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Global-in-time well-posedness of the compressible
Navier–Stokes equations with striated density

Xian Liao and Sagbo Marcel Zodji

Abstract. We first show local-in-time well-posedness of the compressible Navier–
Stokes equations, assuming striated regularity while no other smoothness or small-
ness conditions on the initial density. With these local-in-time solutions served as
blocks, for less regular initial data where the vacuum is permitted, the global-in-time
well-posedness follows from the energy estimates and the propagated striated reg-
ularity of the density function, if the bulk viscosity coefficient is large enough in
the two-dimensional case. The global-in-time well-posedness holds also true in the
three-dimensional case, provided with large bulk viscosity coefficient together with
small initial energy. This solves the density-patch problem in the exterior domain
for the compressible model with W 2;p-interfaces. Finally, the singular incompress-
ible limit toward the inhomogeneous incompressible model when the bulk viscosity
coefficient tends to infinity is obtained.

1. Introduction

In this paper, we establish the existence and uniqueness of global-in-time weak solu-
tions of compressible viscous flows, and at the same time, we investigate the dynamics of
density interface in dimension d 2¹2; 3º. More precisely, we consider the following com-
pressible Navier–Stokes equations describing the motion of compressible viscous fluids:

(1.1)

´
@t�C div.�u/ D 0;
@t .�u/C div.�u˝ u/CrP.�/ D ��uC .�C �/rdivu:

Here � > 0 represents the dynamic viscosity, and � > 0 stands for the kinetic viscosity.
In the present paper, � is some fixed positive constant, while the constant � may become
very large. For notational simplicity, we introduce the so-called bulk viscosity coefficient,

� D 2�C �;

which tends to infinity when �!1.
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We always assume that our fluids are (strictly) viscous:

� > � > 0;

where � is a fixed positive constant.
In the above, t � 0 and x 2 Rd , d D 2; 3, denote the time and space variables,

respectively. The notations � D �.t; x/ > 0 and u D u.t; x/2Rd represent, respectively,
the density and velocity of the compressible fluid, which serve as the unknowns in the
problem. Meanwhile, P DP.�/ is a given smooth function (in this paper, we assume
P 2C2.R;R/).

The system (1.1) is supplemented with initial data

(1.2) .�; �u/jtD0 D .�0; �0u0/;

which satisfy

(1.3) �0 > 0; �0 2 L
1.Rd I Œ0;1//; �0 � Q� 2 L

2.Rd IR/; u0 2 H
1.Rd IRd /;

where Q� > 0 is some given positive equilibrium state of the density.

1.1. Striated regularity

We assume further striated regularity with respect to a given nondegenerate family of
vector fields for the initial density �0 in this paragraph.

We first introduce some notations, based on [10]. For some p2 .d;1/, L1;p.Rd IRd /
denotes the vector space of bounded vector fields with gradients in Lp.Rd IRd�d /. From
now on, we denote the Lebesgue spacesLp.Rd IRn/ and the Sobolev spacesH s.Rd IRn/
with p 2 Œ1;1�, s 2 R and n 2 N�, simply by Lp.Rd / andH s.Rd /, or Lp andH s , with
an abuse of notations. We have defined

L1;p.Rd / D
®
Y 2L1.Rd / j kY kL1;p.Rd / WD kY kL1.Rd / C krY kLp.Rd / <1

¯
:

For a family of vector fields Y D .Y1; Y2; : : : ; Ym/ � L1;p.Rd /, m2N, we define the
norm k�kL1;p as

kYkL1;p.Rd / WD sup
16�6m

kY�kL1;p.Rd /:

Definition 1.1 (Nondegeneracy). Let YD .Y1;Y2; : : : ;Ym/�L1;p.Rd / be a family ofm
vector fields withm > d � 1 and p2 .d;1/. We say that Y is nondegenerate if it satisfies
the following property:

I.Y/ WD inf
x2Rd

sup
‡2‡m

d�1

ˇ̌̌ d�1̂
Y‡ .x/

ˇ̌̌1=.d�1/
> 0:

Above, ‡ 2‡m
d�1

means that ‡ D .�1; �2; : : : ; �d�1/ with each �i 2 ¹1; : : : ; mº and
�i < �j for i < j , Y‡ WD .Y�1 ; Y�2 ; : : : ; Y�d�1/, while the symbol

Vd�1
Y‡ stands for

the unique element of Rd such that� d�1̂
Y‡

�
�Z D det.Y�1 ; Y�2 ; : : : ; Y�d�1 ; Z/; 8Z 2 Rd :
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Definition 1.2 (Striated regularity with respect to a nondegenerate family of vector fields).
Let Y 2L1;p.Rd /, p2 .d;1/, be a (single) vector field, and let Y D .Y1; Y2; : : : ; Ym/ �

L1;p.Rd / be a nondegenerate family of vector fields with m > d � 1.
(a) A function g 2L1.Rd / is said to be of class Lp.Rd / along Y if

g 2LpY .R
d / WD ¹h2L1.Rd / j div.hY / 2 Lp.Rd /º:

We define the derivative of the function g along Y as follows:

@Y g WD div.gY / � g divY;

and hence we can equivalently define

LpY .R
d / D ¹h2L1.Rd / j @Y h2L

p.Rd /º:

(b) A function g 2L1.Rd / is said to be of class Lp.Rd / along the family Y if

g 2Lp
Y
.Rd / WD

\
16�6m

LpY� .R
d /;

and we equip the space Lp
Y
.Rd / with the following norm:

kgkLp
Y
.Rd / WD

1

I.Y/
sup

16�6m

�
kgkL1.Rd / kY�kL1;p.Rd / C kdiv.gY�/kLp.Rd /

�
;

which is equivalent to the norm with div.gY�/ above replaced by @Y�g.

We now continue with the assumption of the initial density �0 given in (1.2)–(1.3)
associated with the compressible Navier–Stokes equations (1.1). We assume further that

(1.4) �0 2 Lp
X0
.Rd /;

where X0 D .X0;1; : : : ; X0;m/ � L1;p.Rd / is a given nondegenerate family of vector
fields for some m > d � 1 and p 2 .d;1/.

Remark 1.3 (Initial density of density-patch type). It is interesting to notice that the initial
density of the form

(1.5) �0 D ˛1D0 C Q� 1Dc
0
; ˛ > 0;

satisfies the assumptions for �0 in (1.3)–(1.4) ifD0 is aW 2;p.Rd / (with p > d ) bounded,
simply connected domain in Rd . Indeed, (1.4) holds for a nondegenerate (divergence-free)
family of vector fields X0 D .X0;1; : : : ; X0;m/ � L1;p.Rd / which is1 tangent to @D0,

1Indeed, for d D 2 the existence of such a nondegenerate family of tangential vector fields is obvious since

we can take X0;1 D
� @x2f
�@x1f

�
DW r?f to be the tangent vector field close to @D0 with f 2 W 2;p.R2/ and

f j@D0 D 0 and rf j@D0 ¤ 0, while X0;2 D r?.�x1/ to be a non-zero vector field with � a smooth cutoff
function away from the boundary, see, e.g., equation (1.10) in [43] (with m D 3). The existence result for

d D 3 with m D 5 follows from the similar idea, see, e.g., Proposition 3.2 in [24], where X0;1 D
� 0
�@x3f

@x2f

�
,

X0;2 D
� @x3f

0
�@x1f

�
and X0;3 D

� �@x2f
@x1f

0

�
are generated by the function f 2 W 2;p.R3/ with f j@D0 D 0 and

rf j@D0 ¤ 0, whileX0;4 D
� @x3 .�x3/

0
�@x1 .�x3/

�
andX0;5 D

��@x2 .�x1/
@x1 .�x1/

0

�
form a nondegenerate family away from @D0

with � a smooth cutoff function away from the boundary @D0.
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and this means that the initial density given by (1.5) possesses tangential regularity with
respect to the boundary @D0.

1.2. Statement of the main results

The purpose of this paper is threefold.
(1) We establish the local-in-time well-posedness of the system (1.1) for positive den-

sity function with striated regularity, under some compatibility condition. We thus remove
the smallness condition required on the density fluctuation in Danchin, Fanelli, Paicu’s
paper [10].

(2) We prove that these local-in-time solutions become global-in-time unique solutions
of the Cauchy problem (1.1)–(1.2)–(1.3)–(1.4), for general non-decreasing pressure law
(see (1.10) below), if
• d D 2, and the bulk viscosity coefficient is large enough, � � �0, with �0 depending

on the norms of the initial data given in (1.2)–(1.3). This result is inspired by the work
by Danchin and Mucha [16].

• d D 3, the initial energy is small, and the bulk viscosity coefficient � � �0 is large
enough. Here although k�0 � Q�kL2.R3/ is assumed to be small, �0 may have large vari-
ation in L1.R3/. This result supplements the local-in-time well-posedness work [10]
with global-in-time well-posedness result and the work by Shibata and Zhang [46]
with less regular initial data.
(3) Additionally, by letting the bulk viscosity tend to infinity � !1, we establish a

singular limit toward the incompressible inhomogeneous model on the whole space, in the
spirit of Danchin and Mucha’s work [16], where the considered domain has finite measure.

1.2.1. Local-in-time well-posedness and continuation criterion. We begin by provid-
ing the statement of the local-in-time result, which technically further assumes the strict
positivity of the initial density function and the compatibility condition on the initial data.

Theorem 1.4 (Local-in-time well-posedness and continuation criterion). We consider the
Cauchy problem of the compressible Navier–Stokes equations (1.1) supplemented with the
initial data (1.2) satisfying (1.3) and (1.4). We further assume the strict positivity of the
initial density and the compatibility condition as follows:

(1.6) 0 < � 6 �0.x/ and ��u0 C .�C �/r divu0 � rP.�0/ 2 L2.Rd /:

Then, there exist a time T > 0 and a unique solution .�; u/ to the Cauchy problem
(1.1)–(1.2), satisfying the following properties:
(1) (Energy bounds). We have the following:

u 2 C.Œ0; T �;H 1.Rd //; Pu 2 C.Œ0; T �; L2.Rd //;
p
�r Pu; � Ru 2 L1..0; T /; L2.Rd //; and r Pu;

p
� Ru; �r Ru 2 L2..0; T / �Rd /:

Here and in what follows, we use the notations

� D �.t/ WD min¹1; tº; Pv WD .@t C u � r/v and Rv WD .@t C u � r/ Pv:(1.7)
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(2) (Striated regularity). For all 0 < t < T , we have �.t/ 2 Lp
X.t/

.Rd /, where X.t/ D

.X�.t//16�6m �L1;p.Rd / is the nondegenerate family of vector fields transported
by the fluid flow, in the sense that each vector fieldX�.t/, 16 � 6m, solves uniquely
the following Cauchy problem:

(1.8)

´
@tX� C u � rX� D @X�u;

X� jtD0 D X0;� :

Here, the directional derivative was given in Definition 1.2:

@X�u
j
D div.ujX�/ � uj divX� ; for 1 6 j 6 d:

The velocity field is Lipschitz continuous when integrated in time, that is, ru 2
L1..0; T /; L1.Rd //, and enjoys further the striated regularity for positive times:

• for d D 2 or for d D 3 and 3 < p 6 6, ru 2 L2..0; T /;Lp
X
.Rd //;

• for d D 3 and 6 < p < 1, �3=4�1=r�3=.2p/ ru 2 Lr ..0; T /;Lp
X
.R3// and

�3=4�1=r r Pu 2 Lr ..0; T /; L3.R3//, for any 2 6 r 61.

(3) (Continuation criterion). If .�; u/ is the solution defined up to a maximal time
T � > 0, with T � <1, then

lim sup
t!T �

°
kX.t/kL1;p.Rd / C

1

I.X.t//
C




 1

�.t/





L1.Rd /

C k�.t/kL1.Rd /

Ck@X.t/�.t/kLp.Rd / C kru.t/kL2.Rd / C k Pu.t/kL2.Rd /

±
D1:(1.9)

The solution of Theorem 1.4 is constructed in the spirit of a recent contribution of the
second author [49], which deals with the more involved case of density-dependent viscos-
ity coefficient. Thus, we only present a sketch of the proof of Theorem 1.4 in Appendix B.

While we do not pursue optimal local-in-time well-posedness in this paper, we instead
employ the approximation argument to the local theory established above to prove our
main result concerning global-in-time well-posedness in Theorem 1.6 below. We just men-
tion here that the strict positivity requirement in assumption (1.6) can be relaxed through
standard approximation techniques, with the estimates and results being corrected corre-
spondingly (e.g., with density weights as in Proposition B.1).

Remark 1.5. (a) This result supplements the contribution [10] by Danchin, Fanelli and
Paicu by removing the smallness condition on the density deviation. Unlike the maximum
regularity argument used in [10], which requires a critical regularity for one part of the
initial velocity, our method relies on the change into Lagrangian coordinates along with
energy estimation methods.

(b) The compatibility condition ��u0C .�C �/rdivu0 �rP.�0/ 2L2.Rd / given
in (1.6) expresses the continuity of the normal component of the stress tensor, and does
not require (explicitly) smoothness of the density. The parabolic effect of the momentum
equations ensures that this condition holds true at positive times even for less regular initial
data, see [27].

(c) The velocity field possesses indeed further regularity properties which are stated in
Corollary B.2 below, thanks to the decomposition of the velocity gradient (B.13).
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1.2.2. Definitions of energy functionals. The global-in-time well-posedness result will
follow from the above local-in-time well-posedness, the continuation criterion and a series
of energy estimates. We define in this subsection the relevant energy functionals. In the
following, we assume the general non-decreasing pressure law P D P.�/ as follows:

(1.10) P 2 C2.R;R/ and P 0.�/ > 0 for � > 0:

Recall the positive density equilibrium Q� in (1.3). We define first the pressure equilib-
rium

zP WD P. Q�/;

the �-dependent functions

(1.11) Hl .�/ D �

Z �

Q�

s�2jP.s/ � zP jl�1.P.s/ � zP / ds; for l 2 Œ1;1/,

the pressure deviation

(1.12) G.t; x/ WD .P.�//.t; x/ � zP ;

and the effective flux

(1.13) F.t; x/ D �.divu/.t; x/ �G.t; x/:

We remark that due to the monotonicity property of the pressure law P D P.�/ in (1.10),
the function Hl .�/ is always nonnegative for nonnegative �.

We also define the associated energy function of the compressible Navier–Stokes
equations (1.1)–(1.10):

E.t/ D

Z
Rd

�
�
juj2

2
CH1.�/

�
.t; x/ dx

C

Z t

0

�
�kru.t 0/k2

L2.Rd /
C .�C �/k divu.t 0/k2

L2.Rd /

�
dt;(1.14)

which consists of the kinetic energy

1

2
k
p
� u.t/k2

L2.Rd /
I

the potential energy Z
Rd

�
H1.�/

�
.t; x/ dx;

with H1.�/ defined in (1.11):

H1.�/ D �

Z �

Q�

P.s/ � zP

s2
dsI

and the energy dissipation

�kruk2
L2..0;t/�Rd /

C .�C �/kdivuk2
L2..0;t/�Rd /

:

The energy E.t/ is conserved for regular enough solutions of (1.1).
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Recalling the notations in (1.7), we introduce two energy functionals of higher order:

(1.15)

A1.t/ D
�

2
kru.t/k2

L2.Rd /
C
�C�

2
kdivu.t/k2

L2.Rd /
C

Z t

0

k
p
� Pu.t 0/k2

L2.Rd /
dt 0;

A2.t/ D �.t/k
p
� Pu.t/k2

L2.Rd /

C

Z t

0

�.t 0/
�
�kr Pu.t 0/k2

L2.Rd /
C
�C �

�2
k PF .t 0/k2

L2.Rd /

�
dt:

The hierarchy of energy functionalsE.t/, A1.t/ and A2.t/ encode the L2.Rd /-norm, the
PH 1.Rd /-norm for u.t/ and the (time-weighted) L2.Rd /-norm for the material deriva-

tive Pu.t/, respectively. Although trivially j div uj 6 d jruj, we will make efforts to get
the (large) viscosity coefficient � before div u in the definition of E and A1, such that
intuitively divu! 0 as �!1 if E and A1 are bounded uniformly in time. A review of
the history of these energy functionals can be found in Section 1.3 below.

Recalling the initial data (1.2), we denote G0.x/ D G.0; x/ D .P.�0//.x/ � zP . For
notational simplicity, we denote the first initial energy

E0 WD E.0/ D

Z
Rd

�
�0
ju0j

2

2
CH1.�0/

�
.x/ dx;

the total initial energy

(1.16) E�0 WD E0 C �kru0k
2
L2.Rd /

C � kdivu0k2L2.Rd /
C
1

�
kG0k

2
L2.Rd /

;

and the upper bound of the initial density,

��0 WD sup
x2Rd

�0.x/:

We observe that for initial data given in (1.2)–(1.3),

E0 � C.�
�
0/ k.�0 � Q�; u0/k

2
L2.Rd /

< C1;

E�0 � C.�; �; �
�
0/.E0 C kru0k

2
L2.Rd /

/C � kdivu0k2L2.Rd /
< C1:

We aim to bound A1.t/ and A2.t/ globally in time, in terms of E�0 and ��0 , if � � �0 is
large enough (and if the initial energy is small enough for d D 3). The following quantity
captures the striated regularity of the density function along the family of vector fields
X.t/ D .X�.t//16�6m transported by the flow as in (1.8):

(1.17) A3.t/ D kX.t/kL1;p.Rd / C sup
16�6m

k.@X��/.t/kLp.Rd /:

It is straightforward to see that A3.t/ grows exponentially in krukL1tL1 . We aim to show
that the striated regularity encoded in klog A3kL1.0;t/, together with the energy func-
tionals A1.t/ and A2.t/, control krukL1tL1 . Grönwall’s inequality hence implies the
exponential-in-time control of krukL1tL1 .
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1.2.3. Global-in-time well-posedness. We now state our global-in-time result for less
regular initial data on which the assumption (1.6) is not assumed.

Theorem 1.6. Assume the Cauchy problem (1.1)–(1.10) with initial data (1.2)–(1.3)–
(1.4), and the following conditions:

either d D 2 and � > �0;(1.18)
or d D 3; p 2 .3; 6/; E�0E0 6 c and � > �0;(1.19)

where c is a fixed constant depending only on � and �, while �0 is a constant depending
additionally on the initial norms:E0, kru0kL2.Rd / and ��0 . Then the Cauchy problem has
a unique global-in-time solution .�; u/ satisfying

(1) (Energy bounds). For all t > 0, we have

(1.20)

´
E.t/CA1.t/CA2.t/ 6 C �0 ;

k�.t/ � Q�k2
L1.Rd /

6 k�0 � Q�k2L1.Rd /
C C �0 ;

where the constant C �0 depends on �, �, ��0 , and (superlinearly) on E�0 .

(2) (Striated regularity). For all t > 0, �.t/ 2 Lp
X.t/

.Rd /, where X.t/D .X�.t//16�6m

� L1;p.Rd / is a nondegenerate family of vector fields defined to solve the Cauchy
problem (1.8). Moreover, ru 2 L1loc.Œ0;1/; L

1.Rd // with the following estimates:

(1.21)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

A3.t/ 6 A3.0/ exp
h
C0

Z t

0

�
1C
p
t C kru.t 0/kL1.Rd /

�
dt 0
i
;Z t

0

kru.t 0/kL1.Rd / dt
0 6 C0

�
1C

A3.0/

I.X0/

�
exp.C0 t /;Z t

0

k@X.t 0/ru.t
0/kLp.Rd / dt

0 6 C0.1C t C tA3.t//A3.t/;

where C0 depends on �, � , m, d , p, ��0 and E�0 .

Remark 1.7 (Bounds for div u). We have assumed some uniform bounds (with respect
to �) for divu0 implicitly: the conditions in (1.18) and (1.19) imply that

� kdivu0k2L2.Rd /
6

´
E�0 <1; if d D 2;
E�0 min¹1; c=E0º <1; if d D 3:

This boundedness is propagated over time:

� kdivu.t/k2
L2.Rd /

6 C �0 :

Theorem 1.6 and Remark 1.3 imply immediately

Corollary 1.8 (Density patch problem in the exterior domain). The Cauchy problem given
in (1.1)–(1.10) with initial data (1.2) of density-patch type (1.5) and u0 2H 1.Rd /, under
the assumption (1.18) or (1.19), has a unique global-in-time solution .�; u/, with �.t/
enjoying tangential regularity with respect to the boundary @Dt , which is transported by
the flow of u and keeps its W 2;p.Rd /-boundary regularity.
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Remark 1.9. If ˛ > 0 in (1.5), deriving a uniformly positive lower bound for the density
is straightforward (see Step 6 in Section 2.1 of [17]). This results in an exponential-in-time
decay of the jump in the density �.t/ across @Dt , as observed in [29, 30].

Intuitively, thanks to the uniform bound A1.t/ 6 C �0 in (1.20), letting � !1 yields
a couple .%; v/ that satisfies the incompressible inhomogeneous model

(1.22)

8̂<̂
:
@t%C div.%v/ D 0;
@t .%v/C div.%v ˝ v/Cr… � ��v D 0;
div v D 0:

Corollary 1.10 (Incompressible limit). Let .�0; u0/ be the initial data given in (1.2) sat-
isfying (1.3), (1.4) and div u0 D 0. Let .�.�/; u.�// be the corresponding unique solution
constructed in Theorem 1.6, under the assumption (1.18) or (1.19).

Then the solution .�.�/; u.�//� converges weakly-* to .%; v/ in L1..0;1/ � Rd / �
L1..0;1/; H 1.Rd // as � goes to infinity, and .%; v/ solves (uniquely) the inhomoge-
neous, incompressible model (1.22) with initial data .�0; u0/ in the distribution sense.
Moreover, we have

(1.23)

8̂<̂
:

divu.�/ D O.��1=2/ in L2 \ L1..0;1/; L2.Rd //;

@t .�
.�/u.�//C div.�.�/u.�/ ˝ u.�//
�rF .�/ � ��u.�/ D O.��1=2/ in L1..0;1/; PH�1.Rd //;

where F .�/ D � divu.�/ �G.�/ with G.�/ D P.�.�// � zP .

The proofs of Theorem 1.6 and Corollary 1.10 are presented in Section 2.3, based on
the a priori estimates of Section 2.1 and their proofs in Section 2.2.

Remark 1.11. This result in Corollary 1.10 is a partial continuation of the work by
Danchin and Mucha [13, 14, 16], and Danchin and Wang [17], and stands, as far as we
know, as the first one dealing with discontinuous initial data in the whole space. We notice
that, except for the work [13] dealing with the whole space case and initial data in the
critical Besov space, the other studies rely heavily on the assumption that the domain has
finite measure. The extension to the whole space, especially for d D 2, is not obvious, and
it requires some refined computations, e.g., the compensated result by Coifman, Lions,
Meyer and Semmes in [8].

1.3. Review of known results

Classical solutions for the Navier–Stokes equations (1.1) with regular initial data are
known to exist, since the works by Nash [42], Itaya [33, 34], Solonnikov [47], Tani [48],
just to cite a few examples. These solutions are defined up to a positive time which depends
on the (norms of) initial data. The first result addressing the global-in-time well-posedness
of classical solutions is provided by Matsumura and Nishida [41] for small initial data in
L1.R3/\H 3.R3/. Nowadays, global-in-time classical solutions are known to exist under
smallness assumption on the initial data in critical Besov space [4, 7, 26].
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Weak solutions and estimates for E.t/ and G . Similar to the solutions constructed
by Leray [35] for the incompressible Navier–Stokes equations, there are well-established
results that investigate the existence of global-in-time weak solutions for the compressible
Navier–Stokes equations (1.1), with finite initial energy. The first result was obtained by
P.-L. Lions [40], followed by Feireisl, Novotný, Petzeltová [23], for pressure laws of the
form P.�/ D a�
 , a > 0, with some limitations on 
 . These weak solutions satisfy the
following classical energy inequality:

(1.24) E.t/ 6 E.0/ D E0;

where the functional E has been given in (1.14).
The introduction of the (generalized) specific energy Hl .�/, l 2 Œ1;1/, in (1.11)

helps (technically) to estimate the pressure deviation G. As observed in, e.g., [3], the so-
defined Hl .�/ is nonnegative: Hl .�/ > 0, since the pressure P.�/ is an non-decreasing
function of the density (1.10).

For the classical case l D 1, H1.�/ appears in the definition of E.t/, which is inte-
grable in space uniformly in time due to (1.24):Z

Rd

�
H1.�/

�
.t; x/ dx 6 E.t/ D E0:

Consequently, under the a priori assumption

�.t; x/ 6 ��;

we bound G.t; x/ WD P.�/.t; x/ � QP uniformly in time by the energy E0 as follows:

(1.25) sup
Œ0;t�

kGk
q

Lq.Rd /
6 C � sup

t 02Œ0;t�

Z
Rd

H1.�.t
0; x// dx 6 C �E0; with q 2 Œ2;1/;

where the constant C � depends only on �� and q. In the above, the first inequality follows
from the definition of H1.�/ in (1.11).

General Hl .�/, l > 1, as a function of �, satisfies the following ordinary differential
equation:

�H 0l .�/ �Hl .�/ D jP.�/ �
zP jl�1.P.�/ � zP /;

and hence, by virtue of the mass equation (1.1)1, the function .Hl .�//.t; x/ satisfies the
following time evolutionary equation:

@tHl .�/C div.Hl .�/u/C jP.�/ � zP jl�1.P.�/ � zP / divu D 0;

which is in the same spirit of the renormalized continuity equation appearing in, e.g., [40].
In view of the definitions (1.12) and (1.13), this is equivalent to

@tHl .�/C div.Hl .�/u/C
1

�
jGjlC1 D �

1

�
jGjl�1GF:

Consequently, integrating the above in space yields, after Hölder’s inequality, the follow-
ing:

(1.26)
d

dt
kHl .�/kL1.Rd / C

1

�
kGklC1

LlC1.Rd /
6
1

�
kGkl

LlC1.Rd /
kF kLlC1.Rd /;
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and hence by Young’s inequality and integration in time, G can be controlled by F in the
following way:

(1.27)
1

�
kGklC1

LlC1..0;t/�Rd /
6 2kHl .�0/kL1.Rd /C

C

�
kF klC1

LlC1..0;t/�Rd /
; 8 t 2 .0;1/:

Density patch problem. In the last three decades, there has been growing interest in
exploring the properties of weak solutions to models arising from fluid mechanics that
enable tracking down discontinuities of some quantities such as density or vorticity. We
refer to the density patch problem for incompressible models stated in [39]: Consider the
incompressible model (1.22) in two dimension with initial density as the characteristic
function �0 D 1D0 of some regular domain D0 2 R2. The density-patch problem asks
whether or not, at positive times, the density is still some characteristic function 1D.t/
with the domain D.t/ � R2 preserving the initial regularity of D0. This problem is
almost solved for incompressible models, even for density-dependent viscosity (under
some smallness assumption) or higher Sobolev regularity ofD0, see [11,12,15,18–20,25,
36–38].

However, for a similar problem in the context of compressible fluids, there are not
so many results. On one hand, the global classical solutions constructed by Matsumura
and Nishida, or in critical Besov space, are too strong in a way that they do not allow for
discontinuous solutions. On the other hand, the weak solutions constructed by P.-L. Lions
or Feireisl, Novotný, Petzeltová only require that the initial energy is finite, allowing for
discontinuous density. However, the regularity of the velocity is relatively weak, with
ru2L2..0;1/�Rd /, and this is insufficient to track down discontinuities in the density.
A natural idea is to construct weak solutions in a class that allows for tracking down
the discontinuity of the interface. The first result addressing this issue is, as far as we
know, [29] by Hoff, where the author considered an initial density with Hölder regularity
on both sides of a suitable curve, allowing for jumps across this curve. The initial curve
is transported by the flow of the velocity into a curve that maintains its initial regularity.
The density also remains Hölder continuous on both sides of the transported curve, and
moreover, its jump through the latter decays exponentially over time. This result pertains
only to the case of linear pressure law and small bulk viscosity. Recently, these restrictions
were removed in [10, 50], where the later reference treated even more challenging case
of density-dependent viscosity. Theorem 1.6 is thus added to this list, in the constant
viscosity setting, with domains having Sobolev regularity, and the density can be large in
L1.Rd /, unlike the cited results.

1.3.1. Hoff’s strategy. We review briefly some key concepts in Hoff’s works [27–30].

Energy functionals. In [27], Hoff introduced the following energy functionals, which
can be compared with our definitions in (1.15):8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

AH
1 .t/ D sup

Œ0;t�

� kruk2
L2.Rd /

C

Z t

0

�.t 0/k
p
� Pu.t 0/k2

L2.Rd /
dt 0;

AH
2 .t/ D sup

Œ0;t�

�dk
p
� Puk2

L2.Rd /
C

Z t

0

�d .t 0/kr Pu.t 0/k2
L2.Rd /

dt 0;

B.t/ D sup
Œ0;t�

k� � Q�k2
L1.Rd /

;
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where the time weight � and the material derivative Pu are defined as in (1.7). He provides
bounds for these functionals by requiring that the initial velocity is small in L2.Rd / but
can be large in L2

d
.Rd /. Additionally, he requires that the initial density is bounded away

from zero and bounded from above, along with some technical assumptions.

Effective flux and vorticity. Hoff’s computations, mainly while propagating the lower
and upper bounds of the density, rely strongly on the effective viscous flux F D � divu�G
given in (1.13). It plays a crucial role by connecting the momentum equations and the
mass equation, as was discovered by Hoff and Smoller in [31]. It is also useful in the
study of the propagation of oscillations in [45], and in the constructions of weak solutions
in [23, 28, 40].

In fact, recall the momentum equations (1.1)2, which can be written by virtue of the
mass conservation law (1.1)1 as

� Pu � ��u � .�C �/r divuCr.P.�/ � zP / D 0:

Applying the divergence operator, we obtain the Poisson equation for F as follows:

(1.28) �F D div.� Pu/:

Similarly, we can apply the curl operator to the momentum equations to derive the Poisson
equation for the vorticity, curlu; as follows:

(1.29) �� curlu D curl.� Pu/:

Consequently, the regularity of the material derivative of the velocity Pu, as provided
by the functionals AH

1 and AH
2 , allows the effective flux F and the vorticity curlu to be

regular at positive time, even for rough density. This means that there is some cancellation
between the divergence of the velocity and the pressure at positive times. In particular, the
fact that F 2 L8=3..1;1/; L1.Rd // allows Hoff to propagate the L1.Rd / estimate for
the density.

Thanks to this observation, under a smallness condition on the initial data, Hoff proved
the existence of global weak solutions for the system (1.1) with a linear pressure law in a
first paper [27]. He later considered pressure laws of the form P.�/ D a�
 , with 
 > 1,
in a second paper [28], in which, again, the effective flux played a crucial role in proving
compactness for the density.

Velocity gradient expression involving Riesz operators. In order to study the dynamics
of discontinuous surfaces, Hoff in [29] used the following decomposition of the velocity
gradient:

(1.30) �ru D �.��/�1r.� Pu/C
�C �

�
RRF C

�

�
RRG DW �r QuC �ruG I

this is just a rewriting of the above momentum equations, where Rj D .
1
i
@j /.��/

�1=2,
1 6 j 6 d , are the Riesz operators.

By assuming more regularity on the velocity u0 2Hˇ .R2/, he reduces the singularity
of time weights in the definitions of functionals AH

1 and AH
2 . Namely, in dimension

two, the time weights � and �2 are replaced, respectively, by �1�ˇ and �2�ˇ . Thus, r Qu
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and the effective flux F belong to L1loc.Œ0;1/;C
˛.R2// for all 0 < ˛ < ˇ. With the help

of the regularity of F , Hoff propagated the piecewise Hölder regularity of the density,
resulting piecewise Hölder continuity of ruG on both sides of a time-dependent curve.
This time-dependent curve is the transport of an initial suitable curve with some geometric
assumptions, and only provided with bounded velocity gradient can the structure of the
density and of the curve be propagated.

However, since Riesz operators fail to be continuous onL1.Rd /, additional regularity
must be assumed on the density to obtain RRG 2L1.Rd /. In [30], Hoff and Santos
observed that in the configuration of the previous works (see [27, 28]), the rough part of
the velocity gradient ruG belongs to L1..0;1/; BMO.Rd //. In this case, the initial
interface 
0 2 C˛ , ˛ > 0, is transported to an interface 
t 2 C˛t at time t > 0, with ˛t
decaying exponentially to zero in time.

Hence to propagate interface regularity (more than continuity) requires a Lipschitz
velocity. For the incompressible model with constant viscosity, this regularity is directly
obtained from energy computations and interpolations. In contrast, for the compressible
case with discontinuous density, the problem is more delicate, and the issue is to find
an appropriate functional space, which can be mapped by even-order Riesz operators
into L1.Rd /.

1.3.2. The strategy by use of tangential regularity. Apart from the tools used in [29,50]
to handle the rough part of the velocity gradient, there exists another framework that
allows for the same. It is referred as tangential/striated regularity space, and goes back to
Chemin’s study (see, e.g., [5, 6]) of the vortex patch problem for the ideal incompressible
model. See also [2] for another interesting geometric proof for the persistence of regularity
in the vortex patch problem. Chemin’s idea has been further developed to higher dimen-
sional cases in [9, 24], to the inhomogeneous case in [22], as well as to the density-patch
problem for the inhomogeneous incompressible Navier–Stokes model in, e.g., [36–38,43].
However, there are very few results in this direction for the compressible case. To the best
of our knowledge, the only work in the literature is [10], by Danchin, Fanelli, and Paicu.
They establish the local-in-time well-posedness of the compressible equations (1.1) with
a striated initial density, and we now delve into a brief discussion of their methods. From
the momentum equations (1.1)2, they express the velocity as:

(1.31) u D w � r.Id ��/
�1G;

where w solves a parabolic equation with source term belonging to some suitable space
Lr ..0; T /;Lp.Rd //. They employ maximal regularity tools to establish Lipschitz bounds
forw. Meanwhile, Lipschitz bound for the second term of the velocity’s expression (1.31),
associated with the pressure, is obtained through tangential regularity estimates. The max-
imal regularity argument requires smallness assumption on the density in L1.Rd /, and
the global-in-time result is still missing. Toward this, we establish local-in-time well-
posedness of the system (1.1) without imposing any smallness condition on the initial
data (see Theorem 1.4), and global-in-time well-posedness (see Theorem 1.6) without
any smallness assumption of the initial density fluctuation in L1.Rd /, and the vacuum is
allowed. This is accomplished through a coupling mechanism that involves the effective
flux. By achieving this objective, we propagate the Sobolev regularity of interfaces over
time.
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Incompressible limit. We aim also to establish an incompressible limit in the spirit of
the work of Danchin and Mucha [16]. Let us briefly look at this question. The work by
Matsumura and Nishida [41] paved the way for attempts to relax the assumptions on the
initial data. Despite reducing the regularity assumption to critical Besov space or even
Lebesgue space, the condition of smallness is frequently encountered in the literature. In
their work [13], Danchin and Mucha introduced a new framework that enables them to
bypass the smallness condition on the initial data, namely, replacing the smallness in the
initial data by large enough bulk viscosity coefficient. In particular, as the bulk viscos-
ity � !1, the solution converges to a limit that satisfies the incompressible model. This
has been done for initial data in critical Besov space. For less regular initial data, they work
on the torus in [14, 16], where they rely technically on the finite-measure of the domain,
particularly on the logarithmic interpolation inequality, which proves to be crucial in han-
dling vacuum states in [16]. We also refer to the work by Danchin and Wang [17], where
exponential decay rate of the solutions of the compressible model on torus has been inves-
tigated. However, the exponential decay does not generally hold in the whole space. For
instance, the work by Hu and Wu [32] provides lower bound for the norms of solutions in
certain cases. We obtain similar results as those in [16] in the presence of vacuum on the
whole space (see Corollary 1.10). Specifically in the two-dimensional case, we do some
algebraic computations and succeed in applying Coifman, Lions, Meyer, and Semmes’
compensated integrability result in [8] to achieve uniformly in � estimates for the energy
functionals.

Outline of the paper. The rest of the paper is structured as follows. In Section 2, we give
the proofs of Theorem 1.6 and Corollary 1.10, by use of the results in Theorem 1.4, whose
proof is postponed to Appendix B. A useful density-weighted interpolation inequality is
established in Appendix A.

2. Proof of the main results

This section is devoted to the proofs of Theorem 1.6 and Corollary 1.10, which go from
a priori estimates for solutions of the Navier–Stokes equations (1.1) to the proof of the
compactness of approximate solutions. It is divided into three parts. In the first one, Sec-
tion 2.1, we summarize all key ideas with brief explanations and give the a priori estimates
in a series of lemmas. Technical details and the proofs of these lemmas are presented in
the second part, Section 2.2. As we will see in the final part of the proof in Section 2.3,
the existence of a local-in-time solution (without any smallness condition in the density)
is by no means obvious, and it is the purpose of Section B. The regularity of the (local-
in-time) solution is sufficient in order to use u and Pu as test functions in the subsequent
computations to get energy estimates.

2.1. Proof ideas and statements of lemmas

In this section, we give the main ideas of the proof of Theorem 1.6. We state the energy
estimates for the solutions of the compressible Navier–Stokes equations (1.1)–(1.10) with
initial data (1.2) satisfying (1.3). The tangential regularity (1.4) is assumed when we show
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the boundedness of the Lipschitz-norm of the velocity vector field as a second step. Recall
the definitions of the energy functionals

E.t/, A1.t/, A2.t/ and A3.t/,

together with the notations zP , Hl .�/, G, F and E0, E�0 , ��0 , given in Section 1.2.2.
In the literature (see, e.g., [40] where finally only the energy inequality (1.24) was

established for weak solutions), the following a priori energy equality forE.t/was shown
for strong solutions:

(2.1) E.t/ D E.0/ DW E0:

More precisely, it follows from taking the scalar product of the momentum equation (1.1)2
with the velocity u and then integrating in time and space. This energy balance (2.1) is
going to be used freely in the proof, and we aim to show the estimates for A1, A2 and A3.

In the following, we state step by step:
• In Section 2.1.1: Energy estimates for A1 and A2, together with the boundedness of

the density deviation k� � Q�kL1t;x .
Under the assumption that the density is a priori from above bounded,

(2.2) 0 6 �.t; x/ 6 ��;

for some �� > 0, we show first (local-in-time) a priori energy estimates for A1 and A2

(see Lemmas 2.1 and 2.2) and then a boundedness of the density in terms of A1 and A2

(see Lemma 2.3) for solutions of the Cauchy problem (1.1)–(1.2)–(1.3). Under the
assumption (1.18) or (1.19), that is, in the case of either large bulk viscosity coef-
ficient for d D 2 or with small initial energy and large bulk viscosity coefficient
for d D 3, a bootstrap argument implies the global-in-time a priori energy estimates
for A1 and A2, and density bound estimate (see Lemma 2.4).

• In Section 2.1.2: The striated regularity estimate for A3. together with the bounded-
ness of the velocity gradient krukL1tL1x .

With the estimates in Section 2.1.1 at hand, we turn to the striated regularity for the
density function A3.t/ for solutions of the Cauchy problem (1.1)–(1.2)–(1.3)–(1.4),
which finally implies the Lipschitz-continuity of the velocity field (see Lemma 2.6),
thanks to theL1-estimates for the double Riesz-operators provided with extra striated
regularity (see Proposition 2.5).

2.1.1. A priori estimates for A1, A2 and k� � Q�kL1
t;x

. In order to derive higher-order
energy estimates for the velocity u and its material derivative

Pu WD .@t C u � r/u;

we use first Pu as a test function in the weak formulation of the momentum equation (1.1)2
to establish bounds for A1. The functional A2 emerges when, first rewriting the momen-
tum equation (1.1)2 with the effective flux F , and then applying the operator @t � Cdiv.�u/
to the resulting equation before testing it with Pu.

In dimension two, the following estimates are valid for these functionals A1 and A2.



X. Liao and S. M. Zodji 2182

Lemma 2.1 (Preliminary energy estimates for d D 2). Assume that d D 2 and (2.2). Then
the following a priori bounds hold true for the functionals A1 and A2 :

A1.t/ 6 C �
�
E�0 C

1

�3=2
A1.t/.E0 CA1.t//

�
exp.C �E0/;(2.3)

A2.t/ 6 C �
��
E0 C

1

�4
E20

�
C .1CE0 CA1.t//A1.t/

�
;(2.4)

where the constant C � depends on �; � and (increasingly) on ��.

The proof of Lemma 2.1 is established through refined computations, and the com-
pensated result by Coifman et al. [8] turns out to be crucial for achieving a uniform bound
with respect to �. We refer to Section 2.2.2 below for the detailed proof.

For d D 3, the following estimates hold true for the functionals A1 and A2.

Lemma 2.2 (Preliminary energy estimates for d D 3). Assume that d D 3 and (2.2).
Then, the following estimates hold true for the functionals A1 and A2 :

A1.t/ 6 C �
�
E�0 C

1

�2=3
E
1=3
0

�
C CE0A1.t/

2;(2.5)

A2.t/ 6 C �
�1
�
E
1=3
0 CE0 CE

2
0 C .1CA1.t/

2/A1.t/
�
:(2.6)

Here C depends on � and �, and C � depends on �, � and (increasingly) on ��.

The proof is given in Section 2.2.3. Let us point out that the computations in [14,16,17]
depend heavily on the fact that the domain has finite measure. Lemmas 2.1 and 2.2 are the
first to provide high regularity bounds for the solution .�; u/ uniformly with respect to �
(large) in the whole space, with only bounded density.

Based on the above estimates, it turns out that the functionals A1 and A2 are under
control (for large �) as long as the density is upper-bounded. Therefore, the next step is
devoted to estimating the upper bound of the density, whose proof is given in Section 2.2.4.

Lemma 2.3 (Density upper bound in terms of energies). Assume (2.2). Then the following
bounds hold true for the density:

k� � Q�kL1.Œ0;t��Rd / 6 k�0 � Q�kL1.Rd /

C
C �

�1=3
�

´
.1CE

1=18
0 /.E

1=6
0 C�

1=6A1.t/
1=6/.A1.t/

1=3CA2.t/
1=3/; dD2;

.A1.t/
1=2CA2.t/

1=2/; dD3:
(2.7)

Finally, we notice that for d D 2 there is a small factor 1=� (or its positive powers)
before A1.t/ and A2.t/ in the estimates (2.3) and (2.7), while A2.t/ can be bounded
by A1.t/ and �� by (2.4). We can close the estimates in Lemmas 2.1, 2.2 and 2.3 by a
bootstrap argument as in, e.g., [3, 16], which is not repeated here.

Lemma 2.4 (Global-in-time estimates under assumption (1.18) or (1.19)). There exist c,
depending only on � and �, and �0 > �, depending on �, �, E0; kru0kL2.Rd / and ��0 ,
such that

(1) If d D 2 and � > �0, then

A1.t/CA2.t/ 6 C �0 and k� � Q�kL1.Œ0;t��R2/ 6 k�0 � Q�kL1.R2/ C .C
�
0 /
1=2:



Global-in-time well-posedness of the compressible NS with striated density 2183

(2) If d D 3, E�0E0 6 c and � > �0; then

A1.t/CA2.t/ 6 C �0 and k� � Q�kL1.Œ0;t��R3/ 6 k�0 � Q�kL1.R3/ C .C
�
0 /
1=2:

Above, C �0 depends on �, �, ��0 and (superlinearly) on E�0 .

2.1.2. A priori estimates for A3 and krukL1
t
L1

x
. Now we have Lemma 2.4, which

gives the (uniform) bounds of functionals A1, A2 and �. We use the notation C0 below to
denote some time-independent constant depending on the initial data as follows:

(2.8) C0 D C0.�; �;m; d; p; �
�
0 ; E

�
0 /;

where m and p appear in the initial condition (1.4). C0 may vary from lines to lines, and
controls in particular A1, A2 and �. The next step is dedicated to translating these bounds
into the tangential regularity estimates for the density, together with the Lipschitz norm of
the velocity. As the tangential regularity A3 can be transported by Lipschitz continuous
flow, we sketch the idea to show Lipschitz continuity of u as follows.

We first recall the following decomposition of the velocity gradient:

ru D r QuCruG(2.9)

WD

�
�
1

�
RR.��/�1 div.� Pu/ �

1

�
RR.��/�1 � curl.� Pu/

�
C

�1
�

RRG
�
:

where Rj D .
1
i
@j /.��/

�1=2, with 16 j 6 d , is the Riesz transform, andG DP.�/� zP .
Indeed, we notice the following expression,

(2.10) �uj D @j divuC
dX
kD1

@k curljk u; for j D 1; : : : ; d ,

with curljk u D @kuj �@juk , for j; k D 1; : : : ; d , and from (1.13), (1.28) and (1.29), we
have
(2.11)

divu D
1

�
.F CG/; F D �.��/�1 div.� Pu/ and � curlu D �.��/�1 curl.� Pu/:

Hence the velocity gradient can be expressed as in (2.9):

ru D �r.��/�1�u D �r.��/�1rdivu � r.��/�1 div.curlu/

D �
1

�
r.��/�1r

�
F CG

�
�
1

�
r.��/�1 div.� curlu/

D

�
�
1

�
RR.��/�1 div.� Pu/ �

1

�
RR.��/�1 � curl.� Pu/

�
C

�1
�

RRG
�
:

Thanks to the regularity of Pu provided by the functionals A1 and A2, we have that
r Qu2L1..0; t/; L1.Rd //. Motivated by the pioneering work of Chemin [5, 6] and of
Danchin, Fanelli, and Paicu [10], which show RRG 2 L1.Rd / provided with extra
tangential regularity on G, the L1-bound for ruG in our case relies on the follow-
ing logarithmic inequality, which is simply the application of the Sobolev embedding
L1.Rd / \ PW 1;p.Rd / � C1�d=p.Rd / to Theorem 7.40 of [1].
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Proposition 2.5 ([1], L1-bound for double Riesz transforms provided with tangential
regularity). Let X D .X�/16�6m � L1;p.Rd /, with d < p <1, be a nondegenerate
family of m 2N� vector fields as in Section 1.1. Let 1 6 q < 1. Then there exists a
constant C D C.m; d; p; q/ > 0 such that for all G 2 Lq.Rd / \ L1.Rd / \ Lp

X
.Rd /,

the following estimate holds true:

(2.12) kRRGkL1.Rd / 6 CkGkLq.Rd / C CkGkL1.Rd /

�
1C log

�
e C
kGkLp

X
.Rd /

kGkL1.Rd /

��
:

With the aid of the above logarithmic estimate, we can propagate tangential regularity
of density and achieve Lipschitz regularity of the velocity at the same time.

Lemma 2.6 (Tangential regularity for the density and Lipschitz continuity for the veloc-
ity). Assume the initial condition (1.4) that �0 2 Lp

X0
.Rd /, where X0 D .X0;�/16�6m �

L1;p.Rd / is a nondegenerate family of m 2N� vectors fields, with m > d � 1, with
2 < p <1 if d D 2 or 3 < p < 6 if d D 3.

Then, the family of vector fields X.t/ D .X�.t//16�6m, defined as solution of the
Cauchy problem (1.8), is nondegenerate and X.t/ � L1;p.Rd /. Moreover, we have
�.t/ 2 Lp

X.t/
.Rd /, and the following bounds hold true:

(2.13)

8̂̂<̂
:̂

A3.t/ 6 A3.0/ exp
�
C0

Z t

0

�
1C
p
t C kru.t 0/kL1.Rd /

�
dt 0
�
;Z t

0

kru.t 0/kL1.Rd / dt
0 6 C0

�
1C

A3.0/

I.X0/

�
exp.C0 t /:

The proof of the above lemma is the object of Section 2.2.5.

Remark 2.7 (Improved time regularity). We have the following improved time regularity,
which is required for the uniqueness result, see, e.g., equation (4.31) in [10]: for some
t0 > 0, Z t0

0

�.t 0/s kru.t 0/k2
L1.Rd /

dt 0 <1;

where s D 4=9 if d D 2 and s D 1=2 if d D 3. Indeed, we apply Hölder’s inequality with
respect to the time variable to (2.62) in the proof in Section 2.2.5 to obtain (noticing (2.63)
and (2.65))Z t

0

kruG.t
0/k2
L1.Rd /

dt 0 � C0 t
�
1C

A3.0/

I.X0/
C t C

Z t

0

kru.t 0/kL1.Rd / dt
0
�2

and similarly as in the proof of (2.64) and (2.66), we haveZ t

0

�4=9 kr Quk2
L1.R2/

6 C0.1C t
1=3/ and

Z t

0

p
� kr Quk2

L1.R3/
6 C0:

To complete the proof of Theorem 1.6, we need to construct an approximate sequence
.�ı ; uı/ı globally defined in time that converges to .�; u/, the unique solution of (1.1).
Once this is done, we will have obtained a sequence .�.�/; u.�// of solutions to (1.1), and
the last step will be to justify that this sequence converges to some .%; v/ that solves the
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inhomogeneous incompressible model. This is the purpose of Section 2.3, and, as we will
see, the local solutions constructed in [10] cannot serve as building blocks. Thus, we will
need to establish local well-posedness for the system (1.1) in Section B.

2.2. Proofs

In this subsection, we give the detailed proofs of Lemmas 2.1, 2.2, 2.3 and 2.6. Before
that, we recall some basic facts, which will be used freely in the proofs below.

2.2.1. Basic facts. Under the assumption (2.2), we have theL1..0; t/;Lq.Rd // estimate
for the pressure fluctuation term G.t; x/ D

�
P.�/

�
.t; x/ � zP given in (1.25):

(2.14) kGkL1.Œ0;t�;Lq.Rd // 6 C �.E0/
1=q; with q 2 Œ2;1�;

where C � depends on q and ��. Here, the case q D1 follows straightforwardly from the
definition. Recall also the estimate (1.27) for G by F : for any l > 1,

(2.15)
1

�
kGklC1

LlC1..0;t/�Rd /
6 C �.l/E0 C

C

�
kF klC1

LlC1..0;t/�Rd /
; 8t 2 .0;1/;

where we estimated kHl .�0/kL1.Rd / by C �.l/E0. Recall also the relations (2.10):

�uj D @j divuC
dX
kD1

@k curljk u; j D 1; : : : ; d;

and (2.11) between divu, F , G, � Pu and curlu:

(2.16) divuD
1

�
.F CG/; F D�.��/�1 div.� Pu/; � curluD�.��/�1 curl.� Pu/:

By use of the Lq.Rd /, q 2 .1;1/, d > 2-boundedness of Riesz operators, the following
estimates follow immediately:

krukLq.Rd / 6 C.q; d/
�
kdivukLq.Rd / C kcurlukLq.Rd /

�
;(2.17)

krF kLq.Rd / C �kr curlukLq.Rd / 6 C.q; d/k� PukLq.Rd /:(2.18)

We now recall the compensated integrability result by Coifman, Lions, Meyer and
Semmes [8] in dimension two.

Proposition 2.8 (Coifman–Lions–Meyer–Semmes’ estimate for d D 2). Consider two
function v;w 2 PH 1.R2IR/, and define

g D det
�
@1v @2v

@1w @2w

�
:

Then g belongs to the Hardy space H1.R2/, whence for all f 2 BMO.R2/, we have the
estimate ˇ̌̌ Z

R2

f .x/g.x/ dx
ˇ̌̌

6 kf kBMO.R2/ krvkL2.R2/ krwkL2.R2/:

In particular, since PH 1.R2/ ,! BMO.R2/, for all f 2 PH 1.R2/, we haveˇ̌̌ Z
R2

f .x/g.x/ dx
ˇ̌̌

6 krf kL2.R2/ krvkL2.R2/ krwkL2.R2/:
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It helps controlling the integrals appearing in the estimation of energies, for exampleR
R2 F det.ru/ dx. The term det.ru/ arises naturally in the computation of products in

dimension two, for instance,

(2.19) ruj � ruk@kuj D divu¹jruj2 � det.ru/º; rul � @luD .divu/2 � 2det.ru/:

Here and in the following, we use Einstein’s summation convention for repeated indices,
unless otherwise claimed.

2.2.2. Proof of Lemma 2.1 for d D 2. This paragraph is devoted to obtaining bounds
for the functionals A1 and A2 as defined in (1.15) for d D 2, provided with bounded den-
sity function (2.2). The constants in the following estimates may depend on the viscosity
coefficient � and the lower bound � for �, while not on the viscosity coefficient � which
will be chosen to be big.

Proof of (2.3). The functional A1 arises while using Pu as a test functional in the weak
formulation of the momentum equation (1.1)2. By doing so, one obtains the following
equality:

A1.t/ D
�

2
kru0k

2
L2.Rd /

C
�C �

2
kdivu0k2L2.Rd /

� �

Z t

0

Z
Rd

ruj � ruk@ku
j

C
�

2

Z t

0

Z
Rd

jruj2 divuC
�C �

2

Z t

0

Z
Rd

.divu/3

� .�C �/

Z t

0

Z
Rd

divurul � @luC
Z

Rd

divu.s/G.s/
ˇ̌sDt
sD0

C

Z t

0

Z
Rd

rul � @luG C

Z t

0

Z
Rd

.�P 0.�/ � P.�/C zP /.divu/2:(2.20)

Step 1. Reformulation of the energy equality.
In the following lines, we will reformulate the terms appearing in the right-hand side

above by use of (2.16) and (2.19).
By (2.16) and (2.19), the sum of the third and the fourth terms on the right-hand side

of (2.20) can be reduced as follows:

�

Z t

0

Z
R2

divu
�

det.ru/ �
1

2
jruj2

�
D
�

�

Z t

0

Z
R2

F det.ru/ �
�

2�

Z t

0

Z
R2

F jruj2

C
�

�

Z t

0

Z
R2

G
�

det.ru/ �
1

2
jruj2

�
;(2.21)

and similarly, the sum of the sixth and the eighth terms of (2.20) reads

�
�C �

�

Z t

0

Z
R2

Frul � @luC
�

�

Z t

0

Z
R2

rul � @luG

D 2
�C �

�

Z t

0

Z
R2

F det.ru/ �
�C �

�

Z t

0

Z
R2

F.divu/2

C
�

�

Z t

0

Z
R2

rul � @luG:(2.22)
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Now we pack the fifth term of (2.20) and the middle term in the above (2.22) and use (2.16)
to get

�C �

2

Z t

0

Z
R2

.divu/3 �
�C �

�

Z t

0

Z
R2

F.divu/2

D �
�C �

2�2

Z t

0

Z
R2

.F 2 �G2/ divu:(2.23)

Step 2. Estimates for the integrals in terms of E0, E�0 and L4t;x-norms of .ru;G;F /.
We are ready to estimate all the terms above.

• With the help of Proposition 2.8 and (2.18), the first terms of the right-hand side
of (2.21) and (2.22) can be estimated as follows:ˇ̌̌3�C 2�

�

Z t

0

Z
R2

F det.ru/
ˇ̌̌

6 C

Z t

0

krF kL2.R2/ kruk
2
L2.R2/

D C

Z t

0

k� PukL2.R2/ kruk
2
L2.R2/

6 �

Z t

0

k
p
� Puk2

L2.R2/
C
C��

4�

Z t

0

kruk4
L2.R2/

;(2.24)

by Young’s inequality, for some � > 0 small enough to be determined later.

• By the energy balance (2.1) and the upper bound �� for the density (2.2), the last term
of (2.20) and the terms involving the pressure deviation G in (2.21) and(2.22) can be
bounded as follows:ˇ̌̌ Z t

0

Z
Rd

.�P 0.�/ � P.�/C zP /.divu/2
ˇ̌̌
C
�

�

ˇ̌̌ Z t

0

Z
R2

G
�

det.ru/ �
1

2
jruj2

�ˇ̌̌
C
�

�

ˇ̌̌ Z t

0

Z
R2

rul@luG
ˇ̌̌

6
C �

�
E0:(2.25)

• Next, the middle term of (2.21) is:

�

2�

ˇ̌̌ Z t

0

Z
R2

F jruj2
ˇ̌̌

6
C

�

Z t

0

kF kL4.R2/krukL4.R2/krukL2.R2/

6 C

Z t

0

� 1

�5=2
kF k4

L4.R2/
C

1

�3=2
kruk4

L4.R2/

�
C C

Z t

0

kruk2
L2.R2/

:(2.26)

• The term in (2.23) can be estimated as follows:

�C �

2�2

ˇ̌̌ Z t

0

Z
R2

.F 2 �G2/ divu
ˇ̌̌

6
C

�3

Z t

0

�
kF k4

L4.R2/
C kGk4

L4.R2/

�
C C�

Z t

0

kdivuk2
L2.R2/

:(2.27)
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• It only remains the first term in the last line of (2.20), which can be bounded as follows:ˇ̌̌ Z
Rd

divu.s/G.s/
ˇ̌̌sDt
sD0

ˇ̌̌
6 �� kdivu.t/k2

L2.R2/
C

C

4��
kG.t/k2

L2.R2/

C
C

�
kG0k

2
L2.R2/

C C� kdivu0k2L2.R2/
;

with the second term of the right-hand side controlled by the initial energy as in (2.14).
We combine all of these estimates and we choose � small in order to obtain the fol-

lowing:

A1.t/ 6 C
�
1C

C �

�

�
E�0 C C�

�

Z t

0

kruk4
L2.R2/

C
C

�3=2

Z t

0

�
kruk4

L4.R2/
C
1

�
kF k4

L4.R2/
C

1

�3=2
kGk4

L4.R2/

�
;

where E�0 is given in (1.16). Hence Grönwall’s lemma yields

(2.28)
A1.t/ 6

h
C �E�0 C

C

�3=2

Z t

0

�
kruk4

L4.R2/

C
1

�
kF k4

L4.R2/
C

1

�3=2
kGk4

L4.R2/

�i
exp.C �E0/:

Step 3. Final estimates.
The next step is devoted to obtaining estimate for the L4..0; t/ � R2/ norm of the

velocity gradient ru, the pressure deviation G and the effective flux F .
• L4-estimate for G. Recall (2.15) with l D 3:

(2.29)
1

�
kGk4

L4..0;t/�R2/
6 C �E0 C

C

�
kF k4

L4..0;t/�R2/
:

• L4-estimate for F . The L4..0; t/ � R2/-norm of the effective flux F follows from
Gagliardo–Nirenberg’s inequality,

kf k2
L4.R2/

. kf kL2.R2/krf kL2.R2/;

and from (2.18):

kF kL4.R2/ 6 CkF k
1=2

L2.R2/
krF k

1=2

L2.R2/
6 CkF k

1=2

L2.R2/
k� Puk

1=2

L2.R2/
;

which can be bounded further, by virtue of (2.16) and the definition ofE.t/ and A1.t/,
as follows:

kF k4
L4..0;t/�R2/

6 C

Z t

0

.�kdivukL2.R2/ C kGkL2.R2//
2
k� Puk2

L2.R2/

6 C �.�A1.t/CE0/A1.t/:

• L4-estimate for ru. Similar as above for F , we have an L4-estimate for curlu:

kcurlukL4..0;t/�R2/ 6 Ckcurluk1=2
L1..0;t/IL2.R2//

k� Puk
1=2

L2..0;t/�R2/
6 CA1.t/

1=2:
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Hence, by use of (2.16)–(2.17), the following inequality holds true:

kruk4
L4..0;t/�R2/

6 C
�
kdivuk4

L4..0;t/�R2/
C kcurluk4

L4..0;t/�R2/

�
6
C

�4

�
kF k4

L4..0;t/�R2/
C kGk4

L4..0;t/�R2/

�
C Ckcurluk4

L4..0;t/�R2/

6
C �

�3
E0 C C

�A1.t/.E0 CA1.t//:

Finally, we go back to (2.28) and we have (2.3).

Proof of (2.4). We turn to providing a bound for the second functional A2 for d D 2. For
this purpose, by (2.16), we rewrite the momentum equation (1.1)2 as follows:

(2.30) � Pu D ��uC
�C �

�
rF �

�

�
rG:

We apply the operator @t � C div.�u/ to (2.30) and we obtain the following equation for
the material derivative of the velocity:

@t .� Pu
j /C div.� Puju/ � �� Puj �

�C �

�
@j PF

D ��@k.ru
j
� @ku/C �@k.@ku

j divu/ � � div.@kuj @ku/(2.31)

C
�C �

�
@j .F divu/ �

�C �

�
div.F @ju/

C
�

�
@j
�
.�P 0.�/ � P.�/C zP / divu

�
C
�

�
div.@juG/; j D 1; : : : ; d:

Step 1. Formulation of the energy equality.
To obtain the functional A2, it suffices to multiply the equation above by � Puj , with

� D �.t/ D min¹1; tº, sum up j , and integrate it in time and space. The most delicate
term is

�
�C �

�
@j PF

on the left-hand side of (2.31), which gives

�
�C �

�

Z t

0

Z
R2

� Puj @j PF D
�C �

�

Z t

0

�

Z
R2

PF div Pu:

We first focus on this integral for a while. Applying material derivative to (2.16) gives

(2.32) div Pu D
1

�
. PF � �P 0.�/ divu/Cruk � @ku;

and hence

�
�C �

�

Z t

0

Z
R2

� Puj @j PF D
�C �

�2

Z t

0

�k PF k2
L2.R2/

C
�C �

�

Z t

0

�

Z
R2

PF ruk � @ku

�
�C �

�2

Z t

0

�

Z
R2

PF�P 0.�/ divu:(2.33)
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To conclude, testing (2.31) by � Pu implies

1

2
�.t/ k

p
� Puk2

L2.R2/
C �

Z t

0

�kr Puk2
L2.R2/

C
�C �

�2

Z t

0

�k PF k2
L2.R2/

D
1

2

Z �.t/

0

k
p
� Puk2

L2.R2/
C

4X
kD1

Ik ;(2.34)

where

I1 D �
�C �

�

Z t

0

�

Z
R2

PF ruk � @kuC
�C �

�2

Z t

0

�

Z
R2

PF�P 0.�/ divu;

I2 D �

Z t

0

�

Z
R2

�
ruj � @ku@k Pu

j
� @ku

j divu@k Puj C @kuj @ku � r Puj
�
;

I3 D
�C �

�

Z t

0

�

Z
R2

�
� F divu div PuC F@juk@k Puj

�
;

I4 D �
�

�

Z t

0

�

Z
R2

�
divu div Pu.�P 0.�/ � P.�/C zP /C @juk@k PujG

�
:

Step 2. Estimate for I1.
We focus first on the first integral in I1, which can be reformulated by integration by

parts (noticing �.0/ D 0) asZ t

0

�

Z
R2

PF ruk � @ku D �.t/

Z
R2

F.t/ruk � @ku.t/ �

Z �.t/

0

Z
R2

F ruk � @ku

� 2

Z t

0

�

Z
R2

F @ku � r Pu
k
C 2

Z t

0

�

Z
R2

F @ku � ru
l@lu

k

�

Z t

0

�

Z
R2

F divuruk � @ku:(2.35)

The first term of the right-hand side in (2.35) above can be estimated similarly as for the
derivation of (2.24) and (2.27), using the equality

rul � @lu D .divu/2 � 2 det.ru/

in (2.19) as follows:ˇ̌̌
�.t/

Z
R2

F.t/.ruk � @ku/.t/
ˇ̌̌

6 C�.t/ k� PukL2.R2/ kruk
2
L2.R2/

C �.t/
1

�2

ˇ̌̌ Z
R2

F.t/.F.t/CG.t//2
ˇ̌̌

6 ��.t/ k
p
� Puk2

L2.R2/
C �.t/

C 2��

4�
kruk4

L2.R2/

C �.t/
C

�2

�
kF.t/k3

L3.R2/
C kG.t/k3

L3.R2/

�
:
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Exactly as in the derivation of (2.24) and (2.27), the second integral of the right-hand side
of (2.35) can be estimated as follows:ˇ̌̌ Z �.t/

0

Z
R2

Fruk � @ku
ˇ̌̌

6 CE0 C C

Z �.t/

0

k
p
� Puk2

L2.R2/

C C��
Z �.t/

0

kruk4
L2.R2/

C
C

�3

Z �.t/

0

�
kF k4

L4.R2/
C kGk4

L4.R2/

�
:

In order to estimate the third term of the right-hand side of (2.35), we write

(2.36) @juk@k Puj D divu div Pu � .@1u1@2 Pu2 � @2u1@1 Pu2/ � .@2u2 @1 Pu1 � @1u2 @2 Pu1/

in such a way that, after making use of the compensated result Proposition 2.8 and Young’s
inequality, we haveˇ̌̌ Z t

0

�

Z
R2

F@ku � r Pu
k
ˇ̌̌

6 �

Z t

0

�kr Puk2
L2.R2/

C
C��

�

Z t

0

�k
p
� Puk2

L2.R2/
kruk2

L2.R2/

C
C

�

Z t

0

� 1
�2
kF k4

L4.R2/
C

1

�2
kGk4

L4.R2/

�
:(2.37)

Thanks to (2.16) and the equality

@ku
l
ruk � @lu D divu¹.divu/2 � 3 det.ru/º

in (2.19), we have the following estimate for the last two terms of (2.35):

2
ˇ̌̌ Z t

0

�

Z
R2

F@ku � ru
l@lu

k
ˇ̌̌
C

ˇ̌̌ Z t

0

�

Z
R2

F divuruk � @ku
ˇ̌̌

6 C

Z t

0

�
�
kruk4

L4.R2/
C

1

�2
kF k4

L4.R2/
C

1

�2
kGk4

L4.R2/

�
:

Finally, using Hölder’s and Young’s inequalities, the second integral in I1 can be esti-
mated as follows:

�C �

�2

ˇ̌̌ Z t

0

�

Z
R2

PF�P 0.�/ divu
ˇ̌̌

6 �
�C �

�2

Z t

0

�k PF k2
L2.R2/

C
C �

�2�
E0:

Gathering the above computations, we obtain the following estimate for I1:

jI1j 6 C
�
1C

C �

�2�

�
E0 C ��.t/ k

p
� Puk2

L2.R2/
C �

Z t

0

�kr Puk2
L2.R2/

C �
�C �

�2

Z t

0

�k PF k2
L2.R2/

C C

Z �.t/

0

k
p
� Puk2

L2.R2/
C �.t/

C �

�
kruk4

L2.R2/

C
C��

�

Z t

0

�k
p
� Puk2

L2.R2/
kruk2

L2.R2/
C C��

Z �.t/

0

kruk4
L2.R2/

C �.t/
C

�2

�
kF.t/k3

L3.R2/
C kG.t/k3

L3.R2/

�
C C

Z t

0

�
�
kruk4

L4.R2/
C

1

��2
kF k4

L4.R2/
C

1

��2
kGk4

L4.R2/

�
:
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Step 3 Final estimates.
We now turn to the estimate of the last terms

P4
kD2 Ik in (2.34). By Young’s inequal-

ity, it is straightforward to get

jI2j 6 �

Z t

0

�kr Puk2
L2.R2/

C
C

�

Z t

0

�kruk4
L4.R2/

:

Similar as in Step 2, we have

jI3j 6 �

Z t

0

�kr Puk2
L2.R2/

C
C��

�

Z t

0

�k
p
� Puk2

L2.R2/
kruk2

L2.R2/

C
C

�2�

Z t

0

�
�
kF k4

L4.R2/
C kGk4

L4.R2/

�
;

jI4j 6 �

Z t

0

�kr Puk2
L2.R2/

C
CC �

�2�
E0:

Summing up, we have for � small enough that

A2.t/ 6 C
�
1C

C �

�2

�
E0 C C

� .1CE0 CA1.t//A1.t/

C �.t/
C

�2

�
kF.t/k3

L3.R2/
C kG.t/k3

L3.R2/

�
C C

Z t

0

�
�
kruk4

L4.R2/
C

1

�2
kF k4

L4.R2/
C

1

�2
kGk4

L4.R2/

�
:(2.38)

Recalling Step 3 in the proof of (2.3) above, we get similar L4-estimates with the time
weight � . We have the following, similar as (2.29):

1

2�

Z t

0

�kGk4
L4.R2/

6 C �E0 C
C

�

Z t

0

�kF k4
L4.R2/

;

which implies thatZ t

0

�
�
kruk4

L4.R2/
C

1

�2
kF k4

L4.R2/
C

1

�2
kGk4

L4.R2/

�
6
C �

�3
E0 C C

�.E0 CA1.t//A1.t/:(2.39)

On the other hand, we have (2.14):

1

�2
kG.t/k3

L3.R2/
6
C �

�2
E0;

and hence the following, thanks to Gagliardo–Nirenberg inequality and (2.16)–(2.18):

�.t/

�2
kF.t/k3

L3.R2/
6 C

�.t/

�2
krF.t/kL2.R2/ kF.t/k

2
L2.R2/

6 �.t/k� PukL2.R2/

� 1
�2
kGk2

L2.R2/
C kdivuk2

L2.R2/

�
6 ��.t/k

p
� Puk2

L2.R2/
C
C �

��2

� 1
�2
E20 C .A1.t//

2
�
:(2.40)

We finally combine (2.38), (2.39) and (2.40), we choose � small, and we derive (2.4).
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2.2.3. Proof of Lemma 2.2. This section is devoted to obtaining bounds for the function-
als A1 and A2 as defined in (1.15), for d D 3. The proof is similar as that of Lemma 2.1,
and we adapt the estimates in three dimensions, for instance, theL4.R2/-norm is replaced
by the L6.R3/-norm below. Since Proposition 2.8 does not hold in three dimension any-
more, we will simply use the Sobolev embedding PH 1.R3/ ,! L6.R3/ in the estimates.

Proof of (2.5). We recall that the first functional appears while using Pu as a test function
in the weak formulation of (1.1)2. By doing so, we obtain again (2.20):

A1.t/ D
�

2
kru0k

2
L2.R3/

C
�C �

2
kdivu0k2L2.R3/

� �

Z t

0

Z
R3

ruj � ruk@ku
j

C
�

2

Z t

0

Z
R3

jruj2 divuC
�C�

2

Z t

0

Z
R3

.divu/3�.�C�/
Z t

0

Z
R3

divurul@lu

C

Z t

0

Z
R3

rul@luG C

Z
R3

divu.s/G.s/
ˇ̌sDt
sD0

C

Z t

0

Z
R3

.�P 0.�/ � P.�/C zP /.divu/2:(2.41)

Step 1. Estimates in terms of E�0 and L2tL
6
x-norms of .ru;G; F /.

With the help of Hölder’s inequality, the third and fourth terms on the right-hand side
above can be straightforwardly estimated as follows:ˇ̌̌

� �

Z t

0

Z
R3

ruj � ruk@ku
j
C
�

2

Z t

0

Z
R3

jruj2 divu
ˇ̌̌

6 Ckruk3
L3..0;t/�R3/

:

Similarly, together with the relation between div u and F and G, as well as Hölder’s
inequality, the fifth, sixth and seventh terms in (2.41) can be bounded by

C

Z t

0

kdivukL2.R3/ kdivukL3.R3/ k.F;G/kL6.R3/

C C

Z t

0

krukL2.R3/krukL3.R3/




�F; 1
�
G
�



L6.R3/

which is, by virtue of the interpolation inequality

kf kL3.R3/ . kf k1=2
L2.R3/

kf k
1=2

L6.R3/
;

bounded by

C

Z t

0

�
k
p
� divuk3=2

L2.R3/

1

�5=4
k.F;G/k

3=2

L6.R3/

C kruk
3=2

L2.R3/
kruk

1=2
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�F; 1
�
G
�



L6.R3/

�
:

This can be further estimated by Young’s inequality by the following, with some small
constant � > 0:

�

Z t

0




�ru; F; 1

�5=6
G
�


2
L6.R3/

C
C

�

Z t

0
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p
� divu;ru/k6
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:
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By the same argument, the last two terms in (2.41) can be bounded by

��kdivu.t/k2
L2.R3/

C
C

�
kG.t/k2

L2.R3/
C kdivu0kL2.R3/kG0kL2.R3/
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�C �
�
C
C �
p
�

�
E�0 :

Summing up, and by further applying the interpolation inequality and then Young’s
inequality to kruk3

L3..0;t/�R3/
, we obtain the following:
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;(2.42)

with some small parameter � 6 1 to be determined below.

Step 2. Final estimates.
We now turn to the estimate of the L2..0; t/IL6.R3//-norm .ru;G;F /, similar as in

Step 3 in the proof of (2.3).
� L2tL

6
x-estimate for G.

Recall (1.26) with l D 5:

d
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kH5.�/kL1.R3/ C
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We define the time-dependent function

h.t/ WD kH5.�/k
1=3

L1.R3/
:

Thanks to the equivalence between kH5.�/kL1.R3/ and kGk6
L6.R3/

, we have

1
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6 C �h;

and so,

3
d
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which together with Young’s inequality yields
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:

Finally, we find the following estimate for G in terms of E0 and F :

(2.43)
1
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:
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� L2tL
6
x-estimate for F .

We use the Sobolev embedding

kgkL6.R3/ . krgkL2.R3/

to bound the L6x-norm of F by (2.18):Z t
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kF k2
L6.R3/
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:

� L2tL
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x-estimate for ru.

Similarly, by use of (2.16)–(2.17)–(2.18), the following inequality holds true:Z t
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:

Finally, (2.5) follows from (2.42) when we choose � small enough.

Proof of (2.6). Here we derive estimate for the functional A2 as defined in (1.15) for
d D 3. We recall that it appears while rewriting the equation on the form (2.30), next
applying the operator @t � C div.�u/ in order to obtain (2.31) which we test with the mate-
rial derivative of the velocity Pu. By doing so, we obtain (2.34):
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where Ik , k D 1; 2; 3; 4, are given as in (2.34), with R2 replaced by R3.

Step 1. Estimates for I1.
By the identity (2.35) and Hölder’s inequality, we achieve the estimatesˇ̌̌ Z t
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Z
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Similar as in the proof of (2.5) above, we use the interpolation
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and Young’s inequality to derive (noticing �.t/ 6 1)ˇ̌̌ Z t
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By the Sobolev embedding PH 1.R3/ ,!L6.R3/ and (2.16)–(2.17)–(2.18)–(2.43), we have
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It holds by Young’s inequality that
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Gathering all of these computations and using Young’s inequality, we have
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:

Step 2. Final estimates.
Recalling the definitions of Ik , k D 2; 3; 4, given in (2.34), we can estimate them

similarly as in Step 1 as follows:

jI2 C I3 C I4j

6 C

Z t

0

�kr PukL2.R3/k.ru; F /kL6.R3/krukL3.R3/ C C
�

Z t

0

�kr PukL2.R3/krukL2.R3/

6 �

Z t

0

�kr Puk2
L2.R3/

C
C �

�

Z t

0

�
�k.ru; F /k3

L6.R3/
krukL2.R3/ C kruk

2
L2.R3/

�
6 �A2.t/C

C �

�
A1.t/

1=2
�
A2.t/

1=2A1.t/C
E
2=3
0

�2
C
E
1=6
0

�3
A1.t/

�
C
C �

�
E0:

Gathering all of these computations, we obtain, after choosing � small enough,
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A further application of Young’s inequality yields (2.6).

2.2.4. Proof of Lemma 2.3. In this paragraph, we derive a priori estimate for the upper
bound of the density in terms of A1 and A2, under the assumption supt;x �.t; x/ 6 ��.
The basic facts in Section 2.2.1 will be used freely.

Proof. With the help of the expression of divu in (2.16), we begin by rewriting the mass
equation (1.1)1 in terms of F and G as follows:

@t�C u � r�C
�

�
G D �

�

�
F:

Due to the fact that the pressure is an increasing function of the density and that G D
P.�/ � zP , the above equation yields

(2.45) @t j� � Q�j C u � rj� � Q�j C
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jGj D �

�

�
sgn.� � Q�/F:

This yields immediately the following L1 estimate for the density, which we use on the
short time interval Œ0; �.t/�:
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X. Liao and S. M. Zodji 2198

For larger time, we would like to improve the L1t -norm for kF kL1x into L3t -norm,
which requires less decay rate in time. From (2.45), we have

(2.47)
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Also, since the pressure is an increasing function of the density such that
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we derive from Young’s inequality the following estimate on larger time interval Œ�.t/; t �:
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Gathering estimates (2.46) and (2.48), we have
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It only remains to estimate the norm of the effective flux F in terms of the functionals A1

and A2, and to do so, we distinguish two cases, according to the dimension.

Case d D 2.
We recall that the effective flux is given by

(2.50) F D �.��/�1 div.� Pu/ D � divu �G; G D P.�/ � zP :

The interpolation inequality yields the following estimate on the small interval Œ0; �.t/�:Z �.t/
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Since the density contains vacuum states, we are not allowed to bound the last factor in
the above inequality solely by the Gagliardo–Nirenberg inequality. On T2, we have at our
disposal a logarithmic interpolation inequality (see [16, 17, 21]) which is not valid in the
whole space. To address this issue, we prove in Lemma A.1 an interpolation inequality
that will allow us to take into account the vacuum state. Thus, from Lemma A.1, we haveZ �.t/
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and therefore,

(2.51)
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Similarly, the interpolation inequality and Lemma A.1 yield, on the larger time inter-
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Hence,
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Finally, (2.49), (2.51) and (2.52) lead to
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Case d D 3.
From the expression of the effective flux (2.50), we have by the Gagliardo–Nirenberg

inequality,Z �.t/
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k� Puk

3=2

L6.R3/
6 C �A1.t/

1=4A2.t/
5=4:

Finally, we get

sup
Œ0;t�

k� � Q�kL1.R3/ 6 k�0 � Q�kL1.R3/ C
C �

�1=3

�
A1.t/

1=2
CA2.t/

1=2
�
;

and this ends the proof of Lemma 2.3.
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2.2.5. Proof of Lemma 2.6. In this section, we use the (time-independent) bound C0
for A1.t/, A2.t/ and �.t/ to show the propagation of tangential regularity of the density,
along with the Lipschitz bound on the velocity.

We recall that the family of vector fields X.t/ D .X�.t//16�6m is defined as solution
of (1.8):

(2.53)

´
@tX� C u � rX� D @X�u D .X� � r/u;

X� jtD0 D X0;� ;

and we can estimate the norms of

kX.t/kL1;p.Rd / D sup
16�6m

kX�.t/kL1;p.Rd /

D sup
16�6m

�
kX�.t/kL1.Rd / C krX�.t/kLp.Rd /

�
by use of the Lipschitz norm of the velocity. On the other side, these norms will help to
bound the Lipschitz norm of the velocity, and in particular, the pressure-related part ruG
in the decomposition (2.9) of ru:

ru D r QuCruG(2.54)

WD

�
�
1

�
RR.��/�1 div.� Pu/ �

1

�
RR.��/�1 � curl.� Pu/

�
C

�1
�

RRG
�
:

Finally, we will obtain the estimates for

A3.t/ D kX.t/kL1;p.Rd / C sup
16�6m

kdiv.�X�/.t/kLp.Rd /

by Grönwall’s inequality.

Proof. Step 1. Preliminary estimates for kXkL1;p.Rd /.
From (2.53), we deduce easily that

(2.55) kX�.t/kL1.Rd / 6 kX0;�kL1 C
Z t

0

kX�.s/kL1.Rd / kru.s/kL1.Rd / ds:

We now take derivatives in (2.53) and we obtain

(2.56) @t@kX
j
� C .u � r/@kX

j
� D @kX� � ru

j
� @ku � rX

j
� C @X�@ku

j :

We take the trace in the above equality and we make use of the expression of the diver-
gence of the velocity div u D 1

�

�
F C G

�
; in order to obtain the following equation for

divX� :

@t .divX�/C u � rdivX� D
1

�
@X�G C

1

�
@X�F:

Hence, it is straightforward to show the following:

kdivX�.t/kLp.Rd / 6 kdivX0;�kLp.Rd /

C
1

�

Z t

0

k@X�GkLp.Rd / C
1

�

Z t

0

kX�kL1.Rd / krF kLp.Rd /

C

Z t

0

kdivu.s/kL1.Rd / kdivX�.s/kLp.Rd / ds:(2.57)
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Taking the antisymmetric part in (2.56), we get the following equation for curlX� :

@t .@kX
j
� � @jX

k
� /C u � r.@kX

j
� � @jX

k
� /

D @kX� � ru
j
� @jX� � ru

k
C @ju � rX

k
� � @ku � rX

j
� C @X� .@ku

j
� @ju

k/;

from which we deduce easily the following:

kcurlX�.t/kLp.Rd / 6 kcurlX0;�kLp.Rd / C

Z t

0

krX�kLp.Rd / krukL1.Rd /

C

Z t

0

kX�kL1.Rd / kr curlukLp.Rd /:(2.58)

By combining (2.57) and (2.58), we obtain the following estimate for the vector field
gradient:

krX�.t/kLp.Rd / 6 krX0;�kLp.Rd / C
1

�

Z t

0

k@X�GkLp.Rd /

C

Z t

0

krX�.s/kLp.Rd / kru.s/kL1.Rd / ds

C

Z t

0

kX�.s/kL1.Rd /




�1
�
rF.s/;r curlu.s/

�



Lp.Rd /

ds:(2.59)

Step 2. Estimates for A3.t/ D kX.t/kL1;p.Rd / C sup16�6mkdiv.�X�/.t/kLp.Rd /.

In order to estimate the Lp.Rd / norm of div.�X�/, we combine the equation (1.1)1
on the density and the equation (2.53) on the vector field X� in order to obtain

@t .div.�X�//C div.u div.�X�// D 0;

from which we deduce the following estimates:

kdiv.�X�/.t/kLp.Rd / 6 kdiv.�0X0;�/kLp.Rd /

C

Z t

0

kdivu.s/kL1.Rd / kdiv.�X�/.s/kLp.Rd / ds:(2.60)

Consequently, we can estimate

@X�G D P
0.�/ div.�X�/ � �P 0.�/ divX�

by
k@X�GkLp.Rd / 6 C0

�
kdiv.�X�/kLp.Rd / C kdivX�kLp.Rd /

�
:

We combine (2.55), (2.59) and (2.60) together with (2.18) to get

A3.t/ 6 A3.0/C C0

Z t

0

A3.s/
�1
�
C kru.s/kL1.Rd / C k� Pu.s/kLp.Rd /

�
ds:

Grönwall’s lemma yields

(2.61) A3.t/ 6 A3.0/ exp
h
C0

Z t

0

�
1C kru.s/kL1.Rd / C k� Pu.s/kLp.Rd /

�
ds
i
:



X. Liao and S. M. Zodji 2202

Step 3. Estimates for kruGkL1tL1x .

Recall the second part, ruG D 1
�
RRG, in (2.54). We use Proposition 2.5 to bound it

as follows:

kruG.t/kL1.Rd / 6
C

�
kG.t/kL2.Rd /

C
C

�
kG.t/kL1.Rd /

h
1C log

�
e C
kG.t/kLp

X.t/
.Rd /

kG.t/kL1.Rd /

�i
:

Now we focus on the estimate for

kG.t/kLp
X.t/

.Rd / D
1

I.X.t//

�
kG.t/kL1.Rd /kX.t/kL1;p.Rd /C sup

16�6m

k@X�G.t/kLp.Rd /

�
6

C0

I.X.t//
A3.t/:

It is well known that the denominator I.X.t// has a positive lower bound as follows, see,
e.g., equation (4.3) in [9]:

I.X.t// > I.X0/ exp
�
� C

Z t

0

kru.s/kL1.Rd / ds
�
:

We hence have

kruG.t/kL1.Rd /

6 C0

h
1C

A3.0/

I.X0/
C

Z t

0

�
1C k� PukLp.Rd / C krukL1.Rd /

�
.s/ ds

i
:(2.62)

Step 4. Final estimates.
We continue with the estimates for k� PukL1tLp.Rd / and kr QukL1tL1.Rd /, taking the

dimension into account.

Case d D 2.
As in the proof of Lemma 2.3, by using our interpolation inequality in Lemma A.1,

we obtainZ t

0

k� PukLp.R2/

6 C0

Z t

0

h
k
p
� Puk

2=p

L2.R2/
kr Puk

1=p0�1=p

L2.R2/
CE

1
p
.1�p0=2/

0 k
p
� Puk

p0=p

L2.R2/
kr Puk

1�p0=p

L2.R2/

i
;

where the first integral of the right-hand side above is bounded asZ t

0

k
p
� Puk

2=p

L2.R2/
kr Puk

1=p0�1=p

L2.R2/
D

Z t

0

k
p
� Puk

2=p

L2.R2/

�
�kr Puk2

L2.R2/

�1=2�1=p
�1=p�1=2

6
� Z t

0

k
p
� Puk2

L2.R2/

�1=p� Z t

0

�kr Puk2
L2.R2/

�1=2�1=p� Z t

0

�2=p�1
�1=2

6 C.p/.1C
p
t /A1.t/

1=pA2.t/
1=2�1=p;
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and the second integral of the right-hand side above is bounded asZ t

0

k
p
� Puk

p0=p

L2.R2/
kr Puk

1�p0=p

L2.R2/

D

Z t

0

�
k
p
� Puk2

L2.R2/

�p0=.2p/ �
�kr Puk2

L2.R2/

�1=2�p0=.2p/
�p
0=.2p/�1=2

6
� Z t

0

k
p
� Puk2

L2.R2/

�p0=.2p/� Z t

0

�kr Puk2
L2.R2/

�1=2�p0=.2p/� Z t

0

�p
0=p�1

�1=2
6 C.p/.1C

p
t /A1.t/

p0=.2p/A2.t/
1=2�p0=.2p/:

In sum, for all 2 < p <1,

(2.63)
Z t

0

k� PukLp.R2/ 6 C0.1C
p
t /:

Now following the computations leading to (2.51), it is straightforward to obtainZ t

0

kr QukL1.R2/ds 6
1

�

Z t

0

kRR.��/�1 div.� Pu/kL1.R2/

C
1

�

Z t

0

kRR.��/�1 curljk.� Pu/kL1.R2/

6 C �
� 1

�5=6
C 1

�
.1C t2=3/.1CE

1=18
0 /.A1.t/

1=2
CA2.t/

1=2/

6 C0.1C t
2=3/:(2.64)

We plug (2.63) into (2.62), sum (2.62) and (2.64) up, and finally use Grönwall’s inequality
to get the estimate (2.13)2 for d D 2. The estimate (2.13)1 for A3.t/ follows correspond-
ingly from (2.61).

Case d D 3.
Similarly as in the proof of (2.63), for 3 < p < 6 we interpolate the Lp.R3/ norm

of
p
� Pu between L2.R3/ and L6.R3/, and then we make use of the embedding PH 1.R3/

,! L6.R3/ to deriveZ t

0

k� PukLp.R3/ 6 C0

Z t

0

k
p
� Puk

3=p�1=2

L2.R3/

�
�kr Puk2

L2.R3/

�3=4�3=.2p/
�3=.2p/�3=4

6 C0.1C
p
t /:(2.65)

Thanks to the interpolation inequality and the Sobolev embedding, we have

(2.66)
Z t

0

kr QukL1.R3/ 6
Z t

0

k� Puk
1=2

L2.R3/
k� Puk

1=2

L6.R3/
6 C0.1C

p
t /:

As above, we plug (2.65) into (2.62), sum (2.62) and (2.66) up, and finally use Grönwall’s
inequality to get the estimate (2.13)2 for d D 3. The estimate (2.13)1 for A3.t/ follows
from (2.61) in dimension three. This ends the proof of Lemma 2.6.
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2.3. Proof of Theorem 1.6 and Corollary 1.10

This section is devoted to the final step in the proof of the main result, Theorem 1.6. We
recall that we are considering the Cauchy problem associated with equations (1.1) and
with initial data (1.2) satisfying (1.3) and (1.4).

Usually, the sequence of initial data .�ı0; u
ı
0/ is obtained by mollifying .�0; u0/ with a

smooth kernel. This regularization procedure has the unfortunate effect of destroying the
density’s structure. As observed in [29,50], the most effective approach is to construct the
approximate solutions in a class that is very close to the limit. From this point of view, the
local result obtained by Danchin, Fanelli, Paicu in [10] should be appropriate. However,
the argument of the maximum regularity of the heat equation requires the density to be a
small perturbation of a constant state, even for the local solution. We are therefore led to
prove the local well-posedness of equations (1.1) stated in Theorem 1.4 in Section B.

Proof of Theorem 1.6. In order to apply the local-in-time well-posedness results in Theo-
rem 1.4, we consider a sequence of initial densities .�ı0/ı satisfying: for all 0 < ı < 1,

(2.67) �ı0 > ı; �ı0 � Q� 2 L
2.Rd / \ L1.Rd / \ Lp

X0
.Rd /

such that
�ı0 � Q�

ı!0
���! �0 � Q� in L2.Rd /:

The construction of the sequence of initial velocities .uı0/ı � H
1.Rd /, converging

strongly to u0 in H 1.Rd / and satisfying the compatibility condition

(2.68) div¹2�Duı0 C .� divuı0 � P.�
ı
0/C

zP /º 2 L2.Rd /

can be found in Section 3.5 of [50]. Now we can apply Theorem 1.4 to get the existence
of a unique solution .�ı ; uı/ that satisfies

(2.69)

´
@t�

ı C div.�ıuı/ D 0;

@t .�
ıuı/C div.�ıuı ˝ uı/CrP.�ı/ D ��uı C .�C �/rdivuı ;

with initial data
.�ı/jtD0 D �

ı
0 and .uı/jtD0 D u

ı
0:

The solution is defined up to a maximal time T ı , and enjoys the regularity outlined in
Theorem 1.4, which is sufficient for the computations performed in the preceding sections
to be meaningful, leading to Lemmas 2.4 and 2.6. In particular, all the conditions outlined
in the blow-up criterion (1.9) are satisfied, implying that T ı D C1. Finally, employing
classical arguments involving compact embedding, the Aubin–Lions lemma and lever-
aging the regularity of the effective flux, one can establish the strong convergence of a
subsequence of .�ı ; uı/ to .�; u/ satisfying the regularity in Theorem 1.6. Furthermore,
given the improved-in-time Lipschitz bound of the velocity field in Remark 2.7, a change
of variables into Lagrangian coordinates ensures the uniqueness of such a solution. We
refer for example to [10] for the computations.
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Proof of Corollary 1.10. At this level, we obtain a sequence .�.�/; u.�//�>� satisfying

(2.70)

8̂̂<̂
:̂
@t�

.�/ C div.�.�/u.�// D 0;

@t .�
.�/u.�//C div.�.�/u.�/ ˝ u.�// � rF .�/ � ��u.�/

D �
�

�
rF .�/ �

�

�
rP.�.�//;

with initial data (1.2) satisfying (1.3) and (1.4) and div u0 D 0. Above, the effective
flux F .�/ solves the following elliptic equation:

�F .�/ D div.�.�/ Pu.�//:

Given that .�.�//� is bounded in L1..0;1/ � Rd / and .
p
�.�/ Pu.�// is bounded in

L2..0;1/ � Rd /, it follows that .�rF .�//� is bounded in L2..0;1/ � Rd /, resulting
in weak convergence (up to a subsequence) to some r… 2 L2..0;1/ � Rd /. Obvi-
ously, the right-hand side of the second equation in (2.70) converges strongly to zero in
L1..0;1/; PH�1.Rd //, given that .��1=2F .�// is bounded in L1..0;1/; L2.Rd // and
.P.�.�// � zP /� is bounded in L1..0;1/;L2.Rd//.

The regularity of the sequence .u.�// ensures that, up to a subsequence, .u.�// con-
verges strongly inL2loc..0;1/�Rd / to some function v2L1..0;1/;H 1.Rd //. Further-
more, since the sequence .�.�//� is bounded in L1..0;1/ �Rd /, it converges weakly-*
to some % 2 L1..0;1/�Rd /. Additionally, the sequence .divu.�//� converges strongly
to zero in L1..0;1/; L2.Rd //, since from the bound of the functional A1, the sequence
.� kdiv u.�/k2

L2.Rd /
/� is bounded. These convergences, together with the Aubin–Lions

lemma, are sufficient to pass to the limit in (2.70) and to establish that .%; v/ solves
the incompressible model (1.22). The uniqueness result for (1.22) in [44] and the uni-
form bounds in Theorem 1.6 imply the convergence of the whole sequence .�.�/; u.�//�
(instead of some subsequence). This completes the proof of Corollary 1.10.

A. Interpolation inequality

Lemma A.1 (Density-weighted interpolation inequality). Let v 2 PH 1.R2/, and let � > 0

be such that
p
�v 2L2.R2/ and � � Q� 2 Lp.R2/ for some 1 < p <1, with Q� > 0. Then

v 2L2.R2/ and there exists a constant C > 0, depending only on Q� and p, such that the
following estimate holds true:

(A.1) kvkL2.R2/ 6 C
�
k� � Q�k

p=2

Lp.R2/
krvkL2.R2/ C k

p
�vkL2.R2/

�
:

Moreover, for all 2 < q <1, we have

k�q
0=.2q/vkLq.R2/ 6 C

�
k
p
�vk

2=q

L2.R2/
krvk

1=q0�1=q

L2.R2/

C k� � Q�k

p
q
.1�q0=2/

Lp.R2/
k
p
�vk

q0=q

L2.R2/
krvk

1�q0=q

L2.R2/

�
:(A.2)

Proof. In the first step of the proof, we emulate the approach in Proposition A.6 of [44]
by expressing

(A.3) Q�jvj2 D . Q� � �/ jvj2 C � jvj2:
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Due to the assumption that
p
�v 2L2.R2/, we only need to compute the integral of the

first term of the right-hand above. With the help of interpolation, and the Hölder and
Young inequalities, we haveZ

R2

. Q� � �/jvj2 6 k� � Q�kLp.R2/ kvk
2

L2p
0
.R2/

6 Cpk� � Q�kLp.R2/ kvk
2=p0

L2.R2/
krvk

2=p

L2.R2/

6
1

2
Q�kvk2

L2.R2/
C Cp; Q�k� � Q�k

p

Lp.R2/
krvk2

L2.R2/
;

and (A.1) just follows. Next, for all 2 < q < 1, the Hölder and Gagliardo–Nirenberg
inequalities yield

k�q
0=.2q/vkLq.R2/ 6 k

p
�vk

q0=q

L2.R2/
kvk

1�q0=q

L2q.R2/

6 Ck
p
�vk

q0=q

L2.R2/
krvk

1=q0�1=q

L2.R2/
kvk

1=q�q0=q2

L2.R2/

6 Ck
p
�vk

q0=q

L2.R2/
krvk

1=q0�1=q

L2.R2/
kvk

2=q�q0=q

L2.R2/
:

Hence (A.2) holds true while replacing the L2.R2/ norm of the velocity by (A.1).

B. Local well-posedness

In this section, we prove the local well-posedness result in Theorem 1.4 of the Navier–
Stokes equations for a compressible fluid with an initial density having tangential regu-
larity. Our method relies on a change of variables into Lagrangian coordinates, followed
by the study of the linearized system and the full nonlinear system, in a similar way as
in [49]. In particular, we do not require the density to be a small perturbation around a
constant state in L1.Rd /.

More precisely, we consider the Cauchy problem of the system (1.1):

(B.1)

´
@t�C div.�u/ D 0;
@t .�u/C div.�u˝ u/CrP.�/ D ��uC .�C �/rdivu;

equipped with initial data (1.2):

(B.2) �jtD0 D �0 and .�u/jtD0 D �0u0;

satisfying (1.3), (1.4) and (1.6):

(B.3)

´
0 < � 6 �0.x/; �0 � Q� 2 L

2.Rd / \ L1.Rd / \ Lp
X0
.Rd /;

u0 2 H
1.Rd /; ��u0 C .�C �/rdivu0 � rP.�0/ 2 L2.Rd /:

Above, Q� > 0 is a constant and X0 D .X0;�/16�6m � L1;p.Rd /, d < p < 1, is a
nondegenerate family of m2N� vectors fields, with m > d � 1.

Here, we present the main lines of the proof of Theorem 1.4; detailed computations
can be found in [49], in the more involved case of density-dependent viscosity.
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Step 1. Lagrangian coordinates.
Let 0 < T 61, let u be a Lipschitz vector field such that ru 2 L1..0; T /;L1.Rd //,

and let us consider its flow map X given by

Xu.t; y/ D y C

Z t

0

u.�;Xu.�; y// d� DW y C

Z t

0

u.�; y/ d�;

where, hereafter, for all g D g.t; x/, we define g D g.t; y/ by

g.t; y/ D g.t;X.t; y//:

By performing this change of variables, the equations (B.1) reads

(B.4)

´
@t .�Ju/ D 0;

�0@tu D div
�

Adj.DXu/¹2�DAuuC .� divAu u � P.�/C zP /º
�
;

where

Ju D det.DXu/; Au D .DXu/
�1; divAu w D A

T
u W rw D DwWAu;

2DAuw D Dw � Au C A
T
u � rw:

Step 2. Well-posedness of the linearized system.
Motivated by (B.4), we are led to consider the linear system

(B.5)

´
�0 @tv � ��v � .�C �/rdiv v D divf;
vjtD0 D v0;

where the source term f and the initial datum v0 belong to the following space:

YT WD
®
.f; v0/ 2 L

1..0; T /; L2.Rd // �H 1.Rd /W f; @tf; �@t tf 2 L
2..0; T / �Rd /I

p
� @tf 2 L

1..0; T /; L2.Rd //I��v0C.�C�/rdiv v0C divfjtD02L2.Rd /
¯
:

The solution of the linearized system (B.5) is constructed in the following space:

ZT WD
®
v 2L1..0; T /;H 1.Rd // Wrv; @tv;r@tv;

p
�@t tv; �r@t tv 2L

2..0; T / �Rd /

@tv;
p
�r@tv; �@t tv 2L

1..0; T /; L2.Rd //
¯
:

It is straightforward to check that for T <1, every v 2ZT satisfies

v 2C.Œ0; T �;H 1.Rd // and @tv 2C..0; T �; L
2.Rd //:

The well-posedness result for the linearized system (B.5) reads as follows.

Proposition B.1. Let 0 < T 6 1. For all .f; v0/ 2 YT , there exists a unique solution
v 2ZT of the Cauchy problem (B.5). Moreover, the following estimates holds true for v.
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(1) Basic energy estimates:

(B.6) sup
Œ0;T �

k
�p
�0 v;

p
�0 @tv;rv

�
k
2
L2.Rd /

C

Z T

0

k
�
rv;
p
�0 @tv;r@tv

�
k
2
L2.Rd /

. k
�p
�0 v0;

p
�0 @tvjtD0;rv0

�
k
2
L2.Rd /

C sup
Œ0;T �

kf k2
L2.Rd /

C

Z T

0

k
�
f;@tf

�
k
2
L2.Rd /

:

(2) Higher order energy estimates:

sup
Œ0;T �

k
�p
� r@tv; �

p
�0 @t tv

�
k
2
L2.Rd /

C

Z T

0

k
�p
��0 @t tv; �r.@t tv/

�
k
2
L2.Rd /

.
Z T

0

kr@tvk
2
L2.Rd /

C sup
Œ0;T �

�k@tf k
2
L2.Rd /

C

Z T

0

�2k@t tf k
2
L2.Rd /

:(B.7)

The constant appearing in the above estimates does not depend on the upper or lower
bound of the density �0.

The proof of Proposition B.1 is not part of the classical theory of parabolic systems due
to the roughness of the density. However, it can be achieved by a regularization process
followed by a compactness argument. We refer, for example, to Theorem 3.1 in [49] for
the derivation of estimates (B.6) and (B.7).

Step 3. Further estimates of the linearized system.
By interpolating the estimates (B.6) and (B.7), we observe that the following estimates

hold true for the velocity gradient and its time derivative.

Corollary B.2. The following estimates hold true.

(1) Assuming that f 2 Lr ..0; T /; Lp.Rd // for 2 6 r 61 and 2 < p <1 if d D 2
or 2 < p 6 6 if d D 3, we have

(B.8) krvk2
Lr ..0;T /;Lp.Rd //

. k.f; v0/k2YT C kf k
2
Lr ..0;T /;Lp.Rd //

:

The same estimate holds also true, if d D 3, for 6 < p <1, and 2 6 r 6 4p=.p � 6/.

(2) For all 2 6 r 61 and 2 < p <1 if d D 2 and 2 < p 6 6 if d D 3, we have

(B.9) k� sr@tvk
2
Lr ..0;T /;Lp.Rd //

. k.f; v0/k2YT C k�
s@tf k

2
Lr ..0;T /;Lp.Rd //

where

s D

´
1 � 1=p � 1=r if d D 2;
5=4 � 3=.2p/ � 1=r if d D 3:

For d D 3, the same estimate also holds true for all 6 < p <1 and 2 6 r 6 4p=.p � 6/.

(3) Let X0 D .X0;�/16�6m � L1;p.Rd /, d < p <1, be a nondegenerate family of
m2N� vectors fields, with m > d � 1.
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(a) Assume that f 2 Lr ..0; T /; L1.Rd / \ Lp
X0
.Rd //, with 2 6 r 6 8 if d D 2 and

2 6 r 6 32=9 if d D 3. Then rv 2Lr ..0; T /;L1.Rd // and the following estimate
holds true:

krvk2
Lr ..0;T /;L1.Rd //

. k.f; v0/k2YT
C kf k2

Lr ..0;T /;L2.Rd /\L1.Rd /\Lp
X0
.Rd //

:(B.10)

(b) Assume f 2Lr ..0;T /;L1.Rd /\Lp
X0
.Rd //, with 2 < p <1, 26 r 6 2p=.p � 2/

if d D 2 and 3 < p 6 6, 2 6 r 6 4p=.3p � 6/ if d D 3. Then we have

k@X0
rvk2

Lr ..0;T /;Lp.Rd //
. kX0k

2
L1.Rd /

k.f; v0/k
2
YT
C k@X0

f k2
Lr ..0;T /;Lp.Rd //

CkrX0k
2
Lp.Rd /

kf k2
Lr ..0;T /;L2.Rd /\L1.Rd /\Lp

X0
.Rd //

:(B.11)

Let d D 3 and 6 < p <1, 2 6 r 61. If � sf 2 Lr ..0; T /; L1.R3/\ Lp
X0
.R3//

and �3=4�1=r @tf 2 L3.R3/, with

s D
3

4
�
1

r
�
3

2p
,

then, from (2), we have �3=4�1=rr@tv 2L3.R3/ and

k� s@X0
rvk2

Lr ..0;T /;Lp.R3//
. k� s@X0

f k2
Lr ..0;T /;Lp.R3//

(B.12)

C kX0k
2
L1.R3/

�
k.f; v0/k

2
YT
C k�3=4�1=r@tf k

2
Lr ..0;T /;L3.R3//

�
C krX0k

2
Lp.R3/

k� sf k2
Lr ..0;T /;L2.R3/\L1.R3/\Lp

X0
.R3//

:

The constant appearing in the above estimates depends on both the lower and upper
bounds of the density.

Indeed, all the estimates in Corollary B.2 are based on the following expression of the
velocity gradient:

rv D rPv CrQv D �
1

�
.��/�1rP .�0@tv/ �

1

�
.��/�1rQ.�0 @tv/

C
1

�
.��/�1rP divf C

1

�
.��/�1rQ divf:(B.13)

The first two terms associated with @tv exhibit regularity due to the regularity of @tv.
In particular, their Lr ..0; T /; Lp.Rd // norm estimates can be obtained by interpolating
the estimate (B.6). The Lr ..0; T /; Lp.Rd // norm estimate for the last two terms in the
expression of the velocity gradient (B.13) follows from the continuity of Riesz operators
on Lp.Rd / for all 1 < p <1. These computations lead to (B.8).

The estimate (B.10) is obtained similarly: The Lr ..0; T /;L1.Rd // norm of the terms
associated with @tv can be estimated by interpolating the estimate (B.6), while the norm
of the remaining terms is obtained using Proposition 2.5 since Riesz operators fail to be
continuous on L1.Rd /.
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To derive the estimate (B.9), we take time derivative of (B.13) and apply the continu-
ity of Riesz transforms on Lp.Rd /, 1 < p <1, to obtain norms for the terms associated
with @tf . The norm of the first two terms, associated with @t tv, can be obtained by inter-
polating estimate (B.7).

For the last estimates (B.11) and (B.12), we take the derivative along X0 in (B.13) and
we obtain

@X0
rv D �

1

�
X0 � r.��/

�1
rP .�0@tv/ �

1

�
X0 � r.��/

�1
rQ.�0 @tv/

C
1

�
@X0

.��/�1rP divf C
1

�
@X0

.��/�1rQ divf:

Once again, the norms of the first two terms are obtained using Hölder’s inequality and
by interpolating estimates (B.6) and (B.7). For the remaining terms, we use Lemma A.1
of [10]. This completes this step of the study of the linear system (B.5).

Step 4. Final conclusion.
Once we conclude the study of the linear system associated with (B.4), the next step is

to define a map that is contracting for some small time T > 0, such that it admits a unique
fixed point, which serves as a solution to (B.1) after reverting to Eulerian coordinates.
With Proposition B.1 and Corollary B.2 in mind, we can verify that the unique solution of
the full nonlinear system can be constructed in

zZT WD
®
v 2ZT W rv 2L

2..0; T /; L1.Rd / \ Lp
X0
.Rd //

¯
for 2 < p <1 if d D 2 and 3 < p 6 6 if d D 3 by following the steps outlined in Section 4
of [49]. The only argument we need to specify is contained in the following lemmas.

Lemma B.3. Let v be a vector field satisfying that rv 2L1..0; t/; L1.Rd // and, for
some t > 0, @X0

rv 2L1..0; t/; Lp.Rd //. Assuming that

(B.14) V WD

Z t

0

�
krvkL1.Rd / C k@X0

rvkLp.Rd /

�
< 1;

then there exists a constant K D K.V / such that the following estimate holds true:

k@X0
Adj.DXv.t//; @X0

Av.t/; @X0
J˙1v .t/kLp.Rd / 6 Kk@X0

DvkL1..0;t/;Lp.Rd //:

Moreover, we have for all Dw 2 Lp
X0
.Rd /,

k@X0
.Adj.DXv.t//DAv.t/w/ � @X0

DwkLp.Rd /

C k@X0
.Adj.DXv.t// divAv.t/w/ � @X0

divwkLp.Rd /

6 K
�
kDwkL1.Rd / C k@X0

DwkLp.Rd /

� Z t

0

�
kDvkL1.Rd / C k@X0

DvkLp.Rd /

�
:

Lemma B.4. Let v1 and v2 two vector fields satisfying (B.14), with V1; V2 < 1, and let
ıv WD v2 � v1. Then, there exists a constant K D K.V1; V2/ such that the following esti-
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mate holds true:

k
�
@X0

Av2.t/ � @X0
Av1.t/; @X0

Adj.DXv2.t// � @X0
Adj.DXv1.t//kLp.Rd /

C k@X0
J˙1v2 .t/ � @X0

J˙1v1 .t/
�
kLp.Rd /

6 K

Z t

0

�
kDıvkL1.Rd / C k@X0

DıvkLp.Rd /

�
:

The particular case of 3 < p 6 6 for d D 3 is sufficient for constructing blocks for
the global solution in Theorem 1.6. For 6 < p <1 in three dimensions, the fixed point
theorem may be applied in a closed subset of the following space:

zZT WD
®
v 2ZT W �

3=4�1=r
r@tv 2L

r ..0; T /; L3.R3//I

�3=4�1=r�3=.2p/ rv 2Lr ..0; T /; L1.R3/ \ Lp
X0
.R3//

¯
:

This ends the sketchy proof of Theorem 1.4.
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