C x2 ˝ x3 � x3 ˝ x2;

@2˛
.3/00
D @2˛

.3/0
D x5 ˝ x7 � x7 ˝ x5 C x3 ˝ x1 � x1 ˝ x3;

@3˛
.3/00
D @3˛

.3/0
D x6 ˝ x7 � x7 ˝ x6 C x1 ˝ x2 � x2 ˝ x1;

@4˛
.3/00
D x7 ˝ x1 � x1 ˝ x7 C x5 ˝ x6 � x6 ˝ x5;

@5˛
.3/00
D x7 ˝ x2 � x2 ˝ x7 C x6 ˝ x4 � x4 ˝ x6;

@6˛
.3/00
D x7 ˝ x3 � x3 ˝ x7 C x4 ˝ x5 � x5 ˝ x4;

@7˛
.3/00
D @7˛

.3/0
D @7˛

.3/:

One defines a derivation ı2 of degree 1 of Khx1; : : : ; x6i by setting

ı2x
1
D x2 ˝ x3 � x3 ˝ x2;

ı2x
2
D x3 ˝ x1 � x1 ˝ x3;

ı2x
3
D x1 ˝ x2 � x2 ˝ x1;
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ı2x
4
D x5 ˝ x6 � x6 ˝ x5;

ı2x
5
D x6 ˝ x4 � x4 ˝ x6;

ı2x
6
D x4 ˝ x5 � x5 ˝ x2

which satisfies again
ı2.@7˛

.3// D 0

in view of the associativity of the tensor product. Therefore, ı2 passes to the quotient and
defines a derivation of degree 1, again denoted by ı2, of the regular algebra B.3/. Thus,
A.3/00 is the cross product

A.3/00
D B.3/ Ìı2 KŒx7�

of B.3/ with the derivation ı2, the corresponding “new" generator of degree 1 being x7.

Remark. Since the relations of all the quadratic algebras of this paper have relations
defined in terms of commutators, it follows that they are the universal enveloping algebras
of graded Lie algebras generated in degree 1 as already pointed out. The cross-products
with derivations considered above correspond to the universal enveloping algebra versions
of semi-direct products of the graded Lie algebras with derivations of degree 1. Thus, B.3/

is the universal enveloping algebra of the corresponding graded Lie algebra b.3/ and the
ıi ; i 2 ¹0; 1; 2º are in fact derivations of degree 1 of b.3/ while A.3/, A.3/0, A.3/00 are the
universal enveloping algebras of the semi-direct products of the Lie algebra b.3/ with the
derivations ı0, ı1, ı2.

5. Regularity

The cross product with a derivation of degree 1 is a particular case of the graded Ore exten-
sion which preserves the Koszul property, and even more, it preserves the K2 property [7]
in a very strong sense [18]. It follows that the quadratic algebras A.3/, A.3/0, A.3/00 asso-
ciated with the exterior 3-forms ˛.3/, ˛.3/0, ˛.3/00 2

V3 K7 are Koszul and therefore are
regular in view of Lemma 4. This is also true for the quadratic algebras A.p/ associated
with the exterior 3-forms ˛.p/ 2

V3 K2pC1 .p � 1/ as explained in the second part of
Section 3. All these quadratic algebras are particular cases of the ones of [14].

It remains to discuss the case of the quadratic algebras A� and Aˇ associated with the
3-forms � and ˇ 2

V3 K7.
The matrix A�.x/ is given by (4.2), so the relations of the algebra A� read

Œx2; x3� D 0; (5.1)

Œx3; x1�C Œx4; x6� D 0; (5.2)

Œx1; x2�C Œx5; x7� D 0; (5.3)

Œx6; x2� D 0; (5.4)
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Œx7; x3� D 0; (5.5)

Œx2; x4� D 0; (5.6)

Œx3; x5� D 0 (5.7)

for the generators xk (k 2 ¹1; : : : ; 7º) of A�.

Proposition 6. The sequence

A�
xt

�! A7
�

A�.x/
����! A7

�

is exact.

Proof. It is sufficient to prove that

.a1; a2; a3; a4; a5; a6; a7/A�.x/ D 0 (5.8)

for .ak/ 2 A7
� implies that

ak D axk 8k 2 ¹1; : : : ; 7º (5.9)

for some a 2 A�.
Equation (5.8) reads by using (4.2)

a2x3 � a3x2 D 0; (5.10)

�a1x3 C a3x1 C a4x6 � a6x4 D 0; (5.11)

a1x2 � a2x1 C a5x7 � a7x5 D 0; (5.12)

�a2x6 C a6x2 D 0; (5.13)

�a3x7 C a7x3 D 0; (5.14)

a2x4 � a4x2 D 0; (5.15)

a3x5 � a5x3 D 0: (5.16)

For the ak of degree 0, that is, ak � K (8k 2 ¹1; : : : ; 7º), it is clear that (5.8))(5.9)
with a D 0 since the xk are linearly independent.

In order to prove the above proposition, we first prove the following lemmas.

Lemma 7. Assume that the ak 2 A� with 2 � k � 7 satisfy the relations (5.13), (5.14),
(5.15), and (5.16). Then, a2 D ax2 and a3 D ax3 for some a 2 A� imply that ak D axk

for any k with 2 � k � 7.

Proof. Assume a2 D ax2 and a3 D ax3; then,

(5.13) reads .a6 � ax6/x2 D 0 in view of (5.4);

(5.14) reads .a7 � ax7/x3 D 0 in view of (5.5);

(5.15) reads .a4 � ax4/x2 D 0 in view of (5.6);

(5.16) reads .a5 � ax5/x3 D 0 in view of (5.7):

Since A� is a domain, this implies that ak D axk for 2 � k � 7.
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Lemma 8. Assume now that the ak � A� with 2 � k � 7 satisfy (5.10), (5.13), (5.14),
(5.15), and (5.16). Then, there is some a 2 A� such that ak D axk for any 2 � k � 7.

Proof. We proceed by induction on the degree d of the ak . This is clearly true for d D 0,
with a D 0 in view of the linear independence of the xk . Let us assume that this is true for
d � n, and let the degree of the ak be nC 1. The relation (5.10) reads

.0;�a3; a2; 0; 0; 0; 0/x D 0;

which implies that there are bk 2 Ap for k 2 ¹1; : : : ; 7º such that

.b1; : : : ; b7/A�.x/ D .0;�a
3; a2; 0; 0; 0; 0/ (5.17)

since the exactness of the sequence

A7
�

A�.x/
����! A7

�

x
�! A

is equivalent to the presentation of A�.
The relation (5.17) reads

b2x3 � b3x2 D 0; (5.18)

�b1x3 C b3x1 C b4x6 � b6x4 D �a3; (5.19)

b1x2 � b2x1 C b5x7 � b7x5 D a2; (5.20)

�b2x6 C b6x2 D 0; (5.21)

�b3x7 C b7x3 D 0; (5.22)

b2x4 � b4x2 D 0; (5.23)

b3x5 � b5x3 D 0: (5.24)

Now, the bk are of degree n, and therefore for k � 2, one has bk D bxk for some b 2 A�

in view of Lemma 7 and of the induction assumption. Therefore, using (5.3) and (5.2),
relations (5.20) and (5.19) read a2 D .b1 � bx1/x2 and a3 D .b1 � bx1/x3 which in
view of Lemma 7 implies that

ak D axk for 2 � k � 7

with a D b1 � bx1.

End of proof of Proposition 6. Let .a1; : : : ; a7/ 2 Ker.A�.x//; we have proven that ak D
axk for k � 2, but then relations (5.12) and (5.11) read

.a1 � ax1/x2 D 0 and .a1 � ax1/x3 D 0:

Each one of the last relations implies that a1 D ax1 since A� is a domain. Thus, one has
ak D axk , 8k 2 ¹1; : : : ; 7º.
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This implies that A� is Koszul and therefore is regular and is in fact a 3-Calabi–Yau
domain.

The matrix Aˇ .x/ is given by (4.3), and the relations of the algebra Aˇ read

Œx3; x5�C Œx7; x2� D 0; (5.25)

Œx4; x5�C Œx1; x7� D 0; (5.26)

Œx5; x1�C Œx6; x4� D 0; (5.27)

Œx5; x2�C Œx3; x6� D 0; (5.28)

Œx1; x3�C Œx2; x4� D 0; (5.29)

Œx4; x3� D 0; (5.30)

Œx2; x1� D 0; (5.31)

where it is understood that the relations are valid in the algebra Aˇ for the generator
x�; � 2 ¹1; : : : ; 7º. The relations (5.29), (5.30), and (5.31) between x1, x2, x3, x4 define
the quadratic sub-algebra B of Aˇ which is Koszul of global dimension 2, and the fol-
lowing lemma implies in particular the injectivity of the B-module homomorphism

B3 B.x/
���! B4;

where B.x/ is the 3 � 4 matrix defined by 4 in the last section.

Lemma 9. One has the following identity:

0@�x3 �x4 x1 x2

0 0 x4 �x3

x2 �x1 0 0

1A
0BB@
�x1 0 2x4

�x2 0 �2x3

x3 2x2 0

x4 �2x1 0

1CCA D
0@1 0 0

0 1 0

0 0 1

1Au;
where u 2 B � Aˇ is given by

u D 2.x1x3 C x2x4/ D 2.x3x1 C x4x2/ D x1x3 C x2x4 C x3x1 C x4x2I

the different equalities follow from (5.29).

Proof. This is a direct consequence of the relations (5.29), (5.30), and (5.31) which char-
acterize B � Aˇ .

Let .a1;a2;a3;a4;a5;a6;a7/2A7
ˇ

be in the kernel of the Aˇ -module homomorphism

A7
ˇ

Aˇ .x/

����! A7
ˇ

that means that one has

.a1; a2; a3; a4; a5; a6; a7/Aˇ .x/ D 0 (5.32)
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for the a� 2 Aˇ , � 2 ¹1; : : : ; 7º. Let us cut the above relation (5.32) in two pieces as

.a1; a2; a3; a4/

0BB@
0 x7 �x5 0

�x7 0 0 �x5

x5 0 0 x6

0 x5 �x6 0

1CCA
C .a5; a6; a7/

0@�x3 �x4 x1 x2

0 0 x4 �x3

x2 �x2 0 0

1A D 0 (5.33)

and

.a1; a2; a3; a4/

0BB@
x3 0 �x2

x4 0 x1

�x1 �x4 0

�x2 x3 0

1CCA D 0 (5.34)

which separates .a1; a2; a3; a4/ and .a5; a6; a7/. We now use Lemma 9 to express a5, a6,
a7 in terms of a1, a2, a3, a4. By applying the 4 � 3-matrix0BB@

�x1 0 2x4

�x2 0 �2x3

x3 2x2 0

x4 �2x1 0

1CCA
on both terms of (5.33), one obtains

.a1; a2; a3; a4/C D .a5; a6; a7/u; (5.35)

where the 4 � 3-matrix C which coefficients in Aˇ is given by

C D

0BB@
�.x7x2 C x5x3/ �2x5x2 �2x7x3

x7x1 � x5x4 2x5x1 �2x7x4

�x5x1 C x6x4 �2x6x1 2x5x4

�.x5x2 C x6x3/ �2x6x2 �2x5x3

1CCA : (5.36)

It is obvious that a solution of (5.34) is .a1a2a3a4/D a.x1; x2; x3; x4/ with a 2Aˇ .
It follows then from (5.35) and (5.36) that one has the implication

.a1; a2; a3; a4/ D a.x1; x2; x3; x4/) .a5; a6; a7/ D a.x5; x6; x7/ (5.37)

as easily verified by using the relations (5.25), (5.26), (5.27), and (5.28).

Lemma 10. The algebra Aˇ is bigraded by giving bidegree .1; 0/ to x1, x2, x3, x4 and
bidegree .0; 1/ to x5, x6, x7.

Proof. This is clear since the relations are homogeneous in the bidegree either of bidegree
.2; 0/ or of bidegree .1; 1/.
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In the following, we will refer to the degree in .x5; x6; x7/ as the second degree and
our proof of the regularity of the quadratic algebra Aˇ will be based on the induction with
respect to this second-degree p 2 N. More precisely, we will prove by induction on the
second-degree p 2 N the following statement.

Proposition 11. Let a1, a2, a3, a4 be 4 elements of Aˇ . Then, .a1; a2; a3; a4/ satisfies
Relation (5.34) if and only if one has

.a1; a2; a3; a4/ D a.x1; x2; x3; x4/

for some a 2 Aˇ .

The following lemma is the step 0 of the induction.

Lemma 12. Assume that a1;a2;a3;a4 2Aˇ are of second degree 0. Then, .a1;a2;a3;a4/
satisfies Relation (5.34) if and only if one has

.a1; a2; a3; a4/ D a.x1; x2; x3; x4/

for some a 2 Aˇ of second degree 0.

Proof. To assume that ak is of second degree 0 is the same as to assume ak 2 B � Aˇ .
Since B is Koszul of global dimension 2, one has the exact sequence

0! B3 B.x/
���! B4 x

�! B ! K! 0;

from which the result will follow. Indeed, Relation (5.34) reads

.�a3;�a4; a1; a2/x D 0;

.0; 0; a4;�a3/x D 0;

.a2;�a1; 0; 0/x D 0;

which in B is equivalent to

.�a3;�a4; a1; a2/ D .u1; u2; u3/B.x/;

.0; 0; a4;�a3/ D .v1; v2; v3/B.x/;

.a2;�a1; 0; 0/ D .w1; w2; w3/B.x/;

in view of the above exact sequence. From the second relation and the fact that B is a
domain, it follows that .a3; a4/ D r.x3; x4/ and from the third relation that .a1; a2/ D
s.x1; x2/ with r; s 2 B. Finally, by using the first relation, it follows that r D s.D a/.

Let us come back to the general case. Equation (5.34) is equivalent to the equations

�a3x1 � a4x2 C a1x3 C a2x4 D 0; (5.38)

a4x3 � a3x4 D 0; (5.39)

a2x1 � a1x2 D 0: (5.40)
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Equation (5.38) is equivalent to

.�a3;�a4; a1; a2; 0; 0; 0/ D .b1; : : : ; b7/Aˇ .x/

for some elements b1; : : : ; b7 of Aˇ . It follows that one has

a1 D b5x1 C b6x4 � b1x5 � b4x6;

a2 D b5x2 � b6x3 � b2x5 C b3x6;

a3 D b5x3 � b7x2 � b3x5 C b2x7;

a4 D b5x4 C b7x1 � b4x5 � b1x7

(5.41)

and that

.b1; b2; b3; b4/

0BB@
x3 0 �x2

x4 0 x1

�x1 �x4 0

�x2 x3 0

1CCA D 0: (5.42)

We now assume (induction hypothesis) that for any ai 2Aˇ i 2 ¹1; 2; 3; 4º of second-
degree q � p the relation (5.34) implies

.a1; a2; a3; a4/ D a.x1; x2; x3; x4/

for some a 2 Aˇ , and let us assume that the ai in (5.41) are of second-degree q D p C 1.
Then, it follows that the bi are of second-degree q D p for i 2 ¹1; 2; 3; 4º and therefore
that bi D bxi for some b 2 Aˇ for i 2 ¹1; 2; 3; 4º in view of (5.42) and of the induction
hypothesis. Then, (5.41) implies that

a1 D .b5 � bx5/x1 C .b6 � bx6/x4;

a2 D .b5 � bx5/x2 � .b6 � bx6/x3;

a3 D .b5 � bx5/x3 � .b7 � bx7/x2;

a4 D .b5 � bx5/x4 C .b7 � bx7/x1;

where we have used the relations (5.27), (5.28), (5.25), and (5.26). That is,

a1 D ax1 C rx4;

a2 D ax2 � rx3;

a3 D ax3 � sx2;

and
a4 D ax4 C sx1

with a; r; s 2Aˇ . By insertion of these expressions again in (5.39) and (5.40), one obtains

sx1x3 C sx2x4 D s.x1x3 C x2x4/ D 0;

�rx3x1 � rx4x2 D �r.x1x3 C x2x4/ D 0;
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which implies that r D s D 0 since Aˇ is a domain. So, ai D axi for i 2 ¹1; 2; 3; 4º which
achieves the proof of .a1; a2; a3; a4/ D a.x1; x2; x3; x4/ by induction on the second
degree p.

From the implication (5.37), it follows finally that one has

.a1; : : : ; a7/ D a.x1; : : : ; a7/

for some a 2 Aˇ whenever .a1; : : : ; a7/ is in the kernel of Aˇ .x/. This implies that Aˇ

is Koszul and therefore is regular of global dimension 3 or equivalently here is 3-Calabi–
Yau.

In summary, we have proved the following result.

Theorem 13. The quadratic algebras associated with the 3-regular exterior 3-forms �, ˇ,
˛.3/, ˛.3/

0

, ˛.3/
00

in dimension 7 and with the exterior 3-forms ˛.p/ in dimensions 2p C 1
for p 2 N with p � 1 are regular and are therefore 3-Calabi–Yau domains.

Using the fact that the 3-regular exterior 3-forms that we have considered contain
representative elements in all orbits of 3-regular exterior 3-forms in Kn for n� 7whenever
K is algebraically closed, one has the following theorem.

Theorem 14. Assume that K is algebraically closed, and let ˛ be an exterior 3-regular
3-form on Kn with n � 7. Then, the quadratic algebra

A D Khx1; : : : ; xni=Œ¹@i˛º�

is regular which implies that it is a 3-Calabi–Yau domain.

It is worth noticing here that, for n � 7, we have shown that such exterior 3-regular
3-forms only exist in dimensions n D 3; 5, and 7.

In the next paper of this series, we will investigate a sequence of quadratic algebras of
the above type associated with the sequence of the simple complex Lie algebras.

6. Exterior 3-forms in Kn with n � 8

A natural question is as follows: does Theorem 14 remain true for exterior 3-forms of rank
n > 7? Or, in other words, is the quadratic algebra associated with a 3-regular exterior 3-
form in Kn with n � 8 a Koszul algebra?

It turns out that the answer is negative. Indeed, in [20], it is pointed out that the case
XII of rank 8 of the book of G. B. Gurevich [13], namely, the exterior 3-form

! D �2 ^ �1 ^ �7 C �2 ^ �5 ^ �3 C �2 ^ �6 ^ �4 C �8 ^ �1 ^ �4 C �7 ^ �3 ^ �4

which is 3-regular leads to an associated quadratic algebra which is not Koszul and there-
fore not regular. Let us explain this fact.
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First, the 3-regularity of ! follows from a tedious but straightforward calculation.
The relations of the quadratic algebra A! D A associated with ! read8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

@1! W Œx
2; x7�C Œx8; x4� D 0;

@2! W Œx
7; x1�C Œx3; x5�C Œx4; x6� D 0;

@3! W Œx
7; x4�C Œx5; x2� D 0;

@4! W Œx
3; x7�C Œx1; x8�C Œx6; x2� D 0;

@5! W Œx
2; x3� D 0;

@6! W Œx
2; x4� D 0;

@7! W Œx
1; x2�C Œx4; x3� D 0;

@8! W Œx
4; x1� D 0:

These relations show that A is generated by two sub-algebras: a tensor algebra

Khx5; x6; x7; x8i D T

generated by x5, x6, x7, x8 and a quadratic sub-algebra B! DB generated by x1, x2, x3,
x4 with relations @5!, @6!, @7!, @8! while the first four relations @1!, @2!, @3!, @4! of
A give commutation relations between elements of T and elements of B. The relations
of A read @! D A.x/x as explained in Section 3 (formulas (3.2) and (3.3)) where x is the

column
� cx1
:::
x8

�
and where the antisymmetric 8 � 8-matrix A.x/ D A!.x/ is given by

A.x/ D

2666666666664

0 x7 0 �x8 0 0 �x2 x4

�x7 0 x5 x6 �x3 �x4 x1 0

0 �x5 0 �x7 x2 0 x4 0

x8 �x6 x7 0 0 x2 �x3 �x1

0 x3 �x2 0 0 0 0 0

0 x4 0 �x2 0 0 0 0

x2 �x1 �x4 x3 0 0 0 0

�x4 0 0 x1 0 0 0 0

3777777777775
which reads in 4 � 4-matrices blocks

A.x/ D

0@A0.xII / �B.xI /t
B.xI / 0

1A ;
where xI D .x1; x2; x3; x4/t and xII D .x5; x6; x7; x8/t .

The 3-regularity of ! implies [10] that the augmented Koszul complex of A reads

0! A˝ !
d
�! A˝R

d
�! A˝E

d
�! A! K! 0;
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where E D A1 is the space generated by the x1; : : : ; x8 and where R � E ˝ E is the
space of relations of A generated by the @1!; : : : ; @8! while ! 2

V3
E � E ˝ E ˝ E

is identified as an element of E˝
3
. With other notations, the above Koszul complex of A

identifies to the sequence (see in Section 3)

0! A
xt

�! A8 A.x/
���! A8 x

�! A! K! 0;

where the exactness of
A8 A.x/
���! A8 x

�! A! K! 0

is automatic since it is equivalent to the presentation of A by generators and relations
while the exactness of

0! A
xt

�! A8

follows from the fact that A is a domain. Thus, it remains to analyze the small complex

A
xt

�! A8 A.x/
���! A8; (6.1)

that is, to describe the kernel Ker.A.x// of A.x/. By construction, one has

a1.x
1; : : : ; x8/ 2 Ker.A.x//; 8a1 2 A (6.2)

since (6.1) is a complex; however, there is another injective mapping of A into Ker.A.x//
which is quadratic in the xi defined by

a2.j
1.x/; : : : ; j 8.x// 2 Ker.A.x//; 8a2 2 A; (6.3)

where

j 1 D j 2 D j 3 D j 4 D 0;

j 5 D u1.xI / D �.x
4/2;

j 6 D u2.xI / D x
2x1 C x4x3 C Œx2; x1� .' .x2x1 C x4x3 C Œx4; x3�//;

j 7 D u3.xI / D x
2x4.' x4x2/;

j 8 D u4.xI / D .x
2/2:

(The equivalences are modulo the relations @i! for i 2 ¹5; 6; 7; 8º.) It is easy to verify
that (6.2) and (6.3) belong to Ker.A.x//, and one can show that they generate Ker.A.x//.
This implies in particular that the sequence (6.1) is not exact and therefore that A is not
a Koszul algebra, and so cannot be regular. Notice that nevertheless one has the exact
sequence

0! A2 .xt ;j /
����! A8 A.x/

���! A8 x
�! A! K! 0

which is a minimal projective resolution of the A-module K. This implies [6] that the
global dimension of A is 3, gldim.A/ D 3.
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The origin of the above facts is that the global dimension of the sub-algebra B is 3,
gldim.B/ D 3, and that one has the minimal free resolution of K as B-module

0! B
u
�! B4 B.xI /

����! B4 xI
�! B ! K! 0

since the mapping u W B ! B4 given by

b 7! b.u1.xI /; u
2.xI /; u

3.xI /; u
4.xI //

is injective and that Im.u/ D Ker.B.xI // as easily verified.
By comparison of the above resolutions with the usual form of the minimal projective

resolutions (i.e., here minimal free resolutions since we are in the graded case [6])

� � � ! A˝ TorA
n .K;K/

dn
�! � � �

d1
�! A˝ TorA

0 .K;K/! K! 0;

one gets that
TorA

3 .K;K/ D TorA
3;3.K;K/˚ TorA

3;4.K;K/;

TorB
3 .K;K/ D TorB

3;4.K;K/

with
dim.TorA

3;3.K;K// D dim.TorA
3;4.K;K// D dim.TorB

3;4.K;K// D 1

and
TorA

n .K;K/ D TorB
n .K;K/ D 0

for n � 4. It follows that the Poincaré double series

PA.r; s/ D
X
k;`

dim.TorA
k;`.K;K//r

ks`

of A and B read

PA.r; s/ D 1C 8rs C 8r
2s2 C r3s3 C r3s4;

PB.r; s/ D 1C 4rs C 4r
2s2 C r3s4;

from which one obtains the Hilbert series

HA.t/ D
X
n

dim.An/t
n

of A and B

HA.t/ D 1=1 � 8t C 8t
2
� t3 � t4

which is the result of [20], and

HB.t/ D 1=1 � 4t C 4t
2
� t4

by using the general formula

HA.t/PA.�1; t/ D 1

and the above results.
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7. Conclusion and further prospects

It is worth noticing here that for the 3-linear forms which are 3-regular there is already
an example in dimension 3 for which the associated quadratic algebra is not regular [11]
which shows that the conjecture of [10] is wrong. However, this counterexample is very
asymmetric from the point of view of the group of permutations between the coordinates.
This is why it was interesting to investigate the case of the 3-regular exterior 3-forms for
which the complete antisymmetry is a maximal symmetry for the group of permutations
between the coordinates. There we have shown that the first counterexample occurs only
in dimension 8.

Nevertheless, it is interesting to consider natural families of 3-regular exterior 3-forms
as the family of 3-regular ˛.p/ 2

V3 K2pC1 investigated in Section 3 which leads to
associated regular quadratic algebras (see Proposition 5 in Section 3). A very interesting
such family is the family of canonical 3-forms of simple Lie algebras. Let us explain this
point.

Let g be a finite-dimensional Lie-algebra and let ! be the 3-linear form on g defined
by

!.X; Y;Z/ D Tr.Œad.X/; ad.Y /� ad.Z//

for X; Y; Z 2 g, where Tr.:/ denotes the trace of the linear endomorphisms of g. By
definition, !.X; Y; Z/ is antisymmetric in X and Y ; furthermore, the symmetry of the
trace implies

!.X; Y;Z/ D !.Z;X; Y /

for any X; Y; Z 2 g as well as the ad-invariance of !. Thus, ! is an invariant exterior 3-
form on g .! 2

V3
I g�/ which will be referred to as the canonical 3-form of g. (The above

terminology is the same as the one of [16], while in [17], for instance, ! is referred to as
the Cartan 3-form of g.) This invariant exterior 3-form is closely related to the structure
constants of g. Indeed, let .Ek/ be an arbitrary basis of g; the relations of g read in this
basis

ŒEk ; E`� D C
r

k` Er ;

where the C r
k`
2 K are the corresponding structure constants of g. Then, the components

!k`m D !.Ek ; E`; Em/ of ! read

!k`m D C
r

k` Krm;

where Krm D K.Er ; Em/ are the components of the Killing form of g defined by

K.X; Y / D Tr.ad.X/ ad.Y //

for any X; Y 2 g.
In the sequel, we assume that KDC so that the Lie algebra g is a complex Lie algebra.

Lemma 15. The canonical 3-form ! of g is nondegenerate if and only if g is a semisimple
Lie algebra.
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Proof. This is a consequence of the following connection between ! and the Killing form
of g:

!.X; Y;Z/ D K.X; ŒY;Z�/ (7.1)

for any X; Y; Z 2 g. Indeed, if iX! D 0, then K.X; ŒYZ�/ D 0 for any Y; Z 2 g, so
if iX! D 0 implies X D 0, then K.X; ŒY; Z�/ D 0 for any Y; Z 2 g implies X D 0.
Therefore, if ! is nondegenerate, then a fortiori the Killing form is nondegenerated so that
g is semi-simple. Conversely, if g is semi-simple gD Œg;g�, the relation (7.1) implies that
the nondegeneracy of ! is equivalent to the one of K.

The content of Lemma 15 above is the same as the one of [17, Lemma 2.1].
As already pointed out, ! nondegenerate is equivalent to ! preregular for an exterior

3-form.

Theorem 16. The canonical 3-form ! of g is 3-regular if and only if g is a simple Lie
algebra.

Proof. The Lie algebra g is simple if and only if its adjoint representation is irreducible.
This irreducibility is equivalent in the present context to the fact that the commutant ad.g/0

of ad.g/ consists of multiples of the identity mapping of g onto itself, that is, to the con-
dition

ŒL; adX� D 0 8X 2 g

implies

L D �I with � 2 C

(7.2)

for any linear endomorphism L of g, where I denotes the identity mapping of g.
One may assume that g is semisimple since both ! 3-regular or g simple implies the

semisimplicity of g. The Killing form K of g is then nondegenerate. Now,

!.LX; Y;Z/ � !.X;MY;Z/ D 0 8X; Y;Z 2 g

is equivalent to
K.Z; ŒLX; Y � � ŒX;MY �/ D 0 8X; Y;Z 2 g

in view of relation (7.1) and finally is equivalent to

ŒLX; Y � � ŒX;MY � D 0 8X; Y 2 g

since K is nondegenerate. Thus, the assumption that ! is 3-regular is equivalent to the
condition

ŒLX; Y � � ŒX;MY � D 0 8X; Y 2 g

implies

L DM D �I with � 2 C

(7.3)

for the linear endomorphisms L and M of g, where I denotes the identity mapping of g.
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Let us first prove that the 3-regularity of ! implies the simplicity of g, that is, that one
has the implication (7.3))(7.2). By setting M D L in condition (7.3), one has that

ad.X/LY C ad.Y /LX D 0

implies L D �I . Now, if L 2 ad.g/0, one has

ad.X/LY C ad.Y /L.X/ D L.ŒX; Y �C ŒY; X�/ D 0

and therefore L D �I . This means that g is simple whenever its canonical 3-form ! is
3-regular.

Let us show that conversely the simplicity of g implies the 3-regularity of its canonical
3-form !.

So, let g be a simple n-dimensional complex Lie algebra, and let theEk .k2¹1; : : : ;nº/
be a basis of g which is orthonormal for the Killing form, i.e., such that

K.Ek ; E`/ D Tr.ad.Ek/ ad.E`// D ık`

for k; ` 2 ¹1; : : : ; nº. The relations of g read then

ŒEk ; E`� D
X
m

!kl`mEm;

where the !k`m are the components of the canonical 3-form ! in the basis .Ek/. The
matrix components of ad.Ek/ are given by

ad.Ek/m` D !k`m

8k; `;m 2 ¹1; : : : ; nº and the orthonormality of the Ek reads in terms of the !k`mX
ij

!ijk!ij` D ık` (7.4)

8k; ` 2 ¹1; : : : ; nº while the Jacobi identity readsX
m

.!ijm!k`m C !kim!j`m C !jkm!i`m/ D 0 (7.5)

8i; j; k; ` 2 ¹1; : : : ; nº.
Let L and M be two linear endomorphisms of g satisfying

!.LX; Y;Z/ D !.X;MY;Z/ 8X; Y;Z 2 g

which reads in components
Lri !rjk DM

s
j !isk

8i; j; k, and let us show that this implies that L D M D �I . The antisymmetry of !ijk
implies

Lri !rj i D 0; (7.6)
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while (7.4) implies

Lri D
X
jk

M s
j !isk!rjk ) Tr.L/ D Tr.M/

which leads by using (7.5) and (7.6) to

Lri D
X
jk

M s
j !srk!ijk D L

t
r!tjk!ijk D L

i
r

for r; i 2 ¹1; : : : ; nº. Similarly, one getsM s
j DM

j
s for s; j 2 ¹1; : : : ; nº. This implies that

ad.Ek/L DM ad.Ek/

and by transposition

ad.Ek/M D L ad.Ek/ 8k;

so one has Œad.Ek/; L CM� D 0 which by irreducibility of the adjoint representation
(simplicity of g) implies that LCM D 2�I for some � 2 C. Then,

ad.Ek/.L � �I/ D �.L � �I/ ad.Ek/;

which implies that Œad.Ek/; ad.E`/�.L � �I/ D 0, so finally (by simplicity)

L DM D �I

which means that the canonical 3-form ! is 3-regular.

Thus, the family of canonical 3-forms of simple Lie algebras is a family of 3-regular
exterior 3-forms. It is natural to investigate the regularity of the associated quadratic alge-
bras. For the lowest-dimensional simple Lie algebra a1 D sl.2/ which is of dimension 3,
it is straightforward to show that the associated quadratic algebra is the polynomial alge-
bra CŒx1; x2; x3� which is regular of global dimension 3. For the next simple Lie algebra
a2 D sl.3/ which is of dimension 8, one can show with a computer that the associated
quadratic algebra is Koszul of global dimension 3, but an analytic proof is not straightfor-
ward. To go further on, one must use the root space decomposition since it is clear that
these quadratic algebras are in fact associated with the irreducible root systems. This work
is in progress.
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