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H-unitality of smooth groupoid algebras

Michael D. Francis

Abstract. We show that the convolution algebra of smooth, compactly-supported functions on a Lie
groupoid is H-unital in the sense of Wodzicki. We also prove H-unitality of infinite order vanishing
ideals associated to invariant, closed subsets of the unit space. This furthermore gives H-unitality
for the quotients by such ideals, which are noncommutative algebras of Whitney functions. These
results lead immediately to excision properties in discrete Hochschild and cyclic homology around
invariant, closed subsets. This work extends previous work of the author establishing the Dixmier—
Malliavin theorem in this setting.

1. Introduction

Let A denote an associative algebra over C. We do not assume A is commutative or unital.
Let us say that A has the weak factorization property if every a € A can be expressed as
a finite sum a = Y b;¢;, where b;, ¢; € A. Notice that every unital algebra has the weak
factorization property, so this notion is only of interest in the nonunital setting.

Recall that, given a Lie group G equipped with Haar measure, the space C°(G) of
smooth, compactly-supported functions on G becomes an algebra with respect to convo-
lution. This algebra is nonunital unless G is discrete (the unit wants to be the Dirac mass
at 1). In a 1978 paper, Dixmier—Malliavin proved the following striking result.

Theorem 1.1 ([8, Theorem 3.1]). For any Lie group G, the smooth convolution algebra
C2°(G) has the weak factorization property.

The main technical ingredient of their proof is the following lemma whose own proof
is an intricate piece of hard analysis.

Lemma 1.2 ([8, Lemma 2.5]). For any sequence (cp) -, Of positive scalars, there exist
Jo, /i € C2(R) and scalars (am) with |am| < cm such that So = fo + Y meo amfl(m).
Here, & denotes the Dirac mass at 0 and the series converges in the sense of compactly-
supported distributions. The functions fy, fi may be chosen to be supported in any fixed
neighbourhood of the origin.
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The (already nontrivial) G = R case of Theorem 1.1 follows quite directly from
Lemma 1.2. Given any ¢ € C>(R), by choosing the coefficients a,, to converge suffi-
ciently quickly to 0, one has that ¢ :== ), ame® belongs to C>(R), and so,

o0
p=8xp=forxo+ Y anfi" x0 = foxp+ fixqr.

m=0

To prove Theorem 1.1 for a general Lie group, one writes G (locally) as a product of
1-parameter subgroups and factors one group at a time.
In [10], the author extended Dixmier—Malliavin’s result to the setting of Lie groupoids.

Theorem 1.3 ([10, Theorem 5.2]). For any Lie groupoid G, the smooth convolution alge-
bra C2°(G) has the weak factorization property.

We always assume our Lie groupoids G are equipped with a smooth Haar system so
that a convolution product on C°(G) is defined (this arbitrary choice can be avoided by
working with appropriate densities in place of functions, see [4, Section 2.5]). The total
space of G (but not its unit space) is permitted to be non-Hausdorff. As usual, in the non-
Hausdorff case, C2°(G) is defined somewhat differently as the span of all C>°(U), where
U is a chart neighbourhood in G (see, e.g., [3,4, 14]).

In the case of groupoids, there is an additional phenomenon (absent in the group case)
of ideals associated to invariant subsets of the unit space. If Z is a closed, invariant subset
of the unit space of G and Gz C G denotes the closed subgroupoid consisting of arrows
whose source and target lie in Z, we denote by J£° € C2°(G) the ideal (with respect to
convolution) of functions which vanish to infinite order on Gz. Weak factorization was
also established by the author for these ideals, in the case where Z is a closed invariant
submanifold.

Theorem 1.4 ([10, Theorem 7.1]). For any Lie groupoid G, for any closed, invariant
submanifold Z of the unit space of G, the corresponding ideal J7° € C2°(G) has the
weak factorization property.

The purpose of this article is to strengthen Theorem 1.3 and Theorem 1.4 by showing
that C°(G) and JZ° are in fact homologically unital in the sense defined by Wodzicki.
This immediately implies excision results for the Hochschild and cyclic homology of these
algebras. Applying standard permanence properties, we obtain H-unitality and excision
results for noncommutative algebras of Whitney functions as well.

The present article is also more general than [10] in that Z is permitted to be an
arbitrary invariant, closed subset of the unit space, and not necessarily a submanifold.
Furthermore, an increased amount of care is taken to ensure that the results and arguments
apply in the case of non-Hausdorff Lie groupoids; the results in [10] do apply in the non-
Hausdorff setting, but the verification of this is mostly left to the reader.

We give a brief review of the homological notions at play. For simplicity, we only con-
sider complex scalars, C being the ground field for all algebras of interest here. In general,
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this restriction is not necessary, though working with a ground field of characteristic zero
does simplify definitions somewhat.
Given an associative algebra A over C, the bar complex of A is the chain complex

d’ d’ d’
o> A®3 D5 492 5 4 -0,

where the differential d’ is determined by

n—1
d(ap® - Qay) = Z(—l)iao Q@ -Qaai+1® - Qa,, n=>1.
i=0

Remark 1.5. If one modifies the above definition of d’ to include the “wrap around term”
anao ® -+ ® a,—1, then one gets the differential d involved in the definition of Hochschild
and cyclic homology.

The following terminology was introduced in the groundbreaking work of Wodzicki
on excision in cyclic homology and algebraic K-theory (see [24,25]).

Definition 1.6. An associative algebra A over C is said to be homologically unital or
H-unital if its bar complex is acyclic. That is, if

d’ d’ d’
> A®3 5 4% S 40

is an exact sequence.

As for permanence properties, one has that H-unital algebras over C are closed under
taking quotients and extensions. In general, this is only true for so-called “pure exten-
sions”, a hypothesis that is automatic when working over C.

Theorem 1.7 ([25, Corollary 3.4]). Let0 — A — B — C — 0 be a short exact sequence
of C-algebras, where A is H-unital. Then, B is H-unital if and only if C is H-unital.

Example 1.8. Every unital algebra A is H-unital. Indeed, x > 1 ® x : A®" — A®(+D
defines a contracting chain homotopy for the bar complex. More generally, if A is locally
unital in the sense that, for any finite set of elements, there is an element acting as a unit
for those elements, then A is H-unital (see [25, Corollary 4.5]).

Example 1.9. Any Banach algebra with a bounded approximate unit is H-unital (see [25,
Corollary 8.2]). In particular, all C *-algebras are H-unital.

Example 1.10 ([25, Theorem 6.1]). More in the spirit of the present article, if M is a
smooth manifold and Z C M is any closed subset, then the ideal /5° € C*°(M ) of smooth
functions which vanish with all their derivatives on Z is H-unital. Invoking Theorem 1.7,
one has that the algebra §°(Z) := C*°(M)/15° of Whitney functions on Z is H-unital.
Theorem 1.7 also gives results in the relative setting; if Z € Y are closed subsets of M,
then the kernel /7°, = I7°/13° of the restriction map £*°(Y) — &°°(Z) is H-unital.
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The importance of H-unitality stems from its close relationship to the excision problem
for Hochschild and cyclic homology.

Theorem 1.11 ([25, Theorem 3.1]). Let A be an associative algebra over C. Then, the
Jfollowing are equivalent:

(1) A has the excision property for Hochschild homology,
(2) A has the excision property for cyclic homology,
(3) A is H-unital.

For a precise explanation of the terminology above, one may see [25], or [15, Sec-
tion 1.4]. The key point is the following: if / is an H-unital algebra, and B contains I as
an ideal, then the short exact sequence of C-algebras

0—-1—-B—B/I >0

induces a corresponding long exact sequence in Hochschild/cyclic homology (since C is
a field of characteristic zero, the purity hypothesis in [25] is automatically satisfied).

Remark 1.12. In the present article, all homology theories being considered are their
“discrete versions” and depend only on the underlying algebra. In the discrete case, the
connection between excision and H-unitality is neatly explained in [25]. On the other
hand, the continuous setting has a somewhat more complicated history. The planned
sequel to Wodzicki’s paper addressing continuous counterparts to Theorem 1.11 did not
appear (see Remark 8.5(2)), so that the most general results have sometimes remained
folklore, and primarily known to experts. Indeed, the theory has not always been adequate
for the most interesting applications. See, for instance, [1] and Remark 6.5 therein. Sev-
eral authors have worked to fill in the gaps in literature (see [11, 17]) with the consequence
that the connection between H-unitality and excision in the continuous setting is now on
much firmer footing.

Note that, if A is H-unital, then, in particular, the mapping A ® A — A is surjective.
That is, H-unital algebras have the weak factorization property. In this article, we prove
the following result which may be viewed as a generalization of the Dixmier—Malliavin
theorem for Lie groupoids of [10].

Theorem 1.13. For any Lie groupoid G, the smooth convolution algebra C°(G) is H-
unital.

Remark 1.14. The author would like to thank Xiang Tang for pointing out the similarity
of Theorem 1.13 above to Proposition 2 of [7]. We note, however, that, because the tensor
products in this article are algebraic tensor products and the tensor products in [7] are
completed tensor products ® satisfying C°(M)®C°(N) = C2°(M x N) for all smooth
manifolds M and N, the results are distinct.
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The second purpose of this article is to prove the following generalization of Theo-
rem 1.4,

Theorem 1.15. For any Lie groupoid G, for any closed, invariant subset Z of the unit
space of G, the corresponding ideal J3° € C2°(G) is H-unital.

The main practical consequence of Theorem 1.15 is that H-unitality of J2° combined
with Theorem 1.11 yields the following important corollary.

Corollary 1.16. For any Lie groupoid G, for any closed, invariant subset Z of the unit
space of G, the exact sequence

0—J7" > CF(G) > CF(G)/ Iz —0
induces corresponding long exact sequences in Hochschild and cyclic homology.

It is hoped that the above will lead to an improved understanding of localization around
invariant subsets in calculations of the cyclic and Hochschild homology of convolution
algebras of Lie groupoids. Examples of calculations utilizing this excision principle will
be considered elsewhere. Such calculations fall squarely within Connes’ noncommutative
geometry program. One may see [18] for recent progress in this area.

Applying Theorem 1.7, the quotient

€7°(Gz) = CX(G)/ 7

is also H-unital. This is exactly the algebra of compactly-supported Whitney functions
on the closed subgroupoid Gz C G of arrows with source and target in Z (the notation
&2°(Gz) suppresses the dependence on the embedding of Gz in G). It should also be
emphasized that, here, the product on £2°(Gz) is the noncommutative one descending
from convolution, rather than the usual (commutative) product of Whitney functions.

Given a nested pair Z C Y of closed, invariant subsets of the unit space of G, one may
also consider the ideal

IEy = ker(€X(Gy) — 6X(G2)).

Because J7°y = J7°/Jp°, Theorems 1.15 and 1.7 imply that J7°y is H-unital as well.
Thus, using Theorem 1.11, we obtain the following relative analog of Corollary 1.16.

Corollary 1.17. For any Lie groupoid G, for any nested pair Z C Y of closed, invariant
subsets of the unit space of G, the short exact sequence

0—J7%y — E2°(Gy) — €2°(Gz) - 0
induces corresponding long exact sequences in Hochschild and cyclic homology.

From a certain point of view, Corollary 1.17 is more compelling than Corollary 1.16
because algebras of Whitney functions are somewhat more algebraic objects, making con-
sideration of their discrete homology more natural.
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We now discuss the criterion that will be used to establish H-unitality. As mentioned
above, if an algebra A is unital, then x — 1 ® x : A%" — A®"+1D defines a contracting
homotopy for the bar complex. More generally, if there exists a C-linear map ¢ : A —
A ® A which is right A-linear (where the right A-module structure on A ® A is such that
(@a®b)-c =a® (bc)fora,b,c € A) and makes the diagram

A—2 s Ae4

multiplication

commutative, then a simple calculation shows that ¢ ® id : A®" — A®"+1) gives a con-
tracting homotopy for the bar complex. In fact, because any cycle only involves finitely
many elements of A, it is not actually necessary to have a globally-defined map ¢; one
can get by with a family of locally-defined maps. This is formalized in the following result
from [25] (specialized to the case k = C) and we refer the reader to that source for the
proof.

Proposition 1.18 ([25, Proposition 4.1]). Let A be an associative C-algebra. Suppose
that, for every finite set P C A, there exists a right ideal Ay A such that P C Ay and a
C-linear map ¢ : Ag —> A ® A such that the following statements hold.

(1) ¢ is a map of right A-modules (the right A-module structure on A ® A is such
that (a @ b)-¢c = a ® (bc) fora,b,c € A).

(2) The diagram

Ao —2 s A4

multiplication
inclusion

A

is commutative.

One straightforward consequence of Proposition 1.18 is H-unitality of “locally unital”
algebras; if every finite subset of A admits a common left unit, then A is H-unital. While
the latter statement suffices for many algebras of interest in noncommutative geometry, the
algebras considered here are not locally unital. Already, the convolution algebra C°(R)
is not locally unital (under Fourier transform, it is an algebra of analytic functions under
pointwise multiplication). Nonetheless, our proofs of H-unitality will pass through the suf-
ficient condition of Proposition 1.18. As an instructive example, we establish H-unitality
for C°(R) below.
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Example 1.19. Let X = j—x, considered as an operator on C2°(R). Given a formal power
series P(z) = )_,,o0amz™ € C[z], one may define P(X) : dom(P (X)) — C(R) by

dom(P(X)) = {go €CEM): Y |am|[| X || < oo forall r > o},

m=>0

P(X)p =) amX™y.

m=>0

where || - || denotes the uniform norm. One may check that dom(P (X)) is an ideal in
C2°(R). Given any finite subset P € C>°(R), one may use Lemma 1.2 to find a represen-
tation

o0
So=fot+ ) am £
m=0
of the Dirac measure in terms of fp, f1 € CX(R) such that P(z) =
P € dom(P(X)). Then, the map

m
m>0dmZ"" has

¢~ fo®¢+ fi ® P(X)p : dom(P(X)) > CF(R) ® CF(R)

satisfies the conditions of Proposition 1.18 by the same calculation given below the state-
ment of Lemma 1.2, so C>°(R) is H-unital by Proposition 1.18.

We give a brief summary of the contents of this article. Section 2 reviews certain
aspects of the theory of non-Hausdorff smooth manifolds. A number of examples are
included to clarify where complications can arise, especially as pertains to supports of
functions and flows of vector fields. Section 3 is a technical section devoted to domains
of operators obtained by taking power series in a fixed set of vector fields. The goal here
is to confirm that, by taking series coefficients to be sufficiently small, domains of such
operators can be made to contain any finite set of bump functions. In Section 4, we estab-
lish conventions for Lie groupoids and smooth actions of Lie groupoids. Section 5 is
concerned with our first main result, the H-unitality of the smooth convolution algebras
of groupoids. Section 6 is concerned with factorization with respect to pointwise mul-
tiplication of smooth functions vanishing to infinite order on a closed set, relative to a
submersion. Section 7 contains our second main result, the H-unitality of infinite order
vanishing ideals in smooth convolution algebras of groupoids.

2. Non-Hausdorff smooth manifolds

It is frequently necessary in noncommutative geometry to work with non-Hausdorff mani-
folds. In this section, we highlight some of the complications that can arise and review the
standard workarounds. Readers who are only interested in Hausdorff Lie groupoids may
safely ignore this section. Readers who are already well-versed in the techniques needed
to deal with non-Hausdorff Lie groupoids may also prefer to skip this material.
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In this article, a smooth manifold refers to a second-countable topological space M
equipped with a smooth atlas (more precisely, an equivalence class of smooth atlases or,
alternatively, a maximal smooth atlas) of some fixed dimension. The topology of M is not
required to be Hausdorff. Of course, M is locally Hausdorff, being locally Euclidean.

Remark 2.1. Actually, it would do little harm to drop the assumption of second-count-
ablity as well, provided we at least assume that every component of M is second-countable.
This amounts to working with possibly uncountable disjoint unions of second countable
manifolds.

Much of the basic theory of smooth manifolds goes through unchanged without the
Hausdorff hypothesis. For example, one can talk about smooth vector fields on and smooth
maps between non-Hausdorff smooth manifolds by requiring smoothness in every chart.
Many of the issues that do arise are due to the nonexistence of partitions of unity. Ulti-
mately, this stems from an undersupply of scalar-valued functions that look smooth in
every chart. To some extent, it is possible to define one’s way around this issue by mod-
ifying the definition of bump functions. The simple definition below is due to Connes.
More sophisticated approaches with better functorial properties are also possible. See the
unpublished manuscript [6].

Definition 2.2. Let M be a possibly non-Hausdorff smooth manifold. Then, C°(M)
denotes the linear span of all functions ¢ : M — C that are given as the extension by
zero of a function of the form f o y : U — C, where U € M is open, y : U — R% is a
diffeomorphism, and f € Cc"o(Rd ).

If M is Hausdorft, the usual meaning of C>°(M) is recovered. On the other hand, if
M is non-Hausdorff, the notation C£°(M) is misleading in several ways:
(i)  afunction ¢ € C2°(M) need not be smooth in every chart (or even continuous),

(ii)  the support of ¢ € C°(M), defined in the usual way as the complement of the
largest open set where ¢ is zero (equivalently, the closure of the nonvanishing
locus of @), need not be compact,

(iii) CS°(M) need not be closed under the operation of pointwise product.
Example 2.3. Let M = ((—00,0) x {0}) U {J,,c7 ([0, 00) x {n}), with smooth manifold
structure determined by the atlas {y, : U, — R}, ez defined by

Un = ((=00,0) x {0}) U ([0, 00) x {n}),  xn = projilv,, n¢€Z.

Choose some f € CX(R) with supp(f) = [—1, 1] and define ¢, to be the extension
by zero to all of M of f o y,, so that ¢, € C>(M) by definition. Then, the following
statements hold.

(i)  The restriction of ¢y, to U, is not smooth if m # n.
(i)  The support of ¢g is ([—1, 1] x {0}) U {(0,n) : n € Z}, which is not compact.
(iii) The pointwise product of ¢,, and ¢, does not belong to C°(M) if m # n.
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Note as well that the space in the example above does arise naturally in geometry. For
example, foliate the lower half of the cylinder S! x R into circles and the upper half into
spirals so that there is one-sided holonomy at the equator S x {0}. The restriction of the
holonomy groupoid of this foliation to a vertical line transversal is diffeomorphic to M.

Although it can occur that supp(¢) := ¢~1(C*) is noncompact for ¢ € C°(M) when
M is noncompact, we do at least have the following.

Proposition 2.4. Let 1 : M — B be a smooth map of smooth manifolds, where B is
Hausdorff and M is possibly non-Hausdorff. Then, for all ¢ € CX°(M), we have that

T(supp(¢)) is compact.

Proof. Write ¢ = > i (f; o xi)o, where y; : U; — R4 are charts, f; € Cc°°(IRd), and
the O subscripts denote the operation of extension by zero. Then,

n

K = %" (supp(i))

i=1

is a compact (but possibly not closed) subset of M containing ¢! (C*). The conclusion
follows from the elementary point-set topological lemma below, with S = ¢~ 1(C*). m

Lemma 2.5. Let f : X — Y be a continuous map of topological spaces, where Y is
Hausdorff and X is possibly non-Hausdorff. Suppose that S C€ K C X and K is compact
(but possibly not closed). Then, f(S) = f(S) and this is a compact subset of Y .

Proof. We have f(§) C f(S) C f(SNK)= f(SNK)C f(S), so all these sets are
equal to the compact set (S N K). ]

Another issue with Definition 2.2 is the poor control that the support of an element
@ € C°(M) exerts over the supports of the summands in the possible decompositions ¢
into functions coming from charts. One might expect that, if U is open and supp(¢) C U,
thenp € CX(U) € CX(M), i.e., ¢ can be expressed in terms of bump functions defined
on chart neighbourhoods contained in U. In general, this is not assured, as the example
below illustrates.
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Example 2.6. Fix a smooth function 6 : R — R with 8(x) = 0 for x < 0 that restricts to
a diffeomorphism 64 : (0, 00) — (0, c0). Consider the non-Hausdorff smooth manifold
M =R Uy, R obtained by using 6 to glue two copies of R along (0, c0). More precisely,

M = ((—00,0] x {—1,1}) U ((0, 00) x {0}),

Uy = ((—00,0] x {1}) U ((0, 00) x {0}),

U- = ((—00,0] x {—=1}) U ((0, 00) x {0}),
Ut

M o———

U_

with non-Hausdorff smooth manifold structure determined by the two charts

X+:U+_>R’ )(+(x,y)=x,
X, x <0,

_:U- =R, —(x,y) =
x 1-(x.) {9+(x), x> 0.

Fix g € C°(R) with supp(g) = [—1, 1] such that g(x) = x for all x in a neighbourhood
of 0. Define f € CX(R) by f(x) = g(f(x)) for x > 0 and f(x) = 0 for x < 0. Let
@ € C2(M) be given by ¢ = (g o y—)o — (f © x+)o, where the subscript 0 denotes
extension by zero.

S 7
R .

S R4

Then, supp(¢) = [—1, 0] x {—1} (note the point (0, 1) does not belong to the support
because ¢ vanishes identically on U.). In particular, supp(¢) € U—_. However, ¢ does not
belong to C°(U-) € C°(M).

Another issue with Definition 2.2 of relevance to us relates to smooth vector fields. On
the one hand, there is no difficulty defining the tangent bundle 7M of a non-Hausdorff
smooth manifold M and defining a vector field X to be a section of 7'M which is smooth
in every chart. On the other hand, integral curves of X may not be unique, preventing
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one from talking about the flow of X. In fact, things already go wrong at infinitesimal
level, i.e., one does not even have a well-defined linear map X : C°(M) — C°(M).
The operators defined by X in charts need not patch together. This issue arises already in
the simplest examples, as shown in Example 2.7 below.

Example 2.7. Let M = R* U {01, 05}, the “line with two origins” with noncommutative
smooth manifold structure coming from the two obvious charts yq, y2 : M — R. Let
X be the (global) smooth vector field on M which coincides with f—x in both charts.
Fix f € CX(R) with f(0) =0 and f'(0) = 1. Fori = 1,2, let ¢; € CS°(M) be the
extension by zero of f o y; and let ¥; € C2°(M) be the extension by zero of f' o y;.
Then, ¢1 — ¢ = 0, but ¥; — ¥, is the function which is zero on R*, 1 at 0; and —1 at
0,. Thus, @1 — @2 = 0 and Y1 — ¥, # 0. This shows that the result of applying X to the
zero function is not unambiguously defined.

A flow for a smooth vector field X on a smooth manifold M is a smooth map (¢, m)
¢: - W — M where W C R x M is an open set containing {0} x M whose intersec-
tion with R x {m} is connected for all m € M such that ¢¢(m) = m for all m € M and
%d),(m) = X(m) for all (t,m) € W. It is easy to see that, if X has a flow, then any
two flows agree on the intersection of their domains, and there is a unique maximal flow
(t,m) = ¢;(m) : R x M which furthermore satisfies ¢s1;(m) = ¢s(¢;(m)) whenever
(t.m), (s, p:(m)) € W.

Definition 2.8. Let M be a smooth manifold, not necessarily Hausdorff, and let X be a
smooth vector field on M. We say that X is non-branching if it has a flow.

A non-branching vector field X with flow ¢ does determine a well-defined linear map
X :CP(M) — CZ°(M). One way to see this is to note that the locally defined operators
on charts agree with the global one defined by (Xf)(p) = lim;—o(f(¢:(p) — f(p)))/t,
so they patch together. Indeed, one may check that existence of the flow of X is equiv-
alent to its well-definedness as an operator on C°(M). Note the equation (Xf)(p) =
lim;—o(f(¢p:(p) — f(p)))/t can also be used to justify the following expected fact that
X, viewed as an operator on CS°(M), does not increase supports.

Proposition 2.9. If X is a smooth, non-branching vector field on a possibly non-Hausdorff
smooth manifold M, then supp(Xv) C supp(y) for all yy € C°(M). |

If X is a complete non-branching vector field, we consider its flow as a smooth, 1-
parameter group of diffeomorphisms of M and denote it by ¢ > e’X . In other words,
ie’Xm =Xm), meM
dt ' '

In spite of the shortcomings highlighted in Examples 2.3, 2.6, and 2.7, Definition 2.2
does allow one to bypass many issues relating to nonexistence of partitions of unity. The
following simple lemma will suffice for many purposes.
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Lemma 2.10 (cf. [13, Lemma 1.3]). Let M be a possibly non-Hausdorff smooth manifold.
Let (Uj)ier be a cover of M by Hausdorff open sets. Then, every ¢ € CX°(M) can be
expressed as a finite sum Y @;, where @; is the extension by zero to all of M of some

fi € C2(U;).

Proof. Without loss of generality, ¢ is the extension by zero to all of M of some f &
C*(U), where U € M is open and Hausdorff. Then, by usual theory of Hausdorff smooth
manifolds, we can write f as a finite sum ) f; where f; € C°(U; NU) € C2(Uy).
Then, letting ¢; be the extension by zero to all of M of f;, we have ¢ = ) ¢;. ]

Proposition 2.11. This proposition shows some other important respects in which C°(M)
is well-behaved.

(1) If M and N are possibly non-Hausdorff smooth manifolds, f € C°(M), g €
CX(N), then f @ g € CX(M x N) (here, (f ® g)(m,n) = f(m)g(n)).

(2) If M is a possibly non-Hausdorff smooth manifold, and N C M is a closed sub-
manifold, then restriction gives a surjective map C°(M) — C>(N).

(3) If M is a possibly non-Hausdorff smooth manifold and 0 : M — M is a self-
diffeomorphism, then pullback along 0 determines a linear bijection C2°(M) —
C(M).

4) If t : M — N is a smooth map of manifolds, with N Hausdorff, then C2°(M) is
a C%°(N)-module with respect to

fro=(for)g. [feC®N) peCXM). u

The above statements either are immediate from Definition 2.2 or follow from an
application of Lemma 2.10.

3. Infinite series of vector fields

The following section is somewhat technical, but more or less elementary. The results
obtained will be somewhat stronger than strictly necessary, but will enable us to streamline
arguments later on. Essentially, we need elaborated versions of the following elementary
fact: if (f»)n>o is a sequence in C°(R) with uniformly bounded supports, then there exist
positive scalars (¢, ),>0 such that, for any sequence of scalars (a,),>0 With |a,| < ¢y, the
series ), dn fu converges absolutely and uniformly to a function in C2°(R). To see
this, one may take, for instance, ¢, = ming <, (2" || /)71
The following definition is well-suited to our purposes.

Definition 3.1. Let P(z) =), . oamz™ € C[z] be a formal power series and X a smooth
vector field on R¢, thought of as a differential operator X : cx (R%) — cxX (R?). Then,
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we define dom(P (X)) to be the set of all ¢ € C2(R¥) such that > msolamlll £C—aaXm<p | <
oo for every multi-index @ € N and put

P(X)p = amX™p
m=>0

for all ¢ € dom(P(X)).
Some basic consequences of this definition are collected in the following proposition.

Proposition 3.2. Suppose P(z) = ) _,..qamz™ € C[z] and X is a smooth vector field
on R?. Define P(X) : dom(P (X)) — Cc"o(Rd) as above.
€)) £C—aaP(X)<p = Zmzo ai—iX’”(p foralla e N9, ¢ € CC"O(Rd), where the series
converges absolutely and uniformly.

(2) supp(P(X)¢) < supp(p) for all ¢ € dom(P(X)).
(3) The definition of P(X) is coordinate-independent; if 6 : R¢ — R? is a diffeomor-
phism, then dom(P (6*(X)))=60*(dom(P(X))) and P(60*(X)) = 0*(P(X)).
@) IfP(2) =) pys0amz™, Q(2) = X pysobmz™ € Clz] and |am| < |bw| for m > 0,
then
dom(Q (X)) € dom(P(X)). [

The proof of the above proposition is straightforward and we omit it. For example,
property (3) comes down to the fact that %( f o 0) can be expressed as a finite sum

ZI Bl<lal Ka% Jf) o 0]-0g, where 6g is a smooth function made up of partial derivatives
of components of 6.
Property (3) permits us to make the following definition.

Definition 3.3. Suppose that M is a not-necessarily-Hausdorff smooth manifold, X is a
smooth, non-branching (Definition 2.8) vector field on M and P(z) = ) ,,-o amz™ €
C[z]. Then, we define dom(P (X)) to be the linear span of functions ¢ on M g_iven as the
extension by zero of functions f o y, where y : U — R4 is a Euclidean chart and f €
Cc"o(Rd) belongs to dom(P(Y)), where Y = y.(X|y). We define P(X) : dom(P (X)) —
C(M) by
P(X)p =) amX™¢.
m>0

this series being absolutely and uniformly convergent for ¢ € dom(P(X)).

The lemma below will be used to control the domains of compositions of operators
P(X).

Lemma 3.4. Suppose that (am)mso0 is a sequence of nonnegative scalars. Then, there
exists a non-increasing sequence of positive scalars (Cpm)mso such that

E Cmy " CmpAmy +tmy+r < OO

for all integers n,r withn > 1 andr > 0.
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Proof. Without loss of generality, the terms of (a,,) are positive. We make repeated use
of the fact that, given positive scalars (am))m i>0, there is a positive sequence (by)m>0
suchthat ) _,b maf,,) < oo for every i > 0. One may use, for instance,

by = (2" maxa,(,’;))_l.
i<m

Applying the aforementioned fact, there is a sequence of positive scalars (c,(n1 ))mZO

such that am = Zm>0 c,(,,l)am+r < oo for all r > 0. Applying this fact again, there is a

sequence of positive scalars (Cm )m>o such that

2
a® = Z cPq r(ni_r = Z S eDapm, ymy4r < 00 forallr > 0.
m=>0 mi,my>0
Continuing in this way, we obtain positive sequences (C;(é))mzo fori = 1,...,m such that

1 n
D e eWam, gy < 0

mi,....mu>0

forall » > 0.

Next, put ¢, := min(cy, c,(,,m)). We show that (c,) satisfies the conclusion of the
lemma by induction on n > 1. Since ¢, < c,(,,1 ) for all m, the statement holds for n = 1.
Let n > 2. Then,

(1) ...

E Cmy " CmyAmy+-+my+r
my;...,Mp>0

= E Cmy ** Cmp Amy - mp+r

mi,...muy=>n

+n 2 Cm E : Cmy " Cmp 1 Qmy+-+mp_1+m+r-

my,....mp—120

The first term is finite because ¢, < c,(,'f ) for m > n. The second term is finite by the
induction hypothesis. ]

Lemma 3.5. Suppose X1, X», X3, ... is a sequence of smooth vector fields on RY and
peCXr (R?). Then, there exists a sequence (cm)m=o of positive real numbers such that,
for any formal power series P(z) =), .o amz™ € C[z] satisfying |am| < cm for all
m > 0, one has ¢ € dom(P(X;,)--- P(X;,)) foralln.iy,... in > 1.

Proof. Set

M, = max{

aa
'ﬁxu Xm”gz)H imy 4o+ my + el <mandn, iy, ..., iy §m},
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where || - || denotes the uniform norm. By the preceding lemma, there exists a sequence
(cm)m>o of positive real numbers such that

§ Cmy " Cony Moy oty 7 < 00

for all integers n, r withn > 1 and r > 0. Then, provided |a;,| < ¢, one has that

aot
D laml e lam, g X0 X < 00

mi,....mp=>0

for all n,iy,...,i > 1 and a € N9, Indeed, for all but finitely many terms of the
above sum, we have n, i1, ...,i, <mq + -+ m, + |a|, whence ||£C—NQXZ” ---Xi'f”goH <
My 4t my+|a|> by definition. It follows that ¢ € dom(P(X1)--- P(X,)). Indeed,

P(Xi) - P(Xi)o= Y dm o am, X XM,

mi,....mp>0
where the above series is uniformly and absolutely convergent to a function C° (RY). =

As a direct corollary, we have the following lemma.

Lemma 3.6. Suppose M is a possibly non-Hausdorff smooth manifold and X1, X», X3, . ..
are smooth, non-branching vector fields on M. Fix a finite subset P C C2°(M). Then,
there exists a sequence (Cpm)m>0 Of positive real numbers such that, for any formal power
series P(z) =), .o amz™ € C|z] satisfying |am| < cm for all m > 0, one has ¢ €
dom(P(X;,)--- P()F,-n))fOrall pePandalln,iy,..., i, > 1. [ ]

4. Lie groupoids and Lie groupoid actions

In this somewhat lengthy section, we lay out the notations and conventions that will be
used for Lie groupoids and their actions. For the most part, our conventions coincide with
those of [16, 19]. We identify sections of the Lie algebroid with right-invariant vector
fields, as is done in [16]. On the other hand, it will be convenient to have our vector fields
and measures defined along the same fibers (namely the source fibers), so we will use
right Haar systems instead of the left Haar systems used in [19]. Although the material to
follow is rather standard, we do sometimes include proofs, mainly in order to ensure that
all arguments used make sense in the non-Hausdorff setting as well.

4.1. Basic notions

We will denote a typical Lie groupoid by G and its unit space by B. The source and target
maps are denoted s, ¢ : G — B. We always assume they are submersions. Multiplication is
a smooth map from G® := G x s, G to G that is performed from right to left and denoted
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by juxtaposition; given y1, y» € G, the product y; y is defined if and only if s(y1) =1 (y2).
The inverse of y € G is denoted by y~!. For convenience, it is always assumed that B is
embedded in G as a closed submanifold. We write k := dim(G) — dim(B). In other words,
k is the dimension of the source and target fibers, for which we will use the standard
notations G := s~ !(x) and G* :=t"!(x), x € B.

We allow the arrow space G, but not the unit space B, of a Lie groupoid to be non-
Hausdorff. This is needed to accommodate certain examples of interest, such as groupoids
arising from foliations. Dealing with the non-Hausdorff case requires modifications to the
definitions one would use in the Hausdorff case. These kinds of issues are well understood,
see [3,4, 14]. We recall Hausdorffness of the unit space automatically implies that of the
source and target fibers.

Lemmad4.1. Let G = B be a possibly non-Hausdorff Lie groupoid. Then, for any x € B,
the source and target fibers Gy and G* are Hausdorff.

Proof. See [21, Proposition 2.8]. [

We also recall that the space of units always admits a Hausdorff open neighbourhood.

Proposition 4.2. Let G == B be a Lie groupoid. Then, there exists a Hausdorff open set
W C G with B C W.

Proof. This follows from [5, Lemma 4.18]. See also the discussion in Section 7 of [12].
[ ]

4.2. The Lie algebroid of a Lie groupoid

Definition 4.3 ([16, Definition 3.1]). The Lie algebroid of a Lie groupoid G = B is the
vector bundle AG — B obtained by restricting the source fiber tangent bundle ker(ds) €
TG to B.

There is a canonical bundle map AG — T B called the anchor map given by restricting
the differential of the target map dt : TG — TB to AG. Significantly, there is also a
natural bracket operation on the sections of AG, but we will not need this.

Definition 4.4. A vector field X on a Lie groupoid G is said to be right-invariant if it is
tangent to the source fibers of G and, for all y € G, one has

(R):X =X, yeG,

where R,, denotes right-multiplication by y. Note that R,, is a diffeomorphism G;(,) —
Gy (y) and the above equation is implicitly understood to refer to the restriction of X to the
relevant source fibers.

It is easy to see that a right-invariant vector field on G is completely determined by
its restriction to B, which is naturally a section of AG. Conversely, every section of AG
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extends uniquely to a right-invariant vector field on G. We will freely denote a section of
the Lie algebroid and its extension to a right-invariant vector field by the same symbol. We
note that the bracket of two right-invariant vector fields is easily seen to be right-invariant,
leading to the bracket operation on sections of AG (that we will not be needing).

Because right-invariant vector fields are tangent to source fibers and source fibers are
Hausdorff (Lemma 4.1), we have the following.

Lemma 4.5. Every right-invariant vector field on a possibly non-Hausdorff Lie groupoid
is non-branching, i.e., has a well-defined flow. ]

It is common practice to denote the anchor map of a Lie algebroid by #, but we will
not do this here because it conflicts with the standard notation for fundamental vector field
in the context of smooth actions, which we are also using. Instead, given a right-invariant
vector field X on G = B, we write X & for the corresponding vector field on B arising
from the anchor map. To be more specific, the vector fields X and X & are ¢-related.

In general, the flow of a right-invariant vector field on a Lie groupoid need not be
complete. A sufficient condition for the flow of a right-invariant vector field to be complete
is that the associated smooth section of the Lie algebroid is compactly-supported. See, for
instance, [10, Proposition 3.6]. If X is a complete, right-invariant vector fieldon G = M,
then the induced vector field X on the base is complete as well. Indeed, its flow is
determined by

eX"p = 1(e"¥b), reR, beB.

4.3. Smooth Haar systems

We now turn to Haar systems. Their general theory appears in [19] and their routine adap-
tation to the smooth case is discussed in various sources such as [2].

Definition 4.6. Let 7 : M — N be a submersion of possibly non-Hausdorff manifolds.
Assume that the fibers of 7 are Hausdorff and A, is a smooth measure on 7~ 1(y) for each
y € N. Wesay that A = (A,),en is a smooth system of measures for m if the following
condition holds: if x € M, U € M is a neighbourhood of x, V' C N is a neighbourhood
of (x), m(U) = V and there are diffeomorphisms yy : U — R? x R¥, yy : V — R¢
(sodim(M) = d + k, dim(N) = d) making the following diagram commutative

U —X— R? xRK
4 projp
y —2 5 R4
then the family of measures pushed forward through yy is the standard volume measure

of R¥ copied on vertical fibers, multiplied by a smooth, positive-valued function on R% x
RF.
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Working locally, one sees that the above definition allows for integration along fibers
of bump functions, even in the non-Hausdorff case where Definition 2.2 is in effect.

Lemma 4.7. Let & : M — N be a submersion of possibly non-Hausdorff manifolds with
Hausdorff fibers that is equipped with a smooth system of measures A = (A,)yen. Then,
integration along fibers with respect to A defines a linear map m : C°(M) — C2°(N).

Proof. Use Lemma 2.10 to reduce to charts on which 7 is a projection. ]

Definition 4.8. Let G = B be a Lie groupoid. A (smooth, right) Haar system for G is a
smooth system of measures A = (43)pcp for the source submersion s : G — B which is
furthermore right-invariant in the sense that, for every y € G, the right multiplication map
R, is a measure preserving diffeomorphism G,y — Gg(y).

Fixing a Haar system A for a Lie groupoid G turns C2°(G) into a (generally noncom-
mutative) algebra C2°(G, A) with respect to the convolution product * defined by either
of the following equivalent integrals:

(f *£)(0) = /

Gitvg)

FO g0 y0)d Ay = / FG0r )8 dAs(re)-

s(vo)

The isomorphism class of this algebra does not depend on the choice of Haar system.
Indeed, if A and A’ are two Haar systems for G = B, then there is a unique smooth,
positive-valued function p on B such that A’ = (p o t)A. Moreover, p can be used to
define a canonical algebra isomorphism C°(G, 1) — C2°(G, 1'). Specifically,

1
(pos)P(poni/2

Since the convolution algebra of G is independent of A, we will tend to write C>°(G)
instead of C2°(G, A). Note it is also possible to skirt the discussion of Haar systems com-
pletely in defining the convolution algebra of G if one works with appropriate densities
instead of functions, see [4, Section 2.5].

f f:CX(G, 1) —> CX(G, ).

4.4. Smooth groupoid actions
We now turn our attention to groupoid actions.

Definition 4.9. Let G =2 M be a Lie groupoid. Let M be a possibly non-Hausdorff man-
ifold together with a smooth map t : M — B. Note the fiber product

GxM:=Gxs. M

is a closed submanifold of G x M because it is the preimage of the diagonal under the
submersion s X 7 : G X M — B x B. A left action of G on M is a smooth product
GxM>3(y,x)>y-xeM,suchthatt(y-x) =t(y) forall (y,x) e GXx M, t(x)-x =x
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forallx € M and (y1y2) - x = y1-(y2-x) forall y1,y2 € G, x € M with s(y1) = t(y2),
s(y2) = p(x).

Similarly, if M is equipped with a smooth map o : M — G, a right action of G on
M is a smooth product M x G > (x,y) = x-y € M,where M x G := M X;, G, such
thato(x -y) = s(y) forall (x,y) e M xG,x-o(x) =xforallx € M and x - (y1y2) =
(x-y1)-yz2forall yy,y2 € G, x € M witho(x) = t(y1), s(y1) = t(y2).

Supposing G; = B; acts on M from the left with respect to amap r : M — Bj and
G, = B, acts on M from the right with respect to the map o : M — B,, we say that the
left and right action commute with one another if y1 - (x - ) = (y1 - x) - y» for all y; € G,
y2 € Ga, x € M satisfying s1(y1) = 7(x), 0(x) = t2(y2). In particular, o (y; - x) = 0 (x),
T(x - y2) = ().

Remark 4.10. Of course, we use the notation G X M for G X, M because it is the
transformation groupoid. There is a small snag here because we have insisted that our
groupoids have Hausdorff unit spaces and M, which is the unit space of G x M, may be
non-Hausdorff. In any event, we do not need to view G x M as a groupoid in its own right
here.

The following diagram summarizes some of the data in Definition 4.9:

G~ MXX¥  \G,
B B,

One obvious example of commuting left and right actions are the left and right multi-
plication actions of a Lie groupoid on itself. Importantly, commuting left/right actions also
appear in one formulation of the notion of Morita equivalence for Lie groupoids, see [26].

If G = B acts from the left on 7 : M — B, then a right-invariant vector field X on G
determines a corresponding vector field X™ on M (called the fundamental vector field)
determined by

d
XM(m) = — (™ t(m))-m , meM.
dr r=0
If X is complete, then XM is complete and, indeed, the flow of XM is given by
rxM

X m=(*t(m))-m, reR, meM.

If a Lie groupoid G = B with given right Haar system acts on t : M — B from the
left, then C2° (M) becomes a left C°(G)-module with respect to the product

C2(G) x CX(M) 5 (f.9) > f % ¥ € C2(M)
defined by
(f % ¥)(x) = / FO g0 - DA, @)
Gt(x)
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To see this formula does indeed define a product (especially in the non-Hausdorff case
where things may be less clear), it is helpful to cast the formula (4.1) in slightly more
abstract form, as outlined below.

ey

(@)

3

“

®

Let G = B be a Lie groupoid acting smoothly from the lefton 7 : M — B. Here,
G and M are possibly non-Hausdorff. Let w,« : G x M — M be the (restrictions
of) the second factor projection and the action map, respectively. Lett: G x M —
G x M be defined by t(y,m) = (y~!, y - m). Then, ¢ is an order-2 diffeomorphism
satisfying « = 7 o ¢. Indeed, although we do not make explicit use of it because its
unit space M may be non-Hausdorff, ¢, 7 and ¢ are the target, source and inversion
map for the transformation groupoid G x M. The full set of structure maps are as
follows:

source: (y, m) — m,
target: (y,m) — y -m,
product: (', y - m)(y.m) = (y'y.m).

inversion: (y,m) — (y~ ',y -m).

Let A be the Haar system for G and let X be the obvious smooth system of mea-
sures for 7 determined by copying A on fibers (one has 77! (m) = G x {m}
form € M). In other words, A arises from the pullback square

GxM 2 G
lﬂ,z ls,k
M —— B
Using the map ¢, we also endow o : G X M — M with a smooth system of mea-
sures (indeed, this is the left Haar system for the transformation groupoid) so

that there is a fiberwise integration map oy : C°(G x M) — C°(M) (Proposi-
tion 2.11 (3)). By construction, the following diagram is commutative:

CP(Gx M) —= CX(G x M)

la! lm

CEM) == C2(M)

Given f € C°(G) and ¢ € CX°(M), define f x ¢ to be the restriction of f ® ¢
to G x M € G x M. Using Proposition 2.11 (1) and (2), one has that f x ¢ €
CX(GxM).

In terms of the above notations, the left C°(G)-module structure (4.1) of C2°(M)
may be expressed as follows:

[y =a(fxy), [feCXPG).yeCFM).
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Similarly, if G = B actsono : M — B from the right, then C°(M ) becomes a right
C2°(G)-module with respect to the product C°(M) x CX(G) > (Y, f) = ¥ x f €
C2° (M) defined by

W= f)x) = Y(x-y DEW) dAoo)-

o(x)

Symmetrically to the case of left actions, there is a canonical way to equip the right action
map B : M x G — M with a smooth system of measures in terms of which the right
C2°(G)-module structure may be alternatively expressed as follows:

Yo fo=pxf), [ eCFG).yeClM).

Again, although we do not make explicit use of it, we remark that the structure maps of
the right transformation groupoid M x G are given by

source: (m,y) — m -y,
target: (m, y) > m,

product: (m,y)(m-y,y') = (m,yy’),
inversion: (m, y) > (m -y, y~ ).

If M carries commuting actions of G from the left and G, from the right, then ( f; *
¥) * fo = f1 % (¥ * fp)is satisfied for all /1 € C°(G1), f2 € CX(G2), ¥ € C(M)
so that C2°(M) has the structure of a C2°(G1)-C°(G2)-bimodule. In the special case
of a groupoid acting on itself from the left and right, this recovers the usual convolution
product on C°(G).

In order to check the associativity of the bimodule structure, it is useful to pass through
the two-sided transformation groupoid

G1x M x Gy = {(y1.m,y2) € G x M x Gy : s1(y1) = t(m),o(m) = t2(y2)}.

whose structure maps are listed below:

source: (y1.m, y2) = m-ys,
target: (y1,m,y2) = y1-m,
inversion: (m,y) = (m-y,y™h,

product:  (y1.m,y2)(y;.m'.y5) = (yiyy. ()~ -m.,y2y5) (where m-y, =y{=m"),
= (nyp.m' - (r2)"" v2vh).

Because the actions commute, we have the following commuting diagram:

Gix M %Gy 2% M xG,

!

GixM —— M
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where
u(yr,m,y2) = y1-m-y,.

Introducing fiberwise measures in the natural way, commutativity holds as well at the level
of bump functions and integration maps

axid),

Co(Gy % M %1 Gy) N (M % Gy)

l(idx{i)!x lﬁ!

CX(Gy x M) —2—5 C2(M)
leading to the desired associativity property
frWxg)=(f*xy)xg=m(fxyxg), [feCF(G1), y€CF(M), geCX(Ga).

4.5. Dixmier—Malliavin for R-actions

Suppose the additive group R acts smoothly on a possibly non-Hausdorff smooth manifold
M . Let X be the (non-branching, complete) vector field on M generating the action. The
integrated form of the action is the representation 7 of C°(R) on C°(M) defined by

() m) = /R Pt @ m)d. 42)

Of course, this is a very special case of the integrated forms of groupoid actions just
discussed. As in the more general case, especially when M is non-Hausdorff, in order
to see 7w ( f) does indeed define a mapping C>°(M) — C2°(M), it helps to express this
action in the more abstract form

(g =a(f ®¢). [feCFR), ¢eCFM).

Here, o : R x M — M is the action map, made into a measured submersion so as to
render the following diagram commutative:

CPR X M) —— CX(R x M)

l“’ l(prz)!

CFM) == C=M)

where ((t,m) = (—t,e'X m) and pr, is a measured submersion in the obvious way (copying
Lebesgue measure).

As one expects, integration by parts enables one to move differentiation across the con-
volution map C°(R) x CX(M) — C°(M). Thatis, 7(f")¢ = 7w (f)X¢ holds, where
X 1is the vector field generating the R-action. We sketch a proof of this (quite routine) fact
mainly to indicate how it works in the formalism 7 ( f )¢ = a1 (f ® ¢) which is convenient
for rigorous treatment of the non-Hausdorff case.
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Lemma 4.11. Let R act smoothly on a possibly non-Hausdorff smooth manifold M via
the complete vector field X . Let w be the associated representation of C2°(R) on C(M).
Then, n(f)p = n(f)Xg forall f € CPR), ¢ € CF(R).

Proof. 1t is clear that (pry)r : CP(R x M) — C2°(M) maps the image of the (non-
branching) vector field (% 0) on R x M to zero. Conjugating by ¢(¢, m) = (—t, e'Xm),
this gives that integration along the action map a; : C°(R x M) — C2°(M) maps the
image of (—%, X) to zero, giving the desired result. |

The above lemma leads to the following preliminary factorization result. This was also
the essential ingredient in [10].

Theorem 4.12. Let R act smoothly on a smooth manifold M via a complete vector field X
and let it be the representation of C2°(R) on C°(M) defined by (4.2). Suppose fo, f1 €
CP[R)and P(z) =) ,,-0amz™ € C[z] are such that § = fo +Y_,.-0 amfl(m), as in
Lemma 1.2. Then, for any_<p € dom(P (X)) € C°(M), one has: -

¢ =n(fo)p + (/1) P(X)e.
Proof. See [10, Theorem 8.1]. [

It will be important for us to know that, if M carries a (left) R-action generated by
a vector field X that furthermore commutes with a given right action of a groupoid G’,
then the operators P(X) : dom(P (X)) — C(M) for P(z) € C[z] are right-linear for
the C2°(G')-module structure of C2°(M). The case of interest for us is where M carries
commuting actions of groupoids G and G’ from the left and the right, respectively, and the
vector field on M is the fundamental vector field XM associated to some section X of the
Lie algebroid AG. The desired statement is Corollary 4.16 below, which follows directly
from the three lemmas preceding it. The proofs of these lemmas are straightforward, and
we omit them.

Lemma 4.13. Let w1 : M — N be a measured submersion of possibly non-Hausdorff
smooth manifolds. Let X be a non-branching smooth vector field on M and Y a non-
branching smooth vector field on N and suppose X andY are w-related. Let P(z) € C[z].
Then, ) maps dom(P (X)) into dom(P(Y)) and the following diagram is commutative:

dom(P(X)) 2% coo(m)

bl -

dom(P(Y)) 2% coo(n)

Regarding the above, we note that, if X is non-branching, it is not automatic that Y is
non-branching, as may be seen in the case where r is the quotient map from two disjoint
copies of R to the line with two origins. Of course, if ¥ is non-branching, it is also not
automatic that X is non-branching (one could take N to be a single point).
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Lemma 4.14. Let M be a possibly non-Hausdorff smooth manifold and let N be a closed
submanifold of M. Let X be a non-branching smooth vector field on M that is tangent
to N and denote the restriction of X to N by Y. Let P(z) € C|[z]. Then, the restriction
map C°(M) — C(N) maps dom(P (X)) into dom(P(Y)) and the following diagram
is commutative:

dom(P (X)) 25 o (m)

lrestr lrestr u

dom(P(Y)) 2% coow)
Lemma 4.15. Let M and N be possibly non-Hausdorff smooth manifolds. Let X be a
non-branching smooth vector field on M and let Y = (X, 0), a non-branching smooth
vector field on M x N. Let P(z) € C[z]. Then, if f € dom(P(X)) € CX(M) and g €
C(N), wehave f @ g € dom(P(Y)) and Y(f ® g) = (Xf) ® g. [

Corollary 4.16. Let G' = B be a possibly non-Hausdorff Lie groupoid acting smoothly
from the right on a possibly non-Hausdorff smooth manifold M with respect to a smooth
map o : M — B. Let X be a smooth vector field on M which commutes with the right
action of G’ on M. Let P(z) € C[z]. Then, dom(P (X)) is right C2°(G')-submodule of
CXP(M), and P(X)(p * f) = (P(X)p) x f forall p € dom(P (X)) and f € C°(M).

Proof. Let B : M x G’ — M be the action map. Put ¥ := (X, 0). Observe that Y is a
vector field on M x G’ which is tangent to M x G’. Put Z = Y |prw¢’. Then, we have

(P(X)@) x f = Bi((P(X)g) x f)

=B((PY)(e ® f))lmM=c) by Lemma 4.14
= Bi(P(Z)(p % [)) by Lemma 4.13
= P(X)Bi(p x f) by Lemma 4.15
= P(X)(¢ = [),
as required. ]

4.6. Ideals associated to invariant subsets

Next, we turn our attention to ideals in smooth groupoid algebras. A subset Z of the unit
space of a groupoid is called invariant if every arrow with source in Z also has target in
Z. Given a Lie groupoid G = B with Haar system, a closed, invariant set Z € B and
p € N U {oo}, one may consider the pth order vanishing ideal /2 € C2°(G) consisting
of the functions vanishing to (at least) pth order on Gz := s~ 1(Z) = t~(Z). We discuss
these ideals in greater detail below.

Definition 4.17. Let M be a possibly non-Hausdorff smooth manifold, let Z € M be a
closed set, and let p € N U {oo}. We say that ¢ € C°(M) vanishes to pth order on Z if
it can be decomposed as ¢ = ZlN:l (fi o xi)o where U; € M are chart neighbourhoods,
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1i : Ui — R are diffeomorphisms, and f; € cx (R?) are such that f; and all its par-
tial derivatives of order < p vanish on y; (U; N Z). The subscript O above indicates the
operation of extension by zero.

Proposition 4.18. Let G == B be a Lie groupoid with given Haar system acting from the
left on a smooth manifold M with respect to a smooth map t© : M — B so that C2°(M) is
a left CX°(G)-module. Let Z < B be an invariant, closed subset and let p,q € N U {oo}.
If f € CX(G) vanishes to pth order on Gz = s Y (Z) = t71(Z) and ¢ € CX(M)
vanishes to qth order on M% = t=Y(Z), then f * ¢ vanishes to (p + q)th order on
MZ.

Proof. Leta : G x M — M be the action map. It is simple to check in charts that f ® ¢ €
C2°(G x M) vanishes to order p + g on Gz x M?Z . Restrictingto G x M € G x M,
one has that f x ¢ vanishes to order p + g on (Gz x M%) N (G x M) = o~ (M%)
(the latter equality uses the invariance of Z). The conclusion follows by expressing the
convolution of f and ¢ in the form f x ¢ = a(f X @), as explained above. |

As a corollary of the above proposition, one has that the pth order vanishing ideals
JZ ={f €CX(G): f vanishesto pthorder on Gz}

are indeed ideals for Z C B closed and invariant and p € N U {oco}. Moreover, J 5 *J ; -
J é’ 4 In [10], it was shown that this containment is an equality in the case where Z C B

is a closed, invariant submanifold. In particular,
JP x I =J7°.

One of our goals in the present article is to show, more generally, that J2° is H-unital for
Z C B any closed, invariant subset.

We give one final definition/notation. As a point of clarification, what follows are
straightforward groupoid analogs of the fact that matrices of the form (§ § ), respectively,
(I 8), constitute a right ideal, respectively, left ideal, in the algebra of 2-by-2 matrices.
Assume as above that M carries commuting actions of G from the left and G, from the
right. Then, given a closed set K C B, we define

MK = 71(K),
CO(M)K = {y € C(M) : supp(y) < M*}.

It is straightforward to check that C2°(M )X is a right C2°(G,)-submodule of C2°(M).
Symmetrically, if K C B, is a closed set, one may define

Mg =0~ (K),
CO(M)g = {y € CX(M) : supp(y) € Mk}

and check that C°(M )k is a left C2°(G)-submodule of C°(M).
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5. H-unitality of the convolution algebra of a Lie groupoid

In this section, we prove the first of our main results, the H-unitality of C>°(G) for any Lie
groupoid G (Theorem 1.13 from the introduction). Indeed, we prove a slightly stronger
statement involving smooth actions of groupoids. The latter results are applicable, for
instance, in context of Morita equivalences of Lie groupoids.

Throughout this section, G = B and G’ = B’ are Lie groupoids with given Haar
systems and M is a smooth manifold carrying commuting actions of G from left and G’
from the right with respect to smooth maps 7 : M — B ando : M — B’. Thus, C°(M)
has the structure of a C°(G)-C2°(G’)-bimodule. Recall as well the notations:

MK = 71(K),
CX(M)X = {y € C(M) : supp(y) < M¥}

and the fact that C>° (M)XK is a right C2°(G")-submodule of C2°(M).

Lemma 5.1. Let G = B be a Lie groupoid with given Haar system. Let X1, ..., Xy €
C° (B, AG), viewed as complete, right-invariant vector fields on G. Define u : R¥ x B —
G by

ulty, ... tg,b) = "X ... ok Xkp,

Suppose that W C R¥ x B is an open set which is mapped diffeomorphically by u onto
an open set W C G. Then, there is a linear bijection 6 from Cc°°(VT/) cC® (R* x B) to
C(W) € C°(G) given as pushforward by u, followed by multiplication by a suitable
Jacobian factor with the property described below.

Let G act smoothly from the left on T : M — B and define

FOOW) = ftes o=ty 7@ X WX )y 0 X X ).
Then, one has
() =0(f) =y
forall f € CX (W) and all y € CX(M).
We will generalize the following result from [10].

Theorem 5.2 ([10, Theorem 5.1]). Suppose G = B is a Lie groupoid with a given Haar
system and M is a smooth manifold equipped with a left action of G. Thus, C2°(M) has
the structure of a C2°(G)-module. Then, for every ¢ € C2°(M), there exist f1,..., fn €
CX(G)and Y1, ..., ¥n € CX(M) such that

= ixyr+-+ fNxYnN.

Moreover, this factorization can be taken such that, for all i, supp(¥;) C supp(¢) and
supp(fi) C W, where W is a prescribed open subset of G containing t(supp(¢)).
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As in the result above, we will consider the more general situation of a smooth groupoid
action. This is done with an eye to certain applications to smooth Morita equivalences
which may be explored elsewhere. The case of interest in this article is that of a groupoid
acting on itself.

Theorem 5.3. Let P be any finite subset of C2°(M). Define K = UweP T(supp(p)) and
let W be any open subset of G containing K. Then, there exist

D fi...o [y € C2(W) € C2(G),
(2) a right CX(G')-submodule Ag with P € Ag € CX(M)X,

(3) a right C2°(G')-linear maps V1, ..., Wy : Ag — CZ°(M) that do not increase
supports such that, for all p € Ag, we have ¢ = f1 * V1(p) +---+ fn * Yy ().

We remark that, in view of Example 2.6 (1) can in general be a stronger assertion
than: f; € C2°(G) and supp f; € W. That being said, since the unit space of G admits
a Hausdorff neighbourhood (Proposition 4.2), this distinction is not important here as W
may without loss of generality be assumed to be Hausdorff.

Proof. Use the map t : M — B to endow CJ°(M) with the structure of a left C*°(B)-
module as follows:

(p-@)(x) = p(x(x)e(x), peCP(B), ¢ € CF(M), x € M.

It is simple to confirm that the left C°°(B)-module structure on CS°(M) commutes with
the right C2°(G')-module structure.

Note that K € B is compact by Proposition 2.4. First, we argue that it suffices to
prove this theorem under the additional hypothesis that the Lie algebroid AG is trivial (as
a vector bundle) over some open neighbourhood of K. Indeed, assume this special case
is already proven, and choose smooth, compactly-supported functions py,...,py : B —
[0, 1] such that ZIN=1 p;i = L holds on K and AG is trivial on a neighbourhood of supp(p;)
for each i. Define P® = {p; - ¢ : ¢ € P} fori = 1,..., N. By hypothesis, for | <i < N,
there exist

(1) fl(i), ey flf,’;,) € C°(G) with supports contained in W,

(2) aright C2°(G’)-submodule A € (M) with PO < 4P < c2 (M)XK,

(3) right C°(G')-linear maps \I/(i), cee \I/X,l) : A(()i) — C2°(M) that do not increase
supports such that, for all ¢ € A(()i),

Define '
Ay = {(pGC;X’(M)K:p,--(peAg) fori =1,....N}.
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By definition, P € A4y C CCO"(M)K, and it is easy to check that A¢ is a right C>°(G’)-
submodule.
For1 <i < N,1<j < N;, define maps ¥;; : A9 — C>°(M) by

Wi (g) = ¥ (i - ).

It is easy to check these are linear maps which do not increase supports and are right
C2°(G')-linear. Moreover, if ¢ € Ao,

N N;

N N N; ) )
o= pi-o=2 3 fPxGni-0) =) Y £ Wyp).

i=1 i=1j=1 i=1j=1

It remains to check the case where AG is trivial over a neighbourhood of K. Then, by
inverse function theorem, there exists an open set U € B with K € U and (complete by
Lemma 4.5) right-invariant vector fields X1, ..., Xz € C2°(B, AG) such that

u:RFx B — G, u(ty,...,tx,b) = et X1 ... ok Xk

maps W= (=1, )* x U diffeomorphically onto an open subset of G contained in W .
Indeed, by shrinking W we can, and do, assume that W = u(W).

Let X IM seen X ,ﬁ” denote the corresponding complete vector fields on M and let
7, ..., T denote the corresponding representations of C>°(R) on C2°(M) given by
(4.2). Because the action of G on M commutes with the action of G’ on M, the R actions
determined by the fundamental vector fields X Mo X ,ﬁ” commute with the action of
G’ as well.

By [10, Lemma 4.2], there is a linear bijection Oy from CC°°(VT/) cC (R* x B) to
CX*(W) € C°(G) given as pushforward by u, followed by multiplication by a suitable
smooth Jacobian factor such that

W = 0w (f) * v
forall f € CCOO(W) and all y € C>°(M), where
FOYM) = fl—tg,...,—tr, 7@K X )y (X0 X ),

In particular, fixing p € C2°(B) such that p = 1 on K (so that p- ¢ = ¢ for all ¢ €
CX(M)X) and supp(p) € U, we get that

(1) ()Y =0w(fr ® Q@ f1®p) * ¢ (5.1

forall fi,..., fx € CX®(=1,1) € CX(R) and all ¥ € C(M)X (see [10, Lemmas 4.1
and 4.3]).

By Lemma 3.6, there exists a sequence of positive reals (¢ )m=>0 such that, for any
formal power series P(z) = ) _,,~¢ dmz™ With |a,| < ¢, we have

P < dom(P(X}) -+ P(X]1)
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forall n,iy,...,i, > 1. Using Lemma 1.2, write §o = fo + ZmZO l(m) where fo, f1 €
CX(—1,1) CCX(R) and |as| < cm. By repeated application of Theorem 4.12, we obtain

o =m(fo)e + m(f)PX M)
= 11 (fo)ma(fo)p + 71 (fo)ma (1) P(XM)g
+ () (fo) P(X e + mi(f)m(f) P(XM) P(XM)e

= Y m(fi)m(f) PR PP

Q1,50 €{0,1}

for all ¢ € P, with the understanding that P(X;)? = id. Thus, using (5.1),

0= Z Sitsemiz * Yir i (@),

i1,...,ix €{0,1}
where
Siryia =W (f1® Q@ fi ® p) S CX(W) € C2(G)
A= () dom(P(X})k-.. P(xM))nCEmnk
1] 5eees lkE{O,l}
Wi,y = PO P(XM) 4

By Corollary 4.16, we have that Ay is a right C2°(G’)-submodule of C2°(M )X and that
the maps ;.. ;, are right C2°(G’)-linear, as required. They do not increase supports by
Proposition 2.9. ]

Specializing to the case where G acts on itself from the right and left, Theorem 5.3
amounts to the following.

Corollary 5.4. Let G = B be a Lie groupoid with a given Haar system. Let P be a finite
subset of CX°(G) and put K = Uwe? t(supp @) (by Proposition 2.4, K is a compact
subset of B) and let W C G be an open set with K C W (by Lemma 4.2, we may assume
W is Hausdorff). Then, there exist

M fr..... [y € C2(W) S C2(G),

(2) aright ideal Ag € C2(G) with® C Ay € CX(G)K,

(3) right CX°(G)-linear maps W1, ..., Wy : Ag — C°(G) that do not increase sup-
ports such that, for all p € Ag, we have ¢ = f1 * V() +---+ fv * Un(p). =

The desired result (Theorem 1.13 from the introduction) now follows.

Corollary 5.5. For any Lie groupoid G with given Haar system, the smooth convolution
algebra C>°(G) is H-unital.
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Proof. This follows from Corollary 5.4 and Proposition 1.18, taking ¢ to be the map

o> [1Wi(p)+---+ fn @ Un(p). L]

6. Factorization of flat functions relative to a submersion

In this section, we extend the following known factorization result for functions that are
“flat” on a given closed set so as to allow factorization to be performed relative to a sub-
mersion.

Theorem 6.1. Suppose M is a Hausdorff smooth manifold and Z C M is closed. Let I5°
denote the ideal in C° (M) consisting of functions that vanish to infinite order (i.e., vanish
with all derivatives) on Z. Then, given ¢y, ...,on € 13°, there exists p,Y1,..., ¥y € [F°
such that ¢; = py; fori =1,...,N.

Proof. This follows from Theorem 3.2 of [22]. See also the proof of Theorem 6.2 in [25]
(“property [F]” is defined on p. 612). ]

Our extended factorization result is Theorem 6.8 below, essentially a “with parame-
ters” version of the preceding result. It seems likely that Theorem 6.8 is known to experts
but, as a reference could not be located, we provide a proof.

Let us first record the following elementary extension principle.

Lemma 6.2. Let Z C R? be a closed set and let f € C®(W), W :=R4\ Z. If f and
all its partial derivatives vanish at the boundary of W, then [ extends by zero to a smooth
function on R? vanishing to infinite order on Z.

Proof. Let g be the extension by zero of f. Using induction and the standard result that a
function on R? is C! if and only if each of its first order partials exists and is continuous,
one only needs to check that the first order partials of g exists and vanish on Z. One may
therefore reduce to the case d = 1 where the desired conclusion may be deduced from the
mean value theorem. ]

The preceding lemma leads to directly to a condition under which one may form the
quotient of two smooth functions vanishing to infinite order on a given closed set.

Lemma 6.3. Let Z C R? be a closed set. Suppose f, g € C®(R?) vanish to infinite
orderon Z and g > 0 on W := R" \ Z. If. for every @ € N? and m € N, the function
a;—,{ € C®° (W) vanishes at the boundary of W, then the extension by zero of % is a smooth

function on R? vanishing to infinite order on Z.

Proof. Let T € C*® (W) denote the C > (R?)-linear span of the functions 3;—,,{ fora e N9,
m € N. By assumption, the functions in F all vanish at the boundary of W. Observe that
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F is closed under taking partial derivatives. Indeed, if « € N 4 is a multi-index, m € N,
h € C*®(R?) and 9 is one of the first order partials, then
0% do 0% 0%
(S W BLLL e f
gm gm

gm+1 :

—m(0g)h

Thus, thinking of % as a smooth function on W, we have by induction that all of its
higher order partial derivatives vanish at the boundary of W. Thus, f extends to a smooth

function on R that vanishes to infinite order on Z by Lemma 6.2. ]

We use the existence of a regularized distance function for an arbitrary closed subset
of Euclidean space. Such distance functions appear in the proof of the Whitney extension
theorem given in [20] and can be explicitly constructed using cubical meshes. Note that
Wodzicki [25] also uses these functions by way of an appeal to [22].

Theorem 6.4. Let Z C R? be closed, W :=R% \ Z and let §(x) denote the distance from
x to Z. Then, there is a smooth function A : W — (0, 00) such that
(1)  there exist constants ¢ > ¢y > 0 such that ¢18(x) < A(x) < c28(x), x € W,

(i) foreacha € N9, there is a constant By > 0 such that |3* A(x)| < Ba8(x)' 1l
xeWw.

The constants c1, c2, By are independent of Z.
Proof. This is Theorem 2 on p. 171 of [20]. [

Next, we apply Theorem 6.4 to construct smooth defining functions p € C*(R%)
for arbitrary closed sets Z C R? with rate of vanishing governed by an arbitrary smooth
function g : (0, 00) — (0, c0) vanishing together with all derivatives at 0.

Lemma 6.5. Let Z C R? be closed and put W :== R\ Z. Let A : W — (0, 00) be a
regularized distance function for Z, as in Theorem 6.4. Then, given any g € C°°(0, 0o)
vanishing together with all derivatives at 0, the extension by zero of g o A is a smooth
function p on R? vanishing to infinite order on Z.

Proof. In view of Lemma 6.2, we just need to show that all of the partial derivatives of
g o A vanish at the boundary of W. For nonzero & € N¢, we have the following formula
for the arth partial derivative of a composition:

||

(gor)=> (g®on) C(akﬂ)naﬂ(f)A

k=1 BeJ(a k) Jj=

where C(«, k, 8) € N and

k
ay = {B = (BB € (V) J) £ 0. = 1ok and Y B = .

J=1
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See the proof of Lemma 3.1 in [22] as well as [9]. Applying the estimates of Theorem 6.4
to the above expression for d%(g o A), it is straightforward to derive an estimate of the

form
|oe]

9%(g 0 M) = ) Chk) (g™ o A)A*H,
k=1
where C(k) > 0. Since g(¢)t™? — 0 as t — 0T for all p € N and A vanishes at the
boundary of W, the estimate above shows that 3%(g o A) vanishes at the boundary of W
as needed. ]

Lemma 6.5, together with the following result, allows one to construct smooth defining
functions for a closed set Z C R4 which vanish to infinite order on Z “as slowly as
desired”.

Lemma 6.6. Let fj be a sequence of functions on (0, 00) such that lim,_, o+ f(t)t 7 =0
for all p € N. Then, there exists a smooth, positive-valued function g on (0, c0) that
vanishes together with all its derivatives at O such that lim,_, o+ f;"((tt)) = 0 forall k.

Proof. See [10, Lemma 6.7] for a complete proof and references to the literature. ]

Theorem 6.7. Let Z C RF be closed, W :=R¥ \ Z. Suppose f € C®(RF x RY) vanishes
10 infinite order on Z x R. Then, there exists p € C°°(R¥) vanishing to infinite order on
Z and strictly positive on W and g € C®(R¥ x RY) vanishing to infinite order on Z x R¥
such that f(x,y) = p(x)g(x, y) forall (x,y) € R x Rt

Proof. Because f vanishes with all its derivatives on Z X Re, it follows (e.g., from Tay-
lor’s theorem) that (x, y) — f(x, y)8(x)~? vanishes at the boundary of W x R for any
p € N, where §(x) denotes the distance from x to Z. The same is true if § is replaced
by a regularized distance function A : W — (0, oo) (Theorem 6.4). Given o € Nk x N¥,
m € N, r > 0, define fom., : (0,00) — (0,00) by

Samr(£) = sup {]0% f£(x, )[V/™ 2 |x|,|y] < rand A(x) < t}.

By design, fom,r is an increasing, continuous function satisfying
im_fomr ()77 =0
t—>0t
for all p € N. Thus, by Lemma 6.6, there exists a smooth function g : (0, c0) — (0, 00)
that vanishes with all its derivatives at O such that
t
i Jemr@ _
t—»ot  g(t)

for all o € N¥ x N¥, m € N, r > 0. By Lemma 6.5, g o A extends by zero to a smooth
function p : R? — [0, o) which vanishes to infinite order on Z. The estimate

9% f(x, y) <(fot,m,r(A(x)))m
p()™ |7\ g(Ax))
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0% f(x,y)
p(x)m

for all & € N¥ x Nl, m € N, and so, by Theorem 6.3, (x, y) — f;&;’) extends by zero

to a smooth function on R¥ x R¢ vanishing to infinite order on Z x R¥. ]

(valid for |x|, |y| < r) shows that (x, y) > vanishes at the boundary of W x R*

We are now in a position to state and prove the main result of this section.

Theorem 6.8. Let m : M — B be a submersion where B is Hausdorff and M is possi-
bly non-Hausdorff. View C°(M) as a C°°(B)-module with module structure given by
fro=(fomefor f € C®(B), p € CF(M). Let Z C B be a closed set and let
@1, 0N € CX(M) vanish to infinite order on 7~ (Z) (Definition 4.17). Then, there
exists p € C*°(B) vanishing to infinite order on Z and strictly positive on W := B\ Z
and Y1, ..., YN € CX(M) vanishing to infinite order on w~1(Z) such that ¢; = p - V;
fori=1,...,N.

Proof. Suppose f, p1, p> are smooth functions on RF x R¢ vanishing to infinite order
on {0} x R* and that 0 < p; < p, on the complement of {0} x R¢. We remark that, if
f/p1 extends to a smooth function on R¥ x R¢ vanishing to infinite order on {0} x R¢,
then f/p, also extends to a smooth function on R¥ x R* vanishing to infinite order on
{0} x R¢ (see [10, Lemma 6.9]). This remark, together with the fact that B is Hausdorff
and therefore admits smooth partitions of unity allows one to (i) consider only the local
problem, where M and N are Euclidean spaces and 7 is projection, and (ii) consider the
case of only a single function ¢ € C°(M ). The local case of a single function is given by
Theorem 6.7. [

7. H-unitality of ideals arising from invariant subsets

In this final section, we prove the second of our main results, the H-unitality of infinite
order vanishing ideals in smooth groupoid algebras (Theorem 1.15 from the introduction).
This leads directly to an excision principle for invariant, closed subsets. Permanence prop-
erties of H-unitality (Theorem 1.7) give analogous results for Whitney functions as well.
Applications of this excision result will be considered elsewhere.

Recall from Wodzicki’s seminal paper on H-unitality, if Z is a closed subset of a
Hausdorff smooth manifold M, then the ideal in C°°(M) consisting of functions that
vanish together with all derivatives on Z is H-unital (see [25, Theorem 6.1]). The goal
here is to obtain the noncommutative analog.

The main ingredient of the proof is the following direct corollary of Theorem 6.8 (take
the submersion 7 to be the target submersion).

Corollary 7.1. If G = B is a Lie groupoid, Z C B is an invariant, closed subset and
@1,...,¢N belong to the infinite order vanishing ideal J$° € CZ°(G) (see Section 4.6),
then there exists a smooth function p € C°(B), vanishing to infinite order on Z and
positiveon B\ Z and y, ..., ¥n € JZ° suchthat o; = p-y; fori =1,...,N. |
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Note that, if p € C®°(B) is nonvanishing on B \ Z, then ¢ = p-¢ : J°* — J$°is
clearly injective. Indeed, if G is Hausdorff and Z is a closed submanifold, then ¢ — p- ¢ is
injective on all of C2°(G). When G is non-Hausdorff and Z C B is a closed submanifold
(or more generally has empty interior), then injectivity of ¢ > p - ¢ on all of C>°(G) may
fail, as the following example shows.

Example 7.2. Let B =R and let G = R* U Z, the “line with infinitely many origins” with
its obvious non-Hausdorff smooth manifold structure. Then, G is a Lie groupoid over B
where s = ¢ is the obvious projection to G — B and multiplication G® =R* LU Z? — G
is (idrx U addition). Define ¢ = 0 U f where f : Z — {0, 1} is given by f(1) =1,
f(=1) =—1, f(n) =0 for n # 1. It is easy to see that ¢ is a (nonzero) element of
C2°(G). However, p - ¢ = 0 for any p € C°°(R) vanishing at 0.

As in Section 5, we deduce H-unitality from a technical result designed to be used
with Proposition 1.18.

Theorem 7.3. Let G == B be a Lie groupoid with a given Haar system and let Z C B be
a G-invariant, closed subset. Let P be a finite subset of J3°. Put K := Uwery t(supp @)
and let W C G be an open set with K C W. Then, there exist

M fi,.... fn €I S CX(0),

(2) arightideal Ay € JZ° with® C Ag € CZ(G)X,

(3) right CX°(G)-linear maps Wy, ..., Wy : Ag — JZ° that do not increase supports
such that, for all ¢ € Ag, we have ¢ = f1 x W1(@) + -+ fn * V().

Proof. Let P = {¢1, ..., @,}. From Corollary 7.1 above, there exists p € C*°(B), van-
ishing to infinite order on Z and positive on B \ Z, and V1, ..., ¥, € JZ° such that
pi =p-y; fori =1,...,n. We have that ¢ > p - ¢ is a right C2°(G)-linear bijection
of JZ° onto the right ideal p- J2° C JZ°. Let M1 : p- JZ° — JZ° denote the inverse
)
isomorphism of right C2°(G)-modules. By design, M1 (y;) = ¢; fori =1,...,n.
P

From Corollary 5.4, there exist

(1) g1.....gn8 € CZ (W) € C2(G),

(2) arightideal By € CX(G) with P C By € CX(G)K,

(3) right C2°(G)-linear maps ®;,..., Py : By — C2°(G) that do not increase sup-

ports such that, for all ¢ € By, we have ¢ = g1 * ®1(¢) +--- + gn * P(p).

Define

fi=gi-p, Ao=BoNp-J&, \Ili:zM%o@”Ao, i=1,...,N,
so that
¢ =g1xPi(p) +--+gn * D(p)

=& *(p-Vi(@) + -+ gn *(0-¥n(p) = fix Vi(p) + -+ fv x ¥(p)
and the f;, Ag and ¥; are as needed. [
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As a corollary, we obtain the desired H-unitality result and its consequence for excision
(Theorem 1.15 and Corollary 1.16 from the introduction).

Corollary 7.4. For any Lie groupoid G = B with given Haar system and any G -invariant,
closed subset Z C B, the associated ideal J go C C2°(G) is H-unital. Consequently, the
short exact sequence

0—>J7° = CX(G)—>CX(G)/I77 =0
induces a corresponding long exact sequence in cyclic/Hochschild homology.

Proof. This follows from Proposition 1.18 and Theorem 1.11. ]

Finally, we briefly reiterate the corollaries for Whitney functions which were already
discussed in the introduction.

Definition 7.5. Let G == B be a Lie groupoid with given Haar system and Z C B a
closed, invariant submanifold with J2° € C2°(G) the corresponding ideal. The convolu-
tion algebra of compactly-supported Whitney functions on Gz is defined as the quotient

EX(Gz) = CX(G) /I

(this notation disguises the fact that £2°(Gz) depends on the inclusion of Gz in G, rather
than only on Gz).

Remark 7.6. Taking G Hausdorff, this is not the classical definition of a Whitney func-
tion, but, by Whitney’s extension theorem [23], it is equivalent.

Corollary 7.7. For any Lie groupoid G = B with given Haar system and any G -invariant,
closed subset Z C B, the algebra of noncommutative Whitney functions §2°(Gz) is H-
unital.

Proof. Since C°(G) and J3° are H-unital, this follows from permanence of H-unitality
under quotients (Theorem 1.7). [ ]

Corollary 7.8. Let G = B be a Lie groupoid with given Haar system. Let Z Y C B
be G-invariant, closed subsets of B, then J 7%y = ker(62°(Gy) — €2°(Gz)) is H-unital.
Consequently, the short exact sequence

O—)J%?Y%Séx}(Gz)ﬁgcoo(Gy)—)O
induces corresponding long exact sequences in cyclic and Hochschild homology.

Proof. Noting J7°, = J7°/J¢°, the H-unitality of /77 , follows from Theorem 1.7. The
statement concerning long exact sequences follows from Theorem 1.11. ]
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