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Logarithmically refined Gagliardo–Nirenberg
interpolation and application to blow-up exclusion in a

singular chemotaxis–consumption system

Michael Winkler

Abstract. A family of interpolation inequalities is derived, which differ from estimates of classical
Gagliardo–Nirenberg type through the appearance of certain logarithmic deviations from standard
Lebesgue norms in zero-order expressions. Optimality of the obtained inequalities is shown. A sub-
sequent application reveals that when posed under homogeneous Neumann boundary conditions in
smoothly bounded planar domains and with suitably regular initial data, for any choice of ˛ > 0 the
Keller–Segel-type migration–consumption system ut D �.uv

�˛/, vt D �v � uv, admits a global
classical solution.

1. Introduction

Objective #1: Optimal interpolation involving Lq logˇ L spaces. In interpolation
inequalities of Gagliardo–Nirenberg type ([7, 17, 18, 39]), logarithmic refinements play
important roles in various contexts of nonlinear PDE analysis. In typical applications,
the presence of structural properties such as energies implies bounds for some solution
components in Orlicz classes differing from classical Lebesgue spaces, and an appropri-
ate exploitation of this a priori information is sought in order to derive further regularity
features; well-known examples include evolution systems in which expressions of the
form

R
u ln u constitute a part of associated Lyapunov functionals, such as large classes

of Fokker–Planck equations, or also cross-diffusion systems of Keller–Segel and related
types ([5, 6, 19, 24, 27, 38, 40, 41]; cf. also the discussion in [43]).

A classical result concerned with such a situation, going back to [6], states that in any
smoothly bounded planar domain�, given " > 0 one can find C."/ > 0 with the property
that

k'k3
L3.�/

� "k'k2
W 1;2.�/

k' ln j'jkL1.�/ C C."/k'kL1.�/ for all ' 2 W 1;2.�/: (1.1)

In particular, the appearance of an arbitrarily small multiple of the first-order expression
herein can be viewed as reflecting a certain added value of presupposed knowledge of

Mathematics Subject Classification 2020: 26D10 (primary); 35K67, 35Q92, 92C17 (secondary).
Keywords: Gagliardo–Nirenberg inequality, Orlicz space, chemotaxis, signal-suppressed motility.

https://creativecommons.org/licenses/by/4.0/


M. Winkler 1602

L logL bounds in comparison to the neighboring standard Gagliardo–Nirenberg inequal-
ity, which exclusively involves genuine L1 norms on the zero-order part of its right-hand
side, and according to which for some positive but not necessarily small C > 0 we have

k'k3
L3.�/

� Ck'k2
W 1;2.�/

k'kL1.�/ for all ' 2 W 1;2.�/I

we refer to [6, p. 1199] for a derivation of (1.1), to [47, Appendix] for extensions to more
general summability powers and to domains of arbitrary dimension, to [43, Lemma 11.1]
for localized variants and, e.g., to [31, 38, 42, 44–46] for some applications which make
substantial use of such improved knowledge.

The first objective of the present study consists in further specifying this type of advan-
tage to a quantitatively optimal extent. In anticipation of the particular application context
to be subsequently addressed, we will consider this in a slightly more general framework
involving a second and widely arbitrary function which can be viewed as a weight, and the
influence of which can actually be eliminated on the first reading by simply setting  � 1
in the following. In fact, in Section 2 an approach based on resorting directly to Sobolev
inequalities, rather than to Gagliardo–Nirenberg such as done e.g. in [6], will reveal that
when combined with estimates in suitable classical Lebesgue norms, bounds in L logˇ L
actually allow for a control of sizes in certain smaller Orlicz spaces.

Proposition 1.1. Let n � 1 and � � Rn be a bounded domain with smooth boundary,
and let p > 0, ˛ > 0 and ˇ � 0. Then there exists C D C.p; ˛; ˇ/ > 0 such that for any
' 2 C 1.x�/ and  2 C 1.x�/ fulfilling ' > 0 and  > 0 in x�,Z

�

'pC
2
n ln

2ˇ
n .' C e/ � C �

²Z
�

' lnˇ .' C e/
³ 2
n

� k k˛L1.�/ �

Z
�

jr.'
p
2  �

˛
2 /j2

C C �

²Z
�

' lnˇ .' C e/
³ 2
n

�

Z
�

'p �2jr j2

C C �

²Z
�

'

³p
�

²Z
�

' lnˇ .' C e/
³ 2
n

: (1.2)

Indeed, upon letting � 1 here we immediately obtain, as a by-product, the following
interpolation inequality that exclusively involves one function only on its right-hand side.

Corollary 1.2. If n � 1 and � � Rn is a bounded domain with smooth boundary, then
for each p > 0 and ˇ � 0 there exists C D C.p; ˇ/ > 0 with the property that whenever
' 2 C 1.x�/ is positive in x�,Z

�

'pC
2
n ln

2ˇ
n .' C e/ � C �

²Z
�

' lnˇ .' C e/
³ 2
n

�

Z
�

jr'
p
2 j
2

C C �

²Z
�

'

³p
�

²Z
�

' lnˇ .' C e/
³ 2
n

: (1.3)
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Remark. Let us briefly comment on two special cases of the above:

(i) In the special case when n D 1, p D 1 and ˇ D 1, (1.3) reduces to the inequalityZ
�

'3 ln2.' C e/ � C �
²Z

�

' ln.' C e/
³2
�

Z
�

'2x
'
C C �

²Z
�

'

³
�

²Z
�

' ln.' C e/
³2
;

which indeed is sharper than a preceding statement from [48, Lemma 7.5] (cf. also [48,
Corollary 7.6]) in this regard, according to which there exists C > 0 such that whenever
0 < ' 2 C 1.x�/,Z

�

'3 ln.' C e/ � C �
²Z

�

' ln.' C e/
³2
�

Z
�

'2x
'
C C �

²Z
�

' ln.' C e/
³3
:

(ii) Also for n D 2 and general p > 0 and ˇ > 0, the inequalityZ
�

'pC1 lnˇ .' C e/ � C �
²Z

�

' lnˇ .' C e/
³
�

Z
�

jr'
p
2 j
2

C C �

²Z
�

'

³p
�

Z
�

' lnˇ .' C e/;

as accordingly asserted by Corollary 1.2, extends the corresponding outcome of [48,
Lemma 7.5], which only for 
 2 Œ0; ˇ/ has provided C D C.p; ˇ; 
/ > 0 fulfillingZ
�

'pC1 ln
 .'C e/ � C �
²Z

�

' lnˇ .'C e/
³
�

Z
�

jr'
p
2 j
2
C C �

²Z
�

' lnˇ .'C e/
³pC1

for any such '.

In order to indicate the appropriateness of the approach chosen here, we can finally
make sure that the outcome of Corollary 1.2 is essentially optimal with regard to the
expression controlled on its left-hand side, and that hence Proposition 1.1 also cannot be
substantially improved; as (1.3) trivially holds when n � 3 and p 2 .0; n�2

n
�, we may

confine ourselves to the case when p > .n�2/C
n

in the following.

Proposition 1.3. Let n � 1 and � � Rn be any bounded domain, let p > .n�2/C
n

and
ˇ � 0, and suppose that the functions h 2 C 0..0;1//, F1 2 C

0..0;1/2/ and F2 2

C 0..0;1/2/ are nonnegative and nondecreasing with respect to each of their arguments,
and such thatZ

�

'pC
2
n ln

2ˇ
n .' C e/h.'/ � F1

�Z
�

';

Z
�

' lnˇ .' C e/
�
�

Z
�

jr'
p
2 j
2

C F2

�Z
�

';

Z
�

' lnˇ .' C e/
�

(1.4)

for all ' 2 C 1.x�/ fulfilling ' > 0 in x�. Then there exists C > 0 such that

h.�/ � C for all � > 0:
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Objective #2: Suppressing blow-up in a two-dimensional migration-consumption
system. Our second focus will thereafter be on the parabolic model8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

ut D �.uv
�˛/; x 2 �; t > 0;

vt D �v � uv; x 2 �; t > 0;

@u

@�
D
@v

@�
D 0; x 2 @�; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 �;

(1.5)

for coupled migration-consumption processes positively influenced by small concentra-
tions v of a directing cue, such as typically found in contexts of starvation-driven motion
of organisms ([10, 13, 32]). Here, splitting the nonlinear second-order operator into the
diffusive part r � .v�˛ru/ and a cross-diffusive contribution �˛r � .uv�˛�1rv/ shows
that (1.5) can be viewed as a special representative within a large class of Keller–Segel–
consumption systems ([25, 26]), with one of its core features consisting of a precise link
between the signal-dependent rates of random diffusion and taxis.

Resulting characteristic mathematical features of this particular structure, as becoming
manifest in a priori bounds of the formZ T

0

Z
�

u2v�˛ � C.T /; T > 0; (1.6)

have played essential roles in existence and qualitative theories not only for (1.5) through-
out various ranges of ˛ 2 R ([28, 30, 49, 53]) but also for several relatives accounting
for signal production mechanisms (see [8, 11, 12, 15, 16, 23, 29] for a small selection of
recent developments on systems of this form, and also [1, 14, 20, 22, 33–35, 54] as well as
[21, 36, 50] for studies concerned with further simplifications and extensions). Especially
in the case when in line with the modeling hypotheses in [10] and [13], the key parameter ˛
is assumed to be positive; however, to date it seems unclear how far basic regularity infor-
mation in the style of (1.6) can be used to appropriately control the destabilizing potential
of the singularly enhanced cross-diffusion mechanism in (1.5). Accordingly, global clas-
sical solvability could so far be asserted only in spatially one-dimensional versions of
(1.5) when ˛ > 0, while in higher-dimensional domains, only certain very weak-strong
solutions seem to have been constructed for arbitrary positive ˛ up to now ([49]).

As the second goal of this manuscript, we intend to develop a refined interpolation-
based approach toward an analysis of (1.5), through which the occurrence of taxis-driven
blow-up phenomena can be ruled out for arbitrary positive ˛ at least in planar domains.
To accomplish this, we will rely on the outcome of Proposition 1.1 in two essential steps
related to the crucial aim to establish pointwise lower bounds for the component v, and to
thereby exclude the effective appearance of singular migration rates in (1.5).

Indeed, analyzing the evolution ofZ
�

u ln.uv�˛ C e/
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will show that whenever ˛ > 0, a rigorous version of (1.6) (Lemma 3.2) together with a
consequence thereof on regularity of rv (Lemma 3.3) implies bounds of the form

sup
t2.0;T /

Z
�

u ln.uC e/C
Z T

0

Z
�

jr.uv�˛/j2 C

Z T

0

Z
�

uv�2jrvj2 � C.T /; T > 0

(Lemma 3.6), whence a first application of Proposition 1.1 will assert estimates of typeZ T

0

Z
�

u2 ln.uC e/ � C.T /; T > 0; (1.7)

(Lemma 3.7). In a second stage, this in turn will enable us to suitably control ill-signed
contributions to the evolution ofZ

�

u ln
 .uv�˛ C e/ for some 
 > 1;

and to thus, again on the basis of Proposition 1.1, improve (1.7) so as to becomeZ T

0

Z
�

u2 ln
 .uC e/ � C.T /; T > 0

(Lemmas 3.9 and 3.10). Thanks to the strict inequality 
 > 1, a pointwise upper bound for
ln 1
v

will directly result from this due to a general result on L1 estimates of solutions to
inhomogeneous linear heat equations with sources bounded in spatio-temporal L2 log
 L
norms in the considered two-dimensional setting (Lemmata 3.4 and 3.11).

Supplemented by a straightforward derivation of higher regularity features, this will
lead to the following consequence of our interpolation results from Proposition 1.1 in the
absence of finite-time singularity formation in the two-dimensional version of (1.5) for
any such ˛.

Theorem 1.4. Let � � R2 be a bounded domain with smooth boundary, and let ˛ > 0.
Then for any choice of initial data which are such that´

u0 2 W
1;1.�/ is nonnegative in � with u0 6� 0 and

v0 2 W
1;1.�/ is positive in x�,

(1.8)

one can find uniquely determined functions´
u 2 C 0.x� � Œ0;1// \ C 2;1.x� � .0;1// and

v 2
T
q>2 C

0.Œ0;1/IW 1;q.�// \ C 2;1.x� � .0;1//

such that u > 0 in x� � .0;1/ and v > 0 in x� � Œ0;1/, and that .u; v/ forms a classical
solution of (1.5).



M. Winkler 1606

2. Interpolation results. Proofs of Propositions 1.1 and 1.3

To begin with, let us suitably exploit the Sobolev inequality to establish the announced
interpolation inequality in its general form.

Proof of Proposition 1.1. We first consider the case when n � 2, in which we fix c1 D
c1.p/ > 0 such that in accordance with the Sobolev inequality on � we have

k�k2
L2.�/

� c1kr�k
2

L
2n
nC2 .�/

C c1k�k
2

L
2n
npC2 .�/

for all � 2 C 1.x�/; (2.1)

and given ' 2 C 1.x�/ and  2 C 1.x�/ such that ' > 0 and  > 0 in x�, we abbreviate

�´ '
p
2  �

˛
2 (2.2)

and apply (2.1) to

� ´ �
npC2
np  

.npC2/˛
2np ln

ˇ
n .�

2
p 

˛
p C e/: (2.3)

Here we observe that

r� D
np C 2

np
�
2
np 

.npC2/˛
2np ln

ˇ
n .�

2
p 

˛
p C e/r�

C
.np C 2/˛

2np
�
npC2
np  

.npC2/˛�2np
2np ln

ˇ
n .�

2
p 

˛
p C e/r 

C �
npC2
np  

.npC2/˛
2np �

ˇ

n

ln
ˇ�n
n .�

2
p 

˛
p C e/

�
2
p 

˛
p C e

�

° 2
p
�
2�p
p  

˛
pr�C

˛

p
�
2
p 

˛�p
p r 

±
D �

2
np 

.npC2/˛
2np ln

ˇ
n .�

2
p 

˛
p C e/ �

°np C 2
np

C
2ˇ

np
�

�
2
p 

˛
p

.�
2
p 

˛
p C e/ ln.�

2
p 

˛
p C e/

±
r�

C �
npC2
np  

.npC2/˛�2np
2np ln

ˇ
n .�

2
p 

˛
p C e/

�

° .np C 2/˛
2np

C
˛ˇ

np
�

�
2
p 

˛
p

.�
2
p 

˛
p C e/ ln.�

2
p 

˛
p C e/

±
r 

in �, and that thus, by (2.2),

r� D '
1
n 

˛
2 ln

ˇ
n .' C e/ �

°np C 2
np

C
2ˇ

np
�

'

.' C e/ ln.' C e/

±
r�

C '
npC2
2n  �1 ln

ˇ
n .' C e/ �

° .np C 2/˛
2np

C
˛ˇ

np
�

'

.' C e/ ln.' C e/

±
r in �:

Since
0 �

'

.' C e/ ln.' C e/
� 1 in �;
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this implies that if we let c2 � c2.p;ˇ/´ npC2
np
C

2ˇ
np

and c3 � c3.p;˛;ˇ/´
.npC2/˛
2np

C

˛ˇ
np

, then

jr�j � c2'
1
n 

˛
2 ln

ˇ
n .' C e/jr�j C c3'

npC2
2n  �1 ln

ˇ
n .' C e/jr j

in �, so that

kr�k2
L

2n
nC2 .�/

� 2c22k'
1
n 

˛
2 ln

ˇ
n .' C e/r�k2

L
2n
nC2 .�/

C 2c23k'
npC2
2n  �1 ln

ˇ
n .' C e/r k2

L
2n
nC2 .�/

: (2.4)

Here, the Hölder inequality implies that

k'
1
n 

˛
2 ln

ˇ
n .' C e/r�k2

L
2n
nC2 .�/

D

²Z
�

'
2
nC2 

n˛
nC2 ln

2ˇ
nC2 .' C e/jr�j

2n
nC2

³ nC2
n

�

²Z
�

jr�j2
³
�

²Z
�

' 
n˛
2 lnˇ .' C e/

³ 2
n

� k k˛L1.�/ �

²Z
�

jr�j2
³
�

²Z
�

' lnˇ .' C e/
³ 2
n

; (2.5)

and that

k'
npC2
2n  �1 ln

ˇ
n .' C e/r k2

L
2n
nC2 .�/

D

²Z
�

'
npC2
nC2  �

2n
nC2 ln

2ˇ
nC2 .' C e/jr j

2n
nC2

³ nC2
n

D

²Z
�

¹'p �2jr j2º
n
nC2 � '

2
nC2 ln

2ˇ
nC2 .' C e/

³ nC2
n

�

²Z
�

'p �2jr j2
³
�

²Z
�

' lnˇ .' C e/
³ 2
n

: (2.6)

Since, finally, again using the Hölder inequality, we infer from (2.3) and (2.2) that

k�k2

L
2n
npC2 .�/

D

²Z
�

�
2
p 

˛
p ln

2ˇ
npC2 .�

2
p 

˛
p C e/

³ npC2
n

D

²Z
�

' ln
2ˇ
npC2 .' C e/

³ npC2
n

D

²Z
�

¹' lnˇ .' C e/º
2

npC2 � '
np
npC2

³ npC2
n

�

²Z
�

' lnˇ .' C e/
³ 2
n

�

²Z
�

'

³p
;
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a combination of (2.1) with (2.4), (2.5) and (2.6) yields (1.2) upon an evident choice of
C.p; ˛; ˇ/ whenever n � 2.

If � � R, however, then for 0 < ' 2 C 1.x�/ and 0 <  2 C 1.x�/ we can estimate

I ´

Z
�

'pC2 ln2ˇ .' C e/

in an elementary manner: Again letting �´ '
p
2  �

˛
2 , we first observe that similarly to

the above,

j@x¹'
pC1 lnˇ .' C e/ºj

D j@x¹�
2.pC1/
p  

.pC1/˛
p lnˇ .�

2
p 

˛
p C e/ºj

D

ˇ̌̌2.p C 1/
p

�
pC2
p  

.pC1/˛
p lnˇ .�

2
p 

˛
p C e/�x

C
.p C 1/˛

p
�
2.pC1/
p  

.pC1/˛�p
p lnˇ .�

2
p 

˛
p C e/ x

C �
2.pC1/
p  

.pC1/˛
p � ˇ

lnˇ�1.�
2
p 

˛
p C e/

�
2
p 

˛
p C e

�

° 2
p
�
2�p
p  

˛
p �x C

˛

p
�
2
p 

˛�p
p  x

±ˇ̌̌
D

ˇ̌̌
�
pC2
p  

.pC1/˛
p lnˇ .�

2
p 

˛
p C e/ �

°2.p C 1/
p

C
2ˇ

p
�

�
2
p 

˛
p

.�
2
p 

˛
p C e/ ln.�

2
p 

˛
p C e/

±
�x

C �
2.pC1/
p  

.pC1/˛�p
p lnˇ .�

2
p 

˛
p C e/

�

° .p C 1/˛
p

C
˛ˇ

p
�

�
2
p 

˛
p

.�
2
p 

˛
p C e/ ln.�

2
p 

˛
p C e/

±
 x

ˇ̌̌
D

ˇ̌̌
'
pC2
2  

˛
2 lnˇ .' C e/ �

°2.p C 1/
p

C
2ˇ

p
�

'

.' C e/ ln.' C e/

³
�x

C 'pC1 �1 lnˇ .' C e/ �
²
.p C 1/˛

p
C
˛ˇ

p
�

'

.' C e/ ln.' C e/

±
�  x

ˇ̌̌
� c4'

pC2
2  

˛
2 lnˇ .' C e/j�xj C c5'pC1 �1 lnˇ .' C e/j xj in �;

with c4 � c4.p; ˇ/´
2.pC1/
p
C

2ˇ
p

and c5 � c5.p; ˛; ˇ/´
.pC1/˛
p
C

˛ˇ
p

. To make
suitable use of this, we fix x0 2 x� such that '.x0/D infx2� '.x/, and then infer from the
monotonicity of 0 � � 7! � lnˇ .� C e/ that

'pC1.x0/ lnˇ .'.x0/C e/ D ¹'.x0/ºp � ¹'.x0/ lnˇ .'.x0/C e/º

�

²
1

j�j

Z
�

'

³p
�

²
1

j�j

Z
�

' lnˇ .' C e/
³

D j�j�p�1 �

²Z
�

'

³p
�

Z
�

' lnˇ .' C e/:
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Therefore,

'pC1.x/ lnˇ .'.x/C e/ D 'pC1.x0/ lnˇ .'.x0/C e/C
Z x

x0

@x¹'
pC1 lnˇ .' C e/º.y/dy

� j�j�p�1 �

²Z
�

'

³p
�

Z
�

' lnˇ .' C e/

C c4

Z
�

'
pC2
2  

˛
2 lnˇ .' C e/j�xj

C c5

Z
�

'pC1 �1 lnˇ .' C e/j xj for all x 2 �;

and thus, by Young’s inequality,

I �

Z
�

'pC2 ln2ˇ .' C e/ � k'pC1 lnˇ .' C e/kL1.�/

Z
�

' lnˇ .' C e/

� j�j�p�1 �

²Z
�

'

³p
�

²Z
�

' lnˇ .' C e/
³2

C c4 �

²Z
�

'
pC2
2  

˛
2 lnˇ .' C e/j�xj

³
�

Z
�

' lnˇ .' C e/

C c5 �

²Z
�

'pC1 �1 lnˇ .' C e/j xj
³
�

Z
�

' lnˇ .' C e/

� j�j�p�1 �

²Z
�

'

³p
�

²Z
�

' lnˇ .' C e/
³2

C
1

4
I C c24 �

²Z
�

 ˛�2x

³
�

²Z
�

' lnˇ .' C e/
³2

C
1

4
I C c25 �

²Z
�

'p �2 2x

³
�

²Z
�

' lnˇ .' C e/
³2
:

As
R
�
 ˛�2x � k k

˛
L1.�/

R
�
�2x , this implies (1.2) whenever C.p;˛;ˇ/ �max¹2c24 ; 2c

2
5 ;

2j�j�p�1º.

Our argument revealing optimality of the statement from Corollary 1.2, and hence also
of Proposition 1.1, involves families of functions with essentially self-similar structure.

Proof of Proposition 1.3. Without loss of generality assuming that BR0.0/ � � � BR.0/
with someR0 > 0 andR >R0, we use that ��

1
2 lnˇ �! 0 as �!1 to choose ı0 2 .0; 1/

small enough such that besides
ı0

2
� R0; (2.7)

we have
ı
n
2 lnˇ .ı�n/ � 1 for all ı 2 .0; ı0/: (2.8)
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For ı 2 .0; ı0/, we then abbreviate

aı ´ ln�ˇ .ı�n/; (2.9)

and fixing a nonincreasing � 2 C1.Œ0;1// such that �� 1 in Œ0; 1
2
� and �� 0 in Œ1;1/,

we define

'ı.x/´ aı �
°
1C ı�

np
2 �
�
jxj

ı

�± 2
p
; x 2 x�; ı 2 .0; ı0/: (2.10)

Then 'ı belongs toC1.x�/ and is positive in x� for any such ı, and writing!n´ njB1.0/j

we can employ Young’s inequality to estimateZ
�

'ı � !naı

Z R

0

rn�1 �
°
1C ı�

np
2 �
�r
ı

�± 2
p
dr

� 2
2
p!naı

Z R

0

rn�1 �
°
1C ı�n�

2
p

�r
ı

�±
dr

D 2
2
p!naı �

Rn

n
C 2

2
p!naı

Z R
ı

0

�n�1�
2
p .�/ d� for all ı 2 .0; ı0/;

so that Z
�

'ı � c1aı for all ı 2 .0; ı0/; (2.11)

with c1 ´ 2
2
p !nR

n

n
C 2

2
p!n

R1
0
�n�1�

2
p .�/ d� being finite due to the compactness of

supp�. Noting that the inequalities ı0 < 1 and ˇ � 0 warrant finiteness also of

c2´ sup
ı2.0;ı0/

aı � ln�ˇ .ı�n0 /; (2.12)

this firstly entails that with the finite positive constant c3´ c1c2 we haveZ
�

'ı � c3 for all ı 2 .0; ı0/: (2.13)

To make appropriate use of (2.11) for a second time, we simply estimate � � 1 and ı0 � 1
in verifying that once more thanks to (2.12),

'ı C e � aı � ¹1C ı
�
np
2 º

2
p C e

� aı � .2ı
�
np
2 /

2
p C eı�n

D .2
2
p aı C e/ı

�n

� c4ı
�n in �, for all ı 2 .0; ı0/

with c4´ 2
2
p c2C e. Therefore, namely, (2.11) together with (2.9) and again (2.12) shows

that Z
�

'ı lnˇ .'ı C e/ � lnˇ .c4ı�n/
Z
�

'ı

� c1aı lnˇ .c4ı�n/
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� 2ˇc1aı lnˇ .ı�n/C 2ˇc1aı lnˇ c4

D 2ˇc1 C 2
ˇc1aı lnˇ c4

� c5 for all ı 2 .0; ı0/ (2.14)

if we let c5´ 2ˇc1 C 2
ˇc1c2 lnˇ c4.

We next use that � � 1 in Œ0; 1
2
� to see that whenever ı 2 .0; ı0/ and x 2 B ı

2
.0/,

'ı.x/ � aı �
°
ı�

np
2 �
�
jxj

ı

�± 2
p
� aı � ı

�n;

so that due to (2.7) and the monotonicity of h,Z
�

'
pC 2

n

ı
ln

2ˇ
n .'ı C e/h.'ı/

�

Z
B ı
2
.0/

.aı � ı
�n/pC

2
n � ln

2ˇ
n .aı � ı

�n/ � h.aı � ı
�n/

D
!n � .

ı
2
/n

n
� .aı � ı

�n/pC
2
n � ln

2ˇ
n .aı � ı

�n/ � h.aı � ı
�n/

D
!n

n � 2n
� a
p

ı
ın�np�2 � a

2
n

ı
ln

2ˇ
n .aı � ı

�n/ � h.aı � ı
�n/ (2.15)

for all ı 2 .0; ı0/. Here, our restriction in (2.8) applies so as to guarantee that

aı � ı
�n
D ı�n ln�ˇ .ı�n/ D ı�

n
2 � ¹ı

n
2 lnˇ .ı�n/º�1 � ı�

n
2 for all ı 2 .0; ı0/

and thus

a
2
n

ı
ln

2ˇ
n .aı � ı

�n/ D
° ln.aı � ı�n/

ln.ı�n/

± 2ˇ
n
�

° ln.ı�
n
2 /

ln.ı�n/

± 2ˇ
n
D 2�

2ˇ
n for all ı 2 .0; ı0/;

whence (2.15) implies that letting c5´ !n

n�2nC
2ˇ
n

we haveZ
�

'
pC 2

n

ı
ln

2ˇ
n .'ı C e/h.'ı/ � c5a

p

ı
ın�np�2h.aı � ı

�n/ for all ı 2 .0; ı0/: (2.16)

Finally, a differentiation in (2.10) reveals that

jr'
p
2

ı
.x/j D a

p
2

ı
ı�

np
2 �1

ˇ̌̌
�0
�
jxj

ı

�ˇ̌̌
for all x 2 x� and ı 2 .0; ı0/;

so that upon recalling that �0 � 0 in Œ1;1/ we obtain thatZ
�

jr'
p
2

ı
.x/j2 �

Z
Bı .0/

jr'
p
2

ı
.x/j2

� k�0k2L1..0;1//a
p

ı
ı�np�2jBı.0/j

D c6a
p

ı
ın�np�2 for all ı 2 .0; ı0/; (2.17)

with c6´
!nk�

0k2
L1..0;1//

n
.
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In summary, from (2.13), (2.14), (2.16) and (2.17) we conclude on the basis of our
hypothesis (1.4) that

c5a
p

ı
ın�np�2h.aı � ı

�n/ � F1.c3; c5/ � c6a
p

ı
ın�np�2 C F2.c3; c5/ for all ı 2 .0; ı0/;

that is,

c5h.ı
�n ln�ˇ .ı�n// � F1.c3; c5/ � c6

C F2.c3; c5/ � ı
np�nC2 lnpˇ .ı�n/ for all ı 2 .0; ı0/

according to (2.9). But since our assumption on p entails that np � nC 2 is positive, and
that thus

c7´ F1.c3; c5/ � c6 C F2.c3; c5/ � sup
ı2.0;ı0/

¹ınp�nC2 lnpˇ .ı�n/º

is finite, and since clearly

ı�n ln�ˇ .ı�n/!C1 as ı & 0;

this implies the claim, because

c5 � sup
�>0

h.�/ D c5 � lim sup
ı&0

h.ı�n ln�ˇ .ı�n// � c7

thanks to the monotonicity of h.

3. Precluding blow-up in (1.5). Proof of Theorem 1.4

Next addressing the evolution problem (1.5), we begin our analysis in this regard by recall-
ing the standard parabolic theory developed in [4] in stating the following basic result on
local existence and extensibility.

Lemma 3.1. Let ˛ > 0, and assume (1.8). Then there exists Tmax 2 .0;1� as well as8̂<̂
:
u 2 C 0.x� � Œ0; Tmax// \ C

2;1.x� � .0; Tmax// and

v 2
\
q>2

C 0.Œ0; Tmax/IW
1;q.�// \ C 2;1.x� � .0; Tmax//

such that u > 0 in x� � .0; Tmax/ and v > 0 in x� � Œ0; Tmax/, that .u; v/ solves (1.5)
classically in � � .0; Tmax/, and that if Tmax <1, then

lim sup
t%Tmax

°
ku.�; t /kL1.�/ C kv.�; t /kW 1;q.�/ C




 1

v.�; t /





L1.�/

±
D1 for all q > 2:

Moreover, Z
�

u.�; t / D

Z
�

u0 for all t 2 .0; Tmax/ (3.1)

and
kv.�; t /kL1.�/ � kv0kL1.�/ for all t 2 .0; Tmax/. (3.2)
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3.1. A duality-based argument and immediate consequences

A first piece of regularity information beyond that from (3.1) and (3.2) can be gained by
suitably adapting a standard duality-based reasoning to the present situation (cf. also [49]).

Lemma 3.2. Let ˛ > 0, and suppose that Tmax <1. Then there exists C > 0 such thatZ t

0

Z
�

u2v�˛ � C for all t 2 .0; Tmax/ (3.3)

and Z
�

v�˛.�; t / � C for all t 2 .0; Tmax/: (3.4)

Proof. Letting A denote the self-adjoint invertible operator in L2
?
.�/´ ¹' 2 L2.�/ jR

�
' D 0º given by A'´��' for ' 2D.A/´ ¹W 2;2.�/\L2

?
.�/ j @'

@�
D 0 on @�º,

we rewrite the first equation in the lifted version @tA�1.u � u0/ D �¹uv�˛ � uv�˛º,
where '´ 1

j�j

R
�
' for ' 2 L1.�/. A multiplication by u � u0, followed by an integra-

tion, shows that due to (3.1),

1

2

d

dt

Z
�

jA�
1
2 .u � u0/j

2
D �

Z
�

¹uv�˛ � uv�˛º � .u � u0/

D �

Z
�

u2v�˛ C u0

Z
�

uv�˛ for all 2 .0; Tmax/;

and in order to appropriately compensate the rightmost summand herein, we use the sec-
ond equation in (1.5) to see that

d

dt

Z
�

v�˛ D �˛.˛ C 1/

Z
�

v�˛�2jrvj2 C ˛

Z
�

uv�˛

� ˛

Z
�

uv�˛ for all t 2 .0; Tmax/:

Thanks to Young’s inequality, we therefore obtain that for

y.t/´
1

2

Z
�

jA�
1
2 .u.�; t / � u0/j

2
C

Z
�

v�˛.�; t /; t 2 Œ0; Tmax/;

we have

y0.t/C
1

2

Z
�

u2v�˛ � �
1

2

Z
�

u2v�˛ C .u0 C ˛/

Z
�

uv�˛

� c1y.t/ for all t 2 .0; Tmax/ (3.5)

with c1 ´
.u0C˛/

2

2
, so that y.t/ � c2 ´ y.0/ec1Tmax for all t 2 Œ0; Tmax/, with c2 being

finite according to our hypothesis that Tmax < 1. While this directly implies (3.4), an
integration in (3.5) thereafter shows that

1

2

Z t

0

Z
�

u2v�˛ � y.0/C c1

Z t

0

y.s/ds � c2 C c1c2Tmax for all t 2 .0; Tmax/

and hence also establishes (3.3).
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When utilized in the course of a standard testing procedure applied to the second
equation in (1.5), the estimate in (3.3) quite immediately entails an integral bound for rv,
containing a weight which becomes singular near v D 0.

Lemma 3.3. Let ˛ > 0, and assume that Tmax <1. Then there exists C > 0 such thatZ t

0

Z
�

jrvj4

v3
� C for all t 2 .0; Tmax/

and that Z t

0

Z
�

u

v
jrvj2 � C for all t 2 .0; Tmax/:

Proof. In a fairly straightforward manner (cf. [51, Lemma 3.2]), from the second equation
in (1.5) we can derive the identity

1

2

d

dt

Z
�

jrvj2

v

D �

Z
�

vjD2 ln vj2 C
1

2

Z
@�

1

v
�
@jrvj2

@�
C

Z
�

u�v �
1

2

Z
�

u

v
jrvj2 (3.6)

for all t 2 .0; Tmax/, where a combination of known functional inequalities and boundary
trace embedding estimates ([51, Lemma 3.3], [37, Lemma 4.2], [3, A6.6]) readily yields
positive constants c1, c2, c3 and c4 such that

1

2

Z
�

vjD2 ln vj2 � c1

Z
�

1

v
jD2vj2 C c1

Z
�

jrvj4

v3
for all t 2 .0; Tmax/

and

1

2

Z
@�

1

v
�
@jrvj2

@�

� c2

Z
@�

jrvj2

v
� c3

Z
�

ˇ̌̌
r

�1
v
jrvj2

�ˇ̌̌
C c3

Z
�

jrvj2

v

�
c1

2

Z
�

1

v
jD2vj2 C

c1

2

Z
�

jrvj4

v3
C c4

Z
�

jrvj2

v
for all t 2 .0; Tmax/:

Moreover, using Young’s inequality along with (3.2) we find c5 > 0 such thatZ
�

u�v �
c1

2

Z
�

1

v
jD2vj2 C c5

Z
�

u2v�˛ for all t 2 .0; Tmax/;

whence (3.6) implies that for y.t/´
R
�
jrv.�;t/j2

v.�;t/
, t 2 Œ0; Tmax/, we have

y0.t/C c1

Z
�

jrvj4

v3
C
1

2

Z
�

u

v
jrvj2

� 2c4y.t/C 2c5

Z
�

u2v�˛ for all t 2 .0; Tmax/: (3.7)



Logarithmically refined Gagliardo–Nirenberg interpolation 1615

As a consequence of Lemma 3.2, we thus obtain c6 > 0 such that y.t/ � c6 for all t 2
Œ0; Tmax/, whereupon integrating in (3.7) we infer that

c1

Z t

0

Z
�

jrvj4

v3
C
1

2

Z t

0

Z
�

u

v
jrvj2

� c6 C 2c4c6Tmax C 2c5

Z t

0

Z
�

u2v�˛ for all t 2 .0; Tmax/

and conclude as intended by again relying on Lemma 3.2.

3.2. Space-time L2 log
 L bounds for u. Application of Proposition 1.1

We now approach the core of our analysis concerned with (1.5), culminating in two appli-
cations of Proposition 1.1, in Lemmas 3.7 and 3.10, which in turn facilitate our derivation
of a pointwise lower bound for v. In fact, in Lemma 3.11 the latter will be achieved by
utilizing, after performing a Hopf–Cole-type transformation, the following general result
from parabolic regularity theory ([52]; cf. also [9, 55] together with [2]), which we state
here in order to specify the particular purpose of our subsequent efforts.

Lemma 3.4. Let L 2 C 0.Œ0;1// be strictly increasing and positive with L.�/! C1
as � !1 and Z 1

1

d�

�L.�/
<1:

Then for each K > 0 and any T > 0 there exists C.K; T / > 0 with the property that
whenever w 2

T
q>2 C

0.Œ0; T /IW 1;q.�// \ C 2;1.x� � .0; T // and f 2 C 0.x� � Œ0; T //
are such that

kw.�; 0/kW 1;1.�/ � K

and Z t

0

Z
�

f 2L.jf j/ � K for all t 2 .0; T /;

as well as 8<:wt D �w C f .x; t/; x 2 �; t 2 .0; T /;

@w

@�
D 0; x 2 @�; t 2 .0; T /;

we have
kw.�; t /kL1.�/ � C.K/ for all t 2 .0; T /:

Proof. This is a particular consequence of [52, Theorem 1.1].

In preparation for our application of this, we record the following observation which
reflects a second structural feature of (1.5), beyond that underlying our argument in
Lemma 3.2. It will be of crucial importance for our subsequent reasoning that the class of
functions ` admissible below not only includes the choice `.�/ D ln �, as previously used
in classical detections of energy structures in related problems ([15, Lemma 6.1]), but also
some relatives exhibiting stronger logarithmic-type growth (see Lemma 3.6 and 3.9).
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Lemma 3.5. Let ˛ > 0, and suppose that ` 2 C 2..0;1// is such that

�`00.�/C 2`0.�/ � 0 for all � > 0: (3.8)

Then writing
z´ uv�˛; (3.9)

we have
d

dt

Z
�

u`.z/C
1

2

Z
�

¹z`00.z/C 2`0.z/ºjrzj2

� ˛.˛ � 1/

Z
�

uv�2 � z`0.z/jrvj2 C
˛2

2

Z
�

uv˛�2 � ¹z2`00.z/C 2z`0.z/º � jrvj2

C ˛

Z
�

u2 � z`0.z/ for all t 2 .0; Tmax/: (3.10)

Proof. Using (3.9) and (1.5), we compute

d

dt

Z
�

u`.z/ D

Z
�

`.z/ut C

Z
�

u`0.z/ � ¹v�˛ut � ˛uv
�˛�1vtº

D

Z
�

`.z/�z C

Z
�

z`0.z/�z

� ˛

Z
�

u2v�˛�1`0.z/ � ¹�v � uvº for all t 2 .0; Tmax/; (3.11)

where two integrations by parts show thatZ
�

`.z/�z D �

Z
�

`0.z/jrzj2 for all t 2 .0; Tmax/

and Z
�

z`0.z/�z D �

Z
�

¹z`00.z/C `0.z/ºjrzj2 for all t 2 .0; Tmax/;

so that Z
�

`.z/�z C

Z
�

z`0.z/�z

D �

Z
�

¹z`00.z/C 2`0.z/ºjrzj2 for all t 2 .0; Tmax/: (3.12)

Moreover, integrating by parts once again we see that

� ˛

Z
�

u2v�˛�1`0.z/�v

D �˛

Z
�

v˛�1z2`0.z/�v

D ˛.˛ � 1/

Z
�

v˛�2z2`0.z/jrvj2

C ˛

Z
�

v˛�1 � ¹z2`00.z/C 2z`0.z/ºrv � rz for all t 2 .0; Tmax/; (3.13)
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where relying on (3.8) we may use Young’s inequality to estimate

˛

Z
�

v˛�1 � ¹z2`00.z/C 2z`0.z/ºrv � rz

�
1

2

Z
�

¹z`00.z/C 2`0.z/ºjrzj2 C
˛2

2

Z
�

v2˛�2z2 � ¹z`00.z/C 2`0.z/ºjrvj2 (3.14)

for all t 2 .0; Tmax/. Since, apart from that, on the right-hand side of (3.11) we have

�˛

Z
�

u2v�˛�1`0.z/ � .�uv/ D ˛

Z
�

u2z`0.z/ for all t 2 .0; Tmax/;

from (3.11)–(3.14) and (3.9) we readily obtain (3.10).

In conjunction with the outcomes of Lemmas 3.2 and 3.3, a first application of this
reveals a quasi-energy property of

R
�
u ln.uv�˛/, which supplements our knowledge on

regularity not only of u but also of certain first-order expressions.

Lemma 3.6. Suppose that ˛ > 0, and that Tmax <1. Then there exists C > 0 such thatZ
�

u.�; t / ln¹u.�; t /C eº � C for all t 2 .0; Tmax/ (3.15)

and Z t

0

Z
�

jr.uv�˛/
1
2 j
2
� C for all t 2 .0; Tmax/; (3.16)

as well as Z t

0

Z
�

uv�2jrvj2 � C for all t 2 .0; Tmax/: (3.17)

Proof. We let `.�/´ ln �, � > 0, and note that then

�`00.�/C 2`0.�/ D � �
�1

�2
C
2

�
D
1

�
for all � > 0

as well as
�`0.�/ D 1 and �2`00.�/C 2�`0.�/ D 1 for all � > 0;

so that we may draw on Lemma 3.5 to see that with z as in (3.9),

d

dt

Z
�

u ln z C
1

2

Z
�

jrzj2

z
� ˛.˛ � 1/

Z
�

uv�2jrvj2 C
˛2

2

Z
�

uv˛�2jrvj2

C ˛

Z
�

u2 for all t 2 .0; Tmax/: (3.18)

Here, when ˛ 2 .0; 1/, we can pick ı > 0 small enough such that

˛2

2
ı˛ �

˛.1 � ˛/

2
;
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and estimate

˛2

2

Z
�

uv˛�2jrvj2

D
˛2

2

Z
¹v�ıº

uv˛�2jrvj2 C
˛2

2

Z
¹v>ıº

uv˛�2jrvj2

�
˛2

2
ı˛
Z
�

uv�2jrvj2 C
˛2

2
ı˛�1

Z
�

u

v
jrvj2

�
˛.1 � ˛/

2

Z
�

uv�2jrvj2 C
˛2

2
ı˛�1

Z
�

u

v
jrvj2 for all t 2 .0; Tmax/;

whence in this case we obtain from (3.18) and (3.2) that

d

dt

Z
�

u ln z C
1

2

Z
�

jrzj2

z
C c1

Z
�

uv�2jrvj2

� c2

Z
�

u

v
jrvj2 C c2

Z
�

u2v�˛ for all t 2 .0; Tmax/; (3.19)

with c1 ´
˛.1�˛/
2

and c2 ´ max¹˛
2

2
ı˛�1; ˛kv0k

˛
L1.�/

º both being positive. Therefore,
given any such ˛ we obtain thatZ
�

u.�; t / ln z.�; t /C
1

2

Z t

0

Z
�

jrzj2

z
C c1

Z t

0

Z
�

uv�2jrvj2

�

Z
�

u0 ln.u0v�˛0 /C c2

Z t

0

Z
�

u

v
jrvj2 C c2

Z t

0

Z
�

u2v�˛ for all t 2 .0; Tmax/;

so that using Lemmas 3.3 and 3.2 together with (1.8) we then find c3 > 0 such thatZ
�

u.�; t / ln z.�; t /C
1

2

Z t

0

Z
�

jrzj2

z
C c1

Z t

0

Z
�

uv�2jrvj2 � c3 for all t 2 .0; Tmax/:

Observing thatZ
�

u ln z D
Z
�

u ln.uC e/ �
Z
�

u ln
�
1C

e

u

�
� ˛

Z
�

u ln v

�

Z
�

u ln.uC e/ � ej�j � ˛ ln kv0kL1.�/

Z
�

u0 for all t 2 .0; Tmax/

thanks to (3.2), (3.1) and the fact that � ln.1C e
�
/ � � � e

�
D e for all � > 0, from this we

conclude that (3.15)–(3.17) hold with some suitably large C > 0 in this case, because

jrzj2

z
D 4jr.uv�˛/

1
2 j
2 in � � .0; Tmax/:
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If, conversely, ˛ � 1, then by (3.2) and Young’s inequality, the first two integrals on the
right of (3.18) can both be estimated in modulus according toZ

�

uv�2jrvj2 C

Z
�

uv˛�2jrvj2

� ¹1C kv0k
˛
L1.�/º �

Z
�

uv�2jrvj2

�

Z
�

jrvj4

v3
C
1

4
� ¹1C kv0k

˛
L1.�/º

2

Z
�

u2v�1 for all t 2 .0; Tmax/;

where in this case we know from (3.2) thatZ
�

u2v�1 � kv0k
˛�1
L1.�/

Z
�

u2v�˛ for all t 2 .0; Tmax/:

We therefore see that (3.18) implies an inequality of the form in (3.19) also within this
range of larger ˛, so that we may conclude as before.

Now, together with (3.1) and (3.2), the three estimates in (3.15)–(3.17) quite precisely
pave the way for the first of the announced two applications of Proposition 1.1:

Lemma 3.7. Let ˛ > 0, and assume that Tmax <1. Then there exists C > 0 such thatZ t

0

Z
�

u2 ln.uC e/ � C for all t 2 .0; Tmax/: (3.20)

Proof. In view of (3.15)–(3.17), this is a consequence of Proposition 1.1 when applied to
n´ 2, p´ 1, ˇ´ 1, ' ´ u and  ´ v.

Since
R1
1

d�
� ln
 .�Ce/ is finite if and only if 
 > 1, the information obtained through

Lemma 3.7 seems yet insufficient to allow for a successful application of Lemma 3.4 in the
intended flavor. Accordingly, Lemmas 3.9 and 3.10 will be concerned with the extension
of (3.20) to a corresponding integral estimate for u2 ln
 .uC e/ with some 
 > 1. This
will be achieved by again resorting to the basic evolution feature noted in Lemma 3.5, and
by using Lemma 3.7, again together with Lemmas 3.2 and 3.3, as a starting point.

A technical preparation of an elementary nature is provided by the following.

Lemma 3.8. Let ˛ > 0, � > 0 and � > 0. Then there exists C.˛; �; �/ > 0 such that for
the function z in (3.9) we have

ln�.z C e/ � C.˛; �; �/ � ¹ln�.uC e/C v��º in � � .0; Tmax/: (3.21)

Proof. Given � > 0 and � > 0, we pick c1 D c1.�; �/ > 0 such that

ln � � c1�
�
� for all � > 0; (3.22)

and to make appropriate use of this, we first note that if .x; t/ 2 � � .0; Tmax/ is such that
z.x; t/ � e, then ln�.z.x; t/C e/ � ln�.2e/, so that (3.21) holds whenever C.˛; �; �/ �
ln�.2e/, because trivially ln�.u.x; t/C e/ � 1.
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Thus, left with the case when .x; t/ 2�� .0;Tmax/ is such that z.x; t/ > e, we observe
that then, by (3.22), and again by the fact that ln.� C e/ � 1 for all � > 0,

ln�.z C e/ � ln�.2z/ D
°

lnuC ˛ ln
1

v
C ln 2

±�
�

°
ln.uC e/C c1˛ �

�1
v

� �
�
C ln 2

±�
� ¹.1C ln 2/ ln.uC e/C c1˛v�

�
� º
�

� 2� � .1C ln 2/� � ln�.uC e/C 2� � .c1˛/� � v��;

meaning that for suitably large C.˛; �; �/ > 0, (3.21) also holds at this point.

By means of a second and now more subtle exploitation of Lemma 3.5 we can indeed
improve (3.15) as follows.

Lemma 3.9. Let ˛ > 0, and suppose that Tmax <1. Then there exist 
 > 1 and C > 0

such that Z
�

u.�; t / ln
¹u.�; t /C eº � C for all t 2 .0; Tmax/: (3.23)

Proof. We take 
 > 1 in such a way that8̂<̂
:

 <

3

2
if ˛ � 1;


 �
3˛ � 1

2˛
if ˛ > 1;

(3.24)

and we thereupon let
`.�/´ ln
 .� C e/; � > 0;

observing that

`0.�/ D

 ln
�1.� C e/

� C e

`00.�/ D
�
 ln
�1.� C e/

.� C e/2
C

.
 � 1/ ln
�2.� C e/

.� C e/2
for all � > 0;

and that thus
0 � �`0.�/ � 
 ln
�1.� C e/ for all � > 0; (3.25)

as well as

�`00.�/C 2`0.�/ D
�
� ln
�1.� C e/

.� C e/2
C

.
 � 1/� ln
�2.� C e/

.� C e/2

C
2
 ln
�1.� C e/

� C e
for all � > 0;
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whence in particular

�`00.�/C 2`0.�/ �
�
� ln
�1.� C e/

.� C e/2
C
2
 ln
�1.� C e/

� C e

�

 ln
�1.� C e/

� C e
for all � > 0 (3.26)

and

�`00.�/C 2`0.�/ �

.
 � 1/� ln
�2.� C e/

.� C e/2
C
2
 ln
�1.� C e/

� C e

�

.
 � 1/ ln
�1.� C e/

� C e
C
2
 ln
�1.� C e/

� C e

D

.
 C 1/ ln
�1.� C e/

� C e
for all � > 0: (3.27)

Now (3.26) enables us to employ Lemma 3.5, and to thereby conclude using (3.27) and
(3.25) that with z taken from (3.9) we have

d

dt

Z
�

u ln
 .z C e/ � I1 C I2 C I3 for all t 2 .0; Tmax/; (3.28)

where

I1´ ˛.˛ � 1/


Z
�

uv�2 �
z ln
�1.z C e/

z C e
� jrvj2;

I2´
˛2
.
 C 1/

2

Z
�

uv˛�2 �
z ln
�1.z C e/

z C e
� jrvj2;

(3.29)

and

I3´ ˛


Z
�

u2 �
z ln
�1.z C e/

z C e
(3.30)

for t 2 .0; Tmax/. Here, since ˛ > 0, we may apply Lemma 3.8 to � D ˛ to see that with
some c1 > 0,

I3 � ˛


Z
�

u2 ln
�1.z C e/

� c1

Z
�

u2 ln
�1.uC e/C c1

Z
�

u2v�˛

� c1

Z
�

u2 ln.uC e/C c1

Z
�

u2v�˛ for all t 2 .0; Tmax/; (3.31)

because 
 � 1 � 1.
In the case when ˛ < 1, to make use of the nonpositivity of I1 we pick ı > 0 small

enough such that
˛2
.
 C 1/

2
ı˛ � ˛.1 � ˛/
;
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and then obtain that, indeed,

I1 C I2 D �˛.1 � ˛/


Z
�

uv�2 �
z ln
�1.z C e/

z C e
� jrvj2

C
˛2
.
 C 1/

2

Z
¹v�ıº

uv˛�2 �
z ln
�1.z C e/

z C e
� jrvj2

C
˛2
.
 C 1/

2

Z
¹v>ıº

uv˛�2 �
z ln
�1.z C e/

z C e
� jrvj2

� �˛.1 � ˛/


Z
�

uv�2 �
z ln
�1.z C e/

z C e
� jrvj2

C
˛2
.
 C 1/

2
ı˛
Z
�

uv�2 �
z ln
�1.z C e/

z C e
� jrvj2

C
˛2
.
 C 1/

2

Z
¹v>ıº

uv˛�2 �
z ln
�1.z C e/

z C e
� jrvj2

�
˛2
.
 C 1/

2

Z
¹v>ıº

uv˛�2 �
z ln
�1.z C e/

z C e
� jrvj2 for all t 2 .0; Tmax/:

Again by Lemma 3.8, this time applied to � D 2˛, utilizing Young’s inequality and (3.2)
we find c2 > 0, c3 > 0 and c4 > 0 fulfilling

I1 C I2 � c2

Z
�

jrvj4

v3
C c2

Z
¹v>ıº

u2v2˛�1 ln2
�2.z C e/

� c2

Z
�

jrvj4

v3
C c3

Z
¹v>ıº

u2v2˛�1 ln2
�2.uC e/C c3

Z
¹v>ıº

u2v�1

� c2

Z
�

jrvj4

v3
C c4

Z
�

u2 ln.uC e/

C c3

Z
�

u2v�˛ for all t 2 .0; Tmax/; (3.32)

where we have used that 2
 � 2� 1 due to the fact that 
 � 3
2

. In this case ˛ < 1, collecting
(3.28)–(3.32) we thus obtain that

d

dt

Z
�

u ln
 .z C e/ � c2

Z
�

jrvj4

v3
C .c1 C c4/

Z
�

u2 ln.uC e/

C .c1 C c3/

Z
�

u2v�˛ for all t 2 .0; Tmax/;

which upon an integration using Lemmas 3.3, 3.7 and 3.2 implies that if Tmax is finite,
then with some c5 > 0 we haveZ

�

u ln
 .z C e/ � c5 for all t 2 .0; Tmax/: (3.33)



Logarithmically refined Gagliardo–Nirenberg interpolation 1623

Here we note that abbreviating c6 ´ min¹1; kv0k�˛L1.�/º we know from (3.9) and (3.2)
that Z

�

u ln
 .z C e/ D
Z
�

u ln
 .uv�˛ C e/

�

Z
�

u ln
 .c6uC e/ for all t 2 .0; Tmax/:

Since c6 � 1, we may thus draw on the concavity of 0 < � 7! ln � to infer thatZ
�

u ln
 .z C e/ �
Z
�

u � ¹ln¹c6.uC e/C .1 � c6/eºº


�

Z
�

u � ¹c6 ln.uC e/C .1 � c6/ ln eº


� c


6

Z
�

u ln
 .uC e/ for all t 2 .0; Tmax/; (3.34)

so that (3.33) entails (3.23) with some appropriately large C > 0 if ˛ < 1.
In order to simultaneously consider the cases ˛ D 1 and ˛ > 1, let us set �´ ˛ if

˛ D 1, and �´ 0 if ˛ > 1, noting that then

2� � 1

3 � 2

� �˛ (3.35)

due to our restrictions in (3.24). Using that I1 D 0 when ˛ D 1, by a combination of (3.2)
with Young’s inequality and Lemma 3.8, now applied to � D ˛ � 2� C 1 > 0, we then
obtain that whenever ˛ � 1 we can find c8 > 0 and c9 > 0 such that

I1 C I2 � c8

Z
�

uv��2 ln
�1.z C e/jrvj2

� c8

Z
�

jrvj4

v3
C c8

Z
�

u2v2��1 ln2
�2.z C e/

� c8

Z
�

jrvj4

v3
C c9

Z
�

u2v2��1 ln2
�2.uC e/

C c9

Z
�

u2v�˛ for all t 2 .0; Tmax/;

where by Young’s inequality, (3.35) and (3.2), with some c10 > 0 we haveZ
�

u2v2��1 ln2
�2.uC e/ D
Z
�

¹u2 ln.uC e/º2
�2 � u6�4
v2��1

�

Z
�

u2 ln.uC e/C
Z
�

u2v
2��1
3�2


�

Z
�

u2 ln.uC e/C c10

Z
�

u2v�˛ for all t 2 .0; Tmax/:
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Therefore, (3.28)–(3.31) in this case show that for all t 2 .0; Tmax/,

d

dt

Z
�

u ln
 .z C e/

� c8

Z
�

jrvj4

v3
C .c1 C c9/

Z
�

u2 ln.uC e/C .c1 C c9 C c9c10/
Z
�

u2v�˛;

whence arguing as before we can confirm the validity of (3.23) for ˛ � 1 as well.

Once more thanks to our general interpolation result, this enables us to strengthen
Lemma 3.7 in the following sense.

Lemma 3.10. If ˛ > 0 and Tmax <1, then there exist 
 > 1 and C > 0 such thatZ t

0

Z
�

u2 ln
 .uC e/ � C for all t 2 .0; Tmax/:

Proof. We only need to take 
 > 1 as in Lemma 3.9, and apply Proposition 1.1 to p´ 1

and ˇ´ 
 , and once more to '´ u and  ´ v, using (3.23) together with, again, (3.16)
and (3.17).

Relying on the fact that the inequality 
 > 1 ensures finiteness of
R1
1

d�
� ln
 .�Ce/ , we

may now draw on Lemma 3.4 and a simple comparison argument to bound v from below.

Lemma 3.11. Suppose that ˛ > 0, and that Tmax <1. Then there exists C > 0 such that

v.x; t/ � C for all x 2 � and t 2 .0; Tmax/:

Proof. We note that according to (1.5) and Lemma 3.1, the function w´ ln 1
v

belongs toT
q>2 C

0.Œ0; Tmax/IW
1;q.�// \ C 2;1.x� � .0; Tmax// and solves8̂̂̂̂

<̂̂
ˆ̂̂̂:
w t D �w � jrwj

2
C u; x 2 �; t 2 .0; Tmax/;

@w

@�
D 0; x 2 @�; t 2 .0; Tmax/;

w.x; 0/ D ln
1

v0.x/
; x 2 �:

Therefore, a comparison argument shows that

w.x; t/ � w.x; t/ for all x 2 � and t 2 .0; Tmax/; (3.36)

where w 2
T
q>2 C

0.Œ0; Tmax/IW
1;q.�// \ C 2;1.x� � .0; Tmax// denotes the classical

solution of 8̂̂̂̂
<̂̂
ˆ̂̂̂:
wt D �w C u; x 2 �; t 2 .0; Tmax/;

@w

@�
D 0; x 2 @�; t 2 .0; Tmax/;

w.x; 0/ D ln
1

v0.x/
; x 2 �:

(3.37)



Logarithmically refined Gagliardo–Nirenberg interpolation 1625

Since our assumptions together with Lemma 3.10 ensure that with 
 as provided there we
have

R Tmax
0

R
�
u2 ln
 .uC e/ <1, and sinceZ 1

1

d�

� ln
 .� C e/
<1

due to the inequality 
 > 1, an application of Lemma 3.4 to (3.37) yields c1 > 0 fulfilling

w.x; t/ � c1 for all x 2 � and t 2 .0; Tmax/;

so that thanks to (3.36), the claim results if we let C ´ e�c1 .

3.3. Bounds in L1.�/ � W 1;1.�/ via bootstrapping. Proof of Theorem 1.4

With the singularity in (1.5) being favorably under control now, we can proceed in quite
a standard manner to derive higher regularity features. Indeed, Lp bounds for u can be
obtained by combining Lemma 3.11 with (3.2) and Lemma 3.3.

Lemma 3.12. Suppose that ˛ > 0, and that Tmax <1. Then for all p > 1 there exists
C.p/ > 0 such that Z

�

up.�; t / � C.p/ for all t 2 .0; Tmax/: (3.38)

Proof. We use up�1 as a test function in the first equation from (1.5) to see that due to
Young’s inequality,

1

p

d

dt

Z
�

up D �.p � 1/

Z
�

up�2ru � ¹v�˛ru � ˛uv�˛�1rvº

D �.p � 1/

Z
�

up�2v�˛jruj2 C .p � 1/˛

Z
�

up�1v�˛�1ru � rv

� �
p � 1

2

Z
�

up�2v�˛jruj2

C
.p � 1/˛2

2

Z
�

upv�˛�2jrvj2 for all t 2 .0; Tmax/:

In view of the two-sided positive pointwise bounds for v provided by Lemma 3.11 and
(3.2), this means that with some c1 D c1.p/ > 0 and c2 D c2.p/ < 0 we have

d

dt

Z
�

up C c1

Z
�

jru
p
2 j
2
� c2

Z
�

upjrv
1
4 j
2 for all t 2 .0; Tmax/;

where by the Cauchy–Schwarz inequality, the Gagliardo–Nirenberg inequality and the
Young inequality, we can find ci D ci .p/ > 0, i 2 ¹3; 4; 5º, such that

c2

Z
�

upjrv
1
4 j
2
� c2krv

1
4 k
2
L4.�/

ku
p
2 k
2
L4.�/

� c3krv
1
4 k
2
L4.�/

kru
p
2 kL2.�/ku

p
2 kL2.�/ C c3krv

1
4 k
2
L4.�/

ku
p
2 k
2
L2.�/
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� c1

Z
�

jru
p
2 j
2
C c4krv

1
4 k
4
L4.�/

ku
p
2 k
2
L2.�/

C c3krv
1
4 k
2
L4.�/

ku
p
2 k
2
L2.�/

� c1

Z
�

jru
p
2 j
2
C c5 �

²
1C

Z
�

jrvj4

v3

³
�

Z
�

up for all t 2 .0; Tmax/:

Therefore, writing h.t/´ c5 � ¹1C
R
�
jrv.�;t/j4

v3.�;t/
º, t 2 .0; Tmax/, we obtain that

d

dt

Z
�

up � h.t/

Z
�

up for all t 2 .0; Tmax/;

so that (3.38) follows upon an integration using that
R Tmax
0

h.t/ dt is finite according to
Lemma 3.3.

Standard parabolic regularity theory directly turns the above into the following.

Lemma 3.13. Assuming that ˛ > 0 and that Tmax <1, we can find C > 0 such that

kv.�; t /kW 1;1.�/ � C for all t 2 .0; Tmax/:

Proof. In view of (3.2), this can readily be verified by applying Lemma 3.12 to any p >
2, and by employing well-known smoothing properties of the Neumann heat semigroup
on �.

By means of a Moser-type recursion, we can finally establish an L1 estimate for u.

Lemma 3.14. If ˛ > 0 and Tmax <1, then there exists C > 0 satisfying

ku.�; t /kL1.�/ � C for all t 2 .0; Tmax/:

Proof. Again based on the pointwise control of v from above and below, as asserted by
(3.2) and Lemma 3.11, this can be derived from Lemmas 3.12 and 3.13 through a Moser-
type iterative argument (cf. [49, Proof of Proposition 1.3] for similar reasoning in a one-
dimensional counterpart).

Our main result on blow-up exclusion in (1.5) has thus been established.

Proof of Theorem 1.4. The claim is a direct consequence of Lemmas 3.14 and 3.13 when
combined with Lemmas 3.11 and 3.1.
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