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Isometries and isometric embeddings
of Wasserstein spaces over the Heisenberg group

Zoltán M. Balogh, Tamás Titkos and Dániel Virosztek

Abstract. Our purpose in this paper is to study isometries and isometric embeddings
of the p-Wasserstein space Wp.Hn/ over the Heisenberg group Hn for all p > 1 and
for all n � 1. First, we create a link between optimal transport maps in the Euclidean
space R2n and the Heisenberg group Hn. Then we use this link to understand iso-
metric embeddings of R and RC into Wp.Hn/ for p > 1. That is, we characterize
complete geodesics and geodesic rays in the Wasserstein space. Using these results,
we determine the metric rank of Wp.Hn/. Namely, we show that Rk can be embed-
ded isometrically into Wp.Hn/ for p > 1 if and only if k � n. As a consequence, we
conclude that Wp.Rk/ and Wp.Hk/ can be embedded isometrically into Wp.Hn/

if and only if k � n. In the second part of the paper, we study the isometry group of
Wp.Hn/ for p > 1. We find that these spaces are all isometrically rigid, meaning that
for every isometry ˆWWp.Hn/! Wp.Hn/, there exists an isometry  WHn ! Hn

such that ˆ D  #.

1. Introduction: motivation and main results

In recent decades, there has been rapid development in the theory of optimal mass trans-
portation and its countless applications. The original transport problem initiated by Monge
is to find the cheapest way to transform one probability distribution into another when the
cost of transporting mass is proportional to the distance. Probably, the most important met-
ric structure which is related to optimal mass transportation is the so-called p-Wasserstein
space Wp.X/, where the underlying space X is a complete and separable metric space
(see the precise definition later).

Various connections between the geometry of the underlying space X and the geom-
etry of the Wasserstein space W2.X/ have been investigated by Lott and Villani in the
groundbreaking paper [30]. The pioneering work of Kloeckner [28] and the follow-up
papers [11, 12, 29] started to explore fundamental geometric features of 2-Wasserstein
spaces, including the description of complete geodesics and geodesic rays, determining
their different type of ranks, and understanding the structure of their isometry group
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Isom.W2.X//. It is a general phenomenon that the group of isometries contains ele-
ments that are closely related to certain morphisms of the underlying structure, see, e.g.,
[14, 15, 19–21, 27, 32]. In the case of p-Wasserstein spaces, the isometry group Isom.X/
of the underlying space X is always isomorphic to a subgroup of Isom.Wp.X//. In fact,
in the typical case, Isom.X/ and Isom.Wp.X// are isomorphic. In such a case, we call the
Wasserstein space isometrically rigid.

Kloeckner showed in [28] that 2-Wasserstein spaces over Euclidean spaces have the
property that their isometry group is strictly larger than the isometry group of the under-
lying Euclidean space. In their recent manuscript [13], Che, Galaz-García, Kerin, and
Santos-Rodríguez extended Kloeckner’s result by showing that the isometry group of a
2-Wasserstein space contains non-trivial isometries if the underlying space is of the form
X D H ˚`2 Y , where H is a Hilbert space and Y is a proper metric space.

As it was proven in [22] and [23], the parameter p D 2 is indeed special, as for
all p ¤ 2, the p-Wasserstein space Wp.Rn/ is isometrically rigid. Interestingly enough,
in the case of X D Œ0; 1� the situation is very much different: Wp.Œ0; 1�/ is isometri-
cally rigid if and only if p ¤ 1, see [22]. In recent years, rigidity results concerning p-
Wasserstein spaces were proven in various non-Euclidean setups as well. The case of the
n-dimensional tori and spheres is settled in [24]. Bertrand and Kloeckner [11, 12] proved
the isometric rigidity of the Wasserstein space W2.X/ over Hadamard manifolds X . Fur-
thermore, in [35], Santos-Rodríguez considered a broad class of manifolds. He showed
that W2.X/ is isometrically rigid whenever X is a closed Riemannian manifold with
strictly positive sectional curvature. Furthermore, for compact rank one symmetric spaces
(CROSSes), he proved isometric rigidity for all p > 1.

This paper aims to study isometries and isometric embeddings of the p-Wasserstein
space Wp.Hn/ over the Heisenberg group Hn endowed with the Heisenberg–Korányi
metric for all p > 1 and for all n � 1. The metric structure of the Heisenberg group
is rather different from Euclidean spaces or Riemannian manifolds from the viewpoint
of rectifiability or Lipschitz extensions [2, 5, 7]. Starting from the important contribution
of Ambrosio and Rigot [4], and followed by the papers of Juillet [25, 26], Figalli and
Juillet [17], in recent years considerable research has been devoted in order to develop the
theory of mass transportation in this geometric setting. In fact, it turns out that the theory
of optimal mass transport leads to a deeper understanding of the metric structure of the
Heisenberg group and the related geometric inequalities, as shown by the results of [25]
and [8,9]. These results serve as a strong motivation for further investigating the interplay
between the geometry of the underlying space Hn and the corresponding p-Wasserstein
space Wp.Hn/.

Before stating our first main result, let us recall that several interesting embedding
and non-embedding results were proved earlier by Bertrand and Kloeckner in [11, 28, 29]
for Wasserstein spaces. In [29], Kloeckner showed for any metric space .X; %/ and any
parameter p � 1 that the power Xk admits a bi-Lipschitz embedding into Wp.X/ for
all k 2N. So in particular, any power of the Heisenberg group and thus any power of the
real line can be embedded in such a way into Wp.Hn/. Concerning isometric embeddings,
Kloeckner showed in [28] that if X contains a complete geodesic then W2.X/ contains
an isometric copy of the open Euclidean cone RkC of arbitrary dimension. In particular, it
contains isometric embeddings of Euclidean balls of arbitrary dimension and radius, and
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bi-Lipschitz embeddings of Rk for all k 2N. However, it turned out that if the whole Rk

embeds isometrically into W2.Rn/ then k � n. Our first result says that the same holds
true for Wp.Hn/ for all p > 1.

Theorem 1.1. Let n 2N and p > 1. The rank of Wp.Hn/ is n, that is, Rk can be embed-
ded isometrically into Wp.Hn/ if and only if k � n.

The strategy of the proof is the following. First, in Lemma 3.2 we create a link
between optimal transport maps in the Euclidean space R2n and the Heisenberg group Hn.
Then we use this link to understand complete geodesics, i.e., isometric embeddings of R
into Wp.Hn/. Namely, we show that complete geodesics are induced by right-translations
of the multiples of the same horizontal vector. Using these facts, we can give the proof of
Theorem 1.1. As a corollary, we obtain that either the spaces Wp.Rk/ or Wp.Hk/ can be
embedded isometrically into Wp.Hn/ if and only if k � n.

In the second part of the paper, we study the isometry group of Wp.Hn/ for p > 1.
The main result is the following.

Theorem 1.2. Let p > 1 and n � 1 be fixed. Then Wp.Hn/ is isometrically rigid, i.e., for
any isometry ˆWWp.Hn/! Wp.Hn/, there exists an isometry  WHn ! Hn such that
ˆ D  #:

The proof of this theorem is based on the description of vertically supported measures
as endpoints of geodesic rays (isometric embeddings of RC into Wp.Hn/). Using this
description, we can prove that up to an isometry of the base space, all the Dirac masses
are fixed by an isometry of Wp.Hn/. Moreover, this is true for all vertically supported
measures as well. The technique of the vertical Radon transform is used to finish the
proof.

We mention finally that the method of this paper does not work to prove the rigidity of
the first Wasserstein space W1.Hn/. The reason for this is that in this case, we cannot give
a metric characterization of complete geodesics and geodesic rays as in the case Wp.Hn/

for p > 1, (see Remark 3.4 for details). The isometric rigidity of W1.Hn/ will be treated
by a different method in our forthcoming paper [10].

2. Preliminary notions, notations, and terminology

We start with notations that will be used in the sequel; for more details and references
on Wasserstein spaces, we refer the reader to any of the comprehensive textbooks [1, 16,
34, 36, 37]. Let us recall first what a p-Wasserstein space is. Let p � 1 be a fixed real
number, and let .X; %/ be a complete and separable metric space. We denote by P .X/ the
set of all Borel probability measures on X . The symbol supp.�/ stands for the support of
�2P .X/. The set of Dirac measures will be denoted by �1.X/ D ¹ıx j x 2Xº. A prob-
ability measure … on X � X is called a coupling for �; � 2P .X/ if the marginals of …
are � and �, that is, if

….A �X/ D �.A/ and ….X � B/ D �.B/

for all Borel sets A; B � X . The set of all couplings is denoted by C.�; �/. Using cou-
plings, we can define the p-Wasserstein distance and the corresponding p-Wasserstein
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space as follows: the p-Wasserstein space Wp.X/ is the set of all �2P .X/ that satisfy

(2.1)
Z
X

%p.x; Ox/ d�.x/ <1

for some (and hence all) Ox 2 X , endowed with the p-Wasserstein distance

(2.2) dWp
.�; �/ WD

�
inf

…2C.�;�/

“
X�X

%p.x; y/ d….x; y/
�1=p

:

It is known (see, e.g., Theorem 1.5 in [1] with c D %p) that the infimum in (2.2) is, in
fact, a minimum in this setting. Those couplings that minimize (2.2) are called optimal
transport plans.

As the terminology suggests, all notions introduced above are strongly related to the
theory of optimal transportation. Indeed, for given sets A and B , the quantity ….A; B/
is the weight of mass that is transported from A to B as � is transported to � along the
transport plan ….

Given two metric spaces .Y;dY / and .Z;dZ/, a map f WY !Z is an isometric embed-
ding if dZ.f .y/; f .y0// D dY .y; y

0/ for all y; y0 2 Y . A self-map  W Y ! Y is called
an isometry if it is a surjective isometric embedding of Y onto itself. The symbol Isom. �/
will stand for the group of all isometries. For an isometry  2 Isom.X/, the induced
push-forward map is

 # W P .X/! P .X/I . #.�//.A/ D �. 
�1ŒA�/

for all Borel sets A � X and � 2P .X/, where  �1ŒA� D ¹x 2X j .x/ 2Aº: We call
 #.�/ the push-forward of � with  .

A very important feature of p-Wasserstein spaces is that Wp.X/ contains an isometric
copy of X . Indeed, since C.ıx ; ıy/ has only one element (the Dirac measure ı.x;y// for all
x; y 2X , we have that

dWp
.ıx ; ıy/ D

�“
X�X

%p.u; v/ dı.x;y/.u; v/
�1=p

D %.x; y/;

and thus the embedding

(2.3) � W X ! Wp.X/; �.x/ WD ıx ;

is distance preserving. Furthermore, the set of finitely supported probability measures (in
other words, the collection of all finite convex combinations of Dirac measures),

(2.4) F .X/ D
° kX
jD1

�j ıxj

ˇ̌̌
k 2N; xj 2 X; �j � 0 .1 � j � k/;

kX
jD1

�j D 1
±
;

is dense in Wp.X/, see, e.g., Example 6.3 and Theorem 6.18 in [37]. Another impor-
tant feature is that isometries of X appear in Isom.Wp.X// by means of a natural group
homomorphism

(2.5) # W Isom.X/! Isom.Wp.X//;  7!  #:

Isometries that belong to the image of # are called trivial isometries. If # surjective, i.e., if
every isometry is trivial, then we say that Wp.X/ is isometrically rigid.
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In our considerations, the base space .X; %/ will be the Heisenberg group endowed
with the Heisenberg–Korányi metric.

Let us recall that the underlying space of the Heisenberg group Hn is Hn D Rn �
Rn �R with the group operation given by

.x; y; z/ � .x0; y0; z0/ D
�
x C x0; y C y0; z C z0 C 2

nX
iD1

.x0iyi � xiy
0
i /
�
:

The Heisenberg group has a rich group of transformations, including left-translations
�. Qx; Qy;Qz/WH

n ! Hn given by

�. Qx; Qy;Qz/.x; y; z/ D . Qx; Qy; Qz/ � .x; y; z/

and non-isotropic dilations ır WHn ! Hn, r > 0, given by

ır .x; y; z/ D .rx; ry; r
2z/:

The left-invariant Heisenberg–Korányi metric dH is defined using the group structure
of Hn by the formula

dH ..x; y; z/; .x
0; y0; z0// D k.�x;�y;�z/ � .x0; y0; z0/kH ;

where k � kH stands for the homogeneous norm on Hn:

k.x; y; z/kH D
�� nX

iD1

.x2i C y
2
i /
�2
C z2

�1=4
:

For more information about various left-invariant metrics, isometries and isometric
embeddings of the Heisenberg group, we refer the interested reader to [6]. Let us recall
that in the Heisenberg group, the 0z axis (that is, the set ¹.0; 0; z/ j z 2 Rº) plays a special
role, being the center of Heisenberg group. Left translations of the 0z axis are called
vertical lines. For a given .x; y/ 2 R2n, the symbol L.x;y/ stands for the vertical line
passing through the horizontal vector .x; y; 0/:

L.x;y/ D ¹.x; y; r/ j r 2 Rº;

and L denotes the set of all vertical lines:

L D ¹L.x;y/ j .x; y/ 2 R2nº:

We call a measure �2Wp.Hn/ vertically supported if its support is contained in a vertical
line. For a vertical line L2L, let us introduce the notation

Wp.L/ WD ¹�2Wp.H
n/ j supp.�/ � Lº:

It is known that any isometry of the Heisenberg group maps vertical lines onto vertical
lines (see, for example, Theorem 1.1 and Lemma 2.3 in [6]). Similarly, complete geodesics
and geodesic rays will be preserved by isometries in the sense that the image of a complete
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geodesic under an isometry is a complete geodesic, and the image of a geodesic ray is
again a geodesic ray. Recall that a complete geodesic is a curve 
 WR! Wp.Hn/ such
that

dWp
.
.t/; 
.s// D C jt � sj

for all t; s 2 R and a constant C > 0. A geodesic ray is a curve 
 W Œa;1/! Wp.Hn/

with the same property. Note that, by reparametrising the curve 
 , we can always achieve
that C D 1, and thus 
 will be an isometric embedding of the real line (or half-line)
into Wp.Hn/. Geodesics with C D 1 will be called unit-speed geodesics.

3. Complete geodesics and geodesic rays in Wp.Hn/

Our first aim is to understand the structure of isometric embeddings of R and RC into
Wp.Hn/. On the one hand, isometric copies of the real line will help us later in this section
to determine the rank of Wp.Hn/. On the other hand, isometric copies of the nonnegative
half-line in Wp.Hn/ will come in handy for characterizing vertically supported measures.
Such measures will play a crucial role in the next section, where we will investigate iso-
metric rigidity of Wasserstein spaces.

Optimal transport maps between absolutely continuous measures in the Heisenberg
group were studied by Ambrosio and Rigot in [4]. Since in this paper we shall work
with more general (mainly finitely supported) measures, we will need a different way of
understanding optimal transport maps acting between them. The approach that we use
here is based on the notion of cyclical monotonicity.

Let us recall that a subset � � Hn �Hn is called to be dpH -cyclically monotone if for
any finite selection of points ¹.qi ; q0i /º

N
iD1 � � , we have

(3.1)
NX
iD1

d
p
H .qi ; q

0
i / �

NX
iD1

d
p
H .qiC1; q

0
i /:

Here and also in the sequel, we will use the convention that qNC1 D q1. The following is
a consequence of Theorem 3.2 in the paper [3] of Ambrosio and Pratelli.

Theorem 3.1. Let �; � 2Wp.Hn/ and let … be a coupling between � and �. Then … is
optimal if and only if it is supported on a dpH -cyclically monotone set � � Hn �Hn.

For given �; � 2Wp.Hn/, there are situations when the optimal coupling … can be
achieved by a transport map yT WHn ! Hn, with . yT /#� D �, such that … D .Id � yT /#�,
where

Id � yT W Hn
! Hn

�Hn; .Id � yT /.q/ D .q; yT .q//; for q 2Hn:

In this case, the Wasserstein distance dWp
.�; �/ can be computed by the formula

d
p

Wp
.�; �/ D

Z
H
d
p
H .q;

yT .q// d�.q/:

We shall create optimal transport maps on Hn that are derived from optimal transport
maps in the Euclidean space R2n. In order to formulate this result, we use the nota-
tion � WHn ! R2n for the standard projection �.x; y; z/ D .x; y/. We refer to vectors
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of the form .x; y; 0/ 2 Hn as horizontal vectors, and sometimes we identify them with
�.x; y; 0/ D .x; y/ 2 R2n. For these vectors, we have k.x; y; 0/kH D k.x; y/k, where
k � k denotes the Euclidean norm. By x � y we denote the standard scalar product of two
vectors x; y 2 Rn, and dE denotes the Euclidean distance.

Lemma 3.2. Let � 2Wp.Hn/ and define � D �#�. Then �2Wp.R2n/. Assume that the
mapping T WR2n ! R2n, given by T .x; y/ D .T1.x; y/; T2.x; y// for all .x; y/ 2 R2n

is an optimal transport map between � and T#�. Then the lifted mapping yT WHn ! Hn

defined, for .x; y; z/ 2 Hn, by

(3.2) yT .x; y; z/ D .T1.x; y/; T2.x; y/; z C 2.y � T1.x; y/ � x � T2.x; y//;

is an optimal transport map between � and yT#�.

Proof. Let us take � 2Wp.Hn/. Then it is easy to check that � D �#� is in Wp.R2n/.
Let T WR2n ! R2n be an optimal transport map between � and T#�, and let yT be its lift
defined as in (3.2). We intend to show that the coupling y… WD .bId � yT /#� is optimal. HerebIdWHn ! Hn denotes the identity map of Hn. On account of Theorem 3.1, we need to
check that y… is supported on a cyclically monotone set.

To do that, let .qi ; yT .qi ///NiD1 be a finite set of points in the support of y…. It is easy
to see that the set of points .�.qi /; T .�.qi ///NiD1 are in the support of the coupling … D
.Id � T /#�, where Id is the identity map on R2n. Since by assumption T is an optimal
transport map between � and T#�, it follows that … is an optimal coupling. Applying
the Euclidean version of Theorem 3.1, we conclude that the support of … is cyclically
monotone. In particular, we have the inequality

NX
iD1

d
p
E .�.qi //; T .�.qi /// �

NX
iD1

d
p
E .�.qiC1/; T .�.qi ///:

We continue by noticing that by the very definition of yT (see (3.2)) and the formula of
the Heisenberg–Korányi metric, we have the equality

NX
iD1

d
p
E .�.qi /; T .�.qi // D

NX
iD1

d
p
H .qi ;

yT .qi //:

On the other hand, we notice also that by the definition of the Heisenberg–Korányi
metric, for any q; q0 2Hn, the following inequality holds:

d
p
H .q;

yT .q0// � d
p
E .�.q/; �.

yT .q0/// D d
p
E .�.q/; T .�.q

0///:

Combining these relations we conclude

NX
iD1

d
p
H .qi ;

yT .qi // D

NX
iD1

d
p
E .�.qi /; T .�.qi //

�

NX
iD1

d
p
E .�.qiC1/; T .�.qi /// �

NX
iD1

d
p
H .qiC1;

yT .qi //;

proving the cyclical monotonicity of the support of y… and finishing the proof.
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We aim to apply the above result to produce some optimal mass transport maps that
are useful for our purposes. For a non-zero horizontal vector U D .u; v; 0/ 2Hn, we shall
consider the family of right-translations yTtU WHn ! Hn defined by yTtU .q/ D q � .tU /
for t 2 R. For any fixed q 2 Hn and non-zero horizontal vector U , the curve t 7! yTtU .q/
is a complete geodesic in Hn. Moreover, all complete geodesics in Hn are of this form
(see Corollary 3.15 in [6]). We are interested in a similar characterization of complete
geodesics in Wp.Hn/ as described above. In what follows, we shall assume that p > 1.

Let us note that right-translations have been already indicated as optimal transport
maps between absolutely continuous measures in the case p D 2 in [4]. Originally, this
result was formulated by Ambrosio and Rigot in the setting of the Wasserstein space with
respect to the Carnot–Carathéodory metric. As we shall see below, such horizontal right-
translations are optimal transport maps also in our case of the Heisenberg–Korányi metric
for general p > 1. Furthermore, in analogy with the Euclidean case (see Proposition 3.6
in [28]), complete geodesics are all induced by right-translations.

Proposition 3.3. Let U D .u; v; 0/ be a horizontal vector in Hn and let t 2R. Then the
mapping yTtU WHn ! Hn defined by

(3.3) yTtU .x; y; z/ D .x; y; z/ � .tU /; for .x; y; z/ 2 Hn;

that is, a right-translation in Hn by the element tU , becomes an optimal transport map
between any � 2Wp.Hn/ and its image . yTtU /#�. Moreover, a curve 
 WR!Wp.Hn/ is a
complete geodesic if and only if there exist �2Wp.Hn/ and a non-zero horizontal vector
U D .u; v; 0/ such that 
.t/ D . yTtU /#�.

Proof. In order to verify the first part of the claim, we will apply Lemma 3.2 to the map-
ping

TtU W R
2n
! R2n; TtU .x; y/ D .x C tu; y C tv/; .x; y/ 2 R2n:

We have to check that TtU is an optimal transport map between an arbitrary �2Wp.R2n/
and its push-forward .TtU /#�: However, it is known by Section 5.1 of [33] that transla-
tions are optimal transport maps on the Euclidean space Rd as long as the transport cost
is convex, that is, c.x; y/ D l.kx � yk/ for a convex function l:

Now we know that yTtU WHn!Hn is an optimal transport map between� and . yTtU /#�,
and thus the curve 
.t/ WD . yTtU /#� is a complete geodesic in Wp.Hn/. Indeed, for s < t
we have

d
p

Wp
.
.t/; 
.s// D

Z
Hn

d
p
H .q;

yT.t�s/U .q// d
.s/.q/ D .t � s/pkU kp:

To prove the reverse implication, suppose that 
 WR!Wp.Hn/ is a complete geodesic.
We shall define � WD 
.0/ and we intend to find a non-zero horizontal vector U D .u;v; 0/
such that 
.t/ D . yTtU /#�.

Let a < b < c 2 R and let �ab and �bc be optimal transport plans from 
.a/ to 
.b/;
and from 
.b/ to 
.c/; respectively. By the “gluing lemma”, see Lemma 7.6 in [36], there
is a probability measure �abc 2 P ..Hn/3/ such that .�abc/12 D �ab; .�abc/23 D �bc ;
and �ac WD .�abc/13 is a coupling of 
.a/ and 
.c/: Here, we use the notation .�abc/12



Isometries and isometric embeddings of Wp.Hn/ 2063

for the push-forward of �abc by the projection of .Hn/3 onto the first two coordinates. A
similar meaning is applied to .�abc/13 and .�abc/23 as well. Using these notations, we
can write

dWp
.
.a/; 
.c// �

�•
.Hn/3

d
p
H .qa; qc/ d�abc.qa; qb; qc/

�1=p
�

�•
.Hn/3

�
dH .qa; qb/C dH .qb; qc/

�p d�abc.qa; qb; qc/
�1=p

�

�•
.Hn/3

d
p
H .qa; qb/ d�abc.qa; qb; qc/

�1=p
C

�•
.Hn/3

d
p
H .qb; qc/ d�abc.qa; qb; qc/

�1=p
D dWp

.
.a/; 
.b//C dWp
.
.b/; 
.c// D dWp

.
.a/; 
.c//:

This means that all inequalities in the above chain are saturated. The saturation of the first
inequality is equivalent to the optimality of the coupling �ac : The saturation of the sec-
ond inequality implies that the triangle inequality dH .qa; qc/ � dH .qa; qb/C dH .qb; qc/
is saturated �abc-almost everywhere. The assumption p > 1 becomes crucial when we
deduce from the geodesic property of 
 and the saturation of the third inequality, which is
an Lp-Minkowski inequality, that

(3.4) dH .qa; qb/ D
b � a

c � a
dH .qa; qc/ and dH .qb; qc/ D

c � b

c � a
dH .qa; qc/

�abc-almost everywhere. By the horizontal strict convexity of the Heisenberg–Korányi
norm (see [6]), this implies that for �abc-almost every .qa; qb; qc/, the vectors q�1a � qb
and q�1

b
� qc and q�1a � qc are horizontal vectors, and that

(3.5) q�1a � qb D ı b�a
c�a
.q�1a � qc/ and q�1b � qc D ı c�b

c�a
.q�1a � qc/;

which in turn implies that

(3.6) q�1a � qb D ı b�a
c�b
.q�1b � qc/:

Let �01 be an optimal coupling of 
.0/ and 
.1/: Let t > 1, choose a WD 0, b WD 1;

and c WD t; and let �1t be an optimal coupling of 
.1/ and 
.t/: With the above choice
of a, b; and c; the first equation of (3.5) reads as

(3.7) q�10 � q1 D ı1=t .q
�1
0 � qt /;

which equivalent to

(3.8) qt D q0 � ıt .q
�1
0 � q1/

by a straightforward computation and using the fact that the inverse of the non-isotropic
dilation ı1=t is ıt : So we get that (3.8) holds for �01t -a.e. .q0; q1; qt /; where �01t is the
gluing of �01 and �1t ; which implies that

(3.9) �01t D
�®
.q0; q1/ 7! .q0; q1; q0 � ıt .q

�1
0 � q1//

¯�
#.�01/:
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In particular,

(3.10) �0t D .�01t /13 D
�®
.q0; q1/ 7! .q0; q0 � ıt .q

�1
0 � q1//

¯�
# .�01/;

and

(3.11) 
.t/ D
�®
.q0; q1/ 7! q0 � ıt .q

�1
0 � q1/

¯�
# .�01/:

Let s > 0 and consider the choice a WD �s; b WD 0; and c WD 1: Let ��s0 be an optimal
coupling of 
.�s/ and 
.0/; and let ��s01 be the gluing of ��s0 and �01: In this case,
equation (3.6) has the following form:

(3.12) q�1�s � q0 D ıs.q
�1
0 � q1/;

which is equivalent (by a short algebraic computation on the Heisenberg group) to

(3.13) q�s D q0 � ıs.q
�1
1 � q0/:

That is, (3.13) holds for ��s01-a.e. .q�s; q0; q1/; and hence it follows that

(3.14) ��s01 D
�®
.q0; q1/ 7! .q0 � ıs.q

�1
1 � q0/; q0; q1/

¯�
# .�01/:

In particular,

(3.15) ��s0 D .��s01/12 D
�®
.q0; q1/ 7! .q0 � ıs.q

�1
1 � q0/; q0/

¯�
# .�01/;

and

(3.16) 
.�s/ D
�®
.q0; q1/ 7! q0 � ıs.q

�1
1 � q0/

¯�
# .�01/:

In the next step of the proof, we intend to extract additional information on the form of
the coupling �01 appearing on the right side of (3.25) and (3.26). We shall prove that there
exists a non-zero horizontal vector U with the property that

�01 D .id � OTU /#.
.0//:

In order to do that, let us note first, by the comparison of (3.10) and (3.15), that the gluing
of ��s;0 and �0;t ; which we shall denote by ��s0t ; is given by

(3.17) ��s0t D
�®
.q0; q1/ 7! .q0 � ıs.q

�1
1 � q0/; q0; q0 � ıt .q

�1
0 � q1//

¯�
# .�01/:

So if .q0; q1/2 supp.�01/, then

.q0 � ıs.q
�1
1 � q0/; q0 � ıt .q

�1
0 � q1// 2 supp.��st /

where ��st D .��s0t /13: As we obtained ��st by gluing the optimal couplings ��s0
(between 
.�s/ and 
.0/) and �0t (between 
.0/ and 
.t/), the coupling ��st is also
optimal between 
.�s/ and 
.t/: Therefore, its support is cyclically monotone, which is
going to be an essential point of the proof.
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Let .q0; q1/ and .q00; q
0
1/ be points in the support of �01; and let .u; v; 0/ WD q�10 � q1

and .u0; v0; 0/ WD q0 �10 � q01 – note that this parametrization relies on the information we
obtained before that both q�10 � q1 and q0 �10 � q01 are horizontal vectors. Let us choose
s WD t: Applying the cyclical monotonicity to the points .q�t ; qt / and .q0�t ; q

0
t / in the

support of ��t t , we obtain

(3.18) d
p
H .q�t ; qt /C d

p
H .q

0
�t ; q

0
t / � d

p
H .q�t ; q

0
t /C d

p
H .q

0
�t ; qt /:

If two points in Hn lie on the same horizontal line, then their Heisenberg distance coin-
cides with the Euclidean distance. Therefore, the left-hand side of (3.18) can be calculated
as follows:

kq�1�t � qtk
p
H C kq

0 �1
�t � q

0
tk
p
H D k.2tu; 2tv; 0/k

p
H C k.2tu

0; 2tv0; 0/k
p
H

D .2t/p
�
k.u; v; 0/k

p
H C k.u

0; v0; 0/k
p
H

�
:(3.19)

The right-hand side of (3.18) is more involved, and it reads as follows:

kq�1�t � q
0
tk
p
H C kq

0 �1
�t � qtk

p
H

D k.q0 � ıt .q
�1
1 � q0//

�1
� .q00 � ıt .q

0 �1
0 � q01//k

p
H

C k.q00 � ıt .q
0 �1
1 � q00//

�1
� .q0 � ıt .q

�1
0 � q1//k

p
H

D k.tu; tv; 0/ � q�10 � q
0
0 � .tu

0; tv0; 0/k
p
H C k.tu

0; tv0; 0/ � q0 �10 � q0 � .tu; tv; 0/k
p
H :

Let us introduce .x; y; z/ WD q�10 � q
0
0: Then

q�1�t � q
0
t D .tu; tv; 0/ � .x; y; z/ � .tu

0; tv0; 0/

D
�
x C t .uC u0/; y C t .v C v0/; z C 2t.v � x � u � y C u0 � y � v0 � x/

C 2t2.u0 � v � v0 � u/
�
:

Therefore, for large values of t > 1, we have that

kq�1�t � q
0
tk
p
H D

�
.jx C t .uC u0/j2 C jy C t .v C v0/j2/2

C
�
z C 2t.v � x � u � y C u0 � y � v0 � x/C 2t2.u0 � v � v0 � u/

�2�p=4
D
�
.t2juC u0j2 C t2jv C v0j2/2 C 4t4.u0 � v � v0 � u/2 CO.t3/

�p=4
:

A very similar computation shows that

kq0 �1�t � qtk
p
H D k.tu

0; tv0; 0/ � .�x;�y;�z/ � .tu; tv; 0/k
p
H

D
�
.t2ju0 C uj2 C t2jv0 C vj2/2 C 4t4.u � v0 � v � u0/2 CO.t3/

�p=4
:

Therefore,

lim
t!C1

t�p kq�1�t � q
0
tk
p
H D

�
.juC u0j2 C jv C v0j2/2 C .2.u0 � v � v0 � u//2

�p=4
D k.u; v; 0/ � .u0; v0; 0/k

p
H :(3.20)
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Similarly,

lim
t!C1

t�pkq0 �1�t � qtk
p
H D

�
.ju0 C uj2 C jv0 C vj2/2 C .2.u � v0 � v � u0//2

�p=4
D k.u0; v0; 0/ � .u; v; 0/k

p
H :(3.21)

We now compare (3.19) with (3.20) and (3.21) to obtain that the cyclical monotonicity of
the support of ��t t implies that

(3.22)
2p
�
k.u; v; 0/k

p
H C k.u

0; v0; 0/k
p
H

�
� k.u; v; 0/ � .u0; v0; 0/k

p
H C k.u

0; v0; 0/ � .u; v; 0/k
p
H :

The Heisenberg norm is subadditive with respect to the group operation �, and hence it
follows from (3.22) that

(3.23) 2p
�
k.u; v; 0/k

p
H C k.u

0; v0; 0/k
p
H

�
� 2

�
k.u; v; 0/kH C k.u

0; v0; 0/kH
�p
:

Straightforward calculations show that (3.23) is equivalent to

(3.24)
�k.u; v; 0/kpH C k.u0; v0; 0/kpH

2

�1=p
�
k.u; v; 0/kH C k.u

0; v0; 0/kH

2
,

that is, the p-power mean of k.u; v; 0/kH and k.u0; v0; 0/kH is bounded from above by
their arithmetic mean. On the other hand, the p-power mean of non-negative numbers is
strictly monotone increasing in p; that is,�k.u; v; 0/kpH C k.u0; v0; 0/kpH

2

�1=p
�
k.u; v; 0/kH C k.u

0; v0; 0/kH

2
,

which implies that the two sides of (3.24) are equal. Consequently, the two sides of (3.23)
are also equal, which implies that

k.u; v; 0/ � .u0; v0; 0/kH D k.u; v; 0/kH C k.u
0; v0; 0/kH :

Using again the horizontal strict convexity of the Heisenberg norm [6], we get that there
is a � � 0 such that .u0; v0; 0/D �.u; v; 0/: Furthermore, the inequality (3.24) can happen
only if k.u; v; 0/kH D k.u0; v0; 0/kH : Therefore, �D 1 and .u0; v0; 0/D .u; v; 0/: That is,
we obtained that q�10 � q1 D q

0 �1
0 � q01: This means that there is a horizontal vector U D

.u; v; 0/ such that q1 D q0 � U for all points .q0; q1/ in the support of �01: This means
that

�01 D .id � OTU /#.
.0//;

and in particular, 
.1/ D . OTU /#.
.0//: Using equations (3.11) and (3.16), we get that

(3.25) 
.t/ D . OTtU /#.
.0//:

and

(3.26) 
.�s/ D . OT.�sU //#.
.0//

for any s > 0 and t > 1:
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If 0 < r < 1; then choosing a WD 0, b WD r and c WD 1, we get that for any optimal
coupling �0r of 
.0/ and 
.r/ and for any optimal coupling �r1 of 
.r/ and 
.1/, we have

(3.27) q�10 � qr D ır .q
�1
0 � q1/ ” qr D q0 � ır .q

�1
0 � q1/

for �0r1-a.e. .q0; qr ; q1/; where �0r1 is the gluing of �0r and �r1: The coupling .�0r1/13
is optimal for 
.0/ and 
.1/ and hence q�10 � q1 � U for .�0r1/-a.e. .q0; q1/: This implies
by (3.27) that

qr D q0 � .rU /

�0r1-almost everywhere, and hence, in particular,

(3.28) 
.r/ D .�0r1/2 D .¹q0 7! q0 � .rU /º/# .
.0// D .
OT.rU //#.
.0//

as desired.

Remark 3.4. The assumption that p > 1 is crucial in Proposition 3.3. If p D 1, then
complete geodesics can have a more complicated structure. To see a very simple example,
the complete geodesic 
 WR! W1.H/, 
.t/ WD ı.t;0;0/, can be modified as

z
.t/ WD

´
ı.t;0;0/ if t … Œ0; 1�;
.1 � t /ı.0;0;0/ C tı.1;0;0/ if t 2 Œ0; 1�;

which is still a complete geodesic, but there are no �2W1.H/ and horizontal vector U
such that 
.t/ D . yTtU /#�.

Our next proposition is concerned with horizontal dilations. This will be used to
describe geodesic rays in Wp.Hn/. Let us recall that geodesic rays in Euclidean Wasser-
stein spaces Wp.Rn/ can be obtained by considering Euclidean dilations

D� W R
n
! Rn; D�.x/ D �x; for � � 0,

that are optimal transport maps from any �2Wp.Rn/ to .D�/#� (see Section 2.3 in [28],
for the case p D 2, and the Appendix of [23] for the case of general p). Unfortunately, in
the case of the Heisenberg group, the non-isotropic Heisenberg dilations are not optimal
transport maps and therefore we cannot obtain geodesic rays in Wp.Hn/ in this way.

To get around this difficulty, we shall consider horizontal dilations yD�WHn ! Hn

defined by

yD�.x; y; z/ D .�x; �y; z/; for all � � 0; and .x; y; z/ 2 Hn:

Proposition 3.5. Let us fix a p > 1, and consider the horizontal dilation yD�WHn ! Hn

for all � � 0. We claim that yD� is an optimal transport map between � and . yD�/#�:
Moreover, if � is not supported on the vertical 0z-axis, then the curve


 W Œ0;1/! Wp.H
n/I 
.�/ WD . yD�/#�

is a geodesic ray containing � D 
.1/.
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Proof. To verify the first claim of the proposition, we shall apply again Lemma 3.2 to the
Euclidean dilation D�WR2n ! R2n given by D�.x; y/ D .�x; �y/.

Therefore, we have to prove first that the Euclidean dilationD� is an optimal transport
map between � and .D�/#� for any �2Wp.R2n/: We shall use Theorem 5.10 in [37] by
defining functions  and � on R2n such that �.x0; y0/ �  .x; y/ � k.x; y/ � .x0; y0/kp

for every .x;y/; .x0;y0/ 2R2n;with equality whenever .x0;y0/D .�x;�y/. By symmetry,
it is sufficient to prove the optimality of D� for � � 1: Let

 ..x; y// WD .� � 1/p�1k.x; y/kp ..x; y/ 2 R2n/

and

�..x0; y0// WD inf
®
 ..x; y//C c..x; y/; .x0; y0// j .x; y/ 2 R2n

¯
D inf

®
.� � 1/p�1k.x; y/kp C k.x; y/ � .x0; y0/kp j .x; y/ 2 R2n

¯
:

One-variable calculus shows that for fixed .x0; y0/ 2R2n; the unique minimizer of the
strictly convex function

.x; y/ 7! .� � 1/p�1k.x; y/kp C k.x; y/ � .x0; y0/kp

is .x0; y0/ D .x0; y0/=�: Therefore, the inequality

�..x0; y0// �  ..x; y// D min
. Qx; Qy/

®
 .. Qx; Qy//C c.. Qx; Qy/; .x0; y0//

¯
�  ..x; y//

� c..x; y/; .x0; y0//;

which is obviously true for all .x; y/; .x0; y0/ 2R2n; is saturated whenever .x0; y0/ D
.�x; �y/; which proves the optimality of D�:

So we can apply Lemma 3.2 to conclude that yD�WHn ! Hn is an optimal transport
map from � to the measure . yD�/#�. This implies that if the measure � is not supported on
the vertical 0z-axis, then the curve � 7! 
.�/ WD . yD�/#� is a geodesic ray containing �D

.1/. Indeed, to see this, let us consider 0 < �1 < �2. Note that the optimal transport map
from 
.�1/ D . yD�1/#� to 
.�2/ D . yD�2/#� will be yD�2=�1 . We can therefore calculate

(3.29) d
p

Wp
.
.�1/; 
.�2// D

Z
Hn

d
p
H .q;

yD�2=�1.q// d
.�1/.q/:

Making the change of variables q D yD�1.q
0/ and using the fact that yD�2=�1 ı yD�1 D yD�2 ,

we obtain that the right-hand side of (3.29) will become

(3.30)

Z
Hn

d
p
H .q;

yD�2=�1.q// d
.�1/.q/ D
Z

Hn

d
p
H .
yD�1.q

0/; yD�2.q
0// d�.q0/

D j�1 � �2j
p

Z
Hn

k.x; y/kp d�:

Combining the above relations, we obtain

(3.31) d
p

Wp
.
.�1/; 
.�2// D j�1 � �2j

p

Z
Hn

k.x; y/kp d�:
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Let us observe that if � is supported on the 0z-axis, then the integral on the right-hand
side vanishes. In this case, 
 degenerates to a single point. On the other hand, if the support
of � is not contained in the 0z-axis then (3.31) can be written equivalently as

(3.32) dWp
.
.�1/; 
.�2// D C j�1 � �2j;

where C D
� R

Hn k.x; y/k
p d�

�1=p
> 0.

Let us notice that the endpoint of the above geodesic ray 
.0/ is vertically supported as
its support is contained in the 0z-axis. The following proposition gives a characterization
of vertically supported measures as endpoints of geodesic rays. We remark that dilations
have been used also in the Euclidean case to understand the action of an isometry on the
set of Dirac masses. An important observation in [28] is that general geodesic rays ending
at a Dirac mass cannot be extended past it (see Section 2.3 and Section 6.2 in [28]). The
following statement is a replacement of this fact in our Heisenberg setting where, roughly
speaking, we replace Dirac masses by vertically supported measures.

Proposition 3.6. Let �2Wp.Hn/. Then � is vertically supported if and only if it has the
property that if � is contained in a geodesic ray 
 , then either � is the endpoint of 
 , or 

can be extended to a complete geodesic.

Proof. To prove one of the implications from the statement, assume that � 2Wp.Hn/

has the property that if it lies on a geodesic ray; then it is either its endpoint or if not,
then the geodesic ray can be extended to a complete geodesic. Assume by contradiction
that � is not vertically supported. For any t � 0, we consider the horizontal dilations
yDt WHn ! Hn defined by yDt .x; y; z/ D .tx; ty; z/. By applying Proposition 3.5, we see

that the curve t 7! 
.t/ WD . yDt /#� is a geodesic ray containing � D 
.1/. Since � is
not vertically supported, it follows that it cannot coincide with the endpoint 
.0/, which
is vertically supported by construction. According to our assumption on �, the geodesic
ray 
 can be extended to a complete geodesic. On the other hand, by Proposition 3.3,
the form of complete geodesics implies that if one of the measures on the geodesic is
vertically supported, then all of them must be so. Since � is not vertically supported, this
gives the desired contradiction concluding the proof of one of the implications.

To prove the other implication, assume that � is vertically supported and � D 
.0/

for a geodesic ray 
 W Œ0;1/! Wp.Hn/: Assume that this 
 can be extended to an inter-
val .�a;1/ for some a > 0; and let s 2 .0; a/: We shall proceed in the way similar
to the proof of Proposition 3.3, and hence we borrow some of the notation from there.
Let .q0; q1/ and .q00; q

0
1/ be points of the support of �01 which is an optimal transport

plan between 
.0/ and 
.1/, let .u; v; 0/ WD q�10 � q1 and .u0; v0; 0/ WD q0 �10 � q01, and
let qs , qt , q0s and q0t be defined as in the proof of Proposition 3.3. Note that q�10 � q

0
0 is a

vertical vector as � is vertically supported, and hence let us denote it by .0; 0; z/: Let t > 0
be arbitrary (we will focus on the t � 1 regime) and let s 2 .0; a/ be arbitrary but fixed.
The cyclical monotonicity of the support of ��s;t reads as follows:

(3.33) d
p
H .q�s; qt /C d

p
H .q

0
�s; q

0
t / � d

p
H .q�s; q

0
t /C d

p
H .q

0
�s; qt /:

The left-hand side of (3.33) is

(3.34) .s C t /p
�
k.u; v; 0/k

p
H C k.u

0; v0; 0/k
p
H

�
;
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while the right-hand side of (3.33) is equal to

kq�1�s � q
0
tk
p
H C kq

0 �1
�s � qtk

p
H

D k.su; sv; 0/ � q�10 � q
0
0 � .tu

0; tv0; 0/k
p
H

C k.su0; sv0; 0/ � q0 �10 � q0 � .tu; tv; 0/k
p
H

D k.suC tu0; sv C tv0; 2st.v � u0 � u � v0/C z/k
p
H

C k.su0 C tu; sv0 C tv; 2st.v0 � u � u0 � v/ � z/k
p
H

D
�
.jsuC tu0j2 C jsv C tv0j2/2 C .2st.v � u0 � u � v0/C z/2

�p=4
C
�
.jsu0 C tuj2 C jsv0 C tvj2/2 C .2st.v0 � u � u0 � v/ � z/2

�p=4
D
��
t2.ju0j2 C jv0j2/C 2st.u � u0 C v � v0/C s2.juj2 C jvj2/

�2
CO.t2/

�p=4
C
��
t2.juj2Cjvj2/C 2st.u0 � uCv0 � v/C s2.ju0j2Cjv0j2/

�2
CO.t2/

�p=4
:(3.35)

Let (LHS) denote the left-hand side of the cyclical monotonicity inequality (3.33),
which is computed in (3.34), and let (RHS) denote the right-hand side of (3.33) computed
in (3.35). With this notation, one gets

t�p(RHS) D
�
.ju0j2 C jv0j2/2 C 4s.ju0j2 C jv0j2/.u � u0 C v � v0/

1

t
CO

� 1
t2

��p=4
C

�
.juj2 C jvj2/2 C 4s.juj2 C jvj2/.u0 � uC v0 � v/

1

t
CO

� 1
t2

��p=4
D j.u0; v0/jp

�
1C 4s

h.u; v/; .u0; v0/i

j.u0; v0/j2
1

t
CO

� 1
t2

��p=4
C j.u; v/jp

�
1C 4s

h.u0; v0/; .u; v/i

j.u; v/j2
1

t
CO

� 1
t2

��p=4
D j.u0; v0/jp C psj.u0; v0/jp�2h.u; v/; .u0; v0/i

1

t
CO

� 1
t2

�
C j.u; v/jp C psj.u; v/jp�2h.u0; v0/; .u; v/i

1

t
CO

� 1
t2

�
;(3.36)

where we used the binomial expansion .1C x/˛ D 1C ˛x CO.x2/: Furthermore,

t�p(LHS) D t�p
�
.s C t /4.juj2 C jvj2/2

�p=4
C t�p

�
.s C t /4.ju0j2 C jv0j2/2

�p=4
D

�
.juj2 C jvj2/2 C 4s.juj2 C jvj2/2

1

t
CO

� 1
t2

��p=4
C

�
.ju0j2 C jv0j2/2 C 4s.ju0j2 C jv0j2/2

1

t
CO

� 1
t2

��p=4
D j.u; v/jp

�
1C 4s

1

t
CO

� 1
t2

��p=4
C j.u0; v0/jp

�
1C 4s

1

t
CO

� 1
t2

��p=4
D j.u; v/jp C psj.u; v/jp

1

t
C j.u0; v0/jp C psj.u0; v0/jp

1

t
CO

� 1
t2

�
:(3.37)
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By the cyclical monotonicity (3.33), the expression appearing in (3.36) must be bounded
from below by the expression appearing in (3.37) for every t 2 .0;1/; which implies that

(3.38) j.u;v/jpCj.u0;v0/jp � j.u0;v0/jp�2h.u;v/; .u0;v0/iC j.u;v/jp�2h.u0;v0/; .u;v/i:

However, by the Cauchy–Schwarz inequality,

j.u0; v0/jp�2h.u; v/; .u0; v0/i C j.u; v/jp�2h.u0; v0/; .u; v/i

� j.u0; v0/jp�1j.u; v/j C j.u0; v0/j j.u; v/jp�1:(3.39)

Furthermore, recall that for �2 Œ0; 1�, the �-weighted arithmetic mean of the non-negative
numbers ˛;ˇ 2 Œ0;1/ is given by ˛r�ˇD .1� �/˛C �ˇ, while the �-weighted geomet-
ric mean of them is given by ˛#�ˇ D ˛1��ˇ�: The arithmetic-geometric mean inequality
˛r�ˇ � ˛#�ˇ always holds true, and it is saturated if and only if ˛ D ˇ or � 2 ¹0; 1º:
Therefore,

j.u0; v0/jp�1j.u; v/j C j.u0; v0/j j.u; v/jp�1

D j.u0; v0/jp#1=pj.u; v/jp C j.u0; v0/jp# p�1
p
j.u; v/jp

� j.u0; v0/jpr1=pj.u; v/j
p
Cj.u0; v0/jpr p�1

p
j.u; v/jp D j.u0; v0/jpCj.u; v/jp:(3.40)

Consequently, in the chain of inequalities (3.38), (3.39) and (3.40), every inequality is
saturated. In particular, the saturation of the arithmetic-geometric mean inequality implies
that j.u0; v0/j D j.u; v/j; and the saturation of the Cauchy–Schwarz inequality implies that
.u0; v0/ is a nonnegative scalar multiple of .u; v/: Altogether, this means that .u0; v0/ D
.u; v/:

That is, q�10 � q1 D q
0 �1
0 � q01 and hence q�10 � q1 is a constant vector when .q0; q1/

runs over the support of �01 (let us denote this constant vector by U ), which implies that

.1/D . yTU /#� and 
.t/D . yTtU /#� for all t 2 .�a;1/: But this means that this geodesic
ray can be extended to the complete geodesic by the same formula for the range of the
parameter t 2 .�1;1/. This proves the other implication of Proposition 3.6.

4. The metric rank of Wp.Hn/: Proof of Theorem 1.1

The goal of this section is to determine the rank of Wp.Hn/, that is, the largest k such that
Rk can be embedded isometrically into Wp.Hn/. As stated in Theorem 1.1, the rank of
Wp.Hn/ is equal to n.

Assume first that k � n. Since the map �WRn ! Hn defined by �.x/ WD .x; 0; 0/ is
an isometric embedding, we obtain thatˆWRn!Wp.Hn/ defined byˆ.x/ WD ı�.x/ is an
isometric embedding as well. If k � n, then Rk embeds isometrically into Rn, and thus the
composition of the two embeddings provides an isometric embedding of Rk into Wp.Hn/.

To see that the rank of Wp.Hn/ cannot be larger than n, assume by contradiction, that
ˆWRnC1 ! Wp.Hn/ is an isometric embedding, and set � WD ˆ.0/. For u2RnC1, con-
sider the complete geodesic line t 7! tu .t 2R/ that is mapped into a complete geodesic

(4.1) 
 W R! Wp.H
n/I 
.t/ D ˆ.tu/:
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By Proposition 3.3, we know that 
.t/ D yTtU #� for some non-zero horizontal vector
U 2Hn. In this way, we can define a mapping

(4.2)  W RnC1 ! Hn;  .u/ WD U;

with the property that

(4.3) ˆ.u/ D yT .u/#�:

Since ˆ is an isometry, we have dWp
. yT .u/#�; yT .v/#�/ D ku � vk for all u; v 2RnC1.

We claim that  �1.u/ � .v/ is a horizontal vector in Hn. To see this, let u ¤ v and note
that ˆ.v/ D yT .v/#� lies on the infinite geodesic

(4.4) z
 W R! Wp.H
n/I z
.t/ D ˆ.uC t .v � u//:

Applying again Proposition 3.3, we can conclude that

(4.5) ˆ.v/ D yTW #ˆ.u/

for some horizontal vector W 2Hn. So we can rewrite (4.5) as

(4.6) yT .v/#� D yTW # yT .u/#� D yT. .u/�W /#�:

Note that � is a probability measure on the Polish (that is, complete and separable) met-
ric space .Hn; dH /: Therefore, by Ulam’s lemma, � is tight (in other words, it vanishes
at infinity), which means that for any " > 0, there is a compact set K" � Hn such that
�.K"/ > 1� ":Consequently, there is no non-trivial right-translation for which� is invari-
ant. In particular, if yT .v/#�D yT. .u/�W /#� as obtained in (4.6), then  .v/D  .u/ �W ,
or equivalently,  �1.u/ �  .v/ D W , is a horizontal vector as we claimed. Let us notice
that

yT. �1.u/� .v//#. yT .u/#�/ D yT .v/#�;

and since  �1.u/ �  .v/ D W is horizontal, we get that the map

q 7! yT. �1.u/� .v//q

is the optimal transport map between yT .u/#� and yT .v/#�: Using this observation, we
can compute the distance dp

Wp
. yT .u/#�; yT .v/#�/ as follows:

(4.7)

d
p

Wp
. yT .u/#�; yT .v/#�/ D

Z
Hn

d
p
H .q;

yT. �1.u/� .v//q/ d yT .u/#�.q/

D

Z
Hn

d
p
H .
yT .u/q

0; yT. �1.u/� .v// yT .u/q
0/ d�.q0/

D

Z
Hn

d
p
H .q

0
�  .u/; q0 �  .v/ d�.q0/

D

Z
Hn

d
p
H . .u/;  .v// d�.q0/ D dpH . .u/;  .v//:
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From here we obtain dH . .u/; .v//D ku� vk for all u; v 2 RnC1, and thus the map  
is an isometric embedding of RnC1 into Hn, which contradicts the fact that Hn is purely
.nC 1/-unrectifiable, see [31] or [2] for nD 1 and Theorem 3 in [5] or Theorem 1.1 in [7].

Since Rk embeds into Wp.Rk/ and Wp.Hk/ for any k 2 N; and for k � n the spaces
Wp.Rk/ and Wp.Hk/ embed isometrically into Wp.Hn/ by the push-forward operations
induced by the maps

Rk 3 .x1; : : : ; xk/ 7! .x1; : : : ; xk ; 0; : : : ; 0I 0; : : : ; 0I 0/ 2 Hn
' R2nC1

and

Hk
3 .x1; : : : ; xk Iy1; : : : ; yk I z/ 7! .x1; : : : ; xk ; 0; : : : ; 0Iy1; : : : ; yk ; 0; : : : ; 0I z/ 2 Hn;

respectively, the following is an immediate consequence of Theorem 1.1.

Corollary 4.1. Either of the spaces Wp.Rk/ or Wp.Hk/ can be embedded isometrically
into Wp.Hn/ if and only if k � n.

5. Isometric rigidity of Wp.Hn/: Proof of Theorem 1.2

Metric projections to vertical lines will play a key role in the proof. Let us consider the
vertical line L. Qx; Qy/ D ¹. Qx; Qy; z/ j z 2 Rº and the metric projection p. Qx; Qy/WHn ! L. Qx; Qy/.
Let us calculate first the coordinates of p. Qx; Qy/.q0/, where q0 D .x0; y0; z0/ 2Hn. By
definition,

d
p
H .q0; p. Qx; Qy/.q0// D min

q02L. Qx; Qy/
d
p
H .q0; q

0/ D min
r2R

d
p
H

�
.x0; y0; z0/; . Qx; Qy; r/

�
D min

r2R

®ˇ̌
jx0� Qxj

2
Cjy0� Qyj

2
ˇ̌2
Cjz0 � r C 2.y0 � Qx � x0 � Qy/j

2
¯p=4

:

This expression attains its minimum if and only if r D z0 C 2.y0 � Qx � x0 � Qy/, so

(5.1) p. Qx; Qy/.x0; y0; z0/ D . Qx; Qy; z0 C 2.y0 � Qx � x0 � Qy//:

Our aim is to identify finitely supported measures by means of their projections to vertical
lines. Inspired by [12], we consider a version of the Radon transformation that we call
vertical Radon transform as follows. For a measure �2Wp.Hn/, we call the mapping

(5.2) R� W L! Wp.H
n/I R�.L. Qx; Qy// D .p. Qx; Qy//#�;

the vertical Radon transform of �. Let us mention that a similar object, called the Heisen-
berg X-ray transform, was studied in a recent paper by Flynn [18]. The main difference
between our version of the Radon transform and the one considered in [18] is that in
our case projections onto vertical lines define the transform of a measure, while in [18]
integrals on horizontal lines are used to define the transform of a function.

The following lemma says that the vertical Radon transform is injective on the set of
finitely supported measures. Before stating this result, we should mention that a similar
statement in the Euclidean space is clearly false. Indeed, considering the Radon transform
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associated with the family of lines parallel to a fixed direction in the Euclidean space will
never be injective. The fact that this statement holds true in the Heisenberg setting is due
to the “twirling effect” or the horizontal bundle of the Heisenberg group. In our case, this
means that metric projections are rapidly turning by changing the location of the vertical
line.

Lemma 5.1. Assume that � D
PN
iD1miıqi 2Wp.Hn/ is an arbitrary finitely supported

measure. If R� D R� for some �2Wp.Hn/, then � D �.

Proof. First we show that for any finite set ¹q1; : : : ; qN º � Hn, there exists a vertical
line L. Qx; Qy/ such that the points p. Qx; Qy/.q1/; : : : ; p. Qx; Qy/.qN / are pairwise different. Let us
understand first what the equality p. Qx; Qy/.q/ D p. Qx; Qy/.q0/ for two fixed distinct points q D
.x; y; z/ and q0 D .x0; y0; z0/ tells us about . Qx; Qy/. From (5.1), we know that p. Qx; Qy/.q/ D
p. Qx; Qy/.q

0/ if and only if

(5.3) z C 2.y � Qx � x � Qy/ D z0 C 2.y0 � Qx � x0 � Qy/:

Since x, y, x0 and y0 are all fixed elements of Rn and z � z0 is a fixed constant, (5.3) is
equivalent to the fact that . Qx; Qy/2R2n belongs to the affine hyperplane in R2n described by

(5.4) .y � y0/ � Qx C .x0 � x/ � Qy D
z0 � z

2
�

Let us denote this affine hyperplane by Hq;q0 . We see that the requirement

p. Qx; Qy/.q/ ¤ p. Qx; Qy/.q
0/

for a pair of distinct points q and q0, excludes exactly one affine hyperplane Hq;q0 in R2n.
Since we only have finitely many points, we get that[

1�i<j�N

Hqi ;qj ¤ R2n:

This means that, for any . Qx; Qy/ …
S
1�i<j�N Hqi ;qj , the points p. Qx; Qy/.q1/; : : : ;p. Qx; Qy/.qN /

are pairwise different.
Next we show that R� DR� implies supp.�/ � ¹q1; : : : ; qN º. Let q 2Hn be a point

such that q … ¹q1; : : : ; qN º. According to the argument above, we can find a vertical line
L. Qx; Qy/ such that

q0 WD p. Qx; Qy/.q/; q
0
1 WD p. Qx; Qy/.q1/; : : : ; q

0
N WD p. Qx; Qy/.qN /

are pairwise different. Since .p. Qx; Qy//#� is a finitely supported measure with

supp..p. Qx; Qy//#�/ D ¹q01; : : : ; q
0
N º

and supp..p. Qx; Qy//#�/ D supp..p. Qx; Qy//#�/, we get that q0 … supp..p. Qx; Qy//#�/. In fact, a
whole open neighborhood of q0 is disjoint from supp..p. Qx; Qy//#�/. Since the projection is
continuous, we obtain that the inverse image of this open neighborhood is an open neigh-
borhood of q, disjoint from supp.�/. Since q … ¹q1; : : : ; qN º was arbitrary, we conclude
that � is finitely supported and supp.�/ � supp.�/ D ¹q1; : : : ; qN º.
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Next, we show that � D �. Using the same vertical line . Qx; Qy/ 2 R2n as before,
we know that the projections q01; : : : ; q

0
N are pairwise different, and that .p. Qx; Qy//#� D

.p. Qx; Qy//#�. This implies

.p. Qx; Qy//#�.q
0
i / D .p. Qx; Qy//#�.q

0
i / D �.qi / D mi for all 1 � i � N .

From the choice of L. Qx; Qy/ and the fact that supp.�/ � ¹q1; : : : ; qN º, it follows that the
inverse image of q0i under .p. Qx; Qy//# intersects supp.�/ only in qi , and therefore �.qi / D
.p. Qx; Qy//#�.qi / D �.qi / D mi for all 1 � i � N . This implies that � D �.

Remark 5.2. Note that if R� DR� for some �;� 2Wp.Hn/; then by the definition (5.2)
we have .p. Qx; Qy//#� D .p. Qx; Qy//#� for every . Qx; Qy/ 2R2n: This implies by the definition
of the push-forward operation that �.p�1

. Qx; Qy/
.¹. Qx; Qy; Qz/º// D �.p�1

. Qx; Qy/
.¹. Qx; Qy; Qz/º// for any

. Qx; Qy; Qz/2Hn:Moreover, p�1
. Qx; Qy/

.¹. Qx; Qy; Qz/º/ is the Heisenberg left translate of the horizon-
tal hyperplane ¹.x; y; z/ j z D 0º to the point . Qx; Qy; Qz/ – in other words, it is the horizontal
hyperplane with characteristic point . Qx; Qy; Qz/. Furthermore, every 2n-dimensional hyper-
plane in R2nC1 is a left translate of ¹.x; y; z/ j z D 0º by some vector except for the
vertical hyperplanes. Therefore, the assumption R� D R� implies that � and � agree
on all hyperplanes in the Grassmanian G.2nC 1; 2n/ except for the lower dimensional
family of vertical hyperplanes.

We continue with a brief remark concerning isometries of p-Wasserstein spaces over
the real line. This remark will play a key role in the sequel.

Remark 5.3. The Wasserstein space Wp.R/ is isometrically rigid if and only if p ¤ 2.
Indeed, if 0 < p < 1, then rigidity follows from Theorem 4.6 in [23], as the metric
%.x; y/ WD jx � yjp satisfies the strict triangle inequality. In fact, for any complete and
separable metric space .X; %/, the p-Wasserstein space Wp.X/ is isometrically rigid if
0 < p < 1 (see Corollary 4.7 in [23]). As for the p � 1 case: isometric rigidity of Wp.R/
for p D 1 has been proved in Theorem 3.7 of [22], and for the case p > 1, p ¤ 2, see
Theorem 3.16 in [22]. Finally, Kloeckner showed in Theorem 1.1 of [28] that W2.R/ is
not isometrically rigid.

Now we are ready to prove Theorem 1.2. Recall that this theorem says that Wp.Hn/

is isometrically rigid for all p > 1 and all n2N. That is, for any isometry ˆWWp.Hn/!

Wp.Hn/, there exists an isometry  WHn ! Hn such that ˆ D  #:

The strategy of the proof is the following. The first step is to show that isometries
preserve the class of vertically supported measures. In the second step, we are going to
show that measures supported on the same vertical line are mapped to measures that are
also supported on the same vertical line. The third step is to show that ˆ maps Dirac
masses to Dirac masses, and thus we can assume without loss of generality thatˆ.ıq/D ıq
for all q 2Hn. Our aim from that point will be to show thatˆ is the identity. In Step 4, we
are going to prove that if ˆ fixes all Dirac measures, then ˆ fixes all vertically supported
measures as well. This is the most involved part of the proof, as we need to discuss the
cases p ¤ 4 and p D 4 separately. The case p D 4 is the difficult one, as in this case, we
need an additional argument to rule out the existence of exotic isometries and a non-trivial
shape-preserving isometry that maps every measure to its symmetric with respect to its
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center of mass. Finally, in the last step we are going to use the Radon transform to show
that ˆ fixes all finitely supported measures, and thus all elements of Wp.Hn/. We remark
that this scheme cannot be applied in the p D 1 case, since it heavily relies on the explicit
description of complete geodesics (see Proposition 3.3), and such a nice description is not
available in the p D 1 case, according to Remark 3.4.

Step 1. Let �2Wp.Hn/ be a vertically supported measure. We are going to show that
ˆ.�/ is also vertically supported. Assume by contradiction that the measure � D ˆ.�/ is
not vertically supported. Consider the geodesic ray


 W Œ0;1/! Wp.H
n/I 
.t/ D . yDt /#�;

that contains �, but � is not its endpoint. Define z
 W Œ0;1/!Wp.Hn/ as z
.t/ WDˆ�1
.t/.
This is a geodesic ray containing�D z
.1/. Since� is vertically supported, and it is not the
endpoint of the geodesic ray z
 , applying Proposition 3.6 it follows that z
 can be extended
to a complete geodesic ray. Taking the image of this extension by ˆ, we conclude that
also 
 itself can be extended to a complete geodesic ray. On the other hand, Proposi-
tion 3.3 implies that if a measure on a complete geodesic ray is vertically supported, then
all measures on the complete geodesic must have this property. This gives a contradiction,
since 
.0/ is vertically supported and � D 
.1/ is not.

Step 2. Now suppose that �1; �2 2Wp.Hn/ are two measures supported on the same
vertical line. Then their image measures ˆ.�1/ and ˆ.�2/ are also supported on the
same vertical line. Indeed, by composing ˆ by isometries of Wp.Hn/ induced by left
translations of Hn, we can assume that �1, �2 and also ˆ.�1/ are supported on the 0z-
axis. Assume by contradiction that ˆ.�2/ is supported on the vertical line L.u;v/, where
U WD .u; v; 0/ 2 Hn is a non-zero horizontal vector. Consider the complete geodesic


 WR! Wp.H
n/I 
.t/ WD . yTtU /#ˆ.�2/:

Note that since ˆ.�2/ is supported on the vertical line L.u;v/, we have that 
.�1/ D
. yT�U /#ˆ.�2/ is supported on the 0z axis. Denoting by � D 
.�1/, we can also write
z
.t/ D . yTtU /#� as a reparametrization of 
 .

For two non-empty subsetsA;B�Wp.Hn/, the distance betweenA andB in Wp.Hn/

is defined as
distdWp

.A;B/ WD inf¹dWp
.�; �/ W �2A; � 2Bº:

Let us observe that if ˆWWp.Hn/! Wp.Hn/ is an isometry, then we have the equality

distdWp
.A;B/ D distdWp

.ˆ.A/;ˆ.B//; for all A;B � Wp.H
n/:

Now we claim that if �1; �2 2Wp.Hn/ are two measures supported on the vertical
axis and U D .u; v; 0/ is a horizontal vector, then the following inequality holds:

(5.5) dWp
.�1; �2/ � dWp

.�1; . yTU /#�2/;

with equality holding if and only if U D .0; 0; 0/.
To prove the above claim, let us observe first that for any q D .0; 0; z/ and q0 D

.u; v; z0/ we have the inequality

d
p
H .q;

yT.�U/q
0/ D jz � z0jp=2 � ¹.juj2 C jvj2/2 C .z � z0/2ºp=4 D d

p
H .q; q

0/:
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Let z… be an arbitrary coupling of �1 and . yTU /#�2. Define y… WD .bId � yT.�U//# z…. It
is easy to see that y… is a coupling of �1 and �2. Then we have

d
p

Wp
.�1; �2/ �

Z
Hn�Hn

d
p
H .q; r/ d y….q; r/

D

Z
Hn�Hn

d
p
H .q;

yT.�U/q
0/ d z….q; q0/ �

Z
Hn�Hn

d
p
H .q; q

0/ d z….q; q0/:

Taking the infimum over all couplings z… of �1 and .TU /#�2, we conclude the proof of
the claim.

On the one hand, according to (5.5), and since U D .u;v; 0/¤ .0; 0; 0/ by assumption,
we can write

(5.6)
D WD distdWp

.
;ˆ.�1// D distdWp
.z
;ˆ.�1//

D dWp
.�;ˆ.�1// < dWp

.ˆ.�2/; ˆ.�1//:

On the other hand, since ˆ�1 is also an isometry, we have

(5.7) D D distdWp
.ˆ�1.
/; �1/:

Since ˆ�1.
/ is a complete geodesic through �2 and since both �1 and �2 lie on
the 0z-axis, we can apply again (5.5) to obtain

(5.8) D D distdWp
.ˆ�1.
/; �1/ D dWp

.�2; �1/:

It is clear that relations (5.7) and (5.8) are in contradiction, finishing the proof of the
second step.

Step 3. From the first step, it follows that Dirac masses are mapped to vertically sup-
ported measures. Let us consider all measures supported on a given fixed vertical line.
According to the previous step, their images lie on the same vertical line. Without loss
of generality, we can assume that both vertical lines are the 0z-axis. On the other hand,
the Heisenberg metric squared restricted to the 0z-axis coincides with the usual metric
on the real line R, which implies that if we restrict the isometry ˆ on the measures with
support on the 0z-axis, then it will coincide with an isometry F of Wp=2.R/. Accord-
ing to Remark 5.3, the Wasserstein space Wp=2.R/ is isometrically rigid except for the
case p D 4. The case p D 4 corresponds to the W2.R/ case, where we do not have rigid-
ity, but Dirac masses are preserved by isometries even in that case. This means in particular
that F maps Dirac masses to Dirac masses, and so does ˆ as well.

We can conclude that ˆ.ıq/ D ı .q/ for some mapping  WHn ! Hn. Furthermore,
if we pick two points q1; q2 2Hn, then we have

dH .q1; q2/ D dWp
.ıq1 ; ıq2/ D dWp

.ˆ.ıq1/; ˆ.ıq2//

D dWp
.ı .q1/; ı .q2// D dH . .q1/;  .q2//;

which shows that  WHn!Hn is an isometry. SinceˆD  # if and only ifˆ ı �1# D Id,
we can assume without loss of generality that ˆ.ıq/ D ıq for all q 2Hn. Our aim now is
to show that ˆ.�/ D � for all �2Wp.Hn/.
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Step 4. First recall that if L is a vertical line, then Wp.L/ denotes the set of those
�2Wp.Hn/ such that supp.�/ � L. We know that measures supported on the same ver-
tical line are mapped into measures supported on the same (possibly different) line. In our
case, since Dirac measures are fixed, we get thatˆjWp.L/WWp.L/!Wp.L/ is a bijection;
in fact, it coincides with an isometry of Wp=2.R/. Since Wp=2.R/ is isometrically rigid
if p ¤ 4, since Dirac measures are fixed, we conclude that all measures supported on L
will be fixed. Since L is arbitrary, we can conclude that all vertically supported measures
will be fixed by ˆ if p ¤ 4.

If p D 4, then ˆ.ıq/ D ıq for all q 2 L itself does not imply ˆ.�/ D � for all
�2W4.L/, as W4.L/ corresponds to W4=2.R/ and Kloeckner showed that W2.R/ admits
non-trivial isometries that fix all Dirac measures and are different from the identity. Our
purpose is to rule out these isometries. This boils down to investigating the action of the
isometry on vertically supported measures whose support consists of two points. To keep
the presentation precise, let us introduce some notations. For a fixed vertical line L.x;y/,
the set of measures supported on two points of L.x;y/ will be denoted by �.x;y/2 :

(5.9) �
.x;y/
2 D ¹˛ıq C .1 � ˛/ıq0 j˛ 2 .0; 1/; q; q

0
2 L.x;y/º:

Following the notations in Kloeckner’s paper [28], elements of�.x;y/2 will be parametrized
by three parameters m 2 R, � � 0, and r 2 R as follows:

(5.10) �.x;y/.m; �; r/ D
e�r

er C e�r
ı.x;y;m��er / C

er

er C e�r
ı.x;y;mC�e�r /:

A very important property of�.x;y/2 is that its geodesic convex hull is dense in W4.L.x;y//,
which again can be identified with W2.R/. Therefore, if an isometry is given, it is enough
to know its action on �.x;y/2 . According to Lemma 5.2 in [28], if an isometry ˆ acting
on W4.Hn/ fixes all Dirac masses, then for every .x; y/2R2n, its restriction ˆ.x;y/ WD
ˆjW4.L.x;y// admits the following form:

ˆ.x;y/ WW4.L.x;y//!W4.L.x;y//; ˆ.x;y/.�.x;y/.m; �; r// WD �.x;y/.m; �; '.x;y/.r//;

where '.x;y/WR! R is an isometry. This means that ˆ.x;y/ can be equal to the exotic
isometry

(5.11) ˆ.t/
.x;y/
WW4.L.x;y//!W4.L.x;y//; ˆ

.t/

.x;y/
.�.x;y/.m;�; r// WD�.x;y/.m;�;rC t /

for some t ¤ 0, that is, '.x;y/ is the translation of the real line by t I or ˆ.x;y/ is equal to
the shape-preserving isometry

(5.12) ˆ�.x;y/ WW4.L.x;y//!W4.L.x;y//; ˆ�.x;y/.�.x;y/.m; �; r// WD�.x;y/.m; �;�r/;

that is, '.x;y/ is the reflection of R with center 0; orˆ.x;y/ is the composition of the above
two, ˆ.t/

.x;y/
ı ˆ�

.x;y/
for some t ¤ 0. A priory, it could happen that for different .x; y/

the action of ˆ.x;y/ are different. The next argument will show that this is not the case,
and that these actions are uniform in the sense that ˆ.x;y/ has the same form as ˆ.0;0/ for
all .x; y/.
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Observe that any isometry ˆ commutes with the push-forward induced by the metric
projection p.x;y/# for all .x; y/2R2n:

(5.13) p.x;y/#.ˆ.�// D ˆ.p.x;y/#�/ for all �2W4.H/:

Indeed, by definition,

p.x;y/#.ˆ.�// D arg min
�

®
dWp

.�;ˆ.�// j � 2 W4.L.x;y//
¯
:

Assume by contradiction that there exists an �2W4.L.x;y// such that

dW4
.�;ˆ.�// < dW4

.ˆ
�
p.x;y/#�/;ˆ.�//:

Since ˆjW4.L.x;y// is bijective, there exists an �0 2W4.L.x;y// such that ˆ.�0/ D �, and
thus,

dW4
.ˆ.�0/; ˆ.�// < dW4

.ˆ
�
p.x;y/#�/;ˆ.�//:

Since ˆ is an isometry, this is equivalent to

dW4
.�0; �/ < dW4

.p.x;y/#�;�/;

a contradiction. This guarantees that ˆ acts uniformly on all vertical lines. Now, we turn
to prove that the restriction ofˆ to any vertical lines cannot be one of the above non-trivial
isometries.

First assume that ˆ.x;y/ D ˆjW4.L.x;y// is equal to ˆ.t/
.x;y/

for some t 2R. Our goal is
to show that t D 0 by showing that ˆ cannot be isometric otherwise.

Recall that the projection of .x; y; z/ 2 Hn onto the vertical line L. Qx; Qy/ is

p. Qx; Qy/.x; y; z/ D . Qx; Qy; z C 2.y � Qx � x � Qy//;

and that the inverse image of a point . Qx; Qy; Qz/ by the projection p. Qx; Qy/ is the horizontal
hyperplane with characteristic point . Qx; Qy; Qz/; that is,

(5.14) p�1. Qx; Qy/. Qx; Qy; Qz/ D
®
.x; y; z/ j Qz D z C 2.y � Qx � x � Qy/

¯
:

Let us consider the measure � D 1
2
.ı.u;0;0/ C ı.0;u;0//, where u D .1; 0; : : : ; 0/ 2 Rn and

0 D .0; : : : ; 0/ 2 Rn. First we show that

supp.ˆ.�// � HŒzD0� D ¹.x; y; 0/ 2 Hn
j .x; y/ 2 R2nº:

Since p.0;0/#� D ı.0;0;0/ and ˆ.t/
.0;0/

fixes Dirac masses, it follows from (5.13) that

(5.15) ı.0;0;0/ D ˆ
.t/

.0;0/
.ı.0;0;0// D ˆ.p.0;0/#�/ D p.0;0/#.ˆ.�//

and thus, supp.ˆ.�// � p�1
.0;0/
¹.0; 0; 0/º D HŒzD0�:

Now let us consider the projection onto L.u;u/. Since p.u;u/.u; 0; 0/ D .u; u;�2/ and
p.u;u/.0; u; 0/D .u; u; 2/, we get that p.u;u/#�D �.u;u/.0; 2; 0/, and thusˆ.p.u;u/#�/D
�.u;u/.0; 2; t/. Again, using that ˆ commutes with projections, we get

(5.16) supp.ˆ.�// �
�
p�1.u;u/.u; u;�2e

t / [ p�1.u;u/.u; u; 2e
�t /
�
:
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Combining this with supp.ˆ.�// � HŒzD0�, we obtain that

(5.17) supp.ˆ.�// � ¹.x; y; 0/ jy1 D x1 � etº [ ¹.x; y; 0/ jy1 D x1 C e�tº D SC;

where x1 and y1 are the first coordinates of x 2Rn and y 2Rn, respectively.
The same calculation with the projection p.�u;�u/ leads to

ˆ.p.�u;�u/#�/ D �.�u;�u/.0; 2; t/;

and thus

(5.18) supp.ˆ.�// �
�
p�1.�u;�u/.�u;�u;�2e

t / [ p�1.�u;�u/.�u;�u; 2e
�t /
�
:

The intersection of this set with HŒzD0� is again the union of two affine hyperplanes
in R2n, which leads to

(5.19) supp.ˆ.�// � ¹.x; y; 0/ jy1 D x1 C etº [ ¹.x; y; 0/ jy1 D x1 � e�tº D S�:

We see that supp.ˆ.�// � SC and supp.ˆ.�// � S�, but the sets SC and S� are disjoint
unless t D 0.

Now we have to exclude the case that

ˆ.x;y/ D ˆjW4.L.x;y// D ˆ
�
.x;y/ for all .x; y/ 2 R2n;

that is, ˆ acts by the shape-preserving action defined in (5.12) on every vertical line. The
technique we use to show that such a ˆ cannot be isometric is similar to the approach
we used above to prove that ˆ is not isometric if ˆ.x;y/ D ˆjW4.L.x;y// D ˆ

.t/

.x;y/
for all

.x; y/ 2 R2n for some t ¤ 0. Consider the measure

� D
1C ˛

2
ı.u;0;0/ C

1 � ˛

2
ı.0;u;0/ .˛ 2 .0; 1//:

The projection onto L.u;0/ is

.p.u;0//#� D
1C ˛

2
ı.u;0;0/ C

1 � ˛

2
ı.u;0;2/:

The mean of .p.u;0//#� is 1 � ˛, and the reflection to 1 � ˛ sends 0 to 2.1 � ˛/ and
sends 2 to �2˛, thus�

ˆ�.u;0/ ı .p.u;0//#
�
� D

1C ˛

2
ı.u;0;2.1�˛// C

1 � ˛

2
ı.u;0;�2˛/:

Very similarly,�
ˆ�.0;u/ ı .p.0;u//#

�
� D

1C ˛

2
ı.0;u;�2˛// C

1 � ˛

2
ı.0;u;�2.1C˛/;

and �
ˆ�.u;u/ ı .p.u;u//#

�
� D

1C ˛

2
ı.u;u;�4˛C2// C

1 � ˛

2
ı.u;u;�4˛�2/:
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Considering the pre-images of the projections p.u;0/, p.0;u/; and p.u;u/ – very similarly to
the computations between (5.16) and (5.19) –, we get that the support of ˆ.�/ is a subset
of ¹.˛u; .1� ˛/u;0/; ..1C ˛/u;�˛u;0/º, and taking the weights into consideration, there
is no other possibility than

ˆ.�/ D
1C ˛

2
ı.˛u;.1�˛/u;0/ C

1 � ˛

2
ı..1C˛/u;�˛u;0/:

However,

d4W4
.ˆ.�/; ı.0;0;0// D

1C ˛

2
.˛2 C .1 � ˛/2/2 C

1 � ˛

2
..1C ˛/2 C .�˛/2/2;

which takes, e.g., the value 7=4 for ˛ D ˙1=2; while d4
W4
.�; ı.0;0;0// D 1 is clear for all

values of ˛. We conclude that ˆ is not an isometry.
Finally, we have to exclude the third possibility, that is, when

ˆ.x;y/ D ˆ
.t/

.x;y/
ıˆ�.x;y/ for some t ¤ 0 for all .x; y/.

Observe that the measures � D 1
2

�
ı.u;0;0/ C ı.0;u;0/

�
and ı.0;0;0/ are fixed points of ˆ�,

and thus the argument above showing that ˆ.t/
.x;y/

is not isometric for t ¤ 0 shows that

ˆ
.t/

.x;y/
ıˆ� is not isometric either. Now we know that an isometryˆWW4.Hn/!W4.Hn/

fixing all Dirac masses acts identically on measures supported on vertical lines even in
the p D 4 case.

Step 5. In order to prove isometric rigidity, it is enough to show that ˆ.�/ D � for all
�2F .Hn/, where F .Hn/ denotes the set of finitely supported measures. Let �2F .Hn/

and consider an arbitrary vector . Qx; Qy/ 2 R2n and the associated vertical line L. Qx; Qy/.
Sinceˆ fixes vertically supported measures and commutes with the push-forward induced
by projections onto vertical lines, we obtain

.p. Qx; Qy//#ˆ.�/ D ˆ..p. Qx; Qy//#�/ D .p. Qx; Qy//#�:

Since L. Qx; Qy/ was arbitrary, this implies that R� D Rˆ.�/. Since � is finitely sup-
ported, Lemma 5.1 implies that ˆ.�/ D �.
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