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Stochastic optimal transport and
Hamilton—Jacobi-Bellman equations on the set of
probability measures

Charles Bertucci

Abstract. We introduce a stochastic version of the optimal transport problem. We provide an anal-
ysis by means of the study of the associated Hamilton—Jacobi—Bellman equation, which is set on
the set of probability measures. We introduce a new definition of viscosity solutions of this equa-
tion, which yields general comparison principles, in particular for cases involving terms modeling
stochasticity in the optimal control problem. We are then able to establish results of existence and
uniqueness of viscosity solutions of the Hamilton—Jacobi—Bellman equation. These results rely on
controllability results for stochastic optimal transport that we also establish.
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Introduction

This paper introduces a stochastic version of the famous problem of optimal transport.
We consider a dynamic formulation of the classical problem as in Benamou and Brenier
[7] and are interested in the case in which the target measure is described by a stochastic
process. This problem is a state-constrained stochastic optimal control problem, which is
set on the set of probability measures. We adopt the dynamic programming approach and
study the associated Hamilton—Jacobi—Bellman (HJB for short) equation. In particular, we
prove a general comparison principle for viscosity solutions of HIB equations on the set
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of probability measures. Moreover, the HIB equation associated to the stochastic optimal
transport problem is associated to a singularity at terminal time which models the state
constraint which has to be reached once the problem is over.

Optimal transport

The optimal transport problem is one of the most famous problems in applied mathe-
matics. It consists in finding the best way to transport a repartition of mass into another
one, given a certain cost functional for the transport. Formulated first by Monge [42], it
has proven to be a mathematical problem of tremendous difficulty. The theoretical com-
prehension of this problem is now quite complete and the interest has now shifted onto
more practical and numerical problems. More details on optimal transport can be found in
Villani’s [49] or Santambrogio’s [44] book.

A point of view which has proven to be particularly helpful to attack optimal transport
is looking at a dynamic formulation of the problem. In the setting introduced by Benamou
and Brenier [7], a time interval [0, T'] is given. The problem consists in transporting a
measure 7 into another measure my in this time interval [0, T']. This formulation is
somehow closer to applications as its solutions describe precisely how the mass is going
to be transported. Moreover, it naturally leads to the notion of geodesics in certain sets of
measures.

In this paper we consider an extension of the aforementioned dynamic reformulation
of optimal transport, in which the final repartition of mass, or target as we shall call it,
is stochastic. More precisely, we shall assume that there is Markovian stochastic process
(v¢)r>0 such that the target repartition of mass is vr. This problem is introduced in more
detail in Section 1. Remark that such an optimal transport problem falls into the cate-
gory of stochastic optimal control problems, in a space of measures, with a terminal state
constraint.

Let us insist upon the fact that, from the point of view of applications, this stochastic
version of the optimal transport problem is natural and should prove to be of interest.
Indeed, in our economy, the transportation of goods usually starts before the exact location
of the addresses is known. This is for example the case for the delivery of oil in most ports,
as tankers leaving the American continent often change routes depending on the price of
crude oil in the major European ports. In some sense, the target measure is in this case
given by a supply and demand equilibrium, which is in general modeled as a stochastic
process as it depends on various unpredictable factors. In a finite state space case, an
analogue of this problem was studied in a mean field game framework in Bertucci et al.
[9]; we also refer to [10] for a related problem.

Another example is the maintenance of the storage of most major warehouses of sup-
ply networks. Indeed, in practice the different levels of storage are maintained based on
projections at a first time, and only later are they adjusted to the actual level of demand.
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Hamilton—Jacobi-Bellman equation on the set of probability measures

As already mentioned, the stochastic optimal transport problem is a stochastic optimal
control problem. Hence, naturally, the following study relies at some point on the study of
the associated HIB equation. This partial differential equation (PDE) is set on the space of
probability measures. We shall prove a comparison principle for viscosity sub- and super-
solutions of this HIB equation. A particularity of the HIB equation associated to optimal
transport problems, stochastic or not, is that it is associated with a singular boundary
condition in time, namely because of the constraint that the target has to be reached. We
provide an analysis of this singularity in Section 3.

The study of HJB equations in infinite-dimensional space is now the subject of a huge
and rapidly growing literature. We shall try to give an overview of the topic. Usually, the
study of HIB equations relies mostly on the notion of viscosity solutions, introduced in
finite-dimensional spaces in Crandall and Lions [18]. We refer to Crandall et al. [17] for a
complete presentation of viscosity solutions in finite-dimensional space. The study of this
notion in cases modeling state constraints, and the singular behavior they can produce, is
largely due to Lasry and Lions [36] and Soner [45,46].

The case of infinite-dimensional equations is much more involved. First studies have
been done on Hilbert spaces through the lens of viscosity solutions in Crandall and Lions
[19,20] for first-order equations and in Lions [37] for second-order problems, for instance.
In the Hilbert case, it is easier to understand the structure of the super-differential of func-
tions. This lead to numerous developments and we refer to Fabbri et al. [23] for a detailed
study of second-order HIB equations, namely on Hilbert spaces.

In the 2000s, the study of HIB equations on metric spaces also gained interest, and
several developments were made. We can cite for instance [3, 24-27, 32, 43], marked
mainly by Feng and his co-authors. Motivations for these works seem to come from con-
trol problems or large deviations of infinite-dimensional systems. In metric spaces, the
HJB equation is often written with a Hamiltonian which depends on the local slopes of
the functions. These techniques allowed several comparison results to be proven. Develop-
ments in this direction are now advanced, in particular because of the different comparison
principles established. These results rely quite often on the evaluation of the Hamiltonian
on the squared metric to a given point. For recent developments on this topic, we refer
to Liu et al. [39] for the links between various notions of viscosity solutions on metric
spaces and to Conforti et al. [15] in which the authors extend the techniques of Tataru
for comparison principles to metric spaces, given that the HIB equation involves an evo-
lutional variational inequality. Let us insist upon the fact that the main difficulty in the
metric case is often the structure of the super-differential (or of the gradient of a function
more simply).

Quite recently, the study of HIB equations set on the space of probability measures,
which is a metric space, has gained a lot of interest. This is because of its link with the
study of potential mean field games or mean field control. An important case, which we do
not address in this paper, is when the PDE characterizing the evolution of the probability
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measure involves second-order terms. In this setting, a highly singular first-order term
appears in the HIB equation. Note that previously mentioned works, such as [15] for
instance, are also concerned with such a case. In this setting, upon regularity estimates
or a priori information, it is possible to establish a comparison principle , such as in Wu
and Zhang [50]. However, such information is in general difficult to obtain. A useful
approach has been to consider finite-dimensional approximations of such equations and
then pass to the limit; see for instance Cosso et al. [16] which approximates measures
with a combination of Dirac masses, or Cecchin and Delarue [13] which uses Fourier
decomposition. We also send the interested reader to [47] for an optimal control problem
on the space of probability measures.

A major step in the study of HIB equations on the set of probability measures is the
so-called Hilbertian approach, or lifting, introduced by Lions in [38]. It is essentially the
formulation of an equivalent HIB equation set on a Hilbert space. An approach, which we
may call more intrinsic, was developed and used in Gangbo and Swiech [30], Marigonda
and Quincampoix [40], Jimenez et al. [33] and in Badreddine and Frankowska [6]. The
links between Lions’ Hilbertian approach and this more intrinsic approach is presented
(among other things) in Gangbo and Tudorascu [31] and in Jimenez et al. [34]. Several
authors have also considered methods relying on finite-dimensional approximations of the
PDE, such as Gangbo et al. [29] and Mayorga and Swiegh [41].

In this manuscript, we adopt a novel approach to treat HIB equations on the set of
probability measures. As we are only concerned with equations not modeling so-called
1.1.d. noises, or in other words second-order terms in the controlled PDE, we build on the
fruitful Lions’ Hilbertian approach. We show that this approach can somehow be carried
on without explicitly using the Hilbert space. Our approach relies on the notion of an
extended super-differential for functions of a probability measure argument

Organization of the paper

The rest of the paper is organized as follows. In Section 1 we introduce the main problem
of interest and derive the associated HIB equation. In Section 2 we provide the definition
of viscosity solutions that we are going to use, as well as general comparison principles.
We then proceed to establish some estimates on the behavior of the value of the problem
near the time singularity in Section 3, providing the well-posedness of the value function.
We then show in Section 4 some continuity estimates on the value function of the problem
and show why the value functions are indeed viscosity solutions of the associated HIB
equations. We then summarize our analysis in Section 5.

Notation

Let us now introduce some notation.

« The d-dimensional torus is denoted by T¢. The set of probability measures on T ¢
(resp. R9) is P(T9) (resp. £ (R%)).
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* Consider a function ¢: P(T?) — R. When it is defined, we note for u € £ (T¢),
xeT?,

1—O)p + 08y) —
Vu¢(M’X)=f}ig})¢(( )/LJ; )=o)

*  Wenote, if it is defined, D¢ (u,x) = Vx Vo (u. x) € R4. The second-order deriva-
tives are defined similarly.

* The image measure of a measure u by a map 7 is denoted by Tx .
» The set of couplings between two measures p and v is I1(u, v).

* The abbreviations usc and Isc stand for upper semi-continuous and lower semi-contin-
uous respectively. The inf (resp. sup) envelope U (resp. U*) of a locally bounded
function U is defined by U (x) = liminfy_,, U(y) (resp. limsup,_,, U*(»)).

e The law of a random variable X is denoted by £(X).
* Given an-tuple x = (x1, X3, ..., X,), we denote mg (x) = xg.

* The set of d x d symmetric real matrices is denoted by S; (R).

1. From deterministic to stochastic optimal transport

We introduce here the main mathematical problems of interest in this paper, starting with
the well-known case of optimal transport.

1.1. Optimal transport

The problem of optimal transport consists in finding the best way (for a particular criteria)
to transport a certain repartition of mass to another repartition of mass. We give a short
presentation of this problem and refer to Villani [49] and Santambrogio [44] for more
details. Given p and v two probability measures on measurable sets £; and E5, the main
question of optimal transport is to find optimal measurable maps 7: E1 — E, in the
problem

inf{¢(T) | Ty = v}, (1.1

for a given real-valued cost function ¢. Quite often, this cost is taken of the form

&(T) = /E ¢(x. T(x)) p(d).

where c: E; x E; — R. This problem has lead to numerous mathematical developments
since the seminal work of Monge. In the previous form, the problem has no minimizer
in general. To observe this, it suffices to consider p a Dirac mass and v the Lebesgue
measure on some real interval. Indeed, in this case the infimum is taken over an empty set.
To address this issue, one usually introduces the relaxation of Kantorovich [35]. In this
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relaxed version, the typical form of the optimal transport problem becomes

inf/ c(x,y)n(dx,dy), (1.2)
E]XE2

where the infimum is taken over all couplings 7 between p and v, that is, on probability
measures on £; x E; such that for any measurable sets A C Eq, B C E,, we have (A4 x
E;) = u(A) and n(Ey x B) = v(B).
Let us also mention the natural probabilistic interpretation of such a problem. Consider
a probabilistic space (€2, 4, IP). The previous relaxation of the optimal transport problem
can be expressed as
(;(r}g)JE[C(X, Y)l,

where the infimum is taken over all the couples (X, Y') of random variables on (2, 4, P)
such that £(X) = pu and £(Y) = v. Questions of existence, uniqueness and stability of
optimal transport maps and optimal couplings have been extensively studied since.

In this paper we are mostly interested in the case E; = E, = T<. In this case we
denote by TI(i, v) the set of couplings p and v in £ (T¢). When the cost ¢ is chosen
as ¢(x, y) = |x — y|¥, the value of the optimal transport problem defines the Wasserstein
distances through

1

I3
We(p,v) = ( inf / Ix — y|¥ n(a’x,dy)) .
well(w,v) JT2d
The set of optimal couplings for the case k = 2 is denoted by TT°P'(, v).
One of the most useful approaches for optimal transport problems has been the refor-
mulation of (1.1) into

1
inf// L(x,a:(x))m;(dx)dt, (1.3)
0o JTd

(ee,m)

where L: T9 x R — R is a certain cost function which is assumed to be bounded from
below, and the infimum is taken over all pairs (o, m) such that m: [0, 1] — P(T?) is a
continuous map, «: [0, 1] x T4 — R is measurable and (a, m) satisfies in the weak sense

d;m + div(em) =0 in (0,1) x T?,
m0) =pu, m()=v.

Let us insist on the fact that, in general, such a product am is not well defined as a distri-
bution, and thus the precise sense in which the previous equality holds has to be defined
with care, which we postpone for the moment.

This approach is due to Benamou and Brenier [7] and it allows us to interpret the
optimal transport problem as a dynamic optimal control problem, with a terminal state
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constraint, where the controlled state is a measure. As shown in [7], the optimality condi-
tions of problem (1.3) can be expressed through the following system of PDEs:

—du+ H(x,Vyu) =0 in (0,1) x T,
d;m — div(D, H(x, Viu)m) = 0 in (0,1) x T4,
m0) =u, m(l)=v,

where H(x,-) is the Legendre transform of L(x,-), given by

H(x, p) == sup {—L(x,p) —a- pj}.
acR4
Let us remark that in this setting, the fact that the duration of the problem is 1 does not
play any sort of role except for fixing some constants. This last approach is similar to the
use of Pontryagin’s maximum principle in dynamic optimal control.

1.2. Optimal transport through dynamic programming

We give a more dynamical approach, a la Bellman, of the optimal transport problem. The
first thing to be said is that in this approach, the time parameter is crucial. This is of
course obvious since we are doing dynamic programming. We adopt the convention that
the terminal time, i.e. the time at which the target measure has to be reached is 7 > 0.

Let us introduce, formally, the value function U of the optimal transport problem,
defined on (0, T) x £ (T%)2 by

T
U, u,v) = inf/ / L(x,a(s,x))mg(dx)ds, (1.4)
omJy J1d

where the infimum is taken over all («, m) satisfying the same measurability condition as
in (1.3) and such that, in the weak sense,

dsm + diviem) =0 in (1, T) x T?,

m(t) =M, m(T) = V. (1.5)

It is very tempting to analyze such a value function by a dynamic programming approach
and the associated HIB equation. The study of HIB equations is now an extensively stud-
ied topic and we refer to the introduction for related works. The expression of the dynamic
programming principle usually takes the form, for0 < < T —1¢,

t+6
U(t,u,v) = inf{/ /d L(x,a(s,x))ms(dx)ds + U(t + 8, m;4s, v)}, (1.6)
om\ J¢ T

where the infimum is taken over the same set as in (1.4) and m; g is the value of m at
time ¢ + &. To obtain the associated HIB equation, the usual method is to divide by § and
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to let § — 0 in (1.6), under the assumption that U is smooth. Doing so yields
0 = _atU(t5 M, U)

1 t+6
— lim inf{—/ / L(s,x,a(s,x))mg(dx)
8 t Td

§—>0a,m
+/Td DMU(t,u,v,y)-oe(s,y)ms(dy)ds},
where we have used
§TYU(t + 8, myys.v) = U(t, 1, v))
=§1 (U(l + 8, myqs,v)—U(t,mqs,v)

1
+/ / VU, o+ 0(meys — @), v, ) (Mygs — u)(dy)d(?)
0 T4

=—0:U(t,msy5,v) +0(1)

1 t+§8
w07 [ [ Dut o 6mers — 0.9 9) o ) matdy) ds
t

t+§
=0 U ) 57 [ [ DU ) -ty mady) ds + o)),
t

and the fact that the o(1) is uniform in (&, m) along minimizing sequences of the infimum.
We do not insist too much on this assumption which is, in a lot of situations, immediate
to verify given that L grows sufficiently fast with the size of «. Moreover, our aim is to
derive the HIB equation, not particularly to consider smooth solutions of this PDE.
Recalling that U is assumed to be smooth here, we finally arrive at the HJB equation

—3,U(t, pt,v) + H (1. DLU) =0 in (0,T) x P(T%)?, 1.7)

where the Hamiltonian #: P (T%) x (T? — R¢) — R is given by

H(1.6) = [ HGx. £ i)

Note that in order for this Hamiltonian to be well defined, an integrability assumption has
to be made on x — H (x, £(x)) with respect to the measure p.

Remark 1.1. To be precise, we emphasize the fact that, a priori, the Hamiltonian # also
depends on v since the infimum is taken over all admissible controls. Indeed, we have not
yet proven that, given any pair («,m) defined on the time interval [0, §] we can construct an
admissible pair on [0, ¢] which coincides with (c«, m) on [0, §]. This will be the case under
a controllability assumption, namely that from any starting measure p, we can always
transport ¢ toward v in time # in finite cost. This will be the case for most of the problems
we are interested in, but we shall give an example in which this assumption is not verified.
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Moreover, because there is the state constraint at the terminal time 7" that the state
measure 4 has to be transported toward v, we expect that U satisfies

0 if u =v,
U(T,/L,V)Z{ tp=v

+o0o otherwise.

This is always satisfied by the value function since, if @ # v, then the set of admissible
controls is empty and thus the value infinite. However, as we shall see in Section 3, the
behavior of U as t — T might be of a different nature, depending on the nature of the cost
L.

Clearly, in this standard framework, v is fixed and U is simply a function of ¢ and
. In the next section, we shall see why the addition of what is only a parameter here is
helpful to model more general problems.

The approach of studying (1.7) seems equivalent to (1.1). However, the situation
is the same as in standard finite-dimensional optimal control. For several deterministic
problems, the use of Pontryagin’s maximum principle is efficient to provide a complete
mathematical analysis. But for a larger class of problems, it is more convenient to use the
dynamic programming principle and the associated HIB equation; this is in particular true
for the stochastic problems that we are going to introduce later on.

Moreover, as usual in dynamic programming, if one is given a smooth solution U of
(1.7), then a (smooth) closed-loop optimal control &* in (1.4) can be computed using the
derivatives of U by using the formula

a*(t, ju,x) = =Dy H(x, D U(t, ju,x)) in(0,T)x P(T9) x T,

1.3. Warning on the formulation of the HJB equation

The formal computation which allowed us to derive (1.7) holds under a smoothness
assumption on the value function which does not hold in general.

Indeed, if this was the case, then consider the problem of optimal transport which
starts at 4 = &5 for some x € T4 when the time to reach vis ¢ > 0. If U is smooth, then
an optimal control « is given as a smooth function of time and space. In particular, the
induced trajectory, i.e. the unique solution of (1.5), will stay a Dirac mass at all times.
Hence, as soon as the target measure v is not a Dirac mass, we have a contradiction.

The PDE theory is used to derive the equations for smooth functions, and then provide
a weaker notion of solutions. However, we emphasize that the previous derivation might
lead to a dangerous interpretation of the problem as it could lead to restricting the set of
admissible controls. In our opinion, the analogy is very much in the spirit of Kantorovich’s
relaxation. If we restrict the set of admissible controls too much, we might be missing the
only admissible controls. We shall come back to this fact later, as it bears some importance
in the choice of the definition of viscosity solutions we are going to take.
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Example 1.2. In the case of a quadratic cost of optimal transport, i.e. when L(x, p) =
%| p|?, the associated HJB equation is given by

1
—-0;U + 5/ DUt pw, v, x)[> u(dx) =0 in (0, T) x P(TY). (1.8)
Td
In this case, the value function U is simply given by

1
Ult, u,v) = —— WZ(u, v).
(t. . v) 2T = 1) > (1. v)
In particular, U is not smooth; see for instance Alfonsi and Jourdain [2]. In Section 2 we
shall explain in what sense it is a viscosity solution of (1.8).

1.4. Stochastic optimal transport

This section introduces the main problem of interest in this paper, namely a stochastic
version of (1.1). In this general formulation of the optimal transport problem, it may
seem unclear what to do if either the cost function or any of the measures are random.
Hence we focus on the formulation (1.3). We work on a fixed filtered probability space
(2, A, P, (¥1)r>0) which is assumed rich enough to contain independent Brownian
motions.

We want to model the optimal transport of a given measure toward a stochastic target,
in the time horizon 7" > 0. We assume here that the target measure is represented by
an adapted Markovian stochastic process (vs)s>0, valued in P(T%), and the (stochastic)
target is given by vr. The problem we want to model is the following: the controlled state
is a measure, whose value at time ¢ will be denoted p,. At time #, the trajectory (Vs)se[o,:]
is known (obviously we do not know the future values of the target process, as this would
put us in the usual framework). Then we want to minimize a certain cost while transporting
M toward vr.

As usual in stochastic optimal control, some assumptions have to be made on how
the optimization problem takes into account the randomness. To simplify the following
discussion, we assume that the problem is risk neutral, hence the problem of interest is

given by
T
inf E[/ / L(x,as(x))ms(dx)ds},
(at,m) o JT4

where o: Q x [0, T] x T¢ — R? and m: Q x [0, T] — £(T?) have to be measurable
maps which, almost surely in w € €2, satisfy in the weak sense, the continuity equation
d;m + div(em) =0 in (0,T) x T?,
m(O) =M, m(T) = vr,

together with the condition that they have to be adapted processes to the filtration (F7);>o.
We now derive the associated HIB equation for different target processes (V) :>o.
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1.5. HJB equations of stochastic optimal transport

We define, formally for the moment, the value function U by

T
U, u,v) = ((inrg)IE |:/ /Td L(x,05(x))mg(dx)ds

Vv, = v], (1.9)

where the state process (o, m) has to satisfy the same requirement as previously, except
that the condition my = p is now replaced by m; = p. Note that the expectation is con-
ditioned on {v; = v}. Another point of view consists in looking at v as an uncontrolled
state variable of the optimal control problem, that we try to attain at the final time with the
controlled state variable.

Depending on the nature of the process (vs)s>0, different HIB equations arise for the
value U in (1.9). We now give a few examples of such equations.

1.5.1. A constant target process. Observe briefly that in the simplest case in which the
target process (Vs)s>0 is constant, we recover the usual optimal transport problem and the
associated HJB equation is then (1.7).

1.5.2. A Bernoulli-like target process. Consider a case in which at time 7/2, the pro-
cess v is going to take the value v; with probability p € (0, 1) and v, with probability
1 — p. It will then remain constant up to the final time 7. In this context, after the time
T/2, the problem is a standard (deterministic) optimal transport problem, whose value
function we denote by Uge(?, i, V). Because the problem is assumed to be risk neutral,
we can compute the value of the problem at time 7 /2, just before the value of v is revealed.
It is simply given by

U(Zo0) = Pl T ) + (= e Tova). (110)

where Uy, is the value of the associated deterministic optimal transport problem. We can
then compute the value U for time ¢t < T'/2 by using the HIB equation

T
—8,U(t, . v) + JH(1u. D,U) =0 in (o, 5) x P(T4)2,
together with the condition (1.10). Let us remark that, in this setting, the value of the target

process before T'/2 does not matter.

1.5.3. A target process with jumps. Now consider a case in which the target process
(vs)s>0 jumps, at times (S, )n>0 given by a Poisson process of intensity A: [0, T] — R,
from vy, into T vs,, where T P(T9) — P(T?) is a given operator. In such a situation,
the associated HIB equation is given by

—0,U(t, ju,v) + H (. V,,U)
+ AU, w,v)=Ut, n, Tv)) =0 in (0,T) x P(T)>2. (1.11)
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Let us insist upon the fact that this type of target process can cover a wide range of
models. For instance, if 7 is a constant operator, then the framework is quite close to
the previous one and as at most two possible values of the target are possible, the initial
one and its image by 7. Moreover, we could also consider cases involving more general
jumps. For instance, assume that there is an independent sequence of times (5,),>0 given
by a Poisson process of intensity A, associated to an operator 73, such that the previous
rule also applies but also the process jumps according to 75. In this case, the associated
HIJB equation would be

- al‘U(tv M, U) + %(ﬂ’ VILU) + /\(Z)(U(l, M, l)) - U(t’ M, Tl)))
+ @)U, u,v) = U(t, b, Tov)) =0 in (0,T) x P(T?)2.

1.5.4. The target process is pushed by a diffusion. Now consider a case in which the
target process (vg)s>o is given by vy = (tw, )4V for a given v € P(T4) and a process
(Wy)s>o0 (Where t,(x) = x + h is the translation of /). We assume that (W)= is given
as the solution of the stochastic differential equation (SDE)

th :U(t)dBt, (112)

where 0: R4 — R is a given function and (B;);>¢ is a standard Brownian motion on
(2, A, P, (F1)r>0)- In other words, the actual shape of the target measure is fixed by v,
but it is constantly being translated by the process (W;);>o. Using an infinite-dimensional
analogue of It6’s lemma, such as in Cardaliaguet et al. [11] for instance, we deduce that
the HJB equation characterizing the associated value U is given by

o2(1)

— 0:U(t o v) + H (. DuU) =

/ Tr[D2,U]dv ® dv
T2d

2
? 2(’) /d dive (DUt 11 v, X)) v(dx) = 0 in (0,T) x P(T4)2,
T

Contrary to the previous case, the present situation leads to terms involving derivatives of
the value function with respect to the variable v which represents the target measure. This
is a general feature of such problems. In some particular situations, including this one as
we shall see, the problem can be reduced in such a way that those terms do not appear;
however, in a general situation we cannot avoid working directly with them.

Let us remark that, formally, following the computations of Bertucci [8], this HIB
equation can be obtained as the limit of the case with jumps for well-chosen operators 7~
and jump rates A.

1.5.5. The case of a stochastic cost functional. Now consider a slightly different set-
ting. We now assume that the target process (Vy)s>0 is constant and that the randomness is
carried in the cost function L. We assume that this randomness appears through a depen-
dence on the value w of a d-dimensional process (W)s>0 given as the solution of (1.12).
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In this situation, it is natural to consider a value function U which also depends on the
value w of this process. To be more precise, we are considering the value U defined by

T
Ut,u,v,w) = inf E |:/ / L(x,a5(x), W) mg(dx) ds
(a,m) t JTd

Wt = w:|,

where the state process (m)se[o,7] €volves as in (1.9), and the infimum is carried over the
same set.
In this situation, the natural HIB equation satisfied by U is

o2(1)

S AwU =0 in(0.7)x P(T4)? x T4,

(1.13)

—0:U(t, w,v,w) + H(u, D, U, w) —

1.5.6. Reduction of the case in which the target measure is pushed by a Brownian
motion. Equation (1.13) leads us to the following simplification of the case in which the
target measure is pushed by the process (Ws)s>0. Indeed, as we mentioned, the shape of
the final target is fixed at v and thus only a finite-dimensional parameter is sufficient to
characterize it. More precisely, we want to make the formal change of variable

Ut . (tw)av) = U, o, Ws).
This leads to the following HIB equation:

2
t
—8,U(t,u,w)+3€(u,DMU)—UT()AUJU:O in(0,7)x P(T%) x T4, (1.14)

which is thus associated to the slightly more involved terminal condition

0 if o= (Tw)sv,

U(T, p,w) = .
+o00 otherwise.

1.5.7. A comment on modeling. Let us briefly comment on the choice we make to con-
sider value functions as functions of both i and v. There seemed to be a wide range of
models for which keeping this distinction is not necessary: for instance, if the cost func-
tion L does not depend on the variable x € T<. Indeed, in this case, consider the equation
(1.11) and assume that 7" is a translation. Then studying (1.11) is equivalent to studying

—0,U(t. ) + H (1, V,U) + AU, ) — UG, T ) =0 in (0,T) x P(T9).

This could have also been observed on the case of Section 1.5.4, by considering the equa-

tion

o2(1)
2

-3, U(t, ) + H(u,V,U) — / Te[D;,Uldu ® du
T2d

"2(”/ dive (DUt pio %)) p(dx) = 0 in (0,T) x P(T4).
2 Td
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We believe that this type of simplification can be helpful in several cases. However,
it seems that the intrinsic nature of the HJB equation associated to this stochastic optimal
transport by nature involves these two variables: a controlled one which yields a Hamil-
tonian, and an uncontrolled one which yields the term associated to the generator of the
stochastic evolution of the target process.

2. A comparison principle for HJB equations on the set
of probability measures

As we mentioned in the introduction, the aim of this paper is to study the stochastic opti-
mal transport problem by means of the associated HIB equation. Two main mathematical
difficulties arise in this approach. The first one consists in studying the HIB equation itself,
while the second one lies in the characterization of the singular terminal condition. In this
section we focus on the first question and postpone the question of the terminal condition
to Section 3.

Here we establish a general comparison principle for HIB equations on 2 (T %). We
analyze first a pure HIB equation and we then explain how to extend it to HIB equations
associated to stochastic optimal transport problems such as those we mentioned before.
This study is set on more general Hamiltonians than the one we introduced earlier.

The notion of viscosity solution that we introduce is different from the one usually
used in the literature. We believe that the present approach is better suited to studying
a wide range of problems. Furthermore, we justify this notion in the next section when
rigorously defining the value functions.

2.1. Super-differentials of functions on £ (T¢)

Before presenting our notion of viscosity solution, we have to define the notion of a super-
/sub-differential of functions on P (T ?). Even though it is not the notion we are going to
use, we start by recalling a common definition of super-differential.

In the literature, it is said that a function £ € L'((T¢, ), R?) belongs to the super-
differential of U: P(T¢) — R at u € P(T?) if forany i’ € P(T%), = € TIP'(u, '),

Uw') = U(n) + / E(x)- (v —x)m(dx.dy) + o(Walp, 1)) (2.1)

TdxTd

In such a situation we note £ € 3 U(u). The sub-differential 37, U(u) is defined as

clas clas

0. U(n) = —Bgas(—U )(1). When U is a smooth function, one recovers easily that
08 U() = 05, U() = {DpU(w)}-

Recall that TT°P'(y, it') is the set of optimal couplings between p and p’ for the quadratic cost.
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Remark 2.1. Let us insist on the fact that this notion of smoothness views (2 (T %), W,)
as a geometric space whose geodesics are the ones of the optimal transport with cost
c(x,y) = |x — y|?. Indeed, in (2.1), we consider optimal couplings between j and p'.
Looking at P (T¢) as a flat space would lead us to consider super-differentials 8;1’;tU (n)
as the set of ¢ € €(T¢, R) such that for all /' € P(T4),

UG SUGO+ [ #0000 = @0 + o). @)

In this case, we would have BLU (n) = {V,U(wn)} for smooth functions U.

In this article we are concerned with a generalization of the previous notion of super-
differential in the spirit of Kantorovich’s relaxation of (1.2). The simplest way to proceed
is to replace £: T? — R? by a map ¢: T? — £ (R%). Equivalently, we can consider a
measure y € P(T? x R?) whose first marginal is (771)#y = i, where j is the measure
which we are looking at for an element of the super-differential. The correct way to do
so follows the concept of the extended Frechet sub-differential in Ambrosio et al. [5,
Definition 10.3.1].

As in (2.1), when considering the variations of a function U between p’ and p we
have to consider a coupling between the two measures, and not only the difference as in
(2.2) for instance. We are not particularly interested in geodesics here so we shall not ask
for the coupling to be optimal. Hence we are lead to consider the following definition.

Definition 2.2. Given an upper semi-continuous function U: P (T¢) — R, we say that a
measurable map : T4 — £ (R?) is in the super-differential of U at the point s if

e there exists C > 0 such that, for all x € T, the support of ¥ (x, -) is contained in
B(ORd , C),

« forany ' € P(T?), forany y € TI(u, u'), the following holds:

U(w)—-U(p) < /;rld [I;dz-(y—x)W(x,dz) y(dx,dy)

+ 0(([ |x — y|2y(dx, dy)) 2). 2.3)
T2d

Remark 2.3. We here provide some comments on the previous definition:

In this case we note ¥ € 9T U(u).

* The condition on the boundedness of the support of i is too strong at the level of
this definition and could have been replaced by (x — [pa 2V (x.dz)) € L'(p) so that
(2.3) still makes sense. However, since we are working on the bounded set T4, this
condition will not be too restrictive for the rest of the analysis. Moreover, it will greatly
help with the definition of the HIB equation on the elements of the super-differential.
Hence we leave it here for convenience.
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* The inequality (2.3) is a priori only carrying information when the term in the o(-)
vanishes as W (u, u') — 0.

o Ify € 3TU(w), then x — [pa z¥(x,dz) € 35 U(1).
o Iff €3} U(p) then x — 8g(xy € 0TU().

clas

For a lower semi-continuous function U, we define a~U(u) = {x — (=1d)s¥ (x,-) |
Y € 0tU)}.

We now provide what we believe to be an instructive computation around this notion
of super-differentiability. This computation is based on Lions’ Hilbertian approach. Con-
sider a smooth function ®: P(T?) — R, X and Y two T?-valued random variables
on a standard probability space (Q’, A’, P’), such that £(X) = u and £(Y) = u'. We
then want to evaluate the variations of ® along the path (mg)se[o,1] defined by my =
X +sY —X)):

t

O(my) — D) = /0 Ep/[D®(ms. X + (Y — X)) - (¥ — X)]ds
- /0 Ep (D, (. X) - (Y — X)|ds + o(Ep (Y — X[)).

where Eps denotes the expectation on (', 4, P’). Because @ is smooth, it defines a
smooth mapping on the T -valued random variables o: X — ®(£L(X)). In this last com-
putation we see that the derivative D, ® is linked to the gradient of ®. Because P is
smooth, the gradient of ® at X is in fact of the form £(X) for some map &: T? — R¥. The
notion of a super-differential we provided consists of looking for random variables in the
super-differential of ® without any particular restriction, whereas in the super-differential
9% . the random variables in the super-differential have to be functions of X.

The following proposition states the super-differentiability of the squared Wasserstein
distance. For the usual notion, such a result was proven in Ambrosio and Gangbo [4,
Proposition 4.3].

Proposition 2.4. For any i, v € P(T?), y° € TI°P(u, v), consider the measurable map
Y defined almost everywhere by the disintegration (w1, w1 — 72)sy° = u(dx) ¥ (x, dz).
The function ®: u’ — %sz(/x’, V) is such that ¥ € 3T ®(u).

Proof. We consider an arbitrary y € IT(u, 1) and its disintegration y(dx, dy) =
u(dx) k(x, dy). Recall that y° € TT°(u, v). Hence, [ps y°(dx, dy) k(x,dz) is an
admissible coupling between ' and v (where the previous integral is taken with respect
to x only). Thus, by definition of P,

20(4) — 20(1) < / v — 2P y°(dx. dy) k(x.d=) — / Ix — 2 y°(dx. dy)
TSd T2d

=/ ly —x +x —z” — |x — 2| y°(dx,dy) k(x, dz)
T3d
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= 2/T3d(y —x)-(x —2) y°(dx,dy) k(x,dz)
+/W ly — x|? y(dx,dz),

from which the result follows. Remark in particular that since T4 is bounded, the bound
on the support is indeed verified. ]

This result of everywhere super-differentiability justifies the use of the 2-Wasserstein
distance in the argument of doubling of variables that we are going to make later to obtain
a comparison principle.

Remark 2.5. The previous result can be interpreted in the probabilistic or Hilbertian
approach. It states that, given an optimal coupling (X, Y) for the quadratic cost between
n and v, we can consider an element of the super-differential of ® which is constructed
on the random variable X — Y and not juston X — Ep/[Y | X].

Another advantage of this definition of super-differential is that it makes the link with
the so-called Hilbertian approach more transparent. Let (/, 4’, P’) be an atomless stan-
dard probabilistic space and K be the set of T¢-valued random variables from this space.
We have the following result.

Proposition 2.6. Consider a usc function U: P (T4) — R. Define U:K—>R by U (X)=
U(£(X)). Take X € K and assume that Z € L2(2,R?) is such that for all Y € K,

UY)<UX)+Ep[Z- (¥ = X)] +o(\/Ep[|X —Y|?]).

Now consider a function y: T4 — P (R?) such that
£(X,Z)(dx,dz) = £(X)(dx) ¥ (x,dz).
Then € 3T U(L(X)).

Proof. Set u = £(X). Take y € I1(u, u') and disintegrate y(dx,dy) into u(dx) k(x,dy).
Consider ¢: T4 — £ (R?) such that £(X, Z)(dx, dz) = u(dx) ¥ (x, dz). Now con-
sider (X’,Y’, Z') such that £((X’,Y’, Z"))(dx, dy,dz) = u(dx) ¥(x,dz) k(x, dy).
Thanks to classical results, we can in fact consider a sequence (X, Yy, Z»)n>0 such that
L((Xn, Yn, Zp))dx,dy,dz) = p(dx) ¥ (x,dz) k(x,dy) and || (Xn, Zn) — (X, Z)|loo <
n~1. Tt holds that

U) =UY,) U +Ep[Z- (Yo = X)]+o(\JEp[[X = Ya?]). (24
On the other hand,

|E]P’/[Z : (Yn _X)] _]EIP’/[Zn . (Yn _Xn)]| m 0,

Ep[|X = Ya’] — / lx =y y(dx, dy).
- T2d



C. Bertucci 1560

and
EpZy- Yy — Xp)] = / z-(y —x)¥(x,dz) y(dx,dy).
T2d xR4
Hence, the result follows from passing to the limit n — oo in (2.4). |

Remark 2.7. In other words, we have elements of the super-differential of U which
describe all the elements of the super-differential of U.

We end this section by explaining with a simple example how to consider the super-
differential of functions of more variables than a measure pu € P(T¢). For instance,
consider the case of an additional time variable. Given T" > 0 and a usc function U: [0, T'] x
P(T?) — R, wenote (6, y) € dTU(t, p) if

Us. 1) < Ul ) + 0(s — 1) + /T fR 2o (y = ) ¥ (x.d2) y(dx. dy)

+0(|s—t| + (/TN |x—y|2y(dx,dy))2),

forany s <t, u’ € P(T?),y € I(u, i'). Similarly, we introduce 9~ U(z, i) = {(—6,x —
(—1d)syr (x,9) | (0,9) € 3+ (=U)(t, w)}-.

We are now able to define viscosity solutions of (2.5).

2.2. Statement of the problem and definition of viscosity solutions

In this section we want to prove a comparison principle for HIB equations of the form
3, U(t, ju) + H(t. ;0. DLU) =0 in (0,00) x P(TY), (2.5)

where #: R, x P(T%) x (T4 — R¢) — R is given by
Tt 1. 6) = /T H( 1, E ) (),

where H: Ry x T x £(T?) x R? is given. Throughout this section, we shall assume
that the following hypothesis holds.

Hypothesis 1. The Hamiltonian H satisfies

* H is globally continuous;

e there exists C > 0 such that for all p € R?, s,t e Ry, u,v € P(T?), x,y € RY we
have

|H(t, x, u, p) = H(t, y,v, p)| = C(1 + [pD(|r = 5] + W2 (i, v) + |x = y]).

Let us insist upon the fact that, to simplify this section, we have reversed the sense of
time compared to the HIB equations derived in Section 1.
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As mentioned earlier, the candidate expected to be a solution of (2.5) is in general not
smooth and we have to define a notion of weak solution. The natural techniques to study
HIJB equations such as (2.5) come from the theory of viscosity solutions. The approach we
provide here is somehow close to that of Marigonda and Quincampoix [40] in the sense
that we provide an intrinsic proof of a comparison principle, and it is also close to the point
of view of Lions’ Hilbertian approach, also presented by Gangbo and Tudorascu [31], in
the sense that the notion of viscosity solution we are going to provide relies on ideas from
this Hilbertian lifting. However, our result is more general than the ones of Marigonda and
Quincampoix [40] and Gangbo and Tudorascu [31] because of the generality of equations
we are able to treat. Moreover, we believe the proof we provide to be simpler.

In our definition of super-differential, an element of the super-differential (with respect
to the measure variable) is a map T¢ — £ (R?) and not simply a function T4 — R,
Thus, we have to specify how we want to evaluate # on such elements. We introduce here
H:Ry x P(T?) x (T? - P(RY)) — R defined by

ﬁ(wmﬂ)=/d

TaxR

. H(t, x, p, y) p(dx) ¥ (x,dy),

and we shall work with the following definition.

Definition 2.8. A usc (resp. Isc) function U: R x P(T9) — R is a viscosity sub- (resp.
super-) solution of (2.5) if, for any ¢ > 0, € £(T%) and (8, ¥) € T (U) (¢, ) (resp.
a~U(t, n)) the following holds:

O+ H(t, u, ) <0 (resp. > 0).

A viscosity solution of (2.5) is a locally bounded function such that U* is a viscosity
sub-solution and U, is a viscosity super-solution.

Remark 2.9. The term # (¢, 1, V) is well defined because by definition of the super-/sub-
differential, ¥ (x, dz) has bounded support in z € R¢, uniformly in x € T¥.

Remark 2.10. The choice we made to consider # is not trivial. It will be justified in
Section 4 when proving that the value function of the stochastic optimal transport is indeed
a viscosity solution of the HIB equation.

The main advantage of this notion of viscosity solutions, by comparison with others
in the literature, is that it provides, relatively easily, a comparison principle, as we shall
now see.

2.3. Comparison principle and uniqueness of viscosity solutions

As usual in the theory of viscosity solutions, uniqueness of solutions, L°° estimates and
other stability properties come from a comparison principle. We now establish such a
result.
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Theorem 2.11. Under Hypothesis 1, assume that U and V' are, respectively, viscosity
sub- and super-solutions of (2.5) such that for all p € P(T?), U0, u) < V(0, w). Then
forallt >0, € P(T?), we have U(t, ) < V(t, j1).

Following the standard ways to establish a comparison principle, we are going to use
the technique of so-called “doubling of variables”. We now formally present this tech-
nique. The proof of the theorem is postponed to the end of this section. In this setting on
!P(Td), we introduce, for ¢ > 0, the function

1
([,S, M, /’L/) - V(S, /’L/) - U(Zv /’L) + 2_8((t _S)2 + W22(/'Ls ,bL/)),

Arguing by contradiction, we shall consider a point (z*, s*, u*, v*) of minimum of this

function. Then, using Proposition 2.4, we shall prove that 3T U(¢*, u*) and 9~V (s*, v*)
are non-empty. More precisely, we shall be able to consider two elements, one in each of
those sets, with some relation between them.

The next, final and main step of the proof consists in arriving at a contradiction by
taking the difference of the viscosity relations, i.e. the relations given by the fact that U
is a sub-solution and V' a super-solution. Before presenting the proof of the final step, we
prove the lemma that we are going to use in order to consider elements of 3T U(t*, u*)
and 0~V (s*,v™).

Lemma 2.12. Consider a usc function U and a continuous function ® on Ry x P(T?)
and (t, 1) € (0,00) x P(T?), a point of maximum of U — ®.
Then (0, ) € 3T @(t, n) = (6, %) € 37U, ).

Proof. Take t > 0, u € P(T?) such that (¢, ) € argmax{U — ¢} and also (9, V) €
T ®(r, ). Forany s <t, ' € P(T%) and y € TI(1, i),
U(s, ') =U(t, ) < (s, p') — (2, )

se<s—z>+/w Adz-(y—xwa,dz)y(dx,dy)

+0(|s—t|+(/T2d |x—y|2y(dx,dy))2) n

We are now ready to prove the main result of this section.

Proof of Theorem 2.11. Assume that the result does not hold. Hence, there exist T,k > 0
such that
inf  V(,p) - U@, pn) < —x.
t<T
neP(T?)
Thus, there exists p > 0 such that for any ¢ > 0,

inf  V(s, ') = U(t, p) + zig ((t —5)> + Wi (. 1)) + pt + ) < —g. (2.6)

t,s<T,u,u’
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Since U is usc and V Isc, the previous infimum is reached at some point (g, S¢, ie, i),
because we are minimizing an Isc function on the compact [0, 7]? x P (T ¢)2.

Step 1: Using the viscosity properties. First we treat the case t,, s; > 0. Take y? €
TT°P'(u1e, f12) and denote Ye: T4 — P (R¥) such that

(1,67 (1 — 72))p ¥ (dx, d2) = pe(dx) Yo (x, d2).

From Proposition 2.4 and Lemma 2.12, we obtain that

{ (p+ e 1 (te — 55), Vo) € 3T U(te, 1),
(=p— g ! (5e —1e), Ve) € 07V (se, M/g)

Since U and V are respectively sub- and super-viscosity solutions of (2.5), we deduce that

x_
p+‘971(t€_s6‘)+/\ H(té‘axvl“té‘» y)Vg(dx»dY)f(),
T2d &

and that

_ xX—y
—p—¢ l(ss—ts)—i-/;FZdH(sg,y,u/s,T) y2(dx,dy) > 0.

Step 2: Standard estimates. Taking the differences of the two previous inequalities leads
to

2p < /W H(se,y, ™ (x = ) 2 (dx, dy)
~ [, HOex e = ) 2 )
T2d
Using the regularity assumptions we made on H, we deduce that
20 =€ [ e =sul+ b= 1+ Walue, )1+l = 51) 22, dy)
< (e W20 + (=i + Watieesie™ [ 1= yivzianan)).

From standard estimate techniques of the method of doubling of variables, see for instance
Crandall et al. [17], we know that
(t: — 5¢)* sz (e Ihe)
—_ —=

07
€ &

0, ase—0.

Hence, if the previous inequality holds for all ¢ > 0, we arrive at a contradiction by taking
the limit ¢ — 0, since p > 0 was fixed independently of ¢.
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Step 3: The minimum is at the boundary t = 0. From the previous step, we deduce that, for
& small enough, the minimum is in fact reached at a point such that either s;, = O or z, = 0.
Since, we obtain from (2.6) that limg— 1 (t — 5¢)? = limg—g £ W (ie, ) = 0, we
deduce that lim,_,¢ f; = lim,—¢ s¢ = 0. Moreover, extracting a subsequence if necessary,
there exists pto, the limit of both (ue)e=0 and (i})e>0. Hence, using the lower semi-
continuity of V' and the upper semi-continuity of U, we deduce that

. 1
V(O» l‘LO) - U(05 /"LO) S llggf V(lé" /‘1’8) - U(SS’ /"L::;) - Z((IEJ - 55)2

+ sz(ﬂa» ﬂ;)) —a(ts + s¢)

The previous inequality clearly being a contradiction, we finally deduce that the theorem
is true. |

Remark 2.13. In the above, we omitted to treat the particular case in which the minimum
is reached for either 7, or s. equal to 7. This raises no difficulty. It can be treated by
either adding a term of the form &’(T — ¢)~! for some &’ € R and then letting &’ — 0 or
simply changing the notion of super- (or sub-) differential in the ¢ variable, so that only
perturbations with smaller time are taken into account.

The next uniqueness result easily follows from the comparison principle.

Theorem 2.14. Under Hypothesis 1, given a continuous initial condition Uy, there exists
at most one viscosity solution U of (2.5) such that for all u € P(T?), U*(0, u) =

Uo() = Ux(0, p).

Proof. By considering two such solutions U and V, using the comparison principle, we
immediately arrive at the fact that V' < U < V, which proves the claim. [

More generally, we can use the comparison principle to establish stability results or
L®° estimates. For instance, the following is an immediate corollary of Theorem 2.11.

Corollary 2.15. Under Hypothesis 1, consider a viscosity sub-solution U and a viscosity
super-solution V of (2.5); then t — max, {U(t, u) — V (¢, n)} is non-increasing.

2.4. Extensions to other HJB equations

We now explain how to make use of the previous results, or more precisely of their proofs,
to study equations (1.11) and (1.14).

2.4.1. The case of jumps. We focus here on (1.11). Formally, it suffices to remark that
the terms in A in (1.11) do not involve derivatives of the solution and thus are quite easy
to treat. Moreover, the fact that the functions depend here on two measures instead of one
does not perturb the previous argument as we shall now see. The definition of viscosity
solutions of (1.11) takes the following form.
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Definition 2.16. A usc (resp. Isc) function U: [0, T] x £ (T¢)?> — R is said to be a vis-
cosity sub-solution (resp. super-solution) of (1.11) if forany # € [0, T), ut, v € P(T?) and
(0.9.y") € 37 U(t, p,v) (resp. € I~U(t, 1, v)),

—0 4+ H(t, ) + AU, v) —Ut, 0, Tv)) <0 (resp. > 0).

A viscosity solution of (1.11) is a locally bounded function U such that Ui is a viscosity
super-solution and U * is a viscosity sub-solution.

Remark 2.17. Of course, the existence of an element in the super-differential in the v
variable is useless here, and could be removed.

As in the previous case, a comparison principle can be stated.

Proposition 2.18. Under Hypothesis 1, assume that U and V are respectively viscos-
ity sub- and super-solutions of (1.11) such that for all u, v, U(T, u,v) < V(T, u, v)
and such that they are both bounded functions. Assume also that A is a continuous non-
negative function and that T is Lipschitz continuous for Wa. Then for all time t € [0, T']
and measures i, v € P(T?), we have U(t, ju,v) < V(t, i, v).

Proof. We only explain how the addition of the term in A perturbs the proof of Theorem
2.11. As in the previous proof, we consider the function

Z(t,s, v, 1 V)=V, u,v)—U(s, ', v')

+ i(Wf(u, 1)+ W2 )+ (t —5)%) + pQT — 1 — ).

Considering a point of minimum (Z, S¢, e, Ve, ,ug, vé) of Z,if t;,s¢ < T, and arguing
exactly as we did before, we easily arrive at

20 4 A(se) (U(se, g, vg) — Ulse, p, Tvp)) — Ate) (V (te, e, ve)
- V(te, He, Tve)) <o(1),

where the right-hand-side term vanishes as ¢ — 0. Let us compute

A(se)(U(se, U;’ V::) Ufse, /vLy g)) Ate)(V(te, e, ve) — V(te, pe, T ve))
> —C|A(te) — Alse)]
+ A(Sg)(U(Sg, H’e’ s) - U(SS» /’l’sa ) - (V(té" Me, Vs) V(t€v He, TUS)))

_CM(ts) - )L(Ss)| + A(Sa) (Wz (Ve, Vg WZZ(TVS» TV;,))

v

A%

—CIA(te) — Alse)| — A(Sa) W2 (Ve V

where L is the Lipschitz constant of 7. Remark that in the previous inequality, C only
depends on the bounds on U and V. The limit of the last lower bound in the previous
chain of inequalities is 0 as ¢ — 0. Indeed, as in the previous proof of the comparison
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principle, we also recover that limg_,¢ S¢ — f; = limg—¢ g1 sz(vs, v;) = 0. Hence, using
the continuity of A we obtain the required result by following the same argument as in the
proof of Theorem 2.11. ]

2.4.2. The case of a target measure being pushed by a diffusion. We now turn to the
case of (1.14). This equation being of second order in w, the definition of a viscosity
solution is more involved. Indeed, because we are interested in viscosity solutions of a
second-order HJB equation, we need to introduce super-jets. We only consider particular
forms of super-jets, namely only ones which are of interest for our problem, which is only
of second order in the w variable.

For a function U: [0, T] x #(T%) x T¢ — R, and (¢, u, w) € [0, T) x P(T%) x T4,
the super-jet J*(U)(¢, u, w) of U at (¢, u, w) is defined as the set of (6, ¥, p, X) €
R x (T4 - P£(R?)) x R? x Sz(R) such that forany ¢’ > ¢, u’ € P(T%), w € T and
y € I(p. 1),

UWM%M5U@mwﬂﬂw—ﬂ+AMA/%U—wﬂMﬂww@dﬂ

+p- W —w) + @ —w)- X - —w)

1
2
+0(|t’—t| + (/Zd |x —y|2dy(dx,dy)) + Iw’—wlz).
T

Note that this notion of a super-jet might not seem to be the most natural at first glance,
since we omitted the cross derivatives terms involving w and ¢ or , which reduces to con-
sidering only super-jets in which those elements vanish. However, this notion is sufficient
for the analysis we provide here, in particular because of the doubling of variables we are
going to take.

As we did for super-differentials, we define

J_(U)(t7 H”w) = {(97 y’ an)7(_97(x_)(_Id)#l/[(x’))7_p7_X)€J+(_U)(t7 H’»w)}
We can now introduce the notion of viscosity solutions of (1.14).

Definition 2.19. A usc (resp. Isc) function U is a viscosity sub-solution (resp. super-
solution) of (1.14) if, for any (¢, w, w) € [0, T) x P(T9) x T4, (6, v, p. X) €
JHU)(t, o w) (resp. J=(U)(E, . w)),

o2(1)
2

—0 4+ H(t, ) — Tr(X) <0 (resp. > 0).

A viscosity solution of (1.14) is a bounded function U such that U, is a super-solution
and U™ is a sub-solution.

Once again, a comparison principle result holds for this type of equation.
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Proposition 2.20. Assume that in addition to Hypothesis 1, there exists C > 0 such that
forallt € [0,T], x € T4, ue P(T?), p € RY,

|H(t,x, . p)| < C(1+ |p|*),

2.7)
|DpH (1, x, . p)l = C(1 + [p]).

Let U and V be respectively a bounded viscosity sub-solution and a bounded viscosity
super-solution of (1.14). If U(0, u, w) < V(0, u, w), then U < V.

Proof. As usual in viscosity solution theory, we argue by contradiction and we assume
that there exist «, p > 0, such that for any & > 0,

. 1
inf{ V(s 1/ w') = UGt pow) + 3= ((0 =) + W20 w) + [w = w'?)
+ p2T —t —s)} < —k,

where the infimum is taken over all s,z < T, w,w’ € T4, u, ' € P(T?).

Step 1: Reformulation of the problem in the Hilbert space. As (1.14) involves second-
order terms, we need a priori to use similar techniques to [17] to conclude. Hence we
build on Lions’ Hilbertian approach to transform the problem.

Let us consider an atomless probabilistic space (Q’, A’, P’) and define I7(I, X,w) =
V(t,Epa(X),w)yand U(t, X, w) = U(t, Lpa (X), w) for X € L2(',R?), and where, for
the rest of this proof, for X € L2(Q/,R?), L4 (X) = L£(pya (X)), where ppa: R — T4
is the natural projection. Recall that L2($2’, R¢) is a separable Hilbert space.

We can now consider

O, 5, X, Y, w,w):=V(s, Y, w)— U@, X, w)

1
+ Z((l — ) +EplIX =Y P] + jw—w'[)

+pQRT —t —s) + a(n(X) + n(Y)),

where 7(X) := /1 + Ep/[| X |?]. We obtain that, for « > 0 sufficiently small,

inf{®(t,5, X, Y, w,w)) | £,5,< T, X,¥ € LAQ,RY), w,w' e T4} < —g.
Thanks to Stegall’s lemma [48], we know that for any § > 0, there exist B, B2 € R,

Z1.Z € L2, RY), |11, 1B2). Ep/[|Z1*]. Epr[| Z2/?] < § and
@(t,s,X,Y,w,w')+IEPr[Z1 'X+ZZ'Y]+,81l+ﬂ2S

has a unique strict minimum at point (7, 3, X.Y,w,w ). The case in which the minimum
isreached for7 = T or s = T can be treated as in the proof of Theorem 2.11 to arrive at
a similar contradiction and we do not reproduce it.
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Hence we assume that 7,5 < T. Our goal is to use Lions [37, Lemma 4] to consider
appropriate elements in the super-jets. Note that the function we consider is not defined on
an Hilbert space a priori but since [37, Lemma 4] is only a local result, we can consider that
itis the case since [0, 7] x T is locally similar to R+, We now consider an orthonormal
basis of R x L2(€’, R4 ) X R4 such that the first d elements are given by (0,0, ¢;), where
the (e;) are the elements of the canonical basis of R4, Finally, using [37, Lemma 4], we
obtain that there exist

e two matrices S, S’ € Sz (R) such that S < §’,

« asequence (I, Sn, Xn, Yn, Wy, W), )n>o converging toward (7, 5, X.Y.w,w),
» asequence (wn, W), En, &), Pn, Phys An. Bn)nx>o converging toward 0,

such that?

Bi—p+e ' (=35 +wne (X =Y)+ & + Z1 +aVn(X),
e N @ — ') + pn. S + An) € IO (tn, Xn, wn),

(Ba+p+e (=5 +w,e " (X=Y)+§& —Z—aVn(Y),
e '@ —w')+ p). S+ By) € J(V)(sn, Yo, w)).

(2.8)

Step 2: Coming back to the original formulation. Thanks to Proposition 2.6, (2.8) implies
in particular that

Br—p+e ' (=5 + o Yn.e " (@—0)+ pn. S + An)
€ JHU)(tn, Lya(Xn). wn).

(—Bo+p+e ' G—5)+wp n.e " (W—)+ p,.S + Bn)
€ J7(V)(sn, Lpa(Ya), wp),

where v, and ¢, satisfy

L(pra(Xn), e (X =Y) + & + Z1 + V(X)) (dx,dz) = Lpa (Xn)(dX) Yn(x, d2),
L(pra(Yn) e (X =Y) + &, — Zo —aVn(Y))(dx,dz) = Lya (Ya)(dy) gn(x, dz).

Using the fact that U is a sub-solution of (1.14), we obtain that
o — 1
p—e ([ =5) = Br + on + H(tn, L1 (Xn). Yn) = S Te(S + 4y) <0, (29)
Using the fact that V' is a super-solution, we obtain that

_ — 1
—p—& Nt —=35) + Ba + @, + H(sn, Lpa(Yn), o) — 3 Tr(S" + B,) > 0.  (2.10)

2We use the equivalent notation for the standard super-jets of the functions U and V to avoid introduc-
ing a new one.
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Let us compute

| (t, Lpa (Xn). V) — Ep/[H(E . pra(X), £pa(X).e (X =Y) + Z1 + aVn(X))]|
= |Ep/[H(tn. pra(Xn). £1a(Xn). e (X =Y) + & + Z1 + aV(X))]
—Ep/[H(, pra(X), £1a(X),e (X = Y) + Z1 + aVn(X))]].

From the growth assumption on A and the dominated convergence theorem, we deduce
that the previous difference vanishes as n — co. Hence we can pass to the limit n — oo
in (2.9) and (2.10) and we obtain

p—e (i—5) - B
+ Ep[H(E, pra(X), E£pa(X), e (X = Y) + Z; + aVn(X))]
— lTrS <0,
2
—p—e (i —5)+ B2
+Ep[HG, pra(Y), Lra(Y),e (X =Y) = Zr —aVn(Y))]
— %Tr S’ > 0.

Step 3: Standard viscosity solution estimates. Taking the difference of the two previous
inequalities yields

2p < P14 B2 + Ep[H (@, pra(X), £pa(X), e (X = Y) + Z1 + aV(X))]
—Ep[HG, pra(Y), Lpa(Y), e (X =Y) = Zo —aV(Y))].
Recalling Hypothesis 1 and (2.7), we can estimate
H(i, ppa(X), £1a(X), e (X =Y) + Z1 + V(X))
—HG, pra(Y), Zpa(Y), e (X = Y) = Zo —aVn(Y))
= H(i, pra(X), Lpa(X), e (X =Y) + Z1 + aV(X))
—HG, pra(Y), Zpa(Y), e (X = Y) + Z1 + aV(X))
+ HG, pra(Y), Lpa(Y), e (X = Y) + Z1 + V(X))
—HGE, pra(Y), Zpa(Y), e (X = Y) = Zo —aVn(Y))
<C+ e X =Y)+ Z; +aVn(X)))
x (|f = 5|+ Wa(L(X), £(Y)) + | X =T
+CU+ M X =VD(Z1 +aVn(X) + Z2 + aVn(Y))),
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where the last line is obtained by assuming that &, § < 1, which we can do without loss of
generality. We then deduce that

20 = P1+ Bo+ CEp(1+ 67 [T = FIX = 7| +17 =5 + Ep[IX - 7] |
+ CEp[(1+ X =Y D(Z1 +aVn(X) + Zy + aVn(Y)])].

From the same argument as in the proof of Theorem 2.11, we obtain that the third term
on the right-hand side vanishes as ¢ — 0, uniformly in « and 8, recall that § measures the
sizes of B1, B2, Z1 and Z,. From the Cauchy—Schwarz inequality we finally deduce that
the second term of the right-hand side is bounded by

c(1 e Ep [ X — 17|2])(5 +a).

Hence, taking the limits § — 0, then &« — 0, then ¢ — 0, we conclude that 2p < 0, which
is a contradiction.
In conclusion, we have indeed proven that U < V. [

Remark 2.21. The growth assumptions on H specified in the statement of Proposition
2.20 seem to be removable by the use of techniques which are not particularly new to
viscosity solution theory. However, since such questions are not the core ones of our paper,
we leave them for future research.

These comparison principles are essential tools to characterize functions as viscosity
solutions of equations of the form (1.7). If the terminal conditions in our problems were
continuous functions, the previous results would be enough to develop a proper theory of
(1.7). However, because of the singularity that we expect at the origin, we shall have to
characterize the behavior of the solution near t = T to have proper comparison principle.
Namely, we shall use the following result.

Theorem 2.22. Under the assumptions of Proposition 2.18, consider U and V, two vis-
cosity solutions of (1.11), locally bounded in [0, T) x P(T%)? such that

lim sup |U(@, u,v)—V(t, nv)| =0.
=T | vep(T9)

ThenU = V.

Proof. By a symmetry argument, it is sufficient to prove U < V. Assume that it is not the
case, hence that there exist « > 0 and ¢ € [0, T), ut, v € P(T¢) such that

U, u,v)=V(t, un,v) > k.

Take § > 0. By exactly the same argument as in the proof of Proposition 2.18, we deduce
that there exists p > 0, such that for € > 0 small enough, the minimum of the function

@, s, v, 1/ V)= Ve, u,v) —U(s, 1/, V)

+ i((z — )2+ W2, ') + WEW. V) + pQT —s —1)
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on the set [0, T — §]2 x P (T?)*, is reached for either t = T —§ or s = T — § (recall that
U and V are both bounded on [0, T — §] x & (T%)?). Taking the limit ¢ — 0, we deduce
that
sup  U(T =6,u,v)—V(T =6, u,v) > «.
w,weP (T9)

Taking the limit § — 0, we obtain a contradiction and thus the result is proven. ]

The same type of result obviously holds true for (1.14).

2.5. Comments on our notion of viscosity solution

In recent years, the study of HIB equations on the set of probability measures has been
the subject of many works which have failed to establish general comparison principles
for HIB equations associated to stochastic problems. On the other hand, the study of HIB
equations set on a Hilbert space is a problem which is for the most part solved at the
moment, except of course for new singular problems.

We believe that our approach provides a link between the two problems, namely
through the notion of a super-differential which we have chosen. In our opinion, this is
a strong justification of the so-called Hilbertian approach developed by Lions, originally
to study the mean field games master equation.

Recall that, in this approach, a probabilistic space (Q2', A', P’) is fixed, and the study
of (2.5) is replaced by the study of

30U +Ep[H(t, X, £(X),VU) =0 in(0,00) x L%(Q',RY),

where formally we have made the change of variable U (X) = U (L1 (X)).

This approach hints strongly at the notion of a super-differential that we took. But
maybe more importantly, it provides an interpretation for this HIB equation in the Hilbert
space. Indeed, the Hilbertian approach can be interpreted as a process of labeling all the
elements of mass of the measures, namely by labels w € 2. This procedure allows us to
split mass, by assigning to the elements w and o’ different velocities Z(w) and Z(w')
even if they are in the same location, that is, X(w) = X(w’), which is very reminiscent of
Kantorovich’s relaxation of the optimal transport problem. We come back to this kind of
interpretation in the next section.

Remark 2.23. In the choice of super-differential we made, everything could also have
been true by using not only a coupling between u’ and w, but a coupling I'(dx, dy, dz)
between p/(dy) and p(dx) ¥ (x, dz). Such that we could have said that ¥ € 9T U(u)
if forall T € P(T¢ x T4 x R?) such that (7, 73)4 ['(dx,dz) = u(dx) ¥ (x,dz) and
(m2)+'(dy) = p/(dy), it holds that

z-(y—x)T'(dx,dy,dz)
d

xR

UW) < Ulw) + /T 5

2
—i—o((/ |x—y|2F(dx,dy,dZ)) )
T2d xR4
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3. Bounds on the value of the stochastic optimal transport problem
near the singularity

We start by properly defining the value function formally introduced in Section 1. We
then prove precise estimates on the behavior of the value function U near the singularity
at terminal time.

3.1. Definition of the value function

In this section we mainly focus on the value function of the deterministic problem intro-
duced formally in (1.4). We shall consider a non-negative cost function L: T4 x R4 — R,
on which assumptions will be made later on, depending on the framework which we study.

The main difficulty in defining the value function lies in the definition of the set on
which the infimum is taken in (1.4). Indeed, without regularity constraints on ¢« and m, it
is not clear how to evaluate the derivative of the product. Furthermore, o and m have to be
such that the integral which yields the cost is indeed well defined. These difficulties make
it difficult to talk about « as the control and about m as the state, as given a control, it is
not clear how to define the state, as multiple solutions to the continuity equation can exist.

In order to address this issue, in [7], Benamou and Brenier introduced a reformulation

of the problem (1.3) into
T
E;
inf L{x,— dx)dt,
}’:lr,lE/(; /’;I‘d (x m,)ml( X)

under the constraint that (m, E) solves in the weak sense

dm + div(E) =0 in (0,T) x T?, -

m@0)=pn and m(T)=v, 1)
and where L(x, %) is set to +00 as soon as E <« m is not satisfied. This (fruitful)
approach allows us to solve the problem of the singularity of the product am. However,
we claim that we can introduce another way to evaluate the cost of the trajectory given by
the solution of (3.1), which we believe turns out to be simpler to interpret.

Our main idea consists in saying that different “controls” can give the same evolution
of the state but should yield different costs. To illustrate this, consider the following sit-
uation. The cost L is simply given by L(x, p) = | p|?. The initial state and the terminal
constraint are both equal to 1, the uniform probability measure on T¢. Now consider the
optimal control which consists in choosing & = 0. The associated cost is clearly 0. Now
consider the inefficient and formal control which consists in assigning to each particle, or
element of mass, a constant speed chosen uniformly in the ball B(Og«, 1) and indepen-
dently from one another. Clearly, by a symmetry argument, such a control is also admis-
sible and also induces a constant state. However, it is very tempting to say that its cost is
positive.
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To make this heuristic more precise, we introduce a problem in which the “control” is
now a measurable function ¥: [0, T] — (T4 — £ (R?)). The measure /s (x, dz) is then
interpreted as the repartition of speed we provide to the elements of mass located at x at
time s. We want to consider a “state” which is given as a solution of

d;my + divy (/d z w,(x,dz)m,) =0 in(0,T)x T, (3.2)
R

The previous equation is the natural PDE to characterize the density of particles evolving
with a repartition of speed . We then want to evaluate the cost of such a pair state/control
by

T
/ / L(x,z) Y (x,dz)ms(dx) dt.
0 JT4xR4

Note that we can set E; (dx) := [pa zm;(dx) ¥;(x,dz), in which case (3.2) is of the form
of (3.1). We can also set & (x) = [ga z ¥ (x, dz) to realize that (3.2) has the exact form of
the usual continuity equation. In fact, we have not changed the admissible trajectories but
rather how to evaluate their cost. We are now ready to properly define the value functions.

The value function of the deterministic problem Upge: [0, T') x P (T?)2 — R is defined,
fort < T, v € P(T?), by

Uget(t, 1, v) = inf /Tf L(x,z2)¥s(x,dz)ms(dx) ds, 3.3)
W.m) J;  JTdxRE

where the infimum is taken over all pairs (¥, m) such that

e me€(t,T],P(T%)), andm; = pu, mr = v,

o Y, T] x T¢ - P(R?) is a measurable map,

« the pair (y, m) satisfies (3.2) in the weak sense, i.e. for all ¢ € €!([t, T] x T4, R),

/ (T, x) v(dx) — / o(t.3) (dx)
Td Td

T
= / / (attp(s,x) + / zYs(x,dz) - wa(s,x)) mgs(dx)ds.
t Td R4

We denote the set of such pairs by Adm(z, i, v).

Concerning the value function of the stochastic optimal transport problem, recall that
we have fixed a filtered probabilistic space (2, 4, (¥7);>0. P) and a Markovian, £ (T¢)-
valued process (v¢)s>o. The value function U: [0, T) x P(T?)? is defined for t < T,
w,v e P(T, by

T
U, u,v) = inf E [/ / L(x,z)Ys(x,dz)ms(dx)ds
(¥.m) t JTdxR4

vy = vi|, (3.4)

where the infimum is taken over all the pairs of random variables (¥, m): Q —
U, Adm(z, u, v') which are adapted to the filtration (¥5)s>; and which are such that,
P-almost surely, on the event {v; = v}, we have mr = vr. We denote this set by
AIM™ (¢, 1, v).
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Remark 3.1. The definition is exactly the same in the case in which we can make a
reduction of variable by replacing v by w.
3.2. On the choice of the cost functional

We explain here, with three simple examples, the effect of the growth of the cost functional
on the type of behavior we may expect near t = T, in the case of a deterministic problem.
Such behaviors are well known in optimal control theory and we shall pass through these
examples quite rapidly.

3.2.1. Cost functional with linear growth. Assume that the cost function L is given by
L(x,a) = |of.
In this context, if we are concerned with (1.7), observe that for any ¢ € [0, T'],

Uge(t, . v) = Ugel(T — 1, ., v) = Wi (i, v).

Indeed, for any (¢, i, v), take an admissible pair (¥, m) in Adm(z, u, v) and consider
& < T —t. Remark that the pair (', m’) defined by
v = 14y
s T —t—¢ ¢(S)’
ms = mes),

where ¢(s) = TT_:L -(s — 1 +¢) + 1, belongs to Adm(s + ¢, 4, v) and that moreover
they have the same cost. This implies that Uge(Z, £, v) > Uge(t + &, i, v). The inverse
construction yields the opposite inequality.

In this situation, the cost is sufficiently low for high controls to allow the value to be
bounded uniformly in time. The state constraint is then very easily achieved and there is
no singularity at the terminal time.

If such situations may themselves be interesting, we believe that from a modeling
perspective, they are not the most interesting ones, as the problem of the controller does
not get harder as the remaining time shortens. It is not even clear it depends on time. We
do not detail it too much, but in such situations the randomness of the final target somehow
disappears as then we can just wait for the final time to reach the final target instantly.

3.2.2. The case of bounded controls. Somehow opposite to the previous situation is the
case in which L is given by
0 if jo| <1,

+o00 otherwise.

L(x,o):= {

In this situation, the constrained optimization problem is not necessary controllable
and the associated value can be infinite for ¢ € [0, 7). Indeed, consider for instance
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Usel(T — €, 8%, 8y) for |[x — y| > . If such cases present a lot of interest in themselves,
they do not in this case in which the final density is constrained. Furthermore, if we were
to replace this constraint with a bounded terminal cost, then the study of the associated
HJB equation would be rather classical and fall into the scope of the previous section.

3.2.3. Cost functionals which are powers of distances. We consider here the cases in
which L is given, for k > 1, by

L(x,a) = |afk.
A simple change of variable yields that in this situation,

Uget (T — 1, 1, v) _ Wi (1, v)k
(T — 1)kt (T =)kt

Ugee(t, 1, v) =

This type of behavior is the one we are interested in, hence we shall make assumptions
to control the cost function L with powers of «. Furthermore, in view of Alfonsi and
Jourdain [2] (which focuses on the case k = 2), such a function U is not smooth in either
w or v. This justifies, in particular, the use of the notion of viscosity solutions introduced
in Section 2.

3.3. Controllability of the stochastic problems and L bounds
of the value functions

We now provide, by means of controllability bounds, estimates on the value functions for
stochastic optimal transport problems, near the final time # = 7. In the previous section
we recalled that, as soon as the cost L satisfies for some k > 1, C > 0 and for all x € Td s
p eRY,

0<L(x,a) < C(1 + |a|f), (3.5)

then the value of the deterministic problem is bounded. In this section we explain how
we can compare the value function U defined in (3.4) with the value function Uy, of the
deterministic problem, defined in (3.3). Define the function w: [0, T) — R by

o) = sup Uels, i, v).

S<t,lL,V
In the two cases that follow, we are going to make the following assumption on L.
Hypothesis 2. Forallt € [0,T), w(t) < oco.

Remark 3.2. Note that the assumptions on L here are made in the previous (mild) hypoth-
esis, which is for instance satisfied if (3.5) holds.

3.3.1. The case of jumps. Assume that the target process (v;);>o is driven by jumps,
which happen at Poisson times associated with the intensity A: [0, T] — R, and which
are described by the operator 7: P (T4) — £ (T?). We can prove the following.
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Proposition 3.3. Under Hypothesis 2, assume that there exist C > 0 and y > —1 such
that for T —t < C71,
Aw(@) < C(T —1) (3.6)

and .
M) < C(T —z)—lf A (3.7)
t

Then there exists a continuous function B:[0, T] — R, such that

sup  |U(t, u,v) — Uger(t, 1, v)| < B(t) — 0.
w,weP (Td) 1=>T

Remark 3.4. We comment on the hypotheses of the result:

* The assumption (3.7) is purely technical, it is verified by any function such that A(¢) ~
C(T —t)* for any C > 0, @ > —1. However, it is not automatically verified, as for
instance A(t) = % (e= Tt )_2) does not verify it. We do not know whether this can be
removed.

* The requirement (3.6) is quite important in our proof. This assumption yields an inte-
grability condition on the product Aw. Such an integrability condition is crucial. Note
for example that if A is constant, then we require (among other things), thatw € L} ,

which is not the case for a quadratic cost. We show an example of a situation where

bounds on U do not exist if this integrability fails.

Remark 3.5. Note that no assumption is made on J in this result; in particular, the result
still holds true if 7 also depends on 7 and . This is due to the fact that 2 (T ¢) is compact.
If the problem were to transport elements of & (R?), then some assumptions should be
made on 7, namely on its growth.

Proof of Proposition 3.3. We argue first as if the infimum in the deterministic problem is
always reached. Notice first that if A = 0in L'((T — «, T), R ) for some « > 0, then the
result holds true trivially. Hence we focus here on the case

T
vVt >0, / A(s)ds > 0.
t

Consider the problem starting in ;1 € P(T¢) at time ¢ and where the target process is
equal to v atz. Let n be the (random) number of jumps in [z, T'] and consider the sequence
T9 =1 <71 <7y <:-- <71, <T of random times at which the target process jumps. Note
that this sequence is finite almost surely, possibly empty, and that the event {z, = T} will
be ignored since it happens with probability 0. Consider the random pairs (¥, ms)se[s,T]
given by

e forl <i <n,se(ti_1,t;), (Ys, my) is equal (up to a change of time) to a minimum

in the problem Uge((ti—1,my,_,, T 7 10);

* Fors e (¢,,T), (Y5, my) is given through a minimum in Uge(t,, my,, Tv).
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Such a pair is clearly admissible. We now estimate its cost:

T
E |:/; [deRd L(x,z) Ys(x,dz) ms(dx) ds:|

T
=Pmn>0FE |:/t /;rd 2 L(x,z)¥s(x,dz) us(dx) ds

n—l g4
+ Z/ / L(x,z) Ys(x,dz) ps(dx) ds
i=0 Yt T4 xR4

+ P(n = O)Udet(t’ s l))
n >0i|

n> Oi| + P = 0)Ugec(t, 1, v)

n>0i|

- n—1

<P > 0 E | Uset(tn. my,. T") + Y User(tims;, T'v)

L i=0

+ P = 0)Uger(t, 2, v)

- n—1

<P >0E|ot)+ Y o)
- i=0

<P >0)E[(I+n)w()|n > 0]+ P = 0)Us(t, it.v).

We can now compute

E[(1+m(t) [n>0] =Y E[(1 + ma(t) |n =k]P(n =k |n>0).
k=1

Since the (7,),>0 are given by a Poisson process, we have that

T k
A(s)d
P(n > O)]P(n =k | n > 0) — P(l’l — k) — ('[t#e—ffk(s)ds,

and also that there exists C > 0 such that for any 1 < k < n, the law of 7 conditioned on

Tr—1 has a density which is bounded by

A(s

S — ﬂssz—lc#'

Jo *
k—1

Hence we can estimate

E[(1 +n)a(ty) | n = k]
r r r dt At2) dty A1) dt
SCk(k+1)/t /tl .../tkl w(tk)l(tk)ft:fk.” 2)dty A(t) dty

T T
ftl A’ ft A’
T T T
Sck(k+1)/ / / (T—tk_l)”"’lk(tk_;,)dtk_l "'/WZT)dtz A(tlT)dtl
¢ i lk—2 ./tk_lA ftl A’ ft A’

- Ck(k +1)(T —ryr+!
- 1T A(s) ds '
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From the previous estimate, we deduce that

[e]

k T T k—1
Pm>®EKL+MMmHn>ﬂ§C§:£lﬁi25%A(/‘0 (T — )yt

k!
k=1

<C(T —t)rt!.

We can compute
T
(1P = 0)Uiaalt. 1) = € [ 026 ds = C(T =17,
t
Hence, setting B(t) = C(T —t)t”*!, we deduce that

T
Ui, u,v) <E |:/ /Td 2 L(x,z)¥s(x,dz) ms(dx) ds:| < Ugee(t, 1, v) + B(2).

Obtaining the lower bound is easier. Indeed, for ¢ > 0, consider an & optimal pair
(¥, m) (which exists since the value is bounded from below). It then follows that

T
U@,u,v) > E |:/; /Td 2 L(x,z)Ys(x,dz) mg(dx) dsi| —¢

n=0i|—e
n>01|
n=0]—8

Since ¢ is arbitrary, we deduce that the inequality also holds for ¢ = 0. Hence we deduce
the lower bound

T
=Pmh=0)E |:/t /Td n L(x,z)Ys(x,dz)mg(dx) ds

T
+Pn>0E [/ [Td na L(x,z2)¥s(x,dz)ms(dx)ds

T
>Pnr=0)FE [/t /Td aa L(x,z)Ys(x,dz)mg(dx)ds

> P(n = 0)Usut(r, . v) —&.

U(t, b, v) = Ugei(2, @b, v) — B(t)

following the same computation as in the part concerning the upper bound.

We end the proof by remarking that if we are not able to consider optimal control
for the deterministic problem, then considering appropriate &’ optimal controls yields the
required estimates. u

The previous result in fact yields more than just bounds on the value function U.
It gives the precise behavior of the value function near + = T'. It states that, under the
standing assumptions, it behaves as Uge; near t = T'.

If the assumptions of the previous theorem are not satisfied, then we can be in an
entirely different situation. Indeed, consider the following example.
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Example 3.6. Assume L(x,a) = |a|?, A is a constant and 7'v # v for some v € P (T?).
In this context, w(t) = C(T — t)~!. Consider a time ¢ > 0 and assume that at this time,
the target process is equal to v. By conditioning on the number of jumps occurring in the

-
n=0].

Let us denote by p the density of the law of the jump 77, conditioned on {n = 1}. Consider
(t4s)se[z, 1> the trajectory in the event {n = 0}. By definition of the 2-Wasserstein distance,
we obtain that for any ¢’ € [¢,T),

n= 0]

T
E [/; /TdXRd |z|? Y5 (x, dz) mg(dx) ds

T
>E |:/ / |z|? ¥ (x, dz) mg(dx) ds
t' JTdxR4

= W22(/"Ll’s U)
- Tt

remaining time, we obtain that for any admissible pair (¥, m),

T
Ut ,pu,v) >Pn=1)E |:/t /Td 2 1212 ¥y (x,dz) ms(dx) ds

T
+Pn=0FE |:/ /Td na 1212 Y (x, dz) mg(dx) ds
t X

]

(3.8)

We then compute

T
2
E |:/; /]I‘dx]Rd |z|” Vs (x,dz) mg(dx) ds

Integrating (3.8) with respect to p, we deduce that

T W2(us, T
n= 1} Z/ Mp(s)ds.
¢ T —s

Ut, . v) > P(n _0)/ M p(s) ds

P = 1)/t %ﬁ;l})p(s)ds

>P(n = 1)/T sz(HSvV)T‘" sz(ﬂs»TV)
— S

p(s)ds,
if ¢ is sufficiently small so that P(n = 1) < IP(n = 0). The right-hand side of the previous
inequality is equal to 400 since v # T v. Hence, for any . € P(T?), U(t, ., v) = +00

This last example hints that there is a strong dichotomy: either U is infinite in all the
points v such that v # v, or it behaves quite similarly to Uge,.

3.3.2. The case of the target pushed by a diffusion. Now consider that (v;);>¢ is given
by v, = (tw,)4v forv € P(T?) and (W¢)¢>0 the strong solution of

dW[:O'(t)dB[ fort>0,
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with initial condition Wy = 0, where o: [0, T) — R is a smooth bounded function and
(By)r>0 is a standard Brownian motion. We also assume that there exists C > 0 such that
forallx e T9, o € ]Rd,

L(x,a) < C(1 + |a]?).

Also recall that we are interested here in the value function U as a function of ¢, u and
we T4,
We start with the following lemma.

Lemma 3.7. Almost surely, there exists a unique T? -valued solution (X;) t<T Of

W — X,
dX, = —dt 3.
(=, (3.9)

given an initial condition Xo € T¢. Almost surely, it satisfies X; — Wr ast — T.

o[
o | dt

which possibly reads +00 = +00.

Moreover,

ds,

2 oy T 2
dsi| _ E[|[Wo — Xo|*] +/ o(s)
T 0 T—S

Proof. Let us first remark that the existence and uniqueness of the solution on [0, T') is
trivial. Hence we only need to show that the limit holds as t — T. Now remark that (3.9)

can be written W ¥ W W
X, = = —"Lgr 4+ L= 7T gy,
T —1t T —1t

The previous relation leads to

d|X; — Wrl|? |X; — Wr|? (W —Wr) - (X; — Wr)
d Bl 4 R 42 .
dt T—1t T—1t

Integrating this relation yields

"X, — Wr|? "W, —Wr X,—Wr
X—WT2+2/ = ds=2 . ds + | Xo — Wr|?.
=Wl o VT—s Ty STl

From the regularity property of the Brownian motion, more precisely that, almost surely,
for ¢ and s sufficiently close,

Ve > 1, |B;— Bg| < cy/2|t —s|log(Jt —s|~1),
we deduce that there exists C > 0 independent of ¢ such that, almost surely,

t |Xs_WT|2

ds <C.
T —s

|Xz—WT|2+2[
0

Hence, the first part of the result follows.
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Let us now remark that

th_Xt_ dW/t _O—(t)dBt
T—t T—-t T-—t '

Hence we deduce that

X - X — X !
el TR, [ 28 g, (3.10)
0

dt T—t T

from which follows

T\ dX, 2 [|W0—X0|2] o(s)?
EU ar ds] / / T—sp &

which yields the result. u

‘We can now prove a controllability estimate.

Proposition 3.8. Assume that there exists C > 0 such that L satisfies for any x, «,
L(x,a) < C(1 + |af?),

and that
o(t) ~K(T —1t)Y ast—>T, (3.11)

forsome K #0,y > 0. Then forallt <T, p € P(T?), we T, wehave U(t, u, w) < oo.

Proof. Consider (f, u, w) € (0, 00) x P(T%) x T4. Take § > 0 such that r +8 < T
and define Top = T — (¢ + §). Denote by (W;)s>; the strong solution of (1.12) such that
W; = w. Consider the control & which transports optimally, according to the quadratic
cost, (4 into v in a time §. Consider the process (Xs)s>;+s defined by

Wy — X

dXs; = ——=2 ds,
T —s

with initial condition X;;5 = 0. We can now build an admissible control by setting
Y5 (x,dz) = 0x,. Thanks to Lemma 3.7, this control is admissible. Moreover, thanks to
the same result, we have the trivial estimate

U(l,,bL,w)§C(T—t)_|_CW22('U“’U)+CE[|wt+8|2] +/T o(s)?

ds,
s To t+s T —s
which is finite thanks to (3.11). [ ]

We can easily extend the previous result (with a different assumption on y) to more
general cost functionals L.



C. Bertucci 1582

Corollary 3.9. Assume that there exist C >0, K #0, y > % and k > 1 such that for any
X, a,

L(x,@) < C(1 +|al"),
o(t) ~K(T —1t)Y ast—>T.
Then forallt < T, u € P(T4), w e T4, we have U(t, i, w) < oc.

Proof. The argument is similar to the previous one. Consider (X;);>¢ given in (3.7).
Observe that (3.10) still holds. Then, thanks to the Burkholder—Davis—Gundy inequality,
we obtain that

Ak

Hence, the result follows from the same argument as in Proposition 3.8. ]

k __E[[Wo — Xol¥] T o)

We now prove a refinement of the previous estimate which yields a more precise result
for the behavior of U neart = T.

Proposition 3.10. Under Hypothesis 2 and the assumptions and notation of Proposition
3.8, assume furthermore that y > % and that foranyt <s < T,

Uder(s, i, v) = Ugea(t, e, v) < (T —5)7>(s — 1). (3.12)

Then it holds that
U(tv M, w) S Udet(t9 M, (Tw)#l)) + ﬂ(t)’

for a continuous function B such that B(t) — 0 ast — T. Moreover, if L is convex in o
we always have
Udel(tv /’L» (Tw)#v) S U(t, ,u/v w)

Proof. The proof is similar to the previous one. Consider (7, jt, w) € (0, 00) x P(T?) x
T4. Take §(¢) such that 1 + §(¢) < T and define To(t) = T — (¢ + 8(¢)). The function §
is to be chosen later on.

Denote by (Ws)s> the strong solution of (1.12) such that W; = w. Consider an optimal
trajectory, according to the deterministic problem, which transports (4 into (ty, )#v in a time
8(t). Consider the process (X;)s>;+5(:) defined by

W — X,

dX
g T —5s

ds,

with initial condition X; 4 ¢;) = w. Now consider the control which consists in playing the

first trajectory in the time §(¢) and then translating the state with speed dj‘;s afterwards.
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Thanks to Lemma 3.7, this control is admissible. Moreover, thanks to the same result, we
can estimate

Ut pow) < Use(T = 8(1), 1, (Tw)4v)

Eflw 45y — w|?] /T o(s)?
T—(t+48@) sy T =5

+C ds. (3.13)

Remark that
t+8(t)
Elw; 150 — w]] = / o2(s)ds < K(T — )" 8(1),
t

where the inequality holds for  close to 7'. Let us now set §(t) = (T —t) — (T —t)? for
some 6 > 1. Coming back to (3.13), we obtain

ds.

—_ )2 T 2
Ut p, w) < Ugelt +(T—f)9,M,(Tw)#V)+Cw +/ o
t

(T —1)? +s@0 T —s

The last term vanishes whenever y > 0, and the second-to-last term vanishes whenever
1 + 2y > 6. It then remains to estimate the first term of the right-hand side. Namely, we
are interested in the difference

Ugee(t + (T = 1)%. 1. (7)49) = Usea(t. 1. (2 )v).
From (3.12), we can bound this difference by C(T — 1)?~2 and we deduce finally that
K(T —1)275(1) T o(s)?
To7 s 7o
which yields the required estimate when 6 € (2,1 4 2y).
Finally, let us remark that the estimate U(t, u, w) > Uget(2, i, (T )#V) is simply a

consequence of the convexity of L in «. Indeed, fix t < T, . € P(T?), w € T? and
consider any (stochastic) admissible pair (1, m). As we mentioned at the beginning of

Ut, n, w) < Uge(t, 1, (ty)sv) + C(T — t)9_2 +C ds,

this section, we can always consider an associated pair of measures (m, E), which is a
solution of
d;m+div(E)y =0 in(t,T) x T,

which satisfies m; = u, mr = (tw; )#v. Defining M; = E[m,] and K, = E[E,], we obtain
that
M +div(K) =0 in(s,T) x T?,

together with M; = u, Mt = (ty)#v. From this we deduce that

E [/,T /deRd L(x,2) ¥ (x, dz) my(dx) ds] >E [/;T /Td L<x, sz) my(dx) ds}

T
K
z/t /;d L(x,ﬁ) mg(dx) ds
> Udet(tv M, (TW)#U)7

from which the result follows. [
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Remark 3.11. Although it is not the main objective of the present work, it would be
interesting to lower the assumption y > % into y > 0 so that this result is similar to the
one we present for the case of jumps, namely that the controllability directly yields the
precise behavior of U neart = T'.

Remark 3.12. The assumption (3.12) is a bound on the time derivative of Uy. It is ver-
ified in the case L(x, p) = |p|? for instance. Since L does not depend explicitly on ¢, it
can be verified by a change of variable in time whenever D, L has linear growth in |«|;
see for instance the computation of the next section.

Remark 3.13. This result can also be adapted to more general cost functions L as in
Corollary 3.9, once again by using the Burkholder—Davis—Gundy inequality.

4. Continuity of the value function and viscosity solution properties

Before proving that the value functions studied in the previous section are indeed viscosity
solutions of the associated HIB equations, we start by proving some continuity estimates
on these value functions. We assume in this section that

Ik >1,C>0VxeT? aecR? 0<L(x,a)<C(+|af). (4.1)

This condition is enough to ensure that the value of the deterministic problem is finite
everywhere on {t < T'}.

4.1. Continuity estimates

The continuity estimates we are going to provide rely on the controllability of the problem.
Namely our strategy of proof consists in remarking that, if the problem is sufficiently
controllable, then, with closed initial conditions, we can reduce one case to the other.
In this section, we focus on the value function associated to the evolution described in
Section 1.5.6. We comment later on the case of jumps. Thus, the main of object at interest
here is U defined by

T
U, p,w) = inf E [/ [ L(x,2)¥s(x,dz)ms(dx)ds | Wy = w:|,
(¥,m)e t JTdxR4
Adm*® (¢, 14, w)
4.2)

where we recall that (W) is the strong solution of
th = O'([) dBt,

with initial condition O for (B;);>¢ a standard Brownian motion on (2, #, IP). Recall that
the terminal constraint is given by mr = (tw; )4v. Thanks to Corollary 3.9, to ensure that
U is finite, in addition to (4.1), we also assume that

1
3K #0.y > 5. 0(0) ~or K(T =1)7. 4.3)
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The following results depend on various assumptions on the cost function L that we
state progressively to highlight the effect of each one of them.

We begin with the following lemma, which states that the set of controls can be
reduced by a density argument.

Lemmad4.l. Fort < T, v e P(T%) ande < T —t, define
A (1, w) := {(Y,m) € AIM™ (¢, p,w) | Vs <1 + &, Yy = So}.
Assume that (4.1) and (4.3) hold and that
3C > 0,Vx,z, |DpL(x,z)||z] £ C(1 + L(x,z)). 4.4

Then U is also given by

£>0,(Y,m)€e
Adm (2, 14,)

T
U, u,w)= inf ]E|:/t [Td na L(x,z) Y (x,dz)m,(dx)dt

w; = w:|. 4.5)

sto

Moreover, for all & > 0 there exists an & optimal control in Admg (¢, u, w) with C > 0

depending only U(t, u, w) and T —t.

Proof. Of course, U is always smaller than the right-hand side of (4.5). We thus prove the
reverse inequality. Consider n > 1, & < T — ¢t and an n~! optimal control (v, m) for U.
Using the same change of variable as in Section 3.2.1, we remark that (', m”) defined for
s >1t+eby
w’ = le#w
sT T _/_¢ ¢ (s)>
m = M),

where ¢ (s) = TT_;; (s—t+¢e)+tandby ¢, =0,m, = ufors € [t,1 + €] belongs to
Admg (¢, 1, v). We now evaluate

T
E |:/; /de]Rd L(x,z)¥g(x,dz)my(dx) dsi|

T
=E |:/;+8 /]l“ded L(x,9'z) Y (x, dz) my(s)(dx) dsi|
T
=@ 'E |:[t /de]Rd L(x,¢'z) ¥s(x, dz) mg(dx) ds:|
T
= (@) 'E |:[t /de]Rd L(x,z) ¥s(x,dz) ms(dx) ds]

T
+(¢’)—1E[ / / (L(x,qs’z)—L(x,z))ws(x,dz)ms(dx)ds]
t TdxR4
< @) 'U@t, pw)+n7")

/ T
+ ¢¢_,]CIE “ /Wde(l ¥ L(x,2)) ws(x,dz)ms(dx)ds],
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where we have used (4.4) and the n~! optimality of (1, m) in the last inequality. Since
¢’ — 1 as ¢ — 0, we have thus proved the first part of the claim. The second part can be
observed simply by remarking that

|¢' 1] < Ce
as ¢ — 0, for C depending only on 7" — ¢. |

We are now ready to prove the following.

Lemma 4.2. Assume that (4.1), (4.3) and (4.4) hold. For anyt < T and w € T4, there
exists C depending only on sup,cp(ray U(t, i, w) and T —t such that

Vi, ' € P(TY, U, p,w) — U, 1 w)| < CWel, ).

Proof. Take t < T, w € T? and pu, i’ € P(T?). We want to show that U(t, i/, w) —
U(t, 1, w) as w' — p. Thanks to Lemma 4.1, consider an ¢ optimal control (Y, m) €
Adm (¢, , w) for U(t, u, w) for some & > 0. Now consider the pair (', m’) defined
by

(Yi,my) = (Y5, ms) fors et +6T),

and (Y, m)ge[s,1+¢) corresponds to an optimal trajectory for the deterministic optimal
transport of y/ toward p in time ¢ for the cost L(x, z) = |z|*. We can then estimate

Ut ' w) Ut pow) + & + CRWE, n)e' ).
Taking & = Wy (1, ') yields the required result since p’ and p are arbitrary in 2 (T%). =

‘We now show continuity of the value function with respect to w.

Lemma 4.3. Assume that (4.1), (4.3) and (4.4) hold and that
AC > 0,Vx,z, |DxL(x,2)| <C(1 4+ L(x,2)). (4.6)

Then forallt < T, u € P(T?), there exists C > 0 depending only on sup,,erd U(t, 1, w)
and T —t such that

Yw,w' € P(TY), U@, p,w) = U@, p,w')| < Clw—wl.

Proof. Taket < T, € P(T%) and w,w’ € T¥. Denote & = wT;_"’t/ e R?. Take ¢ > 0
and an ¢ optimal control (v, m) for U(z, i, w). Consider the control (', m’) defined by

Yl (x + (s — )b, dz) = (tg)s¥s(x.dz), xeT% 1 <s<T,

mls = (T(s—t)w)#ms, t<s<T.
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In other words, (', m’) corresponds to the same control as (v, m) but with the fact that
we are using in addition a uniform speed of w. The control (', m’) is admissible for
U(t, u, w') and we can estimate

T
Ut,p,w) <E |:/; /er o L(x + (s —)w,w + z) ¥s(x, dz) ms(dx) ds}

T
SIE|:/ / Lx+(s—tw,w+z)— L(x,z2) %(X,dz)ms(dx)ds]
t TdxR4

+ Ut p,w)+¢
T
<Ut,u,w)+e+CE |:/t /Td 2 L(x,z)¥s(x,dz) ms(dx) dsi|w.

The result now follows by taking the limit ¢ — 0. ]

Let us now remark that combining the proofs of the previous two lemmas, we arrive
easily at the following.

Proposition 4.4. Assume that (4.1), (4.3), (4.4) and (4.6) hold. Then, forallt < T, there
exists C > 0 depending only on sup ¢ p(rd) yerd U(t, u, w) and on T — t such that

V' e P(ThH,w,w' e T, U, p,w)— U, 1/, w')| < CWe (e, 1) + [w — w')).

We now show global continuity of the value function.

Proposition 4.5. Assume that (4.1), (4.3), (4.4) and (4.6) hold. Then, for any & > 0, there
exists C > 0 such that forall 0 < t,t' <T —¢ u, i € P(T4) and w,w’ € T4,

UG, p,w) = U@, ' w')| < C(Vt =] + Wi (e, ') + [w — w'). (4.7)

Proof. Consider (¢, u, w), (t', i/, w’) € [0, T) x P(T4) x T? and assume that ¢’ > ¢.
Considering a control for U(¢, ., w) which does nothing in [z, '], we obtain that

U(t, u, w) < E[U', ., W)
We deduce that
Ut p,w) = U p,w) <E[UQ, o, W) = U, p, w),
which implies

U(t’ M, w) - U(t/’ /J“/’ w/) = E[U(t/’ M, Wt/) - U(l/’ M, w)]
+ CWie(p, 1) + [w — w')), “.8)
for some constant C depending only 7' — max(z, ¢’) thanks to Proposition 4.4.

Thanks to Lemma 4.1, there exists a C (¢’ — t) optimal control for U(¢, i, w) which
does nothing in the time interval [z, ¢'], for C depending only on U(t, u, w). Observe
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that, P-almost surely, such a control is admissible for the problem U(¢’, u, W) where
Wy =w + f(: o (s) dBs. This remark leads to the estimate

U(t,w,w) > E[UE, w, Wy)] — C(t' —1).
Arguing as above, this leads to

Ult,u,w)=U@E" /', w')>-C@t' —t) +E[UE, u, W) = U(t', u, w)]
= CWie(p. i) + [w —w']),

Recalling (4.8) and the Lipschitz continuity of U in w, we finally obtain (4.7). ]

Remark 4.6. When the target process is given by a jump process, assumptions on the
operator 7 have to be made in order to establish continuity of the value function with
respect to v. Nonetheless, such a regularity is less important in this case as, P-almost
surely, the trajectory (vg)s>0 only takes a finite number of values.

4.2. Viscosity solution properties of the value functions

We now prove that the value functions of interest are indeed viscosity solutions of the
corresponding HJB equations. Since there are mainly three value functions of interest
(deterministic, the case of jump and the case of the diffusion), we do not provide three
complete proofs, but rather establish the property of viscosity sub-solution in one case and
the property of viscosity super-solution in another one. We comment on the remaining
cases at the end of the section and leave to the interested reader the adaptations of the
proofs we provide.

We start by proving that the value function associated to the case of Section 1.5.6 is a
sub-solution of the HIB equation (1.14).

Proposition 4.7. Assume that (4.1), (4.3), (4.4) and (4.6) hold. Then U defined in (4.2) is
a viscosity sub-solution of (1.14).

Proof. Take (t,j1,w) €[0,T) x P(T%)x T and (8, ¥, p, X) € JTU(t, jn,w). Through-
out the proof that follows, to lighten notation, it is always assumed that all expectations
with respect to the probability space (2, #, P) are taken conditionally on {W; = w}.
Consider an atomless probabilistic space (', 4’, P’) and a couple (X;, Z) of random
variables on Q' such that £(X;, Z)(dx,dz) = m;(dx) ¥*(x, dz). Consider the ordinary
differential equation

dXs = —D,H(Xs,Z)ds fors e (t,T),

with initial condition X at time s = ¢, which is considered valued in T 4 Takek € 0, T —
t) and for s € [t, k], we introduce the disintegration £(X;, Z) = my(dx) ¢s(x,dz). Using
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the control (my, ¢s) in the time interval [¢, 7 + «] leads to
t+k
U, n,w) <Ep |:/ / L(x,—DpH(x,z)) ¢s(x,dz) mg(dx) ds
t TdxR4

+ Ut + Kk, Myt Wt+/<)]

Let us insist upon the fact that the sort of dynamic programming principle (DDP) we used
here is standard thanks to the regularity given by Proposition 4.5. We refer to Fleming and
Soner [28] for a standard presentation of DDP in finite dimension, to Claisse et al. [14]
for a more precise discussion on the topic and to Djete et al. [22] for a discussion in the
case of functions of probability measures.

Using (0, v, p, X) € JTU(¢, u, w) we obtain

t+k
0<Ep |:/t /deRd L(x,—DpH(x,z2)) ¢s(x,dz) ms(dx) ds

FERIZ - (e = X0
+ (0 4 o2(t) Tr(X))k + ko (k),

where w is a real continuous function such that w(0) = 0. Now remark that we can remove
the expectation with respect to (€2, P). Using the link between L and H and the definition
of ¢4, we obtain

t+k i
OS/; /;1“de01 _H(xvz)¢s()€,d2)ms(dx)ds—i—/t EP’[Z'DpH(Xs,Z)]dS
+Ep[Z - (Xr4x — X)) + (0 + 0%(1) Te(X))ie + kw(k),

Simplifying and rewriting the first integral in terms of X and Z, we obtain
t+k
0< / Ep/[—H(Xs, Z)] ds + (6 + 0*(t) Tr(X))k + k().
t

Dividing by « and taking the limit k — 0 yields the required result since (X;)s>; converges
uniformly, P’-almost surely, toward X, as s — ¢ because Z is bounded. [

We now pass to the more technical property of viscosity super-solution, in the case of
the value of the deterministic problem. Hence, in the rest of this section, we fix v € (T %)
and we denote U(¢, ) = Uge(t, £, v) for Uyge defined by (3.3). Take ¢ > 0 and define, for
K >0, (t,n) €0, T —e] x P(T9),

T—¢
Uk(t,u) = inf {/ / L(x,z)Y¥s(x,dz) mg(dx) ds
W.m) \ J¢ T4 xR

+ U(T —e, mT_g)}, (4.9)
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where the infimum is taken over controls such that ¥ is, uniformly in x, supported in the
ball B(0, K). Note that by looking at the problem on [0, T — ¢] with bounded terminal
condition U(T — ¢, -), we do not have to worry about controllability issues related to
the terminal constraint. Moreover, since the terminal condition U(T — ¢, -) is Lipschitz
continuous, it follows easily that forany t < T — ¢ and € P(T?), limg o0 U (t, 1) =
U(t, ).

Our strategy is the following: show first that for any K > 0, Uk is a viscosity super-
solution of (2.5), then prove that U = infx~¢ Uk is also a viscosity super-solution of (2.5).
Hence we start with the following.

Lemma 4.8. Assume that (4.1), (4.4) and (4.6) hold. Then, for any K > 0, Uk is a vis-
cosity super-solution of the equation (2.5) on [0, T — &) x P(T?).

Proof. We start by remarking that, since u — U(T — ¢, u) is Lipschitz continuous, it
follows that Ux is continuous on [0, T — ] x £ (T4). For any (¥, m) € Admg, because
the support of ¥ is bounded, thanks to representation theorems such as Jimenez et al. [34,
Theorem 2.1], we obtain that there exists a T?-valued random process (X Sw )se[tn,T] ON AN
atomless probabilistic space (2/, A, P’), such that, for all s € [t, T — ¢], cEK(XS'/’) = my
and for almost every s € [t, T — ¢],

axy =/ zYs(XY,dz) ds.
R4
Now consider (A, ¥*) € 0~ Ug (¢, i) for some (t, ) € [0, T — &) x P(T?).
Assume initially that there exists a couple (X, Z) on Q' such that £(X, Z) =

u(dx) ¥*(x,dz) and for any (v, m) admissible controls, X;/' = X. Observe that for
anyk € (0, T —e—1),

t+i
Ug(t,n) = inf {/ / L(x,z)Ys(x,dz)ms(dx)ds + Ug(t + /c,mt+,()}.
W.m) | J ¢ T4 xR4

This yields, using (0, ¥*) € 0~ Uk (¢, ),

t+k
0> inf {/ / L(x,z) ws(x,dz)ms(dx)ds+EP/[Z-(X;/'+K—X)]
W.m)\ J¢ TdxR4

O+ (e 4 IXY, = X ool + XY, — thoo)},

where w is a real continuous function such that w(0) = 0 which does not depend on (¥, m).
We then obtain

t+k
0> inf {f Ep: [/ LXV,2)+Z-(z 1//S(X;”,dz)):| ds
W.m) | J¢ R4

+ 0+ (k41X — Xl + XY, — X,noo)}.
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Using the definition of H, we then obtain

t+k
0> inf {/ Ep[-H(XY,Z)]ds + 0«
Wm) \ J¢

e+ IXY, = Xl + XY, — thoo)}.

Now remark that thanks to the bound on the support of vy, we know that || X ;/' e~ Xtlloo <
K. Hence, dividing by « and taking the limit k — 0 yields the required result, because
 does not depend on (¥, m).

We now come back to the case in which we may not be able to consider such a couple
(X, Z) as we did above. Note that there exists a couple (X, Z) whose law is given by
£(X,Z) = u(dx) ¥*(x,dz), but possibly X,‘/' # X. Consider a minimizing sequence
(¥, m") of the infimum. For any 7, n,, > 0, thanks to classical results such as [ 12, Lemma
5.23], there exists a couple (X, Z,) which has the same law as (X, Z) and which is such
that || X, — X ;/’ ! lloo < nn. To extend the previous computations, it then suffices to take a
sequence 7, converging fast toward O and a sequence k, converging sufficiently slowly
toward 0, and to take the limit # — oo. [

We now produce an argument which is classical in the theory of viscosity solutions,
and is usually crucial to the so-called Perron method: the infimum of a super-solution of
the HIB equation is itself a super-solution of the HIB equation.

Proposition 4.9. Assume that (4.1), (4.4) and (4.6) hold. Then the value function U is a
super-solution of (2.5).

Proof. The result holds if it holds on (0, T — ¢) for arbitrary & > 0, hence we only prove
the result in this latter case. The rest of the proof follows the lines of [17, Proposition 4.3].
Consider (7, 1) € (0,T —¢&) x P(T?) and (6, y*) € 9~ U(t, ). For the moment we omit
the effect of the dependence in the time variable and come back to this question later.

There exists a smooth function w: (0, 4+00) — (0, +00) such that limy_o w(x) = 0
and for any y/ € 2 (T?), y coupling between ’ and f,

U = Up) - z-(y —x)y(dx,dy) ¥*(x,dz) = —c(y)o(c(y)), (4.10)
TdxTd xR4
where ¢(y)? = Jp2a |x — y|? y(dx, dy). We now define yx as the minimum of the func-
tion

Y = Uk ((m2)#y) —/ z-(y =x) y(dx.dy) ¥ (x.dz) + 2c(y)o(c(y))

TdxTdxRd

over y € P(T2%) such that (7r;)#y = . Note ux = (712)yk. By definition of yx, we
obtain
Uk (nx) — / z-(y = x) yg(dx.dy) ¥*(x.dz) + 2c(yg)o(c(vk))
TdxTdxR4
= Uk(w) = U(u) + U(w),
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for Uk defined in (4.9). Recalling (4.10), we obtain

Uk (uk) + 2c(yg)o(c(yk)) < Uk () —U(p) + U(uk) + c(yx)w(c(yk)).

Hence we deduce that in the limit K — oo, since Ug () — U(w), that g converges
toward p. The main interest of the above is that the optimality of yx yields that we can
consider an element in the sub-differential of Ug at g which converges toward ¥ * as
K — o0. To explain this fact in an understandable fashion, we pass by the formalism of
random variables, although it is not necessary. Consider (', 4’, P’) an atomless proba-
bilistic space. Define ﬁK(Y) = Ug(£(Y)) for Y a T?-valued random variable over €'
Consider a couple (Xg, Yk, Zg) whose law is given by yx(dx, dy) ¥ *(x, dz). Denote
also ¢(X,Y) = ¢(£(X, Y)). Remark that we have already proven ¢(Xg, Yx) — O as
K — o0. Then, by construction of yg, it follows that

Xk — Yk

Xk, Yx) (0(@(Xk — Yk)) + o' (6(Xk . YK))E(Xk . Yk)) € 9~ Uk (Yx).

Zg +2
Denoting the previous element by Zx + ng, we observe that (nx)g>o is a sequence of
bounded random variables which converges uniformly toward 0.

We now observe that the presence of a time variable would not have perturbed the
previous analysis. Hence we assume that we are also given two sequences (fx)x and
Bk )k, valued in [0, T — ¢) and R respectively, such that

0k, Zk + nx) € Uk (tx, Y),

with limg 00 O = 6 and limg_, » tx = ¢. Since Uk is a viscosity super-solution of (2.5),
we deduce that
—0k + E[H(Yk, Zk +nk)] = 0.

Passing to the limit K — oo we finally obtain the required result. ]

4.3. Comparison with the more usual value functions

In this section we want to compare two value functions of the deterministic problem,
the first one being given by our reformulation of the cost and the second one in a more
standard way, to show that they coincide. In order to avoid the technical problem of the
terminal condition, we consider a smooth function G: 2(T%) — R and consider

T
Ut,pn) = ]}fnrﬁ{/t /Td pa L(x,z)Vs(x,dz)mg(dx) ds + G(mT)},

where 7 € [t, T], n € P(T%), and the infimum is taken over Uve?(Td) Adm(z, 1, v). The
second function we consider is

T
Vit = ;glng{ / /T e (d) m(dx) ds + G(mT)},
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where ¢ € [t, T], u € P(T?), and the infimum is taken over all pairs («, m) such that
me€(t, T],P(T%), m; = pand a:[t, T] x T? — R? is measurable and for all ¢ €
€l([t, T] x T4, R),

/ (T, x) mr(dx) — f o(t.3) u(dx)
']rd Td

T
- / / B(t, x) + (1. %) - Veg(t, x)) ms(dx) ds.
t Td

Hence, V is the value function of the optimal control problem on the set of measures as it
is more often defined.

We want to show that these two functions are equal. In order to do so, we are going to
use the comparison principle Theorem 2.11 on the associated HIB equation

—9,U + / JH(, D, U(t,x)) u(dx) =0 in (0, T) x P(TY), (4.11)
T

with terminal condition G.

Concerning the cost function L, we assume here that (4.1), (4.4) and (4.6) hold. We
have already seen that U is a viscosity solution of (4.11). We start by showing the follow-
ing.

Proposition 4.10. The function V' is a viscosity super-solution of (4.11).

Proof. From an immediate adaptation of Gangbo and Tudorascu [31], we know that for
anyt < T, ue P(T?), (6,¢) e 0,V (¢, 1) such that £ is a bounded function,

0+ [T H(E(0) j(dx) = 0.

Hence, taking (0, ¥) € 0~V (¢, ), we deduce that

—0 +/ H(x,/ zw(x,dz))u(dx) >0,
Td R4

and the result follows from Jensen’s inequality. |

We now turn to the more subtle property of viscosity sub-solution. We are not able
to establish it in all its generality, but nonetheless, the following result is sufficient to
apply Theorem 2.11. Indeed, the interested reader might have noted that in order to obtain
a comparison principle by means of our doubling of variables argument, we only need
the viscosity properties to hold for elements of the sub- (or super-) differential which are
elements of the super-differential of the 2-Wasserstein distance at some point.

Proposition 4.11. Assume that D, H is locally Lipschitz continuous and that for all x €
T4 & p e R with & # 0,
ED,p H(x, p)§ > 0. (4.12)
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Take ) > 0 and consider (0, V) € 3TV (¢t, ) such that ¥ satisfies ju(dx) ¥ (x,dz) =
(1, A(mry — 72))s Y0 (dx, dz) for y° € I (i, v) for some v € P(T?). Then

—6 + / H(x,z)y(x,dz) u(dx) <0,
T4 xR4

Proof. Consider (X, Y) a couple of random variables on a standard probability space such
that £(X,Y) = y° and define

F:T?xR? - R?, (x,p) — —D,H(x,Ap).

As done in Santambrogio [44, Proposition 5.30] for instance, we want to show that m 1=
£(X 4+ sF(X, X —Y)) satisfies a continuity equation for a certain drift, and that evaluat-
ing the cost of this drift will yield the required inequality.

Take s > 0 and z € Supp(m;). By construction, there exists a couple (x, y) € Supp(y?)
such that z = x + sF(x, x — y). We want to show that there exists at most one such couple
(x,y) € y°. Hence, take (x, y), (x’, y') € Supp(y?°) such that

x+sF(x,x—y)=x"+sF(' x' —y).

Recall that F' is C > 0 Lipschitz continuous thanks to the assumptions on D, H. We
deduce that

x = x| =s|F(x'.x"=y) = F(x,x = y)|
= Cs(lx = x| +[(x = y) = "= ). (4.13)

Let us also write
x—x' =s(F(x',x'—y)—F(x',x =) +s(F(x',x —y) — F(x,x — y)).

Moreover, from (4.12), we obtain that — F is 8 > 0 monotone in p for some § > 0, when
F is restricted to T9 x [—1, 1]¢. Taking the scalar product against (x’ — y’) — (x — y),
we deduce that

(x=x"+s(F(x,x —y) = F(x' . x —y). (x"=y) = (x —y))
<-Bl(x'—y)—(x =y~

Rearranging, we obtain that
BI' =) = (x =P < |x =" + Cslx = x| |(x = y) = (x = p)| = (x =x".y = ¥').

Since (x, y), (x’, y") € Supp(y?), we obtain that the last scalar product is non-negative
and thus that

BI(x" =) = (x = )PP = |x =22 + Cslx = x'[|(x" = ») = (x = ).
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Plugging this estimate into (4.13), we finally deduce that

[x —x'| < Cs(lx —x'| + Cs(CS + gﬂzsz b 4'B)|x —x'l).
Hence, for s sufficiently small (compared to a constant which depends only on C and ),
we deduce that 2|x — x’| < |x — x’| and thus that x = x’ and hence that y = y’. This result
of uniqueness has strong consequences. In particular, it allows us to define two measurable
maps X (z) and Y(z) such that for any z € Supp(my), z = X(z) + sF(Xs(2), Xs(z) —
Y5(z)). This implies in particular that (., m) solve the continuity equation (at least in short
time) with

as(z) = _DpH(Xs(Z)v A(Xs(2) - YS(Z)))-

From this we deduce that
t+§8
Vit ) < / / LG as @) mad2)ds + V(@ +5.my )
t T
t+48
< / / H(X5(2). A(Xs (2) — Y (2))) — Aats (2) - (X (2) — Yy (2)) my(d2) dis
t Td
t+6
4 / / L(z.as(2)) — L(Xs (2). 05 (2)) my(d2) ds + V(i + 8. myss)
t Td
)
< /t+ E[H(X,A(X —Y)) + ADyH(X. A(X —Y))- (X — Y)]ds

t+6
+C/ E[sD,H(X,A(X = Y))]ds + V(t + 8, m;4s).
t
Hence we deduce that

t+68
0< ’ E[H(X,A(X —Y)) + AD, H(X,M(X — Y)) - (X — Y)]ds
/ )

t+6
+Cf E[sD,H(X,A(X —Y))]ds
t
+05§—S0EMX —Y) - D, H(X,A(X —Y))] + 0(5).
We then deduce the result by dividing by § and taking the limit § — O. ]

As a consequence of the two previous propositions, as well as of Theorem 2.11, we
obtain the following.

Theorem 4.12. Assume that (4.1), (4.4), (4.6) and (4.12) hold and that D, H is locally
Lipschitz continuous. Then the two functions U and V are equal.

Proof. The proof simply consists in using Theorem 2.11 to compare two times U and V.
Thanks to (4.1), (4.4) and (4.6), we know that U is continuous. The same argument as
the one we presented for U yields that V' is also continuous. Hence, they both satisfy the
terminal condition G and the result is proven. ]
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5. Conclusion and perspectives

5.1. Summary of the results

In conclusion, we summarize the results that we have brought on the value function U
defined in (3.4).
We introduce the following hypothesis.

Hypothesis 3. The Hamiltonian H is well defined and continuous and there exist k > 1
and C > 0 such that forall x, y € T4 . p € R4,

L(x.0) < C(1 + [af).
|DxL(x,a)| < C(1 4+ L(x,)),
|DpL(x, )| |a| = C(1 + L(x,@)),
|H(x, p) — H(y. p)l = C(1 + |pDIx — y|.
Recall that we denote (7) := sups; , yerd Uder(s, i, v).

Theorem 5.1. Assume that Hypothesis 3 holds and that the target process (V¢)i>o is
a jump process described by the operator T, which is Lipschitz continuous for the W,
distance, and the intensity A. Assume that A is continuous and that there exist C > 0 and
y > —1 such that for T —t < c 1

A)w(t) < C(T —1)”
and
T
MﬂfCG—U”/ A
t
Then U defined in (3.4) is the unique viscosity solution of (1.11) such that

lim sup |U(t, u, v) — Uger(2, 1, v)| = 0.
=T p

Theorem 5.2. Assume that Hypothesis 3 holds for k = 2, with the reverse inequality
Vx € Td,ot € Rd, C_1|oz|2 —C < L(x,q),

for some C > 0 and that the target process (V¢)t>o is given by v; = (tw,)sv, where
(Wi)tso0 is the strong solution of (1.12). Assume that o is bounded and satisfies

o(t) ~K(T —1t)Y ast—>T,
for some K # 0, y > % Then U is the unique viscosity solution of (1.14) which satisfies

lim sup |U(t, p, w) — Uger (1, 1, (Tw)4v)| = 0.
t=>T pw

Remark 5.3. In particular, L has exactly quadratic growth here. As we mentioned in

Remark 3.13, the case in which it grows faster than quadratically can be treated similarly

by using the Burkholder—Davis—Gundy inequalities in the study of the singularity.
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5.2. Potential approximating schemes for the HJB equation

Discretizing both time and the space of measures, one can arrive at the usual discrete
scheme for dynamic optimal control problem, namely using the notion of Wasserstein
barycenters [1]. It seems that the stability properties of viscosity solutions should be help-
ful to prove some convergence properties. On the other hand, fast methods to compute
Wasserstein barycenters now exist [21] and could lead to a tractable numerical treatment
of the problem.

5.3. More general optimal control problem

The techniques developed in Section 2 seem to be well suited to studying more general
optimal control problems on the space of probability measures. With Pierre-Louis Lions
(College de France), we are currently generalizing them to treat the case of the control of
the parabolic continuity equation

d;m —vAm + div(em) =0 in (0,T) x T¥,

where the control is still o, but the presence of the term in v makes the analysis more
complex.
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