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Exel–Pardo algebras with a twist

Guillermo Cortiñas

Abstract. Takeshi Katsura associated a C�-algebra C�
A;B

to a pair of square matrices A � 0 and
B of the same size with integral coefficients and gave sufficient conditions on .A; B/ to be simple
purely infinite (SPI). We call such a pair a KSPI pair. It follows from a result of Katsura that any
separable C�-algebra A which is a cone of a map � W C.S1/n! C.S1/n in Kasparov’s triangulated
category KK is KK-isomorphic to C�

A;B
for some KSPI pair .A; B/. In this article, we introduce,

for the data of a commutative ring `, non-necessarily square matrices A, B and a matrix C of the
same size with coefficients in the group U.`/ of invertible elements, an `-algebra OC

A;B
, the twisted

Katsura algebra of the triple .A; B; C /. When A and B are square and C is trivial, we recover the
Katsura `-algebra first considered by Enrique Pardo and Ruy Exel. We show that if ` is a field of
characteristic 0 and .A; B/ is KSPI, then OC

A;B
is SPI, and that any `-algebra which is a cone of

a map � W `Œt; t�1�n ! `Œt; t�1�n in the triangulated bivariant algebraic K-theory category kk is
kk-isomorphic to OC

A;B
for some .A; B; C / as above so that .A; B/ is KSPI. Katsura `-algebras

are examples of the Exel–Pardo algebras L.G; E; �/ associated to a group G acting on a directed
graph E and a 1-cocycle � W G �E1 ! G. Similarly, twisted Katsura algebras are examples of the
twisted Exel–Pardo `-algebras L.G;E; �c/ we introduce in the current article; they are associated
to data .G; E; �/ as above twisted by a 1-cocycle c W G � E1 ! U.`/. The algebra L.G; E; �c/
can be variously described by generators and relations, as a quotient of a twisted semigroup algebra,
as a twisted Steinberg algebra, as a corner skew Laurent polynomial algebra, and as a universal
localization of a tensor algebra. We use each of these guises of L.G;E;�c/ to study itsK-theoretic,
regularity, and (purely infinite) simplicity properties. For example, we show that if ` is a field of
characteristic 0, G and E are countable, and E is regular, then L.G; E; �c/ is simple whenever
the Exel–Pardo C�-algebra C�.G;E; �/ is, and is SPI if in addition the Leavitt path algebra L.E/
is SPI.

1. Introduction

An Exel–Pardo tuple .G;E; �/ consists of a (directed) graph

E W E1
r

�
s
E0

together with an action of G by graph automorphisms and a 1-cocycle � W G � E1 ! G

satisfying �.g; e/.v/ D g.v/ for all g 2 G, e 2 E1, and v 2 E0. To an Exel–Pardo tuple
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.G; E; �/ and a commutative ring ` one associates a C �-algebra C �.G; E; �/ and an
`-algebra L.G; E; �/. For example, the Katsura C �-algebra C �A;B [23, Definition 2.2]
associated to a pair of square, not necessarily finite row-finite integral matrices A and B
with Ai;j � 0 for all i , j and such that

Ai;j D 0) Bi;j D 0 (1.1)

is an Exel–Pardo C �-algebra, and its purely algebraic counterpart, the `-algebra OA;B D

OA;B.`/ is an Exel–Pardo `-algebra. Here, E D EA is the graph with reduced incidence
matrix A and both the action of G D Z and the cocycle � are determined by B . Katsura
showed that, for such .A; B/, C �A;B is separable, nuclear, and in the UCT class and that
its (topological) K-theory is completely determined by the kernel and cokernel of the
matrices I � At and I � B t . He further proved that, under certain conditions on .A; B/,
which we call KSPI, C �A;B is simple purely infinite. Moreover, his results show that every
Kirchberg algebra A is isomorphic, as a C �-algebra, to C �A;B for some KSPI pair .A;B/.

In the current paper, we consider Exel–Pardo tuples as above further twisted by a 1-
cocycle c W G � E1 ! U.`/ with values in the invertible elements of the ground ring
`, to which we associate an algebra L.G; E; �c/, the twisted Exel–Pardo algebra. As a
particular case, we obtain twisted Katsura algebras OC

A;B , where A, B are not necessarily
square, integral matrices of the same size, where, as above, we assume that Ai;j � 0 for
all i , j and that (1.1) is satisfied, and C is a matrix of the same size as A and B , but with
coefficients in U.`/, and such that

Ai;j D 0) Ci;j D 1: (1.2)

We study several properties of twisted Exel–Pardo algebras in general and of twisted
Katsura algebras in particular. We define L.G; E; �c/ by generators and relations (Sec-
tion 3.4) and show that it can variously be regarded as a twisted groupoid algebra (Proposi-
tion 4.2.2), a corner skew Laurent polynomial ring (Section 8), and a universal localization
(Lemma 10.7). For example, using the twisted groupoid picture and building upon the
results of [4,18,26,28,29], we obtain the following simplicity criterion. Recall that a ver-
tex v 2 E0 is regular if it emits a nonzero finite number of edges, a sink if it emits no
edges, and an infinite emitter if it emits infinitely many edges. We write reg.E/, sink.E/,
and inf.E/ � E0 for the subsets of regular vertices, sinks, and infinite emitters. The ele-
ments of sing.E/ D sink.E/ [ inf.E/ D E0 n reg.E/ are the singular vertices of E. We
say that E is regular if it contains no singular vertices, or equivalently if E0 D reg.E/.

Theorem 1.3. Let ` be a field of characteristic zero and .G; E; �c/ a twisted Exel–
Pardo tuple withG countable andE countable and regular. If the Exel–Pardo C �-algebra
C �.G; E; �/ is simple, then L.G;E; �c/ is simple. If furthermore L.E/ is simple purely
infinite, then so is L.G;E; �c/.

The above result specializes to twisted Katsura algebras as follows.
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Corollary 1.4. Let .A;B;C / be as above and ` a field of characteristic zero. Assume that
.A;B/ is a KSPI pair. Then, OC

A;B is simple purely infinite.

The description of L.G;E;�c/ by generators and relations provides an algebra exten-
sion akin to the Cohn extension of a Leavitt path algebra or the Toeplitz extension of a
graph algebra. It has the form

0!K.G;E; �c/! C.G;E; �c/! L.G;E; �c/! 0: (1.5)

We use this extension to studyL.G;E;�c/ in terms of the bivariant algebraicK-theory
category kk. We show that K.G;E; �c/ and C.G;E; �c/ are canonically kk-isomorphic
to the crossed products `reg.E/ Ì G and `E

0 Ì G (Proposition 6.2.5 and Theorem 6.3.1).
Because the canonical functor j W Alg�` ! kk sends algebra extensions to distinguished
triangles, we get that if E0 is finite, the Cohn extension above gives rise to a distinguished
triangle in kk

j.`reg.E/ ÌG/
f
�! j.`E

0 ÌG/! j.L.G;E; �c//: (1.6)

We explicitly compute f in the case of twisted Katsura algebras. In this case, G D Z acts
trivially on E0, so for L1 D `Œt; t�1�, � Ì Z D � ˝ L1 above. Since the kernel of the
evaluation map � DKer.ev1 WL1! `/ represents the suspension in kk, we have j.L1/D
j.`/ ˚ j.`/Œ�1� in kk. We show in Theorem 7.3 that for the reduced incidence matrix
A 2 N reg.E/�E0

0 and B 2 Zreg.E/�E0 and C 2 U.`/reg.E/�E0 satisfying (1.1) and (1.2)
the map of (1.6) has the following matricial form:

f W j.`/reg.E/ ˚ .j.`/Œ�1�/reg.E/

�
I�At C�

0 I�B t

�
// j.`/E

0
˚ j.`/Œ�1�E

0
: (1.7)

Here, C �v;w D C
�1
w;v . Recall from [14] that homkk.j.`/Œ�n�; j.`// D KHn.`/ is Weibel’s

homotopy algebraic K-theory. The coefficients of I � At , I � B t , and C � are regarded
as elements of kk.`; `/ D KH0.`/ and kk.�; `/ D KH1.`/ via the canonical maps Z!
KH0.`/ and U.`/! KH1.`/, which are isomorphisms when ` is a field or a PID, for
example. In the latter cases, we also have kk.`; �/ D KH�1.`/ D K�1.`/ D 0; thus,
any element of kk.Lm1 ; L

n
1/ is represented by a matrix with a zero block in the lower left

corner. In fact, we prove the following theorem.

Theorem 1.8. Let ` be a field or a PID, n � 1, and let R 2 Alg` such that there is a
distinguished triangle

j.`/n ˚ j.`/Œ�1�n
g
�! j.`/n ˚ j.`/Œ�1�n ! j.R/: (1.9)

Then, there exist matrices A 2 M2n.N0/, B 2 M2n.Z/, and C 2 M2n.U.`// satisfy-
ing (1.1) and (1.2) with .A;B/ KSPI and an isomorphism

j
�
OC
A;B

�
Š j.R/:
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Putting Theorems 1.3 and 1.8 together, we get that if ` is a field of characteristic zero,
then any `-algebra R admitting a presentation (1.9) is kk-isomorphic to a simple purely
infinite twisted Katsura algebra. An analogous result in the Kasparov KK-category of
C �-algebras follows from work of Katsura [23, Proposition 3.2], showing that any C �-
algebra with a KK-presentation of the form (1.9) is KK-isomorphic to a KSPI untwisted
Katsura C �-algebra. This uses the fact that, for Kasparov’s KK and Banach algebraic K-
theory, we haveKK.CŒ�1�;C/DK top

1 .C/D 0. Note however that in the purely algebraic
context, it is useful to introduce the twist C , since as kk.`Œ�1�; `/ DU.`/ is nonzero, the
matricial form of the map g in (1.9) need not have a trivial block in the upper right corner.

Observe that applying KH�.�/ to the triangle (1.6) gives a long exact sequence

KHnC1.L.G;E; �c//! KHn
�
`.reg.E// ÌG

� f
�!

KHn
�
`.E

0/ ÌG
�
! KHn.L.G;E; �c//: (1.10)

One may ask whether a similar sequence holds for Quillen’s K-theory. This will be the
case if every ring R appearing in (1.10) is K-regular, for in this case the comparison map
K�.R/! KH�.R/ is an isomorphism. In Section 8, we observe that when E is finite
without sources, the Z-graded algebra L.G; E; �c/ can be regarded as a Laurent poly-
nomial ring twisted by certain corner isomorphism  of the homogeneous component of
degree zero. We use this to give a sufficient condition for theK-regularity of L.G;E;�c/,
where E is any row-finite graph and G acts trivially on E0; see Theorem 8.15. As a par-
ticular case, we obtain that if `ŒG� is regular supercoherent and the untwisted Exel–Pardo
tuple .G; E; �/ is pseudo-free in the sense of [18, Definition 5.4], then L.G; E; �c/ is
K-regular. For the specific case of twisted Katsura algebras, we have the following propo-
sition.

Proposition 1.11. Let ` be a field and .A; B; C / a twisted Katsura triple. If either of the
following holds, then OC

A;B is K-regular.

(i) Bv;w D 0, Av;w D 0.

(ii) If v 2 reg.E/ is such that Bv;w D 0 for some w 2 r.s�1¹vº/, then Bv;w 0 D 0
for all w0 2 r.s�1¹vº/.

In Section 10, we show that if E is finite, then L.G; E; �c/ can be described as a
universal localization of certain tensor algebra (Lemma 10.7), much in the same way as
the Leavitt path algebra L.E/ is a universal localization of the usual path algebra P.E/D
T
`E

0 .`E
1
/. We use this to show, in Proposition 10.16, that under rather mild conditions,

L.G; E; �c/ is a regular ring, in the sense that every module over it has finite projective
dimension. In particular, we get the following proposition.

Proposition 1.12. Let ` be field and .A; B; C / finite square matrices satisfying (1.1)
and (1.2). Then, OC

A;B is a regular ring.

The rest of this article is organized as follows. Section 2 starts by introducing some
notation and recalling basic facts on Exel–Pardo tuples (Sections 2.1 and 2.2). Let P .E/
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be the set of all finite paths in a graph E. Lemma 2.2.4 recalls that if .G; E; �/ is an
EP -tuple, then theG-action onE extends to an action on P .E/ and that � extends to a 1-
cocycle G �P .E/! G. Section 2.3 introduces twisted EP -tuples. Lemma 2.3.1 shows
that there is an essentially unique way to extend a 1-cocycle c WG �E1!G to a 1-cocycle
G � P .E/! U.`/ that is compatible with � and with the G-action. In Section 2.4, we
recall the Exel–Pardo pointed inverse semigroup �.G; E; �/ and show that c induces a
semigroup 2-cocycle ! W �.G; E; �/2 ! U.`/� D U.`/ [ ¹0º. Section 3 is devoted to
introducing all the algebras of the extension (1.5). In Section 3.1, we define C.G;E; �c/
by generators and relations and prove in Proposition 3.1.5 that it is isomorphic to the
twisted semigroup algebra `Œ�.G;E; �/; !�. This automatically gives an `-linear basis B

forC.G;E;�c/ (Corollary 3.1.10). In Section 3.2, we define K.G;E;�c/ as the two-sided
ideal of C.G;E; �c/ generated by certain elements and prove in Proposition 3.2.5 that it
is isomorphic to the crossed-product of G with certain ultramatricial algebra; this again
gives an `-linear basis B 0 of K.G; E; �c/ (see (3.2.7)). The next subsection introduces
a subset B" � B such that, under certain hypothesis, B 0 [ B" is an `-linear basis for
C.G;E; �c/ (Proposition 3.3.7). The hypothesis is satisfied both when the G-action on E
and the 1-cocycle � are trivial, and when the action satisfies a weak version of the notion of
pseudo-freeness introduced in [18, Definition 5.4] which we call partial pseudo-freeness.
Section 3.4 defines L.G;E; �c/ by the extension (1.5). Then, we show that the canonical
map L.E/! L.G; E; �c/ from the Leavitt path algebra is injective (Proposition 3.4.3)
and use Proposition 3.3.7 to give a linear basis for L.G; E; �c/ in Corollary 3.4.2 under
the hypothesis of that proposition. Section 4 describes L.G;E; �c/ as a twisted groupoid
algebra in the sense of [4, 5] and uses this description to give simplicity criteria. Sec-
tion 4.2 deals with the general setup of an inverse semigroup � acting on a space, explains
how to go from a semigroup 2-cocycle � W � � � ! U.`/� to a groupoid 2-cocycle
z� W G � G ! U.`/ on the groupoid G of germs, and expresses the twisted Steinberg
algebra A.G ;z�/ as a quotient of the twisted semigroup algebra `Œ� ;�� (Lemma 4.1.7). Sec-
tion 4.2 applies the above to the cocycle ! W �.G;E; �/2!U.`/� and the tight groupoid
G .G; E; �c/ and shows that L.G; E; �c/ Š A.G .S.G; E; �c/; z!// (Proposition 4.2.2).
Theorem 1.3 is proved as Theorem 4.3.10. Section 5 introduces twisted Katsura alge-
bras. Corollary 1.4 is proved as Theorem 5.5. A version of the latter theorem valid over
fields of arbitrary characteristic, but with additional hypothesis on the matrices A and B
is proved in Proposition 5.6. Section 6 is concerned with bivariant algebraic K-theory.
Section 6.1 recalls some basic facts about kk. The next two subsections are concerned
with the algebras K.G; E; �c/ and C.G;E; �c/ in the extension (1.5). Proposition 6.2.5
shows that K.G;E; �c/ is kk-isomorphic to `.reg.E// ÌG, and Theorem 6.3.1 shows that
C.G;E;�c/ is kk-isomorphic to `.E

0/ ÌG. Section 7 is about twisted Katsura algebras in
kk; the map f of (1.6) is computed in this section; see Theorem 7.3 and Corollary 7.11.
A short exact sequence computing homotopyK-theoryKH�.OC

A;B/ is obtained in Corol-
lary 7.9. Theorem 1.8 is a particular case of Theorem 7.13; see Corollary 7.16. Section 8
is concerned with K-regularity of L.G; E; �c/. It starts by observing that if E is finite
without sources, L.G;E; �c/ can be regarded as a corner skew Laurent polynomial ring
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in the sense of [3]. This is then used in Theorem 8.15 to give a general criterion for the
K-regularity of the algebra of a twistedEP -tuple .G;E;�c/, whereE is row-finite andG
acts trivially on E0. It applies in particular if .G;E;�c/ is pseudo-free and `ŒG� is regular
supercoherent (Corollary 8.17). The next section investigatesK-regularity of twisted Kat-
sura algebras; Proposition 1.12 is proved as Proposition 9.2. Finally, in Section 10, still
under the assumption that G acts trivially on E0, we describe L.G;E; �c/ as a universal
localization of a certain tensor algebra (Lemma 10.7) and use this to show in Proposi-
tion 10.16 that, under rather mild conditions, L.G;E; �c/ is a regular ring. In particular,
OC
A;B is regular (Corollary 10.17).

2. Preliminaries

2.1. Algebras

We fix a commutative unital ring `. By an algebra we mean a symmetric `-bimodule
A together with an associative product A ˝` A! A. For a set X , an algebra R, and a
function f W X ! R, we write supp.f / D f �1.R n 0/. We write jY j for the cardinal of
a set Y . For a ring R and a set X , put

�wX R D ¹A W X �X ! R W jsupp.A.x;�//j <1 > jsupp.A.�; x//j; 8x 2 Xº;

�aXR D ¹A 2 �
w
X R W 9N 2 N jsupp.A.x;�//j; jsupp.A.�; x//j � N 8x 2 Xº;

�XR D ¹A 2 �
a
XR W jIm.A/j <1º;

MXR D ¹A 2 �XRW jsupp.A/j <1º:

We regard an element of any of the sets above as an X � X matrix with coefficients in
R. A matrix A is in �WX R if every row and column of A has finite support, in �aXR if in
addition the number of elements of those supports is bounded, and in �XR if furthermore
the set of entries of A is finite. A matrix A is in MXR if it has finitely many nonzero rows
and finitely many nonzero columns. Observe that matricial sum and product make all four
sets above into `-algebras. When R D `, we drop it from the notation; thus,

MX DMX`; �X D �X`; �aX D �
a
X`; and �WX D �

W
X `: (2.1)

Let 	.X/ be the inverse semigroup of all partially defined injections X � Dom.�/
�
�! X .

If � 2 	.X/ and Graph.�/ � X � X is its graph, then its characteristic function lives in
�X :

Uf WD �Graph.�/ 2 �X :

Let RX be the set of all functions X ! R. For a 2 RX , let

diag.a/x;y D ıx;yax :

Observe that, for all a 2 RX and � 2 	.X/,

�aXR 3 diag.a/U� :
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If a takes finitely many distinct values, then diag.a/U� 2 �XR; in fact, by [10, Lemma
2.1], the latter elements generate �XR as an `-module, at least when X is countable.

2.2. Exel–Pardo tuples

Let G be a group and X a set, together with a G-action

G �X ! X; .g; x/ 7! g.x/:

LetH be a group; a 1-cocycle with values inH for theG-setX is a function WG �X!
H such that, for every g; h 2 G and x 2 X , we have

 .gh; x/ D  .g; h.x// .h; x/:

A (directed) graph E consists of sets E0 and E1 of vertices and edges and range and
source maps r; s W E1 ! E0. If e 2 E1, then s.e/ and r.e/ are, respectively, the source
and the range of e. Let n� 1; a sequence of edges ˛ D e1 � � � en, such that r.ei /D s.eiC1/
for all 1� i � n� 1 is called a path of length j˛j D n, with source s.˛/D s.e1/ and range
r.˛/ D r.en/. Vertices are regarded as paths of length 0. We write P .E/ for the set of
all paths of finite length, and, abusing notation, also for the graph with vertices E0, edges
P .E/ and range and source maps as just defined. The set P .E/ is partially ordered by

˛ � ˇ, .9
/ ˇ D ˛
: (2.2.2)

If E and F are graphs, then by a homomorphism h W E ! F we understand a pair of
functions hi W Ei ! F i , i D 0; 1 such that r ı h1 D h0 ı r and s ı h1 D h0 ı s. A G-
graph is a graphE equipped with an action ofG by graph automorphisms. An Exel–Pardo
1-cocycle for E with values in G is a 1-cocycle � W G �E1 ! G such that

�.g; e/.v/ D g.v/ (2.2.3)

for all g 2 G, e 2 E1, and v 2 E0. An Exel–Pardo tuple is a tuple .G;E; �/ consisting of
a group G, a G-graph E, and a 1-cocycle as above.

Lemma 2.2.4 ([18, Proposition 2.4]). Let .G; E; �/ be an Exel–Pardo tuple. Then, the
G-action on E and the cocycle � extend, respectively, to a G-action and a 1-cocycle on
the path graph P .E/ satisfying all four conditions below.

(i) �.g; v/ D g for all v 2 E0.

(ii) jg.˛/j D j˛j for all ˛ 2P .E/. The next two conditions hold for all concatenable
˛, ˇ 2 P .E/.

(iii) g.˛ˇ/ D g.˛/�.g; ˛/.ˇ/.

(iv) �.g; ˛ˇ/ D �.�.g; ˛/; ˇ/.

Moreover, such an extension is unique.
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2.3. Twisted Exel–Pardo tuples

Write U.`/ for the group of invertible elements of our ground ring `. A twisted Exel–Pardo
tuple is an Exel–Pardo tuple .G; E; �/ together with a 1-cocycle c W G � E1 ! U.`/.
Remark that

�c W G �E
1
! U.`/G � U.`ŒG�/; �c.g; e/ D c.g; e/�.g; e/

is a 1-cocycle with values in the multiplicative group of the group algebra `ŒG�. We write
.G;E; �c/ for the twisted EP-tuple .G;E; �; c/.

Lemma 2.3.1. Let .G;E; �c/ be a twisted Exel–Pardo tuple. Then, c extends uniquely to
a 1-cocycle G �P .E/! U.`/ satisfying

c.g; v/ D 1; c.g; ˛ˇ/ D c.g; ˛/c.�.g; ˛/; ˇ/ (2.3.2)

for all concatenable ˛; ˇ 2 P .E/.

Proof. The prescriptions (2.3.2) together with Lemma 2.2.4 dictate that we must have

c.g; v/ D 1; c.g; e1 � � � en/ D c.g; e1/

n�1Y
iD1

c.�.g; e1 � � � ei /; eiC1/ (2.3.3)

for every vertex v 2 E0 and every path e1 � � � en 2 P .E/. We have to check that the
formulas (2.3.3) define a 1-cocycle satisfying (2.3.2). It is clear that (2.3.2) is satisfied
by (2.3.3) whenever ˛ or ˇ are vertices. Let n;m � 1, and let e1 � � � enCm 2 P .E/. Then,
using (2.3.3) for the first identity and part (iv) of Lemma 2.2.4 for the second identity, we
have

c.�.g; e1; : : : ; en/; enC1 � � � enCm/

D c.�.g; e1; : : : ; en/; enC1/

�

m�1Y
jD1

c.�.�.g; e1; : : : ; en/; enC1 � � � enCj /; enCjC1/

D

m�1Y
jD0

c.�.g; e1; : : : ; enCj /; enCjC1/:

Hence, using (2.3.3) and the identity we have just proved, we obtain

c.g; e1 � � � en/c.�.g; e1; : : : ; en/; enC1 � � � enCm/

D c.g; e1/

nCm�1Y
iD1

c.�.g; e1 � � � ei /; eiC1/

D c.g; e1 � � � enCm/:
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We have thus established that (2.3.3) satisfies (2.3.2); it remains to show that it is a 1-
cocycle. Let g; h 2 G, n � 1, and e1 � � � en 2 P .E/. Then, by (iii) of Lemma 2.2.4,

h.e1 � � � en/ D h.e1/�.h; e1/.e2/ � � ��.h; e1 � � � en�1/.en/:

Hence, using the above identity and the facts that � is a cocycle on P .E/ and that c is a
cocycle on E1, we obtain

c.gh; e1; : : : ; en/ D c.gh; e1/

n�1Y
iD1

c.�.gh; e1 � � � ei /; eiC1/

D c.g; h.e1//c.h; e1/

n�1Y
iD1

c.�.g; h.e1 � � � ei //�.h; e1 � � � ei /; eiC1/

D

 
c.h; e1/

n�1Y
iD1

c.�.h; e1 � � � ei /; eiC1/

!

�

 
c.g; h.e1//

n�1Y
iD1

c.�.g; h.e1/�.h; e1/.e2/

� � ��.h; e1 � � � ei�1/.ei //; �.h; e1 � � � ei /.eiC1//

!
D c.h; e1 � � � en/c.g; h.e1/�.h; e1/.e2/ � � ��.h; e1; : : : ; en�1.en///

D c.h; e1 � � � en/c.g; h.e1 � � � en//:

Remark 2.3.4. Let � W G �P .E/! G and c W G �P .E/!U.`/ be the extensions of
� and c given by Lemmas 2.2.4 and 2.3.1. The prescription

�c.g; ˛/ D �.g; ˛/c.g; ˛/

determines a unique map
�c W `ŒG� �P .E/! `ŒG�;

which is `-linear on the first variable. It follows from (2.3.2) and part (iv) of Lemma 2.2.4
that

�c.g; ˛ˇ/ D �c.�c.g; ˛/; ˇ/:

2.4. Twists and semigroups

Let � be an inverse semigroup with inverse operation s 7! s�, pointed by a zero element
;. A (normalized) 2-cocycle with values in the pointed inverse semigroup

U.`/� D U.`/ [ ¹0º

is a map ! W � � � ! U.`/� such that, for all s; t; u 2 � and x 2 � n ¹;º,

!.st; u/!.s; t/ D !.s; tu/!.t; u/; (2.4.1)

!.;; s/ D !.s;;/ D 0; !.x; x�/ D !.xx�; x/ D !.x; x�x/ D 1: (2.4.2)
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The twisted semigroup algebra `Œ� ; !� is the `-module `Œ� � D .
L
s2S `s/=`; equipped

with the `-linear multiplication �! induced by

s �! t D st!.s; t/: (2.4.3)

A straightforward calculation shows that `Œ� ; !� is an associative algebra and that, for
every s 2 � ,

s �! s
�
�! s D s:

Let .G; E; �c/ be a twisted Exel–Pardo tuple. Recall from [18, Definition 4.1] that
there is a pointed inverse semigroup

�.G;E; �/ D ¹.˛; g; ˇ/W˛; ˇ 2 P .E/; r.˛/ D g.r.ˇ//º [ ¹0º:

Multiplication in �.G;E; �/ is defined by

.˛; g; ˇ/.
; h; �/ D

8̂̂<̂
:̂
.˛g.
1/; �.g; 
1/h; �/ if 
 D ˇ
1;

.˛; g�.h; h�1.ˇ1//; �h
�1.ˇ1// if ˇ D 
ˇ1;

0 otherwise.

(2.4.4)

The inverse of an element of �.G;E; �/ is defined by .˛; g; ˇ/� D .ˇ; g�1; ˛/. Define a
map

! W �.G;E; �/ � �.G;E; �/! U.`/�

!.0; s/ D !.s; 0/ D 0 8s 2 �.G;E; �/;

!..˛; g; ˇ/; .
; h; �// D

8̂̂<̂
:̂
c.h; h�1.ˇ1// if ˇ D 
ˇ1
c.g; 
1/ if 
 D ˇ
1
0 otherwise.

(2.4.5)

Lemma 2.4.6. The map ! of (2.4.5) is a 2-cocycle.

Proof. It is clear that ! satisfies the identities (2.4.2). We have to check that the iden-
tity (2.4.1) holds for all s; t; u 2 �.G; E; �/. If any of s; t; u is 0, this is clear. Observe
that for nonzero s, t , !.s; t/ D 0 exactly when st D 0. Hence, (2.4.1) is also clear when-
ever st D 0 or tu D 0. To check the remaining cases, put s D .˛; g; ˇ/, t D .
; h; �/,
u D .�; k; �/.

(1) ˇ D 
ˇ1, � D ��1. Then,

st D .˛; g�.h; h�1.ˇ1//; �h
�1.ˇ1//; tu D .
h.�1/; �.h; �1/k; �/:

We divide this case into 3 subcases:

(a) �1 and h�1.ˇ1/ are incomparable with respect to the path order (2.2.2). Then,
h.�1/ and ˇ1 are incomparable also; hence, !.s; tu/ D !.st; u/ D 0, so
(2.4.1) holds in this case.
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(b) �1 D h
�1.ˇ1/�2. Then, h.�1/ D ˇ1�.h; h�1.ˇ1//.�2/, and we have

!.st; u/!.s; t/

D c.g�.h; h�1.ˇ1//; �2/c.h; h
�1.ˇ1//

D c.g; �.h; h�1.ˇ1//.�2//c.�.h; h
�1.ˇ1//; �2/c.h; h

�1.ˇ1//

D !.s; tu/c.h; h�1.ˇ1/�2/

D !.s; tu/!.t; u/:

(c) h�1.ˇ1/ D �1ˇ2. Then, ˇ1 D h.�1/�.h; �1/.ˇ2/, and we have

!.s; tu/!.t; u/ D c.�.h; �1/k; k
�1.ˇ2//c.h; �1/

D c.�.h; �1/; ˇ2/c.k; k
�1.ˇ2//c.h; �1/

D c.k; k�1.ˇ2//c.h; �1ˇ2/

D !.st; u/!.s; t/:

(2) 
 D ˇ
1 and � D ��1. Then,

st D .˛g.
1/; �.g; 
1/h; �/; tu D .
h.�1/; �.h; �1/k; �/;

and we have

!.st; u/!.s; t/ D c.�.g; 
1/h; �1/c.g; 
1/

D c.�.g; 
1/; h.�1//c.h; �1/c.g; 
1/

D c.g; 
1h.�1//c.h; �1/

D !.s; tu/w.t; u/:

(3) ˇ D 
ˇ1, � D ��1. Then,

!.st; u/!.s; t/

D c.k; k�1.�1h
�1.ˇ1///c.h; h

�1.ˇ1//

D c.k; k�1.�1/.�.k
�1; �1/h

�1/.ˇ1//c.h; h
�1.ˇ1//

D c.k; k�1.�1//c.�.k; k
�1.�1//; .�.k

�1; �1/h
�1/.ˇ1//c.h; h

�1.ˇ1//

D !.t; u/c.�.k; k�1.�1//; .�.k; k
�1.�1//

�1h�1/.ˇ1//c.h; h
�1.ˇ1//

D !.t; u/c.h�.k; k�1.�1//; .�.k; k
�1.�1//

�1h�1/.ˇ1//

D !.t; u/!.s; tu/:

(4) 
 D ˇ
1, � D ��1. Then,

!.st; u/!.s; t/ D c.k; k�1.�1//c.g; 
1/

D !.t; u/!.s; tu/:
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3. Twisted Exel–Pardo algebras via the Cohn extension

3.1. Cohn algebras

The Cohn algebra of the twisted Exel–Pardo tuple .G;E; �c/ is the quotient C.G;E; �c/
of the free algebra on the set

¹v; vg; e; eg; e�; ge� W v 2 E0; g 2 G; e 2 E1º (3.1.1)

modulo the following relations:

v D v1; e D e1; 1e� D e�; eg D s.e/e.r.e/g/;

ge� D .g.r.e//g/e�s.e/; (3.1.2)

e�f D ıe;f r.e/; .vg/wh D ıv;g.w/vgh; (3.1.3)

.vg/e D ıv;g.s.e//g.e/�c.g; e/; e�vg D ıv;s.e/�c.g; g
�1.e//.g�1.e//�: (3.1.4)

If E0 happens to be finite, then C.G; E; �c/ is unital with unit 1 D
P
v2E0 v, and g 7!P

v2E0 vg is a group homomorphism G!U.C.G;E;�c//. It will follow from Proposi-
tion 3.1.5 below that the latter is a monomorphism, and we will identify G with its image
in U.C.G;E;�c//. Thus, if E0 is finite, then writing � for the product in C.G;E;�c/, we
have vg D v � g and eg D e � g. However, if E0 is infinite, we do not identify G with any
subset of C.G;E; �c/.

Proposition 3.1.5. Let ! be as in (2.4.5). There is an isomorphism of algebras

C.G;E; �c/
�
�! `Œ�.G;E; �/; !�

mapping vg 7! .v; g; g�1.v//, eg 7! .e; g; g�1.r.e///, ge� 7! .g.r.e//; g; e/.

Proof. One checks that the elements

.v; 1; v/; .v; g; g�1.v//; .e; 1; r.e//; .e; g; g�1.r.e///;

.r.e/; 1; e/; and .g.r.e//; g; e/

of `Œ�.G;E; �/; !� satisfy the relations (3.1.2), (3.1.3), and (3.1.4); thus, there is a homo-
morphism as in the proposition. Next, we define its inverse. Because e D s.e/er.e/ in
C.G; E; �c/, we have a multiplication preserving map P .E/! C.G; E; �c/ sending a
path ˛ D e1 � � � en to the product of its edges in C.G;E; �c/. If ˛; ˇ 2 P .E/ and g 2 G,
we write

˛gˇ� WD ˛.r.˛/g/ˇ� 2 C.G;E; �c/:

If ˛ or ˇ is a vertex, we abbreviate the above as ˛g or gˇ�. The set-theoretic map

a W �.G;E; �/! C.G;E; �c/; a.0/ D 0; a.˛; g; ˇ/ D ˛gˇ� (3.1.6)

induces a homomorphism of `-modules `Œ�.G; E; �/; !�! C.G;E; �c/. We will show
that this is in fact a homomorphism of algebras. The usual proof that the Cohn algebra
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C.E/ D C.1; E; 1/ is the semigroup algebra of �.E/ D �.1; E/ shows that the rela-
tions (3.1.2) and (3.1.3) imply that if ˇ; 
 2 P .E/, then

ˇ�
 D

8̂̂<̂
:̂
ˇ�1 if ˇ D 
ˇ1;


1 if 
 D ˇ
1;

0 otherwise.

(3.1.7)

Next, we show, by induction on j
 j, that

.vg/
 D ıv;g.s.
//g.
/�c.g; 
/: (3.1.8)

If j
 j � 1, this is clear from the second equation of (3.1.3) and the first in (3.1.4). For the
inductive step, let n � 1, j
 j D nC 1, 
 D enC1 � � � e1, w D s.
/, u D r.
/. Then, using
the first equation of (3.1.4) in the first line, the inductive step in the second, and (2.3.2)
and part (iii) of Lemma 2.2.4 and Remark 2.3.4 in the last, we obtain

.vg/
 D ıv;g.w/g.enC1/ � .g.r.enC1//�c.g; enC1// � .en � � � e1/

D ıv;g.w/c.g; enC1/g.enC1/�.g; enC1/.en � � � e1/�c.�.g; enC1/; en � � � e1/

D ıv;g.w/g.
/�c.g; 
/:

A similar argument shows that


�.vg/ D ıv;s.
/�c.g; g
�1.
//g�1.
/�: (3.1.9)

Next, we use (3.1.7), (3.1.8), and (3.1.9) to show that (3.1.6) induces an algebra homomor-
phism `Œ�.G;E; �/; !�! C.G;E; �c/. If, for example, .˛; g; ˇ/, .
; h; �/ 2 �.G;E; �/

and 
 D ˇ
1, then using (3.1.7), (3.1.8), and (2.4.4) we obtain

a.˛; g; ˇ/a.
; h; �/ D .˛gˇ�/.
h�/

D ˛g � 
1h�

D c.g; 
1/˛g.
1/�.g; 
1/h�
�

D !..˛; g; ˇ/; .
; h; �//a..˛; g; ˇ/.
; h; �//:

The case ˇ D 
ˇ1 is similar, using (3.1.9) in place of (3.1.8). Thus, a is an algebra homo-
morphism. It is clear that the composite of a with the map of the lemma is the identity
on C.G; E; �c/. To see that the reverse composition is the identity also, one checks that
if ˛ D e1 � � � en and ˇ D f1 � � � fm and g 2 G are such that g.r.ˇ// D r.˛/, then the
following identity holds in �.G;E; �/:

.˛;g;ˇ/D .e1; 1; r.e1// � � � .en; 1; r.en//.r.en/;g; r.fm//.r.fm/; 1;fm/ � � � .r.f1/; 1;f1/:

This completes the proof.

Corollary 3.1.10. C.G;E; �c/ is a free `-module with basis

B D ¹˛gˇ� W ˛; ˇ 2 P .E/; g 2 G; g.r.ˇ// D r.˛/º:
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Remark 3.1.11. If E0 is finite, then we may add up (3.1.8) over all v 2 E0 to obtain

g
 D g.
/�c.g; 
/:

Similarly, from (3.1.9), we get


�g D �c.g; g
�1.
//g�1.
/�:

3.2. The algebra K.G;E;�c/

For each regular vertex v of E and each g 2 G, we consider the following element of
C.G;E; �c/:

qvg WD vg �
X
s.e/Dv

e�c.g; g
�1.e//g�1.e/�: (3.2.1)

As usual, we set qv D qv1; observe that

qvg D qv � .vg/:

Recall that a vertex v 2 E0 is regular if 0 < js�1¹vºj <1; write reg.E/ � E0 for the
subset of regular vertices. Define a two-sided ideal

C.G;E; �c/ BK.G;E; �c/ D hqv W v 2 reg.E/i: (3.2.2)

For each v 2 E0, let

Pv D ¹˛ 2 P .E/ W r.˛/ D vº; P v
D ¹˛ 2 P .E/ W s.˛/ D vº: (3.2.3)

With notations as in (2.1), the action of G on P .E/ induces one on
L
v2E0MPv , which

maps
L
v2reg.E/MPv to itself. In particular, we can form the crossed- (or smash) product

algebra � M
v2reg.E/

MPv

�
ÌG:

Multiplication in the crossed-product is defined by

."˛;ˇ Ì g/."
;� Ì h/ D ıˇ;g.
/"˛;g.�/ Ì gh: (3.2.4)

Proposition 3.2.5. There is an algebra isomorphism

� W
� M
v2reg.E/

MPv

�
ÌG !K.G;E; �c/; "˛;ˇ Ì g 7! ˛.qr.˛/g/.g

�1.ˇ//�:

In particular, K.G;E; �c/ is independent of �c up to canonical algebra isomorphism.

Proof. One checks that, for v;w 2 reg.E/ and g; h 2 G, we have

.qvg/.qwh/ D ıv;g.w/qv.gh/: (3.2.6)



Exel–Pardo algebras with a twist 1405

Thus, if ˛; ˇ 2 Pv and 
; � 2 Pw , then

�."˛;ˇ Ì g/�."
;� Ì h/ D .˛.qvg/g�1.ˇ/�/.
.qwh/h�1.�/�/
D ıg.
/;ˇ˛qv.gh/h

�1.�/� D �."˛;g.�/ Ì gh/:

Hence, � is a homomorphism of algebras. To prove that � is bijective, it suffices to show
that

B 0 D ¹˛qvgˇ
�
W v 2 reg.E/; g 2 G; ˛ 2 Pv; ˇ 2 Pg�1.v/º (3.2.7)

is an `-module basis of K.G; E; �c/. By Corollary 3.1.10, K.G; E; �c/ is generated by
the products x.qvg/y with x;y 2B. One checks that if j˛j � 1, then ˛�.qvg/D .qvg/˛D
0. It follows that B 0 generates K.G; E; �c/ as an `-module. Linear independence of B 0

is derived from that of B, just as in the case G D 1 ([1, Proposition 1.5.11]; see also [11,
Proposición 4.3.3]).

Corollary 3.2.8. The �-algebra K.G;E; �c/ carries a canonical G-grading, where, for
each g 2 G, the homogeneous component of degree g is

K.G;E; �c/g D span¹˛.qvg/ˇ� W v 2 reg.E/; g 2 G; ˛ 2 Pv; ˇ 2 Pg�1.v/º:

3.3. Extending B0 to a basis of C.G;E;�c/

Let .G;E; �c/ be a twisted EP-tuple, and let e 2 E1. Consider the map

re W G ! E1 �G; g 7! .g�1.e/; �.g; g�1.e///: (3.3.1)

In Lemma 3.3.3 below, we show equivalent conditions to the injectivity of the map re
of (3.3.1). First, recall some definitions and notations. Let R be a ring, M a right R-
module, and x 2M . Write

AnnR.x/ D ¹a 2 R W xa D 0º

for the annihilator of x. Let .G;E;�c/ be a twisted EP-tuple. The `-module `Œ�.G;E;�/�
has two different right `ŒG�-module structures, induced, respectively, by multiplication in
�.G;E; �/ and by that in `Œ�.G;E; �/; !�:

.˛; g; ˇ/ � h D .˛; g; ˇ/.s.ˇ/; h; h�1.s.ˇ///

and

.˛; g; ˇ/ �! h D .˛; g; ˇ/ �! .s.ˇ/; h; h
�1.s.ˇ///:

Observe that if e 2 E1, then an element
P
g2G �gg 2 `ŒG� is in the annihilator of .e; 1; e/

with respect to the first structure if and only if
P
g2G �gc.g;g

�1.e//�1g is in the annihila-
tor with respect to the second structure. Hence, in view of Proposition 3.1.5, the condition

Ann`ŒG�.ee�/ D 0 (3.3.2)
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does not depend on whether we regard ee� as an element of C.G;E;�/ or of C.G;E;�c/.
Recall from [18, Section 5] that a finite path ˛ 2 P .E/ is strongly fixed by an element
g 2 G if g.˛/ D ˛ and �.g; ˛/ D 1.

Lemma 3.3.3. Let .G;E; �c/ be a twisted EP-tuple and e 2 E1. Then, the following are
equivalent.

(i) Ann`ŒG�.ee�/ D 0.

(ii) ¹g 2 G W g fixes e stronglyº D ¹1º.

(iii) The map re of (3.3.1) is injective.

Proof. The equivalence between (ii) and (iii) is [18, Proposition 5.6]. We show that (i))
(ii) and that (iii))(i). For the purpose of this proof, we will regard ee� as an element of
C.G;E;�/. If g 2 G n ¹1º fixes e strongly, then 0¤ g � 1 2 Ann`ŒG�.ee�/. Next, assume
that there is a nonzero element x D

P
g2G �gg 2 Ann`ŒG�.ee�/. Then,

0 D
X
g2G

�gee
�
� g D

X
¹h2G;f 2G�eº

� X
¹gjg�1.e/Df;�.g;f /Dhº

�g

�
ehf �:

By Corollary 3.1.10, we must haveX
¹gjg�1.e/Df; �.g;f /Dhº

�g D 0 .8f 2 G � e; h 2 G/:

Since x ¤ 0, this implies that there are g ¤ g0 2 G such that g�1.e/ D .g0/�1.e/ and
�.g; g�1.e// D �.g0; .g0/�1.e//, which precisely means that re is not injective.

Consider the following subsets of reg.E/:

reg.E/0 D ¹vW Im.re/ D ¹.e; 1/º 8e 2 s�1¹vºº; (3.3.4)

reg.E/1 D ¹vW .9e 2 s�1¹vº/re is injectiveº: (3.3.5)

Let
reg.E/! E1; v 7! ev (3.3.6)

be a section of s such that rev is injective for all v 2 reg.E/1. Set

B � A D ¹˛ev�.g; g
�1.ev//.ˇg

�1.ev//
�; v 2 reg.E/; g 2 Gº

[ ¹˛vgˇ�W v 2 reg.E/0; g 2 G n ¹1ºº:

Proposition 3.3.7. Let B 0 be as in (3.2.7). Assume that reg.E/D reg.E/0 t reg.E/1. Set
B" D B nA. Then, B 0 [B" is an `-module basis of C.G;E; �c/.

Proof. Put B 000 D B 0 [B", and letM be the `-submodule generated by B 000. Let v 2 E0

and g 2 G such that r.˛/ D v D g.r.ˇ//. If v 2 reg.E/0, then

˛vgˇ� D ˛qvgˇ
�
� ˛qvˇ

�
C ˛ˇ� 2M:
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For any v 2 reg.E/,

˛ev�.g; g
�1.ev//.ˇg

�1.ev//
�

D c.g�1; ev/
�
˛vgˇ� � ˛qvgˇ

�
�

X
s.e/Dv;e¤ev

˛e�c.g; g
�1.e//.ˇg�1.e//�

�
2M:

Thus, M D C.G; E; �c/. Next, we show that B 000 is linearly independent. Let N be the
linear span of B". By Proposition 3.2.5 and Corollary 3.1.10, B 0 is a basis of K D

K.G; E; �c/ and B" is a basis of N . Hence, it suffices to show that K \ N D 0. Sup-
pose otherwise that 0 ¤ x 2 K \ N . Let ˛qvgˇ� be an element of B 0 with d D j˛j
maximum among those appearing with a nonzero coefficient in the unique expression
of x as an `-linear combination of B 0. Because x is also a linear combination of B",
and ˛eve�vgˇ

� D ˛ev�.g; g
�1.ev//g

�1.ev/
�ˇ� … B", there must be another element

of B 0 appearing in the expression of x that cancels the latter term. Because d is max-
imum, that other element must be of the form ˛qvhˇ

� for some h ¤ g 2 G such that
h�1.ev/ D g�1.ev/ and �.h; h�1.ev// D �.g; g�1.ev//. By our hypothesis on E, this
implies that v 2 reg.E/0. It follows that ˛gˇ� and ˛hˇ� appear in the unique expression
of x as a linear combination of B, and because we are assuming that x 2 N , both basis
elements must be in B", a contradiction. This completes the proof.

We say that a twisted EP tuple .G;E;�c/ is pseudo-free if the associated untwisted EP-
tuple .G;E; �/ is pseudo-free in the sense of [18, Definition 5.4], which means precisely
that the conditions of Lemma 3.3.3 hold for every e 2 E1. We call .G; E; �c/ partially
pseudo-free if reg.E/ D reg.E/1. In this case, we have

B" D B n ¹˛ev�.g; g
�1.ev//.ˇg

�1.ev//
�; v 2 reg.E/; g 2 Gº: (3.3.8)

3.4. The twisted Exel–Pardo algebra L.G;E;�c/

Let .G;E; �c/ be a twisted EP-tuple. Set

L.G;E; �c/ D C.G;E; �c/=K.G;E; �c/:

Thus, in view of (3.2.1) and (3.2.2) and the definition of C.G; E; �c/, we obtain that
L.G; E; �c/ is the free algebra on the set (3.1.1) subject to the relations (3.1.2), (3.1.3),
(3.1.4) and the additional relation

v D
X
s.e/Dv

ee� .v 2 reg.E//: (3.4.1)

The relation (3.4.1) is the second Cuntz–Krieger relation; as is common practice in the
field, we will refer to it as CK2. The first Cuntz–Krieger relation CK1 is the first of the
two relations in (3.1.3).

The following is a corollary of Proposition 3.3.7.
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Corollary 3.4.2. Let .G;E; �c/ be a twisted EP tuple such that

reg.E/ D reg.E/0 t reg.E/1;

and let B" � C.G;E; �c/ be as in Proposition 3.3.7. Then, the image of B" is a basis of
L.G;E; �c/. In particular, the algebra extension

K.G;E; �c/ ,! C.G;E; �c/� L.G;E; �c/

is `-linearly split.

Proposition 3.4.3. Let .G;E;�c/ be any twisted EP tuple. Then, the canonical homomor-
phism L.E/! L.G;E; �c/ is injective.

Proof. Let (3.3.6) be any section of s. By [1, Corollary 1.5.12], the following subset of
C.E/

B0 D ¹˛ˇ
�
W r.˛/ D r.ˇ/º n ¹˛ev.ˇev/

�
W r.˛/ D s.˛/ D v 2 reg.E/º

maps to a basis ofL.E/. Hence, it suffices to show that B0 [B 0 �C.G;E;�c/ is linearly
independent. As in the proof of Proposition 3.3.7, this amounts to showing that the `-
submodule C.G;E; �c/ � N DK.G;E; �c/ \ span B0 is zero. If 0 ¤ x 2 N , then it is
a linear combination of elements of B0 � B, so any element ˛qvgˇ� appearing with a
nonzero coefficient in the unique expression of x as a linear combination of B 0 must have
g D 1. So, x 2K.1; E; 1/ \ span.B0/ which is zero by [1, Corollary 1.5.12].

4. Twisted Exel–Pardo algebras as twisted Steinberg algebras

4.1. From semigroup twists to groupoid twists

Let .� ; ;/ be a pointed inverse semigroup, and let ! W � � � ! U.`/� be a 2-cocycle as
in Section 2.4. Equip the smash product set

U.`/� ^ � DU.`/� � �=U.`/� � ¹;º [ ¹0º � �

DU.`/ � �=U.`/ � ¹;º:

with the product
.u ^ s/.v ^ t / D uv!.s; t/ ^ st:

The result is a pointed inverse semigroup z� , with inverse

.u ^ s/� D u�1 ^ s�:

We write 0 for the class of the zero element in z� . The coordinate projection U.`/� �! �

induces a surjective semigroup homomorphism � W zS ! S . Observe that ��1.¹;º/D ¹0º
and that if p 2 � is a nonzero idempotent, we have a group isomorphism

��1.¹pº/ D U.`/ ^ p Š U.`/:



Exel–Pardo algebras with a twist 1409

Next, let X be a locally compact, Hausdorff space, and let

	cont.X/ D ¹f W U ! X j U � X open, f injective and continuousº

be the inverse semigroup of partially defined injective maps with open domains. Recall
from [17, Definition 4.3] that an action of � onX is a semigroup homomorphism � W � !

	cont.X/, s 7! �s , such that
X D

[
s2�

Dom.�s/:

To alleviate notation, for s 2 S we write

Dom.s/ D Dom.�s/; and for x 2 Dom.s/; s.x/ D �s.x/:

A germ for the action of � onX is the class Œs;x� of a pair .s;x/2 � �X with x 2Dom.s/,
where Œs; x� D Œt; y� if and only if x D y and there exists an idempotent p 2 � such that
p.x/ D x and sp D tp. The set of all germs forms an étale groupoid G D G .� ; X/ [17,
Proposition 4.17], topologized by the basis of open sets

Œs; U � D ¹Œs; x� W x 2 U º; s 2 � ; U � X open such that Dom.s/ � U:

A germ Œs; x� has domain x and range s.x/ and the multiplication map G .2/! G is given
by

Œs; t.x/�Œt; x� D Œst; x�:

Assume that an action of � on X is given; then, z� also acts on X via � ı � , and so, we
can consider the groupoids of germs

G D G .� ; X/; zG D G .z� ; X/:

Equip U.`/ with the discrete topology and regard it as a groupoid over the one-point
space. The map

zG ! U.`/ � G ; Œu ^ s; x� 7! .u; Œs; x�/ (4.1.1)

is a homeomorphism mapping a basic open set Œu ^ s; U � to the basic open ¹uº � Œs; U �,
and the sequence

U.`/ � G .0/ ! zG ! G (4.1.2)

is a discrete twist over the (possibly non-Hausdorff) étale groupoid G , in the sense of [5,
Section 2.3]. Under the homeomorphism (4.1.1), multiplication of zG corresponds to

.u; Œs; t.x/�/.v; Œt; x�/ D .uv!.s; t/; Œst; x�/:

The map
z! W G .2/ ! U.`/; z!.Œs; t.x/�; Œt; x�/ D !.s; t/ (4.1.3)

is a continuous, normalized 2-cocycle in the sense of [4, p. 4].
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Recall that a slice (or local bisection) is an open subset U � G such that the domain
and codomain functions restrict to injections on U . For example, the basic open subsets
Œs;U � are slices [17, Proposition 4.18]. We observe moreover that the domain map induces
a homeomorphism Œs; U �

�
�! U [17, Proposition 4.15]. The groupoid G is ample if its

topology has a basis of compact slices. Such is the case, for example, if X has a basis
of clopen subsets, in which case we say that X is Boolean. If G is ample, its Steinberg
algebra A.G / [27, Proposition 4.3] is the `-module spanned by all characteristic functions
of compact slices, equipped with the convolution product

f ? g.Œs; x�/ D
X
t1t2Ds

f Œt1; t2.x/�gŒt2; x�: (4.1.4)

Following [27, Definition 5.2], we say that the action of � on X is ample if X is
Boolean and Dom.s/ is a compact clopen subset for all s 2 � . In this case, the character-
istic function �Œs;Dom.s/� 2 A.G / for every s 2 � , and the `-module map

`Œ� �! A.G /; s 7! �Œs;Dom.s/� (4.1.5)

is a homomorphism of algebras. One may also equip the `-module A.G / with the twisted
convolution product

f ?! g.Œs; x�/ D
X
t1t2Ds

z!.Œt1; t2.x/�; Œt2; x�/f Œt1; t2.x/�gŒt2; x�

D

X
t1t2Ds

!.t1; t2/f Œt1; t2.x/�gŒt2; x�: (4.1.6)

The result is an algebra A.G ; z!/. By [27, Proposition 4.3], this is the same as the twisted
Steinberg algebra defined in [4, Proposition 3.2] under the assumption that G is Hausdorff.
Moreover, by [4, Corollary 4.25], the latter also agrees with the Steinberg algebra of the
discrete twist (4.1.2). Comparison of the formulas (4.1.4), (4.1.6), and (2.4.3) tells us that
whenever the `-linear map (4.1.5) is an algebra homomorphism `Œ� �! A.G /, it is also
an algebra homomorphism `Œ� ; !�! A.G ; z!/.

Lemma 4.1.7. Let � be an inverse semigroup, ! W � � � ! U.`/ a 2-cocycle, � !

	cont.X/ an ample action, and G the groupoid of germs. Let z! W G .2/!U.`/ be as (4.1.3).
Assume that the algebra homomorphism (4.1.5) is surjective with kernel K . Then, K C
`Œ� ; !� is an ideal, and `Œ� ; !�=K Š A.G ; z!/.

Proof. This follows from the discussion immediately above the lemma.

4.2. The twisted Exel–Pardo algebra as a twisted groupoid algebra

Let E be a graph. Recall from Section 1 that sing.E/ � E0 is the set of singular (i.e.,
non-regular) vertices. Set

X.E/ D ¹˛ W infinite path in Eº [ ¹˛ 2 P .E/ W r.˛/ 2 sing.E/º:
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For ˛ 2 P .E/, let

X.E/ � Z.˛/ D ¹x 2 X.E/ W x D ˛y; y 2 X.E/º D ˛X.E/:

For each finite set F � ˛P .E/, let

Z.˛ n F / D Z.˛/ \
� [
˛ˇ2F

Z.˛ˇ/
�c
:

The sets Z.˛ n F / are a basis of compact open sets for a locally compact, Hausdorff
topology on X.E/ [31, Theorem 2.1]. We regard the latter as a topological space equipped
with this topology; it is a Boolean space. Now, assume that an Exel–Pardo tuple .G;E;�/
is given. Then, there is an action of �.G;E; �/ on X.E/ such that Dom.˛; g; ˇ/ D Z.ˇ/

and
.˛; g; ˇ/.ˇx/ D ˛g.x/ 2 Z.˛/

for all x 2 r.ˇ/X.E/. Let G .G;E; �/ be the groupoid of germs associated to this action;
it is an ample groupoid. If moreover c W G �E1 ! U.`/ is a 1-cocycle and

! W �.G;E; �/ � �.G;E; �/! U.`/�

is the semigroup 2-cocycle of (2.4.5), then by (4.1.3) we also have a twist

z! W G .G;E; �/ � G .G;E; �/! U.`/: (4.2.1)

Proposition 4.2.2. Let .G;E; �c/ be a twisted EP tuple, and let (4.2.1) be the associated
groupoid cocycle. Let L.G;E; �c/ and A.G .G;E; �/; z!/ be the twisted Exel–Pardo and
Steinberg algebras. Then, there is an algebra isomorphism

L.G;E; �c/
�
�! A.G .G;E; �/; z!/; ˛gˇ� 7! �Œ.˛;g;ˇ/;Z.ˇ/�:

Proof. By [25, Theorem 6.4] and the discussion preceding it, for � D �.G; E; �/ the
homomorphism (4.1.5) (called  in [25]) descends to an isomorphism

L.G;E; �/ D `Œ�.G;E; �/�=K.G;E; �/! A.G;E; �/:

Hence, by Lemma 4.1.7 and Proposition 3.1.5, the same map also induces an isomorphism

L.G;E; �c/! A.G .G;E; �/; z!/:

This is precisely the isomorphism of the proposition.

4.3. Simplicity of twisted Exel–Pardo algebras

In the following proposition and elsewhere, by the support of a function f W X ! `, we
understand the set

supp.f / D ¹x 2 X W f .x/ ¤ 0º:



G. Cortiñas 1412

Proposition 4.3.1. Let .G;E; �/ be an EP-tuple with G countable and E countable and
regular. Assume that the Exel–Pardo C �-algebra C �.G;E; �/ is simple. Then,

(i) G .G;E; �/ is effective and minimal.

(ii) If ` is a subring of C, then the support of every nonzero element of

A.G .G;E; �// Š L.G;E; �/

has nonempty interior.

Proof. Because G is countable and E is countable and regular, we have C �.G; E; �/ D
C �.G .G;E; �// by [19, Theorems 2.5 and 3.2]. Hence, because C �.G;E; �/ is assumed
to be simple, G .G;E; �/ is minimal and effective by [26, Theorem 4.10]. This proves (i).
Again, by [26, Theorem 4.10], we obtain that the interior of the support of every function
f in Connes’ algebra C.G .G; E; �// spanned by the locally continuous and compactly
supported functions (defined, e.g., in [19, Section 4.1]) is nonempty. This implies (ii);
since as we are assuming ` � C, we have

A.G .G;E; �// D A`.G .G;E; �// � AC.G .G;E; �// � C.G .G;E; �//:

Corollary 4.3.2. If C �.G; E; �/ is simple and ` is a field of characteristic zero, then
L.G;E; �/ is simple.

Proof. By Proposition 4.3.1 and [29, Theorem A], the corollary holds for ` D Q. This
implies that it holds for any field of characteristic zero, by [29, Theorem 5.9].

Let G be an ample étale groupoid with domain function d W G .1/ ! G .0/. Recall
from [4, p. 4] that a continuous 2-cocycle � W G .2/ ! U.`/ is normalized if it satisfies

�.�; d.�// D �.d.��1/; �/ D 1 8� 2 G : (4.3.3)

Multiplication in the twisted Steinberg algebra A.G ; �/ is defined by the twisted convolu-
tion product

.f ?� g/.�/ D
X

¹.�1;�2/2G .2/j�D�1�2º

�.�1; �2/f .�1/g.�2/: (4.3.4)

Lemma 4.3.5. Let G be an ample groupoid such that G .0/ is Hausdorff and � W G .2/ !
U.`/ a normalized cocycle. Let L � G .0/ be a compact open subset, and let f 2 A.G /.
Then,

f ?� �L D f ? �L; �L ?� f D �L ? f:

Proof. Immediate from (4.3.3) and (4.3.4).

The following proposition is a twisted version of [26, Theorem 3.11 and Corollary
3.12].
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Proposition 4.3.6. Let G be a second countable ample groupoid such that G .0/ is Haus-
dorff, ` a field, and � W G .2/ ! U.`/ a normalized 2-cocycle. Assume the following.

(i) G is effective.

(ii) For all 0 ¤ f 2 A.G ; �/, supp.f /ı ¤ ;.

Then, for every nonzero ideal 0 ¤ I C A.G ; �/, there exists a nonempty compact open
subset L � G .0/ such that �L 2 I .

Proof. Let ADA.G ; �/, and let 0¤ f 2 I CA be an ideal. By the argument in the first
paragraph of the proof of [26, Theorem 3.11], there exists a compact open slice B � G

such that f is a nonzero constant on B . Let g D f ?� �B�1 , b 2 B , and u D bb�1.
Then, g.u/ D �.b; b�1/f .b/ ¤ 0. By Lemma 4.3.5, the rest of the argument of the proof
of [26, Theorem 3.11] now applies verbatim.

The following proposition is a twisted version of one of the directions of the equiva-
lence established in [26, Theorem 3.14].

Proposition 4.3.7. Let G , �, and ` be as in Proposition 4.3.6. Further, assume that G is
minimal. Then, A.G ; �/ is simple.

Proof. Let 0 ¤ I C A.G ; �/ be an ideal. By Proposition 4.3.6, there is a nonempty com-
pact open subset L � G .0/ such that �L 2 I . As in the proof of [26, Theorem 3.14], we
may choose, for each x 2 G .0/, an element G 3 
x with d.
x/ 2 L and d.
�1x / D x and
a compact open slice 
x 2 Bx . Upon replacing Bx by BxL, we may assume that

Bx D BxL: (4.3.8)

Because � is locally constant and Bx is a compact open slice, there are n � 1 and clopen
subsetsBx.1/; : : : ;Bx.n/�Bx such that .Bx �B�1x /\G .2/D

Fn
iD1.Bx.i/�B

�1
x .i//\

G .2/ and such that � is constant on each .Bx.i/ � B�1x .i// \ G .2/. Let i be such that

x 2 Bx.i/. Upon replacing Bx with Bx.i/ we may assume that � is constant on .Bx �
B�1x / \ G .2/. Let Lx D BxLB�1x ; then, x 2 Lx , and by (4.3.8) and Lemma 4.3.5,

�Bx ?� �L ?� �B�1x D �Bx ?� �B�1x D �.
x ; 

�1
x /�Lx :

Hence, �Lx 2 I , and the proof now follows as in [26].

Proposition 4.3.9. In the situation of Proposition 4.3.7, assume that, for every nonempty
compact open subset L � G .0/, the idempotent �L 2 A.G ; �/ is infinite. Then, A.G ; �/ is
simple purely infinite.

Proof. Let 0 ¤ f 2 A.G ; �/, and let B � G and g D f ?� �B�1 be as in the proof
of Proposition 4.3.6. Following the argument of the proof of [26, Theorem 3.11] and
taking Lemma 4.3.5 into account, one obtains a compact open L � G .0/ and elements
h1; h2 2 A.G ; �/ such that

�L D h1 ?� g ?� h2 D h1 ?� f ?� �
�1
B ?� h2:
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By hypothesis, �L is infinite. Hence, A.G ; �/ is simple purely infinite, by [1, Propo-
sition 3.1.7 and Definition 3.1.8].

Theorem 4.3.10. Let .G; E; �c/ be a twisted EP-tuple with G countable and E count-
able and regular, and let ` be a field of characteristic 0. If C �.G; E; �/ is simple,
then L.G; E; �c/ is simple. If, furthermore, L.E/ is simple purely infinite, then so is
L.G;E; �c/.

Proof. By Proposition 4.2.2, L.G; E; �c/ D A.G .G; E; �/; z!/. Because G and E are
countable by hypothesis, G .G; E; �/ is second countable. Hence, L.G;E; �c/ is simple,
by Propositions 4.3.1 and 4.3.7 and Corollary 4.3.2. Now, suppose that L.E/ is sim-
ple purely infinite. Consider the groupoid G .E/ D G .¹1º; E/; this is the groupoid of [7,
Example 2.1]. By [7, Example 3.2], L.E/ D A.G .E//. Since G .E/ is Hausdorff and
since we are assuming that L.E/ is simple, G .E/ is effective and minimal by [28, Theo-
rem 3.5], and so, since we are further assuming that L.E/ is purely infinite, �L is infinite
for every compact open subsetL� G .E/.0/D G .G;E;�/.0/. Because of this and because
by Proposition 3.4.3, L.E/ is a subalgebra of L.G;E; �c/, L.G;E; �c/ is simple purely
infinite by Proposition 4.3.9.

5. Twisted Katsura algebras

Let E be a row-finite graph, A D AE 2 N.reg.E/�E0/
0 its reduced incidence matrix, and

B 2 Z.reg.E/�E0/ such that
Av;w D 0) Bv;w D 0: (5.1)

Under the obvious identification Z=ZAv;w
�
�! Nv;w WD ¹0; : : : ; Av;w � 1º, translation by

Bv;w defines a bijection

�v;w W Nv;w ! Nv;w ; n 7! Bv;w C n

and therefore a Z-action on Nv;w . Here, Nm is the remainder of m under division by Av;w .
A 1-cocycle  v;w W Z �Nv;w ! Z for this action is determined by

 v;w.1; n/ D
Bv;w C n � �v;w.n/

Av;w
:

For every pair of vertices .v; w/ with Av;w ¤ 0, choose a bijection

nv;w W vE
1w

�
�! ¹0; : : : ; Av;w � 1º;

and let

n D
a
v;w

nv;w W E
1
D

a
v;w

vE1w ! N0:
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Consider the Z-action onE that fixes the vertices and is induced by the bijection � WE1!
E1 that is determined by

n.�.e// D �s.e/;r.e/.n.e//:

Write Z D hti multiplicatively, and let � W Z �E1 ! Z be the 1-cocycle determined by

�.t; e/ D t s.e/;r.e/.1;n.e//:

The Katsura `-algebra associated to the pair .A;B/ is

OA;B D L.Z; E; �/:

When E is regular so that A and B are square matrices, OA;B is the Katsura algebra
considered, for example, in [21] (see [21, Proposition 1.13]), which is itself the algebraic
analog of the C �-algebra introduced by Katsura in [23]. We will presently consider a
twisted version of OA;B . For this purpose, we start with a row-finite matrix

C 2 U.`/.reg.E/�E0/

such that
Av;w D 0) Cv;w D 1: (5.2)

Consider the 1-cocycle c W Z �E1 ! U.`/ determined by

c.t; e/ D

´
.�1/.As.e/;r.e/�1/Bs.e/;r.e/Cs.e/;r.e/ if n.e/ D 0;

1 else:
(5.3)

Write
OC
A;B D L.Z; E; �c/

for the twisted Exel–Pardo algebra associated to the twisted EP-tuple .Z; E; �c/.

Remark 5.4. Our motivation for defining the cocycle c as in (5.3) is kk-theoretic. It is
defined as above so that the matrix C appears as it does in the kk-triangle of Theorem 7.3.

We say that .A; B/ is KSPI if E is countable, (5.1) holds, and if in addition we have
the following.

• For any pair .v;w/ 2 E0 �E0, there exists ˛ 2 P .E/ such that s.˛/D v and r.˛/D
w.

• For every vertex v, there are at least two distinct loops based at v.

• Bv;v D 1 for all v 2 E0.

Katsura proved in [23, Proposition 2.10] that if .A; B/ is a Katsura pair, then the C �-
algebra completion C �A;B D OA;B.C/ is simple and purely infinite.

Theorem 5.5. Let ` be a field of characteristic 0. Let E be a countable regular graph,
A D AE its incidence matrix, and B 2 Z.E

0�E0/ such that .A; B/ is a KSPI pair. Let
C 2 .U.`//.E

0�E0/ be arbitrary. Then, the twisted Katsura algebra OC
A;B is simple purely

infinite.
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Proof. By [23, Proposition 2.10], C �A;B is simple. By [1, Theorem 3.1.10], the first two
Katsura conditions imply thatL.E/ is simple purely infinite. Hence, OC

A;B is simple purely
infinite by Theorem 4.3.10.

For a general field `, we have the following more restrictive simplicity criterion.

Proposition 5.6. Let E, A, and B be as in Theorem 5.5, ` a field, and C 2 U.`/.E
0�E0/

satisfying (5.2). Further, assume the following.

• Whenever Av;w ¤ 0 D Bv;w , for each l � 1 there exist finitely many paths ˛ D
e1; : : : ; en 2 wP .E/ such that l

Qn�1
iD1 Bs.ei /;r.ei /=As.ei /;r.ei / 2 Z.

Then, OC
A;B is simple.

Proof. As mentioned above, Katsura proved that the C �-algebra is simple whenever
.A;B/ is KSPI. By [18, Theorem 18.6], the additional condition of the proposition implies
that (and is in fact equivalent to) G .G;E;�/ being Hausdorff. Thus, by [18, Theorems 18.7,
18.8, and 18.12], G .G;E; �/ is effective (essentially principal in the notation of [18]) and
minimal. Hence, OC

A;B D A.G .G;E; �/; z!/ is simple by [4, Theorem 6.2].

6. Twisted EP-tuples and kk

6.1. Preliminaries on kk

Let C be a category and F W Alg` ! C a functor. We say that F is homotopy invariant if,
for every algebra A, the map F.A/! F.AŒt �/ induced by the natural inclusion A � AŒt�
is an isomorphism. Let X be an infinite set and x 2 X . Define a natural transformation
�x W A!MXA, �x.a/ D "x;xa. We say that F is MX -stable if the natural transformation
F.�x/ W F ! F ıMX is an isomorphism.MX -stability impliesMY -stability for every set
Y whose cardinality is at most that of X . We fix such an X and use the term matricially
stable for MX -stable. An algebra extension is a sequence of algebra homomorphisms

E W 0! A
i
�! B

�
�! C ! 0 (6.1.1)

which is exact as a sequence of `-modules. An excisive functor with values in a triangu-
lated category T with suspension T 7! T Œ�1� is a functor F W Alg` ! T together with a
family of maps @F

E
W F.C/ŒC1�! F.A/ indexed by the algebra extensions (6.1.1) such

that

F.C/ŒC1�
@F

E
��! F.A/

F.i/
���! F.B/

F.�/
���! F.C/

is a distinguished triangle. The maps @F
E

are to satisfy the compatibility conditions of [14,
Section 6.6]. An excisive, homotopy invariant, and matricially stable homology theory of
`-algebras consists of a triangulated category T and a functor

F W Alg` ! T
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that is excisive, homotopy invariant, and matricially stable. Such homology theories form
a category, where a homomorphism from F to another homology theoryG W Alg`! T 0 is
a triangulated functorH W T ! T 0, together with a natural isomorphism � WH.�ŒC1�/!

H.�/ŒC1� such that the following diagram commutes for every extension (6.1.1):

H.F.C /ŒC1�/

�

��

H.@F
E
/
// G.A/

G.C /ŒC1�

@G
E

77

It was shown in [14, Theorem 6.6.2] that the category of homotopy invariant, matricially
stable, and excisive homology theories of `-algebras has an initial object j W Alg` !
kk. We will also to consider homology theories for the category G � Alg` of algebras
equipped with aG-action andG-equivariant homomorphisms andGgr �Alg` ofG-graded
algebras and homogeneous homomorphisms. AG-set is a set Y with aG-actionG � Y !
Y , .g; y/ 7! g.y/. A G-graded set is a set Y together with a function d W Y ! G. If
A 2 G � Alg` and Y a G-set, MYA is a G-algebra with g."y1;y2a/ D "g.y1/;g.y2/g.a/.
If instead A 2 Ggr � Alg` and Y is equipped with a d W Y ! G, then MYA is G-graded
with degree function determined by j"x;yaj D d.x/jajd.y/�1. Let X be the infinite set
fixed above in the definition of matricial stability and T a triangulated category. A functor
F defined on G � Alg` is G-stable if for any G-algebra A and any two G sets Y , Z of
cardinality at most that G � X , the map F.MYA! MYtZA/ induced by the obvious
inclusion is an isomorphism. A functor defined on Ggr � Alg` is G-stable if it satisfies
the same condition for G-graded sets Y and Z with the same cardinality restrictions. The
universal initial homotopy invariant, matricially stable, G-stable, and excisive homology
theories jG W G � Alg` ! kkG and jGgr W Ggr � Alg` ! kkGgr were constructed in [16].
It was shown there [16, Theorem 7.6] that the crossed-product functors ÌG WG �Alg`!
Ggr � Alg` and GyË W Ggr � Alg` ! G � Alg` induce inverse triangulated equivalences
kkG � kkGgr .

6.2. The algebra K.G;E;�c/

Lemma 6.2.1. Let X be a G-set. Then, the G-equivariant homomorphism

�X W `
.X/
!MX`

.X/; �x 7! "x;x ˝ �x

is a kkG-equivalence.

Proof. Let ¹�º be a one-pointG-set; considerX� DX t ¹�º. ByG-stability, the inclusion
inc W MX`.X/ ! MX�`

.X/ is a kkG-equivalence. Hence, it suffices to show that so is
inc ı�X . For each x 2 X , let �x 2 MX� be the matrix associated to the permutation that
exchanges x and � and fixes the remaining elements. Observe that

R WDMX�`
.X/
D

M
x2X

MX� ˝ �x C
Y
x2X

�X� ˝ �x DW S:
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Let � D
Q
x2X �x ˝ �x 2 S . One checks that � is fixed by G; hence, the conjugation

map ad.�/ W R ! R is the identity in kkG , by the argument of [9, Proposition 2.2.6].
Moreover, ad.�/ ı inc ı�X D "�;� ˝ id`.X/ , another kkG-equivalence. Thus, jG.inc ı�X /
is an isomorphism, finishing the proof.

LetX �E0 be a set of vertices closed under theG-action. Consider theG-equivariant
homomorphism

� W `.X/ !
M
v2X

MPv ˝ �v; �.�v/ D "v;v ˝ �v: (6.2.2)

Proposition 6.2.3. The map (6.2.2) is a kkG-equivalence.

Proof. We adapt the argument of the proof of [6, Lemma 10.3] as follows. Let S DL
v2XMPv ˝�v; set pD

P
˛2PX

"˛;˛˝ "˛;˛˝�r.˛/ 2�PXS . Then, for T WDpMPXSp,
the map

S ! T; "˛;ˇ ˝ �r.˛/ 7! "˛;ˇ ˝ "˛;ˇ ˝ �r.˛/ (6.2.4)

is a G-equivariant isomorphism. Let

u D
X
˛2PX

"˛;˛ ˝ "r.˛/;˛ ˝ �r.˛/; u� D
X
˛2PX

"˛;˛ ˝ "˛;r.˛/ ˝ �r.˛/ 2 �PXS:

Observe that u and u� are fixed by G and that u�u D p. Put

R D
M
v2X

"v;v ˝ `�v � S I

then, ad.u/ W T !MPXR, t 7! utu� is a G-equivariant homomorphism; by the G-equiv-
ariant version of [8, Lemma 8.11], the composite of ad.u/ with the inclusion MPXR �

T equals the identity in kkG . Hence, the composite � of ad.u/ with (6.2.4) is a split
monomorphism in kkG . Observe that (6.2.2) is the composite of the isomorphism f W

`.X/ ! R, f .�v/ D "v;v ˝ �v , with the inclusion R � S . Consider the composite
| W `.X/ ! MPX `

.X/ of �X W `.X/ ! MX`
.X/ with the inclusion MX`.X/ � MPX `

.X/.
The latter maps are kkG-equivalences, by Lemma 6.2.1 and G-stability, and so, is | too.
One checks that �jR ı f DMPXf ı | . Hence, � is an isomorphism in kkG and therefore
so is �, as desired.

Proposition 6.2.5. Let .G; E; �c/ be a twisted EP-tuple. Then, the homogeneous homo-
morphism of G-graded algebras

qG W .`.reg.E/// ÌG !K.G;E; �c/; qG.�v Ì g/ D qvg:

is a kkGgr -equivalence.

Proof. Let X D reg.E/, � as in (6.2.2), and �0 the composite of � with the obvious isomor-
phism

L
v2XMPv ˝ �v Š

L
v2XMPv . One checks that qG is the composite of the maps

�0 Ì G and � of Proposition 3.2.5. Then, jG.�0/ is an isomorphism by Proposition 6.2.3,
whence jGgr.�

0 Ì G/ is an isomorphism. This implies that jGgr.q
G/ is an isomorphism,

since � is a G-graded algebra isomorphism.
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6.3. The Cohn algebra C.G;E;�c/

The purpose of this subsection is to prove the following.

Theorem 6.3.1. Let .G;E; �c/ be a twisted EP-tuple. Then, the algebra homomorphism

' W `.E
0/ ÌG ! C.G;E; �c/; �v Ì g 7! vg

is a kk-equivalence.

The proof of Theorem 6.3.1 will be given at the end of the subsection. We remark that,
in the case when G is trivial, Theorem 6.3.1 specializes to [13, Theorem 4.2]. We will
adapt the argument of [13, Theorem 4.2] to prove Theorem 6.3.1.

We abbreviate
C.G;E/ D C.G;E; �c/

throughout. Recall from Section 1 that sink.E/; inf.E/ � E0 are the subsets of sinks and
of infinite emitters. For v 2 E0 n inf.E/, consider the following element of C.G;E/:

mv D

´P
s.e/Dv ee

� if v 2 reg.E/;

0 if v 2 sink.E/:
(6.3.2)

We define Cm.G; E/ as the result of adding an indeterminate mv for each v 2 inf.E/,
subject to the relations [13, Identities 4.4] plus the additional relation

.g.v/g/mv D mg.v/g.v/g: (6.3.3)

We remark that (6.3.3) is already satisfied in C.G; E/, by all v 2 E0 n inf.E/. Thus, in
Cm.G;E/, (6.3.3) holds for all v 2E0. We will abbreviatemvg Dmv.vg/. The elements
qv D v �mv 2 C

m.G;E/ generate an ideal

yK.G;E/ DK.G;E/˚
M

v2inf.E/

span¹˛qvgˇ� W g 2 G; ˛ 2 Pv; ˇ 2 Pg�1.v/º:

One checks that the isomorphism � of Proposition 3.2.5 extends to an isomorphism

y� W
�M
v2E0

MPv

�
ÌG

�
�! yK.G;E/

defined by the same formula as � . We have an algebra homomorphism

y' W yK.G;E/!MPC.G;E/; y'.˛qvgˇ
�/ D "˛;ˇ ˝ vg: (6.3.4)

Next we consider an analog of the homomorphism � of [13, (4.7)]. The map therein
goes from Cm.E/ to �P ; the analog will be a homomorphism

� W Cm.G;E/! �aP : (6.3.5)
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We define �.e/, �.e�/ for e 2 E1 and �.mv/ for v 2 inf.E/ exactly as in [13, formu-
las (4.7)], and for v 2 E0 and g 2 G, we set

�.vg/ D
X

g.r.˛//Dv

c.g; ˛/"g.˛/;˛: (6.3.6)

One checks that the above prescriptions actually define an algebra homomorphism

� W Cm.G;E/! �aP :

The latter agrees with that of [13] when G is trivial, and is therefore injective in that case,
by [13, Lemma 4.8]. For nontrivial G, � need not be injective (e.g., if G acts trivially
on E).

Next, we need an analog of the algebra A of [13, p. 131], and an action of Cm.G;E/
on A; both are defined in Lemma 6.3.8 below. First, we introduce some notation and
vocabulary. Recall (e.g., from [22, Definition 1.1.1]) that the multiplier algebra of an
algebra B is the set M.B/ of all pairs .L;R/ of `-linear maps L;R W B ! B such that L
is a right B-module homomorphism, R is a left B-module homomorphism, and

R.x/y D xL.y/ 8x; y 2 B:

Following [22], elements of M.B/ are called double centralizers. Addition in M.B/ is
defined pointwise and multiplication is given by composition of functions as follows:

.L1; R1/.L2; R2/ D .L1 ı L2; R2 ıR1/:

Let A be another algebra. An A-algebra structure on B is an algebra homomorphism
A!M.B/, a 7! .La; Ra/. We write

a � b D La.b/; b � a D Ra.b/ .8a 2 A; b 2 B/:

Thus, we have, for all a 2 A and b; c 2 B ,

.a � b/c D a � .bc/; .b � a/c D b.a � c/; and b.c � a/ D .bc/ � a: (6.3.7)

The semi-direct product A Ë B is the algebra that results from equipping the direct
sum A˚ B with the following product:

.a; b/.a0; b0/ D .aa0; a � b0 C b � a0 C bb0/:

Lemma 6.3.8. Consider the following `-submodule of MPC.G;E/:

A WD span¹"
;� ˝ ˛gˇ� W s.˛/ D r.
/; s.ˇ/ D r.�/; r.˛/ D g.r.ˇ//º: (6.3.9)

We have the following.

(i) A �MPC.G;E/ is a subalgebra.
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(ii) A carries a Cm.G; E/-algebra structure such that for all x 2 Cm.E/, g 2 G,
v 2 E0, and "
;� ˝ z 2 A,

x � ."
;� ˝ y/ D .�.x/"
;� /˝ y;

."
;� ˝ y/ � x D ."
;� /�.x/˝ y; (6.3.10)

vg � ."
;� ˝ y/ D ıv;g.s.
//"g.
/;� ˝ .g.r.
//�c.g; 
//y; (6.3.11)

."
;� ˝ y/ � vg D ıv;s.�/"
;g�1.�/ ˝ y.r.�/�c.g; g
�1.�///: (6.3.12)

(iii) Let a 2 yK.G;E/ and a 2 A. For y' as in (6.3.4), we have

a � a D y'.a/a; a � a D ay'.a/:

Proof. Part (i) follows from Proposition 3.1.5 using the product formula (2.4.4) and the
definition of A. Next, observe that because � is an algebra homomorphism, (6.3.10)
defines a homomorphism Cm.E/! M.A/, x 7! .Lx ; Rx/, where Lx and Rx are left
and right multiplication by �.x/˝ 1. To prove (ii), one shows that this homomorphism
extends to Cm.G;E/, by sending vg 2 E0G to the pair .Lvg ; Rvg/ of left and right mul-
tiplication operators defined by (6.3.11) and (6.3.12). This entails first checking that, for
each vg 2 E0G, .Lvg ; Rvg/ is a double centralizer, and then that the relations (3.1.3)
and (3.1.4) involving vg are satisfied by .Lvg ; Rvg/ for vg 2 E0G. These verifications
are long and tedious but straightforward. To prove part (iii), observe that if ˛; ˇ are paths
and v 2 E0 and g 2 G are such that r.˛/ D v D g.r.ˇ//, then

y�.˛qvgˇ
�/ D "˛;ˇ ˝ vg D .�.˛/˝ 1/."v;v ˝ vg/.�.ˇ

�/˝ 1/:

Hence, in view of (6.3.10), it suffices to prove (iii) for a D qvg and a D "
;� ˝ ˛hˇ
�.

This again is a straightforward calculation.

Let A and B be algebras over our fixed ground ring `. Recall (e.g., from [14, Defini-
tion 5.2.1]) that a quasi-homomorphism fromA toB consists of an algebraR containingB
as a two-sided ideal and algebra homomorphisms �; W A� R such that �.a/� .a/ 2
B for all a 2 A. Such a triple is denoted by .�; / W A�RB B . In what follows, we will
use some standard properties of quasi-homomorphisms which can be found, for example,
in [14, Section 5.2].

Proof of Theorem 6.3.1. We indicate how to modify the proof of [13, Theorem 4.2] to
the present setting. By the argument of Proposition 6.2.5, the algebra homomorphism
y� W `.E

0/ ÌG ! yK.G;E/ defined by the rule y�.v Ì g/ D qvg is a kkGgr -equivalence, and
thus also a kk-equivalence. Let

� W C.G;E/! Cm.G;E/; �.vg/ D mvg; �.e/ D emr.e/; �.e�/ D mr.e/e
�:

The map � together with the canonical map can W C.G;E/! Cm.G; E/ forms a quasi-
homomorphism

.can; �/ W C.G;E/� Cm.G;E/ B yK.G;E/;
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and the argument of [13, part I of the proof of Theorem 4.2] shows that j.y�/�1 ı j.can; �/
is left inverse to j.'/. Next, define

y�� W C.G;E/!MPC.G;E/; y�� .˛gˇ
�/ D "s.˛/;s.ˇ/ ˝ ˛gˇ

�;

Remark that
y'.qvg/ D "v;g�1.v/ ˝ vg Dy�� .vg/:

It follows that the analog of [13, Diagram 4.16] commutes. Next, we show that y�� is a
kk-equivalence. As in the proof of Proposition 6.2.3, we consider the G-set with one
added fixed point P� D P t ¹�º. Since the inclusion inc WMPC.G;E/ �MP�C.G;E/

is a kk-equivalence, it suffices to show that so is the composite inc ıy�� . For this purpose,
we consider, for each v 2 E0, the matrices Av; Bv 2 MP�C.G; E/Œt � defined just as in
the proof of [13, Lemma 4.17], but with � substituted for what is called w in the cited
reference. One checks that the following prescriptions define a homotopyH W C.G;E/!
MP�C.G;E/Œt � between inc ıy�� and ��:

H.vg/ D Av."v;g�1.v/ ˝ vg/Bg�1.v/;

H.e/ D As.e/."s.e/;r.e/ ˝ e/Br.e/;

H.e�/ D Ar.e/."r.e/;s.e/ ˝ e
�/Bs.e/:

We have thus come to [13, Proof of Theorem 4.2, part II]. By Lemma 6.3.8, we can
form the semi-direct product Cm.G;E/ ËA and consider the `-submodule

Cm.G;E/ ËA � J WD ¹.x;�y'.x// W x 2 yK.G;E/º:

Using the fact that y' is a �-homomorphism and part (iii) of Lemma 6.3.8, we obtain that
J is a two-sided ideal. Write D D Cm.G;E/=J ; it is clear that the canonical homomor-
phisms A!D Cm.G;E/ are injective; write ‡ W Cm.G;E/!D for the latter map.
We may thus regard A as an ideal and Cm.G; E/ as a subalgebra of D. We can now
proceed to [13, Proof of Theorem 4.2, part III]. We define homomorphisms  0;  1=2;  1 W
C.G;E/!D just as in the cited reference, with � , can,y�� , and‡ as defined above, so that
we have quasi-homomorphisms . 0;  1/; . 0;  1=2/; . 1=2;  1/ W C.G; E/� D B A.
Next, we need an analog of [13, Lemma 4.21], proving that j. 0;  1=2/ D 0. One checks
that the following prescriptions define an algebra homomorphismHC W C.G;E/!DŒt�:

HC.vg/ D .mvg; "v;g�1.v/ ˝ vg/;

HC.e/ D .emr.e/; .1 � t
2/"s.e/;r.e/ ˝ e C t "e;r.e/ ˝ r.e//;

HC.e�/ D .mr.e/e
�; .1 � t2/"r.e/;s.e/ ˝ e

�
C .2t � t3/"r.e/;e ˝ r.e//;

and that .H; 1=2/ W C.G;E/� DŒt� B AŒt � is a homotopy

. 0;  1=2/! . 1=2;  1=2/:

The rest of the proof now proceeds just as in [13].
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7. Twisted Katsura algebras in kk

Let E be a row-finite graph, A D AE and n W E1 ! N0 as in Section 5. Let v; w 2 E0

such that Av;w ¤ 0, and set

mv;w D
X

e2vE1w

ee� 2 C.Z; E; �c/:

For 0 � i � Av;w � 1, let ei D n�1v;w.i/ 2 vE
1w. Consider the element

uv;w D e0te
�
Av;w�1

C

Av;w�2X
iD0

eiC1e
�
i 2 C.Z; E; �c/:

Let E and F be graphs; write rE , rF , sE , sF for their range and source maps. We say
that F is a subgraph of E if F i � Ei (i D 0; 1) and rF and sF are the restrictions
of rE and sE . Recall from [1, Definition 1.6.7] that a subgraph F � E is complete if
s�1F .¹vº/ D s�1E .¹vº/ for all v 2 .F 0 n sink.F // \ reg.E/.

Lemma 7.1. (i) We have the following:

u
Bv;w
v;w D .�1/

.Av;w�1/Bv;wC�1v;w t � .e0e
�
0 /C

Av;w�1X
iD1

t � .eie
�
i /:

(ii) Let F � E be a finite complete subgraph containing ¹vº [ r.s�1.¹vº//; set

1F D
X
w2F 0

w 2 C.Z; E; �c/:

Then, the following identity holds in K1.C.Z; F; �c//:

Œ1F �mv;w C uv;w � D
�
1F � w C .�1/

.Av;w�1/wt
�
:

Proof. For m 2 Z, let q.m/ and Nm be the quotient and the remainder under division by
Av;w . One checks that for any n 2 N

unv;w D

Av;w�1X
iD0

eiCnt
q.nCi/e�i : (7.2)

Use (7.2) at the first step and (5.3) at the second to obtain, for  D  w;v ,

u
Bv;w
v;w D

X
e2vE1w

t .e/t .t;e/e� D .�1/.Av;w�1/Bv;wC�1v;w t � .e0e
�
0 /C

Av;w�1X
iD1

t � .eie
�
i /:

This proves (i). Next, observe that left multiplication by uv;w defines an automorphism of
the projective module

LAv;w�1

iD0 eie
�
i C.Z; F; �c/. The latter is isomorphic to

P D wC.Z; F; �c/
Av;w
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under the isomorphism defined as left multiplication by e�i on the i -th summand. Under
this isomorphism, uv;w corresponds to the automorphism of P represented by the follow-
ing matrix with coefficients in R D wC.Z; F; �c/w:2666664

0 0 � � � 0 tw

w 0 � � � 0 0

0 w � � � 0 0
:::

:::
:::

:::

0 � � � � � � w 0

3777775 D
2666664
tw 0 0 : : : 0

0 w 0 : : : 0

0 0 w : : : 0
:::

:::
: : :

:::

0 0 0 � � � w

3777775 �
2666664
0 0 � � � 0 w

w 0 � � � 0 0

0 w � � � 0 0
:::

:::
: : :

:::
:::

0 � � � � � � w 0

3777775 :

The second matrix is a cyclic permutation matrix with determinant .�1/Av;w�1w.
Hence, the product above is mapped to the class of .�1/Av;w�1wt in K1.R/ and to that
of 1 � w C .�1/Av;w�1wt in K1.C.Z; F; �c//. Assertion (ii) of the lemma is immediate
from this.

Let E be a graph. We say that a homology theory H W Alg` ! T is E-stable if it is
MX -stable with respect to a set X of cardinality #.E0qE1qN/. Let I be a set. We say
that H is E0-additive if first of all direct sums of cardinality � #I exist in T and second
of all the map M

j2J

H.Aj /! H
�M
j2J

Aj

�
is an isomorphism for any family of algebras ¹Aj W j 2 J º � Alg` with #J � #I .

Theorem 7.3. Let E be a row-finite graph, let A be its reduced incidence matrix,
B 2 Zreg.E/�E0 and C 2 U.`/.reg.E/�E0/ such that Av;w D 0) Bv;w D 0, Cv;w D 1.
Let T be a triangulated category and H W Alg` ! T an excisive, homotopy invariant,
E-stable, and E0 additive functor. Consider the matrix

D D

�
A 0

C B

�
:

Set C � 2 U.`/E
0�reg.E/, C �v;w D C

�1
w;v . Put

D� D

�
At C �

0 B t

�
:

Then, the Cohn extension of (1.5) induces the following distinguished triangle in T :

H.`/.reg.E//
˚H.`/Œ�1�.reg.E// I�D

�

����! H.`/.E
0/
˚H.`/Œ�1�.E

0/
! H.OC

A;B/:

Proof. Consider the Laurent polynomial algebra L1 D `Œt; t�1�. By Proposition 6.2.3 and
Theorem 6.3.1, we have a triangle in kk of the form

j
�
L
.reg.E//
1

� f
�! j

�
L
.E0/
1

�
! j.OC

A;B/:
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Observe that L1 is the Leavitt path algebra of the graph consisting of a single loop; hence,
by [13, Theorem 5.4], we have j.L1 ˝ R/ D j.R/˚ j.R/Œ�1� for every R 2 Alg`. For
each v 2 E0, w 2 reg.E/, and i 2 ¹0; 1º, let

�v;i W j.`/Œ�i �! j.`reg.E//Œ�i � � j.`reg.E//˚ j.`reg.E//Œ�1�

be the inclusion and

pv;i W j
�
`.E

0/
�
˚ j

�
`.E

0/
�
Œ�1�! j.`/Œ�i �

the projection in/onto the .v; i/-summand. Because H is homotopy invariant, excisive,
and E-stable, it factors as H D xH ı j with xH a triangulated functor. Further, in view
of the additivity hypothesis on H , H.f / D xH.M/, where M is a matrix indexed by
.E0 � ¹0; 1º/ � .reg.E/ � ¹0; 1º/, with coefficients

M.w;i/;.v;j / D p.w;i/ ı f ı �.v;j / 2 kk.`Œ�j �; `Œ�i �/:

The argument of [12, Proposition 5.2] shows that

M.w;i/;.v;0/ D ıi;0.ıw;v � Av;w/ D D.v;0/;.w;i/:

To compute the coefficientsM.w;i/;.v;1/, proceed as follows. Observe that if F � E is any
finite complete subgraph containing s�1¹vº, then

1F � qv C qvt D .1F � v C vt/.1F �mv Cmvt /
�1:

Hence, it suffices to establish that the following identity holds inK1.C.Z; F; �c// for any
finite subgraph F � E as above:

Œ1F �mv Cmvt � D
h Y
w2F 0

.1F � w C wt/
Bv;w .1F � w C Cv;ww/

i
: (7.4)

Thus, we may assume that E D F is finite. Let v;w 2 E0 such that Av;w ¤ 0. Using the
isomorphism

wC.Z; F; �c/
Av;w Š

M
e2s�1¹vº

ee�C.Z; F; �c/

as in the proof of Lemma 7.1, we see that, with notation as in said lemma, for any �2U.`/

and 1 � i � Av;w � 1, we have

Œ1 � w C �w� D
h
1 �mv;w C �eie

�
i C

X
j¤i

ej e
�
j

i
2 K1.C.Z; F; �c//: (7.5)

Set �v;w D 1 � w C .�1/.Av;w�1/w. By Lemma 7.1,

Œ.1 � w C wt/Bv;w �

D
�
�
Bv;w
v;w .1 �mv;w C uv;w/

Bv;w
�

D

"
�
Bv;w
v;w .1 �mv;w C .�1/

.Av;w�1/Bv;wC�1v;w t � .e0e
�
0 /C

Av;w�1X
iD1

t � .eie
�
i //

#
: (7.6)



G. Cortiñas 1426

Next, use (7.5) and (7.6) to compute that, in K1.C.Z; F; �c//, we haveh Y
w2E0

.1 � w C wt/Bv;w .1 � w C Cv;ww/
i

D

" Y
w2E0

�
Bv;w
v;w

 
1 �mv;w C t �

 
.�1/.Av;w�1/Bv;w .e0e

�
0 /C

Av;w�1X
iD1

eie
�
i

!!#
D

h Y
w2E0

.1 �mv;w C t �mv;w/
i
D Œ1 �mv C t �mv� D Œ1 �mv Cmvt �:

Next, we introduce notation and vocabulary that are used in the next two corollaries
of Theorem 7.3. If R is a commutative ring and M is an R-module, we write R ËM for
the commutative ring with additive group R˚M and multiplication defined by

.a;m/ � .b; n/ D .ab; anC bm/:

In particular, regarding the group U.`/ of invertible elements of ` as a Z-module, we
obtain a commutative ring

W D Z ËU.`/: (7.7)

Recall that the cup-product makes K�0.`/ D
L
n�0 Kn.`/ into a graded commutative

ring, and K�n.`/ into an ideal for every n 2 N0. Observe that the canonical map

W ! K0.`/˚K1.`/ D K�0.`/=K�2.`/

is a ring homomorphism. Thus, for every unital R 2 Alg` and n 2 Z, the cup-product
makes Kn.R/˚Kn�1.R/ into a graded W-module. We will also consider the following
W-modules:

BF.A;B; C / D Coker
�
I �D� WWreg.E/

!WE0
�
;

zBF.A;B; C / D Coker
�
I �D WWE0

!Wreg.E/�: (7.8)

Corollary 7.9. LetR 2Alg` and n 2Z. IfR is flat over `, then there is an exact sequence

0! BF.A;B; C /˝W .KHn.R/˚KHn�1.R//! KHn.O
C
A;B ˝R/

! Ker..I �D�/˝W .KHn�1.R/˚KHn�2.R///! 0:

Proof. The homotopy K-theory spectrum defines a functor KH W Alg`! Ho.Spt/ to the
homotopy category of spectra. Applying Theorem 7.3 to the functor KH.� ˝ R/ and
taking stable homotopy groups, one gets a long exact sequence that can be expressed as
the collection of the exact sequences of the corollary for n 2 Z.

Remark 7.10. The flatness of R is needed in Corollary 7.9 to guarantee that ˝R pre-
serves algebra extensions, and so, it extends to a triangulated functor kk ! kk. One may
also consider a variant of j , j s W Alg` ! kks that is excisive only with respect to those
extensions that admit an `-linear splitting so that˝R extends to kk for any R. The analog
of Corollary 7.9 then holds for j s whenever the Cohn extension is `-linearly split, e.g.,
when the conditions of Corollary 3.4.2 are satisfied.
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Corollary 7.11. Assume that E0 is finite. Then, there is a distinguished triangle in kk:

j.`/reg.E/
˚ j.`/Œ�1�reg.E/ I�D

�

����! j.`/E
0

˚ j.`/Œ�1�E
0

! j.OC
A;B/:

Proof. Apply Theorem 7.3 to the functor j W Alg` ! kk.

Corollary 7.12. Let A, B , C be as in Corollary 7.11, and R 2 Alg`. Then, there is an
exact sequence:

0!zBF.A;B; C /˝W .KH2.R/˚KH1.R//! kk.OC
A;B ; R/

! homW.BF.A;B; C /;KH1.R/˚KH0.R//! 0:

Theorem 7.13. Let n � 1, M;N 2 Mn.Z/ and P 2 Mn.U.`//, and let R 2 Alg` such
that there is a distinguished triangle in kk

j.`/n ˚ j.`/Œ�1�n

�
M P
0 N

�
// j.`/n ˚ j.`/Œ�1�n // j.R/ : (7.14)

Then, there exist matrices A 2 M2n.N0/, B 2 M2n.Z/, and C 2 M2n.U.`// such that
.A;B/ is KSPI and an isomorphism

j.OC
A;B/ Š j.R/:

Proof. Let Im 2Mm.Z/ be the identity matrix. The matrix

E D

2664
M 0 P 0

0 In 0 0

0 0 N 0

0 0 0 In

3775
defines an endomorphism of j.`/n ˚ j.`/Œ�1�n in kk, and the direct sum of (7.14) with
the trivial triangle

j.`/n ˚ j.`/Œ�1�n
I2n
��! j.`/n ˚ j.`/Œ�1�n ! 0

is isomorphic to a triangle

j.`/2n ˚ j.`/2n
E
�! j.`/2n ˚ j.`/2n ! j.R/: (7.15)

Define matrices X and Y in Mn.Z/ as in the proof of [23, Lemma 3.1], taking into
account that the matrices named A0 and B 0 are what we call M and N here. Let

U D

24In In 0

0 In 0

0 0 I2n

35 ; V D

2664
0 �In 0 0

In Y 0 0

0 0 0 �In
0 0 �In 0

3775 2M2n.Z/:
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Define A;B 2M2n.Z/ and C 2M2n.U.`// by the identity"
I2n � A

t C �

0 I2n � B
t

#
D UEV:

Observe that the matrices At and B t are called A and B in [23, Lemma 3.1]; in particular,
.A; B/ is KSPI. Moreover, the matrices U and V induce an isomorphism of triangles
between (7.15) and the triangle of Corollary 7.11 associated to the matrices A, B , and C
we have just defined. In particular, j.R/ Š j.OC

A;B/.

Corollary 7.16. Let ` be either a field or a PID, and let R 2 Alg` such that there is a
distinguished triangle in kk:

.j.`/˚ j.`/Œ�1�/n
f
�! .j.`/˚ j.`/Œ�1�/n ! j.R/:

Then, there exist matrices A, B , C such that .A; B/ is KSPI and j.R/ Š j.OC
A;B/. If

moreover ` is a field of characteristic zero, or if ` is any field and the pair .A;B/ satisfies
the condition of Proposition 5.6, then OC

A;B is simple purely infinite.

Proof. If ` is a field or aPID, kk.`;`/D kk.`Œ�1�; `Œ�1�/DK0.`/DZ, kk.`Œ�1�; `/D
K1.`/ D U.`/ and kk.`; `Œ�1�/ D K�1.`/ D 0. Thus, f must be as in Theorem 7.13.
Thus, the first assertion follows from said theorem. The second assertion follows from
Theorem 5.5 and Proposition 5.6.

8. K -regularity via the twisted Laurent polynomial picture

Let E be a row-finite graph, and let .G; E; �c/ be a twisted EP -tuple. Consider the Z-
grading L.G;E; �c/ D

L
n2ZL.G;E; �c/n,

L.G;E; �c/n D span¹˛gˇ� W j˛j � jˇj D nº:

For each n � 0, let

L0;n.G;E; �c/ D span¹˛gˇ� W r.˛/ D g.r.ˇ// 2 sink.E/; j˛j D jˇj � nº

C span¹˛gˇ� W r.˛/ D g.r.ˇ// 2 reg.E/; j˛j D jˇj � nº:

We have L.G;E;�c/0 D
S
n�0L0;n.G;E;�c/. Observe that settingG D ¹1º, we recover

the usual grading of L.E/ and the usual filtration of L.E/0. Like in the Leavitt path alge-
bra case [2, Section 5] when E is finite without sources, we may also regard L.G;E; �c/
as a corner skew Laurent polynomial ring in the sense of [3], as follows. Pick an edge
ev 2 r

�1¹vº for each v 2 E0. Then, the elements of L.G;E; �c/

tC D
X
v2E0

ev and t� D t
�
C
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are homogeneous of degrees 1 and �1, respectively, and satisfy t�tC D 1. Hence,

p D  .1/ 2 L.G;E; �c/0

is an idempotent, and the map

 W L.G;E; �c/0 ! L.G;E; �c/0;  .x/ D tCxt�; (8.1)

is an algebra monomorphism; its image is the corner pL.G; E; �c/0p. Hence, by [3,
Lemma 2.4], we may regard L.G; E; �c/ as a Laurent polynomial ring twisted by the
corner isomorphism  ; using the notation of [3], we write

L.G;E; �c/ D L.G;E; �c/0ŒtC; t�I �: (8.2)

In the next lemma, we use the following notation. For a graph E, a vertex v 2 E0, and
m � 0, we put

Pv;m D ¹˛ 2 P .E/vW j˛j D mº:

Assumption 8.3. From this point on, in all (twisted) EP -triples we consider, the group
G will be assumed to act trivially on E0.

Notation 8.4. Let v 2 E0; regard v as an element of L.G; E; �c/. By Assumption 8.3,
the identity gv D vg holds in L.G;E; �c/ for all g 2 G. Hence, the right annihilator

Iv D Ann`ŒG�.v/ � `ŒG�

is a two-sided ideal. We write
Rv D `ŒG�=Iv

for the quotient ring.

Lemma 8.5. Let .G;E; �c/ be a twisted EP-tuple with E row-finite. Assume that G acts
trivially on E0. Put

Mn.G;E/ WD

 M
v2sink.E/

nM
mD0

MPv;m`ŒG�

!
˚

� M
v2reg.E/

MPv;n`ŒG�
�
:

(i) There is a surjective algebra homomorphism

�n WMn.G;E/� L.G;E; �c/0;n; �n."˛;ˇg/ D ˛gˇ
�:

(ii) Iv D 0 for all v 2 sink.E/ and

Ker.�n/ D
M

v2reg.E/

MPv;nIv:

Hence, we have

L.G;E; �c/0;n Š

 M
v2sink.E/

nM
mD0

MPv;mRv

!
˚

� M
v2reg.E/

MPv;nRv

�
:
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(iii) Under the isomorphism above, the inclusionL.G;E;�c/0;n�L.G;E;�c/0;nC1
identifies with the inclusion

M
v2sink.E/

nM
mD0

MPv;mRv �
M

v2sink.E/

nC1M
mD0

MPv;mRv

on the first summand and is induced by the mapM
v2reg.E/

MPv;nRv !
� M
v2sink.E/

MP .nC1;v/Rv

�
˚

� M
v2reg.E/

MP .nC1;v/Rv

�
"˛;ˇg 7!

X
s.e/Dr.˛/

"˛g.e/;ˇe�c.g; e/

on the second.

Proof. It is clear that the `-linear map �n is surjective. Observe that

˛; ˇ 2
� [
v2sink.E/;1�m�n

Pv;m [
[

v2reg.E/

Pv;n

�
) ˇ�˛ D ı˛;ˇ r.˛/: (8.6)

It follows from this that �n is a ring homomorphism, proving (i). Next, let

x D
X
˛;ˇ

"˛;ˇx˛;ˇ 2 Ker.�n/:

Then,
�n.x/ D

X
˛;ˇ

˛x˛;ˇˇ
�
D 0: (8.7)

Taking (8.6) into account and multiplying (8.7) by ˛� on the left and by ˇ on the right,
we obtain that (8.7) holds if and only if

x˛;ˇ 2 Ir.˛/

holds in L.G; E; �c/ for all ˛, ˇ for which x˛;ˇ is defined. Observe that if we regard a
vertex v 2 E0 as an element of C.G;E; �c/, then Iv D ¹x 2 `ŒG�W vx 2 K.G; E; �c/º.
Recall that K.G;E; �c/ is spanned by the elements

˛qwgˇ
�
D ˛gˇ� �

X
s.e/Dw

˛e�.g; g�1.e//.ˇg�1.e//�

with w 2 reg.E/. The above is the unique expression of the element of the left as a linear
combination of the basis B of C.G; E; �c/ and contains no basis elements of the form
vh with v 2 sink.E/ and h 2 G. This proves that Iv D 0 for every v 2 sink.E/. Thus,
part (ii) is proved. Part (iii) is a straightforward application of the Cuntz–Krieger relation
CK2 (3.4.1).
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Let v 2 reg.E/ and w 2 E0 such that Av;w ¤ 0; set

Xv;w D
M

e2vE1w

`e ˝Rw : (8.8)

Consider the `-linear map

Xv;w ! L.G;E; �c/; e ˝ x 7! ex: (8.9)

The map (8.9) is injective, because if
P
e2vE1w eae D 0 and f 2 vE1w, then multiplying

on the left by f � we get that af D 0. Observe also that, in view of Assumption 8.3, its
image N is a left `ŒG�-submodule, and we have v � x D x for all x 2 N . In particular,
IvN D vIvN D 0, and thus, N is a left Rv-module. In Lemma 8.10 below, we regard
Xv;w as a left Rv-module via the map (8.9).

Lemma 8.10. Let E be a finite graph with incidence matrix A. Assume that G acts triv-
ially on E0. The following are equivalent for n � 0.

(i) L.G;E; �c/0;nC1 is a flat left L.G;E; �c/0;n-module.

(ii) For every .v;w/ 2 reg.E/�E0 such that Av;w ¤ 0, the left Rv-module (8.8) is
flat.

Proof. If M is a left module over a unital ring R, m � 1, and p1; : : : ; pm 2 R are central
orthogonal idempotents such that

Pm
iD1 pi D 1, then M is flat over R if and only if

piM is a flat Rpi -module for all i . We apply this with R D L0;n, M D L0;nC1 and
the orthogonal idempotents that correspond to the identity matrices of each of the matrix
algebras in the direct sum decomposition of Lemma 8.5 and using the identification of the
inclusion L.G; E; �c/0;n � L.G; E; �c/0;nC1 given therein. If v 2 sink.E/ and m � n,
then under the identification of Lemma 8.5, idPv;m �L.G;E; �c/0;nC1 DMPv;mRv , which
is flat over itself. If v 2 reg.E/, then

idPv;n �L.G;E; �c/0;nC1 D
M

¹wjAv;w¤0º

X
¹e2vE1w;˛2Pv;nº

"˛e;˛eMP .w;nC1/Rw :

One checks that each of the summandsX
¹e2vE1w;˛2Pv;nº

"˛e;˛eMP .w;nC1/Rw (8.11)

is a left MPv;nRv-submodule. Hence, L.G; E; �c/0;n � L.G; E; �c/0;nC1 is flat if and
only if (8.11) is flat for every w 2 E0 such that Av;w ¤ 0. Moreover, (8.11) decomposes
as direct sum, indexed by 
 2 P .w; nC 1/, of the MP.n;v/Rv-submodules

Xv;w;
 D
M

¹˛2Pv;n;e2vE1wº

"˛e;
Rw :

So, again, the flatness of L.G;E;�c/0;nC1 over L.G;E;�c/0;n boils down to that of each
of the Xv;w;
 . Equip `P .v;n/ D `P .v;n/�¹1º with its canonical leftMPv;n -module structure
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and view `P .v;n/ ˝ Xv;w as a module over MPv;nRv DMPv;n ˝ Rv in the obvious way.
One checks that

Xv;w;
 ! `Pv;n ˝Xv;w ; "˛e;
x 7! ˛ ˝ e ˝ x

is an isomorphism of left MPv;nRv-modules. Since the MPv;n -module `Pv;n is projective,
whence flat, we get that Xv;w;
 is flat overMPv;n ˝Rv if and only if Xv;w is flat over Rv .
This concludes the proof.

Lemma 8.12. Let .G; E; �c/ be a twisted EP -tuple satisfying the conditions of Lemma
8.10, and let .v; w/ 2 reg.E/ � E0. Assume that Iv D Iw D 0. Then, Xv;w is a flat left
Rv D `ŒG�-module if and only if `ŒG�=Ann`ŒG�.e/ is `ŒG�-flat for all e 2 vE1w.

Proof. For g 2 G and .e; h/ 2 vE1w �G, set

g � .e; h/ D .g.e/; �.g; e/h/: (8.13)

One checks, using that � is a cocycle, that (8.13) defines a left action of G on vE1w �G,
and thus a linear G-action on

`ŒvE1w �G� D Xv;w :

For the identification above, we have used our hypothesis that Iw D 0. The decomposition
of vE1w � G into G-orbits gives a corresponding direct sum decomposition of Rv D
`ŒG�-modules

Xv;w D
M

K2.vE1w�G/=G

`ŒK�:

Let e 2 vE1w, h 2 G, andKe;h be the orbit of .e; h/. Observe that right multiplication by
h gives an `ŒG�-module isomorphism `ŒKe;1� Š `ŒKe;h�. Moreover, we have an isomor-
phism of left `ŒG�-modules

`ŒG�=Ann`ŒG�.e/ Š `ŒK.e;1/�: (8.14)

Summing up, Xv;w is flat if and only if (8.14) is flat for all e 2 vE1w, as we had to
prove.

Theorem 8.15. Let .G; E; �c/ be a twisted EP -tuple. Assume that E is row-finite and
that G acts trivially on E0. Further, assume that Rv is regular supercoherent for every
v 2 E0 and that condition (ii) of Lemma 8.10 is satisfied. Then, L.G;E;�c/ isK-regular.

Proof. Assume first thatE is finite without sources. Put S DL.G;E;�c/0; let  W S! S

be the corner isomorphism of (8.1) and B D SŒ �1� the colimit of the inductive system

S
 
�! S

 
�! S

 
�! � � � ;
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zB D B ˚ ` its unitalization, and z W zB ! zB the induced unital automorphism. Let
NK�.S;  /˙ D NK�. zB; z /, the twisted nil-K-theory groups. Note that because B is
a filtering colimit of unital rings, it satisfies excision in K-theory, and thus these nil-K-
groups are the same as those defined in [2, Notation 3.4.1]. By (8.2) and [2, Theorems 3.6
and 8.4], the comparison map K�.L.G;E; �c//! KH�.L.G;E; �c// fits into a map of
long exact sequences

Kn.S/
1� 
//

��

Kn.S/˚NKn.S;  /C ˚NKn.S;  /�

��

// Kn.L.G;E; �c//

��

// Kn�1.S/

��

KHn.S/
1� 

// KHn.S/ // KHn.L.G;E; �c// // KHn�1.S/

(8.16)
Because by hypothesis, the Rv are regular supercoherent for all v, so is any finite sum of
finite matrix rings over them; in particular, Sn D L.G;E; �c/0;n is regular supercoherent
for all n. By [20, Proposition 1.6], the colimit of an inductive system of regular superco-
herent rings with unital flat transition maps is regular supercoherent. Hence, S is regular
supercoherent by Lemma 8.10. In particular, the comparison map

Kn.SŒt1; : : : ; tp�/! KHn.SŒt1; : : : ; tp�/

is an isomorphism for all n and p. Now, the argument of [2, Proposition 7.1] applies
verbatim to show that zB is regular supercoherent. Thus,NK�.S; /˙ D NK�. zB; z /˙ D
0 by [2, Lemma 7.2]. It follows that the comparison map

K�.L.G;E; �c//! KH�.L.G;E; �c//

is an isomorphism. Substituting `Œt1; : : : ; tm� for `, we get that

K�.L.G;E; �c/Œt1; : : : ; tm�/! KH�.L.G;E; �c/Œt1; : : : ; tm�/

is an isomorphism for all m. This proves that L.G; E; �c/ is K-regular whenever E is
finite without sources and the hypotheses of the theorem are satisfied. Let now E be a
finite graph, v 2 E0 a source, and Ejv the graph obtained from E upon removing v.
Then, 1 � v is a full idempotent of L.E/ and therefore also of L.G; E; �c/. Further-
more, the corner C D .1 � v/L.G; E; �c/.1 � v/ is the span of elements ˛gˇ� with
g 2 G and ˛; ˇ 2 P .Ejv/; it follows that C Š L.G; Ejv; �c jEjv/ is the algebra of the
EP -tuple obtained from .G; E; �c/ upon restricting � and c to G � E1

jv
. Repeating this

process a finite number of times, we end up with a finite graph E 0 without sources such
that L.G; E 0; �c jE 0/ is isomorphic to a full corner of L.G; E; �c/. By what we have
already proved, L.G; E 0; �jE 0/ is K-regular; therefore, the same is true of L.G; E; �c/,
since the latter is Morita equivalent to the former. This proves the theorem for finite
E. If now E is any row-finite graph and F � E a finite complete subgraph, then the
algebra L.G; F; �c jF / of the restriction EP -tuple is isomorphic to the subalgebra of
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L.G; E; �c/ linearly spanned by the elements ˛gˇ� with ˛; ˇ 2 F and g 2 G. Hence,
L.G; E; �c/ D colimF L.G; F; �c jF /, where the colimit runs over all finite complete
subgraphs. Thus, L.G; E; �c/ is K-regular because each L.G; F; �c jF / is, by what we
have already proved.

Corollary 8.17. Let .G; E; �c/ be a twisted EP -tuple as in Theorem 8.15. If .G; E; �c/
is pseudo-free, then L.G;E; �c/ is K-regular.

Proof. Because .G; E; �c/ is pseudo-free, we have Iv D 0 for all v 2 E0, by Corol-
lary 3.4.2. Hence, in view of Lemma 8.12, it suffices to show that Ann`ŒG�.e/ D 0 for
all e 2 E1. Let e 2 E1 and K D K.e;1/ as in the proof of Lemma 8.12. It follows from
Corollary 3.4.2 and the identity (3.3.8) that x D

P
g2G �gg 2 Ann`ŒG�.e/ if and only if

for every .f; h/ 2 K we have

0 D
X

¹gWg.e/;�.g;e/D.f;h/º

�gc.g; e/: (8.18)

Next, observe that if x satisfies (8.18), then it annihilates ee� 2 C.G;E; �c/. By Lemma
3.3.3 and pseudo-freeness, this implies that x D 0. Hence, Ann`ŒG�.e/D0 for all e 2 E1,
concluding the proof.

Example 8.19. Let ` be a Noetherian domain, and let .Z; E; �c/ be a twisted EP-tuple
where Z acts trivially on E0. Assume that .Z; E; �c/ is partially pseudo-free but not
pseudo-free. Write L D `Œt; t�1�; then, (3.3.8) maps injectively to a basis of L.Z; E; �c/.
Since the latter basis contains vg for all g 2 G, they are `-linearly independent, so we
have Rv D L for all v 2 E0. By Lemma 3.3.3, there is an edge e and a nonzero element
x 2 L that annihilates ee� 2 C.Z; E; �c/. Then, x also annihilates e 2 L.Z; E; �c/, so
J WDAnnL.e/¤ 0. Moreover, J ¤L, by Proposition 3.3.7. Because we are assuming that
` is Noetherian, the same is true ofL, and thus,L=J is flat if and only if it is projective, by
Villamayor’s theorem. Hence, the flatness of L=J would imply that L is a decomposable
L-module, which would contradict the hypothesis that ` is a domain. So, L=J is not
flat, and thus neither is Xs.e/;r.e/, by Lemma 8.12. By Lemma 8.10, this implies that
L.Z; E; �c/0;nC1 is not flat over L.Z; E; �c/0;n for any n � 0.

9. K -regularity of twisted Katsura algebras

Lemma 9.1. Let .A;B;C / and E be as in Section 5 above, and let .v;w/ 2 reg.E/�E0

such that Av;w ¤ 0. Let Xv;w be the Rv-module of (8.8).

(i) If Bv;w ¤ 0, then Xv;w is flat.

(ii) If Bv;w D 0 and there exists w0 such that Bv;w 0 ¤ 0, then Xv;w is not flat.

(iii) Suppose Bv;w D 0 for all w 2 r.s�1¹vº/. Further, assume that Cv;w � Cv;w 0
and Cv;w � 1 are either zero or invertible in ` for all w;w0 2 r.s�1¹vº/. Then,
Xv;w is flat for all w 2 r.s�1¹vº/.
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Proof. Set a D Av;w , b D Bv;w , c D Cv;w , X D Xv;w , and L D `Œt; t�1�. For each 0 �
i < a, write ei for the unique edge e 2 vE1w with n.e/ D i . If b D 0, then te0 ˝ x D
ce0 ˝ x and tei ˝ x D ei ˝ x for all x 2 L and 1 � i < a. Hence, the monic polynomial
f .t/ D .t � 1/.t � c/ annihilates X . Because f .t/ is not a zero divisor in L,

L
f .t/
��! L

is a free resolution ofL=f .t/L. Hence, TorL1 .L=.t � 1/.t � c/;X/DX ¤ 0. In particular,
X is not flat over L. In the situation of (ii), Iv D 0, so Rv D L, and thus, X is not flat
over Rv . In the situation of (iii), if b ¤ 0, let c1; : : : ; cr be the distinct elements of the set
¹1º [ ¹Cv;w W w 2 r.s

�1.¹vº//º. Then,

Rv Š L=

rY
iD1

.t � ci /L Š

rM
iD1

`Œt �=.t � ci /`Œt �;

and X is a direct sum of copies of some of the summands in the decomposition above.
Hence, it is a projective Rv-module and in particular it is flat.

Next, assume that b ¤ 0; note that Rv D L in this case. Let r W Z! ¹0; : : : ; a � 1º
and q W Z! Z be the remainder and the quotient function in the division by a. Let Lb;c
be the `-module L equipped with the following Z-action:

t �b x D ct
bx:

Then, Lb;c is free with basis 1; t; : : : ; t jbj�1 and

Lb;c ! X tn 7! er.n/ ˝ t
q.n/

is an isomorphism of left L-modules. Hence, X is a free left L-module.

Proposition 9.2. Let ` be regular supercoherent and .A; B; C / a twisted Katsura triple.
If either of the following holds, then OC

A;B is K-regular.

(i) Bv;w D 0$ Av;w D 0.

(ii) ` is a field and if v 2 reg.E/ is such that Bv;w D 0 for some w 2 r.s�1¹vº/,
then Bv;w 0 D 0 for all w0 2 r.s�1¹vº/.

Proof. Immediate from Lemma 9.1 and Theorem 8.15.

Remark 9.3. By [18, Lemma 18.5], condition (i) of Proposition 9.2 is equivalent to the
condition that the EP -tuple .Z; E; �/ associated to .A; B/ in Section 5 be pseudo-free.
If condition (ii) of the same proposition is satisfied, then any vertex v with Bv;w D 0 for
some w 2 r.s�1¹vº/ is a B-sink in the sense of [24, p. 2248].

Corollary 9.4. Assume either of the conditions of Proposition 9.2 is satisfied. Then, for
any n 2 Z, there is a short exact sequence

0! BF.A;B; C /˝W .Kn.`/˚Kn�1.`//! Kn.O
C
A;B/

! Ker..I �D�/˝W .Kn�1.`/˚KHn�2.`///! 0:
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Proof. Immediate from Proposition 9.2 and Corollary 7.9.

10. Ring theoretic regularity: The universal localization picture

Let .G;E;�c/ be a twisted EP-tuple. In this section, we assume that E is finite and thatG
acts trivially on E0. We show that L.G;E; �c/ can be interpreted as the universal local-
ization of an algebra P.G;E; �c/. We use this to give sufficient conditions that guarantee
that L.G; E; �c/ is regular in the sense that every (right) S -module has finite projective
dimension, and apply this to the case of twisted Katsura algebras.

For each .v;w/ 2 reg.E/ �E0, let Xv;w be as in (8.8). Regard Xv;w as an .Rv; Rw/-
bimodule, with the left Rv-module structure induced via the map (8.9) and the obvious
right Rw -module structure. Set

R D
M
v2E0

Rv; X D
M
v;w

Xv;w : (10.1)

Observe that X is an R-bimodule; let

P.G;E; �c/ WD TRX (10.2)

be the tensor algebra. Since by definition R and X are a subalgebra and an R-sub-
bimodule of L.G;E; �c/, we have a canonical algebra homomorphism

P.G;E; �c/! L.G;E; �c/: (10.3)

Lemma 10.4. The homomorphism (10.3) is injective.

Proof. By definition, R and X are included in L.G;E; �c/. Moreover, the n-fold tensor
product T nRX is freely generated as a right R-module by the paths of length n in E. Thus,
it suffices to show that if F � P .E/ is a finite subset and x˛ 2 Rr.˛/ for all ˛ 2 F , thenX

˛

˛x˛ D 0 (10.5)

implies that each x˛ D 0. Choose a lift y˛ 2 `ŒG� for each ˛ 2 F ; then, (10.5) implies
that

P
˛2F ˛y˛ 2 K.G; E; �c/. It follows from this and the fact that B and B 0 are `-

linear basis of C.G; E; �c/ and K.G; E; �c/, that y˛ 2 Ir.˛/ so that x˛;ˇ D 0 for each
˛ 2 F .

For each regular vertex v, let

�v W
M
s.e/Dv

r.e/P.G;E; �c/! vP.G;E; �c/; �v.r.e/a/ D ea:

Let † D ¹�v W v 2 reg.E/º, and let P.G;E; �c/† be the universal localization. Observe
that scalar extension along (10.3) inverts the elements of †; hence, we have a canonical
algebra homomorphism

P.G;E; �c/† ! L.G;E; �c/: (10.6)
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Lemma 10.7. The algebra homomorphism (10.6) is an isomorphism.

Proof. The algebra P.G; E; �c/† is obtained from P.G; E; �c/ upon adjoining an ele-
ment ye for each e 2 E1 so that r.e/yes.e/ D ye , and so, that the matrices

Mv D

X
s.e/Dv

"v;ee and Nv D
X
s.e/;v

"e;vye

satisfy MvNv D "v;vv and NvMv D
P
s.e/Dv "e;er.e/. The homomorphism (10.6) is the

inclusion on P.G;E; �c/ and sends ye 7! e�; to prove it is an isomorphism, it suffices to
show that the ye satisfy the same relations (3.1.2), (3.1.3), and (3.1.4) as the e�. This is
clear for all but the last identity of (3.1.4). Moreover, we have

yegDyegs.e/ D yeg
X

s.f /Ds.e/

fyf D ye
X

s.f /Ds.e/

g.f /�.g; f /yf

Dye
X

s.f /Ds.e/

f �.g; g�1f /yg�1.f /Dr.e/�.g; g
�1e/yg�1.e/D�.g; g

�1e/yg�1.e/:

Thus, the ye satisfy all the required identities for the existence of homomorphism of
P.G;E;�c/-algebras C.G;E;�c/! P.G;E;�c/† mapping e� 7! ye . Furthermore, the
identity MvNv D "v;vv implies that the latter induces a homomorphism L.G;E; �c/!

P.G;E; �c/† inverse to (10.6).

Lemma 10.8. The inclusion P.G; E; �c/ � L.G; E; �c/ makes L.G; E; �c/ into a flat
left P.G;E; �c/-module.

Proof. It follows from Lemma 10.7 that P.G; E; �c/ � L.G; E; �c/ is a ring epimor-
phism. Hence, by [30, Theorem 2.1], it suffices to find, for each x 2 L.G;E; �c/, a finite
subset F � P .E/ such that

8
 2 F ; x
 2 P.G;E; �c/ (10.9)X

2F


P.G;E; �c/ D P.G;E; �c/: (10.10)

Any element x 2 L.G;E; �c/ can be written as a finite linear combination

x D
X
˛;ˇ

˛x˛;ˇˇ
�
D

X
ˇ

�X
˛

˛x˛;ˇ

�
ˇ� (10.11)

with each x˛;ˇ 2 Rr.˛/ and r.ˇ/ D r.˛/. Let F 0 � P .E/ be the set of all those paths ˇ
such that ˇ� appears in (10.11) with a nonzero coefficient. Using the CK2 relation (3.4.1),
we may arrange that there is an n such all ˇ 2 F 0 with r.ˇ/ 2 sink.E/ have length � n,
and all those with r.ˇ/ 2 reg.E/ have length n. Hence, for all ˇ 2 F 0,

xˇ D
X
˛

˛x˛;ˇ 2 P.G;E; �c/:
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Let

P .E/ � F D ¹
 W r.
/ 2 reg.E/; j
 j D nº [ ¹
 W r.
/ 2 sink.E/; j
 j � nºI

then F � F 0 and x
 D 0 for all 
 2 F n F 0. Hence, F satisfies (10.9). Moreover,P

2F 

� D 1, so (10.10) is also satisfied.

Corollary 10.12. If E is finite and P.G;E; �c/ is either right regular or right coherent,
then the same is true of L.G;E; �c/.

Proof. By Lemmas 10.7 and 10.8, P.G; E; �c/ � L.G; E; �c/ is a perfect right local-
ization in the sense of [30, Definition on p. 229]. Hence, by [30, Theorem 2.1 (b)], the
family F of all right ideals a � P.G;E; �c/ such that aL.G;E; �c/ D L.G;E; �c/ is a
Gabriel topology, and L.G;E; �c/ D P.G;E; �c/F is the localization with respect to F.
It then follows from [30, Corollary 1.10 of Chapter IX and Proposition 3.4 of Chapter XI]
that localization of right P.G;E; �c/-modules with respect to F is exact and essentially
surjective. Moreover, it preserves projectivity by [30, Proposition 1.11 of Chapter IX].
It follows that L.G; E; �c/ is regular whenever P.G; E; �c/ is. If P.G; E; �c/ is right
coherent, then L.G;E; �c/ is right coherent by [30, Proposition 3.12 of Chapter XI].

The following two lemmas are probably well known. I came to them together with my
colleague Marco Farinati after a fruitful discussion.

Lemma 10.13. Let S be a unital ring containing a semisimple commutative ring k, and
such that S has left projective dimension d as an Se WD S ˝k Sop-module. Then, S and
Se have (both right and left) global projective dimensions � d and � 2d , respectively. In
particular, both S and Se are regular.

Proof. Let .S ˝k xS˝k� ˝k S; b0/
�
� S be the bar resolution. The hypothesis means that

�dS D Ker
�
b0 W S ˝k xS

˝kd�1 ˝k S ! S ˝k xS
˝kd�2 ˝k S

�
is a projective S ˝k Sop-module. Consider the truncated bar resolution

Qm D

8̂̂<̂
:̂
S ˝k xS

˝km ˝k S if 0 � m � d � 1;

�dS if m D n;

0 if m > d:

Observe thatQ� is both right and left split; so tensoring it over S on either side with an S -
moduleM yields a resolution P

�
�M of length d such that each Pm is a scalar extension

of a k-module, and therefore projective, as k is semisimple. Thus, both the right and the
left global dimensions of S are � d . Next, observe that Se is isomorphic to its opposite
ring via the flip s ˝ t 7! t ˝ s; in particular, its left and right global dimensions coincide.
Let M be a left Se-module; then, Q� ˝S M ˝S Q� is the total complex of a bicomplex
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whose m-th row is an Se-projective resolution of M ˝S Qm. Hence, the composite

Q� ˝S M ˝S Q�
�
�M ˝S Q�

�
�M

is a quasi-isomorphism. This completes the proof that the left global dimension of Se is
� 2d , since Q� ˝S M ˝S Q� has length 2d .

Lemma 10.14. Let S and k be as in Lemma 10.13, and letM be a left S ˝k Sop-module.
If eitherMS or SM is projective, then the tensor algebra T D TS .M/ has both right and
left global dimensions � 2d C 1. In particular, T is regular.

Proof. We will assume that M is right projective. In view of Lemma 10.13, it suffices to
show that the T ˝k T op-module T has projective dimension � 2d . Let �� be as in the
proof of Lemma 10.13. Consider the relative cotangent sequence [15, Corollary 2.10]

0! T ˝S �
1S ˝S T ! �1T ! T ˝S M ˝S T ! 0: (10.15)

It suffices to show that the bimodules on the left and right of the sequence above have
projective dimension � 2d . An appropriate truncation of the bar resolution provides an
S ˝k S

op-projective resolution P�
�
� �1S of length � d � 1 which is both right and left

split. Hence, P�˝S T !�1S ˝S T is a quasi-isomorphism because P� is right split, and
T ˝S P�˝S T ! T ˝S �

1S ˝S T is a quasi-isomorphism because T is right projective.
Moreover,

T ˝S P� ˝S T D T ˝k T
op
˝S˝kSop P�

is projective because P� is. So, the first term from the left in the exact sequence (10.15)
has projective dimension at most d � 1. Next, we consider the last term of (10.15). By
Lemma 10.13, there is an Se-projective resolution P 0�

�
� M of length � 2d , which is

split both as a complex of right and of left modules. Then, P 0� ˝S T ! M ˝S T is
quasi-isomorphism, and therefore so is T ˝S P 0� ˝S T ! T ˝S M ˝S T , since TS is
projective. This concludes the proof.

Proposition 10.16. Let .G; E; �c/ be a twisted EP tuple. Assume that E is finite and
regular and that G acts trivially on E0. Further, assume that, for every v 2 E0, Rv con-
tains a field kv and has finite projective dimension as a left Rv ˝k R

op
v -module. Then,

L.G;E; �c/ is a regular ring.

Proof. Let k D
L
v2E0 kv; then, k is semisimple, and the hypothesis implies that R has

finite projective dimension as an R ˝k Rop-module. Since X is right-projective, Lemma
10.14 tells us that P.G; E; �c/ is regular. Hence, L.G; E; �c/ is regular by Corollary
10.12.

Corollary 10.17. Let ` be a field, and let .A; B; C / be a twisted Katsura triple. Then,
OC
A;B is a regular ring.
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Proof. Let v 2E0, and letLD `Œt; t�1�. As shown in the proof of Lemma 9.1,Rv is either
L or a product of copies of `. Thus, Rv satisfies the hypothesis of Proposition 10.16.
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