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Index theorem for homogeneous spaces of Lie groups

Hang Wang and Zijing Wang

Abstract. We study index theory for homogeneous spaces associated to an almost connected Lie
group in terms of the topological and analytic aspects. For the topological aspect, we obtain a topo-
logical formula as a result of the Riemann–Roch formula for proper cocompact actions of the Lie
group, inspired by the work of Paradan and Vergne. For the analytic aspect, we apply heat ker-
nel methods to obtain a local index formula representing the higher indices of equivariant elliptic
operators with respect to a proper, cocompact action of the Lie group.

1. Introduction

In this paper, we investigate the higher index theory of an equivariant elliptic operator on
a complete Riemannian manifold equipped with a proper, cocompact action of an almost
connected Lie group. Motivated by the classic Atiyah–Singer index theorem [3], our study
consists of both the topological and analytic perspectives. The Baum–Connes assembly
map in [5, 6], which encodes both topological and analytical perspectives, serves as a
fundamental framework for our study. For instance, in the case of a discrete group, the left-
hand side of the Baum–Connes assembly map corresponds to the topologicalK-theory of
the group. This can be identified with its Chern character, which involves a version of the
Riemann–Roch formula. This formulation leads to a local index formula for all equiv-
ariant elliptic operators under proper cocompact actions [8]. On the other hand, one can
formulate suitable pairings with the higher index on right-hand side of the Baum–Connes
assembly map and obtain local index formula using geometric and analytic approaches;
see [11] for example. The main contributions of this paper are twofold: first, we derive
a Riemann–Roch formula for proper cocompact actions of almost connected Lie groups,
and second, we apply heat kernel methods to obtain a local index formula representing
higher indices of equivariant elliptic operators.

The Riemann–Roch theorem was born in complex analysis and algebraic geometry, in
the process of computing the dimension of the space of meromorphic functions with pre-
scribed zeros and allowed poles. In 1954, Hirzebruch generalized the classical Riemann–
Roch theorem from Riemann surfaces to all complex algebraic varieties of higher di-
mensions. Three years later, Grothendieck generalized the Hirzebruch–Riemann–Roch
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theorem with respect to a map
f W Y ! X

of algebraic varieties. This so-called Grothendieck–Riemann–Roch theorem reduces to
the previous Riemann–Roch theorem by taking X to be a point. Grothendieck’s the-
orem requires many conditions on characteristic classes, and so, it is natural to ask if
these conditions hold for almost complex or, more generally, for differentiable manifolds.
This question has been solved by Atiyah and Hirzebruch in [2]. As an application of the
Riemann–Roch theorem for differentiable manifolds, Atiyah and Singer established their
Riemann–Roch formula in [4]. At that time, this formula was at the level of cohomology.
Subsequently, Mathai and Quillen gave a beautiful proof of the Riemann–Roch formula
in [16] using the powerful tools of superconnections. This work transforms the formula
to the level of differential forms. Based on that, Paradan and Vergne defined Quillen’s
relative Chern character and obtained the Riemann–Roch formula on the level of rela-
tive cohomology in [19] and generalized them to the equivariant case for compact group
actions in [18].

In this paper, we formulate the equivariant Chern character and the Riemann–Roch
formula in the context of proper actions by an almost connected Lie group. This is the first
main result of the paper.

Theorem 1.1 (Theorem 4.1). Let G be an almost connected Lie group, M a proper G-
compact space satisfying conditions in Theorem 2.8, and V aG-equivariant vector bundle
(even rank) overM with an equivariant spin structure. The following diagram commutes:

K0G.V /
�Š //

chG

��

K0G.M/

.2�i/n=2�chG^ yA
�1
g .V /

��

H1cv .g; V /
�Š // H1.g;M/;

where yAg.V /�1 is the inverse of the equivariant yA-genus in Definition 2.17, chG on the left
is defined in (3.2), chG on the right is defined in (3.1), and �Š W H1cv .g; V /! H1.g;M/

is the homomorphism induced by integration over the fiber.

The highlight of this theorem is the introduction of the Chern character map associated
to a smooth version of the equivariant K-theory in the sense of Phillips [22] and the
formulation of the Riemann–Roch formula using techniques from the Mathai–Quillen
formalism. Both constructions are inspired by the work of Paradan and Vergne in the case
of a compact group action [18].

Moving to the analytic perspective, heat kernel methods play a role in obtaining the
cohomology formula. Another goal of this paper is to use heat kernel methods to obtain
local index formulas for the C �-higher indices of equivariant Dirac-type operators.

Consider a Lie group G, acting properly on a manifold M , with compact quotient.
Let D be a G-equivariant Dirac operator on a Z2-graded, G-equivariant vector bundle
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over M . In the special case when G is discrete and acts freely and properly, the quotient
N of M by G is a closed manifold. Thus, G is the fundamental group of N with Deck
transformation on the universal cover M . In their seminal paper [11], Connes and
Moscovici extended the L2-index theorem of Atiyah [1] from the G-trace case to higher
G-cocycles. Using Getzler’s symbolic calculus, they found the topological expression of
the localized analytic indices of elliptic operators. In 2015, Pflaum, Posthuma, and Tang
unified several famous equivariant index theorems in the framework of Lie groupoids
in [20], including the equivariant index formula in [1, 11]. In the notation as above, if G
is almost connected and satisfies the rapid decay property, Piazza and Posthuma establish
an index formula for the C �-higher indices of a G-equivariant Dirac-type operator on M ,
building on the algebraic index theorem established in [20].

The second main result of this paper is a local formula for the higher index of a Dirac-
type operator on a complete Riemannian manifold carrying a proper cocompact action of
an almost connected Lie group, via heat kernel methods.

Theorem 1.2 (Theorem 6.1). Let the dimension n of M be even. For every

f 2 C
2q
v;anti.M/G

(cf., Definition 6.2) and Indt .D/ 2 SuG.M;E/ (cf., Definition 6.5), we have

lim
t!0

�.f /.Indt .D//

D
.�1/�q

.2�i/2q�n=2
qŠ

.2q/Š

Z
M

c0 yAG.M/ ^ ch0G.�Š.Œ�
�.EC/; ��.E�/; �.D/�// ^ !f ;

where
!f WD .d1 � � � d2qf /j�:

Here, di stands for the differential concerning the i -th variable of the function f and
� WM !M�.2qC1/ is the diagonal embedding.

This theorem implies the formula for C �-higher indices of aG-equivariant Dirac-type
operator onM . See Theorem 7.6. Piazza and Posthuma obtained a similar formula in [23].
See more details in Section 6.

The heat kernel proof of Theorem 1.2 follows closely that of Connes and Moscovici
[11] but with significant analytical complications due to the more general setting being
considered. In [11], because of the assumption of free actions by a discrete group, it is
sufficient to consider compactly supported functions f in the index pairing, and hence,
the index pairing problem can be reduced to the case of a compact manifold. But in our
setting, we need to consider equivariant f with suitable growth conditions so that in order
to have a well-defined index pairing, a careful estimate on the Schwartz kernel of the
Wasserman class representing the higher index Indt .D/ is needed. We achieved this aim
by making use of the spirit of the fantastic work [9] by Cheeger, Gromov, and Taylor on
the Schwartz kernel estimate regarding scalar Laplacian on complete manifolds.
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In the last section of the paper, we combine the equivariant Riemann–Roch formula
and the local formula for the higher index and identify the topological index and analytic
index in the special case of homogeneous spaces, that is, the following theorem.

Theorem 1.3 (Theorem 8.1). The following diagram commutes:

K0G.T
�.G=H//

IndA //

IndT
��

K0.C
�
r .G//ech
��

H even
DR .G=H/

G PD // HDR;even.G=H/
G ;

where ech W K0.C �r .G//! HDR;even.G=H/
G is determined byech.Œp� � Œq�/.˛/ WD h˛; Œp� � Œq�iDR;G

for every ˛ 2H even
DR .G=H/

G and Œp�� Œq� 2 K0.C �r .G//. Here, G has finitely many con-
nected components and satisfies the RD condition, H is a maximal compact subgroup of
G, and G=H admits a non-positive sectional curvature.

Although homogeneous spaces are examples of spaces with proper actions, they in-
clude the Riemannian symmetric space of non-compact type G=K, whereK is a maximal
compact subgroup. The homogeneous space G=K is known as a model for the universal
example of proper actions by an almost connected group.

This paper is organized as follows. In Section 2, we recall the definitions of equivariant
K-theory in [22] and equivariant cohomology in [3, 22]. Then, we introduce the smooth
equivariant K-theory. In Section 3, we define the equivariant Chern character and prove
some basic properties of this homomorphism. In Section 4, we deduce the equivariant
Riemann–Roch formula. In Section 5, we work on the special case of homogeneous spaces
and reduce the equivariant Riemann–Roch formula to the G-invariant case. In Section 6,
we use heat kernel methods to prove the local index formula. In Section 7, we show
that, following the local index formula proved in the previous section, we obtain an index
formula for C �-higher indices of aG-equivariant Dirac-type operator onM . In Section 8,
we show the coincidence between the topological index and analytic index when M is a
homogeneous space.

2. Preliminaries

2.1. Equivariant K -theory for proper actions

In this section, we recall some basic definitions of equivariantK-theory for proper action,
which can be found in [21, 22], and define the smooth equivariant K-theory.

First, we recall the definition of Hilbert bundle and G-Hilbert bundle. Let M be a
C1-manifold with a smooth action of a Lie group G.
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Definition 2.1 ([22], G-Hilbert bundle). A Hilbert bundle overM is a locally trivial fiber
bundle E whose fiber is a Hilbert space. A G-Hilbert bundle is a Hilbert bundle E with a
continuous linear isometric action ofG such that the projection � WE!M is equivariant.

Next, we turn to the definition of the morphisms.

Definition 2.2 ([22]). Let �E W E ! M and �F W F ! M be G-Hilbert bundles over
M . A morphism t is a continuous function t W E ! F which maps Em linearly to Fm
for every m 2 M , where Em WD ��1E .m/ 2 E and Fm WD ��1F .m/ 2 F . We say that t is
equivariant if t .g�/ D g � t .�/ for g 2 G and � 2 E.

Then, we recall the definition of the K-cocycles.

Definition 2.3 ([21]). AK-cocycle for .G;M/ is a triple .E;F; t/, whereE and F areG-
Hilbert bundles overM and t is an equivariant morphism from E to F which is invertible
outside a G-compact subset of M . Here, G-compact means that M=G is compact.

After that, we recall the definition of a finite-dimensional K-cocycle which plays an
important role in the definition of the equivariant K-theory K0G.M/ when G is almost
connected and M is a proper G-space.

Definition 2.4 (Finite-dimensional (smooth) K-cocycle). A finite-dimensional (smooth)
K-cocycle for .G;M/ is a triple .E; F; t/, consisting of two finite-dimensional (smooth)
G-equivariant vector bundlesE and F and an (a smooth) equivariant morphism t WE!F

whose restriction to the complement of some G-compact subset of M is an (a smooth)
isomorphism.

Two finite-dimensional (smooth) K-cocycles .E1; F1; �1/, .E2; F2; �2/ are said to be
equivalent if there exist finite-dimensional (smooth)G-equivariant vector bundlesH1 and
H2 and (smooth) G-equivariant isomorphisms:

a W E1 ˚H1 ! E2 ˚H2;

b W F1 ˚H1 ! F2 ˚H2

such that b�1 ı .�2 ˚ IdH2/ ı aD �1˚ IdH1 outside aG-compact subsetB ofM . Denote
by ŒE; F; t � the equivalence class of a finite-dimensional (smooth) K-cocycle .E; F; t/
and define an addition on the set of equivalence classes of finite-dimensional (smooth)
K-cocycles by

ŒE0; F0; t0�C ŒE1; F1; t1� D ŒE0 ˚E1; F0 ˚ F1; t0 ˚ t1�

which makes the set of equivalence classes of finite-dimensional (smooth) G-equivariant
vector bundles over M a semigroup.

Definition 2.5 (Equivariant (smooth)K-theory). LetM be aC1-manifold with an action
of an almost connected Lie group G such that the action is proper and smooth. Then, the
equivariant (smooth) K-theory (K0G;sm.M/) K0G.M/ is the Grothendieck group of the
equivalence class of finite-dimensional (smooth) K-cocycle for .G;M/.
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Remark 2.6. In [22], Phillips defined the equivariant K-theory for proper actions of
second countable locally compact groups on second countable locally compact spaces.
This definition involves infinite-dimensional Hilbert bundles and Fredholm morphisms
between them. In [21], Phillips showed that finite-dimensional vector bundles would suf-
fice for proper actions of almost connected second countable locally compact groups.
For this reason, we used the Grothendieck group of the equivalence classes of finite-
dimensional (smooth) K-cocycle for .G;M/ to define the equivariant (smooth) K-theory
here.

If M is G-compact, then the morphism of the K-cocycle plays no role so that
K0G;sm.M/ is just the Grothendieck group of the semigroup of finite-dimensional smooth
G-equivariant vector bundles overM . Moreover, if � W V !M is a smoothG-equivariant
vector bundles over M such that M is G-compact, K0G;sm.V / consists of the equivalence
class of finite-dimensional smooth K-cocycle for .G; V /. To prove the latter point, we
need the following lemma.

Lemma 2.7. Let � W V !M be a smooth G-equivariant vector bundle overM such that
M is G-compact. Then, for any ŒE; F; �� 2 K0G;sm.V /, there exist ŒF; E; s� 2 K0G;sm.V /
such that ŒE; F; �� D �ŒF;E; s�.

Proof. When M is a G-compact manifold and the group action is proper, every G-equiv-
ariant vector bundleV overM has aG-invariant Hermitian metrics h ; i. For any ŒE;F;��2
K0G;sm.V /, since supp.�/ WD ¹x 2 V j �x is not invertibleº isG-compact, there exists a >
0 such that

supp.�/ � ¹v j v 2 V; hv; vi � aº:

Thus, let f be a smooth function over R valued in Œ0; 1� satisfying f .x/ D 1 when
jxj � a C 2 and f .x/ D 0 when jxj � a C 1. Set �.v/ WD f .hv; vi/; and then, � 2
C1.V /G .

Let Qs W E ! F be a G-equivariant bundle homomorphism such that Qs is equal to the
inverse of � restricted to the complement of ¹v j v 2 V; hv; vi � aº. Here, Qs may not be
smooth, but s D �Qs is a smooth equivariant bundle homomorphism from E to F .

We claim that ŒE; F; �� D �ŒF;E; s�. This is equivalent to claiming that

ŒE ˚ F;F ˚E; � ˚ s� D ŒE ˚ F;E ˚ F; IdE˚F �

since the right-hand side of the above equation is the identity element of K0G;sm.V /. To
prove the claim above, it is sufficient to find smooth G-equivariant isomorphisms a W E ˚
F ! E ˚ F and b W E ˚ F ! F ˚ E such that b�1.� ˚ s/a D IdE˚F outside a G-
compact subset of V . Take a D IdE˚F and

bv D

 
cos
�
�
2
.1 � �.v//

�
�v sin

�
�
2
.1 � �.v//

�
IdFv

� sin
�
�
2
.1 � �.v//

�
IdEv cos

�
�
2
.1 � �.v//

�
��1v

!
for any v 2 V . Therefore, We have ŒE;F; ��D�ŒF;E; s�, which completes the proof.
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Now, we discuss the relationship between the smooth and ordinarily equivariant K-
theory. There exists an obvious homomorphism i� from K0G;sm.M/ to K0G.M/:

i� W K
0
G;sm.M/! K0G.M/

ŒE; F; �� 7! ŒE; F; ��:

A natural problem is as follows: when is i� an isomorphism? When G and M are
compact, [15, Proposition A.4] shows that i� is an isomorphism. When G and M are not
compact but the action is proper and cocompact, we have the following theorem.

Theorem 2.8. Let M be a smooth manifold with a smooth proper action of a Lie group
G. If there exist H , a compact subgroup of G, and S � M , a compact H -invariant sub-
manifold without boundary, such that the action Œg; s� 7! gs for g 2 G and s 2 S defines
a G-equivariant diffeomorphism from G �H S to M , then we have the isomorphism

i� W K
0
G;sm.M/! K0G.M/

ŒE; F; �� 7! ŒE; F; ��:

For the proof, we need the following lemma.

Lemma 2.9. Let M and S satisfy the condition in Theorem 2.8. Let ŒE� 2 K0G;sm.M/,
where E is a G-equivariant smooth vector bundle over M . There is an isomorphism from
K0G;sm.M/ to K0H;sm.S/:

r� W K
0
G;sm.M/! K0H;sm.S/

ŒE� 7! ŒEjS �:

Proof. It is clear that r� is a homomorphism from K0G;sm.M/ to K0H;sm.S/. For any H -
equivariant bundle F over S , the balanced product of G with F over H is the space
G �H F D .G � F /=H , whereH acts onG � F via .g; f / � hD .gh; h�1f /. The space
G �H F is a smooth vector bundle over G �H S . Let G act on G � F via g0 � .g; f / D
.g0g;f / for g0; g 2 G and f 2 F , and this action descends to an action ofG onG �H F
since it commutes with the action ofH onG � F , which makesG �H F aG-equivariant
vector bundle over G �H S . Thus, we have

"� W K
0
H;sm.S/! K0G;sm.G �H S/

ŒF � 7! ŒG �H F �:

Let � W G �H S !M be the action map. Since it is a G-equivariant diffeomorphism,
it induces an isomorphism:

�� W K0G;sm.M/! K0G;sm.G �H S/:

Similarly, � W H �H S ! S is an H -equivariant diffeomorphism. Thus, it induces an
isomorphism:

�� W K0H;sm.S/! K0H;sm.H �H S/:
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Since the following diagram commutes:

K0G;sm.M/ K0H;sm.S/

K0G;sm.G �H S/ K0H;sm.H �H S/;

r�

�� "�
��

r�

the left vertical arrow being isomorphic implies that "� is surjective. Since the right ver-
tical arrow is also isomorphic, "� is injective. Thus, "� is a isomorphism. Then, r� is an
isomorphism, which completes the proof.

Then, we will prove Theorem 2.8.

Proof of Theorem 2.8. The following diagram commutes:

K0G;sm.M/
r� //

i�

��

K0H;sm.S/

i�

��

K0G.M/
r� // K0H .S/:

The right-hand vertical arrow is isomorphic because of [15, Proposition A.4] and horizon-
tal arrows are isomorphisms by Lemma 2.9 and [10, Corollary 8.5]. Thus,

i� W K
0
G;sm.M/! K0G.M/

is an isomorphism.

2.2. Equivariant cohomology

In this subsection, we recall some basic definitions and theorems of equivariant cohomol-
ogy and equivariant characteristic classes, which can be found in [7, 18].

First, we recall the definition of equivariant cohomology. Let M be a C1-manifold
with an action of a Lie group G, and let g be the Lie algebra of G. For any g 2 G, the
conjugation map Cg W G ! G given by Cg.h/ D ghg�1 is a Lie group homomorphism,
and denote by g� D .Cg/� W g! g the induced Lie algebra homomorphism.

Definition 2.10. Let ƒT �M be the bundle of exterior differentials over M . The space of
sections �.M;ƒT �M/ is called the space of differential forms, denoted by A.M/. Let
A1.g; M/ be the algebra of G-invariant smooth maps ˛ W g! A.M/. For any ˛; ˇ 2
A1.g;M/ andX 2 g, the multiplication is given by ˛ � ˇ.X/D ˛.X/^ ˇ.X/. The group
G acts on an element ˛ 2 A1.g;M/ by the formula

.g � ˛/.X/ D g � .˛..g�1/�.X///

for any g 2 G and X 2 g. The map ˛ is G-invariant if it satisfies .˛/.g�.X// D g � ˛.X/
for any X 2 g. The Z2-grading of A1.g;M/ is the grading induced by the Z2-grading
of A.M/.
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Thus, the equivariant differential can be defined as follows.

Definition 2.11 ([18]). The group G acts on C1.M/ by the formula

.g � �/.x/ D �.g�1x/:

For X 2 g, we denote by XM the vector field on M given by

.XM � �/.x/ D
d

dt
�.exp.�tX/x/jtD0:

Let the equivariant differential dg be given by dg.˛/.X/ D d.˛.X// � �.X/.˛.X// for
any ˛ 2 A1.g;M/ and X 2 g, where �.X/ denotes contraction by the vector field XM .

Since d2g .˛/ D 0 for all ˛ 2 A1.g; M/ which makes .A1.g; M/; dg/ a cochain
complex, we obtain the following definition.

Definition 2.12 ([18]). Let H1.g; M/ WD Ker.dg/=Im.dg/ be the cohomology of the
complex .A1.g;M/; dg/, called the equivariant cohomology of the G-manifold M .

Next, we recall the notion of equivariant superconnections which is useful for describ-
ing equivariant characteristic classes. A G-equivariant smooth vector bundle

E D EC ˚E�

is a G-equivariant smooth superbundle if EC and E� are G-equivariant vector bundles.
Let A.M;E/ denote the space of differential forms onM with values inE. In other words,
A.M; E/ D �.M;ƒT �M ˝ E/. Similarly, we denote by A1.g; M; E/ the Z2-graded
algebra of G-invariant smooth maps ˛ W g! A.M;E/.

Definition 2.13. A superconnection on E is an odd-parity first-order differential operator
A W A˙.M;E/! A�.M;E/ which satisfies Leibniz’s rule in the Z2-graded sense.

A superconnection A on theG-equivariant vector bundleE is aG-invariant supercon-
nection if it commutes with the action of G on A.M;E/. Such G-invariant superconnec-
tions induce equivariant superconnections.

Definition 2.14. The equivariant superconnection Ag associated to a G-invariant super-
connection A is the operator on A1.g;M;E/ defined by

.Ag˛/.X/ WD .A � �.X//.˛.X//; X 2 g;

where �.X/ denotes the contraction operator �.XM / on A.M;E/.

Then, an equivariant superconnection induces an equivariant (super)curvature.

Definition 2.15. Let Ag be an equivariant superconnection on a G-equivariant vector
bundle E. We denote the equivariant curvature �g by the formula

�g.X/ WD Ag.X/
2
CLE .X/; X 2 g;

where Ag.X/ D A � �.X/ and, for any s 2 �.M;E/, LE .X/s D d
dt
jtD0 exp.t �X/ � s.
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Remark 2.16. Every G-equivariant vector bundle E is Z2-graded where

EC Š E and E� Š ¹0º:

Because of this, any G-invariant connection is a G-invariant superconnection under this
special Z2-grading. Thus, everyG-invariant connection induces aG-equivariant curvature.

In the special case when the invariant superconnection A on the equivariant bundle
E is just a connection r, the inverse of an equivariant yA-genus yAg.r/ can be defined as
follows.

Definition 2.17 ([7]). Let E be a G-equivariant vector bundle with a G-invariant metric
and a G-invariant connection r compatible with the metric. Denote the inverse of an
equivariant yA-genus by

yA�1g .E/.X/ D det1=2
�

sinh.�g.X/=2/

�g.X/=2

�
and the inverse of an invariant yA-genus by

yA�1G .E/ D
yA�1g .E/.0/:

The equivariant cohomology will be used to define the equivariant Chern character
from K0G;sm.M/ to H1.g; M/, where M is a proper G-compact manifold. Next, we
recall the relative equivariant cohomology, which will be used to define the equivariant
Chern character from K0G;sm.V / to H1cv .g; V /, where V is a G-equivariant vector bundle
over a proper G-compact manifoldM andH1cv .g; V / is the equivariant cohomology with
compact support in the fiber direction.

Let M be a G-manifold and K be a closed G-invariant subset of M . The relative
equivariant complex can be given as follows.

Definition 2.18 ([18]). Consider the complex .A1.g;M;MnK/;Drel/, where

A1.g;M;MnK/ D A1.g;M/˚A1.g;MnK/

and differential is given by

Drel.˛; ˇ/ D .dg˛; ˛jMnK � dgˇ/:

As before, .A1.g; M;MnK/;Drel/ is a cochain complex so that we can define the
relative equivariant cohomology.

Definition 2.19 ([18]). We name the cohomology associated to the complex
.A1.g;M;MnK/;Drel/ as the relative equivariant cohomology spaceH1.g;M;MnK/.

In order to define an equivariant Chern character later, we give a homomorphism from
H1.g; V;V nF / toH1cv .g; V / as in [18]. As before, letM be aG-compact manifold by a
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proper action of a Lie group G and V is a G-equivariant vector bundle over M . Let F be
a G-invariant closed subset of V such that F is a subset of some G-compact subset of V .
We say that � is an F -cutoff function if

(1) � 2 C1.V /G , where C1.V /G is the space of G equivariant smooth function
on V ,

(2) 1 � � � 0; �jF D 1,

(3) supp.�/ is G-compact.

Remark 2.20. When M is a G-compact manifold and the group action is proper, every
G-equivariant vector bundle V over M has a G-invariant Hermitian metrics h ; i. For any
smooth function f on R with compact support satisfying 1 � f � 0; f .0/ D 0,

�.v/ D f .hv; vi/

for any v 2 V is an M -cutoff function.

Definition 2.21. For an F -cutoff function �, define the map

P� W A
1.g; V; V nF /! A1cv.g; V /

.˛; ˇ/ 7! �˛ C d� ^ ˇ;

called a cutoff map.

Proposition 2.22. The cutoff map induces a homomorphism from H1.g; V; V nF / to
H1cv .g; V /.

Proof. First, we show that if .˛; ˇ/ is closed, then P�.˛; ˇ/ is closed.
We have

dg.�˛ C d� ^ ˇ/ D dg.�˛/ � d� ^ dgˇ

D .d�/˛ C �dg˛ � d� ^ dgˇ

D .d�/.˛ � dgˇ/C �dg˛

D 0:

The last equality follows from .˛; ˇ/ being closed, which means

.0; 0/ D Drel.˛; ˇ/ D .dg˛; ˛jV�F � dgˇ/:

Next, we show that if .˛1; ˇ1/; .˛2; ˇ2/ 2 H�.g; V; V nF /, then

P�.˛1; ˇ1/ D P�.˛2; ˇ2/:

If Œ.˛1; ˇ1/� D Œ.˛2; ˇ2/�, then, setting ˛ D ˛1 � ˛2 and ˇ D ˇ1 � ˇ2, we have

.0; 0/ D Drel.˛; ˇ/ D .dg˛; ˛jV�F � dgˇ/:
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Then,

P�.˛1; ˇ1/ � P�.˛2; ˇ2/ D �.˛1 � ˛2/C d� ^ .ˇ1 � ˇ2/

D �.dg˛/C d� ^ .˛ � dgˇ/

D dg.�˛/ � d� ^ ˛ C d� ^ ˛ � dg.�dgˇ/

D dg.�.˛ � dgˇ//:

The cutoff map is additive. Hence, the cutoff map induces a homomorphism from
H�.g; V; V nF / to H�cv.g; V /.

Remark 2.23. The cohomology class of P�.˛; ˇ/ does not depend on the choice of �.
That is, because for two different choices �1 and �2, we have

P�1.˛; ˇ/ � P�2.˛; ˇ/ D dg..�1 � �2/ˇ/:

Because of Remark 2.23, we denote the cutoff map fromH�.g;V;V nF / toH�cv.g;V /
as PF .

3. Equivariant Chern character

In this section, we introduce equivariant Chern characters. Let G be an almost connected
Lie group; i.e., its component group is compact. Let M be a G-compact proper G-space.
For any G-equivariant superbundle E D EC ˚E� and an equivariant supercurvature�g

on E, the supertrace on End.E/ extends to a map Str WA.M;E/!A.M/. Then, we can
define a map from K0G;sm.M/ to the equivariant cohomology H1.g;M/ as follows.

Definition 3.1. There is a homomorphism from K0G;sm.M/ to H1.g;M/:

chG W K
0
G;sm.M/! H1.g;M/

ŒEC; E�; �� 7! Str.exp�g/;

where � is a G-equivariant isomorphism from EC to E� outside a G-compact subset of
M and for any X 2 g, Str.exp�g/.X/ D Str.exp�g.X//.

Remark 3.2. In the case that M is G-compact, � can be chosen to be a G-equivariant
isomorphism with empty support. Any pair of G-equivariant vector bundles E, F gives
rise to aK-theory element ŒE;F; ��. Therefore, chGŒE;F; �� is independent of the choice
of � . The cohomology class of Str.exp�g/ is independent of the choice of theG-invariant
superconnection A, which is proved in [7, Theorem 7.7].

Proof. We will show that the equivariant Chern character is well defined. Suppose that
ŒE1; F1; �1� and ŒE2; F2; �2� define the same class in K0G;sm.M/. There exist smooth
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G-equivariant vector bundles H1, H2 and smooth G-equivariant isomorphisms a, b such
that

a W E1 ˚H1 ! E2 ˚H2;

b W F1 ˚H1 ! F2 ˚H2:

Let A D
�
rE1 0
0 rF1

�
, where rE1 and rF1 are G-invariant connections on vector bundles

E1 and F1, respectively. Thus, A becomes a G-invariant superconnection. Let �g denote
the equivariant curvature induced by A and �E1g , �F1g induced by rE1 and rF1 , respec-
tively. Thus, for any X 2 g, we have

chGŒE1; F1; �1�.X/ D Str.exp.�g.X///

D Str

 
exp

  
�
E1
g .X/ 0

0 �
F1
g .X/

!!!
:

Let rH1 be the G-invariant connection of H1 and �H1g be the G-equivariant curvature
induced by rH1 . Similarly, we have

chGŒE1 ˚H1; F1 ˚H1; �1 ˚ IdH1 �.X/

D Str

0BBB@exp

0BBB@
0BBB@
�
E1
g .X/ 0 0 0

0 �
H1
g .X/ 0 0

0 0 �
F1
g .X/ 0

0 0 0 �
H1
g .X/

1CCCA
1CCCA
1CCCA

D Str

 
exp

  
�
E1
g .X/ 0

0 �
F1
g .X/

!!!
for any X 2 g. Thus, we obtain

chGŒE1; F1; �1� D chGŒE1 ˚H1; F1 ˚H1; �1 ˚ IdH1 �:

Similarly, we have

chGŒE2; F2; �2� D chGŒE2 ˚H2; F2 ˚H2; �2 ˚ IdH2 �:

The smooth G-equivariant isomorphisms a and b induce a G-equivariant isomorphism:�
a 0

0 b

�
W E1 ˚H1 ˚ F1 ˚H1 ! E2 ˚H2 ˚ F2 ˚H2:

Because M is G-compact and �1 ˚ IdH1 and �2 ˚ IdH2 play no role, we have

chGŒE1 ˚H1; F1 ˚H1; �1 ˚ IdH1 � D chGŒE2 ˚H2; F2 ˚H2; �2 ˚ IdH2 �:

Therefore, chG ŒE1; F1; �1� D chG ŒE2; F2; �2�.
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Then, we define an equivariant Chern character from K0G;sm.V / to H1cv .g; V /, where
V is a G-equivariant vector bundle over a G-compact manifold M such that the action
of G on M is proper. It is a little different from the above case. First, we recall Quillen’s
relative equivariant Chern character defined by Paradan and Vergne in [18].

Definition 3.3 ([18], Quillen’s equivariant relative Chern character). Let .E; F; �/ be a
smooth K-cocycle for .G; V /, A a G-invariant superconnection of E ˚ F , and �g the
equivariant curvature induced by A. There exists a cohomology class chQ.E; F; �/ WD
Œ.ch.A/; ˇ/� 2 H�.g; V; V nsupp.�// which is independent of the choice of A and the
G-invariant Hermite metric of E ˚ F such that

ch.A/ D Str.exp.�g//

ˇ D �

Z C1
0

Str
�
i

�
0 ��

� 0

�
exp

�
�t2 C i t

�
A;

�
0 ��

� 0

��
C�g

��
dt:

Then, we use Quillen’s relative equivariant Chern character to define the equivariant
Chern character from K0G;sm.V / to H1cv .g; V /.

Definition 3.4 (Equivariant Chern character). The equivariant Chern character is given by

chG W K
0
G;sm.V /! H1cv .g; V /

ŒE; F; �� 7! Psupp.�/ ı chQ.E; F; �/:

To show that the equivariant Chern character is well defined, we need to prove that if
ŒE1; F1; �1� D ŒE2; F2; �2� 2 K

0
G.V /, then

Psupp.�1/ ı chQ.E1; F1; �1/ D Psupp.�2/ ı chQ.E2; F2; �2/:

For the proof, and in later arguments, we need two lemmas.

Lemma 3.5. For any ŒE;F;��2K0G;sm.V /, let the restriction of � WE!F to V nsupp.�/
be unitary. Then, for any ˛; 
 2 A.V /, A;C 2 End.E/ and n 2 NC, we have

Str

 
i

�
0 ��

� 0

��
˛ ˝

�
0 A��

�A 0

�
C 
 ˝

�
C 0

0 �C��

��n!
D 0

outside supp.�/.

Proof. By induction, it can be concluded that

i

�
0 ��

� 0

��
˛ ˝

�
0 A��

�A 0

�
C 
 ˝

�
C 0

0 �C��

��n
can be represented as a linear combination of ˛i ˝

�
0 Ai�

�

�Ai 0

�
and 
i ˝

�
Ci 0
0 �Ci�

�

�
, where

˛i ; 
i 2 A.M/, Ai ; Ci 2 End.E/ for some i 2 NC.



Index theorem for homogeneous spaces of Lie groups 1457

The lemma is then proved because

Str
�
˛i ˝

�
0 Ai�

�

�Ai 0

��
D Str

�

i ˝

�
Ci 0

0 �Ci�
�

��
D 0

holds outside supp.�/.

Lemma 3.6. For any K-cocycle ŒE; F; �� 2 K0G;sm.V /, there exist a suitable supercon-
nection A and a suitable metric such that

chGŒE; F; �� D �ch.A/:

Proof. First, we choose a G-invariant metric on E ˚ F , which makes � W E! F unitary
outside supp.�/, and a G-invariant superconnection A D

�
rE 0
0 rF

�
, where rE and rF

are G-invariant connections on vector bundles E and F , respectively, and satisfy rE D
� ı rF ı �� outside supp.�/.

Then, we claim that chGŒE; F; �� D �ch.A/. Indeed, we have

chGŒE; F; �� D �ch.A/C d.�/ ^ ˇ;

where

ˇ.X/ D �

Z C1
0

Str
�
i

�
0 ��

� 0

�
exp

�
�t2 C i t

�
A;

�
0 ��

� 0

��
CA2 C �A.X/

��
for any X 2 g.

To prove our claim, we only need to show ˇ.X/ D 0 outside supp.�/.
Without loss of generality, let rE D d C !E , where !E 2 A1.V; End.E//. Thus,

A D
�
dC!E 0

� �.dC!E /��

�
. For any ˛ ˝ s 2 A.V; E/, where ˛ is homogeneous (which

means there exists i 2 NC such that ˛ 2 Ai .V /), we have�
A;

�
0 ��

� 0

��
.˛ ˝ s/ D A ı

�
0 ��

� 0

�
.˛ ˝ s/C

�
0 ��

� 0

�
ıA.˛ ˝ s/

D A

�
.�1/deg.˛/˛ ˝

�
0 ��

� 0

�
s

�
C

�
0 ��

� 0

�
.d˛ ˝ s C .�1/deg.˛/˛ ^As/

D 0:

Here, �
A;

�
0 ��

� 0

��
D A ı

�
0 ��

� 0

�
C

�
0 ��

� 0

�
ıA;

and for any ˛ ˝ s 2 A.V;E/, where ˛ is homogeneous,�
0 ��

� 0

�
.˛ ˝ s/ D .�1/deg.˛/˛ �

�
0 ��

� 0

�
s:
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Now, restrict ˇ outside supp.�/; then, for any X 2 g, we have

ˇ.X/ D �

Z 1
0

Str
�
i

�
0 ��

� 0

�
exp

�
�E .X/ � t2 0

0 �.�E .X/ � t2/��

��
dt;

where �E .X/ D .rE /2 CLE .X/ � rXM . Here,�
�E .X/ � t2 0

0 �.�E .X/ � t2/��

�
can be written in the form of 
 ˝

�
C 0
0 �C��

�
, where 
 2 A.M/ and C 2 End.E/.

Because of Lemma 3.5, we have

ˇ.X/ D �

Z 1
0

Str
�
i

�
0 ��

� 0

�
exp

�
�E .X/ � t2 0

0 �.�E .X/ � t2/��

��
dt

D �

Z 1
0

Str
�
i

�
0 ��

� 0

�
exp

�

 ˝

�
C 0

0 �C��

���
dt

D �

C1X
kD0

Z 1
0

Str

 
i

�
0 ��

� 0

�
1

kŠ

�

 ˝

�
C 0

0 �C��

��k!
dt

D 0:

To show that the equivariant Chern character is well defined, we need to prove that if
ŒE1; F1; �1� D ŒE2; F2; �2� 2 K

0
G;sm.V /, then

Psupp.�1/ ı chQ.E1; F1; �1/ D Psupp.�2/ ı chQ.E2; F2; �2/:

First, we claim the following proposition.

Proposition 3.7. For two finite-dimensionalK-cocycles ŒE1;F1; �1�, ŒE2;F2; �2�, if there
exist two G-equivariant isomorphisms:

a W E1 ! E2;

b W F1 ! F2

such that b�1 ı �2 ı a D �1 outside a G-compact subset B of V , then

Psupp.�1/ ı chQ.E1; F1; �1/ D Psupp.�2/ ı chQ.E2; F2; �2/:

Proof. Let F denote the union of supp.�1/; supp.�2/, and B .
Using the G-compact set F , we construct an F -cutoff function which we denote as �.

By choosing an appropriate metric, one can assume a and b to be unitary. In fact, fixing
a G-invariant metric on E1, we can construct a G-invariant metric on E2 by pulling back
the one on E1 through a�1. It is easy to check that a is unitary with respect to these two
metrics.



Index theorem for homogeneous spaces of Lie groups 1459

Let A1 D
�
rE1 0
0 rF1

�
;A2 D

�
arE1a� 0

0 brF1b�

�
be superconnections on E1 ˚ F1 and

E2 ˚ F2, respectively. We have

chGŒE1; F1; �1� � chGŒE2; F2; �2� D �.ch.A1/ � ch.A2//C d�.ˇ1 � ˇ2/

.by conjugation/ D d�.ˇ1 � ˇ2/:

Since ˇ1 D ˇ2 outside of F up to conjugation, we have d�.ˇ1 � ˇ2/ D 0. Therefore,
chGŒE1; F1; �1� D chGŒE2; F2; �2�, which completes the proof.

Therefore, we have the following theorem.

Theorem 3.8. The equivariant Chern character in Definition 3.4 is well defined.

Proof. Because of Lemma 3.6, for every X 2 g, we have

chGŒE ˚H;F ˚H; � ˚ IdH �.X/

D �Str

0BB@exp

0BB@
�E .X/ 0 0 0

0 �H .X/ 0 0

0 0 �F .X/ 0

0 0 0 �H .X/

1CCA
1CCA

D �Str
�

exp
�
�E .X/ 0

0 �F .X/

��
D chGŒE; F; ��.X/:

Suppose ŒE1;F1;�1�D ŒE2;F2;�2�2K0G.V /. This means that there exist twoG-equivari-
ant vector bundles H1, H2 and two G-equivariant isomorphisms:

a W E1 ˚H1 ! E2 ˚H2 b W F1 ˚H1 ! F2 ˚H2

such that b�1 ı .�2 ˚ IdH2/ ı a D �1 ˚ IdH1 outside a G-compact set of V . Because of
Lemma 3.6 and Proposition 3.7, we have

chGŒE1; F1; �1� D chGŒE1 ˚H1; F1 ˚H1; �1 ˚ IdH1 �

D chGŒE2 ˚H2; F2 ˚H2; �2 ˚ IdH2 �

D chGŒE2; F2; �2�:

The theorem is then proved.

Because of Lemma 3.6, we claim that the equivariant Chern character is additive.

Proposition 3.9. The equivariant Chern character in Definition 3.4 is additive.

Proof. For ŒE0; F0; �0�, ŒE1; F1; �1� 2 K0G.V /, we need to prove that

chG.ŒE0; F0; �0�˚ ŒE1; F1; �1�/ D chGŒE0; F0; �0�C chGŒE1; F1; �1�:
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We choose � to be a supp.�0/ [ supp.�1/-cutoff function. Because of Lemma 3.6, we
have suitable superconnections A0 D

� rE0 0

0 rF0

�
and A1 D

� rE1 0

0 rF1

�
, where

rE0 D �0 ı rF0 ı �
�
0

outside supp.�0/ and rE1 D �1 ı rF1 ı �
�
1 outside supp.�1/ such that

chGŒE0; F0; �0� D �ch.A0/ and chGŒE1; F1; �1� D �ch.A1/:

Therefore, for any X 2 g, we have

chG.ŒE0; F0; �0�˚ ŒE1; F1; �1�/.X/

D chGŒE0 ˚E1; F0 ˚ F1; �0 ˚ �1�.X/

D �ch

0BB@
�E0 0 0 0

0 �E1 0 0

0 0 �F0 0

0 0 0 �F1

1CCA .X/

D �Str

0BB@exp

0BB@
�E0.X/ 0 0 0

0 �E1.X/ 0 0

0 0 �F0.X/ 0

0 0 0 �F1.X/

1CCA
1CCA

D �ch.A0/.X/C �ch.A1/.X/

D chGŒE0; F0; �0�.X/C chGŒE1; F1; �1�.X/:

The proposition is then proved.

We can also deduce that the equivariant Chern character is multiplicative.

Proposition 3.10. The equivariant Chern character in Definition 3.4 is multiplicative.

Proof. For ŒE0; F0; �0�, ŒE1; F1; �1� 2 K0G.V /, we need to prove that

chG.ŒE0; F0; �0� � ŒE1; F1; �1�/ D chGŒE0; F0; �0� ^ chGŒE1; F1; �1�:

We choose �i to be a supp.�i /-cutoff function, i D 0; 1. Thus, we can see that �D �0 � �1
is a supp.�0/\ supp.�1/-cutoff function. Indeed, if we choose A0 D

�rE0 0

0 rF0

�
and A1 D�rE1 0

0 rF1

�
, whererE0 D �0 ırF0 ı �

�
0 outside supp.�0/ andrE1 D �1 ırF1 ı �

�
1 outside

supp.�1/ such that
chGŒE0; F0; �0� D �0ch.A0/

and
chGŒE1; F1; �1� D �1ch.A1/;
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we can define a superconnection A0 ˝ IdE0˚F0 C IdE1˚F1 ˝ A1 on the superbundle
.E0 ˚ F0/˝ .E1 ˚ F1/. Therefore, we have

chG.ŒE0; F0; �0� � ŒE1; F1; �1�/

D chGŒE0 ˝E1 ˚ F0 ˝ F1; F0 ˝E1 ˚E0 ˝ F1; ��

D �ch.A0 ˝ IdE0˚F0 C IdE1˚F1 ˝A1/

D �0ch.A0/ ^ �1ch.A1/

D chGŒE0; F0; �0� ^ chGŒE1; F1; �1�:

The proposition is then proved.

So far, we have verified the well-definedness of equivariant Chern characters and
proved that they are additive and multiplicative. Next, we will explain that, in special
cases, these maps give rise to homomorphisms from equivariant K-theory to equivariant
cohomology.

If M satisfies the conditions in Theorem 2.8, then i� is an isomorphism from
K0G;sm.M/ to K0G.M/. Then, we can define the equivariant Chern character as follows:

chG ı .i�/�1 W K0G.M/! H1.g;M/: (3.1)

We also denote this map by chG .
Next, when the G-equivariant bundle � W V ! M has a G-Spin structure and even

rank. (Here, M needs to satisfy the conditions in Theorem 2.8.) According to [22, Theo-
rem 8.11], there is a Thom isomorphism:

i Š W K0G.M/! K0G.V /

ŒE�! ��.E/ � Œ��.SCV /; �
�.S�V /; �C�;

where SV D SCV ˚ S
�
V is the equivariant spinor bundle over M . We denote by �Š the

inverse of i Š.
Then, we can define the Thom homomorphism i Š fromK0G;sm.M/ toK0G;sm.V / in the

same way. Unfortunately, this map is not necessarily isomorphic. But it is injective when
M satisfies the conditions in Theorem 2.8. Note that the following diagram commutes:

K0G;sm.M/
iŠ //

i�

��

K0G;sm.V /

i�

��

K0G.M/
iŠ // K0G.V /:

Since the left vertical arrow and the lower horizontal arrow are both isomorphic, the higher
horizontal arrow is injective and the right vertical arrow is surjective.
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Because of that, i� restricted to the image Im.i Š/ of i Š W KG;sm.M/! KG;sm.V / is
an isomorphism. Then, we can define the equivariant Chern character as follows:

chG ı .i�/�1 W K0G.V /! H1cv .g; V /: (3.2)

Similarly, we denote it by chG .

4. Equivariant Riemann–Roch formula

In this section, we aim to prove the equivariant Riemann–Roch formula, the first main
result of the paper.

Theorem 4.1. Let G be an almost connected Lie group, M a proper G-compact space
satisfying conditions in Theorem 2.8, and V a G-equivariant vector bundle over M of
even rank with an equivariant spin structure. The following diagram commutes:

K0G.V /
�Š //

chG

��

K0G.M/

.2�i/n=2�chG^ yA
�1
g .V /

��

H1cv .g; V /
�Š // H1.g;M/;

where yAg.V /
�1 is the inverse of the equivariant yA-genus in Definition 2.17, rank.V /D n,

chG on the left is defined in (3.2), chG on the right is defined in (3.1), and �Š WH1cv .g;V /!
H1.g;M/ is the homomorphism induced by integration over the fiber.

In [18], Paradan and Vergne proved the equivariant Riemann–Roch formula when G
is compact. Here, we apply the spirit of their proof and combine methods established by
Mathai and Quillen in [16] to prove Theorem 4.1.

Recall that V is an equivariant bundle over M with an equivariant spin structure. We
denote by SV the equivariant Spin-bundle over M associated to V .

First, we recall basic facts about Clifford algebras, spinors, and supertraces, which can
be found in [16].

Let the natural number n be even. The Clifford algebra Cn may be defined as the
superalgebra with odd generators 
1; : : : ; 
n subject to the relations

Œ
j ; 
k � D 2ıjk :

Clearly Cn has a basis consisting of 2n monomials


I D 
i1 � � � 
ip ; I D ¹i1; : : : ; ipº; i1 < � � � < ip;

where I runs over the subsets of ¹1; : : : ; nº and jI j is the cardinality of I . For all subsets
of ¹1; : : : ; nº that appear in this article, we assume that the elements of it are arranged in
increasing order.
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There is a supertrace on Cn such that, for any I � ¹1; : : : ; nº,

Str.
I / D

´
0; I < ¹1; : : : ; nº;

.2i/n=2; I D ¹1; : : : ; nº:

Let 
 D .
i /niD1 be the column vector with entries in Cn. Then, we have a map:

c W Cn
! Cn; c.z/ D izt
:

According to [16, Proposition 2.10], we have the following lemma.

Lemma 4.2 ([16]). For any skew-symmetric matrix !, we denote

1

2

 t!
 D

X
i<j

wij 
i
j :

Thus, we have

Str
�

exp
�
1

2

 t!


��
D .2i/

n
2 det1=2

�
sinh.!/
!

�
Pf.!/:

And for later arguments, we need the following lemma.

Lemma 4.3. For any z 2 Cn, we have

Str
�
c.z/ exp

�
1

2

 t!


��
D 0:

Proof. Note that exp.1
2

 t!
/D

P1
mD1

1
mŠ
.
P
i<j !ij 
i
j /

m. Since 1
mŠ
.
P
i<j !ij 
i
j /

m

is even in the Clifford algebra, c.z/ 1
mŠ
.
P
i<j !ij 
i
j /

m is odd.
Because of this, we have

Str
�
c.z/ exp

�
1

2

 t!


��
D

1X
mD1

Str
�
c.z/

1

mŠ

�X
i<j

!ij 
i
j

�m�
D 0:

Next, we will study more general superalgebras. Let A D ^ŒJ1; : : : ; Jn� denote the
exterior algebra generated by J1; : : : ; Jn. It is the free commutative superalgebra with the
odd generators Ji . When I runs over all subsets of ¹1; 2; : : : ; nº,

J I WD 
i1 � � � 
ijI j ; I D ¹i1; : : : ; ijI jº; i1 < � � � < ijI j

constitute a basis of A. If we work in the tensor product superalgebra A˝ Cn, where A
is a commutative superalgebra, then the supertrace of Cn can be extended to an A-linear
map

Str W A˝ Cn ! A

! ˝ ˛ 7! !Str.˛/:

Because A is commutative, this ‘relative’ supertrace satisfies the basic property that,
for any homogeneous elements ab 2 A˝ Cn, Str.ab/ D .�1/jajjbjStr.ba/.

Then, we can prove the following theorem.
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Theorem 4.4. Let 
 D .
i /niD1 and J D .Ji /ni be vectors with entries inCn andA, respec-
tively. Then,

Str

  
nX
iD1


i

!
� exp

�
1

2

 t!
 C J t


�!

D .2i/
n
2 � det

�
sinh!
!

� 1
2

�

 
nX
kD1

X
I 0

X
I

.�1/
jI jC1
2 ck".I [ ¹kº; I

0/"I[¹kº.¹kº; I /Pf.!I 0/J I
!
;

where I and I 0 run over all subset of ¹1; 2; 3; : : : ; nº. For any A;B � ¹1; 2; 3; : : : ; nº, if
A \ B ¤ ; or A [ B ¤ ¹1; 2; 3; : : : ; nº, then ".A; B/ D 0. If A [ B D ¹1; 2; 3; : : : ; nº,
then ".A;B/ is defined by

JAJB D ".A;B/J ¹1;2;3;:::;nº:

For anyA;B�¹1;2; 3; : : : ; nº, ifA\B¤;, then "A[B.A;B/D0. Otherwise, "A[B.A;B/
is defined by

JAJB D "A[B.A;B/J
A[B :

The proof of the above theorem splits into two lemmas. The first one comes from [16,
Lemma 2.21].

Lemma 4.5 ([16]). IfK1;K2; : : : ;Kn are odd elements ofA, then, for any s 2R, we have

exp.sKt
/
i exp.�sKt
/ D 
i C 2sKi :

The second lemma is a technical lemma to be proved in Appendix B.

Lemma 4.6. For any n � n skew-symmetric matrix ! D ¹!ji º, we have 
nX
kD1

ck!.J /k

!
exp

�
1

2
J t!J

�
D

nX
kD1

X
I

ck"I[¹kº.¹kº; I /Pf.!I[¹kº/J I ;

where !.J /k D !lkJl .

Now, we will prove Theorem 4.4.

Proof of Theorem 4.4. Let K D �!�1.J /; we have

Str

  
nX
iD1


i

!
� exp

�
1

2

 t!
 C J t


�!

D Str

  
nX
iD1


i

!
� exp

�
1

2
.
 � !�1.J //t!.
 � !�1.J //

�!
� exp

�
1

2
J t!�1J

�
D Str

  
nX
iD1


i

!
� exp

�
1

2
Kt


�
� exp

�
1

2

 t!


�
� exp

�
�
1

2
Kt


�!
� exp

�
1

2
J t!�1J

�
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D Str

 
exp

�
�
1

2
Kt


�
�

 
nX
iD1


i

!
�exp

�
1

2
Kt


�
�exp

�
1

2

 t!


�!
� exp

�
1

2
J t!�1J

�
D Str

  
nX
iD1


i

!
exp

�
1

2

 t!


�!
� exp

�
1

2
J t!�1J

�
C Str

  
nX
iD1

!
!�1.J /i � exp

�
1

2

 t!


�!
� exp

�
1

2
J t!�1J

�
D Str

 
exp

�
1

2

 t!


�!
�

 
nX
iD1

!�1.J /i

!
� exp

�
1

2
J t!�1J

�
D .2i/

n
2 � det

�
sinh!
!

� 1
2

�

 
nX
kD1

X
I 0

X
I

.�1/
jI jC1
2 ck".I [ ¹kº; I

0/"I[¹kº.¹kº; I /Pf.!I 0/J I
!
:

The first equality holds because

1

2

 t!
 C J t
 D

1

2
.
 � !�1.J //t!.
 � !�1.J //C

1

2
J t!�1J;

where the second term on the right is an even element, so it commutes (strictly) with the
first term. By Lemma 4.5, we have

1

2
.
 � !�1.J //t!.
 � !�1.J // D exp

�
1

2
Kt


�
� exp

�
1

2

 t!


�
� exp

�
�
1

2
Kt


�
;

and then, the second equality holds.
Because exp.1

2
Kt
/ has an even degree, the third equality holds by the property of

the supertrace.
The fourth equality holds because of Lemma 4.5. Since Lemma 4.3 implies that

Str

  
nX
iD1


i

!
exp

�
1

2

 t!


�!
� exp

�
1

2
J t!�1J

�
D 0;

the fifth equality holds.
Finally, the last equality is obtained by Lemma 4.2 and Theorem 4.4.

Remark 4.7. In [16], Mathai and Quillen have proved that

Str
�

exp
�
1

2

 t!
 C J t


��
D .2i/n=2 � det

�
sinh!
!

� 1
2

�

�X
I even

".I; I 0/.�1/
1
2 jI
0jPf.!I /J I

0
�
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still holds when ! is a skew-symmetric matrix with entries in the even part of A and J
is a vector with entries in the odd part of A, where either the entries of ! are nilpotent
or A is a Banach algebra. After a similar argument, Theorem 4.4 still holds when ! is a
skew-symmetric matrix with entries in the even part of ^J since ^J is a Banach algebra.

Finally, we will prove Theorem 4.1.

Proof of Theorem 4.1. We only need to show that, for Œ��SCV ; �
�S�V ; �

��� 2K0G.V /, we
have

chG.Œ�
�SCV ; �

�S�V ; �
���/ D .2�i/n=2��. yAg.V /

�1/Ug.V /;

where Ug.V / is an equivariant Thom form.
Let rSV WD d C ! be the equivariant connection on SV associated with a connection

on V . Consider the equivariant morphism � W SCV ! S�V defined by

�.x/ WD �ic.x/ W SC ! S�

for x 2 V .
Let A D ��rSV be the invariant superconnection on ��SV . Then, for every X 2 g,

we have
chGŒ�

�SCV ; �
�S�V ; �

���.X/ D �ch.A/.X/C d�ˇ.X/;

where

ˇ.X/ D �

Z 1
0

Str.c.x/ exp.�t2kxk2 C ŒA; c.x/�CA2 C �A.X///: (4.1)

For everym2M , choose a local frame e1; e2; : : : ; en nearm. To simplify the notations,
we denote z�.X/ D A2 C �A.X/ and i � 
 D .c.e1/; : : : ; c.en//t . Thus, let �.X/ be the
equivariant curvature of V ; we have z�.X/ D �1

4

 t�.X/
 .

Because of [16, Proposition 2.10], for a skew-symmetric matrix !, Str.e
1
2 


t!
 / D

.2i/
n
2 det

1
2 . sinh!

!
/Pf.!/, we have

�ch.A/.X/ D �Str.exp. z�.X///

D Str
��

exp
�
�
1

4

 t�.X/


���
D �.2�i/

n
2 yA.��.X//�1Pf

�
�
�.X/

2�

�
D �.2�i/

n
2 yA.�.X//�1Pf

�
�
�.X/

2�

�
:

Using the local frame, ˇ.X/ in (4.1) can be rewritten as

�

Z 1
0

Str
�
†

�
xpc.ep/ exp

�
�t2kxk2 C t†Jpc.ep/C

1

4

 t�.X/


���
;
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where x D
Pn
pD1 xpep and Jp D dxp C ��.!lp/xl . Here,

! D ¹!lpº and !lp 2 A1.M/:

By Theorem 4.4, we have

ˇ.X/ D �

Z 1
0

Str
�
i �†

�
xp
p exp

�
�t2kxk2 C i � t†Jp
p C

1

4

 t .��.X//


���
D .2i/

n
2 det

�
sinh�.X/=2
�.X/=2

� 1
2

�.X/;

where

�.X/ WD �

Z 1
0

e�tkxk
2

�

 
nX
kD1

X
I 0

X
I

.�1/
jI jC1
2 xk".I [ ¹kº; I

0/"I[¹kº.¹kº; I /

� Pf.�I 0.X/=2/J I i jI jC1t jI jC1
!
dt:

Thus, we have

chGŒ�
�SCV ; �

�S�V ; �
���.X/

D �ch.A/.X/C d�ˇ.X/

D .2�i/
n
2 yA.�.X//�1 �

�
�Pf

�
�
�.X/

2�

�
C

�
1

�

� n
2

d� � �.X/

�
:

Finally, we show that �Pf.��.X/
2�

/C . 1
�
/
n
2 d��.X/ is a Thom form.

Since�.X/ is pulled back from the base spaceM , it implies that
R

fiber �Pf.��.X/
2�

/D

0. Then, we choose � D f .kxk2/, where f 2 C1.R/ has compact support and is equal
to 1 in a neighborhood of 0. Thus, we haveZ

fiber
�Pf

�
�
�.X/

2

�
C

�
1

�

�n=2
d��.X/ D

Z
fiber

�
1

�

�n=2
d��.X/:

Since we consider the integration over the fiber, we focus on the component of maxi-
mal degree along the fiber of the differential form d��.X/. Indeed, we haveZ

fiber

�
1

�

�n=2
d��.X/

D

Z
fiber

Z 1
0

1

.�/n=2
.�2/tn�1f 0.kxk2/kxk2e�tkxk

2

dt ^ dx1 ^ dx2 ^ � � � ^ dxn

D
1

�n=2

Z
fiber

e�kxk
2

D 1:
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This means that

�Pf
�
�
�.X/

2�

�
C

�
1

�

� n
2

d��.X/

is a Thom form, so we complete the proof.

5. G -invariant Riemann–Roch formula on homogeneous spaces

In this section, we discuss an application of the equivariant Riemann–Roch formula for
the special case of homogeneous spaces. We will first recall the Chern character in this
special case defined by Connes and Moscovici [10] and then rewrite it in the language of
the equivariant Chern character. Then, we will prove the main theorem of the section.

Theorem 5.1. Let G be an almost connected unimodular Lie group, H a maximal com-
pact subgroup of G, and G=H the corresponding homogeneous space. We assume that
G=H is even dimensional with a G-equivariant spin structure. The following diagram
commutes:

K0G.T
�.G=H//

�Š //

ch0G^ yAG.G=H/
��

K0G.G=H/
r� //

.2�i/n=2ch0G
��

R.H/

.2�i/n=2ch

��

H�DR;cv.T
�.G=H//G

�Š // H�DR.G=H/
G Id // H�.g;H/:

Assuming the assumptions in Theorem 5.1, we first introduce an isomorphism from
K0G.G=H/ to K0H .pt/.

Definition 5.2. Let ŒE� 2 K0G.G=H/, where E is a G-equivariant vector bundle over
G=H . There is an isomorphism from K0G.G=H/ to K0H .pt/ given by the restriction map

r� W K
0
G.G=H/! K0H .pt/

ŒE� 7! ŒEjeH �;

where e is the identity of G and eH the left coset of e in the homogeneous space G=H .

Analogously, there is an isomorphism on the cohomology level fromH1.g;G=H/ to
H1.h; pt/, still denoted by r�.

Definition 5.3. There is an isomorphism from H1.g; G=H/ to H1.h; pt/ given by

r� W H
1.g; G=H/! H1.h; pt/ Š C1.h/H

˛ 7! ˛Œ0�jeH ;

where ˛Œ0� is the 0-degree component of ˛.

Remark 5.4. The claim that restriction maps in Definitions 5.2 and 5.3 are isomorphisms
has been proved in [22, Corollary 8.5, p. 131] and [12, Theorem 24, p. 33], respectively.
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Then, we recall the Chern character chCM W R.H/! H�.g; H/ defined by Connes
and Moscovici in [10]. Let g be the Lie algebra of the Lie group G. Fix an Ad.H/-
invariant splitting g D h˚m of g. Then, the projection � W g! h induces a G-invariant
connection on the principal bundle H ! G ! G=H which we denote by z� . We denote
the corresponding curvature by z‚. When z‚ restricts to eH , for X; Y 2 m, we have
z‚jeH .X; Y / D �

1
2
�.ŒX; Y �/. Composing z‚ with " W h ! gl.E/, the differential of a

unitary representation of H on some vector space E, we have

chCM W R.H/! H�.g;H/

" 7! Tr
�

exp
�
1

2�i
".‚/

��
:

Based on this special Chern character, we introduce the Chern character without nor-
malization as follows.

Definition 5.5. The Chern character without normalization is given by

ch W R.H/! H�.g;H/

" 7! Tr.exp.".‚///:

This Chern character is very similar to chCM , and we will demonstrate in the following
that it is compatible with the equivariant Chern character.

In order to explain this viewpoint, we recall the equivariant Chern–Weil homomor-
phism defined by Duflo and Vergne in [12, p. 20].

Definition 5.6 ([12]). Let � be a G-invariant curvature on the principle H bundle G; the
Chern–Weil map is given by

W� W C
1.h/H ! A1G .g; G=H/

� 7! �.�/:

For any X 2 g, we have �.�/.X/ WD �.�.X//.

If we choose a different G-invariant curvature �1, one can check that, for any � 2
C1.h/H , ŒW�.�/�D ŒW�1.�/� 2H

1.g;G=H/. Because of this, the Chern–Weil homo-
morphism induces a homomorphism from H1.h; pt/ to H1.g; G=H/, since

H1.h; pt/ Š C1.h/H :

Definition 5.7. Let � be a G-invariant curvature on the principle H bundle G. One has
the Chern–Weil homomorphism

W W H1.h; pt/! H1.g; G=H/

� 7! Œ�.�/�:

Remark 5.8. This Chern–Weil homomorphism is an isomorphism. We will prove it later.
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After reviewing the special Chern character defined by Connes and Moscovici, we
will describe the non-normalized version in the language of the equivariant Chern char-
acter. First, we show the relation between the equivariant cohomology and the invariant
cohomology. Let M be a proper G manifold, and let ˛ 2 H1.g; M/ be described as
a smooth function valued in differential forms, compatible with the group action. With
such a perspective, ˛.0/ is a G-invariant differential form. (For X 2 g, ˛.X/ may not
be G-invariant. But when X D 0, ˛.0/ is G-invariant.) We define the evaluation map as
follows.

Definition 5.9. The evaluation map is given by

ev W A1G .g;M/! A.M/G

˛ 7! ˛.0/;

where A.M/G is the complex of G-invariant differential form.

Indeed, ev induces a homomorphism from H1.g;M/ to H�DR.M/G .

Proposition 5.10. The evaluation map induces the homomorphism

ev� W H1.g;M/! H�DR.M/G

Œ˛� 7! Œ˛.0/�:

Proof. Suppose Œ˛� D Œˇ� 2H1.g;M/. This means that there exists an equivariant form

 2 A1.g;M/ satisfying ˛ � ˇ D dg.
/. Then, we have

ev.˛ � ˇ/ D ev.dg.
// D dg.
/.0/ D d.
.0// � �.0/.
.0// D d.
.0//:

Therefore, ev�.Œ˛�/ D ev�.Œˇ�/.

Since the G-invariant differential form on G=H is determined by its value at eH , we
can identifyH�DR.G=H/

G withH�.g;H/. (In fact, we haveH�DR.G=H/
G ŠH�.g;H/.)

For this reason, we can describe ch in Definition 5.5 as the composition of equivariant
Chern character, Chern–Weil homomorphism, and evaluation map.

Proposition 5.11. The following diagram commutes:

K0H .pt/ Š R.H/
chH //

ch
��

C1.h/H

W

��

H�.g;H/ H1.g; G=H/:ev�
oo

Proof. Let E be an H -equivariant vector bundle over a point pt and z" W H ! GL.E/
the corresponding representation of H . Here, GL.E/ means the group of bundle iso-
morphisms from E to E. (For s 2 �.E/, h 2 H , we have h � s.pt/ D z".h/.s.pt//.)
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Since pt is a 0-dimensional manifold, any H -invariant curvature � vanishes. Therefore,
�.X/ D �C �.X/ D �.X/, where X 2 h and � is the moment associated to the H -
invariant connection !. Since �.X/ D ".X/, where " W h! gl.E/ is the differential of z",
we have chH ŒE; z"�.X/ D Tr.exp.".�.X//// D Tr.exp.".X///, where ŒE; z" � 2 K0H .pt/
and X 2 h. For this reason, choosing a G-invariant curvature � 2 A2.G/˝ h, we have

ev� ıW ı chH ŒE; z"� D Tr.exp.".�.0//// D Tr.exp.".�/// 2 H�.g;H/:

So, we obtain ch D ev� ıW ı chH , which completes the proof.

Next, we show a result which will imply the commutativity of part of the diagram in
Theorem 5.1.

Proposition 5.12. The following diagram commutes:

K0G.G=H/
r� //

chG
��

KH .pt/

chH
��

H1.g; G=H/
r� // C1.h/H :

Proof. For ŒE; z"� 2 K0G.G=H/, where E is a G-equivariant vector bundle over G=H and
z" W G ! GL.E/ is the representation associated to E, we have r�.ŒE; z"�/ D ŒEjeH ; z"jH �.
Besides, for any X 2 h, we have

chH ŒEjeH ; z"jH �.X/ D Tr.exp."jH .X///jeH ;

where "jH W h! gl.E/ is the differential of z"jH . Thus, we have chH ı r�ŒE; z"�.X/ D
Tr.exp."jH .X/// for any X 2 h. On the other hand, we know that

chG ŒE; z"�.Y / D Tr.exp.�.Y ///;

where � is a G-invariant curvature of E and Y 2 g. Since the 0-degree component of
Tr.exp.�.Y /// is Tr.exp.�.Y ///, where � is the moment map, we have

r� ı chG ŒE; z" �.X/ D Tr.exp.�.X///:

Because X 2 h, we have �.X/ D "jH .X/. Therefore, we have r� ı chG ŒE; z"�.X/ D
Tr.exp."jH .X///. So far, we have completed the proof.

Next, we compose the equivariant Chern character with the evaluation map.

Definition 5.13. The G-invariant Chern character is given by

ch0G W K
0
G.M/! H�DR.M/G

ŒE; F; �� 7! ev� ı chG ŒŒE; F; ���;

where M is a proper G-manifold and ev� is defined in Definition 5.9 and chG is defined
in (3.1).
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Then, we get a special case of Theorem 4.1 which is also the commutativity of the
other part of the diagram in Theorem 5.1.

Proposition 5.14. The following diagram commutes:

K0G.V /
�Š //

ch0G^ yAG.V /
��

K0G.M/

.2�i/n=2ch0G
��

H�DR;cv.V /
G �Š // H�DR.M/G ;

where V is a G-equivariant vector bundle over M and M satisfies conditions in Theo-
rem 2.8.

At the end of this section, we summarize the main result of the section by combining
Propositions 5.11, 5.12, and 5.14.

Proof of Theorem 5.1. From Proposition 5.12, we have the commutative diagram

K0G.G=H/
r� //

chG
��

KH .pt/

chH
��

H1.g; G=H/
r� // C1.h/H :

First, we show that W W C1.h/H ! H1.g; G=H/ is the inverse of

r� W H
1.g; G=H/! C1.h/H :

Since r� is an isomorphism, just verifying r� ı W D Id is enough to prove our claim.
For � 2 C1.h/H and X 2 g, we have W.�/.X/ D �.�/.X/ D †I

1
jI jŠ
�I@I .�/jz�.X/,

where � is the G-invariant curvature over the principle bundle G and z� is the moment
map associated with�. Therefore, we have r� ıW.�/.X/D r�.†I 1

jI jŠ
�I@I .�/jz�.X//D

1
0Š
�0@0.�/jz�.X/D �.X/, whereX 2 h.(Because z�.X/DX whenX 2 h.) Then, we have

proved r� ıW D Id.
Because of this, we have

K0G.G=H/
r� //

chG
��

K0H .pt/

chH
��

H1.g; G=H/ C1.h/H :
W
oo

Then, composing the evaluation map with the equivariant Chern character map, we have

K0G.G=H/
r� //

ch0G
��

K0H .pt/

chH
��

H�DR.G=H/
G C1.h/H :

ev�ıW
oo
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Since ch D ev� ıW ı chH (Proposition 5.11), we have

K0G.G=H/
r� //

ch0G
��

R.H/

ch

��

H�DR.G=H/
G Id // H�.g;H/:

Because of this and Proposition 5.14, we have

K0G.T
�.G=H//

�Š //

ch0G^ yAG.G=H/
��

K0G.G=H/
r� //

.2�i/n=2ch0G
��

R.H/

.2�i/n=2ch

��

H�DR;cv.T
�.G=H//G

�Š // H�DR.G=H/
G Id // H�.g;H/:

Therefore, the proof is complete.

6. Local index formula and Getzler’s symbolic calculus

In this section, we will use the heat kernel approach to prove the following local index
formula.

Theorem 6.1. For every f 2 C 2qv;anti.M/G (cf., Definition 6.2) and Indt .D/ 2 SuG.M;E/
(cf., Definition 6.5), we have

lim
t!0

�.f /.Indt .D//

D
.�1/�q

.2�i/2q�n=2
qŠ

.2q/Š

Z
M

c0 yAG.M/ ^ ch0G.�Š.Œ�
�.EC/; ��.E�/; �.D/�// ^ !f ;

where
!f WD .d1 � � � d2qf /j�:

Here, di stands for the differential concerning the i -th variable of the function f ,
dim.M/ D n (n is even), and � WM !M�.2qC1/ is the diagonal embedding.

The local index formula of this form was proved first by Connes and Moscovici in [11].
In their case, the group is assumed to be discrete and the action is free. When the group is a
Lie group having finitely many components and when the action is proper and cocompact,
Piazza and Posthuma give a brief proof of a similar index formula in [24] as Theorem 6.1.
Their proof is based on the results of Moscovici and Wu [17]. However, in this paper, we
use the index class represented by the Wassermann projector as in [11], which is not the
idempotent of finite propagation speed representing the index class, from which Moscovici
and Wu obtained the higher index formula [17]. Our proof of Theorem 6.1 then follows
by adapting the original proof of the localized index formula in [25].
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6.1. Pairing between C �
v .M/G and S u

G
.M; E/

In this subsection, we will define C �v .M/G and SuG.M;E/ and their pairing.
Choosing a complete invariant Riemannian metric, we denote the associated distance

function by d.x; y/ for x; y 2 M . Let the Riemannian volume form associated with
the invariant complete Riemannian metric be denoted by dx, and let d�.x/ be the Rie-
mannian densities induced by dx, i.e., d�.x/ D jdxj. Because the Riemannian metric is
G-invariant, d�.x/ is also G-invariant.

Definition 6.2. For v � 0 and q 2 NC, let C qv .M/G be the vector space consisting of
G-equivariant smoothing functions  from M qC1 to C satisfying

sup

 ˇ̌̌̌
ˇ .x0; : : : ; xq/ � exp

 
�v �

 
qX
iD0

d.xi ; z0/

!!ˇ̌̌̌
ˇ
!
< C1;

and let a coboundary homomorphism d W C
q
v .M/G ! C

qC1
v .M/G be given by

d. /.x0; : : : ; xpC1/ WD

qC1X
iD0

.�1/i .x0; : : : ; xi�1; xiC1; : : : ; xqC1/;

where  2 C qv .M/G . The corresponding cohomology is denoted by H�v .M/G .

Remark 6.3. Under the notation above, let

C
q

v;�
.M/G WD ¹ 2 C qv .M/G j  .x0; : : : ; xq/ D .�1/

q .xq; x0; : : : ; xq�1/

for all x0; : : : ; xq 2M º

and

C
q
diff;anti.M/G WD ¹ 2 C qv .M/G j  .x0; : : : ; gk/ D sign.�/ .x�.0/; x�.1/; : : : ; x�.q//

for all x0; : : : ; xq 2M and � 2 SqC1º:

Definition 6.4. Let E be a G-bundle over M . For every x; y 2 M , we have k.x; y/ 2
Hom.Ey ; Ex/, and it carries the matrix norm, i.e., kk.x; y/k D kk.x; y/kMn.C/.

Definition 6.5. For u � 0, define SuG.M IE/ to be®
k 2 C1.M �M;E �E�/G j sup

x;y2M

kexp .u � d.x; y//rmx r
n
y k.x; y/k < Cm;n

for all m; n 2 N
¯
:

Since M is a C1-manifold acted properly and cocompactly by an almost connected
Lie group G, there exist M1 and rM > 0 such that, for any x 2 M and r � 0, we have
Vol.Br .x// �M1e

rM �r , where Vol.Br .x// is the volume of Br .x/. Thus, we can define a
pairing between SuG.M IE/ and C qv .M/G by choosing suitable u and v.
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Proposition 6.6. Let A0; : : : ; Aq 2 SuG.M IE/. For each  2 C qv .M/G , we denote

�. /.A0; : : : ; Aq/

WD

Z
M qC1

c.x0/ .x0; : : : ; xq/tr.A0.x0; x1/A1.x1; x2/ � � �Aq.xq; x0//d�.x0/ � � � d�.xq/;

and when A0 D A1 D � � � D Aq , we denote �. /.A0; : : : ; Aq/ by �. /.A0/. We claim
that if qv � u < �rm, then �. /.A0; : : : ; Aq/ is well defined.

Proof. We show that �. / is well defined. Because Ai 2 SuG.M IE/ and  2 C qv .M/G ,
we have

kAi .x; y/k � exp.�u � .d.x; y///

and

j .x0; : : : ; xq/j � exp

 
v �

 
qX
iD0

d.xi ; z0/

!!
:

Thus,

j�. /.A0; : : : ; Aq/j

D

ˇ̌̌̌Z
M qC1

c.x0/ .x0; : : : ; xq/tr.A0.x0; x1/A1.x1; x2/

� � �Aq.xq; x0//d�.x0/ � � � d�.xq/

ˇ̌̌̌
� dim.E/

Z
M qC1

c.x0/ exp

 
v �

 
qX
iD0

d.xi ; z0/

!!
� exp.�u.�d.x0; x1/C � � � C d.xq; x0///d�.x0/ � � � d�.xq/

� dim.E/
Z
M qC1

c.x0/ exp.nv � d.x0; z0/ � rm

� .d.x0; x1/C � � � C d.xq; x0///d�.x0/ � � � d�.xq/

< C1:

6.2. Schwartz kernel estimates for smoothing operators

Let D W C1c .M; E/! C1c .M; E/ be the G-equivariant Dirac operator. Following [26,
Proposition 2.10], for any f 2 �.R/, f .D/ W L2.M;E/! L2.M;E/ is a bounded oper-
ator with a smooth Schwartz kernel. In this subsection, we will estimate the Schwartz
kernel for such f .D/.

Definition 6.7. Let E be a G-bundle over M . For any s 2 L2.M;E/, we denote

ksk0;Br .x/ WD

Z
Br .x/

js.y/j2d�.y/;

where js.y/j2 D .s.y/; s.y//.
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To estimate the Schwartz kernel for f .D/, we need the following two lemmas.

Lemma 6.8. Let E be a G-bundle overM , and letD W C1c .M;E/! C1c .M;E/ be the
G-equivariant Dirac operator. There exist C > 0 and N 2 NC depending on n D dimE
such that, for any 0 < r � 1 and x 2M , we have

js.x/j �
C

rN

 
nX

pD0

kDpsk0;Br .x/

!
:

Lemma 6.9. For any k 2 C1.M �M;E �E�/G , y0 2M , and r > 0, we have

1

n
kk.x; y/k0;Br .y0/ � sup

sD1;supp.s/�Br .y0/

ˇ̌̌̌Z
Br .y0/

k.x; y/s.y/dy

ˇ̌̌̌
:

The lemmas will be proved in Appendix A.

Theorem 6.10. LetD be the equivariant Dirac operator. There exist C > 0 andN 2NC

so that, for any distinct x; y 2M and f 2 S.R/, we have

kKf .D/.x; y/k �
C

d.x; y/N

nCn2X
kD0

Z
jsj�

d.x;y/
100

ˇ̌
Of .k/.s/

ˇ̌
ds:

Here, n D dimE.

Proof. Let x0; y0 2M , where x0 ¤ y0. First, we consider the case when d.x0; y0/ � 1.
Let r D d.x0;y0/

100
.

For any x0 2 M , let Hom.E; Ex0/ D Ex0 ˝ E
� be a G-equivariant bundle over M

and
Dy W �.M;Hom.E;Ex0//! �.M;Hom.E;Ex0//

the G-equivariant Dirac operator. Thus, k.x0; y/ can be viewed as a smooth section of
Hom.E;Ex0/ for any k.x; y/ 2 �.M �M;E �E�/.

It follows from Lemma 6.8 that there exist C1 > 0 and N1 2 NC such that

kKf .D/.x0; y0/k �
C1

rN1

 
n2X
pD0

kDp
yKf .D/.x0; y/k0;Br .y0/

!
:

The numbers C1 and N1 are independent of x0 and y0 because

Hom.E;Ex/ Š Hom.E;Ey/

for any x; y 2M and the bundle isomorphism can be chosen to be an isometry. It follows
from Lemma 6.9 that

kDp
yKf .D/.x0; y/k0;Br .y0/ � n

2 sup
kskD1;supp.s/�Br .y0/

jDp
y f .D/s.x0/j:
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Here, Dp
y f .D/ is a linear operator defined as follows:

Dp
y f .D/ W C

1
c .M;E/! �.M;E/

s 7!

Z
M

Dp
yKf .D/.x; y/s.y/d�.y/:

We need to show that Dp
y f .D/s 2 �.M;E/. Indeed, we have

Dp
y f .D/ D f .D/.D

�/p:

Since for any s 2 C1c .M;E/ and x 2M , without loss of generality,

kf .D/.x; y/ D f .x; y/u.x/˝ v.y/
�
2 �.M �M;E �E�/;

where u.x/; v.y/ 2 �.M;E/ and f .x; y/ 2 C1.M �M/, we haveZ
M

Dy.f .x; y/u.x/˝ v.y/
�/s.y/d�.y/

D

Z
M

u.x/˝ .D.f .x; y/v/.y//�s.y/d�.y/

D

Z
M

u.x/.D.f .x; y/v/.y/; s.y//d�.y/

D

Z
M

u.x/.f .x; y/v.y/;D�s.y//d�.y/

D

Z
M

f .x; y/u.x/˝ v.y/�.D�.s//.y/d�.y/:

Thus, we have Dp
yKf .D/.x; y/ D Kf .D/.D�/p .x; y/ for any x; y 2 M . Because of

this, we have
Dp
y f .D/ D f .D/.D

�/p:

Then, applying Lemma 6.8 again, there exist C2 > 0 and N2 2 NC such that

jDp
y f .D/s.x0/j �

C2

rN2

 
nX
kD0

kDkDp
y f .D/sk0;Br .x0/

!
:

Then, we have

kKf .D/.x0; y0/k�
C1C2

rN1CN2

� X
0�k�n;0�p�n2

sup
kskD1;supp.s/�Br .y0/

kDkDp
y f .D/sk0;Br .x0/

�
:

For a subset A of M , let �A WM ! Œ0; 1� be the indicator function of A. Thus, we have

sup
kskD1;supp.s/�Br .y0/

kDkDp
y f .D/sk0;Br .x0/ D k�Br .x0/D

kDp
y f .D/�Br .y0/k0:
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Note that

k�Br .x0/D
kDp

y f .D/�Br .y0/k0

D sup
ks1kD1;ks2kD1

ˇ̌̌̌Z
M

.�Br .x0/D
kDp

y f .D/�Br .y0/s1.x/; s2.x//d�.x/

ˇ̌̌̌
D sup
ks1kD1;ks2kD1

ˇ̌̌̌Z
M

.�Br .x0/D
p
yD

kf .D/�Br .y0/s1.x/; s2.x//d�.x/

ˇ̌̌̌
D sup
ks1kD1;ks2kD1

ˇ̌̌̌Z
M

.s1.x/; �Br .y0/D
p.D�/kf .D�/�Br .x0/s2.x//d�.x/

ˇ̌̌̌
D k�Br .y0/D

p.D�/kf .D�/�Br .x0/k0:

and because M is complete and D is essentially self-adjoint, we have

k�Br .y0/D
p.D�/kf .D�/�Br .x0/k0 D k�Br .y0/D

pDkf .D/�Br .x0/k0:

Then, we have

kKf .D/.x0; y0/k �
C1C2

rN1CN2

� X
0�k�n;0�p�n2

sup
kskD1;supp.s/�Br .y0/

kDkDp
y f .D/sk0;Br .x0/

�
D

C1C2

rN1CN2

� X
0�k�n;0�p�n2

k�Br .y0/D
p.D�/kf .D�/�Br .x0/k0

�
D

C1C2

rN1CN2

� X
0�k�n;0�p�n2

k�Br .y0/D
pCkf .D/�Br .x0/k0

�
:

Next, we will prove that

k�Br .y0/D
pCkf .D/�Br .x0/k0 �

1

2�

Z
jsj>r

ˇ̌
Of .pCk/

ˇ̌
.s/ds:

Since D has unit propagation speed, for any u 2 L2.M;E/ with supp.u/ � Br .x0/,
we have supp.eisDu/ � BrCjsj.x0/. Thus, when jsj < r , for any u 2 L2.M; E/ with
supp.u/ � Br .x0/ and y 2 Br .y0/, we have eisD.u/.y/ D 0 � .r D d.x0;y0/

100
/.

Then, for any u 2 L2.M;E/, supp.u/ � Br .x0/, and y 2 Br .y0/, we have

DpDkf .D/.u/.y/ D

�
.i/pCk

2�

Z
R
eisD Of .pCk/.s/ds

�
.u/.y/

D

�
.i/pCk

2�

Z
jsj>r

eisD Of .pCk/.s/ds

�
.u/.y/:

Therefore, we have

�Br .y0/D
pDkf .D/�Br .x0/ D �Br .y0/

�
.i/pCk

2�

Z
jsj>r

eisD Of .pCk/.s/ds

�
�.Br .x0//:
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Then, we have

k�Br .y0/D
pDkf .D/�Br .x0/k0

D k�Br .y0/
.i/pCk

2�

�Z
jsj>r

eisD Of .pCk/.s/ds

�
�Br .x0/k0

� k�Br .y0/k0k

�
1

2�

Z
jsj>r

eisD Of .pCk/.s/ds

�
k0k�Br .x0/k0

�
1

2�

Z
jsj>r

ˇ̌
Of .pCk/

ˇ̌
.s/ds:

Therefore, for any x; y 2M , x ¤ y satisfying d.x; y/ � 1, we obtain

kKf .D/.x; y/k �
C1C2

.d.x;y/
100

/N1CN2

nCn2X
kD0

Z
jsj�

d.x;y/
100

ˇ̌
Of .k/.s/

ˇ̌
ds:

Next, consider the case when d.x; y/ � 1.
When d.x; y/ � 1, we fix r D 1

100
. Similarly, we have

kKf .D/.x; y/k �
C1C2

. 1
100
/N1CN2

� X
0�k�n;0�k�n2




�B 1
100

.y/D
pCkf .D/�B 1

100
.x/





0

�
:

Finally, we prove


�B 1
100

.y/D
pCkf .D/�B 1

100
.x/





0
�

Z
jsj>

d.x;y/
100

ˇ̌
Of .pCk/.s/

ˇ̌
ds:

Since d.x; y/ � 1, we have B 1
100C

d.x;y/
100

.x/ � B 2d.x;y/
100

.x/ \ B 1
100
.y/ D ;.

Then, we have the following: when jsj < d.x;y/
100

, for any u 2 L2.M; E/; supp.u/ �
B 1
100
.x/, and z 2 B 1

100
.y/, we have eisD.u/.z/ D 0.

Therefore, for any u 2 L2.M;E/; supp.u/ � B 1
100
.x/, and z 2 B 1

100
.y/, we have

DpDkf .D/.u/.z/ D

�
.i/pCk

2�

Z
R
eisD Of .pCk/.s/ds

�
.u/.z/

D

�
.i/pCk

2�

Z
jsj>

d.x;y/
100

eisD Of .pCk/.s/ds

�
.u/.z/:

Similarly, we have


�B 1
100

.y/D
pCkf .D/�B 1

100
.x/





0
�

1

2�

Z
jsj>

d.x;y/
100

ˇ̌
Of .pCk/.s/

ˇ̌
ds;

which completes the proof.
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When x D y, Theorem 6.10 still holds because the right-hand side is infinite. In the
next theorem, we have a finer estimate when x D y. The proof is similar. (We just need to
fix r D 1 in Theorem 6.10.)

Theorem 6.11. Let D be the equivariant Dirac operator. There exists C > 0 such that,
for any x; y 2M and f 2 S.R/, we have

kKf .D/.x; y/k � C

nCn2X
kD0

Z
R

ˇ̌
Of .k/.s/

ˇ̌
ds:

Remark 6.12. Note that the integral is over R. This is because we have fixed r D 1 and
the method of finite propagation speed cannot be applied.

For any f 2 S.R/ and t > 0, define ft .x/ WD f .tx/. Then, we have ft 2 S.R/, andbft .s/ D t�1 Of .t�1s/ for any s 2 R. Then, we have the following theorem.

Theorem 6.13. Suppose that f 2 S.R/ satisfies the following condition: there existM �
0 and w > 0 such that for every k 2 N, where 0 � k � n C n2 and r � 0, one hasR
jsj�r
j Of .k/.s/jds � M exp.�wr/. Then, there exist C � 0 and N 2 NC such that, for

any 0 < t � 1 and x; y 2M , we have

kKft .D/.x; y/k �
C

tN
exp

�
�w

d.x; y/

100t

�
:

Proof. Because of Theorem 6.10, there exist C1; C2 � 0 and N1; N2 2 N such that

kKft .D/.x; y/k �
C1

d.x; y/N1

nCn2X
kD0

Z
jsj�

d.x;y/
100

ˇ̌bft .k/.s/ˇ̌ds
�

C1

d.x; y/N1

nCn2X
kD0

�
t�.kC1/

Z
jsj�

d.x;y/
100t

ˇ̌b
f .k/.s/

ˇ̌
ds

�
�

C2

d.x; y/N1 tN2
exp

�
�w

d.x; y/

100t

�
for any 0 < t � 1 and x; y 2M .

Similarly by Theorem 6.11, there exist C3; C4 � 0 and N3 2 N such that

kKft .D/.x; y/k � C3

nCn2X
kD0

Z
R

ˇ̌bft .k/.s/ˇ̌ds
� C3

nCn2X
kD0

�
t�.kC1/

Z
R

ˇ̌
Of .k/.s/

ˇ̌
ds

�
� C4t

�N3 :
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When d.x; y/ � t , we have

kKft .D/.x; y/k �
C2

d.x; y/N1 tN2
exp

�
�w

d.x; y/

100t

�
�

C2

tN2CN1
exp

�
�w

d.x; y/

100t

�
:

When d.x; y/ � t , we have

kKft .D/.x; y/k � C4t
�N3

� C4 exp
�
w

100

�
t�N3 exp

�
�w

d.x; y/

100t

�
:

Then, we can choose suitable constants C and N such that

C2

tN2CN1
exp

�
�w

d.x; y/

100t

�
�
C

tN
exp

�
�w

d.x; y/

100t

�
and

C4 exp
�
w

100

�
t�N3 exp

�
�w

d.x; y/

100t

�
�
C

tN
exp

�
�w

d.x; y/

100t

�
:

Then, the proof is complete.

Let D be the equivariant Dirac operator on a section of E over M . The higher index
Indt .D/ is represented by

Indt .D/ D W.t/ �
�
0 0

0 Id

�
D

0@ e�t
2D�DC e�

t2

2 D
�DC

�
1�e�t

2D�DC

D�DC

� 1
2D�

e�
t2

2 D
CD�

�
1�e�t

2DCD�

DCD�

� 1
2DC �e�t

2DCD�

1A ;
and we split it into 
ft .D/C gt .D/, where ft .x/D e�t

2x2 , gt .x/D e�
t2

2 x
2
.1�e

�t2x2

x2
/
1
2 x

and 
 is the Z2-grading operator.
We claim to have the following proposition.

Proposition 6.14. For any t > 0, ft .x/ D e�t
2x2 , gt .x/ D e�

t2

2 x
2
.1�e

�t2x2

x2
/
1
2 x satisfy

the conditions of Theorem 6.13.

We give a proof of this proposition in Appendix A (see Lemmas A.1 and A.2). Because
of this, we have the following theorem.

Theorem 6.15. Let ft .x/ D e�t
2x2 , gt .x/ D e�

t2

2 x
2
.1�e

�t2X2

x2
/
1
2 x, and let 
 be the Z2-

grading operator. Then, there exist C � 0 and N 2 N such that, for any 0 < t � 1 and
x; y 2M , we have

kK
ft .D/Cgt .D/.x; y/k �
C

tN
exp

�
�w

d.x; y/

100t

�
:
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Remark 6.16. For any u > 0, if we include derivatives in the estimates, through a similar
discussion as above, we can find a number 0 < tu < 1 such that, for any 0 < t � tu, there
is

sup
x;y2M

kexp.u � d.x; y//rmx r
n
yK
ft .D/Cgt .D/.x; y/k < Cm;n 8q;m; n 2 N:

This implies that
Indt .D/ 2 SuG.M;E/:

Therefore, for any f 2 C 2qv .M/G such that 2qv � u < �rM , we have

�.f /.Kw 0.t// D

Z
M 2qC1

c0.x0/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//d�.x0/ � � � d�.x2q/;

where w0.t/ D Indt .D/ D 
ft .D/C gt .D/.
Next, we will use the heat equation approach to find the topological expression of

the localized analytic indices of elliptic operators as in [11], that is, find the topological
formula of limt!0 �.f /.Indt .D//. But in our case, M is non-compact, so we cannot
use the method in [11] to get the local index formula directly and we need the following
theorem.

Theorem 6.17. Let ci .x/ 2 C1c .M/, such that 0 � ci .x/ � 1 and ci jB1.supp.ci�1// D 1,
where B1.supp.ci�1// D ¹x 2M j d.x; supp.ci�1// � 1º. Then, we have

�.f /.Indt .D// D
Z
M 2qC1

c0.x0/c1.x1/ � � � c2q.x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q CR.t/;

where limt!0R.t/ D 0.

Because of this theorem, we have

lim
t!0

�.f /.Indt .D// D lim
t!0

Z
M 2qC1

c0.x0/ � � � c2q.x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q :

It reduces the problem to the compact case; then, we can use the method in [11] to obtain
the local index formula.

Proof of Theorem 6.17. Let I D ¹i1; i2; : : : ; ijI jº � ¹1; 2; : : : ; 2qº, where jI j is the length
of I . Let J be the complement of I in ¹1;2; : : : ;2qº. Similarly, write JD¹j1; j2; : : : ; jjJ jº,
where jJ j is the length of J . We denoteY

I

.x0; : : : ; x2q/ D c0.x0/cj1.xj1/ � � � cjjJ j.xjjJ j/.1 � ci1.xi1// � � � .1 � cijI j.xijI j//:
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Therefore, we can rewrite R.t/ as follows:

R.t/ D

2qX
jI jD1

Z
M 2qC1

Y
I

.x0; : : : ; x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q :

Next, we show that, for each I ,

lim
t!0

Z
M 2qC1

Y
I

.x0; : : : ; x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q D 0:

Because f has at most exponential growth, then there exist C1; C2 � 0 and z0 2M such
that

jf .x0; : : : ; x2q/j � C1e
C2.d.x0;z0/Cd.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//

for any xi 2M .
By Theorem 6.15, there exist C3; N;w > 0 such thatˇ̌̌̌Z

M 2qC1

Y
I

.x0; : : : ; x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//d�.x0/ � � � d�.x2q/

ˇ̌̌̌
�

Z
M 2qC1

Y
I

.x0; : : : ; x2q/C1e
C2.d.x0;z0/Cd.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//

�
C3

tN
e�

w
t .d.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//d�.x0/ � � � d�.x2q/:

Using integration by part, we only need to estimate the following two cases of integra-
tions.

(1)
R
M
eC2.d.xi ;xiC1//e�

w
t d.xi ;xiC1/dxiC1.

Since M is a C1-manifold with an action of almost connected Lie group G such that
the action is proper and co-compact, there existM1; C4 > 0 such that, for any x 2M and
r � 0, we have Vol.Br .x// �M1e

C4r , where Vol.Br .x// is the volume of Br .x/.
We denote

Ux.n � r � m/ D ¹y 2M j n � d.x; y/ � mº:

Therefore, we can decompose
R
M
eC2.d.xi ;xiC1//e�

w
t d.xi ;xiC1/dxiC1 asZ

B1.xi /

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1

C

C1X
nD1

Z
Uxi .n�r�nC1/

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1:
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Clearly, there exists M2 > 0 independent of xi such thatZ
B1.xi /

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1 �M2:

For
R
Uxi .n�r�nC1/

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1, we haveZ

Uxi .n�r�nC1/

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1

� eC2.nC1/e�
w
t .n/Vol.Uxi .n � r � nC 1//

� eC2.nC1/e�
w
t .n/Vol.BnC1.xi //

� eC2.nC1/e�
w
t .n/M1e

C4.nC1/

�M1e
�.nC1/.wt �.C2CC4//:

Choosing t small enough, we haveM1e
�.nC1/.wt �.C2CC4// �M1e

�.nC1/. w2t /. Thus, there
exists M3 such thatZ

M

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1

D

Z
B1.xi /

eC2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/dxiC1

C

C1X
nD1

Z
Ux.n�r�nC1/

eC2.d.xi ;xiC1//e�
w
t .d.xi ;xiC1//dxiC1 �M2 CM3e

�wt :

(2)
R
M
ci .xi /e

C2.d.xi ;xiC1//e�
w
t d.xi ;xiC1/.1 � ciC1.xiC1//dxiC1.

Similarly, we haveZ
M

ci .xi /e
C2.d.xi ;xiC1//e�

w
t d.xi ;xiC1/.1 � ciC1.xiC1//dxiC1

D

Z
B1.xi /

ci .xi /e
C2.d.xi ;xiC1//e�

w
t d.xi ;xiC1/.1 � ciC1.xiC1//dxiC1

C

C1X
nD1

Z
Uxi .n�r�nC1/

ci .xi /e
C2.d.xi ;xiC1//e�

w
t .d.xi ;xiC1//.1 � ciC1.xiC1//dxiC1

� 0CM3e
�wt DM3e

�wt :

Since each
Q
I .x0; : : : ; x2q/ contains ci .xi /.1� ciC1.xiC1// for some i; 0 � i � 2q,

there exists M4 > 0 such thatZ
M 2qC1

Y
I

.x0; : : : ; x2q/C1e
C2.d.x0;z0/Cd.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//

�
C3

tN
e�

w
t .d.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//dx0 � � � dx2q

�
M4

tN
e�

w
t :



Index theorem for homogeneous spaces of Lie groups 1485

Thus, we haveˇ̌̌̌Z
M 2qC1

Y
I

.x0; : : : ; x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q

ˇ̌̌̌
�

Z
M 2qC1

Y
I

.x0; : : : ; x2q/C1e
C2.d.x0;z0/Cd.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//

�
C3

tN
e�

w
t .d.x0;x1/Cd.x1;x2/C���Cd.x2q ;x0//dx0 � � � dx2q

�
M4

tN
e�

w
t :

This implies that, for each I ,

lim
t!0

Z
M 2qC1

Y
I

.x0; : : : ; x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q D 0;

which completes the proof.

Because of this theorem, we have

lim
t!0

�.f /.Indt .D// D lim
t!0

Z
M 2qC1

c0.x0/ � � � c2q.x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q :

To simplify notation, replace ci .x/ with ci .x/2 for each 0 � i � 2q. Then, the last
equality is equal toZ

M 2qC1

c20.x0/c
2
1.x1/ � � � c

2
2q.x2q/f .x0; : : : ; x2q/Tr.Kw 0.t/.x0; x1/

� � �Kw 0.t/.x2q; x0//dx0 � � � dx2q

D

Z
M 2qC1

f .x0; : : : ; x2q/Tr.c0.x0/Kw 0.t/.x0; x1/c1.x1/

� � � c2q.x2q/Kw 0.t/.x2q; x0/c0.x0//dx0 � � � dx2q :

We will conveniently use the same notation as in [11]. Thus, we denote D D D ı 
 ,
where D is the equivariant Dirac operator over E and 
 is the Z2-grading operator. Thus,
D becomes skew adjoint such that D� D �D and D2 D �D2. Because of this, we can
rewrite W 0.t/ as follows:

W 0.t/ D

 
e�t

2D�DC e�
t2

2 D
�DC

�
1�e�t

2D�DC

D�DC

� 1
2D�

e�
t2

2 D
CD�

�
1�e�t

2DCD�

DCD�

� 1
2DC �e�t

2DCD�

!
D
�
et
2D2

C e
1
2 t
2D2

w.�t2D2/tD
�

:
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We also denote

�.f /.c0W
0.t/c1; c1W

0.t/c2; : : : ; c2qW
0.t/c0/

WD

Z
M 2qC1

f .x0; : : : ; x2q/Tr.c0.x0/Kw 0.t/.x0; x1/c1.x1/

� � � c2q.x2q/Kw 0.t/.x2q; x0/c0.x0//dx0 � � � dx2q :

Then, we choose f 2 C 2qv;anti.M/G . Since Theorem 6.17 allows us to modify M outside a
sufficiently large relatively compact domain, without loss of generality, let

f D f0 ˝ f1 ˝ � � � ˝ f2q;

where fi 2 C1c .M/. Then, we have

�.f /.c0W
0.t/c1; c1W

0.t/c2; : : : ; c2qW
0.t/c0/

D Tr.c2qW 0.t/c0f0Œc0W 0.t/c1; f1� � � � Œc2q�1W 0.t/c0; f2q�/:

Therefore, the quantity to be computed is

lim
t!0

�.f /.Indt .D//

D lim
t!0

Str
�
c2q
�
et
2D2

�e
1
2 t
2D2

w.�t2D2/tD
�
c0f0Œc0W

0.t/c1; f1� � � � Œc2q�1W
0.t/c;f2q�

�
;

where Str D Tr ı 
 . Now, we use Getzler’s symbolic calculus to find this limit as in [11].

Remark 6.18. If we choose a representative of the higher index Indt .D/ that has finite
propagation, i.e., the Schwartz kernel is properly supported, then Theorem 6.17 is not
needed. Otherwise, the theorem is necessary. Even if one uses the expansion

f D

1X
�D0

f 1� ˝ f
2
� ˝ � � � ˝ f

n
� ; where f i� 2 C

1
c .M/

as in the compact case [11], in our non-compact setting, one needs to show the absolute
convergence of

hf; Indt .D/i D
1X
�D0

hf�; Indt .D/i

with respect to t and that will require Theorem 6.17.

We recall some basic definitions originally introduced in [11].

Definition 6.19 ([11]). Let A.D/ be the algebra generated (in a strictly algebraic sense)
by AD C1.M/, 
 , .�CD2/�1, � 2CnŒ0;C1/ and operators of the form u.�D2/with
u a Schwartz function on Œ0;C1/ which admits a holomorphic extension to a complex
neighborhood of Œ0;C1/.
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The notion of asymptotic orders for elements of A.D/ is recalled as follows.

Definition 6.20 ([11]). If A belongs to the subalgebra Adiff.D/ generated by A, 
 , and
D, we let A.t/ be the operator obtained by replacing D with tD, t > 0, in the expression
of A. Define the asymptotic order of A as the total Getzler order of A.t/, assigning to
t the order �1. In particular, D2 has asymptotic order 0. We have the same asymptotic
order 0 for any function of �D2. Finally, we extend the notion of asymptotic order to the
whole A.D/ in the usual fashion. Let Ar

k
.D/ denote the subspace of A.D/ consisting of

operators of Getzler order r and asymptotic order k.

The following result is the “fundamental lemma” of Getzler’s symbolic calculus. For
readers’ convenience, we list it here.

Lemma 6.21 ([11]). (1) Let A 2 Ar0.D/. Then, if A 2 Op.Sr .E//,

�t�1.A.t// D aCO.t/; O.t/ 2 Sr�1.E/;

where �t�1 is the rescaled symbol [13]. Here, a is called the asymptotic symbol of A 2
A0.D/, denoted by �0.A/.

(2) If A;B 2 Ar0.D/, then one has

�0.AB/ D �0.A/ � �0.B/:

Here, � denotes the multiplication of Getzler symbols, defined by the following rule:

.a � b/.x; �/ D e
� 14R.

@
@�
; @
@�
/
a.x; �/ ^ b.x; �/j�D�;

where R 2 ^2.M/˝^2.M/ is the curvature tensor in [13].

The following results from [11] will be needed in the calculations. For the convenience
of readers, we list them here.

(1) �t�1.tD/ D i t�1�;

(2) �t�1.t2D2/ D �j�j2 CQC 1
4
t2�.R/;

(3) �t�1.ŒtD; f �/.x; �/ D df , f 2 A;

(4) �t�1.Œt2D2; f �/.x; �/ D 2ithdf; �i C t2�f ;

(5) �t�1.Œt2D2; f �tD/.x; �/ D �2thdf; �i� CO.t/, O.t/ 2 S2.E/;

(6) �t�1..�C t2D2/�1/.x; �/ D .� �H.x; �//�1 CO.t/, O.t/ 2 S�3.E/;

(7) �t�1.u.�t2D2//.x; �/Du.H/.x; �/CO.t/,O.t/ 2 S�1.E/, u.�t2D2/ 2A.D/,

where Q D r2W is the equivariant curvature of W (E D W ˝ S ) induced by the equiv-
ariant curvature of E, �.R/ is the scalar curvature of M , and

H D H.x; �/ D j�j2 �
1

2
R

�
�;
@

@�

�
�
1

16
R ^R

�
@

@�
;
@

@�

�
�Q:
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Denote A D c2qu.�D2/Dc0, Aj D cj�1u.�D2/ŒD; fj �cj , and

Bj D cj�1Œu.�D2/; fj �Dcj

for j D 1; 2; : : : ; 2q. We can write

… WD
�
c2qe

D2

c0 � A
��
c0
�
eD2

; f1
�
c1 C A

1
C B1

��
c1
�
eD2

; f2
�
c2 � A

2
� B2

�
� � �

� � �
�
c2q�2

�
eD2

; f2q�1
�
c2q�1 C A

2q�1
C B2q�1

�
�
�
c2q�1

�
eD2

; f2
�
c2q � A

2q
� B2q

�
:

The following terms of … will contribute to the asymptotic symbol:

(1) T WD .�1/qc2qeD2
c0f0A

1 � � �A2q ;

(2) Tj WD .�1/qc2qeD2
c0f0A

1 � � �Aj�1BjAjC1 � � �A2q , j D 1; : : : ; 2q;

(3) Zj WD .�1/qCjAf0A1 � � �Aj�1cj�1ŒeD2
; fj �cjA

jC1 � � �A2q , j D 1; : : : ; 2q.

Since we do the symbol calculation on the non-compact manifold, the Getzler’s fun-
damental trace formula we used has the following form.

Proposition 6.22. Let P be a smoothing operator with compact support over E, Then,
for all t > 0,

Str.P / D
1

.2�/n

Z
T �M

Str.�t .P /.x; �//d�dx:

Remark 6.23. Since we consider the smoothing operator with compact support, the proof
of Proposition 6.22 is similar to the classical one in [13]. For reader’s convenience, we give
the proof in Appendix C.

We are now ready to begin the essential calculations. We will show the following
theorem.

Theorem 6.24. We have

lim
t!0

Str
�
c2q
�
et
2D2

� e
1
2 t
2D2

w.�t2D2/tD
�
c0f0Œc0W

0.t/c1; f1� � � � Œc2q�1W
0.t/c;f2q�

�
D

.�1/�q

.2�i/2q�n=2
qŠ

.2q/Š

Z
M

c0 yAG.M/ ^ ch0G.�Š.Œ�
�.EC/; ��.E�1/; �.D/�//

^ f0 ^ df1 � � � ^ df2q :

Proof. (1) Computation of the contribution of T .
We have

�0.T / D .�1/
qc2q � �0.u.�D2// � c0 � f0 � c0 � �0.u.�D2//

� df1 � c1 � � � � � c2q�1 � �0.u.�D2// � df2q � c2q :

Since �0.Œu.�D2/; f �/ D 0 and �0.Œu.�D2/; ŒD; f ��/ D 0 for any f 2 A, one can
permute u.�D2/ with ci and ŒD; fi � without changing the asymptotic symbol of T .
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Thus, we have

�0.T / D .�1/
qc2q � �0.e

D2

/ � c0 � f0 � c0 � �0.u.�D2//

� df1 � c1 � � � � � c2q�1 � �0.u.�D2// � df2q � c2q

D .�1/qc2q�0.e
D2

u.�D2/2q/ ^ c0f0 ^ c0.df1/c1 ^ � � � ^ c2q�1.df2q/c2q :

Since ci .x/ D 1 for any x 2 supp.c0/, where i � 1, we have

�0.T / D .�1/
qc0�0.e

D2

u.�D2/2q/ ^ f0 ^ df1 ^ � � � ^ df2q :

Then, by the similar proof in [11] and Proposition 6.22, we have

lim
t!0

Str.T .t// D .2�/�n
Z
T �M

trs.�0.T //dxd�

D ˇq.�1/
q.2�i/n=2

Z
M

c0 det
�

R=2

sinhR=2

�1=2
^ Str.eQ/ ^ f0 ^ df1 � � � ^ df2q;

where

ˇq D

Z 2

1

� � �

Z 2

1

.1C s1 C � � � C sq/
�qds1 � � � dsq :

(2) Computation of the contribution of
PjD2q
jD1 Tj .

As in [11], we have

Tj D .�1/
qc2qe

D2

c0f0A
1

� � �Aj�1cj�1

�
1

2�i

Z
C

u.�/Œ.�CD2/�1; fj �d�

�
DcjA

jC1
� � �A2q;

where C is a suitable contour in C, oriented counterclockwise. Since

Œ.�CD2/�1; fj � D �.�CD2/�1ŒD2; fj �.�CD2/�1;

we have

Tj D .�1/
qC1c2qe

D2

c0f0A
1

� � �Aj�1cj�1

�
1

2�i

Z
C

u.�/.�CD2/�1ŒD2; fj �D.�CD2/�1cjd�

�
� AjC1 � � �A2q :

Since �0.Œ.� C D2/�1; f �/ D 0 for any f 2 A, we can exchange .� C D2/�1 and cj
without changing the asymptotic symbol of Tj .

Because of this, let

T 0j D .�1/
qC1c2qe

D2

c0f0A
1
� � �Aj�1cj�1

1

2�i

Z
C

u.�/.�CD2/�1ŒD2; fj �

�Dcj .�CD2/�1d�AjC1 � � �A2q :
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We have

lim
t!0

Str.Tj .t// D .2�/�n
Z
T �M

trs.�0.Tj //dxd�

D .2�/�n
Z
T �M

trs.�0.T 0j //dxd� D lim
t!0

Str.T 0j .t//:

Then, we take advantage of the fact that only the supertrace is needed as in [11] and
replace T 0j by

eTj D .�1/qC1

2�i

Z
C

.�1/2qCj cj .�CD2/�1AjC1 � � �A2qc2qe
D2

c0f0A
1

� � �u.�/.�CD2/�1ŒD2; fj �Dd�;

thus bringing the two resolvents on the same side of ŒD2; fj �. When we compute �0.eTj /,
we can pass the first �0..�CD2/�1/ over the intermediate terms till it reaches the second
�0..�CD2/�1/. Thus, we get

�0.eTj / D .�1/qC1C2q�j cj ^ cj .dfjC1/cjC1 ^ � � � ^ c2q�1.df2q/c2q
^ c0f0 ^ c0.df1/c1 ^ � � � ^ cj�1.dfj /cj

� �0.e
D2

u2q�1.�D2/u0.�D2// � �0.ŒD
2; fj �D/:

Then, similarly as in [11], we have

lim
t!0

Str.Tj .t// D
Z
T �M

trs.�0.eTj //dxd�
D �

1

2q
ıq.�1/

q.2�i/�n=2
Z
M

c0 det
�

R=2

sinhR=2

�1=2
^ Str.eQ/ ^ f0 ^ df1 � � � ^ df2q;

where ıq D
R 2
1
� � �
R 2
1
.s1 C � � � C sq/.1C s1 C � � � C sq/

�.qC1/ds1 � � � dsq .
(3) Computation of the contribution of

PjD2q
jD1 Zj .

The Zj calculations are similar to Tj . Therefore, we have

lim
t!0

Str.Tj .t// D
qŠ

.2q C 1/Š
.�1/q.2�i/�n=2

Z
M

c0 det
�

R=2

sinhR=2

�1=2
^ Str.eQ/ ^ f0 ^ df1 � � � ^ df2q :

Finally, we have

lim
t!0

Str
�
c2q
�
et
2D2

� e
1
2 t
2D2

w.�t2D2/tD
�
c0f0Œc0W

0.t/c1; f1� � � � Œc2q�1W
0.t/c;f2q�

�
D lim

t!0

�
Str.T .t//C Str

�X
Ti .t/

�
C Str

�X
Zj .t/

��
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D .�1/�q.2�i/n=2�2q
qŠ

.2q/Š

Z
M

c0 det
�

R=2

sinhR=2

�1=2
^ Str.eQ/ ^ f0 ^ df1 � � � ^ df2q;

D .�1/�q.2�i/n=2�2q
qŠ

.2q/Š

Z
M

c0 yAG.M/ ^ ch0G.�Š.Œ�
�.EC/; ��.E�/; �.D/�//

^ f0 ^ df1 � � � ^ df2q :

The last equation holds since det1=2. R=2
sinhR=2 / is just G-invariant yA-genus yAG.M/ in

our notation, and Str.eQ/ is equal to ch0G.�Š.Œ�
�.EC/; ��.E�/; �.D/�// since

�Š.Œ��.EC/; ��.E�/; �.D/�/ D ŒW C� � ŒW ��:

Summarizing the preceding result, we complete the proof of Theorem 6.1.

7. Higher index formula and pairing between K -theory and
cohomology

In this section, we aim to use Theorem 6.1 to obtain a higher index formula and define
a pairing between H even

DR .G=H/
G and K0.C �.G=H; E/G/, where H even

DR .G=H/
G is the

even part of G-invariant de Rham cohomology and C �.G=H;E/G is the equivariant Roe
algebra.

7.1. Higher index formula

For a Lie group G, the space of smooth homogeneous group k-cochains given by

C kdiff.G/ WD ¹c W G
kC1
! C smooth j c.gg0; gg1; : : : ; ggk/ D c.g0; g1; : : : ; gk/;

8g; g0; : : : ; gk 2 Gº

equipped with the differential d W C kdiff.G/! C kC1diff .G/

d.c/.g0; : : : ; gkC1/ WD

kC1X
iD0

.�1/ic.g0; : : : ; gi�1; giC1; : : : ; gkC1/

gives rise to the group cohomology, denoted by H�diff.G/. Under the notation above, let

C kdiff;�.G/ WD ¹c W G
kC1
! C smooth j c.gg0; gg1; : : : ; ggk/ D c.g0; g1; : : : ; gk/;

c.g0; : : : ; gk/ D .�1/
kc.gk ; g0; : : : ; gk�1/

for all g; g0; : : : ; gk 2 Gº
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and

C kdiff;anti.G/

WD ¹c W GkC1 ! C smooth j c.gg0; gg1; : : : ; ggk/ D c.g0; g1; : : : ; gk/;

c.g0; : : : ; gk/ D sign.�/c.g�.0/; g�.1/; : : : ; g�.k//

for all g; g0; : : : ; gk 2 G and � 2 SkC1º:

It can be verified by direct calculation that both .C �diff;�.G/; d/ and .C �diff;anti.G/; d/ are
subcomplexes of .C �diff.G/; d/. We denote by H�diff;�.G/ and H�diff;anti.G/ the correspond-
ing cohomology.

Moreover, fix z0 2M for any g 2G, and letL.g/ WD d.z0;gz0/. There exists a natural
subcomplex of the .C �diff.G/; d/.

Definition 7.1. Let C qdiff;pol.G/ be the vector space of all G-equivariant smoothing func-
tions from GqC1 to C with at most polynomial growth; that is, for each

c 2 C
q
diff;pol.G/;

there exists m 2 N such that

sup.jc.g0; : : : ; gq/.1C L.g0/C L.g1/C � � � C L.gq//�mj/ < C1:

Thus, .C �diff;pol.G/; d/ is a subcomplex of .C �diff.G/; d/. The corresponding cohomology
is denoted by H�diff;pol.G/.

Similarly, we have the following definition.

Definition 7.2. LetC qdiff;pol.M/G be the vector space of allG-equivariant smoothing func-
tions fromM qC1 to C with at most polynomial growth; that is, for each 2C qdiff;pol.M/G ,
there exists m 2 N such that

sup.j .x0; : : : ; xp/.1C d.x0; x1/2 C d.x1; x2/2 C � � � C d.xp; x0/2/�mj/ < C1:

A coboundary homomorphism d WC
q
diff;pol.M/G!C

q
diff;pol.M/G is defined by the formula

d. /.x0; : : : ; xpC1/ D

qC1X
iD0

.�1/i .x0; : : : ; xi�1; xiC1; : : : ; xqC1/;

where  2 C qdiff;pol.M/G . The corresponding cohomology is denoted by H�pol.M/G .

We denote by .C �pol;�.M/G; d / and .C �pol;anti.M/G ; d / subcomplices of .C �pol.M/G ; d /

and H�pol;�.M/G , H�pol;anti.M/G the corresponding cohomology, respectively. If we re-
move the restrictions on growth conditions, we denote the corresponding cohomology by
H�.M/G .
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Then, assuming that G has finitely many connected components and satisfies the RD
condition with respect to the length function L.g/ WD d.z0; gz0/, we recall the definition
of the pairing between Z�diff;pol.G/ and K0.C �.M;E/G/ in [24] (5B).

Let b 2 Cmdiff.G/; for a0; : : : ; am 2 C1c .G/, define

�Gc .a0; : : : ; am/

WD

Z
Gm
b.e; g1; g1g2; : : : ; g1 � � �gm/a0..g1 � � �gm/

�1/a1.g1/ � � � am.gm/dg1 � � � dgm;

and for k0; : : : ; km 2 AcG.M;E/, define

�Mc .k0; : : : ; km/ WD

Z
Gm

Z
MmC1

c.x0/ � � � c.xm/tr.k.x0; g1x1/ � � � k.xm; .g1 � � �gm/�1x0//

� b.e; g1; g1g2; : : : ; g1 � � �gm/dg1 � � � dgmd�.x0/ � � � d�.xm/:

When c 2 Zmdiff;pol.G/, the homomorphism

h�Mc ; �i W K0.A
c
G.M;E//! C

extends to a homomorphism

h�Mc ; �i W K0.A
1
G .M;E// Š K0.C

�.M;E/G/! C;

where C �.M; E/G is the equivariant Roe algebra defined as the closure of bounded G-
equivariant operators on L2.M; E/ that are locally compact and of finite propagation.
Let

A1G .M;E/ WD .H
1
L .G/ y̋‰

�1.N;EjN //
K�K ;

where

H1L .G/ WD ¹f 2 L
2.G/ W g 7! .1C L.g//kf .g/ 2 L2.G/ for all kº

and ‰�1.N;EjN / denotes the algebra of kernels of smoothing operators on EjN .
Then, we explain the relation between the SuG.M; E/ and A1G .M; E/. In fact, for

suitable u > 0, we have SuG.M; E/ � A
1
G .M; E/. Recall that, in [24] (1A), Piazza and

Posthuma defined

A
exp
G .M IE/ WD

®
k 2 C1.M �M;E �E�/G W sup

x;y2M

kexp.qd.x; y//rmx r
n
y k.x; y/k

< Cq for all q;m; n 2 N
¯
;

and because M Š G �K N , Aexp
G .M IE/ can be decomposed as

.Aexp.G/ y̋‰�1.N;EjN //
K�K ;

where

Aexp.G/ WD
®
f 2 C1.G/ W sup

g2G

j exp.qL.g//Df .g/j < C1 for all q;D 2 U.g/
¯
:
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Similarly,

SuG.M IE/ WD
®
k 2 C1.M �M;E �E�/G j sup

x;y2M

kexp .u � d.x; y//rmx r
n
y k.x; y/k

< Cm;n for all m; n 2 N
¯

can be decomposed as
.Aexp;u.G/ y̋‰�1.N;EjN //

K�K ;

where

Aexp;u.G/ WD
®
f 2 C1.G/ W sup

g2G

j exp.uL.g//Df .g/j < C1 for all D 2 U.g/
¯
:

Since the Lie groupG has at most exponential growth, when u is big enough, we have
Aexp;u.G/ � H1L .G/. Therefore, SuG.M;E/ � A

1
G .M;E/ holds for suitable u > 0.

Then, as we have shown in the last section, for any u > 0, there exists tu > 0, and for
any 0 < t � tu, we have Indt .D/ 2 SuG.M;E/. We claim the following proposition.

Proposition 7.3. There exists tu > 0, for any 0 < t � tu, Indt .D/ 2 A1G .M;E/.

Therefore, for any c 2 Zmdiff;pol.G/, h�
M
c ; Indt .D/i is well defined for suitable t . Next,

we explain the relation between h�Mc ; Indt .D/i and �.fc/.Indt .D// which is useful to
obtain the higher index formula.

Indeed, we have the following proposition.

Proposition 7.4. Let a 2 Cmdiff.G/ and k0; : : : ; km 2 C1.M �M; E � E�/G . If both
�Ma .k0; : : : ; km/ and �.fa/.k0; : : : ; km/ are well defined where

fa.x0; : : : ; xm/ WD

Z
GmC1

c.g�10 x0/ � � � c.g
�1
m xm/a.g0; : : : ; gm/dg0 � � � dgm;

then
�Ma .k0; : : : ; km/ D �.fa/.k0; : : : ; km/:

Proof. To prove the proposition, we need to show that

�Ma .k0; : : : ; km/

D

Z
MmC1

c.x0/fa.x0; : : : ; xm/tr.k.x0; x1/ � � � k.xm; x0//d�.x0/ � � � d�.xm/:

By definition, we have

�Ma .k0; : : : ; km/

WD

Z
Gm

Z
MmC1

c.x0/ � � � c.xm/tr.k0.x0; g1x1/ � � � km.xm; .g1 � � �gm/�1x0//

� a.e; g1; g1g2; : : : ; g1 � � �gm/dg1 � � � dgmd�.x0/ � � � d�.xm/: (7.1)
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Since
R
G
c.g�10 x0/dg0 D 1, for any x0 2M and a isG-invariant, (7.1) can be written

as Z
GmC1

Z
MmC1

c.g�10 x0/c.x0/ � � � c.xm/tr.k.x0; g1x1/ � � � k.xm; .g1 � � �gm/�1x0//

� a.g�10 ; g�10 g1; g
�1
0 g1g2; : : : ; g

�1
0 g1 � � �gm/dg0dg1 � � � dgmd�.x0/ � � � d�.xm/:

(7.2)

Let u0 D g�10 ; u1 D g
�1
0 g1; : : : ; um D g

�1
0 g1 � � �gm. Then,

(7.2) D
Z
GmC1

Z
MmC1

c.u0x0/c.x0/ � � � c.xm/tr.k0.x0; u�10 u1x1/ � � � k.mxm; u
�1
m u0x0//

� a.u0; u1; u2; : : : ; um/d.u
�1
0 /d.u

�1
0 u1/ � � � d.u

�1
m�1um/d�.x0/ � � � d�.xm/

D

Z
GmC1

Z
MmC1

c.x0/c.u
�1
0 x0/ � � � c.u

�1
m xm/tr.k0.x0; u1x1/ � � � km.umxm; x0//

� a.u0; u1; u2; : : : ; um/du0du1 � � � dumd�.x0/ � � � d�.xm/

D

Z
MmC1

c.x0/fa.x0; : : : ; xm/tr.k0.x0; x1/ � � � km.xm; x0//d�.x0/ � � � d�.xm/:

The first and second equalities hold since du�10 Ddu0, d.u�1i uiC1/DduiC1, d�.ujxj /D
d�.xj / and k1; : : : ; km are G-invariant.

On the other hand, we claim the following proposition.

Proposition 7.5. When a 2 C qdiff;anti.G/ has almost polynomial growth, we have fa 2
C
q
pol;anti.M/G .

Proof. It is clear that when a 2 C qdiff;anti.G/, fa 2 C
q
anti.M/G . Thus, to prove the claim,

we only need to show that a having almost polynomial growth implies that fa has almost
polynomial growth.

Recall that a 2 C qdiff.G/ having almost polynomial growth means that there exists
m 2 N such that

ja.g0; : : : ; gq/j � .1C L.g0/C L.g1/C � � � C L.gq//
m;

where L.gi / D d.z0:giz0/ for some z0 2M .
Thus, for any x0; : : : ; xq 2M , we have

jfa.x0; : : : ; xq/j D

ˇ̌̌̌Z
GqC1

c.g�10 x0/ � � � c.g
�1
q xm/a.g0; : : : ; gq/dg0 � � � dgq

ˇ̌̌̌
�

Z
GmC1

c.g�10 x0/ � � � c.g
�1
m xm/.1C L.g0/C L.g1/

C � � � C L.gq//
mdg0 � � � dgm

D

Z
GmC1

c.g�10 x0/ � � � c.g
�1
m xm/.1C d.z0; g0z0/

C � � � C d.z0; gqz0//
mdg0 � � � dgm: (7.3)
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Moreover, for any x 2M and m 2 NC, let

 i;m.x/ WD

Z
G

c.g�1i x/d.z0; giz0/
mdgi :

Since (7.3) can be rewritten asX
m0C���CmqDm

Z
GmC1

c.g�10 x0/ � � � c.g
�1
m xm/d.z0; g0z0/

m0 � � � d.z0; gqz0/
mqdg0 � � � dgm;

where mi runs over ¹0; 1; 2; : : : ; qº, we have

jfa.x0; : : : ; xq/j �
X

m0C���CmqDm

 0;m0.x0/ � � � q;mq .xq/:

Since d.; / is left invariant, for any g 2 G and x 2M , we have

d.z0; gz0/ D d.g
�1z0; z0/

� d.g�1x; g�1z0/C d.g
�1x; z0/

D d.x; z0/C d.g
�1x; z0/:

On the other hand, for any p 2 NC, there exists C > 0 such that

c.g�1x/d.g�1x; z0/
p
� Cp:

This is because supp.c/ is compact, and for any y 2M , we have

c.y/d.y; z0/
p
�

�
sup

z2supp.c/
d.z0; z/

�p
:

Thus, we have

 i;m.x/ D

Z
G

c.g�1i x/d.z0; giz0/
mdgi

�

Z
G

c.g�1i x/.C C d.x; z0//
mdgi

D .C C d.x; z0//
m:

Because of this,

jfa.x0; : : : ; xq/j �
X

m0C���CmqDm

 0;m0.x0/ � � � q;mq .xq/

�

X
m0C���CmqDm

.C C d.x0; z0//
m0 � � � .C C d.xq; z0//

mq ;

which shows that fa has almost polynomial growth.



Index theorem for homogeneous spaces of Lie groups 1497

Because of the proposition above, for any v > 0, we have C qpol.M/G � C
q
v .M/G .

Thus, for any a 2 Z2qdiff;anti.G/ and suitable 0 < t � 1, �.fa/.Indt .D// is well defined, and
following from Proposition 7.3, we have˝

�Ma ; Indt .D/
˛
D
.2q/Š

qŠ
�Ma .Indt .D// D

.2q/Š

qŠ
�.fa/.Indt .D//:

Since h�Ma ; Indt .D/i is independent of t , we have˝
�Ma ; Indt .D/

˛
D lim

t!0

˝
�Ma ; Indt .D/

˛
D lim

t!0

.2q/Š

qŠ
�.fa/.Indt .D//:

Thus, Theorem 6.1 can be used to obtain a higher index formula.

Theorem 7.6. Let a 2 Z2qdiff;anti.G/ be a cocycle of polynomial growth and Indt .D/ 2
K0.A

1
G .M;E//. Then, the following C �-higher index formula holds:˝

�Ma ; Indt .D/
˛
D

.�1/�q

.2�i/2q�n=2

Z
M

c0 yAG.M/^ ch0G.�Š.Œ�
�.EC/;��.E�/;�.D/�//^!a:

7.2. Pairing between K -theory and cohomology

Now, we consider the case M Š G=H and define the pairing between H even
DR .G=H/

G and
K0.A

1
G .G=H;E//.

First, we recall the definition of the van Est map linking H�diff.G/ and H�.M/G .
As in [23, 24], the van Est map from the smooth group cohomology H�diff.G/ to the

invariant cohomologyH�DR.M/G is constructed as follows: given a smooth group cochain
a 2 C kdiff.G/, define the differential form

!a WD .d1 � � � dkfa/j�;

where di is the differential with respect to the i -th variable and the function fa 2 C1.M/

is given by

fa.x0; : : : ; xk/ WD

Z
GkC1

c.g�10 x0/ � � � c.g
�1
k xk/a.g0; : : : ; gk/dg0 � � � dgk :

Thus, the van Est homomorphism can be defined as follows.

Definition 7.7. The map a! !a which we recalled above gives rise to a homomorphism
from H�diff.G/ to H�DR.M/G :

‰M W H
�
diff.G/! H�DR.M/G

Œa� 7! Œ!a�:

Remark 7.8. Proposition 2:5 in [23] shows that ‰M is a homomorphism from H�diff.G/

to H�.M/G . Similarly, a! !a induces a homomorphism from H�
�
.G/(or H�anti.G/) to

H�.M/G . We denote these homomorphisms by ‰M;� and ‰M;anti, respectively. When
M D G=H , where H is a maximal compact subgroup of G, [23, Remark 2.7] shows that
‰M is an isomorphism.
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Following the above notation, we have the following proposition.

Proposition 7.9. For any k; l 2 N,

(1) f".a/ D ".fa/,

(2) !g D !".g/
hold for any a 2 C kdiff.G/ and g 2 C l

�
.M/G .

Proof. For any a 2 C kdiff.G/, we have

f".a/.x0; : : : ; xk/

D

Z
GkC1

c.g�10 x0/ � � � c.g
�1
k xk/".a/.g0; : : : ; gk/dg0 � � � dgk

D
1

.k C 1/Š

X
�2Sk

Z
GkC1

c.g�10 x0/ � � � c.g
�1
k xk/a.g�.0/; : : : ; g�.k//dg0 � � � dgk

D
1

.k C 1/Š

X
�2Sk

Z
GkC1

c.g�10 x�.0// � � � c.g
�1
k x�.k//a.g0; : : : ; gk/dg0 � � � dgk

D ".fa/.x0; : : : ; xk/;

which proves the first claim.
Next, let t W C l .M/G ! C l .M/G be the cyclic operator which means that, for any

p 2 C l .M/G , we have

t .p/.x0; : : : ; xl / D .�1/
lp.xl ; x0; : : : ; xl�1/:

Thus, let � W C l .M/G ! C l .M/G be defined by

�.p/ D
1

l C 1

lX
iD0

t l .p/

for any p 2 C l .M/G .
Then, for convenience, let p D p0 ˝ � � � ˝ pl 2 C l .M/G ; we have

!".p/ D
1

.l C 1/Š

X
�2SlC1

sign.�/p�.0/dp�.1/ ^ � � � ^ dp�.l/

D
1

l C 1

lX
iD0

.�1/ipidp0 ^ � � � dpi�1 ^ dpiC1 ^ � � � ^ dpl

D !�.p/:

Since p D �.p/ 2 C l
�
.M/G , we have

!p D !�.p/ D !".p/:

Therefore, we proved the second claim.
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On the other hand, there exists an isomorphism from H�DR.G=H/
G to H�diff.G/ when

H is a maximal compact subgroup of G.

Definition 7.10. The map ˛ ! J.˛/ induces an isomorphism from H�DR.G=H/
G to

H�diff.G/:

J� W H
�
DR.G=H/

G
! H�diff.G/

Œ˛� 7! ŒJ.˛/�:

Remark 7.11. As in [23], J� is the inverse of ‰G=H , and when G=H admits a non-
positive sectional curvature, J.˛/ has almost polynomial growth.

On the other hand, we have the following definition.

Definition 7.12. The map
a! fa

induces a homomorphism from H�diff.G/ to H�DR.G=H/
G .

Thus, we can construct a homomorphism from H�DR.G=H/
G to H�pol;anti.G=H/

G as
follows.

Definition 7.13. The map ˛ ! f"ıJ.˛/ induced a homomorphism from H�DR.G=H/
G to

H�pol;anti.G=H/
G when G=H is of non-positive sectional curvature.

Thus, using the homomorphism defined by Piazza and Posthuma in [23, 24], we can
define a pairing between H even

DR .G=H/ and K0.A1G .G=H;E//.

Definition 7.14. For any Œ˛� 2H even
DR .G=H/ and Œp�� Œq� 2K0.A1G .G=H;E//, we define

hŒ˛�; Œp� � Œq�iDR;G=H WD
˝
�
G=H

"ıJ.˛/
; Œp� � Œq�

˛
:

Here, G has finitely many connected components, H is a maximal compact subgroup of
G and G=H is of non-positive sectional curvature.

Similarly, there exists a pairing between H even
DR .G=H/ and K0.C �r .G//.

Definition 7.15. For any Œ˛� 2 H even
DR .G=H/ and Œp� � Œq� 2 K0.C �r .G//, we define

hŒ˛�; Œp� � Œq�iDR;G WD
˝
�G"ıJ.˛/; Œp� � Œq�

˛
:

Here, G has finitely many connected components and satisfies the RD condition, H is a
maximal compact subgroup of G, and G=H admits a non-positive sectional curvature.

8. Equivalence of topological index and analytic index

Let D be a self-adjoint, a G-equivariant, an elliptic differential operator on a Z2-graded,
and a G-equivariant vector bundle E over G=H . In [14], the higher index IndG.D/ 2
K0.C

�
r .G// is defined by using the analytic assembly map from the Baum–Connes
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conjecture. Since the K-homology class of D can be identified with

Œ��.EC/; ��.E�/; �.D/� 2 K0G.T
�.G=H//

under Poincaré duality, we obtain a map:

IndA W K0G.T
�.G=H//! K0.C

�
r .G//

Œ��.EC/; ��.E�/; �.D/� 7! IndG.D/:

On the other hand, we define the topological index map as follows:

IndT W K0G.T
�.G=H//! H even

DR .G=H/
G

Œ��.EC/; ��.E�/; �.D/� 7! �Š
��
yA2G.G=H/

�
^ ch0G.Œ�

�.EC/; ��.E�/; �.D/�/
�
:

We denote HDR;even.G=H/
G WD Hom.H even

DR .G=H/
G ;C/. Then, there exists a map

PD W H even
DR .G=H/

G
! HDR;even.G=H/

G

such that, for any Œ˛�; Œˇ� 2 H even
DR .G=H/

G ,

PD.Œ˛�/.Œˇ�/ D

n
2X

kD0

.�1/k

.2�i/2k�n

Z
G=H

c0˛2k ^ ˇn�2k ;

where dim.G=H/ D n, ˛2k and ˇn�2k are the 2k-degree component of ˛ and .n � 2k/-
degree component of ˇ, respectively.

In this section, we aim to prove the agreement between the topological index and
analytic index which is stated as follows.

Theorem 8.1. The following diagram commutes:

K0G.T
�.G=H//

IndA //

IndT

��

K0.C
�
r .G//

ech

��

H even
DR .G=H/

G PD // HDR;even.G=H/
G ;

where ech W K0.C �r .G//! HDR;even.G=H/
G is defined by

ech.Œp� � Œq�/.˛/ WD h˛; Œp� � Œq�iDR;G

for every ˛ 2H even
DR .G=H/

G and Œp�� Œq� 2 K0.C �r .G//. Here, G has finitely many con-
nected components and satisfies the RD condition, H is a maximal compact subgroup of
G, and G=H admits a non-positive sectional curvature.
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To prove Theorem 8.1, we need to show the following: let k 2 N, for any Œ˛� 2
H 2k
DR.G=H/

G ,

hŒ˛�; Indt .D/iDR;G=H

D
.�1/k

.2�i/2k�n=2

Z
G=H

c0˛ ^ yAG.G=H/ ^ ch0G.�Š.Œ�
�.EC/; ��.E�/; �.D/�//;

where D is the Dirac operator on E.
We will split the proof of the claim above into two lemmas.
First, we explain the relation between H�diff.G/ and H�anti.G/.

Lemma 8.2. The anti-symmetric operator "� induces an isomorphism from H�diff.G/ to
H�anti.G/.

Proof. First, we claim that the following diagram commutes:

H�
�
.G/ H�anti.G/

H�DR.G=H/
G :

"�

‰G=H;�
‰G=H;anti

For any Œa� 2 H k
diff;�.G/, we have Œ‰G=H ı ".a/� D Œ!f".a/ �.

Because of Proposition 7.9, we have

Œ‰G=H ı ".a/� D Œ!f".a/ � D Œ!".fa/� D Œ!fa � D Œ‰G=H .a/�:

Thus, the above diagram commutes, which shows the claim.
According to [23] (5B), C �diff;�.G/ is a quasi-isomorphic subcomplex of C �diff.G/, and

so, the inclusion
i W C �diff;�.G/! C �diff.G/

induces an isomorphism from H�
�
.G/ to H�diff.G/. Since

‰G=H W H
�
diff.G/! H�DR.G=H/

G

is an isomorphism, ‰G=H;� D ‰G=H ı i� is also an isomorphism. This implies that "� is
injective because ‰G=H;� D ‰G=H;anti ı "�.

Since the following diagram commutes:

H�anti.G/ H�
�
.G/

H�anti.G/

i�

Id
"�

this means that "� is also surjective. Thus, "� W H�� .G/! H�anti.G/ is an isomorphism.
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Finally, since the following diagram commutes:

H�
�
.G/ H�diff.G/

H�anti.G/;

i�

"�
"�

"� W H
�
diff.G/! H�anti.G/ is an isomorphism, which completes the proof.

Then, we prove the second lemma we need.

Lemma 8.3. For any Œ˛� 2 H�DR.G=H/
G , we have

Œ˛� D Œ‰G=H ı " ı J.˛/�:

Proof. First, we show that the following diagram commutes:

H�diff.G/ H�DR.G=H/
G

H�anti.G/ H�diff.G/:

‰G=H

J�i�

"�

The above diagram commutes since Id D J� ı‰G=H and Id D i� ı "�.
Since all homomorphisms appearing in the diagram above are isomorphisms, the fol-

lowing diagram also commutes:

H�DR.G=H/
G H�diff.G/

H�diff.G/ H�anti.G/:

J�

"�‰G=H

i�

This implies that

Œ˛� D Œ‰G=H ı " ı J.˛/� 8Œ˛� 2 H
�
DR.G=H/

G ;

and the proof is completed.

After these preparations, we will prove the following theorem.

Theorem 8.4. Let k 2 N. For any Œ˛� 2 H 2k
DR.G=H/

G , we have

hŒ˛�; Indt .D/iDR;G=H

D
.�1/�k

.2�i/2k�n=2

Z
G=H

c0˛ ^ yAG.G=H/ ^ ch0G.�Š.ŒE
C; E�; �.D/�//:
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Proof. Indeed, we have

hŒ˛�; Indt .D/iDR;G=H D
˝
�
G=H

"ıJ.˛/
; Indt .D/

˛
D
.2k/Š

kŠ

.�1/�k

.2�i/2k�n=2
kŠ

.2k/Š

Z
G=H

c0!f"ıJ.˛/ ^
yAG.G=H/

^ ch0G.�Š.ŒE
C; E�; �.D/�//

D
.�1/�k

.2�i/2k�n=2

Z
G=H

c0‰G=H ı " ı J.˛/ ^ yAG.G=H/

^ ch0G.�Š.ŒE
C; E�; �.D/�//

D
.�1/�k

.2�i/2k�n=2

Z
G=H

c0˛ ^ yAG.G=H/

^ ch0G.�Š.ŒE
C; E�; �.D/�//:

The second equality holds because of Theorem 6.1 and by Lemma 8.3 the last equality
holds.

Therefore, we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. Let Œ��.EC/; ��.E�/; �.D/� 2 K0G.T
�.G=H// and

Œ˛� 2 H 2k
DR.G=H/

G :

Let M W K0.C
�.M;E/G/! K0.C

�
r .G// be the Morita isomorphism. Then,˝

�
G=H

"ıJ.˛/
; Indt .D/

˛
D
˝
�G"ıJ.˛/;M ı Indt .D/

˛
holds following from [23, Proposition 5.7]. Since IndA.D/ DM ı Indt .D/ (independent
of t 2 .0; 1�), we have

hŒ˛�; IndA.D/iDR;G D
˝
�G"ıJ.˛/; IndA.D/

˛
D
˝
�
G=H

"ıJ.˛/
; Indt .D/

˛
D hŒ˛�; Indt .D/iDR;G=H :

Then, applying Theorem 8.4, we have

hŒ˛�; IndA.D/iDR;G D hŒ˛�; Indt .D/iDR;G=H

D
.�1/�k

.2�i/2k�n=2

Z
G=H

c0˛ ^ yAG.G=H/

^ ch0G.�Š.Œ�
�.EC/; ��.E�/; �.D/�//

D
.�1/k

.2�i/2k�n

Z
T �.G=H/

c0˛ ^ yA
2
G.G=H/

^ ch0G.Œ�
�.EC/; ��.E�/; �.D/�/

D PD.IndT .D//.˛/:

Therefore, we complete the proof.
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Remark 8.5. If we identified H�.G=H/G with H�.g; H/, following Theorems 5.1 and
8.1, for any ˛ 2 H 2k.g;H/, we have

hŒ˛�; IndA.D/iDR;G D
1

.2�i/k
h˛ ^ yA.g;H/ ^ chCM .�Š.�.D///; ŒV �i;

where ŒV � is the fundamental class of T �
Œe�
.G=H/. This is the higher generalization of [27]

and an analytic proof of an example of [20].

A. Proof of Lemmas 6.8, 6.9 and Proposition 6.14

Proof of Lemma 6.8. Fix an x0 2M , and let Qs 2 �.M;E/ such that

supp.Qs/ � B1.x0/:

Since the group action is proper and cocompact, we only need to consider the special case
of B1.x0/. By the Sobolev embedding theorem and the elliptic estimate ofD, there exists
C > 0 such that

kQskC 0.B1.x0// � C

nX
iD0

kDi
Qsk0;B1.x0/:

For any 0 < r � 1, define

f .x/ D exp
�
�

r

r � d.x; x0/2

�
when d.x;x0/� r and f .x/D 0 when d.x;x0/ > r . Thus, for any s 2 �.M;E/, we have

js.x0/j � e � sup
x2Br .x0/

jf s.x/j � C

nX
iD0

kDi .f s/k0;B1.x0/:

Let  2 C1c .Br .x0// and wk. / D supj˛j�k;x2B1.x0/ j@˛ .x/j. Thus,

k sk0;B1.x0/ D

�Z
B1.x0/

j s.x/j2dx

� 1
2

� sup
x2B1.x0/

j .x/j �

�Z
Br .x0/

js.x/j2dx

� 1
2

D w0. / � ksk0;Br .x0/:

We may assume that there exists Cm > 0 such that

kDm. s/k0;B1.x0/ � Cm � wm. / �

 
mX
iD0

kDisk0;Br .x0/

!
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for any s 2 �.M; E/, 0 < r � 1, and  2 C1.M/ such that supp. / � Br .x0/. For
mC 1, we have

kDmC1. s/k0;B1.x0/ � kD
mŒD; �sk0;B1.x0/ C kD

m Dsk0;B1.x0/:

Since

kDm Dsk0;B1.x0/ � Cm � wm. / �

 
mC1X
iD0

kDisk0;Br .x0/

!
and

kDmŒD; �sk0;B1.x0/ �

nX
iD1

kDm
� ei � .@i /sk0;B1.x0/

� B1

nX
iD1

kei � .@i /skm;B1.x0/

� B1B2

nX
iD1

k.@i /skm;B1.x0/

� B1B2B3 �

 
nX
iD1

mX
jD0

kDj .@i /sk0;B1.x0/

!

� B1B2B3B4 � wmC1. / �

 
mX
jD0

kDj sk0;Br .x0/

!
;

the first inequality holds becauseD is the equivariant Dirac operator. The second inequal-
ity holds because

Dm
W L2m.B1.x0/; E/! L2.B1.x0/; E/

is bounded.
The reason why the third inequality holds is that

ei W L
2
m.B1.x0/; E/! L2m.B1.x0/; E/

is bounded, and because of the elliptic estimate of D, the fourth inequality hold. Thus,
there exists CmC1 > 0 such that

kDmC1. s/k0;B1.x0/ � CmC1 � wm. / �

 
mC1X
iD0

kDisk0;Br .x0/

!
for any s 2 �.M;E/, 0 < r � 1, and  2 C1.M/ satisfying supp. / � Br .x0/. Let

 D f D exp
�
�

r

r � d.x; x0/2

�
I

there exists C1 > 0 such that wk. / � C1
rk

for any 0 < r � 1 and 1 � k � n; k 2 NC.
Then, we complete the proof.
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Proof of Lemma 6.9. Let K.�; �/ 2 �.M � M; E � E�/ and 0 < r � 1. For any y 2
Br .y0/, there exists u.y/ 2 Ey such that

ju.y/j D kK.x; y/k and jk.x; y/s.y/j D kK.x; y/k2:

Since K.x; y/ is smooth, we have u 2 C.Br .y0/; E/. There exists Qu.y/ 2 Ex0 for any
y 2 Br .y0/ such that

k.x; y/u.y/ D kK.x; y/k2 � Qu.y/:

Since j Qu.y/j D 1, let Qu.y/ D
Pn
iD1 Qui .y/ � ei , where Qui 2 C.Br .y0// and ¹eiº is the

orthonormal basis of Ex . Thus, we haveZ
Br .y0/

kk.x; y/k2dy D

Z
Br .y0/

kk.x; y/k2 � j Qu.y/j2dy

D

nX
iD1

Z
Br .y0/

kk.x; y/k2 � j Qui .y/j
2dy

�

nX
iD1

Z
Br .y0/

kk.x; y/k2 � j Qui .y/jdy:

Since
R
Br .y0/

kk.x;y/k2dy �
Pn
iD1

R
Br .y0/

kk.x;y/k2 � j Qui .y/jdy, there exists 1� i0 � n
such that Z

Br .y0/

kk.x; y/k2 � j Qui0.y/jdy �
1

n

Z
Br .y0/

kk.x; y/k2dy:

Let Ou D sgn.ui0/u; we haveˇ̌̌̌Z
Br .y0/

k.x; y/ Ou.y/dy

ˇ̌̌̌
D

 
nX
iD1

�Z
Br .y0/

kk.x; y/k2 � sgn.ui0/ Qu.y/dy
�2! 1

2

�

Z
Br .y0/

kk.x; y/k2 � j Qui0.y/jdy

�
1

n

Z
Br .y0/

kk.x; y/k2dy:

Therefore, we have

sup
kskD1;supp.s/�Br .y0/

ˇ̌̌̌Z
Br .y0/

k.x; y/s.y/

ˇ̌̌̌
�
j
R
Br .y0/

k.x; y/ Ou.y/dyj

k Ouk0;Br .y0/

D
j
R
Br .y0/

k.x; y/ Ou.y/dyj

.
R
Br .y0/

kk.x; y/k2dy/
1
2

�
1

n

�Z
Br .y0/

kk.x; y/k2dy

� 1
2

D
1

n
kk.x; y/k0;Br .y0/:
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Lemma A.1. Let f be holomorphic in

� D ¹z 2 C j jIm.z/j � 2wº;

where w > 0, and satisfy the following: for any k 2 NC, there exists Mk > 0 such
that jf .z/zkj � Mk when z 2 �. Then, for any k 2 NC, there exists pk > 0 such that
j Of .k/.s/j � pk exp.�wjsj/ for any s 2 R.

Proof. Since

Of .s/ D .2�/�1
Z C1
�1

e�isxf .x/dx

for any k 2 NC, we have

Of .k/.s/ D
b
xkf .s/ D .2�/�1

Z C1
�1

e�isxxkf .x/dx:

Let g.z/D e�iszf .z/zk . Because f is holomorphic in�D ¹z 2 C j jIm.z/j � 2wº, g is
also holomorphic in �. Since for any k 2 NC, there exists Mk > 0 such that jf .z/zkj �
Mk when z 2 �, we have

R C1
�1
jg.x C iy/jdx < C1 for any y 2 R, jyj � 2w, and

limjzj!C1 jg.z/j D 0.
Because g is holomorphic in � and limjzj!C1 jg.z/j D 0, it follows from Cauchy’s

theorem thatZ C1
�1

e�isxxkf .x/dx D �

Z C1
�1

e�is.x�iw/.x � iw/kf .x � iw/dx:

Then, we haveˇ̌
Of .k/.s/

ˇ̌
D exp.�ws/

ˇ̌̌̌
.2�/�1

Z C1
�1

e�isx.x � iw/kf .x � iw/dx

ˇ̌̌̌
� ck exp.�ws/

for some ck > 0.
Similarly, j Of .k/.s/j � bk exp.ws/ for some bk > 0. Therefore, there exists pk > 0

such that ˇ̌
Of .k/.s/

ˇ̌
� pk exp.�wjsj/

for any s 2 R.

Lemma A.2. The functions f .x/D e�x
2
, g.x/D e�x

2
.1�e

�x2

x2
/
1
2 x satisfy the conditions

of Theorem 6.13.

Proof. It is clear that f .x/ D e�x
2

satisfies the conditions of Theorem 6.13. For g.x/ D

e�
1
2x

2
.1�e

�x2

x2
/
1
2 x, let u.z/ D .1�e

�z2

z2
/ and w D jzj

1
2 � e

arg.z/
2 , and we have

g.z/ D e�
1
2 z
2

w.u.z// � z:
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Let z D aC bi , where a; b 2 R. We have

u.z/ D

�
1 � e�z

2

z2

�
D

1

jzj4
�
�
1 � e�.a

2�b2/
� e�2abi

�
� .a2 � b2 � 2abi/:

Since w is an analytical branch of the multivalue function z
1
2 which is holomorphic in

Cn.�1; 0� and since w.u.z// is holomorphic if u.z/ … .�1; 0�, we will study when
u.z/ � 0. If u.z/ � 0, we have Im.jzj4u.z// D 0.

If ab D 0, then a D 0 or b D 0. If a D 0, u.z/ D eb
2�1

b2
> 0 and if b D 0, we have

u.z/ D 1�e�a
2

a2
> 0.

When ab ¤ 0, Im.jzj4u.z// D 0 implies that

1 � e�.a
2�b2/ cos .2ab/ D .a2 � b2/

sin .2ab/
2ab

� e�.a
2�b2/

e.a
2�b2/

D cos .2ab/C .a2 � b2/
sin .2ab/
2ab

:

Thus, we have e.a
2�b2/ � 1C ja2 � b2j which implies that .a2 � b2/ � 0. Because

of this, we claim that u.z/ � 0 implies that .a2 � b2/ � 0. Since u.0/ D 1, then w.u.z//
is holomorphic in a neighborhood of 0. Therefore, there exists w > 0 such that w.u.z//
is holomorphic in � D ¹z j jImzj � 2wº. Because of this, g.z/ is also holomorphic in

� D ¹z j jImzj � 2wº:

B. Proof of Theorem 4.4

Proof of Theorem 4.4. Note that we have the following identity:

exp
�
1

2
J t!J

�
D

n
2X

pD0

1

pŠ

�X
i<j

wijJiJj

�p
:

Because for any p,

1

pŠ

�X
i<j

wijJiJj

�p
D

X
!i1i2wi3i4 � � �!i2p�1i2p � Ji1 � � �Ji2p ;

where i1; : : : ; i2p runs over 1; 2; 3; : : : ; 2p and i2q�1 < i2q for any 1 � q � p; q 2 NC.
Thus,

1

pŠ

� nX
mD1

ck!kmJm

�
�

�X
i<j

wijJiJj

�p
D

nX
mD1

ck!kmJm � !i1i2wi3i4 � � �!i2p�1i2p � Ji1 � � �Ji2p : (B.1)
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We claim that only the term satisfying k;m … ¹i1; : : : ; i2pº will remain in the sum on
the right-hand side of (B.1).

It is clear that if m 2 ¹i1; : : : ; i2pº, then

!kmJm � !i1i2wi3i4 � � �!i2p�1i2p � Ji1 � � �Ji2p D 0:

When k 2 ¹i1; : : : ; i2pº, without loss of generality, let k D i1; we need to consider the
following:

!kmJm � !ki2!i3i4 � � �!i2p�1i2p � JkJi2 � � �Ji2p ;

and since m runs over ¹1; 2; : : : ; nº, there exists another term:

!ki2Ji2 � !km!i3i4 � � �!i2p�1i2p � JkJm � � �Ji2p

so that the two cancel each other. Thus, we have proved our claim.
Let Ip � ¹1; 2; : : : ; nº such that k … Ip and jIpj D 2p. We denote

Qk
Ip
D

X
ck!kmJm � !i1i2wi3i4 � � �!i2p�1i2p � Ji1 � � �Ji2p ;

where m; i1; : : : ; i2p runs over I and i2q�1 < i2q for any 1 � q � p, q 2 NC.
After wedging Jk on the left of Qk

Ip
, we have

Jk ^Q
k
Ip
D

X
ck!kmJkJm � !i1i2wi3i4 � � �!i2p�1i2p � Ji1 � � �Ji2p

D ckPf.!Ip[¹kº/J
Ip[¹kº:

Thus, we have

Qk
Ip
D ck"Ip[¹kº.k; Ip/Pf.!Ip[¹kº/J

Ip :

Because equation (B.1) can be written as
P
Ip
Qk
Ip

, where Ip runs over all subset of
¹1; 2; : : : ; nº with length 2p C 1, we have 

nX
kD1

ck!.J /k

!
exp

�
1

2
J t!J

�
D

n
2X

pD0

nX
kD1

 
nX

mD1

ck!kmJm

!
�
1

pŠ

�X
i<j

wijJiJj

�p
D

n
2X

pD0

nX
kD1

X
Ip

Qk
Ip

D

n
2X

pD0

nX
kD1

X
Ip

ck"Ip[¹kº.¹kº; Ip/Pf.!Ip[¹kº/J
Ip

D

nX
kD1

X
I

ck"I[¹kº.¹kº; I /Pf.!I[¹kº/J I :



H. Wang and Z. Wang 1510

In the last equation, we remove the restriction on the length of sets, and we allow I

runs over all subsets of ¹1; 2; 3; : : : ; nº. Therefore, we complete the proof.

C. Proof of Proposition 6.22

Proof of Proposition 6.22. Let exp W TM !M be the exponential map and ˛ 2C1c .M �
M/ satisfy the following assumptions:

• supp.˛/ � supp.P /;

• exp�1 is a diffeomorphism in a neighborhood of supp.˛/;

• ˛ D 1 in a neighborhood of the diagonal in supp.P / � supp.P /.

For any x; y 2 supp.˛/, denote the parallel translation from x to y along the geodesic
between x and y by �E .x; y/, and let ˛E .x; y/ D ˛.x; y/ � �E .x; y/. Let � 2 C10 .R

n/

satisfy the following:

• �.x/ D 1, jxj � 1
2

and �.x/ � 0;

•
R
Rn
�.x/dx D 1.

Thus, for any x 2 supp.P /, we have

P."�n�."�1 exp�1x .y// � ˛E .y; x//jx

D

Z
M

kP .x; z/"
�n�."�1 exp�1x .z// � ˛E .z; x/dz

D

Z
TxM

kP .x; expx.v//"
�n�."�1v/ � ˛E .expx.v/; x/ � det.d expx/jvdv

D

Z
TxM

kP .x; expx."v//�.v/ � ˛E .expx."v/; x/ � det.d expx/j"vdv:

Thus, for any x 2 supp.P /,

lim
"!0

Str.P."�n�."�1 exp�1x .y// � ˛E .y; x//jx/

D lim
"!0

Str
�Z

TxM

kP .x; expx."v//�.v/ � ˛E .expx."v/; x/ � det.d expx/j"vdv
�

D Str.KP .x; x//:

Since supp.P / is compact, we have

Str.P / D
Z
M

Str.kP .x; x//dx

D

Z
M

lim
"!0

Str.P."�n�."�1 exp�1x .y// � ˛E .y; x//jx/

D lim
"!0

Z
M

Str.P."�n�."�1 exp�1x .y// � ˛E .y; x//jx/:
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Let y� be the Fourier transform of �. Then,

Str.P / D lim
"!0

Z
M

Str.P."�n�."�1 exp�1x .y// � ˛E .y; x//jx/

D lim
"!0

.2�/�n
Z
T �.M/

Str.P.eihexp�1x .y/;�i
y�."�/˛E .y; x///jxd�dx

D lim
"!0

.2�/�n
Z
T �.M/

y�."�/Str.�.P /.x; �//d�dx

D

Z
T �M

Str.�.P /.x; �//d�dx:

Since for any t > 0,
R
T �M

Str.�t .P /.x; �//d�dx D
R
T �M

Str.�.P /.x; �//d�dx, we have

Str.P / D
Z
T �M

Str.�t .P /.x; �//d�dx:

Therefore, we complete the proof.
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