
Rev. Mat. Iberoam. 41 (2025), no. 6, 2283–2308
DOI 10.4171/RMI/1557

© 2025 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

An inverse Gauss curvature flow and its application
to the p-capacitary Orlicz–Minkowski problem

Bin Chen, Weidong Wang, Xia Zhao and Peibiao Zhao

Abstract. This paper explores the p-capacitary Orlicz–Minkowski problem. Note
that the p-capacitary Orlicz–Minkowski problem can be converted equivalently to a
Monge–Ampère type equation in the smooth case:

(?) f �.hK/ jr‰j
p
D �G

for p 2 .1; n/ and some constant � > 0, where f is a positive function defined on the
unit sphere �n�1, � is a continuous positive function defined in .0;C1/, and G is
the Gauss curvature.

We confirm for the first time the existence of smooth solutions to the p-capacitary
Orlicz–Minkowski problem for p 2 .1; n/ using a class of inverse Gauss curvature
flows which converges smoothly to the solution of equation .?/. Moreover, we prove
uniqueness for equation .?/ in a special case.

1. Introduction

The classical Brunn–Minkowski theory (abbreviated as BMT) of convex bodies (com-
pact convex sets with nonempty interiors) in n-dimensional Euclidean space Rn plays an
important role in the study of convex geometric analysis, and it has enjoyed a rapid devel-
opment in recent years. The classical Minkowski problem is one of the cornerstones of the
classical BMT (one can see [20, 45] for details). Its aim is to find a convex body K in Rn

with prescribed surface area measure S.K; �/, which is induced by the volume variation,
i.e., such that for each convex body L, there holds

d

dt
V .K C tL/

ˇ̌̌
tD0C

D

Z
�n�1

h.L; �/ dS.K; �/;(1.1)

whereK C tLD ¹x C ty W x 2K;y 2 Lº is the Minkowski sum, �n�1 is the unit sphere,
and h.L; �/D ¹u � y W y 2L;u2�n�1º is the support function of the convex bodyL in Rn.

The development of the classical BMT has inspired many other theories of similar
nature. Examples include theLp BMT, Orlicz BMT and their dual theories. For the related
Minkowski-type problems, see, e.g., [4, 9, 14, 18, 21, 25, 26, 30, 31, 36, 41–44, 48] and the
references therein.
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The Minkowski-type problem for the measure associated with the solution to the
boundary-value problem is an extremely important variant. As some typical examples,
we refer to the seminal papers [15, 33] on capacity and on torsional rigidity by Jerison
and Colesanti–Fimiani, and to subsequent progress, e.g., [2, 12, 16, 17, 27, 47, 49, 50].

In this paper, we will further study the p-capacitary Minkowski problem for the Orlicz
case proposed by Hong–Ye–Zhang in [27]. To describe this type of problem, we first recall
the definition of the p-capacity functional and its variational formula.

For p 2 .1; n/, the electrostatic p-capacity of a convex body K in Rn is described by
(see [16])

Cp.K/ D inf
° Z

Rn

jr jpdx W  2 C1c .R
n/;  � 1 on K

±
;

where C1c .R
n/ denotes the set of all infinitely differentiable functions with compact sup-

port in Rn, and r denotes the gradient of  . The geometric quantity C2.K/ is the
classical electrostatic (or Newtonian) capacity of K (see [33]).

Let K be a convex body and let p 2 .1; n/. The p-equilibrium potential ‰ of K is the
unique solution to the following boundary value problem (see [35]):8̂<̂

:
4p‰ D 0 in RnnK;

‰ D 1 on @K;
‰.x/! 0 as jxj ! 1;

(1.2)

where
4p‰ D div.jr‰jp�2r‰/

is the p-Laplace operator.
Similar to the volume variational formula (1.1), Colesanti et al. ([16]) established the

variational formula for p-capacity as follows: let K and L be two convex bodies and let
p 2 .1; n/. Then we have

d

dt
Cp.K C tL/

ˇ̌̌
tD0C

D .p � 1/

Z
�n�1

h.L; �/ d�p.K; �/;(1.3)

and the Poincaré p-capacity formula

Cp.K/ D
p � 1

n � p

Z
�n�1

h.K; �/ d�p.K; �/;(1.4)

where �p.K; �/ is a finite Borel measure on �n�1, called the electrostatic p-capacitary
measure of K, defined by

�p.K; �/ D

Z
g�1K .�/

jr‰jp dHn�1
D

Z
�

jr‰jp dS.K; �/;(1.5)

for each Borel set �� �n�1, where g�1K is the inverse Gauss map, and Hn�1 is the .n� 1/-
dimensional Hausdorff measure.
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The p-capacitary Minkowski problem can be posed as follows: let � be a finite Borel
measure on �n�1 and let p 2 .1; n/. Under what necessary and sufficient conditions is
there a (unique) convex body K in Rn such that

d�p.K; �/ D d�‹

When p D 2, this problem was solved by Jerison in his seminal paper [33]. A convex
solution of this problem for p 2 .1; 2/ was obtained in [16]. The case of all p 2 .1; n/ has
been recently solved by Akman et al. in their groundbreaking work [1].

As an extension of the p-capacitary Minkowski problem, the Orlicz case was intro-
duced by Hong et al. in [27]. It can be stated as follows: which are the necessary and
sufficient conditions on a given function � and a given finite Borel measure � on �n�1,
such that there exists a convex body K in Rn satisfying

�d�p.K; �/ D
d�

�.h.K; �//
(1.6)

for some constant � > 0?
For this problem, Hong et al. proved the existence of solutions with p2 .1; n/ for both

discrete and general measures under some mild conditions. When �.h/ D h1�p in (1.6)
for p2R, this is the Lp p-capacitary Minkowski problem introduced in [50]. There are
many results for different ranges of p and p. For instance, when p2 .1; n/ and p2 .1;1/,
the even convex solution was obtained in [50]. When p 2 .1; 2/ and p2 .0; 1/, and when
p � n and p2 .0; 1/, the polytopal solutions where given in [49] and [39], respectively.
Feng et al. [17] studied the case of p2 .0; 1/ and p 2 .1; n/ for general measures. When
p D 0 and p 2 .1; n/ in (1.6), this is the logarithmic Minkowski problem for p-capacity,
and its polytopal solution was obtained in [47].

It is worth noting that the smoothness of solutions to the Minkowski-type problems
has always been an important issue. For the p-capacitary Minkowski problem, it is shown
in [33] and [16], respectively for p D 2 and p ¤ 2, that if � has positive density in
C k;˛.�n�1/, then the domain belongs to the class C kC2;˛ using techniques of Caffarelli,
see [6–8].

Motivated by the above mentioned works, this paper try to investigate and confirm
the existence of non-symmetric smooth solutions to the p-capacitary Orlicz–Minkowski
problem. One of the main methods used in this paper is the inverse Gauss curvature flow
method.

The idea of using inverse Gauss curvature flow to solve the p-capacitary Orlicz–
Minkowski problem (1.6) can be summarized as follows:

(1) The p-capacitary Orlicz–Minkowski problem (1.6) can be converted to a Monge–
Ampère type equation equivalently in the smooth case (see [27]):

f �.hK/ jr‰.g
�1
K /jp D �G;(1.7)

for p 2 .1; n/ and some constant � > 0. Here f W �n�1 ! .0;1/ is the smooth data func-
tion, and G is the Gauss curvature (see Section 2 for details). In this case, the key of this
paper is to find a convex body K in Rn with support function hK satisfying (1.7).

(2) The solution to the Monge–Ampère type equation (1.7) is the limit of solutions of
the inverse Gauss curvature flows (1.8) constructed below.
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The Gauss curvature flow was first introduced and studied by Firey [19] to model
the shape change of worn stones. Since then, the use of curvature flows has proven to be a
very effective tool to solve Minkowski-type problems and geometric inequalities in convex
geometric analysis, see [3, 5, 9, 11, 13, 23, 24, 28, 29, 37, 38] and the references therein.

Let �0 be a smooth, closed, and strictly convex hypersurface in Rn enclosing the
origin o in its interior, that is, with a sufficiently small positive constant ıo such that the
ıo-neighbourhood of o is U.o; ıo/ � �0. We consider an inverse Gauss curvature flow of
the family of convex hypersurfaces ¹�tº given by �t D F.�n�1; t /, where F W �n�1 �
Œ0; T /! Rn is a smooth map satisfying8<:

@F.�; t/

@t
D f .�/.F � �/ �.F � �/ jr‰.F; t/jp �n�1 � � 
.t/F.�; t/;

F .�; 0/ D F0.�/;

(1.8)

where f is a given positive smooth function on �n�1, “�” is the standard inner product
in Rn, �n�1.�; t/ is the product of the principal curvature radii with �n�1 D det.rijhC
hıij /, � is the out normal of �t at F.�; t/, T is the maximal time for which the solution
of (1.8) exists, and the scalar function 
.t/ is given by


.t/ D
n � p

p � 1

Cp.�t /R
�n�1

h=.f �.h// d�
,

for p 2 .1; n/.
Compared with the geometric flows in [5, 9, 11, 13, 38], the flow we construct in this

paper is more complex because it contains the functions �, jr‰j and 
.t/; thus, a priori
estimates are more difficult to obtain.

Now we present the main results of this paper.

Theorem 1.1. Let f be a positive smooth function on �n�1, and let �0 be a smooth,
closed and strictly convex hypersurface in Rn enclosing the origin in its interior. Suppose

(1) p 2 .1; n/;
(2) the function �W .0;1/! .0;1/ is smooth;
(3) '.s/ D

R s
0
1=�.t/ dt exists for all s > 0 and lims!1 '.s/ D1.

Then, the flow (1.8) has a smooth solution �t for all time t > 0. When t ! 1, there
is a subsequence of �t that converges in C1 to a smooth, closed and strictly convex
hypersurface �1 whose support function satisfies (1.7).

As an application, we have the following.

Corollary 1.2. Under the assumptions of Theorem 1.1, there exists a smooth solution to
the p-capacitary Orlicz–Minkowski problem (1.6) for p 2 .1; n/.

For general �, the uniqueness of the solution to the p-capacitary Orlicz–Minkowski
problem remains open. We consider here a special uniqueness result for (1.7) when � D 1.

Theorem 1.3. Let p 2 .1; n � 1� and ı � 1. If

�.ıs/ � ıpC1�n �.s/(1.9)

holds for positive s, then the solution to (1.7) is unique.
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Moreover, based on the parabolic approximation method, we also a weak solution to
the p-capacitary Orlicz–Minkowski problem when p 2 .1; n/; this has been obtained by
Hong–Ye–Zhang in [27].

Theorem 1.4. Let � be a finite Borel measure on �n�1 whose support is not contained in
any closed hemisphere and p 2 .1; n/. Suppose that

(1) �W .0;1/! .0;1/ is a continuous function;
(2) '.s/ D

R s
0
1=�.t/ dt exists for all s > 0 and lims!1 '.s/ D1.

Then, there exists a convex body K such that (1.6) holds.

The paper is organized as follows. Section 2 presents the corresponding background
material. Section 3 introduces the geometric flow and its correlation functional. In Sec-
tion 4, we establish a priori estimates for the solution of the flow (1.8). Finally, we prove
the main results in Section 5.

2. Preliminaries

In this section, we list some facts about convex hypersurfaces. We refer the readers to [46]
and to the well-known book of Schneider [45] for details. Let Rn be the n-dimensional
Euclidean space, let �n�1 be the unit sphere in Rn, and let � be a smooth, closed and
strictly convex hypersurface containing the origin in its interior. The support function
of � is defined by

h�.�/ D h.�; �/ D max¹� � Y W Y 2 �º; for � 2 �n�1:

For ˙v 2 �n�1, the support function of the line segment v joining the points ˙v is
defined as

h.v; �/ D j� � vj; for � 2 �n�1:

The radial function of � is defined by

r�.�/ D r.�; �/ D max¹c > 0 W c� 2 �º; for � 2 �n�1:

Obviously, r�.�/� 2 @�.
Let gW @� ! �n�1 be the Gauss map of �. For � 2 �n�1, the inverse Gauss map,

denoted by g�1, is given by

g�1.�/ D F.�/ D ¹X 2 @� W g.X/ is well defined and g.X/ 2 ¹�ºº:

In particular, for a convex hypersurface � of class C 2C (� is C 2 smooth and has positive
Gauss curvature), the support function of � can be written as

h.�; �/ D � � g�1.�/ D g.X/ �X; for X 2 �:

Furthermore, the gradient of h.�; �/ satisfies

rh.�; �/ D g�1.�/:(2.1)
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Let e D ¹eij º be the standard metric of �n�1. The reverse second fundamental form
of � is defined as (see Section 2.5 in [45])

…ij D rijhC h eij ;(2.2)

where rij is the second order covariant derivative with respect to eij . By the Weingarten
formula and (2.2), the principal radii of �, under a smooth local orthonormal frame
on �n�1, are the eigenvalues of the matrix

bij D rijhC h ıij :(2.3)

In particular, the Gauss curvature of F.�/ can be expressed as

G.�/ D
1

det.rijhC h ıij /
�(2.4)

Next, we introduce the Orlicz norm, see [26] for details. Let 'W Œ0;1/! Œ0;1/ be
a continuous, strictly increasing, continuously differentiable on .0;1/ function with pos-
itive derivative, and that satisfies the assumption in Theorem 1.4, let � be a finite Borel
measure on �n�1, and let fW �n�1 ! Œ0;1/ be a continuous function.

The Orlicz norm kfk';� is defined by

kfk';� D inf
°
� > 0 W

1

j�j

Z
�n�1

'
� f

�

�
d� � '.1/

±
;(2.5)

where j�j D �.�n�1/. This norm satisfies the following properties:

kcfk';� D ckfk';�; for c � 0;

and

f � g H) kfk';� � kgk';�:(2.6)

If �.¹f ¤ 0º/ > 0, the Orlicz norm kfk';� > 0 and

kfk';� D �0 ”
1

j�j

Z
�n�1

'
� f

�0

�
d� D '.1/:

3. Inverse curvature flow and its associated functional

For convenience, the notion of curvature flow is restated here. Let�0 be a smooth, closed,
and strictly convex hypersurface in Rn enclosing the origin in its interior. We consider the
following inverse Gauss curvature flow:8<:

@F.�; t/

@t
D f .�/.F � �/ �.F � �/ jr‰.F; t/jp �n�1 � � 
.t/F.�; t/;

F .�; 0/ D F0.�/;

(3.1)
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where the scalar function 
.t/ is given by


.t/ D
n � p

p � 1

Cp.�t /R
�n�1

h=.f �.h// d�
,(3.2)

for p 2 .1; n/. As discussed in Section 2, the support function of �t can be expressed as
h.�; t/ D � � F.�; t/. We thus derive the evolution equation for h. � ; t / along the flow (3.1)
as follows: 8<:

@h.�; t/

@t
D f .�/ h�.h/ jr‰.F; t/jp �n�1 � 
.t/ h.�; t/;

h.�; 0/ D h0.�/:

(3.3)

Now we investigate the characteristics of two important geometric functionals that
will be key in the proof of long-time existence of solutions to equation (3.3).

Lemma 3.1. Let F. �; t / be a smooth solution to the flow (3.1), with t 2 Œ0; T /, and let
�t D F.�

n�1; t / be a smooth, closed and uniformly convex hypersurface enclosing the
origin in its interior. If p2 .1;n/, then the p-capacityCp.�t / is monotone non-decreasing
along the flow (3.1).

Proof. Let ‰.F; t/ be the p-equilibrium potential of Kt . Theorem 3.5 in [16] shows that

@tCp.�t / D
p � 1

n � p
@t

� Z
�n�1

h.�; t/ jr‰.F.�; t/; t/jp �n�1 d�
�

D .p � 1/

Z
�n�1
jr‰.F; t/jp �n�1 @th.�; t/ d�:

From (3.3), and by Hölder’s inequality, we obtain

@tCp.�t / D .p � 1/

Z
�n�1
jr‰.F; t/jp �n�1@th d�

D .p � 1/
� Z

�n�1
f h�.h/ jr‰j2p �2n�1 d� � 
.t/

Z
�n�1

hjr‰jp�n�1 d�
�

D
p � 1R

�n�1
h

f�.h/
d�

h Z
�n�1

f h�.h/ jr‰j2p �2n�1 d�

Z
�n�1

h

f �.h/
d�

�

� Z
�n�1

hjr‰jp�n�1 d�
�2i

�
p � 1R

�n�1
h

f�.h/
d�

h� Z
�n�1

h jr‰jp�n�1 d�
�2
�

� Z
�n�1

h jr‰jp�n�1 d�
�2i
D 0:

Using the equality condition in Hölder’s inequality, it can be seen that equality holds if
and only if h. � ; t / solves the equation f �.h/jr‰jp �n�1 D � for some constant � > 0.

Lemma 3.2. Suppose that the function '.�/ satisfies the assumption in Theorem 1.1, and
let p 2 .1; n/. Define the functional

ˆ.t/ WD ˆ.�t / D

Z
�n�1

'.h/

f .�/
d�:
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Then, along the flow (3.3), the functional ˆ.t/ remains unchanged, i.e., ˆ.t/ � R for
some positive constant R.

Proof. From (3.2), (3.3) and the definition of '.�/, we obtain

@tˆ.t/ D

Z
�n�1

@th

f �.h/
d�

D

Z
�n�1

�
f �.h/h jr‰jp �n�1 � 
.t/h

� 1

f �.h/
d�

D

Z
�n�1

hjr‰jp �n�1 d� �
.n � p/Cp.�t /

.p � 1/
R

�n�1
h

f�.h/
d�

Z
�n�1

h

f �.h/
d� D 0:

Next, we give the evolution equation of ‰.F; t/.

Lemma 3.3. Let F. � ; t / be a smooth solution to the flow 3.1 with t 2 Œ0; T /, let �t D
F.�n�1; t / be a smooth, closed and uniformly convex hypersurface enclosing the origin
in its interior, and let ‰.F; t/ be the p-equilibrium potential of �t . Then

@t‰.F.�; t/; t/ D jr‰.F.�; t/; t/j @th.�; t/:

Proof. Let h.�; t/ be the support function of �t . From Lemma 3.1 in [16], one can see
that‰.F; t/ is differentiable with respect to t . As‰.F; t/D 1 in�t , taking the derivative
of both sides with respect to t , we have

@t‰ Cr‰ � @tF.�; t/ D 0:

Here @tF D ri .@th/ei C @th�: Further,

@t‰ D �r‰ � .ri .@th/ei C @th�/:

Recall, from [16], that jr‰.F; t/j D �r‰.F; t/ � �. Thus,

@t‰ D jr‰j� � .ri .@th/ei C @th�/ D jr‰j@th:

4. A priori estimates

In this section, we establish the a priori estimates for the solution to equation (3.3).

4.1. C 0 and C 1-estimates

Lemma 4.1. Let h. � ; t /, t 2 Œ0;T /, be a non-symmetric smooth solution to equation (3.3),
and let T be the maximal time for which the smooth solution of (3.3) exists. Under the
assumptions of Theorem 1.1, there exist positive constants l and L, independent of t , such
that

l � h. � ; t / � L;(4.1)

and

l � r. � ; t / � L:(4.2)
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Proof. From the definitions of support function and radial function, we have

r.�; t/� D rh.�; t/C h.�; t/�; for �; � 2 �n�1.(4.3)

So we only need to prove (4.1) (or (4.2)).
We first deal with the right-hand side of (4.1). Let T be the maximal time for which the

smooth solution of equation (3.3) exists. For fixed t0 2 Œ0; T /, suppose that the maximum
of h. � ; t0/ is attained at .�t0 ; t0/ for �t0 2 �n�1, that is,

max
�2�n�1

h.�; t0/ D h.�t0 ; t0/:

Let
„ D sup

t02 Œ0;T /

h.�t0 ; t0/:

By the convexity of �t and the definition of support function, one has (see, for instance,
Lemma 2.6 in [10])

h.�; t0/ � „ �t0 � �; for all � 2 �n�1;(4.4)

where h and „ are on the same convex hypersurface.
Let S�t0 D¹�2�n�1 W �t0 � � > 0º be the hemisphere containing �t0 . From the definition

of ', we know that '0.h/ > 0. By Lemma 3.2 and (4.4), we have

ˆ.t/ D ˆ.0/ �

Z
S�t0

'.h/

f
d� �

Z
S�t0

1

f
'.„�t0 � �/ d� D

Z
S

1

f
'.„ O�/ d�;(4.5)

where S D ¹� 2 �n�1 W O� > 0º. Further, let S1=2 D ¹� 2 �n�1 W O� � 1=2º. Since f is a
positive smooth function on �n�1, it follows that

R
S1=2

.1=f / d� D c0 for some positive
constant c0. Thus, from (4.5) it can be deduced that

ˆ.0/ � c0 '
�
„

2

�
;

which means that '.„=2/�R=c0, that is, '.„=2/ is uniformly bounded. Since ' is strictly
increasing, we infer that h. � ; t / has a uniform positive upper bound.

Now we deal with the left-hand side of (4.1). Let �0 be a smooth, closed, and strictly
convex hypersurface in Rn enclosing the origin in its interior. By Lemma 3.1, we have

Cp.�t / � Cp.�0/ � c > 0;(4.6)

for some positive constant c. Let h. � ; t /! 0. By (1.4), since h. � ; t / has a uniform positive
upper bound, it follows from the dominated convergence theorem that

Cp.�t /! 0;

which contradicts (4.6). Thus h. � ; t / has a uniform positive lower bound.

Combining Lemma 4.1 with the convexity of �t yields the following C 1-estimates.
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Lemma 4.2. Under the assumptions of Lemma 4.1, we obtain

jrh. � ; t /j � L0 and jrr. � ; t /j � L0;

where L0 is a positive constant depending on the constants of Lemma 4.1.

Proof. From (4.3), one has that

r2 D h2 C jrhj2:

We conclude the proof using Lemma 4.1.

Lemma 4.3. Let the convex body Kt contain the origin in its interior, let �t D @Kt , and
let ‰.F; t/ be the p-equilibrium potential of Kt . Under the assumptions of Lemma 4.1,
there are positive constants Ol , Ql and Nl , independent of t , such that

Ol � jr‰. � ; t /j � Ql and jr
k‰. � ; t /j � Nl ;

for any positive integer k � 2.

Proof. Since we have already obtained a uniform upper bound of h. � ; t /, and �t is
smooth, it follows from Lemma 2.18 in [16] that there exists a positive constant Ol , depend-
ing only on n, q and the uniform upper bound of h. � ; t /, such that

jr‰j � Ol :

Next, we will prove that jr‰j � Ql . This can be found in the proof of Lemma 3.1
in [16], but, for completeness, we list the main steps of the proof here. Let � 2�t and note
that there exists a ball B , included in �t and internally tangent to �t at �, with radius r
which can be chosen to be independent of t and �. Let N‰ be the p-equilibrium potential
of B . By the comparison principle, ‰. � ; t / � N‰.�/ in Rnn�t , and, since ‰.�; t/ D N‰.�/,
we have

jr‰.�; t/j � jr N‰.�/j:

On the other hand, the value jr N‰.�/j can be explicitly computed, and it is a positive
constant depending on r and n only. Combined with (2.1), it is easy to conclude that

jr‰.rh.�; t/; t/j � Ql ; for all .�; t/ 2 �n�1 � Œ0; T /:

In addition, by virtue of Schauder’s theory (see, e.g., Lemmas 6.4 and 6.17 in [22]),
there is a positive constant Nl , independent of t , satisfying that

jr
k‰.rh.�; t/; t/j � Nl ; for all .�; t/ 2 �n�1 � Œ0; T /;

for any positive integer k � 2.

As a result of Lemmas 4.1 and 4.3, we can obtain the following corollary.

Corollary 4.4. Under the assumptions of Lemma 4.1, the scalar function 
.t/ has uniform
positive upper and lower bounds.
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Proof. From Lemma 4.1, we know that h. � ; t / has a uniform positive upper bound L, so
that the convex hypersurface �t generated by h. � ; t / D L is enclosed by a sphere with
radius L. By Lemma 3.1 and the homogeneity of p-capacity, we have

Cp.�t / � Cp.BL/ D !n

�n � p
p � 1

�p�1
Ln�p;

where !n denotes the surface area of the unit sphere in Rn. This means that Cp.�t / has a
positive upper bound independent of t .

Similarly, since h. � ; t / has a uniform positive lower bound l , then the convex hyper-
surface �t generated by h. � ; t / D l contains a sphere with radius l . By Lemma 3.1, we
have

!n

�n � p
p � 1

�p�1
ln�p D Cp.Bl / � Cp.�t /:

Obviously, this implies that Cp.�t / has a positive lower bound independent of t .
Lemma 4.1 concludes the proof.

4.2. C 2-Estimates

We first obtain a lower bound for the Gauss curvature, which is equivalent to getting an
upper bound of �n�1. � ; t / D det.rijhC hıij /. This estimate can be obtained by consid-
ering a proper auxiliary function, see [32] for similar techniques. Let ˛ D f h�.h/jr‰jp .
In order to deal with @t jr‰j and simplify the calculation process, the auxiliary function
in [32] is obviously no longer effective. Therefore, we need to create the following auxil-
iary functions:

‚.�; t/ D
1

1 � �r2=2

˛�n�1

h
,

for � > 0 sufficiently small.

Lemma 4.5. Under the assumptions of Lemma 4.1, we have

�n�1. � ; t / � L2;

where L2 is a positive constant independent of t .

Proof. Let cij be the cofactor matrix of .hij C hıij /, withX
i;j

cij .hij C hıij / D .n � 1/�n�1:

Suppose the spatial maximum of ‚ is obtained at . O�Ot ; Ot /. Then we have

ri‚ D 0; i.e., ri
�˛�n�1

h

�
C
˛�n�1

h

�

1 � �r2=2
ri

�r2
2

�
D 0;(4.7)

and

rij‚ � 0:(4.8)
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Now we estimate ‚. By (4.8), we have

@t‚ � @t‚ � ˛cijrij‚

D @t

� 1

1 � �r2=2

˛�n�1

h

�
� ˛cijrij

� 1

1 � �r2=2

˛�n�1

h

�
D

1

1 � �r2=2

h
@t

�˛�n�1
h

�
� ˛cijrij

�˛�n�1
h

�i
C

�

.1 � �r2=2/2
˛�n�1

h

h
@t

�r2
2

�
� ˛cijrij

�r2
2

�i
(4.9)

� 2˛cij
�

.1 � �r2=2/2
ri

�˛�n�1
h

�
rj

�r2
2

�
� 2˛cij

�2

.1 � �r2=2/3
˛�n�1

h
ri

�r2
2

�
rj

�r2
2

�
:

Substituting (4.7) into (4.9), we have

@t‚ �
1

1 � �r2=2

h
@t

�˛�n�1
h

�
� ˛cijrij

�˛�n�1
h

�i
C

�

.1 � �r2=2/2
˛�n�1

h

h
@t

�r2
2

�
� ˛cijrij

�r2
2

�i
:(4.10)

Next, we need to calculate

@t

�˛�n�1
h

�
� ˛cijrij

�˛�n�1
h

�
and

@t

�r2
2

�
� ˛cijrij

�r2
2

�
:

We start with the following:

�n�1 @t˛ C ˛@t�n�1

D �n�1.f �.h/jr‰j
p@thC f hjr‰j

p�0.h/@thC f h�.h/@t jr‰j
p/

C ˛cij .rij .@th/C ıij @th/

D f �.h/jr‰jp �n�1.˛�n�1 � 
h/C f hjr‰j
p�0.h/ �n�1.˛�n�1 � 
h/

C pf h�.h/ �n�1jr‰j
p�1@t jr‰j C ˛cijrij .˛�n�1/C ˛

2cij ıij�n�1

� 
˛cij .rijhC hıij /:

Notice that

@t jr‰j D �Œ.r
2‰/� � .ri .@th/ei C @th�/� � r.@t‰/ � �

D �.r2‰/� � Œri .˛�n�1 � 
h/ei C .˛�n�1 � 
h/�� � r.@t‰/ � �:(4.11)
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From Lemma 3.3,

r.@t‰/ � � D r.jr‰j@th/ � �

D .jr‰j�1 r‰r2‰ � �/.˛�n�1 � 
h/C jr‰j @t .rh/ � �

D .jr‰j�1 r‰r2‰ � �/.˛�n�1 � 
h/C jr‰j @t .rihei C h�/ � �(4.12)

D .jr‰j�1 r‰r2‰ � �/.˛�n�1 � 
h/C jr‰j .˛�n�1 � 
h/:

Substituting (4.12) into (4.11), we have

@t jr‰j D �.r
2‰/� � ri .˛�n�1 � 
h/ei � .˛�n�1 � 
h/.r

2‰/� � �

� .jr‰j�1r‰r2‰ � �/.˛�n�1 � 
h/ � jr‰j.˛�n�1 � 
h/:

This, together with the fact
P
i;j cij .rijhC hıij / D .n � 1/ �n�1, yields

�n�1 @t˛ C ˛@t�n�1

D

�1
h
C
�0.h/

�.h/

�
.˛�n�1/

2
�

�
nC h

�0.h/

�.h/

�

˛�n�1

C ˛2�n�1 cij ıij C ˛cijrij .˛�n�1/

� p˛�n�1jr‰j
�1 Œ.r2‰/� � .ˇ˛�n�1rrir/ei C .˛�n�1 � 
h/.r

2‰/� � ��(4.13)

� p˛�n�1 Œ.jr‰j
�2
r‰r2‰ � �/.˛�n�1 � 
h/C .˛�n�1 � 
h/�;

and

rij

�˛�n�1
h

�
D
1

h
rij .˛�n�1/ �

1

h2
.˛�n�1/rijh

�
2

h2
ri .˛�n�1/rjhC

2

h3
.˛�n�1/rihrjh:(4.14)

From (4.13) and (4.14), we have

@t

�˛�n�1
h

�
� ˛cijrij

�˛�n�1
h

�
D
1

h
@t .˛�n�1/ �

1

h2
˛�n�1 @th � ˛cijrij

�˛�n�1
h

�
D
1

h

�
@t .˛�n�1/ � ˛cijrij .˛�n�1/

�
�

�˛�n�1
h

�2
C



h
˛�n�1

C
1

h2
˛cij .˛�n�1/rijhC

2

h2
˛cijri .˛�n�1/rjh �

2

h3
˛cij .˛�n�1/rihrjh(4.15)

D

�n � 1
h
C
�0.h/

�.h/

� .˛�n�1/2
h

�

�
n � 1C h

�0.h/

�.h/

� 
˛�n�1
h

C 2˛cij
rjh

h
ri

�˛�n�1
h

�
� pf ��n�1jr‰j

p�1Œ.r2‰/� � .˛�n�1�
h/iei C .˛�n�1�
h/.r
2‰/� � ��

� pf ��n�1jr‰j
pŒ.jr‰j�2r‰r2‰ � �/.˛�n�1 � 
h/C .˛�n�1 � 
h/�:
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Moreover, since r2 D h2 C jrhj2, then

@t

�r2
2

�
D @t

�h2
2

�
C @t

�
jrhj2

2

�
D h@thC

X
rihri .@th/

D h˛�n�1 C �n�1
X
rihri˛ C ˛

X
rihri�n�1 � 
r

2;

and

cijrij

�r2
2

�
D cij

�
hrijhCrihrjhC

X
hkrihkj C

X
hikhjk

�
D hŒ.n � 1/ �n�1 � cij ıijh�C cijrihrjhC

X
hkrk�n�1

� cijrihrjhC
X

cij bik bjk C cij ıijh
2
� 2.n � 1/h�n�1

D �.n � 1/h�n�1 C
X

hkrk�n�1 C
X

cij bikbjk :

Thus

(4.16)
@t

�r2
2

�
� ˛cijrij

�r2
2

�
D nh˛�n�1 C �n�1

X
rihri˛ � ˛

X
cij bikbjk � 
r

2:

Using the arithmetic-geometric mean inequality, we haveX
cij bik bjk � l0 �

1C1=.n�1/
n�1

for some positive constant l0.
Since

cij
rjh

h
ri

�˛�n�1
h

�
� 0

from (4.7), and

ri .˛�n�1 � 
h/ D
1

h
˛�n�1rih �

�˛�n�1

1 � �r2=2
rrir � 
rih;

it follows from (4.10), (4.15) and (4.16) that

@t‚ �
1

1 � �r2=2

°�n � 1
h
C
�0

�

� .˛�n�1/2
h

�

�
n � 1C h

�0

�

� 
˛�n�1
h

�
p˛�n�1

hjr‰j

h�
rih

h
˛�n�1 �

�r˛�n�1rir

1 � �r2=2
� 
rih

�
� .r2‰/� � ei C .˛�n�1 � 
h/.r

2‰/� � �
i

�
p˛�n�1

h

�
.jr‰j�2r‰r2‰ � �/.˛�n�1 � 
h/C .˛�n�1 � 
h/

�±
C

�

.1��r2=2/2
˛�n�1

h

h
nh˛�n�1�˛

X
rkhrk�n�1�˛

X
cij bikbik�
r

2
i
;
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i.e.,

@t‚ �
h .rihC 2ph/p�jr2‰j

jr‰j
C p
h

i ˛�n�1

h.1 � �r2=2/

C

h
nC h

�0

�
C
�h.prrir jr

2‰j C nhjr‰j/

jr‰j

i � ˛�n�1

h.1 � �r2=2/

�2
(4.17)

� l0 �
�hn
˛

�1=.n�1/� ˛�n�1

h.1 � �r2=2/

�2C1=.n�1/
:

Since '0.h/D 1=�.h/ > 0, we have that '.h/ is strictly increasing. In conjunction with
Lemma 4.1, we find that '.h/ has positive upper and lower bounds. This also shows that
�.h/ has positive upper and lower bounds. Using the previous estimates in Section 4.1,
the definition of �, and p 2 .1; n/, it can be found that there exists a positive constant l1,
depending on the constants of Lemmas 4.1, 4.2 and 4.3, as well as Corollary 4.4, such that

.rihC 2ph/p�jr
2‰j

jr‰j
C p
h � l1;

and that there exists a positive constant l2, depending on Lemmas 4.1, 4.2 and 4.3, such
that

nC h
�0

�
C
�h.prrir jr

2‰j C nhjr‰j/

jr‰j
� l2;

and that there exists a positive constant l3 depending on Lemmas 4.1 and 4.3 such that

l0 �
�hn
˛

�1=.n�1/
� l3:

Therefore, (4.17) can be further estimated as

@t‚ � l1‚C l2‚
2
� l3‚

2C1=.n�1/:

By the maximum principle, we have

‚. O�Ot ; Ot / � L2;

for some t -independent positive constant L2. Since �n�1 D G�1, we obtain a uniform
positive lower bound for the Gauss curvature.

From Lemma 4.1, as discussed in Section 2 (or see [46]), we know that the eigenvalues
of matrix ¹bij º are positive, i.e., ¹bij º is positive definite, and that the principal curvatures
are the eigenvalues of ¹bij º. Therefore, deriving a positive upper bound of the principal
curvatures of F. � ; t / is equivalent to obtaining an upper bound of the eigenvalues of ¹bij º.

Lemma 4.6. Under the assumptions of Lemma 4.1, the principal curvatures satisfy

�i . � ; t / � L3; for i D 1; : : : ; n � 1;

where L3 is a positive constant independent of t .
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Proof. We study the following auxiliary function:

E.�; t/ D log �max.¹b
ij
º/ � a log hC

s

2
r2;(4.18)

where a and s are positive constants to be specified later, and �max is the maximal eigen-
value of ¹bij º. We suppose that the spatial maximum of E.�; t/ is attained at �0 2 �n�1

for t > 0. By a rotation of coordinates, we can suppose that ¹bij .�0; t /º is diagonal, and
that �max D b

11.�0; t /. Then, (4.18) can be rewritten as

E.�; t/ D log b11 � a log hC
s

2
r2:

It is sufficient to prove that E. � ; t / has a positive upper bound. For convenience, we write
rijh D hij and rij r D rij .

At the point �0, we have

0 D riE D �b
11
rib11 � a

hi

h
C srri

D �b11 ri .h11 C hı11/ � a
hi

h
C srri :(4.19)

and

0 � rijE D �b11 rij b11 C .b
11/2 .rib11/

2
� a

�hij
h
�
h2i
h2

�
C sr2i C srrij :(4.20)

Furthermore, for t > 0,

@tE D �b
11 @tb11 � a

@th

h
C sr @tr

D �b11 ..@th/11 C @th/ � a
@th

h
C sr @tr:(4.21)

From equation (3.3), we write

log.@thC 
h/ D log �n�1 Cƒ.�; t/;(4.22)

where
ƒ.�; t/ D log.f h�.h/ jr‰jp/:

Differentiating (4.22),

.@th/j C 
hj

@thC 
h
D

X
bik rj bik Crjƒ;(4.23)

and

(4.24)
.@th/11C
h11

@thC 
h
�
.
h1C.@th/1/

2

.@thC 
h/2
D

X
bi ir11bi i �

X
bi ibjj .r1bij /

2
Cr11ƒ:

By the Ricci identity on �n�1,

r11bij D rij b11 � ıij b11 C ı11bij � ı1i b1j C ı1j b1i ;
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and (4.20), (4.21), (4.23) and (4.24), we have at �0 that

@tE

@thC 
h
D
�b11..@th/11 C @th/

@thC 
h
� a

@th

h.@thC 
h/
C s

r@tr

@thC 
h

D �b11
� .@th/11 C 
h11 � 
h11 � 
hC 
hC @th

@thC 
h

�
� a

@th

h.@thC 
h/
C s

r@tr

@thC 
h

D �b11
.@th/11 C 
h11

@thC 
h
C




@thC 
h
� b11 �

a

h
C

a


@thC 
h
Cs

r@tr

@thC 
h

� �b11
X

bi i r11bi i C b
11
X

bi i bjj .r1bij /
2
� b11 r11ƒ

C

.1C a/

@thC 
h
C s

r@tr

@thC 
h
(4.25)

D �b11
X

bi i .ri ib11 � b11 C bi i /C b
11
X

bi ibjj .r1bij /
2
� b11 r11ƒ

C

.1C a/

@thC 
h
C s

r@tr

@thC 
h

� �

X
bi i .b11/2 .rib11/

2
C

X
bi i a

�hi i
h
�
h2i
h2

�
�

X
bi isr2i

�

X
bi i srri i C b

11
X

bi i bjj .r1bij /
2
� b11r11ƒ

C

.1C a/

@thC 
h
C s

r@tr

@thC 
h
C

X
bi i � .n � 1/b11

� �a
X

bi i C
.n � 1/a

h
� b11 r11ƒC


.1C a/

@thC 
h

C s
� r@tr

@thC 
h
�

X
bi i .r2i C rri i /

�
;

where

@tr D
h@thC

P
hk.@th/k

r
,

ri D
hhi C

P
hkhki

r
D
hibi i

r
,(4.26)

rij D
hhij C hi hj C

P
hkhkij C

P
hkihkj

r
�
hihj bi ibjj

r3
�

Thus,

r@tr

@thC 
h
�

X
bi i .r2i C rri i /

D
h@th

@thC 
h
� h

X
bi ihi i � b

i i
X

h2i i �

 jrhj2

@thC 
h
C

X
hkrkƒ(4.27)

D nh �

r2

@thC 
h
�

X
bi i C

X
hkrkƒ:
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Substituting (4.27) into (4.25),

@tE

@thC 
h
� �a

X
bi i C nh.aC s/C


.1C a � sr2/

@thC 
h
� s

X
bi i

� b11 r11ƒC s
X

hkrkƒ:(4.28)

Next we calculate �b11 r11ƒ and s
P
hkrkƒ. From the expression for ƒ.�; t/, we

have

rkƒ D
fk

f
C
hk

h
C
�0.h/

�.h/
hk C p

jr‰jk

jr‰j
,

and

rklƒ D
ffkl � fkfl

f 2
C
hhkl � hk hl

h2
C
�00hk hl C �

0hkl

�
�
.�0/2hk hl

�2

C p
jr‰jkl

jr‰j
� p
jr‰jkjr‰jl

jr‰j2
�

Recall that
jr‰.F; t/j D �r‰.F; t/ � �:

Let e1; : : : ; en�1 be an orthonormal frame on �n�1. By the Gauss formula on �n�1, we
deduce that

jr‰ji D .�r‰ � �/i D �r‰ � e
i
� r

2‰Œ� � .hi � e
i
C h�/i � D �r

2‰� � ekbki ;

and

(4.29) jr‰jij D �r3‰ekel � � bkibij �r2‰ej � ekbkiCr2‰� � �bj i �r2‰� � ek bkj Ij :

It follows that

s
X

hkrkƒ D s
X

hk

�fk
f
C
hk

h
C
�0

�
hk

�
� ps

hk

jr‰j
..r2‰/ek � �/bkk

� c1 s � ps
hk

jr‰j
..r2‰/ek � �/bkk ;(4.30)

and

�b11 r11ƒ D �b
11
hff11 � f 21

f 2
C
hh11 � h

2
1

h2
C
�00h21 C �

0h11

�
�
.�0/2h21
�2

i
� pb11

jr‰j11

jr‰j
C pb11

.jr‰j1/
2

jr‰j2

� c2b
11
C c3 C c4b11 C pb

11bi11
.r2‰/ei � �

jr‰j
,(4.31)

where c1, c2, c3 and c4 are positive constants independent of t .
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From (4.19) and (4.26), we have

b11bi11 D �a
hi

h
C srri D �a

hi

h
C shi bi i :

This, together with (4.31), yields

�b11 r11ƒ � c2 b
11
C c3 C c4b11 C c5 s

X
bi i C c6 a;

where c5 and c6 are positive constants independent of t . Hence

�b11 r11ƒC s
X

hkrkƒ � yc1 s C yc2 aC yc3 b
11
C yc4 b11 C yc5 s

X
bi i C yc6:(4.32)

Substituting (4.32) into (4.28), if we choose s � a, then

@tE

@thC 
h
� �a

X
bi i C nh.aC s/ � s

X
bi i C yc3 b

11
C yc4 b11 C yc5 s

X
bi i C yc6:

Furthermore, let a > yc3, and let bi i be large enough. Then,

@tE

@thC 
h
< 0:

Therefore
E.�0; t / D E.�0; t / � L3;

for some positive constant L3 independent of t . The proof is completed.

As a consequence of Lemmas 4.5 and 4.6, we obtain the following corollary.

Corollary 4.7. Under the assumptions of Lemma 4.1, the principal curvatures satisfy

L4 � �i . � ; t / � L3; for i D 1; : : : ; n � 1;

for all . � ; t / 2 �n�1 � .0; T /. Here, L4 is a positive constant independent of t .

5. Proofs of main theorems

5.1. Proof of Theorem 1.1

From theC 2-estimates obtained in Corollary 4.7, we know that equation (3.3) is uniformly
parabolic on any finite time interval and has short time existence. By the C 0, C 1 and
C 2-estimates (Lemmas 4.1 and 4.2, and Corollary 4.7), and Krylov’s theory [34], we get
the Hölder continuity of r2h and @th. Then we get estimates for higher order derivatives
by the regularity theory of uniformly parabolic equations. Therefore, we obtain the long-
time existence and regularity of the solution to equation (3.3). Moreover, we have

khk
C
i;j
�;t
.�n�1�Œ0;T //

� C(5.1)

for some C > 0, independent of t , and for each pair of nonnegative integers i and j .
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With the aid of the Arzelà–Ascoli theorem and a diagonal argument, we deduce that
there exist a sequence of t , denoted by ¹tkºk2N � .0;1/, and a smooth function h.�/
such that

(5.2) kh.�; tk/ � h.�/kC i .�n�1/ ! 0

uniformly for any nonnegative integer i as tk!1. This shows that h.�/ is a support func-
tion of a convex hypersurface. If � is the convex body determined by h.�/, we conclude
that � is smooth and strictly convex with the origin in its interior.

We prove now that (1.7) has a non-symmetric smooth solution. From Lemma 3.1, we
see that

@tCp.�t / � 0:(5.3)

If there exists a time Qt such that

@tCp.�t /
ˇ̌
tDQt
D 0;

then, by the equality condition in Lemma 3.1, we have

f �.h/ jr‰.F; Qt /jp �n�1 D �;

for some constant � > 0, that is, the support function h.�; Qt / of�Qt satisfies equation (1.7).
Next we analyze the case of @tCp.�t / > 0. From the proof of Corollary 4.4, we infer

that there exists a positive constant L, independent of t , such that

Cp.�t / � L;(5.4)

and such that @tCp.�t / is uniformly continuous.
Combining (5.3) and (5.4), and applying the fundamental theorem of calculus, we

obtain Z t

0

C 0p.�t / dt D Cp.�t / � Cp.�0/ � Cp.�t / � L;

which leads to Z 1
0

C 0p.�t / dt < L:

This implies that there exists a subsequence of times tj !1 such that

lim
tj!1

@tCp.�tj / D 0:

From the proof of Lemma 3.1, we have

@tCp.�t /
ˇ̌
tDtj
D .p � 1/

Z
�n�1
jr‰.F; t/jp �n�1 @th d�

ˇ̌
tDtj

:
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Passing to the limit, we have

0 D lim
tj!1

@tCp.�t /
ˇ̌̌
tDtj

D
p � 1R

�n�1
h1

f�.h1/
d�

h Z
�n�1

f h1 �.h1/ jr‰j
2p
Q�2n�1 d�

Z
�n�1

h1

f �.h1/
d�

�

� Z
�n�1

h1jr‰j
p
Q�n�1 d�

�2i
�

p � 1R
�n�1

h1
f�.h1/

d�

h� Z
�n�1

h1jr‰j
p
Q�n�1 d�

�2
�

� Z
�n�1

h1jr‰j
p
Q�n�1 d�

�2i
D0:

This means that
f �.h1/ jr‰j

p
Q�n�1 D �;

for some constant � > 0, where h1 and Q�n�1 are the support function and the product of
the principal curvature radii of the limit convex domain �1, respectively. The proof of
Theorem 1.1 is completed.

Proof of Theorem 1.3

Let h1 and h2 be two solutions of equation (1.7). We first prove the following fact:

max
h1

h2
� 1:(5.5)

We use proof by contradiction. Suppose (5.5) is not true, namely, maxh1=h2 > 1. Suppose
that max h1=h2 is attained at z0 2 �n�1.Then h1.z0/ > h2.z0/. Let P D log.h1=h2/.
At z0, we have that

0 D rP D
rh1

h1
�
rh2

h2
and 0 � r2P D

r2h1

h1
�
r2h2

h2
�

By (1.7) and the homogeneity of p-capacitary measure (see [16]), one has

1 D
�.h2/ jr‰.rh2/j

p det.r2h2 C h2I /
�.h1/ jr‰.rh1/jp det.r2h1 C h1I /

D
�.h2/ h

n�p�1
2 det.r

2h2
h2
C I /

�.h1/ h
n�p�1
1 det.r

2h1
h1
C I /

�
�.h2/ h

n�p�1
2 det.r

2h1
h1
C I /

�.h1/ h
n�p�1
1 det.r

2h1
h1
C I /

D
�.h2/ h

n�p�1
2

�.h1/ h
n�p�1
1

�

Let h2.z0/ D ıh1.z0/. Then we have

�.ıh1/ � ı
pC1�n�.h1/:

Since ı � 1, it follows that h2.z0/ � h1.z0/. This is a contradiction. Thus (5.5) holds.
Interchanging h1 and h2, (5.5) implies

max
h2

h1
� 1:

Combining this with (5.5), we have h1 � h2. The proof of Theorem 1.3 is completed.
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5.2. Proof of Theorem 1.4

Let ' be as in Theorem 1.4, and let � be a finite Borel measure on �n�1. Given a function
f W �n�1 ! .0;1/, we define the following measure:

d�f D
1

f
d�:

Suppose � is smooth. By the proof of Lemma 3.7 in [10], there exists a family ¹fkº �
C1.�n�1/ of positive functions so that �fk ! � as k !1, weakly.

Let �0;k D B be the unit ball in Rn. For a smooth, closed, and strictly convex hyper-
surface �t;k , its support function satisfies the flow (3.3) and h. � ; 0/ D 1. From The-
orem 1.1, we know that the domain�t;k converges in C1 to a smooth, closed, and strictly
convex hypersurface �1;k as t !1, and satisfies

�.h�1;k / d�p.�1;k ; �/ D
n � p

p � 1

Cp.�1;k/R
�n�1

Œh�1;k=�.h�1;k /�d�fk
d�fk :(5.6)

We shall obtain now uniform upper and lower bounds for h�1;k . Choose v 2 �n�1, and
let hv be the support function of the line segment joining˙v. It follows from Lemma 3.6
and Corollary 3.7 in [30] that there exists a constant d > 0 such that

min
v2�n�1

khvk';�fk
� d;(5.7)

for all k. For any v 2 �n�1, let Rk be the maximal distance from the origin to �1;k . We
have that˙Rkv 2 �1;k , thus Rkhv.�/ � h.�1;k ; �/ for all � 2 �n�1.

Furthermore, we define

ˆk.t/ D
1

j�fk j

Z
�n�1

'.h�t;k / d�fk :

By Lemma 3.2, we have d
dt
ˆk.t/D 0, it follows thatˆk.t/Dˆk.0/D '.1/. From (2.5),

it suffices to have
kh�t;kk';�fk

� 1:

Combining (2.6) with Lemma 4 in [26], one has

Rk min
v2�n�1

khvk';�fk
� Rkkhvk';�fk

� kh�1;kk';�fk
� 1:(5.8)

The uniform upper bound of h�1;k follows from (5.7) and (5.8).
By Lemma 1 in [40], Lemma 3.1, and the upper bound of h�1;k , we get, for p2 .1;n/,

Sp.�1;k/ �
�p � 1
n � p

�p�1
Cp.�1;k/ �

�p � 1
n � p

�p�1
Cp.�0;k/ D c0;

where �0;k is the unit ball B , and c0 is a positive constant depending on p and Cp.B/.
This means that h�1;k has a uniform lower bound. Hence, we can find some positive
constants c1 and c2, independent of k, such that

c1 � h�1;k � c2:
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Therefore, there are positive numbers c and C , depending on c1 and c2, such that

c �

Z
�n�1

h�1;k

�.h�1;k /
d�fk � C;

for large enough k.
By the Blaschke selection theorem, we deduce that�1;k converges to a convex hyper-

surface �1;0. Taking the limit k !1 in (5.6), combining the positive homogeneity and
weak convergence of p-capacitary measure (see [16]), we can find a convex body �,
generated by �1;0, such that

��.h�/ d�p.�; �/ D d�

for some positive constant �. Thus � is the desired solution. A further approximation
allows us to confirm that � is merely continuous.
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