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Twisted tropical Hurwitz numbers for elliptic curves

Marvin Anas Hahn and Hannah Markwig

Abstract. Hurwitz numbers enumerate branched morphisms between Riemann surfaces. For a fixed
elliptic target, Hurwitz numbers are intimately related to mirror symmetry following work of Dijk-
graaf. In recent work of Chapuy and Dołęga, a new variant of Hurwitz numbers with fixed genus 0
target was introduced that includes maps between non-orientable surfaces. These numbers are called
b-Hurwitz numbers and are polynomials in a parameter b which measures the non-orientability of
the involved maps. An interpretation in terms of factorisations of b-Hurwitz numbers for b D 1,
so-called twisted Hurwitz numbers, was found in work of Burman and Fesler. In previous work,
the authors derived a tropical geometry interpretation of these numbers. In this paper, we introduce
a natural generalisation of twisted Hurwitz numbers with elliptic targets within the framework of
symmetric groups. We derive a tropical interpretation of these invariants, relate them to Feynman
integrals and derive an expression as a matrix element of an operator in the bosonic Fock space.

1. Introduction

Hurwitz numbers count branched covers of Riemann surfaces with fixed numerical data.
They originate from Hurwitz’ original work in [18] and have developed to important
invariants in enumerative geometry. There are various equivalent definitions of Hurwitz
numbers arising from different fields of mathematics. The one most important for this
work is its interpretation via monodromy representations as an enumeration of factor-
isations in the symmetric group. As elliptic curves are the simplest cases of Calabi–Yau
varieties, Hurwitz numbers of elliptic curves play a role in mirror symmetry. Dijkgraaf
studied the relation between generating functions of Hurwitz numbers of an elliptic curve
and Feynman integrals [12].

In recent work of Chapuy and Dołęga [11], a new class of Hurwitz numbers was
introduced, called b-Hurwitz numbers depending on a parameter b. For b D 0 one obtains
classical Hurwitz numbers, while for bD 1 these invariants specialise to an enumeration of
covers between possibly non-orientable surface. Following [6], this enumeration gives rise
to twisted Hurwitz numbers which were proved to admit a definition in terms of counting
factorisations in the symmetric group in loc. cit. that mirrors its classical counterpart. In
previous work [16], the authors developed a tropical geometry framework for the study
of twisted Hurwitz numbers. So far, twisted Hurwitz numbers (and b-Hurwitz numbers)
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have only been studied for the enumeration of maps with a genus 0 target. In this work,
we introduce twisted Hurwitz numbers of an elliptic curve, also in terms of analogous
factorisations in the symmetric group. Motivated by the fact that tropical geometry also
provides a natural framework for the study of covers of an elliptic curve [4, 17], we also
study the tropical geometry of our twisted Hurwitz numbers of an elliptic curve.

1.1. Elliptic Hurwitz numbers

We first introduce the class of Hurwitz numbers of an elliptic curve showing up in the
mirror symmetry relation involving Feynman integrals.

Definition 1 (Hurwitz numbers of an elliptic curve). Let E be an elliptic curve (i.e., a
Riemann surface of genus 1), g � 1 a non-negative integer, and d > 0 a positive integer.
Moreover, we fix p1; : : : ; p2g�2 2 E. Then, we consider covers of degree d , f WS ! E,
such that

• S is a Riemann surface of genus g,

• the ramification profile of p1; : : : ; p2g�2 is .2; 1; : : : ; 1/.

Two covers f WS!E and f 0WS 0!E are called equivalent if there exists a homeomorph-
ism hWS ! S 0, such that f D f 0 ı h.

Then, we define the Hurwitz number of the elliptic curve E as

hd;g D
X
Œf �

1ˇ̌
Aut.f /

ˇ̌ ;
where the sum runs over all equivalence classes of covers as above.

Such Hurwitz numbers are in fact topological invariants, i.e., they do not depend on
the algebraic structure of the Riemann surfaces. Via monodromy representations (see,
e.g., [10]), Hurwitz numbers of an elliptic curve can be computed in terms of factorisations
in the symmetric group.

Lemma 2. The Hurwitz number hd;g equals 1
dŠ

times the number of tuples

.�; �1; : : : ; �2g�2; ˛/ 2 .Sd /
2g

that satisfy the following:

(1) each �i is a transposition,

(2) the product of these permutations satisfies the following equation:

�2g�2 � � � �1� D ˛�˛
�1;

(3) the subgroup
h�; �1; : : : ; �2g�2; ˛i

acts transitively on the set ¹1; : : : ; dº.

The idea for the proof of Lemma 2 is to lift loops in the fundamental group of the
elliptic curve to paths in the covering surface, see Figure 1.
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Figure 1. A sketch of a cut open elliptic curve and the paths in its fundamental group which create
the tuples to be counted to obtain a Hurwitz number via monodromy representations.

1.2. Twisted elliptic Hurwitz numbers

We fix the involution

� D .1d C 1/.2d C 2/ � � � .d2d/ 2 S2d

and use the notation

Bd D C.�/ D ¹� 2 S2d j ���
�1
D �º;

C�.�/ D ¹� 2 S2d j ���
�1
D ��� D ��1º:

We further define the subset B�
d
� C�.�/ consisting of those permutations that have

no self-symmetric cycles (see [6, Lemma 2.1]). We define the twisted Hurwitz numbers of
an elliptic curve in terms of the symmetric group.

Definition 3 (Twisted Hurwitz numbers of an elliptic curve). Fix a genus g and a degree d.
Then the twisted Hurwitz number Qhd;g of degree d and genus g of an elliptic curve is
defined to be 1

.2d/ŠŠ
times the number of tuples

.�; �1; : : : ; �g�1; ˛/ 2 .S2d /
gC1

that satisfy the following conditions:

(1) each �s is a transposition, �s D .is js/ such that js ¤ �.is/,

(2) � 2 B�
d

,

(3) ˛ 2 Bd ,

(4) the product of these permutations satisfies the following equation:

�1 � � � �g�1�.��g�1�/ � � � .��1�/ D ˛�˛
�1;

(5) the subgroup ˝
�; �1; : : : ; �g�1; .��g�1�/; : : : ; .��1�/; ˛

˛
acts transitively on the set ¹1; : : : ; 2dº.
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The motivation to call these counts of factorisations in the symmetric group twis-
ted Hurwitz numbers of an elliptic curve is coming from Lemma 2. We can also drop
the transitivity condition. On the tropical side, this corresponds to allowing disconnected
source curves for our covers. We denote these numbers by Qh�

d;g
.

Remark 4. The following twisted Hurwitz number was computed with GAP: Qh2;3 D 16.

Remark 5. It is tempting to expect that Qhd;g admits a geometric interpretation similar
to twisted Hurwitz numbers with genus 0 target (see [11, Section 2.2] and the discussion
after [16, Remark 6]). A reasonable expectation could be that elliptic twisted Hurwitz
numbers count maps to an elliptic target E with an orientation reversing involution that
respects an orientation reversing involution on E. We leave the question of such a geo-
metric interpretation as an open problem.

1.3. Main results

In Section 2, we develop a tropical approach to elliptic twisted Hurwitz numbers. We
introduce tropical elliptic twisted Hurwitz numbers as enumerations of tropical coverings
of a tropical elliptic curve, i.e., as certain maps between graphs. As the main result of
this section, in Theorem 21 we prove a correspondence theorem stating that elliptic twis-
ted Hurwitz numbers and their tropical counterparts coincide. This tropical interpretation
then allows us to derive an expression in Theorem 31 of elliptic twisted Hurwitz numbers
in terms of Feynman diagrams in Section 3. We note that the computation of elliptic Hur-
witz numbers in terms of Feynman diagrams was first derived in [12] and a new proof
employing tropical techniques was given in [4]. Finally, we follow the slogan bosonifica-
tion is tropicalisation which has now been established in a plethora of works [3,8,9,14,15]
to express elliptic twisted Hurwitz numbers as matrix element on the bosonic Fock space
in Section 4.

2. Twisted tropical covers of an elliptic curve

In [16], we have introduced twisted versions of tropical Hurwitz numbers. We now gen-
eralize to consider twisted versions of tropical covers of an elliptic curve and their counts,
building on [1, 4, 7]. We start by recalling the basic notions of tropical curves and cov-
ers. Then we introduce twisted tropical covers of an elliptic curve, which can roughly be
viewed as tropical covers with an involution. By fixing branch points, we produce a finite
count of twisted tropical covers of an elliptic curve for which we show in the follow-
ing that it coincides with the corresponding twisted Hurwitz number of an elliptic curve.
Readers with a background in the theory of tropical curves are pointed to the fact that we
only consider explicit tropical curves in the following, i.e., there is no genus hidden at
vertices.



Twisted tropical Hurwitz numbers for elliptic curves 5

Figure 2. Two abstract tropical curves of genus 3. Edge lengths are not specified in the picture.

Definition 6 (Abstract tropical curves). An abstract tropical curve is a connected graph �
with the following data:

(1) The vertex set of � is denoted by V.�/ and the edge set of � is denoted by E.�/.

(2) The 1-valent vertices of � are called leaves and the edges adjacent to leaves are
called ends.

(3) The set of edges E.�/ is partitioned into the set of ends E1.�/ and the set of
internal edges E0.�/.

(4) There is a length function

`WE.�/! R [ ¹1º;

such that `�1.1/ D E1.�/.

The genus g of an abstract tropical curve � is defined as the first Betti number of the
underlying graph, i.e., g D 1 � jV.�/j C jE.�/j. An isomorphism of abstract tropical
curves is an isomorphism of the underlying graphs that respects the length function. The
combinatorial type of an abstract tropical curve is the underlying graph without the length
function.

Definition 7. A tropical elliptic curve E is a circle of a given length. It may have several
two-valent vertices. In the following we will refer to any tropical elliptic curve as E and
do not specify the number of vertices when it is clear from the context.

Notice that a tropical elliptic curve is of genus 1.

Example 8. Figure 2 shows two abstract tropical curves of genus 3. We have not specified
edge lengths in the picture.

Next, we define the notion of tropical covers. We restrict to the case where the target
is either a tropical elliptic curve E or a subdivided version of R, i.e., a line with some
2-valent vertices.

Definition 9 (Tropical covers). Let the target �2 be either a tropical elliptic curve E or a
subdivided version of R. A tropical cover between abstract tropical curves � W�1 ! �2 is
a surjective harmonic map, i.e.:

(1) We have �.V.�1// � V.�2/.

(2) Let e 2E.�1/. Then, we interpret e and �.e/ as intervals Œ0; `.e/� and Œ0; `.�.e//�
respectively. We require � restricted to e to be a bijective integer linear function
Œ0; `.e/�! Œ0; `.�.e//� given by t 7! !.e/ � t , with !.e/ 2 Z. If �.e/ 2 V.�2/,
we define !.e/ D 0. We call !.e/ the weight of e.
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Figure 3. Three twisted tropical covers of E of degree 2 and genus 3. The labels on the edges
denote the edge weight. Edges which are not labeled have weight one. The involution � is supposed
to exchange respective edges on top resp. bottom of the picture.

(3) For a vertex v 2 V.�1/, we denote by Inc.v/ the set of incoming edges at v (edges
adjacent to v mapping to the left of �.v/) and by Out.v/ the set of outgoing edges
at v (edges adjacent to v mapping to the right of �.v/). We then requireX

e2Inc.v/

!.e/ D
X

e2Out.v/

!.e/:

This number is called the local degree of � at v. We call this equality the harmon-
icity or balancing condition. For a point v in the interior of an edge e of �1, the
local degree of � at v is defined to be the weight !.e/.

Moreover, we define the degree of � as the half of the sum of local degrees at all vertices
and internal points of �1 in the preimage of a given vertex of �2. By the harmonicity
condition, the degree is independent of the choice of vertex of �2.

For any end e of �2, we define a partition �e as the partition of weights of ends of �1
mapping to e. We call �e the ramification profile of e.

We call two tropical covers �1W�1 ! �2 and �2W� 01 ! �2 equivalent if there exists
an isomorphism gW�1 ! � 01 of metric graphs, such that �2 ıg D �1.

We are now ready to give a definition of twisted tropical covers, which may be viewed
as tropical covers admitting an involution with specified locus.

Definition 10 (Twisted tropical covers of E). We define a twisted topical cover of E to
be a tropical cover � W�1 ! E with an involution �W�1 ! �1 which respects the cover � ,
such that:

• we have g � 1 branch points p1; : : : ; pg�1 2 E which we set as vertices,

• in the preimage of each branch point pi , there are either two 3-valent vertices or one
4-valent vertex,

• the edges adjacent to a 4-valent vertex all have the same weight,

• the fixed locus of � is exactly the set of 4-valent vertices.

Example 11. Using the two source curves from Example 8 (see Figure 2), we can build
twisted tropical covers of degree 2, see Figure 3.
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Figure 4. The quotient covers of the three twisted covers from Example 11, see Figure 3.

As usually for Hurwitz numbers, our enumeration of twisted tropical covers will take
automorphisms into account. We give the following definition which specifies automorph-
isms that take the involution into account.

Definition 12 (Automorphisms). Let � W � ! E be a twisted tropical cover with invol-
ution � W � ! � . An automorphism of � is a morphism of abstract tropical curves (i.e., a
map of metric graphs) f W � ! � respecting the cover and the involution, i.e., � ı f D �
and f ı � D � ı f . We denote the group of automorphisms of � by Aut.�/.

Example 13. The twisted tropical cover depicted in Figure 3 on the left has an auto-
morphism group of size 4: we can independently exchange the two pairs of weight 2
edges mapping to the same segment of E. The twisted tropical cover in the middle has
an automorphism group of size 2 (generated by the involution): we can exchange the two
edges of weight 2, with the two pairs of edges of weight 1 following along. The one on the
right has an automorphism group of size 4: we can exchange two parallel edges of weight
1 in addition to the involution.

Definition 14 (Quotient graph �=�, see [16]). Let � W� ! E be a twisted tropical cover
with involution �W� ! � . The involution � induces a symmetric relation on the vertex and
edge sets of �: We define for v; v0 2 V.�/ (resp. e; e0 2 E.�/) that v � v0 (resp. e � e0) if
and only if �.v/D v0 (resp. �.e/D e0). We define �=� as the graph with vertex set V.�/=�
and edge set E.�/=� with natural identifications. For e D Œe0; e00� 2 E.�=�/ we define
the length `.e/ as `.e0/ D `.e00/ and its weight !.e/ with respect to � to be the weight
!.e0/ D !.e00/. In this way, we obtain a tropical cover from the quotient graph �=� to E,
which has 2-valent vertices coming from the 4-valent vertices of � , and 3-valent vertices
else.

Example 15. The quotient covers of the three twisted covers from Figure 3 are depicted
in Figure 4. The middle and right tropical cover have the same quotient graph.

Proposition 16. Let x� W x� ! E be a (connected) quotient of a twisted tropical cover (see
Definition 14). Assume x� has c 2-valent vertices and is of genus g0. ThenX

�

1

]Aut.�/
D

2g
0

� ı0c

2cC1 � ]Aut.x�/
;
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where the sum goes over all (connected) twisted tropical covers � W �!E with involution
� whose quotient �=�! E equals x� W x� ! E and ı0c D 1 if c D 0 and 0 else.

Proof. Every summand on the left hand side comes with a factor of 1
2

, which arises due to
the involution. This is true since the involution yields a contribution to the automorphism
group of each twisted tropical cover whose quotient equals x� , but descends to the identity
on the quotient. This accounts for one factor of 2 in the denominator of the right hand
side. We now discuss the equality up to this factor of 1

2
, which arises on both sides.

Assume first x� has no 2-valent vertices. First, we remove g0 edges e1; : : : ; eg 0 of x�
such that we obtain a tree which we call � 0.

First, we would like to understand the preimages of � 0 under taking a quotient with
respect to an involution �. That means, we take two copies of every edge of � 0 such that
the involution exchanges the edges in the pair. When drawing a picture, we like to draw
one edge on the top and one on the bottom. Now let us consider an adjacent vertex, and
another edge starting from this vertex. Again, we take two copies, but since the involution
exchanges the two it does not matter which we draw on top and which we draw on the
bottom. Thus, for the whole tree � 0, we have a unique preimage under taking the quotient
which just consists of two disjoint copies of � 0.

To understand the preimage of taking the quotient for x� , we can start by taking the
preimage of the tree � 0 and putting in two copies for each of the missing edges e1; : : : ; eg 0 .
As discussed above, the preimage of the tree just consists of two copies which we call the
top and the bottom part. When we insert a pair of edges for e1, we now have two options:
we can either let one connect top with top, and the other bottom with bottom, or both
can connect top with bottom. We have the same choice for all g0 edges, yielding 2g

0

choices for preimages under taking the quotient. However, one of these (where we always
connect top with top and bottom with bottom) is disconnected and should therefore be
discarded. Also, not all the 2g

0

choices have to be distinct, and this happens in the presence
of automorphisms of x� : the latter arise due to parallel edges which are mapped in the same
way (in particular, with the same weight). This is true, since an automorphism of the cover
is an automorphism of the source graph which is compatible with the covering map, thus
only edges with the same image can be permuted. Since x� is 3-valent and because of the
balancing condition, locally at every vertex, at most two edges can be permuted, which
then must form a pair of parallel edges of the same weight. Every such pair of parallel
edges with the same weight produces a factor of 2 for the size of the automorphism group
of x� (see also [7, Corollary 4.4]).

We now discuss the effect of the presence of such automorphisms of the quotient cover
on the a priori 2g

0

choices for preimages under taking the quotient discussed above. For
this purpose, we focus on one set of parallel edges, the argument has to be repeated if
there are more. Earlier, we chose g0 edges e1; : : : ; eg 0 to remove, obtaining a tree. Since
parallel edges form a cycle themselves, one of two parallel edges must be among these.
We assume it is e1. So, assume e1 is one of two parallel edges connecting the vertices v1
and v2. Consider a path connecting v2 with v1 (avoiding e1 and its parallel edge). Since
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Figure 5. On the left, a quotient cover x� of genus 2. On the right, the 4 choices of preimage under
taking the quotient, as in the proof of Proposition 16. Because of the automorphism of the quotient
cover, the upper right and the lower right choice get identified. The top middle is disconnected and
should be discarded. The lower middle has an automorphism group of size 4 due to the automorph-
ism of x� . Altogether, we have 1

2 C
1
4 D

4�1
2�2 preimages counted with one over the size of their

automorphism group, as predicted by Proposition 16.

x� is mapped to an elliptic curve E, such a path must exist. We can assume that e2 is an
edge of this path (as this path, together with the parallel edge of e1 forms another cycle).
Then we insert two copies of each edge to the top and bottom part of two copies of the
thus resulting tree. If we choose the two copies of e1 to both connect top and bottom, and
the two copies of e2 to connect top with top and bottom with bottom, we obtain the same
twisted cover as when we choose the two copies of e1 to connect top with top and bottom
with bottom, and the two copies of e2 to both connect top with bottom. This is true since
we can switch the role of top and bottom for the two preimages of v2, and accordingly for
the path from v2 to v1 until we reach the two copies of e2, for which we switch again. For
an example, see Figure 5.

To sum up, for each such pair of parallel edges, we obtain an action of S2 on the set of
the 2g

0

choices from above. The orbit-stabilizer theorem tells us that we either identify two
of the choices (which are in the same orbit), or we have an extra automorphism working
on one choice. Thus, dividing by the size of the automorphism group of x� , we even out
our overcountings, taking into account the automorphisms of the preimages, too.

Finally, let us consider what happens in the presence of 2-valent vertices. First, every
choice of preimage will be connected, so we do not have to subtract one when counting
possibilities. Second, for every 4-valent vertex in each preimage � , we can exchange the
edges of one adjacent twisted pair, leading to an extra automorphism of � which descends
to the identity on the quotient x� . To be more precise, we can follow the argument from
above where we took out g0 edges, consider the unique preimage of the tree, and reinsert
the g0 twisted pairs. When reinserting for an edge between two 3-valent vertices, the argu-
ment is the same. For an edge connecting a 2-valent to a 3-valent vertex, we do not have
the two choices of connecting top with top and bottom with bottom or top with bottom
twice. We have only one choice: to connect the 4-valent vertex with top, and with bottom.
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However, just as before, by the orbit-stabilizer theorem there is an additional automorph-
ism exchanging this pair of twisted edges. For an edge connecting two 2-valent vertices,
we have to choose two parallel edges which again yields an automorphism. In the end, we
produce a factor of 2 for the size of the automorphism group for every 4-valent vertex.

Remark 17. We note that Proposition 16 generalises to covers of R, and disconnected
twisted tropical covers as well. Indeed, let x� W x� ! R be a quotient of a twisted tropical
cover with c 2-valent vertices and r connected components, each of genus gi . Then, the
genus of x� is given by g0 D

P
gi � r C 1. As in the proof of Proposition 16, we obtain

2
P
gi many preimages under taking the quotient. Now, we aim to count automorphisms.

The argument is the same as in the proof above with the difference, that the involutions
acts independently on each component and thus, we obtain a factor in the denominator
of 2r . Thus, in total, we obtainX

�

1

]Aut.�/
D

2
P
gi

2r2c]Aut.x�/
;

where the sum now runs over possibly disconnected twisted covers � with quotient x� . To
conclude, we observe however that

P
gi D g

0 C r C 1 and thus, we obtainX
�

1

]Aut.�/
D

2g
0

2cC1]Aut.x�/
:

The only difference to the connected case in Proposition 16 is the factor ı0;c that ensured
connectedness which obviously does not play a role here.

We are now ready to define twisted tropical Hurwitz numbers of an elliptic curve.

Definition 18 (Twisted tropical Hurwitz number of an elliptic curve). We define the twis-
ted tropical Hurwitz number of an elliptic curve Qhtrop

d;g
to be the weighted enumeration of

equivalence classes of twisted tropical covers of degree d and genus g of a tropical elliptic
curve E, such that each equivalence class Œ� W� ! E� is counted with multiplicity

2g�1 �
1

jAut.�/j
�

Y
V

.!V � 1/
Y
e

!.e/;

where the first product goes over all 4-valent vertices and !V denotes the weight of the
adjacent edges, while the second product is taken over all edges of the quotient graph �=�
and !.e/ denotes their weights.

Example 19. The twisted tropical Hurwitz number Qhtrop
2;3 equals 16. There are five twisted

tropical covers for d D 2 and g D 3. We may obtain all from the sketches in Figure 3.
The middle and right depicted maps each give rise to two tropical covers depending on the
labelling of the branch points, i.e., for the tropical elliptic curve E on the bottom, either
the left vertex is labelled p1 and the right vertex is labelled p2 or the left vertex is labelled
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p2 and the right vertex is labelled p1. The left cover in Figure 3 has multiplicity

22 �
1

4
� .2 � 1/ � .2 � 1/ � 2 � 2 D 4:

Each cover coming from the middle picture has multiplicity

22 �
1

2
� 2 D 4:

Each cover coming from the right picture has multiplicity

22 �
1

4
� 2 D 2:

For the sizes of the automorphism groups, see Example 13. Thus, we obtain Qhtrop
2;3 D 16

in total. Note that this number coincides with the twisted Hurwitz number we computed
in Remark 4.

Remark 20. Notice that, by Proposition 16, twisted tropical Hurwitz numbers of an el-
liptic curve can also be determined by counting quotient covers directly. If � has c 4-valent
vertices and is of genus g, then by an Euler characteristics computation the quotient x� has
genus g0 D 1

2
� .g � c C 1/. For the multiplicities of the preimages of a quotient cover,

only the factor 1
jAut.�/j differ, all others remain. But the sum of the 1

jAut.�/j is obtained via
Proposition 16, and so a quotient cover x� has to be counted with multiplicity

2g
0

� ı0c

2cC1
� 2g�1 �

1ˇ̌
Aut.x�/

ˇ̌ �Y
V

.!V � 1/
Y
e

!.e/

D .2g
0

� ı0c/ � 2
2g 0�3

�
1ˇ̌

Aut.x�/
ˇ̌ �Y

V

.!V � 1/
Y
e

!.e/;

where c denotes the number of 2-valent vertices of the source graph � , the first product
goes over all 2-valent vertices and !V denotes the weight of the adjacent edges, while the
second product is taken over all edges and !.e/ denotes their weights.

The equality observed in Example 19 is no coincidence, as shown in the following
theorem.

Theorem 21 (Correspondence theorem). The twisted Hurwitz number of E equals its
tropical counterpart, i.e.,

Qh
trop
d;g
D Qhd;g :

Proof. Let � W � ! E be a twisted tropical cover of degree d . We pick a base point p0
between pg�1 and p1 and cut the elliptic curve open at p0. We also cut the preimages of
p0 under � , thus obtaining a twisted tropical cover z� W z� ! R. In the untwisted case, this
is explained in detail in [4, Construction 4.4].

The twisted Hurwitz number counts tuples

Qhd;g D
1

.2d/ŠŠ
]
®
.�; �1; : : : ; �g�1; ˛/

¯
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as in Definition 1. We can split these tuples and first list tuples of the form ¹.�; �1; : : : ;
�g�1/º, combining each such tuple with a list of possible ˛. Each tuple ¹.�;�1; : : : ; �g�1/º
yields a twisted tropical cover z� of R as in [16, Construction/Theorem 14]. This cover has
left and right ends of weights given by the cycle lengths of � . For each twisted tropical
cover of R having ends of the same weights in both directions, the number of tuples of
the form above leading to this cover equals its tropical multiplicity by the correspondence
theorem (see [16, Proposition 18 and Remark 6]). The tropical multiplicity equals

2g�1
Y
V

.!V � 1/
Y
e

!.e/
Y
K

1

!K
�

1

jAut.z�/j

where the first product goes over all 4-valent vertices V and !V denotes the weight of
its adjacent edges, the second product goes over all pairs of twisted internal edges of the
source z� of the twisted tropical cover z� , and the third over all twisted pairs of com-
ponents K which consist of a single edge of weight !K . Combining tuples of the form
¹.�; �1; : : : ; �g�1/º with possible ˛ amounts to gluing a twisted tropical cover of R to
obtain a twisted tropical cover of E. To determine the number of such gluings, we pass to
the quotient covers on each side. Given a twisted tropical cover � of E and its cut cover
z� , we consider the quotient cover x� of E and the quotient cut cover zx� . Note that taking
the quotient and cutting the cover commutes.

When gluing a cut quotient cover of R to a quotient cover of E, we want to pair up
left and right ends that should be glued. Each left end of the quotient cover corresponds to
a pair of ends of the twisted cover. Assume the pair of cycles c1, � ı c1 ı � corresponds to
these two ends, and assume that our gluing merges the left end corresponding to c1 with
the right end corresponding to a cycle c2 of the same length. We want to count the number
of ˛ that satisfy c2 D ˛ ı c1 ı ˛�1. Let c1 D .c11; : : : ; c1`.c1//, and c2 D .c21; : : : ; c2`.c1//.
A choice of ˛ is fixed by setting ˛.c11/D c2i for any i D 1; : : : ; `.c1/. As we require that
˛� D �˛ any element in the twisted cycle � ı c1 ı � of the form �.c1j /must be mapped to
�.˛.c1j // via ˛. Thus, choosing a gluing on one of a pair of twisted ends of the cut cover
fixes the gluing on the other.

By the same argument as in [4, Proposition 4.9] the number of such ˛ is given byY
e0

!.e0/ce0 �
jAut.z�/j
jAut.�/j

; (2.1)

where the product goes over all pairs of twisted edges e0 of � that contain a preimage of the
base point p0 of E and ce0 denotes the number of preimages in e0, ce0 D #.��1.p0/\ e0/.

We can group the tuples in the set according to the twisted tropical cover � W C !
E they provide under the cut-and-join construction, see [16, Construction/Theorem 14].
Thus we can write Qhd;g as

Qhd;g D
1

.2d/ŠŠ
�

X
�

#
®
.�; �1; : : : ; �g�1; ˛/ yielding the cover �

¯
:
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2

2

2

2

Figure 6. The twisted tropical cover on the right in Figure 3 cut open at the back.

For a fixed cover � , instead of counting tuples yielding � , we can count tuples .�; �1; : : : ;
�g�1/yielding the cut twisted tropical cover z� and then multiply with the number of appro-
priate ˛, which we denote by nz�;� :

Qhd;g D
1

.2d/ŠŠ
�

X
�

#
®
.�; �1; : : : ; �g�1/ that provide the cover z�

¯
� nz�;� :

By the above, the count of the tuples yielding a cover z� divided by .2d/ŠŠ equals

2g�1
1ˇ̌

Aut.z�/
ˇ̌ �Y

V

.!V � 1/ �
Y
Qe

!. Qe/ �
Y
K

1

!K

where the first product goes over the 4-valent vertices, the second over all pairs of twisted
internal edges Qe of z� of weight !. Qe/ and the third over all twisted pairs of components
K consisting of a single edge of weight !K . From the above, the number nz�;� can be
substituted by the expression in eq. (2.1).

We obtain

Qhd;g D
X
�

1ˇ̌
Aut.z�/

ˇ̌2g�1 �Y
V

.!V � 1/ �
Y
Qe

!. Qe/ �
Y
K

1

!K
�

Y
e0

!.e0/ce0 �

ˇ̌
Aut.z�/

ˇ̌ˇ̌
Aut.�/

ˇ̌ :
A pair of twisted edges e0 of � of weight !.e0/ having ce0 preimages over the base
point provides exactly ce0 � 1 pairs of single-edge-components of weight !.e0/ in the
cut cover z� . Vice versa, each such pair of components comes from a pair of edges with
multiple preimages over the base point. Therefore the expression

Q
K

1
!K
�
Q
e0 !.e

0/ce0

simplifies to
Q
e0 !.e

0/. We obtain

Qhd;g D
X
�

2g�1
1ˇ̌

Aut.�/
ˇ̌ �Y

V

.!V � 1/ �
Y
e

!.e/ D Qh
trop
d;g

and the theorem is proved.

Example 22. Consider the twisted tropical cover � depicted in Figure 3 in the middle
with the vertex on the left labelled p1 and the vertex on the right labelled p2. Cutting it
open, we obtain the twisted tropical cover z� of R depicted in Figure 6.

By the correspondence theorem for twisted tropical covers of R in [16, Theorem 22], it
accounts for .2d/ŠŠD 8 times its tropical multiplicity many tuples. The cover has an auto-
morphism group of size 22 D 4, as we can independently exchange both pairs of twisted
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1

2

p0

2

1

2

1

1

1

1

Figure 7. On the top left, there is the quotient cover � W x� ! E of an elliptic twisted tropical cover.
Cutting the cover at p0 and the preimages, we obtain the twisted tropical cover on the top right. At
the bottom is the graph x� .

edges of weight 2, with the edges of weight 1 following along. Its tropical multiplicity
thus equals

22 �
1

4
D 1:

This twisted tropical cover of R thus accounts for 8 tuples of the form .�1; �1; �2/. By [16,
Lemma 16], there are 2 permutations suitable for �1, .14/.23/ and .12/.34/. Fix �1 D
.14/.23/ momentarily, the other choice is analogous. Then there are two choices for �1,
.14/ of .23/. For the next branch point, there are 2 more choices for �2, .12/ or .34/.
Altogether, we obtain the 8 tuples as expected.

The extra automorphism that the cut cover obtains (we have jAut.z�/j
jAut.�/j D

4
2
D 2) allows

to make an additional choice which left end should be glued to which right end. Let us
momentarily fix one of our 8 tuples, ..14/.23/; .14/; .12//. If we label all edges with the
corresponding permutations, the two right ends are labelled with .12/ and .34/. Because
of the extra automorphism, we can glue the left end labelled .14/ either to .12/ or to .34/.
For each choice, we obtain as many ˛ satisfying ˛� D �˛ as the weight of one end, i.e., 2.
We thus obtain 4 possible ˛ to add to each of the 8 tuples, yielding 32 tuples of the form
.�1; �1; �2; ˛/. For the tuple fixed above, the 4 possible ˛ we can add are®

.24/; .1234/; .13/; .1432/
¯
:

Dividing the 32 tuples by .2d/ŠŠ D 8, we expect the tropical multiplicity of the right
cover of E in Figure 3 to be 4. Indeed, in Example 19 we already computed its tropical
multiplicity to be

22 �
1

2
� 2 D 4:

Example 23. We illustrate another example in Figure 7. On the top left, we have the
quotient cover x� W x� ! E of an elliptic twisted tropical cover of degree 4. Note that x� , as
illustrated at the bottom of Figure 7 has three edges, two of weight 1 and one of weight 2.
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On the top right in this figure, we have the twisted tropical cover obtained by cutting x� at
p0 and its preimages. In particular, we obtain two edges of weight 1 arising from the same
edge of x� . This is because this edge curls twice before reattaching again at the bottom to
join to an edge of weight 2.

3. Generating series in terms of Feynman integrals

In this section, we express elliptic twisted Hurwitz numbers as Feynman integrals. We
assume that g > 2 in the following. Consequently, in the quotient covers there cannot be
loop edges.

In our context, the following definition of Feynman graph will be needed. These are
exactly the graphs that appear as sources for quotients of twisted covers, up to labelling.

Definition 24 (Feynman graph). A Feynman graph is a graph with 2- and 3-valent vertices
whose edges are labelled with q1; : : : ; qr and whose vertices are labelled with x1; : : : ; xs .

A Feynman integral depends on a Feynman graph and the choice of an order � of the
vertices.

Definition 25 (Edge propagator). Let qk be an edge of a Feynman graph, adjacent to two
vertices xk1 and xk2 , where we assume that xk1 < xk2 in the order �.

Given w 2 N, we define the coefficient cw of the following propagator function to be

cw WD

8̂̂<̂
:̂
.w � 1/ � w if xk1 and xk2 are 2-valent
p
w � 1 � w if xk1 or xk2 is 2-valent

w if neither xk1 nor xk2 are 2-valent:

We then define the propagator function of the edge qk to be

P.qk/ D

1X
wD1

cw

�
xk1
xk2

�w
C

1X
akD1

�X
wjak

cw

��
xk1
xk2

�w
C

�
xk2
xk1

�w��
q
ak
k
:

Definition 26 (Feynman integral). Let � be a Feynman graph and � be an order of its
vertices. For each edge qk , we denote its adjacent vertices by xk1 and xk2 , where we
assume that xk1 < xk2 in the order �. We define the Feynman integral I�;�.q1; : : : ; qr /
to be

I�;�.q1; : : : ; qr / D coefŒx01 ���x0s �

rY
kD1

P.qk/:

Setting all qk equal to one variable q, we obtain the Feynman integral I�;�.q/.

Remark 27. Here, we consider Feynman integrals merely as formal power series. In the
relation involving (usual) Hurwitz numbers of an elliptic curve, the propagator series can,
using a coordinate change, be transformed into a linear combination of the Weierstraß-}-
function and an Eisenstein series. After this coordinate change, the Feynman integral can
be viewed as a complex analytic path integral.
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Remark 28. Fix a genus g > 2. A 3-valent graph of genus 2 has 2 vertices, increasing the
genus by one yields 2more vertices. It follows that a graph of genus g has 2g � 2 vertices
if it is 3-valent. Every 4-valent vertex can be viewed as a merging of 2 3-valent vertices,
thus a graph of genus g with c 4-valent vertices and only 3-valent vertices else has 2g �
2 � c vertices. It follows that the source of a twisted tropical cover of E has 2g � 2 � c
vertices, where c denotes the number of 4-valent vertices. That is, 2g � 2 � 2c vertices
are 3-valent and c are 4-valent. When passing to the quotient cover, its source graph has
g � 1� c many 3-valent vertices and c many 2-valent vertices. Its total number of vertices
is thus g � 1, independent of the number of 4-valent vertices in the twisted cover.

Definition 29 (Labelled quotient covers). A labelled quotient cover is a quotient of a
twisted tropical cover for which the vertices and edges of its source are labelled like a
Feynman graph.

Fix a base point p0 of a tropical elliptic curve E. Fix a genus g > 2, and g � 1 branch
points p1; : : : ; pg�1 in E.

Given a labeled quotient cover x� , we can define its multidegree a 2 Nr to be the tuple
whose k-th entry equals the sum of the weights of the preimages of the base point p0 in
the edge qk . Fix an order � on g � 1 elements x1; : : : ; xg�1. Let � be a Feynman graph.

We define Qh�;�;a to be the weighted number of labelled quotient covers whose source
is of combinatorial type � , whose multidegree equals a and such that the order given by
the preimages of the branch points x��1.p1/ < � � � < x��1.pg�1/ equals �. Each such
cover is weighted by 2g

0
�ı0c
2cC1

� 2g�1 �
Q
V .!V � 1/ � !.e/. Since there are no non-trivial

automorphisms in the presence of labels, this equals the multiplicity given in Remark 20.

Proposition 30. Let � be a Feynman graph of genus g > 2 and c be its number of 2-
valent vertices. Let a be a multidegree and � an order. The count of labelled quotient
covers equals a coefficient of a Feynman integral:

Qh�;�;a D
2g
0

� ı0c

2cC1 � 2g�1
� coef

Œq
a1
1 ���q

ar
r �
I�;�.q1; : : : ; qr /:

The proof follows ideas of [4, 5].

Proof. Expanding the product
Qr
kD1 P.qk/, the summands are equal to products of the

form
rY
kD1

cwk

�
xi

xj

�wk
� q
ak
k
:

If ak is zero, wk can be any element in N, and i D k1, j D k2. If ak > 0, wkjak and i can
be either k1 or k2, and j the remaining. To each such summand, we associate a labelled
quotient cover in the following way: We start by fixing as preimages of the branch points
the vertices xi as imposed by the order �.

For a factor cwk .
xi
xj
/wk � q

ak
k

with ak D 0, we draw an edge labelled qk which goes
from the vertex xk1 to xk2 without crossing over the base point. This is possible since the
xi respect the order �. We fix the weight of our edge to be wk .
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For a factor cwk .
xi
xj
/wk � q

ak
k

with ak > 0, we draw an edge labelled qk : If i D k1
we let it start at xk1 and connect with xk2 (where we think of the edges of our cover as
oriented in the way imposed by the order �). If i D k2, we let it start at xk2 at connect it
with xk1 . We “curl” this edge in such a way that is passes ak

wk
times over the base point p0.

The weight of the edge in each case is defined to be wk .
We claim that in this way, we produce a labelled quotient cover contributing to Qh�;�;a

with a D .a1; : : : ; ar /. Since we used the edge qk to connect its neighbouring vertices
in � , the source of the covers is of combinatorial type � by construction. The multidegree
is a, since for each k with ak D 0, we let our edge not pass over the base point, whereas
for each k with ak > 0 the edge of weightwk passes ak

wk
times over the base point, leading

to the entry ak in the multidegree. The order � is also respected by construction.
What remains to be seen is that we obtained indeed a cover, i.e., the balancing con-

dition has to be satisfied. This holds true since a product as above only contributes to the
Feynman integral I�;�.q1; : : : ; qr / if its total degree in the xi vanishes. The total power
of xi equals, by construction, the signed sum of the weights of its adjacent edges. The fact
that the degree in xi is zero is thus equivalent to the balancing condition at vertex xi .

In this way, we obtain a bijection between summands contributing to the Feynman
integral and labelled quotient covers. What about multiplicities? In the Feynman integral,
a summand contributes

Q
k cwk . Thus, the summand contributes 2g

0
�ı0c
2cC1

� 2g�1 �
Q
k cwk

to the right hand side. We have to show that this equals the multiplicity with which the
labelled quotient cover is counted in Remark 20, i.e., that

Q
k cwk D

Q
V .!V � 1/ �

Q
e !e .

Recall that the weight of the edge qk equals wk . For a 2-valent vertex V , we have a factor
of !V � 1, where !V denotes the weight of the adjacent edges. We can thus part this
contribution into two factors of

p
!V � 1 and shift those towards the adjacent edges.

By definition, if qk connects two 2-valent vertices, cwk equals .wk�1/ �wk—it obtains
two factors of

p
wk � 1 from both its adjacent vertices, and it also contributes its own

weight, as every edge does. If qk connects a 2-valent with a 3-valent vertex, it obtains
only one factor of

p
wk � 1. If both vertices of qk are 3-valent, it obtains no such factor. It

follows that if we reinterpret the product
Q
V .!V � 1/ �

Q
e !e as a product over edges by

shifting the vertex contributions as square roots into both adjacent edges,we get exactly the
contribution cwk which is used to define the propagator function for the Feynman integral.

Thus the multiplicity with which a labelled quotient cover contributes to Qh�;�;a exactly
equals the contribution of its corresponding summand in the Feynman integral (up to the
factor of 2

g0�ı0c
2cC1

� 2g�1), and the equality holds.

The following is the main theorem of this section and expresses the generation func-
tion of elliptic twisted Hurwitz numbers as a finite sum over Feynman integrals.

Theorem 31. Fix a genus g > 2. The generating series of twisted Hurwitz numbers can
be expressed in terms of Feynman integrals:

X
d

Qhd;gq
d
D 2g�1 �

X
�

2
1
2 �.g�c�C1/ � ı0c�

2c�C1
� ]Aut.�/

X
�

I�;�.q/:
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Here, the first sum on the right hand side goes over all Feynman graphs of genus g and c�
denotes their number of 2-valent vertices, while the second sum goes over all orders �.

Proof. For a fixed graph � , let Qhd;� be the number of (unlabelled) quotient covers of
degree d for which the combinatorial type of the source curve is � . As in Remark 20,
each cover x� is counted with multiplicity

2g
0

� ı0c

2cC1
� 2g�1 �

1ˇ̌
Aut.x�/

ˇ̌ Y
V

.!V � 1/
Y
e

!.e/:

There exists a forgetful map ft from the set of labelled quotient covers to the set of unla-
belled covers by just forgetting the labels. For an (unlabelled) quotient cover x� whose
source is of combinatorial type � , the automorphism group of � , Aut.�/, acts transitively
on the fibre ft�1.x�/ by relabelling vertices and edges. So, to determine the cardinality of
the set ft�1.x�/, we think of it as the orbit under this action and obtain ] ft�1.x�/D ]Aut.�/

]Aut.x�/ ,
since the stabilizer of the action equals the set of automorphisms of x� . Each labelled
quotient cover in the set ft�1.�/ is counted with the same multiplicity

2g
0

� ı0c

2cC1
� 2g�1 �

Y
V

.!V � 1/
Y
e

!.e/:

The sum
P
aj
P
aiDd

P
�
Qh�;�;a can be reorganized as a sum over unlabelled quotient

covers, where for each unlabelled cover, we have to sum the multiplicities for each labelled
quotient cover in the fibre under ft. As the multiplicity is the same for each element in
the fibre, and there are ]Aut.�/

]Aut.x�/ elements in the fibre, we can see that this sum equals
]Aut.�/ � Qhd;� .

We concludeX
d

Qhd;gq
d
D

X
d

X
�

Qhd;�q
d
D

X
d

X
�

1

]Aut.�/

X
aj
P
aiDd

X
�

Qh�;�;aq
d :

Now we can replace Qh�;�;a by 2g
0
�ı0c
2cC1

� 2g�1 times the coefficient of qa in I�;�.q1; : : : ;qr /
by Proposition 30. If we insert qk D q for all k we can conclude that the coefficient of
qd in I�;�.q/ equals 2g

0
�ı0c
2cC1

� 2g�1 times
P
aj
P
aiDd

Qh�;�;a. Thus the generating series
above equalsX

d

Qhd;gq
d
D 2g�1 �

X
�

2
1
2 �.g�c�C1/ � ı0c�

2c�C1
� ]Aut.�/

X
�

I�;�.q/:

4. The Fock space approach

We shortly review the bosonic Fock space approach for generating series of Hurwitz num-
bers.
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The bosonic Heisenberg algebra H is the Lie algebra with basis ˛n for n 2 Z such
that for n ¤ 0 the following commutator relations are satisfied:

Œ˛n; ˛m� D .n � ın;�m/˛0;

where ın;�m is the Kronecker symbol and Œ˛n; ˛m� WD ˛n˛m � ˛m˛n. The bosonic Fock
space F is a representation of H . It is generated by a single “vacuum vector” v;. The
positive generators annihilate v;: ˛n � v; D 0 for n > 0, ˛0 acts as the identity and the
negative operators act freely. That is, F has a basis b� indexed by partitions, where

b� D ˛��1 � � �˛��m � v;:

We define an inner product on F by declaring hv;jv;i D 1 and ˛n to be the adjoint of
˛�n.

We write hvjAjwi for hvjAwi, where v; w 2 F and the operator A is a product of
elements in H , and hAi for hv;jAjv;i. The first is called a matrix element, the second
a vacuum expectation. We introduce a new formal variable z to keep track of 4-valent
vertices, as their number influences the prefactor with which we have to count quotient
covers by Remark 20, i.e., 2

g0�ı0c
2cC1

� 2g�1.

Definition 32. The vertex operator is defined by:

M D 2 �

�X
k>0

.k � 1/ � ˛�k˛k � z C
1

2

X
k>0

X
0<i;j
iCjDk

˛�j˛�i˛k C ˛�k˛i j̨

�
(4.1)

We note that unlike in the Feynman diagram approach here we do not have to shift
vertex contributions into neighbouring edges. Moreover, the global factor of 2 is to take
the number of branch points into account. We can also view it as vertex contribution.

We obtain the following result.

Proposition 33. The twisted double Hurwitz number Qh�g.�; �/ (see [16, Definition 4])
equals a matrix element on the bosonic Fock space:

Qh�g.�; �/ D
1Q

i �i �
Q
j �j

g�1X
cD0

coefŒzc �
�˝
b�jM

g�1
jb�
˛�
�
2
1
2 .g�cC1/

2cC1
� 2g�1:

Proof. This statement follows from the cut-and-join equation for twisted double Hurwitz
numbers [11, Theorem 6.5] or by combining Wick’s theorem with the Correspondence
theorem for twisted double Hurwitz numbers in [16]: Wick’s theorem ([8, Theorem 5.4.3],
[2, Proposition 5.2], [20]) expresses a matrix element as a weighted count of graphs that
are obtained by completing local pictures. It turns out that the graphs in question are
exactly the quotient covers we enumerate to obtain Qh�g.�; �/, multiplied with the factor
depending on the number c of 4-valent vertices, as described in Remark 20.
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Notice that we have to use the disconnected theory here (�), since the matrix element
encodes all graphs completing the local pictures and cannot distinguish connected and
disconnected graphs.

The local pictures are built as follows: we draw one vertex for each vertex operator.
For an ˛n with n > 0, we draw an edge germ of weight n pointing to the right. If n < 0,
we draw an edge germ of weight n pointing to the left. For the two Fock space elements
b� and b� , we draw germs of ends: of weights �i on the left pointing to the right, of
weights �i on the right pointing to the left. Wick’s theorem states that the matrix element
hb�jM

njb�i equals a sum of graphs completing all possible local pictures, where each
graph contributes the product of the weights of all its edges (including the ends) and the
vertex contributions arising from the vertex operator. A completion of the local pictures
can be interpreted as a quotient cover of R (with suitable metrization).

The vertex operator sums over all the possibilities of the local pictures for the graphs,
i.e., it sums over all possibilities how a vertex of a quotient cover can look like. The
variable z takes care of how many 4-valent vertices there are.

Combining Proposition 33 with the relation we obtain via cutting in the proof of The-
orem 21, we can express twisted Hurwitz numbers of the elliptic curve in terms of matrix
elements:

Proposition 34. A twisted Hurwitz number of the elliptic curve equals a weighted sum of
twisted double Hurwitz numbers:

Qh�d;g D
X
� `d

Q
i �i

jAut.�/j
Qh�g.�; �/:

Here, the sum goes over all partitions � of d .

Proposition 34 is a corollary of the two Correspondence Theorems: given a tropical
cover of E, let � be the partition encoding the weights of the edges mapping to the base
point p0. We mark the preimages of p0, for which we have jAut.�/j choices. For each
choice, we cut offE at p0 and the covering curve at the preimages of p0, obtaining a cover
of R with ramification profiles � and � above˙1. The cut off tropical cover contributes
to Qh�g.�; �/, but its multiplicity differs from the multiplicity of the cover of E by a factor
of
Q
�i , since the edges we cut off are no longer bounded.

Finally, we obtain an expression of elliptic twisted Hurwitz numbers as a matrix ele-
ment on the bosonic Fock space as a corollary of Propositions 33 and 34.

Corollary 35. A twisted Hurwitz number of the elliptic curve E equals a sum of matrix
elements on the bosonic Fock space:

Qh�g;d D
X
� `d

1ˇ̌
Aut.�/

ˇ̌ Q
i �i

g�1X
cD0

coefŒzc �
�˝
b�jM

g�1
jb�
˛�
�
2
1
2 .g�cC1/

2cC1
� 2g�1:
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