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Global weak solutions to a time-periodic
body-liquid interaction problem

Denis Bonheure and Giovanni P. Galdi

Abstract. We prove existence of time-periodic weak solutions to the coupled liquid-structure prob-
lem constituted by an incompressible Navier—Stokes fluid interacting with a rigid body of finite
size, subject to an undamped linear restoring force. The fluid flow is generated by a uniform, time-
periodic velocity field V far from the body. We emphasize that our result is global, in the sense
that no restriction is imposed on the magnitude of V' and, rather remarkably, the frequency of V'
is entirely arbitrary. Thus, in particular, it can coincide with any multiple of a natural frequency
of vibration of the body so that, with this model, resonance cannot occur. Although based on the
classical “invading domains” technique, our approach requires several new ideas. Indeed, due to the
lack of sufficient dissipation, it appears quite unfeasible to show the existence of a fixed point of the
Poincaré map at the finite-dimensional level along the Galerkin approximant. Therefore, unlike the
usual strategy, such a result must be proven directly in a class of weak solutions, and therefore in
the infinite-dimensional framework.

Introduction

One among the many, captivating problems concerning the interaction of a liquid with
an elastic structure arises when the liquid is in a time-periodic regime so as to generate
a similar motion of the structure. Of particular interest is the case when the frequency
of the flow, w, approaches or even coincides with a multiple of a natural frequency of
vibration, w,, of the body. Then, the interaction may result in a resonance phenomenon,
which is considered as primarily responsible for the possible failure of the structure [4].
Such a problem falls into the general area of vibration-induced oscillations that has all
along constituted a main focus of applied science and is at the heart of a vast engineering
literature; see the monographs [4, 11,25] and the bibliography therein.

In the classical model employed to investigate this type of question, one regards the
structure, B, as a rigid body subject to a linear restoring force, while the liquid, £, is
described by the Navier—Stokes equations [3, 10,23, 31]. In such a framework, the occur-
rence of resonance is usually explained as follows [4, Section 3.5], [2]: In the time-periodic
regime of the liquid, the motion of the structure is that of a simple harmonic oscillator sub-
ject to a forced time-periodic motion caused by the action of the force, F, exerted by £
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on B. Then, one can show that for w close to (a multiple of) w,, the amplitude of the
forced oscillations of B becomes very large and, in the absence of a damping mechanism,
tends to infinity. A significant consequence of this argument is that, without damping,
the coupled system & := B — £ cannot perform a time-periodic motion of arbitrary fre-
quency w. While seemingly reasonable, this way of thinking appears rather simplistic.
First, it decouples the highly coupled system 8, by somehow prescribing the action of
L on B. Moreover, it disregards the fact that F splits into two competing components:
the one that, indeed, forces the oscillations of B, and the other, due to viscosity effects,
which tends to absorb them. As a result, if the latter prevails over the former, occurrence
of resonance can be excluded, even in the absence of a structural damping mechanism.

Also motivated by the above considerations, very recently the authors and their col-
laborators started a rigorous and systematic analysis of this model for different flow
geometries, by investigating general mathematical properties, such as existence, unique-
ness, stability, and bifurcation of solutions [1, 5-9, 19, 20, 26]. For other contributions
related to a similar problem, we also refer to [16,24].

In this paper we aim at furnishing a further contribution, which may help a better
understanding of the resonance phenomenon. More specifically, we consider the general
case when B (of arbitrary shape) is subject to a — possibly anisotropic — linear restoring
force, and is immersed in a Navier—Stokes liquid filling the whole space, €2, outside B. The
motion of the coupled system 8 is driven by a time-periodic uniform velocity, V = V (¢),
of period T impressed on the liquid at large distance from B. We assume the worst-case
scenario, namely, no external damping mechanism acts on the structure, so that the only
dissipative effect is due to the viscosity of £. We then ask the following question: Will
the coupled system § perform a time-periodic motion of period T, for arbitrary T and
arbitrary magnitude of V'? A positive answer would suggest that the model used so far is
probably not appropriate for resonance studies, and that other aspects should be accounted
for.

The main achievement of this paper is to show that, indeed, the above question admits
an affirmative answer, provided only that V' has a mild degree of regularity and B is of
class C2. As expected, since we want to keep the “size” of V arbitrary, we are lead to per-
form this study in a suitable class of weak solutions; see Definition 3.1. The approach we
use is, in principle, rather usual for time-periodic flow in exterior domains, and employs
the “invading domains” technique [15, 18]. However, in the case at hand, its implementa-
tion is by no means straightforward, and presents a number of difficulties that are described
next.

We recall that the above technique develops along the following steps. One picks
an increasing sequence of bounded domains, {€2,}, whose union coincides with €2, and
suitably reformulates the original problem in each €2,. Then, following an idea due to
Prouse [28], a time-periodic solution in €2, is searched via the finite-dimensional Galerkin
approximation, by showing with the help of Brouwer’s theorem that the Poincaré map, M,
bringing initial conditions into corresponding solutions at time 7', has a fixed point. This
fact, in conjunction with appropriate uniform estimates in n, allows one to construct a
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solution on each €2,, and eventually pass to the limit # — oo to obtain a (weak) solu-
tion to the original problem. It should be emphasized that, for this approach to work, it
is crucial that along the Galerkin approximant the total energy of the system, E, in the
absence of a forcing term, be bounded by an exponentially decreasing function of time, to
guarantee that M is a self-map. This means that the energy equation should contain a dissi-
pative term proportional to E. It is exactly here that, in our case, the first difficulty arises.
Actually, E is the sum of the kinetic energy (K ;) of the liquid, and the kinetic (K¢) and
potential (Uz) energies of the body. By using viscosity dissipation combined with trace
theorems we obtain some damping terms for both K and K3 but, unsurprisingly, no
damping for Ug, namely, for the oscillations amplitude of B. In order to get the latter,
one may think of adapting a procedure seemingly introduced by Haraux in the context of
non-linear wave equations [21, p. 162ff]; see also [22]. However, though this procedure
formally works on the original system of equations in €2, it is rather doubtful that it can
be applied at the finite-dimensional level along the Galerkin approximant. Therefore, we
are forced to find a fixed point of the Poincaré map M directly on that system. Since we
want existence for data of arbitrary size, the fixed point should be found in a class of weak
solutions. Moreover, now being in an infinite-dimensional framework, M should also pos-
sess suitable compactness properties. This type of question has been addressed by Prodi
for classical Navier—Stokes equations [27]. Nevertheless, his method requires uniqueness
and continuous dependence of solutions upon the data in the energy norm, properties that,
to date, are only known to hold in two dimensions. As a consequence, Prodi’s method is
inapplicable to our case, which produces yet another difficulty. To overcome this issue,
we introduce an entirely different strategy that combines a suitable mollification of the
non-linear term in the original problem in €2,,, along with the use of time-weighted norms
that vanish at + = 0. Incidentally, we remark that, by using this new strategy, one could
extend Prodi’s result to arbitrary dimension d > 2.

Our approach employs the following steps: Thanks to the regularization procedure, we
are able to show the existence of global weak solutions to the mollified problem for initial
data possessing only finite energy, that however are strong (2 la Prodi-Ladyzhenskaya)
at any positive time; see Lemma 3.1. In this class of solutions it is easily shown that the
Poincaré map is compact in the energy space. Thus, in order to prove existence of time-
periodic solutions to the mollified problem, it remains to ascertain that M maps some ball
in the energy space into itself. This property is shown by adapting Haraux’s argument
mentioned earlier on, which gives the desired dissipation also for Ug; see Lemma 3.5. In
this way, by letting the mollification parameter go to 0, we finally deduce the existence
of a time-periodic weak solution in every €2,; see Proposition 3.1. The last step is to let
n — oo, and this brings the last difficulty. Actually, for the dissipative term for Us, it
does not appear possible to provide an estimate that is uniform in n, which means that, as
n — 00, we have no control on the amplitude of the oscillations of B. However, we prove a
uniform control on the velocity of the center of mass of B along with estimates for the time
derivative of the flow velocity in suitable distributional spaces. Combining these estimates
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allows us to deduce, by a (local) compactness argument, existence of time-periodic weak
solutions for the original problem in the whole €2; see Section 3.6.

We conclude this introductory section with the following remark. In the model con-
sidered in the present paper (and precisely presented in the next section), the body B
can move only by translational motion and is not free to rotate. Removing this constraint
and adding a corresponding restoring torque would lead to a more complete model that
might present resonance phenomena, owing to possible interaction of the different degrees
of freedom. Plainly, the mathematical analysis of such a model becomes far more com-
plicated, also because of the notorious difficulty due to the presence of an unbounded
coefficient in the flow equations [13]. The investigation of this topic will be the object of
future work.

The plan of the paper is as follows. After introducing the mathematical formulation
of the problem in Section 1, in the following Section 2 we introduce the basic function
spaces and collect some preliminary results that, among other things, help us to furnish a
suitable reformulation of the original problem. In Section 3.1 we state our main result in
Theorem 3.1 and present the strategy we use for its proof. Sections 3.2-3.5 are dedicated
to the proof of existence of time-periodic solutions to a suitable modification of the prob-
lem in an arbitrary bounded domain, strictly containing B, along with uniform estimates
independent of the “size” of the domain. With this result in hand, in the final Section 3.6
we are able to produce a full proof of Theorem 3.1.

1. Formulation of the problem

Consider a rigid body B, occupying the closure of the bounded domain ¢, completely
surrounded by a Navier—Stokes liquid, £, filling the entire space, €2, outside B. Then B
is subject to an elastic restoring force, R, applied at its center of mass G. We take R to be
linear, but not necessarily isotropic, that is,

R=-A.§,

where § = G_O), O is a fixed point, and Aisa3x3 symmetric and positive definite
real matrix (stiffness matrix). We assume that B can move only by translational motion,
which can be accomplished by having a suitable torque acting on it. The motion of the
coupled system body-liquid is driven by a time-periodic flow of £ imposed at “large”
spatial distances from B and characterized by a uniform T -periodic velocity field -V,
where V is a bounded function of time only, satisfying therefore

V()=V(+T), foralseR.

Denote by L and M the diameter and mass of B, and by p and p the density and shear
viscosity coefficient of the liquid. Then the T -periodic motion of the coupled system body-
liquid when referred to a body-fixed frame ¥ = {G, e;} is governed by the following set
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of dimensionless equations (see for instance [13, Section 1]):

;v + A(v—yp)-Vv=Av— Vp,
W+ Ay —y) Vo =Av=Vp inQ xR,
dive =0,
v(x, 1) = p(), (x,1) € 9Q x R,
lim v(x,t) ==V (), t eR, (1.
[x]—>00
y+A-d+w@ T(v,p)-n=0,
aQ in R.
§=y.

Here, v and p are (non-dimensional) velocity and pressure fields of the liquid, while

274 3 %
p-L” ~ pL PV L | 4 ~
A = , w=—1, A=—— Vi=—  Vy=supl|V()|
Mp? M 7 Vo % tE]II{? Vol
Moreover,

T(z,y) :=2D(z) —yI, D(z):= %(VZ + (V2)1),

with I the identity matrix, is the (dimensionless) Cauchy stress tensor, and z the unit outer
normal at 9€2.
Notice that, with the above non-dimensionalization, we have

sup |V ()| = 1. (1.2)
teR

Our ultimate goal is to show that, for any given A, A, @, and T > 0, and any (sufficiently
smooth) V', problem (1.1) has at least one, suitably defined, T-periodic weak solution

(v.y.96).

2. Preliminaries

2.1. Functional spaces and some related properties

Before describing our functional framework, we begin with some notation. We indicate
by  C R3 the exterior domain of class C?2, defined as the complement of the closure of
the bounded domain €2 occupied by B. We take the origin of coordinates in the interior
of Qg, and set B, ;= {x e R3: |x| <r, r > 0}, and

Qr:=QNBg, R> R, :=diamQy.

As is customary, for A a domain of R3, LY = Li(A), W™2 = W™2(A), q € [1, 0],
m € N, are Lebesgue and Sobolev spaces with norms || - [|4,4, and || - ||m,2,4- By (., )4
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we indicate the L2(A)-scalar product. Furthermore, D™ = D™49(A) is the homoge-
neous Sobolev space with semi-norm ;. _,, | D! u|g,4. In all the above notation we
shall typically omit the subscript “A”, unless confusion arises. For a Banach space X,
we may, occasionally, indicate its norm by || - ||x. Finally, by L4(I; X), W4 (I; X), and
C™(I; X), where [ is areal interval, we shall denote the classical Bochner spaces.

If A € R3 is a domain with A D Q, let

H =K(A) = {(o eCg°(A):3¢ € R3 s.t. ¢(x) = ¢ in a neighborhood of QO},
€=€A) = {(p € K(A) :dive = OinA},
€ =Co(A) == {p €C(A): 9 =0}.

In K (A) we introduce the scalar product
(@ ¥ =w""9-¥+ (@ Vo o.¥cX. @.1)

and define

£?(R?) := {completion of X (R?) in the norm induced by (2.1)},
H(R?) = {completion of €(R?) in the norm induced by (2. 1)},

2.2
SR ={he£*R%:3peD"*(Q)st.h=VpinQ, 2)
and h = —w [y, pnin Qo}.
It is shown in [29, Theorem 3.1 and Lemma 3.2] that
2R3 = {u € L*(R3) : u = @ in Qo, for some & € ]R{3},
H(R?) = {u e £*R?) : diva = 0},
along with the following orthogonal decomposition [29, Theorem 3.2]:
2R3} = HR?) @ §R3). (2.3)

We next define the space
D'? = DV?(R?) := {completion of €(R?) in the norm [|D(-)|2}.

whose basic properties are collected in the next lemma; see [13, Lemmas 9-11].

Lemma 2.1. The space D'? is a separable Hilbert space when equipped with the scalar
product
(D(u1),D(uz)), u; € D2, i =1,2.

Moreover, we have the characterization

DV ={ue L*R*) N DY*(R?); divu = 0; u = i in Qo, for some it € R*}.
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Also, for eachu € DY2 it holds
IValls = V2[D(@)|-, (2.4)
and
lulle < xollD(z)ll2, (2.5

or some numerical constant kg > 0. Finally, there is another positive constant k1 such
Y, p
that
i < K1 [|D ()] (2.6)

Along with the spaces £2, #, and D2 defined above, we introduce suitable “local”
versions of these spaces. Precisely, we set
£2(Br) = {¢ € L*(Bgr) : 9|, = ¢ for some § € R*},
H(BR) = {¢ € £2(Bg) : dive =0, @ -nlyp, =0},
DV*(Bg) = {p € W'"(Bg) : divp = 0, ¢|g, = ¢ for some ¢ € R?, |y, = 0},
Dy*(QR) = {@p € D'2(Br) : 9 = 0}.
Then # (Br) and D'-2(Bp) are Hilbert spaces with scalar products

(@1.92)Br. @i € H(BR): (D ).DW))pe. ¥; € DV3(Br), i = 1.2,

Moreover, the following decomposition holds, analogous to (2.3) [29, Theorem 3.1 and
Lemma 3.2]:
£*(Br) = #(Br) ® §(Bg), (2.7)

where §(BR) is defined as in (2.2)3, by replacing 2 with Qg.
Finally, the dual spaces of D!2(Bg) and @é’Z(QR) will be denoted by D~12(BR)
and D, 1’2(52 R), respectively.

Remark 2.1. The space D?(Bg) can be viewed as a subspace of W12(Q) N D12(R3),
by extending its generic element to 0 in R3\ Bg. Therefore, all the properties mentioned
in Lemma 2.1 continue to hold for D'-2(BR).

We next recall basic facts about the mollification of fields in DV2(Br). Let u €
D'2(BR) and continue to denote by u its extension to W12(R3) N D2(R3), in the
sense of Remark 2.1. Moreover, let 9 > 0 be small enough so that the domain

Qoo == {x € Qo : dist(x, 852) > T)()} (2.8)

is not empty. For a given 1 € (0, 1), we then indicate by u,, the (Friederichs) mollifier of
u, namely,

uy(x) = A@ ky(x — y)u(y)dy, (2.9)

where

kn(®) = K (E/m); K € C(By), /R kdr=1.
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Lemma 2.2. Let u € DV2(BR) and uy, be defined by (2.9) with n € (0, no). The following
properties hold:

(a) divuy,(x) =0, forall x € R3;
(b) uy(x) = a, forall x € Qoo, and with it = ulg,;
(c) forany w € DV2(BR),

/ (g —u)-Vw-w = 0.
QR

Proof. Since divu(x) =0, x € R3 and u(x) = &t, x € Q, both (a) and (b) follow from the
properties of mollifiers and the definition of €2¢¢ in (2.8). Integrating by parts and using
w|yp, = 0, w|pe = W along with (a), we get

1 1
/ (u,,—ﬁ)-Vw-w:—||T)|2/ (un—ﬁ)-n=—|ﬁ)|2/ Uy-n
Qr 2 Bl 2 29
Lo
= —|w| divu, =0 |
20 Jg,

2.2. Reformulation of the problem with velocity fields vanishing at infinity

In order to solve Problem (1.1) formulated in Section 1, it is convenient and customary to
deal with velocity fields vanishing as |x| — oo. This requires an appropriate lifting of V,
which will be accomplished with the help of the following result.

Lemma 2.3. Let ng > 0, Q09 be as in (2.8), and set
Q0% = R*\Qqo.
Then, for any & > 2/1In(1/n¢), there exists U = U (s; x,1), (x,t) € QO x R such that
G U@F) eC®(Q°,teR;
() divU(x,t) =0, (x,t) € Q° xR;
(i) supp(U (1)) C {x € Q°: 0 < dist(x,dQpo) < e ¢} = Q,, forallt € R;
(iv) U(x,t) =V(@), (x.1) € Qs xR DIQxR;
V) NU@l22 < celV @)
D) 8. U2 < celV(0)];
(vii) if @ D Qq, and w,z € W12(Q) with w|sq,, = 0, then

[|w.vZ.U| < coe|| V|2 | V22,
Q

where cq is a positive constant independent of ¢.

Proof. Let Y = ¥ (r), r € [0, 00) be a smooth, non-decreasing real function such that
Y(r)=0ifr <l,and ¥ (r) = 1,if r > 2, and set

P(e:x) = Y (—elnd(x)),
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where d(x) := dist(x, Q¢0). Clearly,

1 ifd(x) <e?/e,
g x) =
$(e0) {0 if d(x) > e 1/e,
and, moreover,
ce
Vo (e;x)| < @) (2.10)

with ¢ independent of ¢. Let
U(x,t) = x3Va(t)ey + x1V3(t)ex + x2Vi(t)es

and define
Ul(e;x,t) := curl(¢p(g; x)U(x,1)).

Since curlU = V, we get
Ug;x,t) = ¢(e;x)V () —U(x, 1) x Vo(e; x), (2.11)

which, by the properties of ¢ and the choice of ¢, shows the validity of (i)—(vi) above.
Moreover, by observing that supg_|U| <¢|V (¢)|, and using the Schwarz inequality, (2.11),
and (2.10), we deduce that'

2 2
([ |w.vz.U|) :([ |w.Vz-U|) 5||vz||§/ U |wl|?
Q Qe Qg

wp
< clval [ (#71ul +2550)

&

Scnwnéfg @+ &)

2
2 2 [w]

<ce®||Vz —_

= ” ”2/;2 d2

&

w|?

dz

where ¢ is independent of ¢. Using the Hardy inequality, see e.g. [14, Lemma I11.6.3], we
conclude that

2 2
w|
([|w-Vz-U|) 56£2||Vz||§/ —r = Va3 | [Vwl,
Q Qe Qe

and property (vii) follows. ]

IRecall (1.2).
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With Lemma 2.3 at hand, we now rewrite (1.1) with the new unknown velocity field
u=v+V-U

so that (u, y, §) now satisfies the following problem with source terms:

u+Afwu—y+U—-V)-Vu+ (u—7y)-VU]
=divT (u, p)+ f, in 2 xR,
diva =0,
L) = 1), 1 € I R,
u(x,t) =y() (x,1) X 2.12)
lim wu(x,t) =0, t € R,
|x]|—>o00
;'/+A-8+w/ T(u,p)-n=F,
aQ in R.
§=yp,
where
f=W-U)-VU + AU -9,U,
F = —wvol(B)V, (2.13)

p=p—V-x.

Observe that, by the properties of U listed in Lemma 2.3, and (1.2), we have, in particular,
that

supp(f (1)) C Q. forallz € R; [ f (D)2 < (V)] + |V (@)D. (2.14)

We thus obtain that the original problem (1.1) has been formally and equivalently refor-
mulated as (2.12)—(2.13) where the velocity of £ vanishes at infinity, whereas non-zero
prescribed external T -periodic forces are now acting on both £ and B.

3. Existence of T -periodic weak solutions

3.1. Definition of T -periodic weak solutions

We first need to introduce a suitable general class of 7 -periodic test functions. Precisely,
let A be either Bg or R3. By €4(A), we denote the space of restriction to [0, 7] of functions
¢ € C1(A x R), satisfying

(a) dive(x,t) =0for (x,7) € A X R;

(b) @(x,t) = @(t), for some ¢ € C'(R), for x in a neighborhood of Q¢ and ¢ € R;
(c) supp, @(x,t) C Aforallt e R;

(d) o(x,t+T)=e¢(x,t)forall (x,7) € A xR.
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We are then able to give the definition of a 7 -periodic weak solution to (2.12). Testing
(2.12); by arbitrary @ € €4(RR?), integrating by parts over 2 x [0, T], and employing
(2.12),_5, we infer

(w(T),o(T)) — (u(0), 9(0))
T
=— | [—(u,03,0) +M(w—y+U—-V)-Vu+ (u—y) VU, )

+2(D(u),D(@) + @ '-A-8—(f,9)— F-9]dt,
where we recall that (-, ) = (-, -)q is the L?(2)-scalar product, whereas

(0. ¥) =29 ¥ + (0. ¥)a.

Furthermore, from (2.12)¢, we also have

T
§(T) — §(0) = /0 y(0)dr.

Thus, if (u, y,8) is a T-periodic (sufficiently smooth) solution to (3.3), then y has zero
average. Since the periodicity also implies

(@(T).o(T)) = (u(0), ¢(0)),

we deduce that any such T -periodic solution satisfies

T
/ (. 0:0) + A=y + U —V)-Vu+ @—y)-VU. )
0

+2(D),D(p)) + @ '@-A-8§—(f,9)— F -9]dt =0, (3.1

. T
5=y /0 y(t)dt = 0,

for arbitrary test functions ¢ in €4(R?). Conversely, with the help of the decomposition
(2.3), it is easy to see that every sufficiently smooth tuple (u, y, §) obeying (3.1)is a T-
periodic solution of (2.12). With this in mind, we give the following definition of a weak
solution.

Definition 3.1. The triple (u, y, 8) is a T-periodic weak solution to (2.12) if
(i) weL?0,T;:D%2(R3)), withu(x,t)|sqo =y(t),aa.t€[0,T],y € L2(0,T;R3);
(i) & € Wh2(0,T;R?);
(iii) (u,y,d) satisfies (3.1).

Remark 3.1. In view of Lemma 2.1 , it is easy to check that the integral in (3.1) is well

defined for a weak solution. Likewise, the boundary condition in (i) is meaningful in the
trace sense.
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3.2. Statement of the main theorem and strategy of the proof
The main contribution of this paper is expressed by the following result:

Theorem 3.1. Suppose V € W1-2(0, T;R3) is T-periodic for some T > 0. Then there
exists at least one corresponding T -periodic weak solution to (2.12). This solution satisfies
the estimate

T T .
/0<||Vu<r)||%+|y(r>|2>drsc/O (VP + VP, (3.2)

where the constant C depends only on 2 and the physical parameters of the body and the
liquid.

Our strategy to prove Theorem 3.1 goes as follows: In a first step, we shall consider a
suitable modification of problem (2.12)—(2.13) in a generic bounded domain of type Qg.
Precisely, for any R > 3R, and such that Bg D Q .~ we shall prove that the problem

du+A[u—y+U—-V)-Vu+ (u—y)-VU]
=divT(u, p)+ f, inQr xR,
divu =0,
u(x,t) =y, (x,1) € 90Q x R, (33)
u(x,t) =0, (x,t) € 0Bg X R,
}'/+A-5+w/ T(u,p)n=F,
Q inR,
§=yp,

with f and F given in (2.13) has at least one 7" -periodic (weak) solution (u, y, §) that, in
addition, obeys certain bounds in terms of the data, uniformly with respect to R. We then
let R — oo along a sequence and prove that the corresponding solutions will converge to
a weak solution to the original problem.

Even though this approach is classical, its implementation in the present setting is by
no means straightforward, due to the fact that the spring has no damping. In particular,
the classical method of showing the existence of a fixed point for the Poincaré map at
the finite-dimensional level (along the Galerkin approximations) fails, due to the lack of
“sufficient dissipation”. We are thus lead to prove this existence at the infinite-dimensional
level.

We develop the steps towards the proof of Theorem 3.1 in the next subsections. We first
show existence and uniqueness of strong solutions to the initial-value problem associated
to a regularized version of (3.3), where the non-linear term has been suitably molli-
fied. Then we prove that the Poincaré map associated to this problem has a fixed point,
which leads to the existence of 7' -periodic strong solutions. Finally, we let the mollifying

2Later on, the parameter ¢ will be fixed in terms of the data, so that this request is meaningful; see (3.6).
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parameter tend to 0, thus obtaining the same result for the original problem (3.3) in the
class of weak solutions.

The last step is to let R — co. We are not able to provide uniform estimates on the
dissipation in §, which means that, as R — oo, we have no control on the amplitude of
the oscillations. To overcome this issue, we prove the velocity §is uniformly bounded so
that the oscillation rate remains bounded as R — co. Combining this with an estimate
for d,u and using the equation along the approximating sequence, we eventually control
the average of § and conclude existence of time-periodic weak solutions for the original
problem in the whole 2.

All the above will be accomplished through several intermediate steps. From now on
it will be tacitly understood that V (¢) is T -periodic.

3.3. The initial-boundary value problem

In this subsection we shall study the following initial-boundary value problem associated
to a mollified version of (3.3):

diu+Auy—y+U—-V)-Vu+wm—y) VU
=divT(u, p) + f, in Qg x (0, 00),

divu =0,
u(x,1) =y(), (x,1) € 9Q x (0, 00),
u(x. 1) =0, (x,1) € 9Br x (0,00), 1 gyp)
u(x,0) = ug, X € QRg,

})+A-8+w/ T(u,p)-n=F,
9 in (0, 00),

§=y,

y(0) = yy, 8(0) = 8o,

where u;, is the (Friederichs) mollifier of u as defined in (2.9). We shall prove existence
and uniqueness of solutions to (I-BVP) in a suitable functional class. To this end, we
begin to transform it in an appropriate “weak” form. Testing (I-BVP); by ¥ € D2(Bg),
integrating by parts, and using (I-BVP),_g, we deduce

(u(t) —uo, ¥)

t
—/0 My —y +U—=V)-Vu+ @—y) VU, %)
+2(D(u). D)+ P -A-8
—(f.¥)—F -y]ds,

8(1) — 8o =/0 y(s) ds.

(3.4)

where we recall that (-, ) = (-, )@y is the L2(Q R)-scalar product, whereas

(0. ¥) =70V + (0. ¥)ax.
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Definition 3.2. The triple (u, y, §) is a weak solution to (I-BVP) if, for all > 0,

() ue Cy([0,1]; L*(QR)) N L*(0, 1; DV2(QR)), with u(x, 1)|aq = y(t), ¥ €
C([0.7]: R?);

(i) 8 € Cl([(), t];RB);
(iii) (u,y,8) satisfies (3.4) for all y € DV2(BR).

Remark 3.2. Taking into account classical properties of mollifiers and Remark 2.1, it is
easy to check that the integral in (3.4) is well defined for a weak solution.

Remark 3.3. With the help of the decomposition (2.7), one can show by classical argu-
ments that if (u, y, §) satisfies (3.4) and is sufficiently regular, then there exists a suitable
pressure field p = p(x,t) such that (u, p, y, 8) is a solution to (I-BVP).

The next lemma deals with the well-posedness of (I-BVP). For a weak solution
(u,y,8) of I-BVP), we define the energy by

E) = 3l1a) g, + " (rOF +50)-A-50)]. (5

Observe that, since y = u, the functional E 7 defines a norm on ¥ (BRr) x R3.

Lemma 3.1. Let V € W12(0, T;R3), and let
no < exp(—8coA), (3.6)

with ng as in Lemma 2.2, n € (0, no), and co as in Lemma 2.3 (vii). Then, for any given
ug € H(BR), yo € R3, 8¢ € R3, with the compatibility condition y, = 1y, there exists
one and only one corresponding weak solution (u,y, 8) to (I-BVP) such that

(i) forallo >0andallt >0 >0,
o ueWh2(o,t; L*(QRr)) N L%(0, t; W*2(QR)),
oy e Wh2(g,1;R3),
o § e W*2(0,1;R3);
(i) foralloc >0andallt >0 >0, u € C([0,t]; DV2(QR)), and there exists p €

L%(o, T; WY2(QR)) such that (u, p,y, §) satisfies 1-BVP); a.a. in Qg x (0,1)
and (I-BVP)¢ 7 a.a. in (0,1);

(iii) the initial conditions (ug,y(,80) are attained by y and § in the sense of pointwise
continuity, and by u in the L?-sense, i.e.

lim fJu(t) — uol2,2, = 0: G.7

3See footnote 2.
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@iv) for some Cy, C, independent of R and n, some C depending only on the data, 1,
and t, the energy estimates

E@) + € /0 IV )2 g, + [P()P) ds

t
< E(0) + sz (V> +|V[*)ds, forallt >0, (3-8
0

max |Vu(s)||, <C, forallt > o,
s€lo,t]

hold.

. . o . 1
Moreover; the solution depends continuously on the initial data in the norm E2.

The proof of Lemma 3.1 relies on Galerkin approximation. We shall look for “approx-
imated” solutions to (3.4) of the form

N N
un(x,1) = Y anOV(x), yy@O =Y anOvi, SnQ),

k=1 k=1

where {;} is the special basis provided in the following lemma, whose proof is given
in [17].

Lemma 3.2. For any fixed R > Ry, the problem
—V-TW.¢) =ny,| .
. in Qg,
divy =0,
¥ =¥ inQo, ¥ =0ardBg, (3.9)

m&=w[m?r(w,¢)-n,

admits a denumerable number of positive eigenvalues {ji; } clustering at infinity, and cor-
responding eigenfunctions {¥;} C DV2(Br) N W*2(QR) forming an orthonormal basis
of H(BR) that is also orthogonal in DV?(QR). Furthermore, the correspondent “pres-
sure” fields satisfy ¢; € W12(QRr), i € N.

We also need the following approximation result that will be used in the proof of
Proposition 3.1.

Lemma 3.3. Let R > R, be given, and let {{; }xeN e the basis given in Lemma 3.2.
Then, for any ¢ € Cy(BRr) and any & > 0, there is N = N(¢, ¢) € N, and corresponding
T -periodic functions ry, € C'(R), k = 1,..., N, such that

tgg);]{ll(sozv —@) D2+ (@18 — @) @)]
T 8oy — @)Dl + (@ y — o))} <&

with @ (x,1) = Z/iv=1 Fe OV (x), and @5 (t) = 21?;1 rk(t)ﬁk.
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The proof is obtained arguing as in [18, Lemma 3.1] and therefore omitted.

As already said, Lemma 3.1 will be proved with the classical Galerkin procedure. To
start the process, we search for an approximated solution (#x (x,#),y 5 (2),85(2)) to (3.4)
of the form

N
un (x,1) = Y an (OP (),

k=1 (3.10)

N
Y () =Y an®)y.

k=1
where {¥;} is the basis introduced in Lemma 3.2 and the vector functions ¢y () =
{cin(),....cnn(t)} and 8 i (¢) satisty the following system of equations:

d
N ¥ A A(@n)y —yy + U= V) - Vauy + @y —yy) - VU, ¥;)

— 2(DuN). DY) - P A Sy + (f ¥) + F -9y, G.1D)
3N =VN:

i=1,...,N.Here (-,-) = (-,")qz and (-, ) = (-, ) B,. This yields a system of first-order
differential equations in normal form in the unknowns ¢y, x . Indeed, since we have the
orthogonality conditions

plugging the ansatz (3.10) into (3.11) entails
C“.,'NZF,'(CN,SN), i=1,...,N, 3.13)
§y = YN

where

N
Fii= = an MU = V) -V + (e = ¥) - VU ) + 2D (), D(¥,)]

k=
N
= cven (@n = F2)- Vo1 ¥.) — A By

k=11=1
+(f v+ F-9y,;.
The initial conditions (uo, y, 80) at the level of the coefficients read
cin(0) = (uo, ¥;) = (o, ¥;) + 717_1)’0 : '}h 3N (0) = do. (3.14)

Since {¥;} is an orthonormal basis of #(Bg), multiplying the first identity in (3.14) by
¥, and summing over the index i from 1 to N delivers a bound on the initial conditions

(un(0), ¥ 5(0).85(0)),
lun )5 + @y § (O < lluoll + @~ yol*. (3.15)
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Now that we have settled the starting point of the argument, we turn to the proof of
Lemma 3.1.

Proof of Lemma 3.1. We begin to derive three basic energy estimates for the approxi-
mated solution # ;y which are the approximated forms of estimates that would be obtained
formally for u by choosing abusively u, —t div T (u, p), and 1 0, u as test functions in (3.4).
Once we have these estimates at hand, we can actually let N go to infinity and prove the
assertions (i)—(iv) for the limit u# of the sequence {uy }. Then it will remain to prove the
continuous dependence on the initial data implying at once the uniqueness of the solu-
tion u.

Step 1: Energy estimates.

First estimate: To mimic the choice of ¥ = u in (3.4), we multiply both sides of (3.11);
by ¢;n, sum over i, and integrate by parts over 2 g. Using (3.10) along with Lemma 2.2 (c)
we show

1d

S len 3+ @7 Iy n P+ 8w - A-8w)] + 2D (w3

=A(un —yn)-Vuny, U)+ (f.un) + F -yy. (3.16)

Since 1y satisfies (3.6) and co does not depend on ¢, we can choose ¢ in the construction
of U such that

1
M((uny —yy) - Vuy,U)| < Aeoe||Vuy |3 < ZIIVuNH%, (3.17)

whereas, from (2.4) and (2.6) it follows that

1 1
2D @mI3 = 7 IVanl3 = S1Vunll3 +cly vl (3.18)

for some universal ¥ > 0.

We next estimate the last terms in (3.16). Recalling that f = (V —U) - VU + AU —
3,U and F = —w vol(B)V, the properties of U proved in Lemma 2.3, together with the
Holder inequality, (2.13), and the Cauchy—Schwarz inequality imply

. 1 1
[(f un)| +F -yyl < c(VOP + VO + ZIIVuszI% + §K|yN|2-

Thus, employing in (3.16) the latter, together with (3.17), (3.18), we establish that
1d

- 1 1
Sy 3+ (y y P+ 8y A 831 + [V B + Sy

<a(VOP+ Vo). (3.19)

Denoting by E (¢) the energy of the approximated solution, i.e.

Ex ()= 5w @13 + @y n @ + 80 A -8x ()]
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and using the bound (3.15) on the initial conditions, we infer

En(t) +cs /O (IVan )% + |y n ()2) ds
< EN(0>+c2/O (VP + [V (6)) ds

1 ¢ .
< §(||uo||2 + @ (|yol* + 80+ A-80)) + 02/ (V> + [V (s)]*) ds, (3.20)
0

where ¢, and c3 are independent of R and 7.
As a consequence of this energy bound, we deduce that whatever 7 > 0, there exists
C(7) > 0, independent of R and 7, such that

len@[+[8n ()] = C(x), 1 €][0,7].

In particular, this bound in turn implies that the initial-value problem (3.13)—(3.14) has a
unique global solution (i.e. defined for all # > 0).

Second estimate: To mimic the formal choice ¥y = —t div T (u, p) in (3.4), we next mul-
tiply both sides of (3.11); by tu;cin, t > 0, and sum over i. Integrating by parts over Q2 g
and employing (3.9), we show
1d
2
=M(((un)y—yn +U =V)-Vuy + (uny —yy) - VU, divT (un, py))
+tSny-A-8y +1t(f,divT (uy, pny)) +tw(F,Sy), (3.21)

. 1
HIVan3) + el div T @y, pa)l3 + @i S v 1P = S Van I3

where
N
SN ;:/ T(un.pN)-n. PN = Y cknk.
aQ k=1

and ¢y is the “pressure” field associated to ¥ ;. We estimate the right-hand side of (3.21)
piece by piece. Since
[@Nn)nlloo < cyllunllz.
for some ¢, > 0, we have
: Lo

A((@n)y - Vuy,divT (uy, py))| < cyllun |5 Van |l + gldivT (. Pl (3:22)

Using the Holder inequality, the properties of U, (2.5), and (2.6), we also get
AM((uy —yn) - VU.divT (un. pn))|
Lo
< c[VOPIVan|3 + gl divT un, pn)l3,

. (3.23)
AM(=yy +U=V)-Vuy. divT (uy, pn))|

L.
= c(IVun |3 + VO IVan|3 + Il divT @w, p) 3.
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We now set
@) =1+ lux®I}, + VO,

and
G(1) = |Vay )3 + 1|85 @)1 + 1] f O3 + 11F (1),

and we observe that from the energy estimate (3.20), recalling also (2.14), we obtain for
an arbitrary ¢ > 0,

/0 (¢(0) + G di < F(o).

where F depends only on the norm of the initial data, the W1-2-norm of V (¢), 7, and 1.
Finally, we make use of the classical estimate for the Stokes problem,

lunllzz <cs(IdivT (un, pa)llz + lun]) < ce(|divT (un. py)l2 + [[Van|2), (3.24)

where, in the last inequality, we have used (2.6), and the constant c¢ depends on R. Then,
using the Cauchy—Schwarz inequality one more time, we conclude from (3.21)—(3.24) that

d
z(tIIVuNII%) + crtllun|3 < csg(t)(t||Vunl|3) + coG (1), (3.25)

the constants depending on R.
As aresult, using Gronwall’s lemma in (3.25) entails

T
sup (¢ Vauy (1) 12) + / (lunOIZ,)dt < Hi(x). forallt >0, (3.26)
] 0

tef0,t
where H; has the same property as F' and, in addition, also depends on R.

Third estimate: We finally mimic the formal choice ¥ = td,u in (3.4) multiplying both
sides of (3.11); by #¢; 5, summing over i, and integrating by parts over 2 g as necessary.
Taking into account (3.10), (2.4), and Remark 2.1 again, we show

1d 1. 1
577 IV + tlown i3 + =ty y” = S Van I3
= )Lt(((uN),, —yn+U-=V)-Vuy +(un—yy)- VU,B,uN)
r . .
We may now proceed to estimate the right-hand side of (3.27) exactly as we did in (3.23),

(3.22), with d;up in place of div T, to show that (3.27) implies the following further
bound:

T
[ 1w @1 + 15O & < B, forae0, 329)
0

where H» has the same property as Hj.
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Step 2: Convergence of the sequence {ux, y 5,6 n}. We warn the reader that, through-
out this step of the proof, convergence is understood up to the choice of an ad hoc subse-
quence if needed, and all extracted subsequences will still be denoted by {un,y n,8n}
for simplicity. Integrating both sides of (3.11); over the interval [t1, 3], 0 < #; < f5, and
taking into account (3.12), we get

(un(t2) —un(t1),¥;)
= —/;z{k(((uN),,—yN +U—-V) -Vuy + (un —yN)-VU,wi)

+2(D(uy), DY) + @ A8y g — (f . ¥) — F -9, dr. (3.29)

Employing (3.29) and the uniform bound (3.20), by means of a classical argument [12,
Section 3], we can show the existence of

ue L®0,t; J(Bg)), forallt >0, (3.30)
such that for all y € D'2(Bg), and setting y = a,

[y @), )+ Yy @) ¥ = @) ¥) + @ 'p@)- ¥, (3.31)

lim
N—o00

uniformly in ¢ € [0, 7], for all T > 0. This implies, in particular,

Nlim yny(@) = y(), uniformlyinz € [0, 7], (3.32)
which furnishes
y € C([0.7): R?), (3.33)
and also, by (3.13)5,
§y =8 inCY([0,7];R3), §@1)=y@), t €]0,1]. (3.34)

From the uniformity in N of the estimates (3.20), (3.26), and (3.28), it is routine to deduce
that

Kly in L2(0. t: W12(Q ).
uy — u {Wea yin L7( (§2)) (3.35)

weak™ in L>(0,1; L2(QR)),

for all > 0 and so, combining (3.31) with (3.35);, we also deduce (we refer to [12,
Section 5] for details)

uy — u, strongly in L2(0,1; L>(QR)), forall t > 0. (3.36)

In particular, from (3.35) (3.20), (3.32), and (3.34) we infer the validity of (3.8);. Like-
wise, from (3.26) and (3.28) it follows that

uy —u weakly in W2 (o, r; £2(BR)) and L? (0, r; W**(QR)) for all 7>0>0.
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The latter implies, on the one hand, by a well-known interpolation theorem, u €
C([o, t]; W12(QR)), and, on the other hand, in combination with (3.26), the estimate
(3.8)7.

We next pass to the limit N — oo in (3.29). Using (3.31), (3.35), and (3.36) together
with the properties of the base {¥;} (see Lemma 3.2) and classical arguments from [12,
Section 5], we can show that (3.29) continues to hold with (ux, y 5, 8 5) replaced by
(u,y.8) and ¥, replaced by arbitrary ¥ € D12(BRg).

Allin all, (u, y, 8) satisfies (3.4), for all # > 0 and in view of (3.33) and (3.30), this
also implies

u e Cy(0,1; L*(QR)). (3.37)

In order to complete the existence part of the proof, it remains to consider the sense in
which the initial conditions (u¢, ¥, 80) are satisfied and in fact it remains only to show
(3.7). The energy estimate (3.8) and the continuity of (y,§) at ¢t = 0 imply

limsup [lu(?) |2 < |luoll2,
t—0t

which entails (3.7) as an immediate consequence of the weak continuity (3.37).

Step 3: Continuous dependence on the initial data. Let (u;,y;,8;),i = 1,2, be two
weak solutions corresponding to the same V. Setting u = uy —uz, y =y — ¥, 6 =
81 — 8, we have for arbitrary t > o > 0,

dru+A((u+u)y—y+U—-V)-Vu

+(u—y)-VU +uy, - Vuy =divT (u, p), in Qg x [0, 1],
divu =0,
u(x,t) =y(), (x,1) € 0Q x [0, 7],
u(x,t) =0, a.a. (x,t) € dBg % [0, 1], (3.38)
u(x,0) = u;(x,0) —uy(x,0), x € Qr,

7+A-8+w/ T(v, p)-n=0,
Yo} in (0, 00),

=y,
7(0) = y1(0) —»,(0), 8(0) =81(0) —82(0),

for some p € L%(o, t; W12(QR)). Testing (3.38); by u, integrating by parts over Qg,
and taking into account (3.38), 5 we get

1dE
2 dt
where E is given in (3.5). Arguing as in (3.17), (3.18) from (3.39) we infer, in particular,

+2|D@)|3 = Al((w—p)-Vu,U) = (uy - Vuz,u)l, tefot], (3.39

dE
" < —Auy - Vuy,u), tejo,1].
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By the property of the mollifier, we have |[u,]/co < ¢yll#||2, so that

|y - Vuz,w)| < cyl|Vaz|l2 |3 < 2¢y[|Vaz||2E.

Combining the last two displayed equations and using Gronwall’s lemma, we get

T
E(t) < E(0)exp (2c,] / IVuz(s)||2 ds).
0
If we let 0 — 0 and use properties (i) and (ii) of a weak solution along with (3.7), we get
lim E(o) = E(0),
o—0

yielding the claimed continuous dependence property and, in particular, uniqueness for
the Cauchy problem. ]

We end this subsection on the initial-boundary value problem with the following
important estimate that will be used later on in Proposition 3.1:
Lemma 3.4. Let V € W12(0, T; R3). Then, every weak solution to (I-BVP) satisfies for
allt > 0and all R > Ry,
du
T LY(0,; D7 12(BR)).

Moreover, there exists a constant C = C(R) independent of n such that

|5

L'(0,T;D~12(BR))
t
< C/o (VO + V()| + 18 + [[Vuls)ll2 + [[Vu(s)]|3) ds. (3.40)
Proof. From (3.4); we deduce, fora.a. t > 0 and all ¢ € D'?(BR),

d
S (). ¥) = Gy 0), (3.41)
where
Gy(t) = Ay —y +U—-V)-Vu+ u—y)-VU,¥)
—2(D(u), DY) — @ 'Y -A-8+(f ¥)+F-y.

Employing the Holder inequality several times, along with (2.4)—(2.6) and classical prop-
erties of the mollifier, we show

Gy ()] < CRY(V O] + VO] + 18O + IVa@) 2 + V@ DD @) 2. (3.42)
Thus, from (3.41)—(3.42) and the assertions (i)—(ii) of Definition 3.2, we deduce that there
exists g € L1(0, T; D~12(Bg)) such that

d
—u(t) =gt
Zu(t) = g(0)

in the sense of distributions, as well as the validity of (3.40). ]
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3.4. A key lemma on the total dissipation

As explained in the introduction, we shall obtain the existence of a periodic solution as a
fixed point of the Poincaré map M in the energy space. To prove that M maps some ball
in the energy space into itself, we next adapt an argument originally introduced in the
context of non-linear wave equations [21, p. 162], [22]. The basic idea, reformulated in
our case, consists in perturbing the energy by adding the term (@ 'y - § for the solid,
to recover some dissipation in §. To be compatible with the fluid, we need to add another
ad hoc contribution in the energy functional. To this aim, we first construct (classically) a
solenoidal extension of § = §(¢). Set

H(x, 1) :i= x362(t)e1 + x183(t)ex + x281(t)es,
H(x,t) = curl(¢ (]xH(x, 1)) = ¥ (|x[)8 () — H(x, 1) x Vi (|x]),

where ¥ is a smooth function that takes value 1 in a neighborhood of €2¢ and vanishes for
|x| > 2R.. Clearly,

H(x,t) =68(t), (x,t) €9 x(0,00),
divH (x,t) =0, (x,t)e Qg x(0,00),

sup |H (x,1)] < c|8()], (3.43)
X€QR
sup |9, H (x.1)| < c|8(t)] = c|y ().

xeQpr

We then introduce the map from C ([0, ¢]; R3) to L?(0, t; D12(Qg)) that associates the
solenoidal extension H () we just built to & (¢). We could write this field as H (), but we
just keep the notation H (¢) since no confusion arises. Let (u, y, §) be the weak solution
of (I-BVP) determined in Lemma 3.1. For ¢ € (0, 00), we define the following modified
energy functional:

Ee(u,y,8):=E(u,y,8) +2l[(u, H) + @'y - 8],

where E is given in (3.5). With the help of (3.43) and the Cauchy—Schwarz inequality, it
is easy to check that there is {; = {1 (@, R«, A) such that, if £ < ¢y, then

1
SE = Eg <2E. (3.44)
1
As a consequence, E > and E {2 are equivalent norms in £2(Bg) and the set {(u, §) €
J(BR) x R3 : E¢(u,1,8) < p?} is convex for ¢ small. This fact is needed in the next
subsection, in order to obtain a fixed point of the Poincaré map via the Schauder theorem.
We next show that there exist (g, po > 0, depending on the parameters of the problem
1
such that, for the norm E ;0, the Poincaré map maps the ball of radius pg in £2(Bg) x
R3 x R3 into itself. To this end, we set

T
V= f (VP> + V) dt.
0
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Lemma 3.5. Let V satisfy the assumption of Lemma 3.1 and let (u, y, 8) be the corre-
sponding unique solution to (I-BVP) given in Lemma 3.1. There exist Ly, pg > 0, depend-
ingon R, 'V, A, A, and @, such that if E¢ (0) < po, then E¢ (T) < po as well. In addition,
the following estimate holds:

T
Ee,(T) + %éow_l / 8(t)-A-8(t)dt < E¢,(0) + CoV, (3.45)
0

where Cy is independent of 1.

Proof. For sufficiently small ¢ > 0, consider (I-BVP) with ¢ € [o, T]. Testing (I-BVP);
by u and using exactly the same argument leading to (3.19) we obtain

dE 1 .
< IVulE + ey P = CAVE V), (3.46)
where, here and in the rest of the proof, by C;, i = 1, ..., and, later on, {,, we denote

generic positive constants depending, at most, on A, A, @, and the (spatial) support of H,
but not on 7. Furthermore, again from (I-BVP)y, tested this time on H, we get

d
. H)+ w7y 8]
=@ H)+o |y’ —A(wy—y+U—-V)-Vu+ (@u—y)-VU,H)
—2(D(u),D(H))—w '§-A-8§+(f,H)+w 'F 8.
If we employ (2.4)—(2.6), the property of the mollifier, assertion (v) of Lemma 2.3, (3.43),
and recalling that sup, |V (¢)| = 1, we can estimate the right-hand side in the following
way:
|(u,0;H)| < Caof|Vul2lyl,
2|(D(u), D(H))| + Al((uy —y +U =V)-Vu+ (u—y)- VU, H)|
< G8[[[Vul2(1 + [|Val|2),
((f H)+ @ 'F 8] < CGI8|(1 £ 2+ | F|) < Cal8I(IV] + V.

(3.47)

‘We also make use of the estimate
[(H,d,H)| < C2[8]|y].

From the latter, (3.46)—(3.47), and the Cauchy—Schwarz inequality we deduce that there
is ¢» € (0, ¢y) such that if

$ <0,
then
@lvz Zl_l-A- Vul? 2,12
2Vl + Coly P+ 50w ™18 A8 = GBI IVul + VP + V). (3.48)

and, in addition, (3.44) holds.
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We claim there exist {o € (0, {2) and pg > 0 such that E¢(0) < po implies E¢(T) < po
for ¢ < . Imposing E¢(0) < po with

po =V,
we deduce from (3.8) and (3.44) that

E@) = E(0) + GV < 2E¢(0) + G2V = (2 + C2)po.
yielding the estimate

1
18] < Cspg -
Plugging this bound into (3.48), we infer

dE;- 1 1 1 1 .
— 4+ || Vul2 + Csly?+ =tw 18- A8 < ——p2 | Vu|? + C:(|[V > + |V]?),
T+ gl Val3 + Coly P + Stw < Toc; s IVl + Cr(VE + 1V P)
and therefore

dE 1 1 - ;
dfo + 15 IVHlz + Coly” + S6m ™18 - A8 < GV + V),

(3.49)
with

D=

¢o == Copy

(3.50)
It is classical to show, from (2.5) and the Holder inequality, that | Vul|, > CioR™!||ul|5.
Therefore, we infer, with the help of (3.44),

1 1 B
1—6||Vu||% + Ceoly|* + Eéow 1§.A-8

ofr—1p—2 3y L1 b o
S(Ci R 205 w3 + —(Cipgly P +6 - 4-8))

=
1
> Gk > EKOEZO’

if po > CZ (R* + 1). Replacing the latter in (3.49) entails

dE 1 -
dfo + 580Ez < C;(|[V>+|V|?), forallt € [0,T],

which, once integrated between o and T, furnishes
1
Ee,(T) < E¢,(0) exp(—EQ’OT) + C;V.
However, from the assertion (iii) of Lemma 3.1, we easily show that

lim E¢,(0) = Ez,(0) (3.51)
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and the claimed result that E¢,(T") < po follows by imposing that pg satisfies the condition

C7V

_ 3.52
0= T exp(—LgoT) 552

P

It is readily checked that (3.52) certainly holds, provided we choose pg greater than some
quantity depending only on Cg, C7, 'V, and T . In fact, taking into account the choice of ¢y
1

made in (3.50) and setting x = Co T/2pg, (3.52) is equivalent to

1 ( 2 )2 X
> X s
C;V\CoT/ — 1—e>*

which is true, provided x is less than a suitable quantity with the properties stated above.
Finally, the estimate (3.45) follows by integrating (3.49) over [o, T], letting 0 — 0,
and using (3.51). [ ]

3.5. Approximated solutions in bounded domains

With the help of what we have shown so far, we are now in a position to prove the existence
of a T-periodic weak solution to (3.3). To this end, we begin to give the definition of a
T -periodic weak solution to problem (3.3). This is done exactly as we did in the case of
Definition 3.1, by replacing R and by Bg and Qg, respectively.
Definition 3.3. The triple (u, y, 8) is a T-periodic weak solution to (3.3) if
i) wuel?0,T;D"2(BR)), with u(x,t)pg=y@),aatel0,T],yec L%(0,T;R3);
(i) & € WL2(0,T;R3);
(iif) (u,y,$) satisfies the following equations (with (-,-) = (:,)q, and (-,*) = (-,*) Bg):

T
[—(u.0/0) +A((u—y+U—=V)-Vu+ u—y)-VU,9)

+2D),D(p) + @ '@ -A-8—(f.9)—F-9]dt =0, (353

] T
§=yp, / y(t)dt =0,
0

whatever ¢ € Cy(BR).

Remark 3.4. Itis easy to show thatif (u, y, §) is a sufficiently regular 7 -periodic solution
to (3.3), then it satisfies (3.53) and that, with the help of the decomposition (2.7), the
converse is also true.

Proposition 3.1. Let V € W12(0, T;R3). Then, for any R > 3R there is at least one
T -periodic weak solution to (3.3) in Br. This solution satisfies

T
/0 (Va2 g, + P2 dr < CV. (3.54)
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where the constant C is independent of R. Moreover, given Ry > 3Ry, there exists a
constant Cy depending on Ry but independent of R such that for all R > Ry,

T
du 1
NP o <CV. H—H <C (Vi + V). 3.55
/o ”u()Hz’QRO_ ! dt 1LY 0,1;D2 " (QRy) — 1(V2+ ) (3.35)

Proof. Set
8po = {(u,8) € H(Br) xR*: E¢,(u,1,8) < p},

with ¢ and po as in Lemma 3.5. Clearly, 8, is a closed convex subset of #(Bg) x R3.
Next, let s(¢) := (u(t), y (), 8(¢)) be the solution to (I-BVP) determined in Lemma 3.1,
and consider the map

M:s(0) — s(T).

By Lemma 3.5, M maps 8, into itself. By Lemma 3.1, M is also continuous, with u(T") €
WL2(QR), thus furnishing that M(S,,) is compact. As a result, by the Schauder fixed-
point theorem we conclude that the “mollified” problem (I-BVP) has at least one T'-
periodic solution.

Our next goal is to prove that, if we let n — 0 along a sequence {7, }, the sequence of
corresponding 7 -periodic (strong) solutions (#,, y,,, 8,) converge to a T -periodic weak
solution to (3.3). To this end, we remark that from (3.8) and (3.45) it follows that

T
f (IVan O + ra ) dt < €1V,
0 (3.56)

T
/ Sn(t)‘A'Sn(t)dt§C2v7
0

where C; is independent of R and 1, and C, depends on R but is independent of 7.
Multiplying both sides of (I-BVP); — written for these solutions — by the test function
r(t)¥, we show that for all ¥ € D'2(Bg) and all smooth r,

(U (1), (V) — (1 (0). r(O))
=—/ [ (")
0

+ A(((n)py = Vn +U =V)-Vu, + (uy—y,) - VU, ry)
+2(D(un), DY) + @ rg - A8, — (f 1Y) — F -rp]ds.

Now, by a standard procedure (see e.g. [12, Section 2]), we use this relation for ¢t = T,
Lemma 3.3, and the functional properties of (#,.,,,,8,) to deduce that for all ¢ € €4(BRr),
it holds that

T
/0 [ = (ttn. 0:0) + A(@n)ny — ¥ + U = V) Vaty + (ttn — y,) - VU )

+2(D(un). D(@)) +  '¢-A-8, —(f.@) — F - ]ds = 0. (3.57)
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We also recall from (3.4),,

T
5,0 =y, €01 [ y0a =0 (3.58)
0
By (3.56), (3.58), and (2.6), we infer that there exist

(u,y.8) € L>(0,T; D2 (Br)) x L*(0, T;R?) x W2(0, T;R?),
with @(t) = p(t) such that, as n — 00,*
u, — u, weaklyin L2(O, T; 331’2(BR)),
Yo, — ¥, weaklyin L?(0, T;R?), (3.59)
8, — &8, weakly in W12(0, T;R?), and in C([0, T]; R?).
From Lemma 3.4, (3.56), (3.59);, and the Simon compactness theorem [30], we also get
u, — u, stronglyin L2(0,T; #(BR)). (3.60)
which implies
Yo, — ¥, stronglyin L%(0, T; R>). (3.61)

We now pass to the limit n — oo in (3.57)—(3.58). Employing (3.59)—(3.61), it is not
difficult to show that, in doing so, we can replace everywhere in (3.57)—(3.58), u,, y,,
and §, with u, y, and §, respectively, with (3.58); holding for a.a. ¢ € [0, T]. The only
point that deserves a little care is the convergence of the non-linear term:

T T
I, = / (((u,,),,n —v,) - Vuy, (p) dt — / (u—yp)-Vu,@)dt = 1. (3.62)
0 0

To show (3.62), we first observe that, using the Schwarz inequality,
T
=11 = max O] [ (n =)y, 13+ [0, =l + 1y, — y ) Vit 3
> 0

T
+ '/ (=) (Vap — Var). @) di
0

Then, using (3.59)1, (3.60), (3.61), and classical properties of the mollifier, we infer the
convergence in (3.62) holds. Finally, (3.54) is established by letting n — oo in (3.56); and
using (3.59)1,2.

It remains to prove (3.55). The first inequality in (3.55) is an obvious consequence
of (2.5) and (3.54). To show the second one, we choose in (3.53) ¢ = V¢, for arbitrary
¢ € Cy(Bg,) and ¥ € Cs°((0, T); R). We thus obtain

T T
/ Wr)(u(r),qs)dr:/ Gy ()Y (1) dr, (3.63)
0 0

“In what follows we shall not make notational distinction between sequences and subsequences.
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where
Go(t) = —AMu—y+U—V)-Vu+(u—y)-VU,¢)—2(D(u).D(¢)) + (f.¢).

Arguing exactly as in the proof of Lemma 3.4, we then prove that there is a constant C
depending on Ry such that

G ()] < C(RO)(IV ()] + IVu(@®) |2 + | Va(@) DD ()2, (3.64)
for all ¢ € €y(Bpr,). Henceforth, since €y(Bg,) is dense in JD(}’Z(QRO), we infer
Gy(1) = [g(1). 9]
for some g (¢) € D, 2@ Ro)> Where [-, -] denotes the duality pairing
Dy *(Qry) < Dy (Rry)-

This, in combination with (3.63) and the arbitrariness of ¥, furnishes

d
E(uv ¢) = [g(t)7 ¢]~

in the sense of distribution. Furthermore, in view of (3.54) and (3.64), we have

T
1
[ 6o @nar = ccvt 4+ D@1
and the desired property is then proved. ]

3.6. T -periodic weak solutions for the original problem

This last subsection is dedicated to the proof of Theorem 3.1. Let {Q2,, = Qr, }, R1 > 3R,
be a sequence of “invading domains”, namely,

o0
Qu_1 CQu, neN: U9n=sz,
n=1

and let {s, = (u,,y,,8,)} be the sequence of corresponding 7 -periodic weak solutions
determined in Proposition 3.1. For each n, we extend u,, to 0 outside €2, and continue to
denote by u, its extension. Consequently, by Remark 2.1, {u,} ¢ W12(Q) N DV2(R3).
From the bound (3.54), we deduce that there is a subsequence of {(#,,y,)}, again denoted
by the same symbol, with u,|g, = ¥,. and functions (u, y) € L?(0, T; D'?(R3)) x
L?(0, T;R3) such that

u, — u, weaklyin L2(0, T; @1’2(R3)),

.o 3 (3.65)
Y, — ¥, weaklyin L=(0,T;R"),
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and for which (3.2) holds. Fix Ry > R arbitrarily. From (3.55), (3.65); and the Aubin—
Lions—Simon theorem [30], we can extract another subsequence, again denoted by {u,},
such that

u, — u, stronglyin L%(0,T;L*(QR,)). (3.66)

Also, from a classical trace inequality, we get
¥ —¥| = cellun —ull2 + €|V (@, —u)|2.

where € > 0 is arbitrary [ 14, Exercise I11.4.1], so that, from the latter, (3.65), and (3.66) we
deduce
Yn — ¥, strongly in L2(0, T;R?). (3.67)

T
/ y.(t)dt =0,
0

we deduce that y has zero average. Now set

T
8, =8,—38, (w = T—1/ w(z)dt).
0

Recalling that 8, = ¥ »» the Poincaré—Wirtinger inequality yields

T B B T
f B — Bl < T2f P — ¥l
0 0

Since for all n € N we have

so that {8,} is a Cauchy sequence in LZ(O, T:R3). It follows that there exists &8 €
W12(0, T; R3) with zero average such that § = y and

8, — 8, strongly in W2(0, T; R?). (3.68)
The last subsequence we have selected may depend on Ry. However, covering €2, with an
increasing sequence of bounded domains and using the Cantor diagonal method, we may
extract a further subsequence for which all the above properties, and in particular (3.66),
hold for all Ry.

In order to complete the proof of the theorem, it remains to show that the limit-
ing functions determined above satisfy the weak formulation of (3.3). In particular, we
still need to prove the convergence of the sequence of averages {8,}. From the weak
formulation (3.53); satisfied by (u,, y,.8,) and the arbitrariness of R it follows that
for any fixed at will ¢ € €4(R?) the sequence {s,} obeys the following equation for all
sufficiently large n € N:

T
/0 (it 960) — At — Y + U — V) -Vity + (tn — y,) - VU . 9)

—2(D(un). D(9) —w '@-A-8, + (f.0) + F - p]dt
=w 'Tg-A-§,. (3.69)
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The convergences proved for the sequences {u,, y,,, § n ) in (3.65)1, (3.66) — valid for all
Ry — and (3.67)—(3.68), and an argument similar to that used in the proof of (3.62), we
show that, as n — oo, the left-hand side of (3.69) converges to the same quantity with
(Un, ¥y, 8,) replaced by (u, . §), for any arbitrarily fixed ¢. This implies that §, — 8,
for some 8 € R3. We then deduce that the triple (u,y,8 = 8+ 8) satisfies (3.1); whatever
the test function ¢ taken in €;(IR?). This concludes the proof. |
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