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On various Carleson-type geometric lemmas
and uniform rectifiability in metric spaces: Part 1

Katrin Fässler and Ivan Yuri Violo

Abstract. We introduce new flatness coefficients, which we shall call �-numbers, for
Ahlfors k-regular sets in metric spaces (k 2N). Using these coefficients for k D 1,
we characterize uniform 1-rectifiability in rather general metric spaces, completing
earlier work by Hahlomaa and Schul. Our proof proceeds by quantifying an isometric
embedding theorem due to Menger, and by an abstract argument that allows to pass
from a local covering by continua to a global covering by 1-regular connected sets.
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1. Introduction

This note is intended as a contribution to a broad program aimed at extending the theory
of quantitative (or uniform) rectifiability, pioneered by David and Semmes in Euclidean
spaces [20,21], to other metric spaces. Recent research in this direction concerns different
classes of sets, depending on the ambient metric space:

(1) quantitatively rectifiable sets modelled on Euclidean spaces, such as 1-regular curves,
or sets with big pieces of (bi-)Lipschitz images of Euclidean sets,

(2) sets that are quantitatively rectifiable by specific types of non-Euclidean Lipschitz
graphs, for instance in Heisenberg groups and parabolic spaces.
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Here we focus on direction (1). We introduce new quantitative coefficients called
�-numbers. We characterize uniform 1-rectifiability in rather general metric spaces (The-
orem 1.4) by a Carleson-type summability condition for �-numbers. The proof uses results
that we believe to be of independent interest and which we will explain in more detail in
the subsequent paragraphs.

1.1. From ˇ-numbers in Euclidean spaces to �-numbers in metric spaces

Uniformly k-rectifiable sets in Rn (k; n 2 N, 1 � k < n) can be characterized in many
equivalent ways, for instance as k-regular sets with big pieces of Lipschitz images of sub-
sets of Rk , or by means of a geometric lemma for Jones ˇq;Vk -numbers which quantifies
the approximability of the set by k-dimensional planes. Here q is allowed to be any num-
ber 1� q < 2k=.k � 2/ if k � 2 and 1� q �1 if kD 1, recall Section 1.4 in Part I of [21].
By “k-regular” we mean sets that satisfy the Ahlfors s-regularity condition (2.4) for sD k.
For the purpose of this introduction, we say that a k-regular set E in Euclidean space Rn

satisfies the 2-geometric lemma with respect to ˇq;Vk , denoted E 2GLem.ˇq;Vk ; 2/, if
there is a constant M � 0 such that

(1.1)
Z
BR.x0/\E

Z R

0

ˇq;Vk .Br .x/ \E/
2 dr

r
dHk.x/ �MRk x0 2 E; R > 0;

where the coefficients
(1.2)

ˇq;Vk .Br .x/\E/ WD inf
V 2Vk

�«
Br .x/\E

h d.y; V /

diam.Br .x/ \E/

iq
dHk.y/

�1=q
; q2 .0;1/;

quantify in a scale-invariant and Lq-based way how well the set E is approximated by
k-planes V 2Vk at x 2E and scale r > 0 in the Euclidean distance. The number “2” in
the definition of GLem.ˇq;Vk ; 2/ corresponds to the exponent “2” in the expression (1.1).

We study another family of quantitative coefficients that we call �-numbers. They
are well-suited for generalizations to metric spaces. Roughly speaking, �-numbers meas-
ure “flatness” of a set using mappings into model spaces, rather than using the metric
distance from approximating sets. They can be used to formulate a geometric lemma ana-
logous to (1.1); see Definition 2.14 for a very general definition of geometric lemmas,
which we state in terms of systems of Christ–David dyadic cubes. Roughly speaking, the
symbol GLem.h; p;M/ denotes a Carleson measure condition in the spirit of (1.1) with
ˇ-numbers replaced by other coefficients given by h, and the integrability exponent “2”
replaced by “p”.

For k2N and a k-regular setE in a metric space .X;d/, and for q2 .0;1/, we denote
by �q;k.Br .x/ \E/ the number
(1.3)

inf
k�k

inf
f WBr .x/\E!Rk

�«
Br .x/\E

«
Br .x/\E

h
jd.y; z/�kf .y/�f .z/kj

diam.Br .x/ \E/

iq
dHk.y/dHk.z/

�1=q
:

Here the first infimum is taken over all norms on Rk , and the functions f in the second
infimum are assumed to be Borel.
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For illustration, suppose that the double integral in (1.3) vanishes for some k � k and f .
Then, because k � k is bi-Lipschitz equivalent to the Euclidean norm on Rk , up to Hk

measure zero, Br .x/ \ E is bi-Lipschitz equivalent to a subset of Euclidean Rk . If also
the ambient space .X; d/ is the Euclidean space Rn, actually much more is true. Since f
arises as an isometric embedding from a positive measure subset of .Rk ;k � k/ into (strictly
convex) Euclidean space, one can show that in fact Br .x/ \ E must be essentially con-
tained in a k-plane, see Section 3.1.2 of [32]. A refinement of this observation is stated in
Proposition 2.36.

For the development of a meaningful theory in metric spaces, it is crucial to allow all
possible norms k � k on Rk in (1.3), not just the Euclidean norm. This is similar in spirit
to the use of norms in the definition of the Gromov–Hausdorff bilateral weak geometric
lemma (BWLG) in Definition 3.1.5 of [8], and in both cases the norms are allowed to
depend on the point x and the scale r . In the recent breakthrough [8], Bate, Hyde, and
Schul characterized, in arbitrary metric spaces, k-regular sets with big pieces of Lipschitz
images of Rk as those k-regular sets that satisfy a Gromov–Hausdorff BWGL, or some
other equivalent conditions inspired by Euclidean quantitative rectifiability. Not contained
in their characterization is, quoting the authors, “a condition on the square summability
of some suitable variant of the Jones ˇ-number”, while they observed that generalizing
the main result in [3] could be a first step in this direction. Finding a suitable Carleson
summability condition in this generality is a well-known problem to which Schul alluded
already in [57]. We do not claim to obtain a solution of this problem for k > 1, but we
hope that the present paper could serve as a motivation to investigate characterizations
of geometric lemmas for �-coefficients. Here we show that the validity of a geomet-
ric lemma for the �1;1-numbers defined in (1.3) for k D q D 1 is indeed equivalent to
uniform 1-rectifiability in rather general metric spaces. In a companion paper [32], for
arbitrary k 2N, we study a variant of the �-numbers that are tailored specifically to Euc-
lidean spaces and we prove that these �1;Vk -numbers can be used to characterize uniformly
k-rectifiable sets in Rn for any k � 1.

1.2. From Menger curvature to �-numbers in dimension 1

We explain some ideas behind the characterization of uniformly 1-rectifiable sets by
means of �1;1-numbers.

Recall that �1;1.Br .x/ \ E/ D 0 implies the existence of an isometric embedding
from .Br .x/\E;d/, up to a H1 null set, into R. (Here we may without loss of generality
assume that the target space R is equipped with the Euclidean norm). Menger [50] proved
criteria for isometric embeddability of metric spaces into Euclidean Rk . The case k D 1
of one of his results can be stated as follows, see [27]. If .X; d/ is a space with at least five
points such that the triangular excess vanishes for any triple of points in X, that is, every
such triple embeds isometrically into R, then the whole space X embeds isometrically
into R.

In Theorem 4.27, we obtain a quantitative version of Menger’s result that applies to
metric spaces where the triangular excess of point triples is not necessarily identically
zero, but sufficiently small. In particular, we give a condition under which such spaces
embed into .R; j � j/ by an almost isometry. With a further refinement of the arguments,
we obtain also an integral version of this statement (see Theorem 4.19) which can then
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be applied to relate �1;1-numbers to the metric ˇ-numbers known from the literature. The
latter are quantitative coefficients defined in terms of triangular excess, see (2.22). We
call them �-numbers in this note to emphasize the connection with Menger curvature,
see (2.20) and Example 2.21.

Building on Theorem 4.19 and heavily on earlier work of Hahlomaa [35] and Schul
[55, 57, 58], we obtain the following characterization.

Theorem 1.4 (Characterizations of uniform 1-rectifiability). Let .X; d/ be a complete,
doubling, and quasiconvex metric space. The following conditions are quantitatively equi-
valent for a 1-regular set E in .X; d/:
(1) E is contained in a closed and connected 1-regular set,

(2) E has big pieces of Lipschitz images of subsets of R,

(3) E has big pieces of bi-Lipschitz images of subsets of R,

(4) E satisfies the geometric lemma GLem.�; 1/,
(5) E satisfies the geometric lemma GLem.�1;1; 1/.

The equivalence of the conditions (2), (3), and (4) was proven by Schul in [57] using
also earlier work by Hahlomaa and himself. Compared to these results, the novelty in our
Theorem 1.4 is the equivalence of the other conditions with property (5). The implication
from (4) to (1) is also new for quasiconvex spaces. For bounded sets in geodesic spaces,
it was stated by Schul in Theorem 3.11 of [56], attributed to Hahlomaa, see also The-
orem 1.5 in [55]. Our proof of the implication “(4)) (1)” (formulated as Corollary 3.20)
is directly based on one of Hahlomaa’s published results (Theorem 1.1 in [35]), coupled
with an abstract argument that allows to pass from a local covering by continua to a global
covering by 1-regular connected sets, see Corollary 3.2 and Corollary 3.14. This proof
strategy works in quasiconvex spaces and thus makes the result applicable for instance in
the first Heisenberg group H1 equipped with the Korányi distance dH1 . We discuss such
an application below in Theorem 3.22.

Adapting Menger’s ideas, we were able to show that conditions (4) and (5) are not
only equivalent at the level of geometric lemmas, but the coefficients � and �1;1 are com-
parable on neighborhoods of individual dyadic cubes. For more detailed statements, see
Corollary 4.6 and Theorem 4.17, in particular (4.18), later in this note. By the work of
Bate, Hyde, and Schul [8] in the 1-regular case, the conditions in Theorem 1.4 are further
equivalent to E satisfying a (Gromov–Hausdorff) bilateral weak geometric lemma or any
of the other conditions stated in Theorem B of [8].

1.3. Relation to previous work

This note has been motivated by several lines of research, which we briefly sketch here.
The results are too numerous for an exhaustive list, but we hope that the interested reader
will find some directions for further reading. We also refer to the survey [49] by Mattila
for more information.

1.3.1. Euclidean-type (quantitative) rectifiability. The qualitative theory of Federer-
type rectifiability in metric spaces (using Lipschitz images of subsets of Euclidean spaces)
[1, 7, 41] and the already well-established quantitative theory in Euclidean space [20, 21]



Geometric lemmas and uniform rectifiability: Part 1 2007

motivated the recent work by Bate, Hyde, and Schul [8]. This provides several equivalent
characterizations of sets that are quantitatively rectifiable modelled on Euclidean spaces.
Pivotal examples from the literature where this notion of uniform rectifiability is well-
suited are low-dimensional sets in Heisenberg groups [13,25,29,37], and subsets of regular
curves in metric spaces [35,55]. For the case of 1-dimensional sets in metric spaces, there
is also a growing body of literature concerned with the travelling salesman theorems and
quantitative methods for the study of qualitatively rectifiable sets [4–6, 31, 46, 47]. Li
introduced and used in [45] stratified ˇ-numbers to characterize subsets of Carnot groups
that are contained in rectifiable curves. Coefficients of this type certainly seem promising
to study also uniform rectifiability for low-dimensional sets in Carnot groups. On the
other hand, they are defined specifically for the setting of stratified Lie groups, while an
advantage of the �- and the �-coefficients is their versatility. The �-numbers are tailored
to 1-dimensional sets, but higher-dimensional variants have been considered in [3, 58] for
images of Lipschitz functions f W Œ0; 1�k ! .X; d/. Various coefficients related to Menger
curvatures have also been used to characterize higher-dimensional (uniform) rectifiability
in Euclidean spaces [33, 42, 43, 51]. Investigating connections between �-numbers and
higher-dimensional variants of �-numbers could be an interesting topic for future research.

1.3.2. Other notions of quantitative rectifiability. Motivated by specific PDEs, quant-
itative theories of rectifiability have also been developed in settings where the natural
building blocks are different from Lipschitz images of subsets of Rk . This applies for
instance to quantitative rectifiability for 1-codimensional sets in parabolic spaces [11, 38,
39, 44] (where regular parabolic Lipschitz graphs are used) and sub-Riemannian Heis-
enberg groups [12, 14, 15, 30] (where intrinsic Lipschitz graphs are studied), and is not
directly related to the present paper.

1.3.3. Axiomatic results in metric spaces. In addition to the mentioned papers, which
concern specific model spaces, there are also a results available that deal with concepts
related to rectifiability and quantitative rectifiability in rather abstract, axiomatic settings
[10, 23, 26]. While [10, 26] are motivated by applications to parabolic spaces and Heis-
enberg groups, respectively, the main ingredients in both cases are abstract metric space
results. The paper [26] contains a sufficient criterion for a metric space to admit a big
bi-Lipschitz piece of a model space. Unfortunately, the assumptions of the theorem are
stronger than the information we can deduce from the validity of a geometric lemma
for �-numbers. In [10], the authors provide a general framework for the study of corona
decompositions and geometric lemmas in metric spaces, and we follow their notation to a
large extent. However, the main results in [10] do not seem to have direct applications in
our setting, which concerns �-numbers defined through mappings, rather than ˇ-numbers
defined through approximating sets.

1.3.4. Approximate isometries. The definition of �-numbers is inspired by the b-num-
bers studied by the second-named author in [59]. The coefficients employed in the present
paper differ from the b-numbers in two crucial ways: first, they are Lq-based, q 2 Œ1;1/,
instead of L1-based, and second, they can be defined in arbitrary metric spaces. The
b-numbers in [59] are defined via approximate isometries. A geometric lemma for �-num-
bers heuristically still yields many almost isometric mappings from the given set to model
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spaces, but in general it remains an open question if and how this information can be used
to build big pieces of Euclidean bi-Lipschitz images inside the set.

Structure of the paper. Section 2 contains preliminaries. In particular, we collect various
facts about geometric lemmas that will be used here and in the sequel [32]. In the main
part of the paper (Section 3 and Section 4), we discuss 1-regular sets in metric spaces.
In Section 3.1, we give sufficient local conditions for the existence of global 1-regular
covering continua for sets in metric spaces. In Section 3.2, we present an application
(Corollary 3.20) where these local conditions are satisfied thanks to a result by Hahlomaa.
As a corollary, we complete in Section 4 the proof of the characterization of uniform 1-rec-
tifiability in metric spaces stated in Theorem 1.4. Appendix A contains technical results
needed in Section 4, related to the quantification of Menger’s theorem about isometric
embeddings into R.

2. Preliminaries

Notation. We writeA≲B to denote the existence of an absolute constant C � 1 such that
A� CB . The inequality A≲ B ≲ A is abbreviated to A� B . If the constant C is allowed
to depend on a parameter "p", we indicate this by writingA≲p B . We denote the diameter
of a set E in a metric space by diam.E/ and use the convention that diam.E/DC1 if E
is unbounded.

2.1. Standard quantitative notions

Throughout this paper – and its sequel [32] –, we employ quantitative notions that are
ubiquitous in the theory of uniform rectifiability in Euclidean spaces and that are increas-
ingly applied in other metric spaces as well. The terminology used in Sections 2.1.1–2.1.2
follows closely the presentation in [10] in the case of Hausdorff measures � D H sjE .
Readers familiar with the standard terminology may wish to proceed directly to Sec-
tion 2.2, where we introduce new quantitative coefficients.

Definition 2.1 (Quasiconvex metric space). A metric space .X; d/ is called quasiconvex
if there exists a constant L � 1, called quasiconvexity constant, such that every couple of
points x; y 2X can be joined by a curve of length at most Ld.x; y/.

We denote by Br .x/ D ¹y 2X W d.x; y/ < rº the open ball with center x and radius r
in a given metric space .X; d/.

A metric space .X; d/ is commonly said to be doubling if for all x 2X and r > 0

the ball Br .x/ can be covered by the union of at most C balls of radius r=2, for some
constant C > 1 independent of x and r . For our purposes, it will be more convenient to
use the following, equivalent, condition:

Definition 2.2 (Doubling metric space). A metric space .X; d/ is called doubling if there
exists a constant D � 1, called doubling constant, such that, for every "2 .0; 1=2�, every
subset of X of diameter r in can be covered by � "�D sets of diameter at most "r .

The covering in Definition 2.2 can also be taken to have uniformly bounded overlap,
with multiplicity depending only on D.
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2.1.1. Ahlfors regular sets and dyadic systems.

Definition 2.3 (s-regular sets). A setE � .X;d/with diam.E/ > 0 is said to be s-regular,
s > 0, if it is closed and there exists C � 1, called regularity constant, such that

(2.4) C�1rs � H s.Br .x/ \E/ � Cr
s; x 2E; r 2 .0; 2 diam.E//;

in which case we write E 2 Regs.C /. Furthermore, if only the first (respectively, the
second) inequality in (2.4) is satisfied and E is not necessarily closed, we say that the
set E is lower (respectively, upper) s-regular, and we write E 2Reg�s .C / (respectively,
E 2RegCs .C /). Finally, we say that the metric space .X; d/ is s-regular if the whole set X
is an s-regular set with respect to d. We also use the term Ahlfors regular to denote the
class of sets that are s-regular for some exponent s.

Up to replacing C by 2sC , the second inequality in (2.4) holds also for arbitrary x 2X
and r > 0. Moreover, it can be checked from the definition that if Ei 2 Regs.Ci / for
i 2 ¹1; 2º are intersecting sets of a common ambient space, then E1 [E2 2Regs.C / with
a constant C that can be taken to depend only on the regularity constants C1 and C2 of the
two initial sets.

Regular sets in metric spaces admit systems of generalized dyadic cubes. For k-regular
sets in Rn, the existence of such systems was proven by David in Section B.3 of [17]
and in [18]. More generally, Christ constructed dyadic cube systems for spaces of homo-
geneous type in Theorem 11 of [16], see also [40] and references therein for variants
of this construction. We use the version for Ahlfors regular sets in metric spaces as
stated in Lemma 2.5 of [10], see also Section 5.5 of [22], but we include a separate
notational convention for bounded sets following the comment on p. 22 of [22]. If the
regular set E is bounded, we define J WD ¹j 2 ZW j � nº, where n 2 Z is such that
2�n � diam.E/ < 2�nC1; otherwise, we denote J WD Z.

Theorem and Definition 2.5 (Dyadic systems [16, 17]). For any s > 0 and C � 1, there
exists a constant c0 2 .0; 1/ such that in an arbitrary metric space, every set E 2Regs.C /
admits a system of dyadic cubes� D

S
j2J �j , where�j is a family of pairwise disjoint

Borel sets Q � E (cubes) satisfying

(1) E D
S
Q2�j

Q for each j 2 J ,

(2) for i; j 2J with i � j , ifQ2�i andQ0 2�j , then eitherQ0 �Q orQ \Q0 D ;,

(3) for j 2 J , Q0 2�j and i < j with i 2 J , there is a unique Q 2�i (ancestor) such
that Q0 � Q,

(4) for j 2 J and Q2�j , it holds diam.Q/ � c�10 2�j ,

(5) for j 2J andQ2�j , there is a point xQ2E (center) such thatBc02�j .xQ/\E�Q.

For j 2 J and Q 2�j , we denote `.Q/ WD 2�j and refer to this as the side length of
the cube. We also define

�Q0 WD ¹Q 2 � W Q � Q0º; Q0 2 �;

and for a given constant K > 1, we set

KQ WD ¹x 2E W dist.x;Q/ � .K � 1/ diam.Q/º:
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Following are additional comments and notations about a system of dyadic cubes that
will be useful in the sequel. IfE 2Regs.C / and� is a dyadic system onE, then forQ2�
and K > 1, the set KQ is simply the intersection of E with the closed .K � 1/ diam.Q/
neighborhood of Q, and

(2.6) KQ � BKdiam.Q/.xQ/ \E:

Moreover, it follows from conditions (4)–(5) that

(2.7) Bc0`.Q/.xQ/ \E � Q � Bc�10 `.Q/.xQ/ \E; Q2�:

Since E 2Regs.C /, this and (4) imply that

(2.8)
C�1.c0 `.Q//

s
� H s.Q/ � C.c�10 `.Q//s;

C�2=s c0 `.Q/ � diam.Q/ � c�10 `.Q/:

Combining the second estimate in (2.8) and condition (1) we can infer the existence of a
constantK DK.s;C / > 1 such that the following holds for all z2E and 0 <R < diamE.
If j 2 J is such that 2�j � R < 2�jC1, then there exists Q2�j such that

(2.9) E \ B.z;R/ � KQ:

For every Q2�j0 and j 2N [ ¹0º, we define the j -th descendants of Q by

(2.10) Fj .Q/ WD ¹Q
0
2 �jCj0 W Q

0
� Qº:

It is easy to deduce from the first part of (2.8), and observing that the cubes in Fi .Q/ are
pairwise disjoint, that

(2.11) card.Fj .Q// � c 2s�j ;

for some constant c depending only on s and C . Similarly, using again (2.8), for allK � 1
and all Q 2�j , j 2 J ; there exist cubes Q1; : : : ;Qm 2�j , not necessarily distinct, such
that

(2.12) KQ �

m[
iD1

Qi � K0Q

where m2N and K0 > 1 are constants depending only on s, C and K.
Finally, we note that combining (1) and (2) in Definition 2.5, it follows that

(2.13)
X

Q02Fj .Q/

H s.Q0/ D H s.Q/; Q2�; j 2N [ ¹0º:

2.1.2. Geometric lemmas for various coefficient functions. Throughout the paper, we
will encounter various coefficients that measure how well an s-regular set E satisfies a
certain property at the scale and location of a given dyadic cube Q. We are mainly con-
cerned with the question whether E fulfills a Carleson-type summability condition in the
spirit of a geometric lemma for the given set of coefficients. We first introduce the notation
for discussing these questions in a unified framework.
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We let B.X/ be the Borel � -algebra of a metric space .X; d/. For a closed set E � X,
the family ¹B \ E W B 2B.X/º coincides with the Borel � -algebra on E with respect to
the topology induced by the metric djE . We denote by Ds.E/ the family of bounded Borel
sets in E that have positive H s measure. In particular, if E is s-regular and � a dyadic
system on E, then � � Ds.E/ and also KQ2Ds.E/ for every Q2� and K > 1.

Definition 2.14 (Geometric lemma). Given p 2 .0;1/, s > 0, an s-regular set E in a
metric space, � WD H sbE and a function hWDs.E/! Œ0; 1�, we say that E satisfies the
p-geometric lemma with respect to h, and write E 2GLem.h; p/, if there exists a con-
stant M such that, for every dyadic system � on E, we have

(2.15)
X

Q2�Q0

h.2Q/p �.Q/ �M�.Q0/; Q0 2�:

In this case, we also write E 2GLem.h; p;M/.

In practice, the function hwill often arise as h.S/ WDH.S \E/, whereH depends on
the regularity exponent s of E, but is defined for a larger class of Borel sets of the ambient
space X, see Examples 2.17–2.21 and Definition 2.31.

Remark 2.16. For many functions h of interest, and in particular for all the relevant ones
appearing in this note, the condition “E 2GLem.
; p/” is equivalent to requiring (2.15)
for a specific dyadic system �.E/ on E, rather than for all possible such systems. See
Lemma 2.23 and Remark 2.30 (or Remark 2.28 in [10]). A related statement for multi-
resolution families (instead of systems of dyadic cubes) is Lemma B.1 in [9].

We next give two examples of geometric lemmas that have appeared in the literature.
In the first one, the coefficient function h is a generalization of the classical ˇ-numbers
from Jones’ traveling salesman theorem.

Example 2.17 (ˇ-numbers). We recall the definition of the usual Lq-based ˇ-numbers,
that appeared already in (1.2):

ˇq;Vk .Br .x/\E/ WD inf
V 2Vk

�«
Br .x/\E

h d.y; V /

diam.Br .x/ \E/

iq
dHk.y/

�1=q
; q2 .0;1/;

where E is a k-regular subset of Rn and Vk is the family of k-dimensional affine planes.
We now generalize this notion to an arbitrary metric space .X; d/ by considering, instead
of planes, a general family A of (non-empty) subsets of X such that each point of X is
contained in at least one element A 2 A. For q 2 .0;1�, s > 0, a closed set E � X of
locally finite H s-measure, and � WD H sbE , we then define for every A2A,

ˇq;A.S/ WD

8<:
�

1
�.S/

R
S

� d.y;A/
diam.S/

�q d�.y/
�1=q

; q 2 .0;1/;

supy2S
d.y;A/
diam.S/

, q D1;
for S 2Ds.E/

and

(2.18) ˇq;A.S/ WD inf
A2A

ˇq;A.S/:
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This definition is typically applied if S is a “surface ball” Br .x/ \ E or a set of the
form KQ for a dyadic cubeQ on an s-regular set E. The definition of ˇq;A.S/, however,
makes sense more generally, whenever S is a Borel set with 0 < diam.S/ <1, and we
will occasionally apply it in this sense. IfE is s-regular, the conditionE 2GLem.ˇq;A;p/
is equivalent to the condition “E 2 GLem.A; p; q/” stated in Definition 2.16 of [10].
The additional assumption on A is imposed to ensure that the function ˇq;A takes values
in Œ0; 1�, which will be convenient in the following. In practice, milder assumptions would
often suffice. Finally, ˇq;A of course depends on � (respectively on the set E), but since
this dependence will always be clear from the context, we do not indicate it in our notation.

The next example arises from the study of (quantitative) 1-rectifiability in metric
spaces, and it involves exclusively 1-dimensional Hausdorff measures. The relevant coef-
ficients can be thought of as 1-dimensional metric ˇ-numbers, and they appeared with
different notations in the literature. For the purpose of this paper, we will refer to them as
�-numbers, where � is indicative of the connection to Menger curvature. Before stating
the definition, we introduce some notation.

Given a metric space .X; d/ and three points x1; x2; x3 2 X, we define the triangular
excess

(2.19)
@.¹x1; x2; x3º/ WD inf

�2S3

®
@1.x�.1/; x�.2/; x�.3//

¯
WD inf

�2S3

®
d.x�.1/; x�.2//C d.x�.2/; x�.3// � d.x�.1/; x�.3//

¯
;

where S3 is the group of permutations of ¹1; 2; 3º. Note that @.¹x1; x2; x2º/ depends
only on the set ¹x1; x2; x2º, while @1.x1; x2; x3/ takes into account also the order. If
the three points lie at comparable distance from each other, then their triangular excess
is related to their Menger curvature c.x1; x2; x3/, as indicated by formula (2.20). Let
¹x01; x

0
2; x
0
3º be the image of ¹x1; x2; x3º under an isometric embedding of the triple into

the Euclidean plane. If x01; x
0
2; x
0
3 are colinear, we define c.x1; x2; x3/ D 0, otherwise

c.x1; x2; x3/ D 1=R, where R is the radius of the unique circle passing through x01, x02
and x03. With this definition, if .x1; x2; x3/ belongs to

F WD ¹.x1;x2;x3/2E�E�E W d.xi ;xj /�Ad.xk ;xl /; for all i;j;k; l 2 ¹1;2;3º; k¤ lº

for some constant A > 0, then

(2.20) c2.x1; x2; x3/ diam¹x1; x2; x3º3 �A @.¹x1; x2; x3º/:

see Remark 2.3 in [56] or Remark 1.2 in [55].

Example 2.21 (�-numbers). For s > 0 and a closed set E � X of locally finite H1-mea-
sure, and with � WD H1bE , we define

(2.22) �.S/ WD
1

�.S/3

Z
S

Z
S

Z
S

@.¹x1; x2; x3º/

diam.S/
d�.x1/ d�.x2/ d�.x3/;

for S 2Ds.E/. Conditions in the spirit of geometric lemmas for the coefficients � and
related rectifiability results have appeared in work of Hahlomaa and Schul [34–36,55–57].
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For many applications, it is irrelevant whether the condition (2.15) in the definition of
the geometric lemma is stated with constant “2” on the left-hand side or with any other
constant K > 1. This is the case for the coefficient functions in Examples 2.17 and 2.21
(but also later in Definition 2.31), as the following result shows (see also Remark 2.30
below). This is akin to the situation in the case of Jones’ traveling salesman theorem
in Rn, see Corollary 2.3 in [6].

Lemma 2.23 (Different neighborhoods of cubes). Let E 2Regs.C /, � WDH sbE , and let
hWDs.E/! Œ0; 1� be a function with the following property. For everyN � 1, there exists
a constant CN such that the following monotonicity condition holds for allA;B 2Ds.E/:

(2.24) A � B and diam.B/s � N�.A/ H) h.A/ � CNh.B/:

Then, for every K > K0 � 1, there exists a constant m D m.K0; K; s; C / such that if �
is a dyadic system on E and Q0 2�, then

(2.25)
X

Q2�Q0

h.KQ/p �.Q/ ≲
X

Q2� OQ0

h.K0Q/
p �.Q/;

where the implicit constant depends only on K0; K; s; C and p, while OQ0 2� is such
that Q0 � OQ0 and `. OQ0/ � 2m`.Q/. In particular, the validity of GLem.h; p/ does not
depend on the choice of dyadic system.

Proof. We assume first thatE is unbounded. LetK0 � 1 and fix a constantK >K0. Then
there existsmDm.K0;K; s;C / 2N such that for everyQ2�, there is a unique ancestor
OQ2� with

(2.26) Q � OQ; `. OQ/ D 2m`.Q/; and KQ � K0 OQ:

Indeed, for arbitrary m 2 N, there clearly exists OQ2� satisfying the first two conditions
in (2.26), and for such OQ, it follows for all y 2KQ that

dist.y; OQ/ � dist.y;Q/ � .K�1/ diam.Q/�.K�1/c�10 `.Q/D.K�1/c�10 2�m `. OQ/

(2.8)
� .K � 1/C 2=s c�20 2�m diam. OQ/;

which shows that m can be made large enough, depending only on s; C (also via c0), K0
and K, such that also the third condition in (2.26) is satisfied. Once m is fixed, OQ is
uniquely determined according to condition (3) in Theorem and Definition 2.5.

Since the coefficient function h has the monotonicity property (2.24), and sinceKQ�
K0 OQ and diam.K0 OQ/s ≲s;C;K0;K H s.Q/ by (2.26) and (2.6), it follows that

(2.27) h.KQ/ ≲s;C;K;K0 h.K0 OQ/:

From (2.26) and (2.27), we then easily deduce for every Q0 2� thatX
Q2�Q0

h.KQ/p�.Q/ ≲
X

Q2�Q0

h.K0 OQ/
p�.Q/ �

X
Q2�Q0

h.K0 OQ/
p�. OQ/

≲
X

Q2� OQ0

h.K0Q/
p�.Q/;
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where the implicit constants may depend on all the parameters s, C , K, K0, and p. In
the last inequality, we used the fact that for every Q0 2�, there are only ≲m;s;C many
Q2�Q0 such that `.Q0/ D 2m`.Q/ (see (2.11)).

If E is bounded, then there still exists a constantmD m.K0;K; s;C / such that (2.26)
holds, but only for Q 2�j with j � nC m (recall that we have defined �j for j � n,
where 2�n � diam.E/ < 2�nC1). IfQ0 2�j for some j < nCm, then we can conclude
exactly as we did in the case of unbounded setsE. If, on the other hand,Q02�j for some
j > nCm, then we define OQ0 to be the unique cube in�n with OQ0 �Q0. Then we split
the relevant sum as follows:X

Q2�Q0

h.KQ/p �.Q/

D

X
Q2�Q0\Œ

S
j�nCm�j �

h.KQ/p �.Q/C
X

Q2�Q0\Œ
S
j<nCm�j �

h.KQ/p�.Q/:(2.28)

The first sum on the right-hand side can be bounded by
P
Q2� OQ0

h.K0Q/
p �.Q/ using

the same computations as in the case of unbounded sets E, observing that Q 2�Q0 \
Œ
S
j�nCm �j � implies OQ � OQ0 with the new definition of OQ. It remains to control the

second sum on the right-hand side of (2.28). Since jhj is assumed to take values in Œ0; 1�,
we can simply bound this by

P
Q2�Q0\Œ

S
j<nCm�j �

�.Q/ and use that the sum runs over
at most m generations. Coupled with (2.13), this yields the claim.

To show that GLem.h; p/ is independent of the dyadic system, fix two dyadic sys-
tems � and Q�, and assume that GLem.h; p/ holds for Q�. For all Q 2�j , there exists
QQ 2 Q�j such that 2Q � k QQ, where k > 1 is a constant depending only on s and C . Fix

any Q0 2� and note that for all Q 2�Q0 , it holds QQ � k0Q0 � k0k QQ0, with k0 > 1 a
constant depending only on s and C . Hence using (2.24) we obtain that

(2.29)

X
Q2�Q0

h.2Q/p �.Q/ ≲s;C
X

Q2�Q0

h.k QQ/p�.Q/

≲s;C
X

Q02 Q�;Q0�k0k QQ0

h.kQ0/p�.Q0/;

where similarly as above, we used that for all Q0 2� there exists ≲s;C cubes Q2� such
that QQDQ0. From inequality (2.29) applying (2.12) and then (2.25), we easily obtain that
GLem.h; p/ holds for �.

Remark 2.30. The coefficients of both Example 2.17 and Example 2.21 satisfy assump-
tion (2.24) of the above lemma. To see this, let E 2Regs.C / and A; B 2Ds.E/ satisfy
A � B and diam.B/s � N�.A/ for some constant N � 1. Then by the s-regularity of E,
we have

1

�.A/
�

N

diam.B/s
�

CN

�.B/
and diam.A/ � C�1=s�.A/1=s � .NC/�1=s diam.B/:

This clearly shows the validity of (2.24) for h2 ¹ˇq;A; �º.
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2.2. New coefficients to measure flatness in metric spaces

We introduce new coefficients to measure flatness of a set in a metric space. Here, flatness
means roughly speaking the existence of approximate isometric embeddings of the set
into Rk , in an Lq-sense. The natural measures to use in this definition are k-dimensional
Hausdorff measures, for integer-valued k.

Definition 2.31. For k 2N, a closed set E � X of locally finite Hk-measure, and � WD
HkbE , we define

(2.32)

�q;k.S/ WD inf
k�k norm on Rk

inf
f WS!Rk� 1

�.S/2

Z
S

Z
S

h
jd.x; y/ � kf .x/ � f .y/kj

diam.S/

iq
d�.x/ d�.y/

�1=q
;

for S 2 Ds.E/, where the functions f in the second infimum are assumed to be Borel.
Moreover, we define the number �q;k;Eucl.S/ by considering in the infimum (2.32) only the
Euclidean norm k � kEucl (which we often denote simply by j � j).

The numbers �q;k can be interpreted as an Lq-unilateral version of the Gromov–
Hausdorff ˇ-numbers from Definition 3.1.3 in [8]. The function �q;k associated to a k-
regular set E clearly enjoys the monotonicity property required in Lemma 2.23 (see
Remark 2.30) and hence, again, for the purpose of this paper, the constant “2” in the
definition of “E 2GLem.�q;k ; p/” could be replaced by any constant K0 > 1, and the
validity of GLem.�q;k ; p/ is independent of the choice of dyadic system.

Remark 2.33. In a companion paper, [32], we consider a variant of the �-numbers that is
more suitable for comparison with the ˇ-numbers from Example 2.17 in Euclidean spaces.
In particular, we define coefficients �1;Vk using orthogonal projections onto k-dimensional
affine planes and we prove that k-regular setE �Rn is uniformly k-rectifiable if and only
if E 2GLem.�1;Vk ; 1/. We refer to [32] for the definition of �1;Vk , but for illustrative pur-
poses, we mention that for subsets of Euclidean spaces, already the numbers �q;k;Eucl
and �q;k are related to affine k-planes, as Propositions 2.34 and 2.36 below show (for
the definition of the numbers ˇq;Vk , recall (1.2) or Example 2.17).

Proposition 2.34. LetE 2 Regk.C / be a k-regular subset of Rn, where k2N and k < n,
and let � be a system of dyadic cubes for E. Then for all q 2 Œ1;1/ and all Q 2�, it
holds

(2.35) ˇ2q;Vk .2Q/ � ˇ
2
2q;Vk

.2Q/ � QC�q;k;Eucl.2Q/;

where QC is a constant depending only on k; p and C .

Proposition 2.36. LetE 2 Regk.C / be a k-regular subset of Rn, where k2N and k � n,
and let� be a system of dyadic cubes forE. Suppose that for someQ2� and q 2 Œ1;1/,
it holds

�q;k.Q/ D 0:

Then �q;k;Eucl.Q/ D ˇq;Vk .Q/ D 0. In particular, up to a Hk-zero measure set, Q is
contained in a k-dimensional plane.

Propositions 2.34 and 2.36 are proven in Section 3.1 of [32].
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3. Sufficient conditions for the existence of regular covering curves

This section aims at clarifying several technical points regarding the question when a 1-
regular set E in a complete, doubling and quasiconvex metric space is contained in a
regular curve �0. This discussion is partially motivated by an application in Theorem 1.3
of [13] about 1-dimensional singular integral operators in the Heisenberg group, and it will
be employed also in Section 4 to state and characterize a notion of uniform 1-rectifiability
in a large class of metric spaces.

In Section 3.1, we explain how the existence of the covering curve �0 for a setE can be
derived from certain quantitative local information on E. We will first prove the bounded
case in Theorem 3.1 and Corollary 3.2 and then in Section 3.1.1 we present a covering
lemma that allows to extend this result to the unbounded case. Finally, in Section 3.2,
these results are applied to construct a covering by a 1-regular connected set, based on
integral bounds on the Menger curvature. This proves and generalizes to quasiconvex
metric spaces a result first stated in [56]. Finally, we review an application of this result in
the Heisenberg group.

3.1. Construction of 1-regular covering continua

In this section, we consider conditions for a bounded set to be contained in a 1-regular
curve. Actually it will be sufficient to show that the set is contained in a closed connected
1-regular set of finite length. Indeed, if .X; d/ is a complete metric space, and � � X a
closed connected subset of finite H1 measure, then � is automatically a compact Lipschitz
curve by Lemma 2.8 in [4], see also Lemmas 2.2–2.3 in [55]. Moreover, if we assume in
addition that � is a 1-regular set, then under the previous assumptions, it will be automat-
ically a 1-regular curve (in the sense of Section 1.1 of [55]) by Lemma 2.3 in [55].

Theorem 3.1 (From local covering by continua to global 1-regular covering). Let .X; d/
be a complete, doubling, and quasiconvex metric space. Assume that K � X is a bounded
set with the following property. There exists a constant C > 0 such that, for every x 2K
and 0 < r � diam.K/, there is a closed connected set �x;r � X with �x;r � K \ Br .x/
and H1.�x;r / � Cr . Then there exists a (closed) connected set �0 2Reg1.C0/, with C0
depending only on the doubling and quasiconvexity constants of .X; d/ and on C , such
that

�0 � K and H1.�0/ � Cdiam.K/:

Moreover, the set �0 may be chosen such that

H1.�0/ D min¹H1.�/ W � closed and connected, and � � Kº:

From Theorem 3.1 above and the extension property of Lipschitz maps, we immedi-
ately infer the following result.

Corollary 3.2 (From local covering by Lipschitz images to global 1-regular covering).
Let .X;d/ be a complete, doubling, and quasiconvex metric space. Assume thatK � X is a
bounded set with the following property. There exists a constant C > 0 such that, for every
x 2K and 0 < r � diam.K/, there are a set Ax;r � Œ0; 1� and a surjective Cr-Lipschitz
map fx;r WAx;r ! K \ Br .x/. Then there exists a (closed) connected set �0 2Reg1.C0/,
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with C0 depending only on the doubling and quasiconvexity constants of .X; d/ and on C ,
such that

�0 � K and H1.�0/ � C
0diam.K/;

where C 0 depends only on C and the quasiconvexity constant of .X; d/. Moreover, the
set �0 may be chosen such that

H1.�0/ D min¹H1.�/ W � closed and connected, and � � Kº:

Proof of Corollary 3.2 using Theorem 3.1. Let .X; d/ and K be as in the statement of
Corollary 3.2. Since .X; d/ is complete and quasiconvex, the pair .R;X/ has the Lipschitz
extension property, see for instance [48]. In particular, there exists a constant C 0 � 1,
depending only on the given C > 0 and the quasiconvexity constant of .X; d/, such that
every Cr-Lipschitz map fx;r WAx;r ! K \ Br .x/ as in the assumptions of the corollary
can be extended to a C 0r-Lipschitz map Fx;r W .Œ0; 1�; j � j/! .X;d/ with Fx;r jAx;r D fx;r .
ThenK satisfies the assumptions of Theorem 3.1 with �x;r DFx;r .Œ0;1�/ and constantC 0.
Thus Corollary 3.2 follows from Theorem 3.1.

Actually Theorem 3.1, and hence also Corollary 3.2, hold without the boundedness
assumption onK. We will prove this in the next Subsection 3.1.1 (see in particular Corol-
lary 3.14), since it will be first necessary to prove independently the bounded case.

The proof of Theorem 3.1 is based on an idea which we learned from Tuomas Orponen
in the case .X; d/ D .R2; j � j/, see Exercise 1.6 in [52]. Similar ideas have been used
in [19], p. 197 ff. The strategy is to show that there exists a closed connected set �0
of minimal H1 measure containing K, and then to prove that this �0 must in fact be
1-regular. Before explaining the details, we list the key ingredients needed to run the argu-
ment in metric spaces. We will apply the following result, which follows from versions of
Blaschke’s theorem and Goła̧b’s theorem in metric spaces. For comments and a proof of
Goła̧b’s theorem in this setting, see also p. 840 and p. 846 of [53].

Theorem 3.3 (Existence result; Theorem 4.4.20 in [2]). Let .X; d/ be a proper metric
space. Suppose that K � X is non-empty, and assume that there exists a closed connected
set � in X such that H1.�/ <1 and � � K. Then the minimum problem

min¹H1.�/ W � closed and connected, and � � Kº

has a solution.

We recall that a proper metric space is one in which all closed balls are compact, and
that every proper metric space is complete, and every complete and doubling metric space
is proper.

Theorem 3.3 will be used to show the existence of a minimal-length covering con-
tinuum �0 for the set K in Theorem 3.1. To prove 1-regularity of �0, we will argue by
contradiction and construct a covering continuum � 00 of smaller length in the hypothetical
scenario that 1-regularity of �0 fails. This construction of � 00 proceeds by locally modify-
ing �0 using the assumption onK. The only step which is trickier in our setting than in the
case XD R2 is to maintain connectedness of the modified set. In R2, this can be achieved
simply by adding a suitable circle (and possibly a line segment). Our construction instead
uses the following observation.



K. Fässler and I. Y. Violo 2018

Proposition 3.4 (Short paths connecting points in quasiconvex doubling spaces). Assume
that .X; d/ is a quasiconvex metric space which is doubling with constant D � 1. Then
there exists a constant � > 0 (depending on the doubling and quasiconvexity constants)
such that for all x 2 X and r > 0, the following holds. Every finite set P � Br .x/ is
contained in a closed connected set � with

(3.5) H1.�/ � �r card.P /.2D�1/=2D :

Proof. Without loss of generality, we may assume that card.P / � 22D . Since .X; d/ is
doubling with constant D � 1, the ball Br .x/ can be covered by balls

Bj D Br card.P /�1=2D .xj /; j D 1; : : : ; N;

with bounded cardinality and overlap:

(3.6) N ≲ card.P /1=2 and sup
y2X

card.¹i 2 ¹1; : : : ; N º W y 2Biº/ ≲D 1;

recall Definition 2.2 and the subsequent comment. It will become clear at the end of the
proof why the radii of the balls Bj were chosen as above. At this point, we just note that
they are of the form "r , with "2 .0; 1=2�.

Up to removing unnecessary balls, we can assume that Bj \ Br .x/ ¤ ; for all j . To
proceed, we connect every xj , j D 2; : : : ; N , to x1 by a curve of length ≲ r , using the
quasiconvexity of .X; d/ and the fact that d.x1; xj / � 4r . The union of these curves is a
closed connected set �0 with

H1.�0/ ≲ rN ≲ r card.P /1=2:

Second, for every j D 1; : : : ;N , each point in P \Bj can be connected to the center xj of
the ball Bj by a curve of length ≲ r card.P /�1=2D , again thanks to quasiconvexity. Thus
the points P \ Bj can be connected to xj by a closed connected set �j of total measure

H1.�j / ≲ card.P \ Bj / r card.P /�1=2D :

Moreover,

H1
� N[
jD1

�j

�
�

NX
jD1

H1.�j /≲ r card.P /�1=.2D/
NX
jD1

card.P \Bj /≲D r card.P /1�1=.2D/;

where we have used the controlled overlap of the balls Bj , j D 1; : : : ; N , in the last
inequality, as quantified in (3.6). Finally, � D �0 [ .

Sn
jD1 �j / is a covering continuum

for P with the desired property (3.5) since

1

2
� 1 �

1

2D
for D � 1:

We are now ready to prove the main theorem of this section.
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Proof of Theorem 3.1. Let .X; d/ and K be as in the statement of Theorem 3.1. Apply-
ing the assumption to a point x 2K and r D diam.K/, we find a closed connected set
� � K with H1.�/ � Cdiam.K/ <1. Since every complete and doubling metric space
is proper, we can the apply Theorem 3.3 to deduce that there exists a closed and connected
set �0 � K with smallest H1 measure among all such sets. Being connected, the set �0
is automatically lower 1-regular with a universal constant, that is,

H1.�0 \ Br .x// ≳ r; x 2�0; 0 < r � 2 diam.�0/;

see for instance Lemma 4.4.5 in [2]. Hence it suffices to prove that �0 is also upper
1-regular.

To this end, fix a constant C0 > 2C . The precise value of C0 will be determined later.
Towards a contradiction, we assume that �0 fails to be upper 1-regular with constant C0,
that is, �0 … RegC1 .C0/. Thus there exists x0 2 �0 and 0 < r � diam.�0/ such that

(3.7) H1.�0 \ Br .x0// > C0 r:

(If upper Ahlfors regularity fails, it has to fail for a radius r � diam.�0/.) We want to
work with the essentially largest radius with this property. To be more precise, we set

r0 WD sup¹s 2 Œr; diam.�0/� W H1.�0 \ Bs.x0// > C0 sº

D sup¹s 2 Œr; diam.�0/� W q.s/ > C0º;

where

q.s/ WD
H1.�0 \ Bs.x0//

s
, s 2 Œr; diam.�0/�:

Clearly, q.r/ > C0 and q.s/ < C0 for s 2 Œdiam.�0/=2; diam.�0/� since

H1.�0 \ Bs.x0// � H1.�0/ � 2
Cdiam.K/
diam.�0/

1

2
diam.�0/ < C0

1

2
diam.�0/

for all s, by the minimality property of �0 and the existence of � � K with H1.�/ �

Cdiam.K/. It follows that r � r0 < diam.�0/=2 (and thus 2r0 < diam.�0/).
We will now locally modify �0 at Br0.x0/ to construct a closed connected � 00 � K

with H1.� 00/ <H1.�0/. This will contradict the minimality property of �0 and thus show
that the counter assumption on the existence of a ball as in (3.7) cannot be true. Thus �0
must in fact be upper 1-regular with constant C0.

We now explain the modification of �0 locally around Br0.x0/. To ensure connec-
tedness of the modified set � 00, we will apply Proposition 3.4. Hence we would like
to consider a ball B�.x0/ with � � r0 such that we have a suitable upper bound on
card.�0 \ @B�.x0//. For this purpose, we apply the coarea (Eilenberg) inequality (The-
orem 1 in [28]) to the 1-Lipschitz function f W .X; d/ ! R given by f .x/ WD d.x; x0/.
ThenZ �

Œr0;2r0�

H0.�0 \ @Bs.x0// ds �
Z �

R
H0.Œ�0 \ B2r0.x0/ n Br0.x0/� \ f

�1.¹sº// ds

� H1.�0 \ B2r0.x0/ n Br0.x0// � C0 r0;
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where we used the maximality property of r0 in the last step. It follows that there must
exists �2 Œr0; 2r0� such that

H0.�0 \ @B�.x0// � C0:

We next apply Proposition 3.4 to the point set

P WD �0 \ @B�.x0/:

Since � < diam.�0/, x0 2 �0 and �0 is connected, P contains clearly at least one point.
Proposition 3.4 allows us to find a closed connected set �P in .X; d/ with

(3.8) �P � P and H1.�P / � ��.C0/
.2D�1/=.2D/

D �C
�1=.2D/
0 C0�;

where � depends only on the doubling and quasiconvexity constants of .X; d/.
The set Œ�0 n B�.x0/� [ �P is connected by construction. If K \ B�.x0/ is empty,

there is nothing further to be done, but otherwise, we have to enlarge our continuum in
order to cover K \ B�.x0/ as well. The assumption of Theorem 3.1 allows us to find a
(possibly empty) closed connected set �x0;� such that

(3.9) �x0;� � K \ B�.x0/ and H1.�x0;�/ � 2C�:

By quasiconvexity, it is further possible to connect �P and �x0;� by a curve �P;x0;� with

(3.10) H1.�P;x0;�/ ≲ �:

If �x0;� D ;, we simply put �P;x0;� WD ;. By construction, we know that

(3.11) H1.�0 \ B�.x0// � H1.�0 \ Br0.x0// D C0 r0 �
C0

2
�:

Hence it is clear that we can choose the constant C0 large enough (depending only on the
doubling and quasiconvexity constants of .X; d/ and on C ) such that the upper bounds for
the H1 measure in (3.8)–(3.10) are each less than C0�=6, so that

(3.12) H1.�P [ �x0;� [ �P;x0;�/ <
C0

2
� � H1.�0 \ B�.x0//:

Since
� 00 WD Œ�0 n B�.x0/� [ �P [ �x0;� [ �P;x0;�

is a closed connected set of smaller H1 measure than �0, we have reached a contradiction
with the minimality property of �0. Thus the counter assumption cannot hold and in fact
�0 2 RegC1 .C0/, and eventually, �0 2 Reg1.C

0
0/, where C 00 the maximum of the lower and

upper regularity constants of �0.

3.1.1. The unbounded case. Next we give a sufficient criterion ensuring that an unboun-
ded set which can be locally covered by connected 1-regular sets, can be itself covered by
a connected 1-regular set. The argument is inspired by [19], p. 202 ff.
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Proposition 3.13. Let .X; d/ be a quasiconvex and doubling metric space and let t0 > 1
be any constant. LetE � X be a set such that for every x 2E and r > 0 there exists a con-
nected set �x;r 2Reg1.C /, satisfying Br .x/\E � �x;r � Bt0r .x/ and where C > 0 is a
constant independent of x and r . Then E is contained in a connected set �0 2Reg1. QC/,
where QC is a constant depending only on t0; C and the doubling and quasiconvexity con-
stants of .X; d/.

First we observe that Proposition 3.13 allows immediately to improve the statements
of Theorem 3.1 and Corollary 3.2 to the unbounded case.

Corollary 3.14. Theorem 3.1 and Corollary 3.2 hold true also for unbounded sets K
(if the respective assumptions are satisfied for all 0 < r <1/.

Proof. We only need to remove the boundedness assumption from Theorem 3.1, then
it would be automatically removed also from Corollary 3.2, which is deduced from it.
Let K � X be a set satisfying the hypotheses of Theorem 3.1 with constant C , except
that it is unbounded. For every x 2K and r > 0, the set K 0 WD Br .x/ \ K satisfies all
the assumptions of Theorem 3.1, being a bounded subset of K. Hence by Theorem 3.1
(in the bounded case), we deduce that Br .x/ \ K is contained in a closed connected
set �x;r 2 Reg1.C0/, where C0 is a constant depending only on C and the doubling
and quasiconvexity constants of .X; d/; and such that H1.�x;r / � 2Cr . This and the
1-regularity show diam.�x;r / � 2C0Cr , so that �x;r � B2C0Cr .x/. Hence the assump-
tions of Proposition 3.13 with E D K are satisfied taking t0 D 2CC0, which concludes
the proof.

Theorem 3.1, in the bounded case, will be needed for the proof of Proposition 3.13,
which is why we did not prove that theorem directly in the full version. The main technical
tool needed for the proof of Proposition 3.13 is the following covering lemma.

Lemma 3.15. Let .X; d / be a doubling metric space, fix x0 2 X and let t > 1 be any
constant. Then there exist a (countable) family of balls B with radius � 1 and a constant
M � 2 depending only on t and the doubling constant of .X; d / such that the following
hold:

(i) the family B covers X and the covering ¹tBºB2B has multiplicity less than M ,

(ii) for every R � 1 X
B2B; tB\BR.x0/¤;

r.B/ �MR;

where r.B/ denotes the radius of B ,

(iii) for every Br .x/2B, it holds that d.x; x0/ �Mr ,

(iv) #¹B 0 2 B W tB 0 \ tB ¤ ;º �M , for every B 2B.

Proof. Fix x0 2X, t > 1 and a constant �>2t . We construct the family B as union of fam-
ilies Bk , k 2N [ ¹0º, of balls defined as follows. Set B0 WD ¹B1.x0/º. For every k 2N,
denote Ak WD B�k .x0/ nB�k�1.x0/ and consider a set Fk � Ak such that d.x; y/ � �k�3

for every distinct x; y 2Fk and assume that Fk is a maximal set with this property. Set
Bk WD ¹B�k�3.x/ºx2Fk and B WD

S1
kD0Bk . By construction B is a covering of X and (iii)

holds provided M � �3. Since the space .X; d/ is doubling and diam.Ak/ � 2�k , the
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set Ak can be covered by � 4D�3D sets of diameter at most �k�3=2, where D > 0 is the
doubling constant of .X; d/ (recall Definition 2.2). Since each of these sets intersects at
most one of the centers of the balls in Bk , we deduce that

(3.16) #Bk � 4
D�3D :

By construction the balls Bk cover the annulus Ak and again by the doubling property of
.X; d/, such covering has multiplicity �M , providedM is big enough depending only on
the doubling constant of .X; d/. Next we observe that, by the triangle inequality, for every
B 2Bk and x 2 tB , it holds that

�k�2 < �k�2
�
� �

t

�

�
� �k�1 � t �k�3 � d.x; x0/ � �

k
C t �k�3

� �kC1
� 1
�
C

t

�4

�
< �kC1;

where in the first and last inequality we used that � > 2t > 2. In particular, tB � Ak�1 [
Ak [AkC1 for every B 2Bk and k � 2. These observations together with (3.16) show at
once both (i) and (iv) for suitably chosenM depending only onD. It remains to show (ii).
Fix R � 1 and k 2N such that R 2 Œ�k�1; �k/. By what we just observed,

¹B 2 B W tB \ BR.x0/ ¤ ;º � ¹B 2 B W tB \ B�k .x0/ ¤ ;º �

kC1[
iD0

Bi :

Therefore, X
B2B; tB\BR.x0/¤;

r.B/ �

kC1X
iD0

X
B2Bi

r.B/
(3.16)
� 4D�3D

�
1C

kC1X
iD1

�i�3
�

� 4D�3D.1C �k�1/ � 4D �3D 2R;

which proves (ii) for suitable M . Combining what we said so far, M can be chosen large
enough, depending only on t and the doubling constant of .X; d/, such that the condi-
tions (i)–(iv) hold.

The covering of balls given by Lemma 3.15 is useful thanks to the following fact.

Lemma 3.17. Fix .X; d/ a doubling metric space, x0 2X and t > 1 a constant. Let B be
a family of balls as given by Lemma 3.15 applied with t and x0. Let ¹�BºB2B be upper
1-regular sets �B � tB , with �B 2 RegC1 .C /, where C > 0 is a constant independent
of B . Then � WD

S
B2B �B 2 RegC1 . QC/, where QC depends only on C; t and the doubling

constant of .X; d/. Moreover, if �B is closed for every B 2B; then � is closed.

Proof. Let z 2 � be arbitrary. Since B covers X, there exists at least one B 2B with
z 2 B . Denote by r.B/ the radius of B . Now fix R > 0 arbitrarily. If R � .t � 1/r.B/,
then BR.z/ � tB . By the assumption of the lemma, �B 0 \ BR.z/ � tB 0 \ BR.z/ for
every B 0 2B. It follows that if a set �B 0 intersects BR.z/, then necessarily tB \ tB 0 ¤ ;.
Therefore, by (iv) of Lemma 3.15, we have

H1.BR.z/\ �/DH1.BR.z/\ tB \ �/ �
X

B 02B; tB\tB 0¤;

H 1.BR.z/\ �B 0/ �MCR;
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where M � 1 is the constant given by Lemma 3.15. If instead R � .1 � t /r.B/; by (iii)
of Lemma 3.15 and since z 2B 2B, it holds

d.z; x0/ � r.B/CMr.B/ � .1 � t /�1.1CM/R:

Hence BR.z/ � BctR.x0/, where ct WD .1 � t /�1.1 C M/ C 1. Therefore, by (ii) of
Lemma 3.15, we have

H1.BR.z/ \ �/ � H1.BctR.x0/ \ �/ �
X
B2B

H1.BctR.x0/ \ �B/

�

X
B2B; tB\Bct R.x0/¤;

H1.�B/ � Ct
X

B2B; tB\Bct R.x0/¤;

r.B/ � Ctct �MR;

where we used again that �B � tB .
Finally, assume that each �B is closed and let ¹xnºn � � be a converging sequence in

.X; d/. In particular, ¹xnºn is bounded, and by (iii) in Lemma 3.15, we deduce that ¹xnºn
is contained in a finite union of closed sets �B . This shows that xn must converge to a
point in some �B � � , and so � is closed.

We are now ready to prove Proposition 3.13.

Proof of Proposition 3.13. Fix a constant t > t0 to be chosen later, depending only on t0
and on the doubling and quasiconvexity constants of .X; d/. Moreover, throughout the
proof, QC denotes a constant whose value might change from line to line, but depending
only on C; t0 and the doubling and quasiconvexity constants of .X; d/.

Let B be the family of balls given by Lemma 3.15 applied to the metric space .X; d/
and with constant t > 1. For every ball B DBr .x/2B, we build a connected set �B � tB
as follows. IfB \ED;, set �B D;, otherwise fix y2B \E. By assumption, there exists
a connected set �B 2 Reg1.C / such that

B \E � B2r .y/ \E � �B � B2t0r .y/ � B2t0rCr .x/ � Btr .x/;

provided t � 2t0 C 1. Define � WD
S
B2B �B . Since the family B covers X, the set �

contains E. Moreover, by Lemma 3.17 it follows that � 2 RegC1 . QC/ and that if each �B is
closed then also � is closed. However, � is not necessarily connected. To fix this, for every
B D Br .x/ we build an additional closed connected set � 0B as follows. First observe that
by Theorem 3.1 and since .X; d/ is quasiconvex we have that for every x1; x2 2 X there
exists a 1-regular (closed) connected set 
 2 Reg1. QC/ such that x1; x2 2 
 and diam.
/�
Ld.x1; x2/, where L depends only on the doubling and quasiconvexity constants of X.

We pass to the construction of � 0B . For every B 0 D Br 0.x0/2B such that B 0 \B ¤ ;
and r 0 � r consider a 1-regular closed connected set 
 containing x and x0 (as above)
and define � 0B as the union of all such sets. Moreover, if E \ B ¤ ;, we add to � 0B
also a 1-regular closed connected set 
 containing x and y 2E \ B; again as above. In
particular, by (iv) of Lemma 3.15, � 0B is the union of at most an M -number of 1-regular
(closed) and connected sets of type Reg1. QC/, all containing the point x, where M > 0

is a constant depending only on t0 and the doubling and quasiconvexity constants of X
(since it depends also on t ). Therefore, up to modifying the value of QC , � 0B 2Regs. QC/
(note that � 0B is closed). Moreover, diam.� 0B/ � Lr . Finally, set � 0 WD

S
B2B �

0
B .
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Observe that by construction, up to choosing t > L; it holds � 0B � tB for all B 2B.
Therefore by Lemma 3.17 we deduce that � 0 2RegCs . QC/ (i.e., it is upper 1-regular) and
that � 0 is closed. Hence �0 WD � [ � 0 2RegC1 . QC/, �0 contains E and �0 is closed if �
is closed (which is the case if all �B are closed). It remains to show that �0 is connected
(lower 1-regularity would then also follow, see, e.g., Lemma 4.4.5 in [2]). Since each �B
is connected and intersects � 0, it is sufficient to show that � 0 is connected. Suppose by
contradiction that � 0 � U [ V , where U and V are two disjoint open subsets of X such
that U \ � 0 ¤ ; ¤ V \ � 0. The centers of the balls in B must be contained in � 0. Indeed,
if B D Br .x/ 2B and x … � 0, then by construction the open ball B does not intersect
any (other) ball in B, which contradicts the connectedness of X (since it is quasiconvex).
Therefore the center of every ball in B must belong to either U or V . Moreover, since by
construction each set � 0B is connected and contains the center of B , each V and U contain
at least one center of a ball in B. However, if two balls B 0 and B are centered in U and V ,
respectively, then B \ B 0 D ;, otherwise by construction both their centers belong to a
connected set contained in U [ V , which contradicts the fact that U and V are open and
disjoint. This means that X is covered by two (non-empty) family of countable balls with
the property that every ball in one family does not intersects any other ball in the other.
This concludes the proof.

3.2. Application in the context of Menger curvature

Corollary 3.2 allows to prove a version of Theorem 3.11 in [56] for metric spaces that are
quasiconvex, doubling and complete (but not necessarily geodesic). The argument is based
on the following result, proved in Theorem 1.1 in [35] (see the comment around (2.1)
in [35]). Recall Section 2.1.2 for the definition of the Menger curvature c.x1; x2; x3/.

Theorem 3.18 (Hahlomaa). There exists a universal constant K0 > 1 such that the fol-
lowing holds. Let .E; d/ be a bounded 1-regular metric space with E 2 Reg1.C /, and
such that

c.E/ WD
Z

F

c2.x1; x2; x3/ dH1.x1/ dH1.x2/ dH1.x3/ < C1;

where

F WD ¹.x1; x2; x3/ 2 E W d.xi ; xj / � K0d.xk ; xl /; for all i; j; k; l 2 ¹1; 2; 3º; k ¤ lº:

Then there exist A � Œ0; 1� and a Lipschitz surjective function f WA! E such that

Lip.f / � D.c.E/C diam.E//;

where D is a constant depending only on C .

We will also need the following elementary result that allows to localize the s-regular-
ity condition.

Proposition 3.19 (Localizing s-regular sets, Lemma 2.2 in [10]). Suppose E 2Regs.C /
is a subset of a metric space .X; d/. Then for all x 2E and r 2 .0; diam.E//, there exists
a set Ex;r 2Regs. QC/, where QC is a constant depending only on s and C , such that

Br .x/ \E � Ex;r � B3r .x/ \E:
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In Lemma 2.2 of [10], only closed regular sets that are regular at arbitrarily large scales
are considered; however, the same proof without changes works for the version that we
reported above.

Corollary 3.20 (Integral Menger curvature condition). There exists a universal constant
K0 > 1 such that the following holds. Let E 2Reg1.CE / be a subset of a complete, doub-
ling and quasiconvex metric space .X; d/ and suppose that there exists a constant C > 0

such that

(3.21)
Z

F\.BR.x//3
c2.x1; x2; x3/ dH1.x1/ dH1.x2/ dH1.x3/ � CR; x 2E; R > 0;

where

F WD ¹.x1; x2; x3/ 2 E
3
W d.xi ; xj / � K0d.xk ; xl /; for all i; j; k; l 2 ¹1; 2; 3º; k ¤ lº:

ThenE is contained in a closed connected set �0 2Reg1. QC0/ with H1.�0/� QC diam.E/,
where QC � 1 is a constant depending only on C , CE and the quasiconvexity constant of
.X; d/, while zC0 is a constant that may additionally depend also on the doubling constant
of .X; d/.

Proof. We want to apply Corollary 3.2 (recall that by Corollary 3.14, it also holds for
unboundedK, with the same statement). To build the setsAx;r and the maps fx;r required
in its statement, we combine Theorem 3.18 and Proposition 3.19.

If E is bounded, for every x 2E and r D diam.E/, we can take directly Ax;r D A
and f D fx;r given by Theorem 3.18.

For E bounded or unbounded and r 2 .0; diam.E//, by Proposition 3.19 there exists a
set Ex;r � E with Ex;r 2Reg1. QCE / satisfying

Br .x/ \E � Ex;r � B3r .x/ \E

and with QCE a constant depending only CE . We haveZ
F\.Ex;r /3

c2.x1; x2; x3/ dH1.x1/ dH1.x2/ dH1.x3/

�

Z
F\.B3r .x//3

c2.x1; x2; x3/ dH1.x1/ dH1.x2/ dH1.x3/ � 3Cr:

Therefore we can apply Theorem 3.18 to the metric space .Ex;r ; d jEx;r / to obtain a sur-
jective Lipschitz map Qfx;r W QAx;r ! Ex;r for some QAx;r � Œ0; 1� and with

Lip. Qfx;r / � D.3Cr C diam.Ex;r // � D.3Cr C 6r/;

whereD is a constant depending only on CE . Hence Lip. Qfx;r /� QCr , where QC is constant
depending only on C and CE . Since Br .x/ \ E � Ex;r , we immediately see that the set
Ax;r WD Qf

�1
x;r .Br .x/\E/ and the map fx;r WD Qfx;r jAx;r have the required properties, and

an application of Corollary 3.14 yields the result.
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Our initial motivation for Corollary 3.20 was to provide details for the first step in the
proof of one of the main results in [13] concerning singular integral operators in the first
Heisenberg group H1. The group H1 D .R3; �/ is defined by the product

.x; t/ � .x0; t 0/ D .x1 C x
0
1; x2 C x20 ; t C t

0
C !.x; x0//; .x; t/; .x0; t 0/2R2 �R;

where
!.x; x0/ WD

1

2
Œx1x

0
2 � x2x

0
1�; x; x0 2 R2:

The left-invariant Korányi metric on H1 is defined by

dH1.p; p0/ WD kp�1 � p0kH1 ; where k.x; t/kH1 WD
4
p
jxj4 C 16t2;

where j � j denotes the Euclidean norm on R2.
Theorem 1.3 in [13] states the following.

Theorem 3.22 (Chousionis, Li). Let KWH1 n ¹0º ! Œ0;1/ be defined by

K.p/ D
�.p/2

kpkH1

; where �.x; y; t/ WD
j.x; y/j1=2

k.x; y; t/kH1

,

and let E � H1 be a 1-regular set. If the truncated singular integrals

T"f .p/ D

Z
EnB.p;"/

K.q�1 � p/f .q/ dH1.q/

are uniformly bounded in L2.H1bE/, then E is contained in a 1-regular curve.

The proof of this result in [13] starts with the observation that it suffices to show for
some ˛ > 0 that•

†.˛/\B.p;R/3
c2.p1; p2; p3/ dH1.p1/ dH1.p2/ dH1.p3/ ≲ R; p 2E; R > 0;

where

†.˛/ WD
[
r>0

¹.p1; p2; p3/ 2 E �E �E W ˛r � dH1.pi ; pj / � r; i ¤ j º

and the Menger curvature c is computed with respect to dH1 . The authors refer to p. 123
of [35]; however, from this statement it was not immediately clear to us how to obtain
the 1-regular curve containing E, whose existence is claimed in Theorem 3.22. A good
indication is provided by Theorem 3.11 in [56], where Schul stated without proof a version
of Hahlomaa’s result [35] which he derived from the arguments in [35]. Corollary 3.20 is a
generalization of Theorem 3.11 in [56]: it works not only for geodesic, but for quasiconvex
spaces, and also for unbounded sets E. These relaxed assumptions are crucial for the
application in the proof of Theorem 1.3 in [13], where H1 is endowed with the (non-
geodesic but quasiconvex) Korányi distance dH1 . In addition to this greater flexibility,
we believe that it is valuable to have all the details for the proof of Corollary 3.20 (or
Theorem 3.11 in [56]) available as a combination of published work by Hahlomaa and the
arguments we provide in this paper.
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4. Uniformly 1-rectifiable subsets of metric spaces

The goal of this section is to characterize uniformly 1-rectifiable sets in terms of the
�-numbers introduced in Definition 2.31. What does uniform 1-rectifiability mean in this
context? In Euclidean spaces, a 1-regular set is rightfully called uniformly 1-rectifiable if it
is contained in a 1-regular curve, since this property is equivalent with many other notions
of quantitative rectifiability that make sense also for higher-dimensional sets [20, 21].
The main result of this section, Theorem 4.17, together with Corollary 4.6, motivates
an analogous definition of uniform 1-rectifiability in a large class of metric spaces. A
combination of these results was stated as Theorem 1.4 in the introduction.

Corollary 4.6 is based on relations between regular curves, Lipschitz images and the
�-numbers from Example 2.21. While these connections are in essence due in one dir-
ection to Hahlomaa [35] and in the other direction to Schul [55], the novelty here is
the construction of a closed and connected 1-regular global covering set based on the
other equivalent characterizations. To make this implication rigorous in arbitrary com-
plete, doubling, and quasiconvex metric spaces, we will need the results from Section 3,
and in particular, we will apply Hahlomaa’s result in the form of Corollary 3.20. The
proof of Theorem 4.17 takes up most space in this section, and at the core of it lies The-
orem 4.19, by which we can control the new �-numbers from above by the more familiar
�-numbers.

4.1. Characterization following Hahlomaa and Schul

Theorem 4.1 (based on [35, 55]). Let .X; d/ be a complete, doubling, and quasiconvex
metric space. Then a 1-regular setE � X is contained in a 1-regular closed and connected
set �0 if and only if for all z 2E and R > 0,

(4.2)
•

.E\BR.z//3

@.¹x1; x2; x3º/

diam¹x1; x2; x3º3
dH1.x1/ dH1.x2/ dH1.x3/ � CR

for some constant C � 1.
Moreover, if E is bounded, then the statement also holds with “closed and connected

set” replaced by “curve”, and if (4.2) holds, we can choose �0 2 Reg1. zC/ such that
diam.�0/ � zC diam.E/, where zC depends only on C , the 1-regularity constant of E and
the doubling and quasiconvexity constants of .X; d/. Conversely, if E is contained in a
1-regular closed and connected set �0, then the constant C in (4.2) can be bounded in
terms of the 1-regularity constant of �0 and the quasiconvexity constant of .X; d/.

Proof. We begin by discussing the first part of the theorem. Assume that (4.2) holds for
a 1-regular set E � X with regularity constant CE . The goal is to apply Corollary 3.20
to show that E is contained in a closed and connected 1-regular set �0. To verify the
assumptions for E, let K0 > 1 be the universal constant from Corollary 3.20 and denote,
as before,

FD¹.x1;x2;x3/2E�E�E W d.xi ;xj /�K0d.xk ;xl /; for all i;j;k; l 2¹1;2;3º;k¤ lº:
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By making the domain of integration for the triple integral in (4.2) possibly smaller, we
deduce from the assumption that, for z 2E and R > 0,

(4.3)
•

F\.BR.z//3

@.¹x1; x2; x3º/

diam¹x1; x2; x3º3
dH1.x1/ dH1.x2/ dH1.x3/ � CR:

By the equivalence between triangular excess and Menger curvature stated in (2.20) for
triples in F , (4.3) yields•

F\.BR.z//3
c2.x1; x2; x3/ dH1.x1/ dH1.x2/ dH1.x3/ ≲K0 CR; z 2E; R > 0:

Then Corollary 3.20 shows that there exists a closed and connected 1-regular subset
�0 2Reg1. zC/ of .X; d/ containing E for zC as in the statement of the theorem. If E is
bounded, then Corollary 3.20 yields further that H1.�0/ � zCdiam.E/ <1. Since .X; d/
is complete, such �0 is automatically compact, and a posteriori, the trace of a 1-regular
Lipschitz curve, recall the discussion at the beginning of Section 3.1.

The other implication was known before. Indeed, assume that E is contained in a
closed and connected 1-regular subset �0. Then Theorem 1.10 in [55] (see also The-
orem 3.12 and (3.9) in [56]) shows that (4.2) holds with “E” replaced by “�0”. (The proof
argument in Section 3 of [55] to deduce Theorem 1.10 from Theorem 1.8 therein seems
to be formulated under the implicit assumption that the ambient space is geodesic, but the
argument works analogously for quasiconvex spaces, with the implicit constant in (4.2)
depending on the quasiconvexity constant of .X;d/ in addition to the 1-regularity constant
of �0.)

As inequality (4.2) remains true if the domain of integration is replaced by a smaller
set, (4.2) also holds for the (H1-measurable) E � �0.

Theorem 4.1 gives a characterization for a 1-regular set E to be contained in a closed
and connected 1-regular curve. The next result, Corollary 4.6, provides further justification
for calling such sets uniformly 1-rectifiable. We recall the relevant terminology.

Definition 4.4. Let k 2N. A k-regular set E in a metric space .X; d/ has big pieces of
Lipschitz images (BPLI) if there exist constants c; L > 0 such that for every x 2E and
0 < r < diam.E/, there exists an L-Lipschitz function f WA! E, where A is a subset of
the Euclidean ball Br .0/ � Rk , and Hk.f .A/ \ Br .x// � cr

k .

Definition 4.5. Let k 2N. A k-regular set E in a metric space .X; d/ has big pieces of
bi-Lipschitz images (BPBI) if there exist constants c;L > 0 such that for every x 2E and
0 < r < diam.E/, there exists an L-bi-Lipschitz embedding f WA ! E, where A is a
subset of the Euclidean ball Br .0/ � Rk , and Hk.f .A/ \ Br .x// � cr

k .

Corollary 4.6. Let .X; d/ be a complete, doubling, quasiconvex metric space. Let E � X
be 1-regular. The following conditions are equivalent:

(1) E is contained in a closed and connected 1-regular set �0,

(2) E has BPLI,
(3) E has BPBI,
(4) E 2GLem.�; 1/, for � as in Example 2.21.
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Moreover, if E is bounded, these conditions are further equivalent to E being con-
tained in a 1-regular curve. Also, if (1) holds, then (2) holds with BPLI constants depend-
ing only on the 1-regularity constants of E and �0, as well as the doubling and quasicon-
vexity constants of .X; d/. Conversely, if (4) holds for E 2GLem.�; 1; M/ \ Reg1.C /,
then (1) holds with �0 2Reg1. zC/, where zC depends only on M , C , and the doubling and
quasiconvexity constants of .X; d/.

We call a 1-regular set E uniformly 1-rectifiable if it satisfies one (and thus all) of the
properties (1)–(4). The equivalence of (2)–(3) was established by Schul in Corollary 1.2
of [58], while Corollary 1.3 in [57] states a third equivalent condition that is very similar
to (4), but formulated in terms of multiresolution families instead of dyadic systems as we
used in the definition of the geometric lemma. However, the equivalence of these two ver-
sions of the Carleson condition is standard, see the beginning of the proof of Theorem 1.1
in [57]. For the convenience of the reader, we show how the implication (3) to (4) can be
deduced from published results. This is the content of Proposition 4.7.

Proposition 4.7. Let .X; d/ be a complete, doubling, quasiconvex metric space and let
E � X be 1-regular. If E has BPBI, then E 2GLem.�; 1/, for � as in Example 2.21.

Proof. The proof consists of three steps. First we show that connected 1-regular sets in
metric spaces satisfy GLem.�; 1/. This is essentially the content of Theorem 1.11 in [55],
but the latter is formulated in terms of multiresolution families instead of dyadic systems.
Indeed, Theorem 1.11 in [55] states that for every connected set � 2Reg1.C / in a metric
space and any associated multiresolution family, for z 2� and R > 0,

(4.8)
X
B2G�

B�BR.z/

Z
B

Z
B

Z
B

@.¹x1; x2; x3º/ rad.B/�3dH1
j�.x1/dH1

j�.x2/dH1
j�.x3/≲R;

where the implicit constant depends on C and the constant “A” in the definition of the
multiresolution family G� . Recall that a multiresolution family is given by

G� WD ¹BA2�n.x/ W x 2X
�
n ; n 2 Nº;

where A > 1 is a chosen constant and X�n is any 2�n-net for �; i.e., a set of points in �
with the properties that d.x; y/ > 2�n for all x; y 2X�n (2�n-separation) and for every
z 2� there exists x 2X�n such that d.x; z/ � 2�n (maximality).

In order to deduce that � 2GLem.�; 1/ in the sense of Definition 2.14, we take an
arbitrary dyadic system � on � and fix a cube Q0 2� with `.Q0/ D 2�j0 . We need to
bound from above the expressionX

Q2�Q0

�.2Q/H1.Q/ D
X
j�j0

X
Q2�Q0\�j

H1.Q/

H1.2Q/3

�

Z
2Q

Z
2Q

Z
2Q

@.¹x1; x2; x3º/

diam.2Q/
dH j1�.x1/ dH j1�.x2/ dH j1�.x3/:(4.9)

Now for a fixed j � j0, the collection of “centers” ¹xQ WQ2�j º (as in item (5) in Defini-
tion 2.5) is 2�nj -separated, where nj is the smallest natural number such that 2�nj< c02�j
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with the constant c02 .0;1/ from Definition 2.5. The collection is not necessarily maximal,
but by adding points if necessary, one can enlarge it to a family X�nj as in the definition
of multiresolution families. By construction, every n 2N appears as nj for at most one
index j . Moreover, by (2.6) and (2.8), we can choose a constant A > 1, depending only
on the 1-regularity constant C , such that

(4.10) 2Q � BA2�nj .xQ/ \ �; Q2�j :

Associated to the given dyadic system �, we fix now a multiresolution family G� with
the chosen constant A and such that ¹xQ W Q 2�j º � X�nj . Moreover, there exists a con-
stant K, depending only on C , such that

(4.11) BA2�nj .xQ/ \ � � BKdiam.Q0/.xQ0/ \ �; Q2�Q0 \�j :

Indeed, for z 2BA2�nj .xQ/ \ � , we have

dist.z;Q0/ � d.z; xQ/ < A2
�nj < Ac02

�j
(2.8)
≲ C diam.Q0/;

which proves (4.11) for a suitable constant K. Then, by the construction of G� , the
inclusions (4.10) and (4.11), and the property (2.8) of dyadic cubes, we can bound the
expression in (4.9) from above as follows:X
j�j0

X
Q2�Q0\�j

H1.Q/

H1.2Q/3

Z
2Q

Z
2Q

Z
2Q

@.¹x1; x2; x3º/

diam.2Q/
dH j1�.x1/ dH j1�.x2/ dH j1�.x3/

≲C
X
B2G�

B�BKdiam.Q0/.xQ0 /

Z
B

Z
B

Z
B

@.¹x1; x2; x3º/ rad.B/�3 dH1
j�.x1/ dH1

j�.x2/ dH1
j�.x3/:

(4.12)

Combined with Schul’s result (4.8), the two inequalities (4.9) and (4.12) yieldX
Q2�Q0

�.2Q/H1.Q/ ≲C H1.Q0/;

and hence, as Q0 2� was arbitrary, � 2 GLem.�; 1;M/, with M depending only on C .
In the second step of the proof of Proposition 4.7, we observe that the set E given

in the statement has big pieces of connected 1-regular sets since it has BPBI (with some
constants c and L). Indeed, for x 2E and 0 < r < diam.E/, let f .A/ be the associated
bi-Lipschitz piece as in the definition of BPBI. Then, for arbitrary y 2f .A/ and s > 0, the
set f �1.f .A/ \ Bs.y// is contained in an interval of length 2Ls by the L-bi-Lipschitz
property of f . Upon translating and rescaling by 2Ls, we thus find a set Ay;s � Œ0; 1� and
a 2L2s-Lipschitz function from Ay;s onto f .A/ \ Bs.y/. Since y and s were arbitrary,
Corollary 3.2 then yields a connected set �0 2Reg1.C0/withC0 depending only on doub-
ling and quasiconvexity constants of .X; d/ and on L such that �0 � f .A/. Since f .A/
was chosen as in the definition of BPBI, we have in particular H1.E \�0 \Br .x//� cr .
Repeating the same argument for all x and r , we find that E has big pieces (as defined in
Definition 2.11 in [10]) of connected 1-regular sets.
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Finally, by the first two steps of the proof, we know that E has big pieces of sets that
satisfy GLem.�; 1/ with uniform constants. Then it follows from an abstract argument
that E itself satisfies GLem.�; 1/. This abstract argument is known as stability of geo-
metric lemmas under the “big pieces functor” and was formulated in great generality in
Proposition 2.23 of [10], which we can apply to conclude the proof.

Our main contribution to Corollary 4.6 is the proof of “(4)) (1)”, and it is precisely
this implication which arises as a corollary of Theorem 4.1. To complete the circle of
equivalent statements, we also discuss the implication “(1)) (2)”.

Proof of Corollary 4.6. We assume first that (1) holds, that is, E is a 1-regular set con-
tained in a closed and connected 1-regular set �0, and we will deduce (2). We call the data
of .E;�0;X/ the collection of the 1-regularity constants of E and �0, as well as the doub-
ling and quasiconvexity constants of .X;d/. We could essentially use �0 to construct a big
Lipschitz image in E \Br .x/, for an arbitrarily given point x 2E and 0 < r < diam.E/,
but the localization argument will be simpler if we use curves given by Theorem 4.1.
Let C � 1 be a large enough constant, to be chosen momentarily. Using the localization
property for s-regular sets, stated in Proposition 3.19, we can find a 1-regular set Ex;r ,
with regularity constant depending only the regularity constant of E, such that

Br=3C .x/ \E � Ex;r � Br=C .x/ \E:

As a subset of E, the set Ex;r is still covered by �0. By Theorem 1.10 in [55], the con-
nected 1-regular set �0 satisfies•

.�0\BR.z//3

@.¹x1; x2; x3º/

diam¹x1; x2; x3º3
dH1.x1/ dH1.x2/ dH1.x3/ � C0R;

where C0 depends on the Ahlfors regularity constant of �0. Since Ex;r � �0, it follows
that Ex;r satisfies condition (4.2) in Theorem 4.1, with the same constant “C0”. Hence,
by Theorem 4.1, there exists a 1-regular curve �x;r � Ex;r with �x;r 2 Reg1. zC/ and
diam.�x;r /� zCdiam.Ex;r /.� 2 zCr=C/, where zC depends only on the data of .E;�0;X/.
In particular, by choosing C large enough depending only on the data of .E; �0;X/, we
may assume that �x;r � Br .x/.

Now Lemma 2.8 in [4] and a straightforward reparametrization show that there exists
an L-Lipschitz function 
 W Œ�r; r�! X with 
.Œ�r; r�/D �x;r and L bounded in terms of
the data of .E; �0;X/. Moreover,

H1.
.Œ�r; r�/ \E \ Br .x// � H1.Ex;r / � H1.E \ Br=3C .x// �C r:

Repeating the same argument for every x 2E and 0 < r < diam.E/ proves that E sat-
isfies (2), that is, it has BPLI (with constants depending only on the data of .E; �0;X/).
Then E has also BPBI (condition (3)) by Corollary 1.2 in [58], and finally, satisfies the
geometric lemma in condition (4) by Proposition 4.7.

In the converse direction, assume now that (4) holds for a set E 2Reg1.C / in X. Fix a
dyadic system � on E and consider arbitrary z 2E and 0 < R < diam.E/=2. Then there
exists j0 2 J such that BR.z/ \ E �

Sm
iD1Q0;i with Q0;i 2 �j0 , 2�j0�1 � R < 2�j0
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andm depending only on C . To see this, recall that BR.z/\E is covered by the union of
the cubes Q 2�j0 . Now if Q \ BR.z/ ¤ ;, then Q � B zCR.z/ \ E for a constant zC D
zC.C/. Since E 2Reg1.C /, the elements in�j0 are disjoint and thanks to the lower bound
for the H1-measure of Q 2�j0 stated in (2.8) we have that at most m ≲C 1 elements
Q2�j0 can intersect BR.z/.

Finally, we will show that there exists a constant K D K.C/ such that, for every
Q0;i 2�j0 , •

ŒE\B.z;R/�3

@.¹x1; x2; x3º/

.diam¹x1; x2; x3º/3
dH1.x1/ dH1.x2/ dH1.x3/

≲C

mX
iD1

X
Q2�Q0;i

�.KQ/H1.Q/:(4.13)

This will allow us to verify the assumption of Theorem 4.1 via (4) (E 2GLem.�; 1/).
Then we deduce that E is contained in a closed and connected 1-regular set �0, thus (1)
holds.

To conclude the proof, we verify inequality (4.13). We first decompose the domain of
integration as ŒE \ BR.z/�3 D

S
j�j0

Aj , where

(4.14) Aj WD ¹.x1; x2; x3/ 2 ŒE \ BR.z/�
3
W 2�j � diam¹x1; x2; x3º < 2�jC1º:

It suffices to consider j � j0, since Aj ¤ ; implies that

(4.15) 2�j � 2R < 2�j0C1:

Thus, if .x1; x2; x3/ 2 Aj , then ¹x1; x2; x3º � Br .x3/ for some j � j0 with 2�j � r <
2�jC1. Recalling the basic property of dyadic cubes stated in (2.9), there exists a constant
K D K.1; C / > 1, depending only on the Ahlfors regularity constant of E 2 Reg1.C /
such that there is Q 2�j with ¹x1; x2; x3º � B.x3; r/ � KQ and Q � Q0;i for some
i 2 ¹1; : : : ; mº. Thus

(4.16) Aj �

m[
iD1

[
Q2�Q0;i\�j

.KQ/3:

Therefore,•
ŒE\BR.z/�3

@.¹x1; x2; x3º/

.diam¹x1; x2; x3º/3
dH1.x1/ dH1.x2/ dH1.x3/

(4.16) ; (2.8)
≲C

X
j�j0

mX
iD1

X
Q2�Q0;i\�j

•
ŒKQ�3

@.¹x1; x2; x3º/

diam.KQ/3
dH1.x1/ dH1.x2/ dH1.x3/

(2.8)
≲C

mX
iD1

X
Q2�0;i

�.KQ/H1.Q/:
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By the assumption thatE2GLem.�;1/ and recalling Lemma 2.23 (see also Remark 2.30),
this shows as desired that (4.2) holds for all z2E with a constant depending only onM ,C
and the doubling and quasiconvexity constants of .X;d/, at least forR < diam.E/=2. IfE
is unbounded, we are done. Otherwise, if E is bounded and R � diam.E/=2, then we
apply the preceding argument with j0 D n, where n is the smallest integer in J , and the
arguments go through verbatim if we replace in (4.15) the bound “2R” by “diam.E/”.
In any case, the assumption of Theorem 4.1 is satisfied for E, and the first part of the
corollary follows.

The part concerning the covering of bounded sets E by 1-regular curves is also a
consequence of Theorem 4.1.

4.2. Characterization using �1;1-numbers

In this section, we complement Corollary 4.6 by providing a further equivalent character-
ization for uniform 1-rectifiability, now in terms of the �-numbers from Definition 2.31.

Theorem 4.17. Let .X; d / be a metric space and let E 2Reg1.cE /. Then the following
are equivalent:

(1) E 2GLem.�; 1/,
(2) E 2GLem.�1;1; 1/.

In fact, if 4 is a system of Christ–David dyadic cubes on the 1-regular set E, then

(4.18) 3�1 �.2Q/ � �1;1.2Q/ � C�.7Q/; Q2�;

where C � 1 is a constant depending only on cE .
Moreover, if .X; d / is complete, quasiconvex, and doubling, and if one (and thus both)

of conditions (1) and (2) hold, then E is uniformly 1-rectifiable.

For the implication (2)) (1) in Theorem 4.17, we will need the following result, the
proof of which is postponed to the next subsection.

Theorem 4.19 (L1-quantified Menger theorem). Let .X; d/ be a bounded and 1-regular
metric space. Then there exists a Borel map f WX! R such that«

X

«
X

jjf .x/ � f .y/j � d.x; y/j

diam.X/
d�.x/ d�.y/(4.20)

� C

«
X

«
X

«
X

@.¹x; y; zº/

diam.X/
d�.x/ d�.y/ d�.z/;

where � WD H1 and C is a constant depending only on the regularity constant of X.

Proof of Theorem 4.17. Once the equivalence of (1) and (2) is established for a set E in
a complete, quasiconvex and doubling metric space, it follows from Corollary 4.6 that E
with these properties is uniformly 1-rectifiable.

Thus we concentrate on the equivalence of (1) and (2), for which is enough to show
the estimate (4.18). Let 4 be a system of Christ-David cubes on E, and fix Q 24. We
first prove the following inequality:

(4.21) �.2Q/ � 3�1;1.2Q/:
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To this end, let x1; x2; x3 2 2Q be arbitrary, and consider any function f W2Q!R (which
we later take to be Borel) and any norm k � k on R. Then there exists � 2 S3 (depending
on x1; x2; x3) such that

f .x�.1// � f .x�.2// � f .x�.3//

and hence @1.f .x�.1//; f .x�.2//; f .x�.3/// D 0, where @1.�/ is computed with respect
to k � k, which is a constant multiple of j � j (see (2.19) for the expressions of @1 and @).
Therefore,

@.¹x1; x2; x3º/

diam.2Q/
�
@1.x�.1/; x�.2/; x�.3//

diam.2Q/

D
@1.x�.1/; x�.2/; x�.3// � @1.f .x�.1//; f .x�.2//; f .x�.3///

diam.2Q/

�
jd.x�.1/; x�.2//�kf .x�.1//�f .x�.2//kj

diam.2Q/
C
jd.x�.2/; x�.3//�kf .x�.2//�f .x�.3//kj

diam.2Q/

C
jd.x�.1/; x�.3//�kf .x�.1//�f .x�.3//kj

diam.2Q/
�

Note that the last expression is unchanged if we replace each “�.i/" by “i". Hence integ-
rating and taking the infimum over all Borel functions f W 2Q ! R and k � k, using the
definition of �.�/ and �1;1.�/, proves the inequality (4.21). In particular, (2) implies (1).

Next we prove the following opposite inequality

(4.22) �1;1.2Q/ � C�.7Q/;

where C > 0 is a constant depending only on cE . Fix Q 24, z 2Q, and set d.Q/ WD
diam.Q/. Applying Proposition 3.19, we can find a 1-regular set EQ � E such that
B2d.Q/.z/ \ E � EQ � B6d.Q/.z/ \ E and with a regularity constant depending only
on cE (if 2d.Q/ � diam.E/, we simply take EQ D E). In particular,

2Q � EQ � 7Q

Then applying Theorem 4.19 to the metric space .EQ; djEQ/, we obtain a Borel map
f WEQ ! R satisfying

(4.23)

« «
.EQ/2

j jf .x/ � f .y/j � d.x; y/j dH1.x/ dH1.y/

� QC

« « «
.EQ/3

@¹x; y; zº dH1.x/ dH1.y/ dH1.z/;

where QC is a constant depending only on cE . Moreover, by the 1-regularity of E and by
the property of dyadic systems stated in (2.8), we have

c�1E c0d.Q/ � H1.Q/ � H1.2Q/ � H1.EQ/ � H1.7Q/ � 7cE d.Q/;
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where c0 is the constant, depending only on cE ; appearing in the definition of dyadic
system. Therefore, using (4.23),

1

H1.2Q/2

Z Z
.2Q/2

j jf .x/ � f .y/j � d.x; y/j

diam.2Q/
dH1.x/ dH1.y/

� c�20 72 c4E

« «
.EQ/2

j jf .x/ � f .y/j � d.x; y/j

diam.2Q/
dH1.x/ dH1.y/

� QC � c�20 72 c4E

« « «
.EQ/3

@¹x; y; zº

diam.2Q/
dH1.x/ dH1.y/ dH1.z/;

� C

« « «
.7Q/3

@¹x; y; zº

diam.7Q/
dH1.x/ dH1.y/ dH1.z/;

where C is a constant depending only on cE . This proves (4.22), which combined with
Lemma 2.23 (whose assumption are satisfied for the coefficients � by Remark 2.30) gives
also the implication (1)) (2).

4.3. Constructing good maps into R

The main goal of this subsection is to prove Theorem 4.19. This requires us to construct
maps f WX! R with good properties using a suitable control for the triangular excess of
point triples in X. We introduce some notation to make this precise. We say that a map
between two metric spaces f W .X1; d1/! .X2; d2/ is a ı-isometry, for some ı � 0, if

jd2.f .x/; f .y// � d1.x; y/j � ı; x; y 2 X:

For every S � .X; d/, we define

@S WD sup
¹x;y;zº�S

@.¹x; y; zº/:

Given three points x; y; z in a metric space .X; d/, we write Œxyz� if

d.x; y/C d.y; z/ � d.x; z/ D @.¹x; y; zº/;

which is in fact equivalent to

d.x; z/ � max.d.x; y/; d.y; z//:

Clearly, Œxyz�, Œzyx�, and moreover, at least one of the properties Œxyz�, Œxzy�, or Œzxy�
always holds.

Definition 4.24 (Almost circular points). Let .X; d/ be a metric space and fix a number
� � 0. We say that four points P1; P2; P3; P4 2 X are �-circular if

(4.25) jd.Pi ; Pj / � d.Pk ; Pl /j � �;

for any choice of (distinct) indices i; j; k; l 2 ¹1; 2; 3; 4º.
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The name �-circular comes from the fact that any two couples of antipodal points in
the sphere (of any dimension) give rise to four 0-circular points. The motivation behind
the above definitions is the following result by Menger [50] (see also [27, 54]).

Theorem 4.26 (Menger). Suppose that a metric space .X;d/ satisfies @XD0. Then either X
contains only four points which are 0-circular, or X can be isometrically embedded in R.

Theorem 4.19 is a sort of L1-quantified generalization of the above theorem in the
case of 1-regular metric measure spaces. In fact, an L1-quantified version also holds for
arbitrary metric spaces. This is a bit similar in spirit to Lemma 6.4 in [24], which concerns
the construction of good maps locally from a curve intersected with a ball into R.

Theorem 4.27 (L1-quantified Menger theorem). Let .X; d/ be a metric space such that
@X � ˇ, with ˇ � 0; and containing five points having pairwise distances strictly grater
than 30ˇ. Then there exists a map f W .X; d/! .R; j � j/ that is a 40ˇ-isometry.

Even if not needed in this note, we will prove this at the end of this section, as it follows
easily from the preliminary results needed in the proof of Theorem 4.19. More precisely,
both Theorem 4.19 and Theorem 4.27 are consequences of the following elementary tech-
nical lemmas. The first one says that given four points in a metric space, either they are
almost circular or they can be embedded in R with an explicit almost isometry.

Lemma 4.28 (4-points lemma). Let .X; d/ be a metric space. Let P; Q; R; S 2 X and
ˇ � 0 be such that

@¹P;Q;R; Sº � ˇ and d.P;Q/ > 2ˇ:

Then at least one of the following holds:
(i) the map f W ¹P;Q;R; Sº ! R, defined by f .Q/ WD d.P;Q/ and for x 2 ¹P;R; Sº,

by

f .x/ WD

´
�d.x; P / if d.x;Q/ � max.d.P;Q/; d.x; P //;
d.x; P / otherwise,

is a 2ˇ-isometry,

(ii) the points P;Q;R; S are 2ˇ-circular.

The second technical lemma essentially implies that if @X is small and X contains
four almost circular points, then all the points in X must be close to those points. It is
instructive to keep in mind the example where P1; P2; P3; P4 are given by two pairs of
antipodal points on the circle S1 equipped with the inner distance.

Lemma 4.29 (Attraction to circular points). Let .X; d/ be a metric space and let ˇ � 0.
Suppose that the points P1; P2; P3; P4 2 X are 4ˇ-circular, @¹P1; P2; P3; P4º � ˇ; and
d.Pi ; Pj / > 15ˇ for all i ¤ j .

Then for every Q2X, at least one of the following holds:
(i) d.Q;Pi / � 15ˇ for some i 2 ¹1; 2; 3; 4º;

(ii) @¹P1; P2; P3; P4;Qº > ˇ.

The proofs of Lemma 4.28 and Lemma 4.29 are elementary but rather tedious, and
can be found in Appendix A. Assuming their validity, we now prove the main result of
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this subsection, Theorem 4.19. We will split the proof in several lemmas, but before that
we fix some notations. From now on, .X;d/ will be a bounded 1-regular metric space with
regularity constant CX � 1, i.e., X2Reg1.CX/. We also set � WD H1, the 1-dimensional
Hausdorff measure in .X; d/ and, set

(4.30) ˇ WD

«
X

«
X

«
X

@¹x; y; zº

r
d�.x/ d�.y/ d�.z/;

where r WD diam.X/. Note that the map X3 3 .x; y; z/ 7! @¹x; y; zº is continuous as
infimum of a finite number of continuous functions. Without loss of generality, we can
assume that ˇ � ı, for some ı > 0 small to be chosen later and depending only on CX.
Indeed, by taking f WX!R as f � 0, we can always make the left-hand side of (4.20) less
than or equal to one. Fix also a constant C > 0 big enough to be chosen later depending
only on CX.

We start by giving an upper bound on the number @X D supx;y;z2X @¹x; y; zº.

Lemma 4.31. It holds

(4.32) @X �
r

200
�

Proof. It suffices to consider the case @X > 0. Set

ˇ1 WD
1

r
@X:

Let x1; x2; x3 2 X be such that

@¹x1; x2; x3º

r
�
ˇ1

2
�

Then, setting

� WD
r ˇ1

12
,

we have

@¹x; y; zº

r
�
ˇ1

4
, 8.x; y; z/ 2 B� .x1/ � B� .x2/ � B� .x3/:

Hence, by 1-regularity,

ˇ � �.X/�3
Z
B� .x1/�B� .x2/�B� .x3/

r�1 @¹x; y; zº � QCˇ41;

using again �.X/ � CX r , and where QC > 0 is a constant depending only on CX. This
shows that

(4.33) ˇ1 � . QC
�1ˇ/1=4 � . QC�1ı/1=4:

Therefore, choosing ı small enough we have ˇ1 � 1=200, which is (4.32).
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Lemma 4.34. There exist two points P;Q2X satisfying

(i)

Z
X�X

@¹P; x; yº

r
d�.x/d�.y/ � Cˇ�.X/2

and
Z

X�X

@¹Q;x; yº

r
d�.x/d�.y/ � Cˇ�.X/2;

(ii)
Z

X

@¹P;Q; xº

r
d�.x/ � Cˇ�.X/;

(iii) d.P;Q/ � r=2.

Proof. Define the sets

A1 WD
°
P 2 X W

«
X�X

r�1 @¹P; x; yº d�.x/ d�.y/ � Cˇ
±
� X;

A2 WD
°
.P;Q/ 2 X � X W

«
X
r�1 @¹P;Q; xº d�.x/ � Cˇ

±
� X � X:

By the dominated convergence theorem, both A1 and A2 are closed sets. By (4.30) and
the Markov inequality,

(4.35) �.X n A1/ �
�.X/
C

and .�˝ �/..X � X/ n A2/ �
�.X/2

C
�

The first inequality above gives

.�˝ �/.X � X n .A1 � A1// � 2�..X n A1/ � X/ � 2
�.X/2

C
�

Additionally, by 1-regularity we have

.�˝ �/.¹.x; y/ 2 X � X W d.x; y/ � r=2º/ � C�2X �.X/2=2;

where we used that �.X/ � CX r . Together with (4.35), this shows that if we choose C
big enough, it holds

A2 \ .A1 � A1/ \ ¹.x; y/ W d.x; y/ � r=2º ¤ ;

and any couple .P;Q/ in this set has the three desired properties.

From now on, we fix two points P;Q2X as given by Lemma 4.34. We define the map
f WX! R by imposing f .P / WD 0, f .Q/ WD d.P;Q/ and

f .x/ WD

´
�d.x; P / if ŒxPQ�;
d.x; P / otherwise,

for every x … ¹P;Qº. Recall that ŒxPQ� means d.x;Q/ � max¹d.x; P /; d.P;Q/º.

Lemma 4.36. The map f is Borel measurable and

(4.37) j jf .x/ � f .y/j � d.x; y/j � 2min.d.x; P /; d.y; P //; x; y 2 X:
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Proof. The Borel measurability follows noting that the restriction of f to either the closed
set ¹x W ŒxPQ� holdsº or its complement is continuous (in fact, 1-Lipschitz). To show
estimate (4.37), note that by the triangle inequality, jd.x; y/ � d.y; P /j � d.x; P /, and
that by definition, jf .y/j D d.y; P / and jf .x/j D d.x; P /, henceˇ̌

jf .x/ � f .y/j � d.x; y/
ˇ̌
D
ˇ̌
jf .x/ � f .y/j � d.x; y/C jf .y/j � jf .y/j

ˇ̌
� jjf .x/ � f .y/j � jf .y/jj C j � d.x; y/C jf .y/jj

� jd.x; y/ � jf .y/jj C jf .x/j � 2d.x; P /:

Arguing in the same for y, we get (4.37).

We are now ready to prove the main result of this section.

Proof of Theorem 4.19. Recall that our goal is to show that

(4.38)
«

�

jjf .x/ � f .y/j � d.x; y/j

diam.X/
d�.x/ d�.y/ � QCˇ�.X/2

holds with � D X � X and for some constant QC depending only on CX. We proceed by
proving (4.38) for different sets � that partition X � X. Define

G WD ¹.x; y/ 2 X � X W jjf .x/ � f .y/j � d.x; y/j � 5@¹x; y; P;Qºº;

B WD X � X n G :

Estimate (4.38) holds with � D G . To see this, by definition of G we haveZ
G

r�1 jjf .x/ � f .y/j � d.x; y/j d�.x/ d�.y/ �
Z

G

5r�1 @¹x; y; P;Qº d�.x/ d�.y/:

From this and the obvious inequality

@¹x; y; P;Qº � @¹P;Q; xº C @¹P;Q; yº C @¹Q;x; yº C @¹P; x; yº;

we obtainZ
G

r�1 jjf .x/ � f .y/j � d.x; y/j d�.x/ d�.y/

� 5r�1
Z

G

@¹P;Q; xº C @¹P;Q; yº C @¹Q;x; yº C @¹P; x; yº d�.x/ d�.y/;

from which plugging in the estimates (i) and (ii) of Lemma 4.34, which are satisfied by P
and Q, we haveZ

G

r�1 jjf .x/ � f .y/j � d.x; y/j d�.x/ d�.y/

� 10�.X/
Z

X
r�1 @¹P;Q; xº d�.x/C 5

Z
X�X

r�1 @¹P; x; yº d�.x/ d�.y/

C 5

Z
X�X

r�1 @¹Q;x; yº d�.x/ d�.y/ � 20Cˇ�.X/2:
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Our goal is now show that (4.38) holds with � D B. Thanks to (4.32), we have that
d.P; Q/ > 2@¹x; y; P; Qº for every x; y 2X. Hence for every x; y 2B, we can apply
Lemma 4.28 to the points x; y; P;Q and get

B � ¹.x; y/ 2 X � X W the points x; y; P;Q are 2@¹x; y; P;Qº-circularº:

Indeed, the first case in Lemma 4.28 cannot happen by the definition of B. We further
divide B as

B1 WD ¹.x; y/ 2 B W d.¹x; yº; ¹P;Qº/ � 30@¹x; y; P;Qºº and B2 WD B nB1:

Estimate (4.38) holds with � DB1. To see this, let x;y2B1. If d.x;P / < 30@¹x;y;P;Qº
or d.y; P / < 30@¹x; y; P;Qº, by (4.37) we have

(4.39) jjf .x/ � f .y/j � d.x; y/j � 64@¹x; y; P;Qº:

If instead d.x; Q/ < 30@¹x; y; P;Qº holds (or d.y; Q/ < 30@¹x; y; P;Qº), by the
2@¹x; y; P; Qº-circularity, we have that d.y; P / < 32@¹x; y; P; Qº (or that d.x; P / <
32@¹x; y; P; Qº), and so by (4.37) we get again (4.39). Hence using (4.39) and then
estimate (ii) of Lemma 4.34, we haveZ

B1

r�1 jjf .x/ � f .y/j � d.x; y/j d�.x/ d�.y/ �
Z

B1

64@¹x; y; P;Qº

r
d�.x/ d�.y/

� 64 � 4ˇC�.X/2:

It remains to prove that (4.38) holds with � D B2. This is the most difficult set to deal
with, because the couples .x; y/ 2B2 are circular and spread apart. To estimate their
contribution, we will need to consider also the other points in X. For x; y 2B2, define the
number D.x; y/ as the minimum distance of two points in ¹x; y; P;Qº. By the definition
of B2, by (4.32) and by 2@¹x; y; P;Qº-circularity, it holds

(4.40) D.x; y/ > 30@¹x; y; P;Qº:

We claim that

(4.41) D.x; y/ � 15ˇ1 r; x; y 2B2:

Indeed suppose this is not the case, i.e.,D.x;y/ > 15ˇ1 r D 15@X. Then by Lemma 4.29
applied to the whole X, with the points x; y; P;Q and with ˇ D @X (note that x; y; P;Q
are 4@X-circular because @¹x; y; P;Qº � @X and x; y 2B2 � B), it must hold that

d.z; ¹P;Q; x; yº/ � 15@X D 15r ˇ1
(4.33)
� . QC�1ı/1=415 diam.X/; z 2X:

This however contradicts the 1-regularity of X, provided ı is small enough, hence (4.41)
holds. Using (4.41), we can also conclude that

(4.42) d.P;Q/ > D.x; y/ and d.x; y/ > D.x; y/:
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Indeed, combining (4.32) with (4.41), we get that d.P;Q/ > 3D.x; y/. Then using that
d.P;Q/ > 3D.x; y/ and the 2@¹x; y; P;Qº-circularity of x; y; P;Q, we get

d.x; y/ � d.P;Q/ � 2@¹x; y; P;Qº
(4.40)
� 3D.x; y/ �D.x; y/ � 2D.x; y/ > 0;

which shows (4.42). For fixed x; y 2B2, we now consider all the points in X and divide
them into two sets, the “attracted” and the “non-attracted” points:

A.x; y/ WD ¹z 2 X W d.z; ¹P;Q; x; yº/ � 15D.x; y/º;

A.x; y/ WD X nA.x; y/:

The set A.x; y/ is small in measure. Indeed, by 1-regularity,

�.A.x; y// � 4CX15D.x; y/
(4.41)
� 900CXrˇ1

(4.33)
� 900C 2X�.X/. QC

�1ı/1=4:

Hence, assuming ı small enough, we have that �.A.x; y// � �.X/=2. We now apply
Lemma 4.29 with the points x; y; P;Q with ˇ WD D.x; y/=20 (note that these points are
4ˇ-circular since they are 2@¹x;y;P;Qº-circular and 4ˇ > 2@¹x;y;P;Qº by (4.40)). By
Lemma 4.29, we obtain that

A.x; y/ � ¹z 2 X W @¹z; x; y; P;Qº > D.x; y/=20º;(4.43)

since the first option in Lemma 4.29 cannot happen by definition of A.x; y/. Because
@¹x; y; P;Qº < D.x; y/=30 (recall (4.40)), the inclusion (4.43) implies that

(4.44) @¹z; x; yº C @¹z; x; P º C @¹z; x;Qº C @¹z; y; P º C @¹z; y;Qº >
D.x; y/

20
,

for z 2 NA.x; y/. Note now that by (4.42) and the definition of D.x; y/ we have

D.x; y/ D min
�
d.x; P /; d.x;Q/; d.y; P /; d.y;Q/

�
:

Moreover, since x;y;P;Q areD.x;y/-circular (sinceD.x;y/>2@¹x;y;P;Qº by (4.40)),
we get that d.x; P / � d.y; Q/CD.x; y/ and d.y; P / � d.x; Q/CD.x; y/. Combin-
ing the last two observations we deduce that min.d.x; P /; d.y; P // � 2D.x; y/. Hence,
by (4.37),

(4.45) jjf .x/ � f .y/j � d.x; y/j � 4D.x; y/; x; y 2B2:

Recalling �.A.x; y// � �.X/=2, we can finally estimateZ
.x;y/2B2

r�1 jjf .x/ � f .y/j � d.x; y/j d�.x/ d�.y/

D

Z
.x;y/2B2

�. NA.x; y//�1
Z
z2 NA.x;y/

r�1 jjf .x/ � f .y/j � d.x; y/j d�.z/ d�.x/ d�.y/

(4.45)
� 8�.X/�1

Z
.x;y/2B2

Z
z2 NA.x;y/

r�1D.x; y/ d�.z/ d�.x/ d�.y/

(4.44)
�

8 � 20

�.X/r

Z
X3
@¹z; x; yº C @¹z; x; P º C @¹z; x;Qº

C @¹z; y; P º C @¹z; y;Qºd�.z/ d�.x/ d�.y/

� 8 � 20.4C C 1/ˇ�.X/2;
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where in the last inequality we used the definition of ˇ in (4.30), and the property (i) of
the points P;Q. This shows that (4.38) holds with � D B2. Since we showed previously
that (4.38) holds with � 2 ¹G ;B1º and X�XD G [B1 [B2, the proof is concluded.

We conclude with the proof of Theorem 4.27 which, even if not used in the sequel, we
believe to be interesting on its own.

Proof of Theorem 4.27. If diam.X/ � 40ˇ, the statement is trivial. Hence we can assume
the existence of two points P;Q 2X such that d.P;Q/ > 40ˇ. We now define the map
f WX! R as follows. Set f .P / WD 0, f .Q/ WD d.P;Q/, and for any other point x 2X,

f .x/ WD

´
�d.x; P / if d.x;Q/ � max.d.P;Q/; d.x; P //;
d.x; P / otherwise.

We need to prove that for every x; y 2X, it holds

(4.46) jjf .y/ � f .x/j � d.x; y/j � 40ˇ:

Fix x; y 2X. If jjf .y/ � f .x/j � d.x; y/j � 5ˇ, there is nothing to prove, hence we can
assume that jjf .x/� f .y/j � d.x; y/j> 5ˇ. Hence from Lemma 4.28 we deduce that the
points x; y; P;Q are 2ˇ-circular. Observe that this implies that d.x; y/ > 15ˇ. Suppose
now that d.x;P / < 20ˇ; then by the triangle inequality, jd.x;y/� d.y;P /j< 20ˇ, hence

jjf .y/ � f .x/j � d.x; y/j D jjf .y/ � f .x/j � d.x; y/˙ jf .y/jj

� jd.x; y/ � jf .y/jj C jf .x/j < 40ˇ;

because jf .y/j D d.y; P / and jf .x/j D d.x; P /. The same holds if d.y; P / < 20ˇ.
Hence we are left to prove (4.46) in the case d.x; P /; d.y; P / � 20ˇ, which thanks to
2ˇ-circularity of ¹x; y; P; Qº gives also that d.y; Q/; d.x; Q/ > 15ˇ. Recall also that
d.P;Q/ � 40ˇ and d.x; y/ � 15ˇ. Then we can apply Lemma 4.29 and deduce that for
every z 2X, it holds that d.z; R/ � 15ˇ for some R 2 ¹P;Q; x; yº (note that the second
alternative in Lemma 4.29 does not occur because @X � ˇ). This contradicts the fact that
.X; d/ contains five points at pairwise distance strictly greater than 30ˇ and concludes
the proof.

A. Almost circular points

This appendix contains the proofs of Lemmas 4.28 and 4.29 concerning almost circular
points. We start by introducing short-hand notation that we will often use in the proofs of
this section. Let a, b and c be real numbers. We write a �" b to denote ja � bj � ". This
convention is used exclusively within this section, so that there should be no confusion
with the notation introduced at the beginning of Section 2. Note that if a�" b and c �"0 d ,
then a � c �"C"0 b � d , and that a �" b if and only if a � c �" b � c.

We also recall from Section 4.3 that we write Œxyz� for points x, y and z in a metric
space .X; d/ if

d.x; y/C d.y; z/ � d.x; z/ D @.¹x; y; zº/;
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which is equivalent to
d.x; z/ � max.d.x; y/; d.y; z//:

Moreover, @S D sup¹x;y;zº�S @.¹x; y; zº/.
We start with a simple criterion to check that four points are almost circular (recall

Definition 4.24).

Lemma A.1. Let .X; d/ be a metric space and let the points x1; x2; x3; x4 2 X be such
that @¹x1; x2; x3; x4º � ı and

(A.2) Œx1x2x3�; Œx2x3x4�; Œx3x4x1�; Œx4x1x2�

hold. Then the points x1; x2; x3; x4 are 2ı-circular.

Proof. According to our definitions, we have to check that d.xi ; xj /�2ı d.xk ; xl / for any
choice of distinct i; j; k; l 2 ¹1; 2; 3; 4º. The assumptions imply that

(i) d.x1; x3/ �ı d.x1; x2/C d.x2; x3/; (ii) d.x2; x4/ �ı d.x2; x3/C d.x3; x4/;
(iii) d.x1; x3/ �ı d.x1; x4/C d.x3; x4/; (iv) d.x2; x4/ �ı d.x1; x2/C d.x1; x4/:

Subtracting (i) and (iii) and subtracting (ii) and (iv), we get

(A.3)
d.x1; x2/C d.x2; x3/ �2ı d.x1; x4/C d.x3; x4/;

d.x2; x3/C d.x3; x4/ �2ı d.x1; x2/C d.x1; x4/:

Subtracting the two in (A.3), we obtain d.x1; x2/ � d.x3; x4/ �4ı d.x3; x4/ � d.x1; x2/;
which gives d.x1; x2/ �2ı d.x4; x3/. Switching the order of the second in (A.3) and sub-
tracting again the two shows that d.x2; x3/ � d.x1; x4/ �4ı d.x1; x4/ � d.x2; x3/; from
which d.x2; x3/ �2ı d.x1; x4/. Finally, summing (i) and (iii) and summing (ii) and (iv)
gives

2d.x1; x3/ �2ı d.x1; x2/C d.x2; x3/C d.x1; x4/C d.x3; x4/;

2d.x2; x4/ �2ı d.x1; x2/C d.x2; x3/C d.x1; x4/C d.x3; x4/:

Hence 2d.x1; x3/ �4ı 2d.x2; x4/, and so d.x1; x3/ �2ı d.x2; x4/; which concludes the
proof.

Next we prove the 4-points lemma, which gives a quantitative condition for four points
¹P;Q;R; Sº to either admit an (explicitly given) 2ˇ-isometry f into R, or to be 2ˇ-cir-
cular. (A similar conclusion was obtained under different assumptions in Lemma 2.2
of [34].)

Proof of Lemma 4.28. It is sufficient to prove the lemma for ˇ > 0. As in the statement,
we define f W ¹P;Q;R; Sº ! R by f .Q/ WD d.P;Q/, and for x 2 ¹P;R; Sº, by

f .x/ WD

´
�d.x; P / if d.x;Q/ � max¹d.P;Q/; d.x; P /º;
d.x; P / otherwise.

It is straightforward to see that f satisfies the rough isometry condition at least with
respect to the points P and Q. Indeed, by definition, jjf .P / � f .x/j � d.P; x/j D 0 for
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every x2¹Q;R;Sº. Next we show that d.x;Q/�ˇ jf .x/�f .Q/j for every x2¹P;R;Sº.
If ŒxPQ�, and so f .x/ D �d.x; P /, this is immediate because @¹x;P;Qº � ˇ, hence we
assume f .x/ D d.x; P /. In this case, if we have ŒxQP �, then

jjf .x/ � f .Q/j � d.x;Q/j D jd.x; P / � d.P;Q/ � d.x;Q/j � ˇ:

If instead ŒP xQ�, then

jjf .x/ � f .Q/j � d.x;Q/j D jd.P;Q/ � d.P; x/ � d.x;Q/j � ˇ:

Thanks to these observations, to show that f W ¹P;Q; R; Sº ! R is a 2ˇ-isometry, it is
enough to show that

(A.4) jjf .R/ � f .S/j � d.R; S/j � 2ˇ:

Hence to prove the lemma it is sufficient to show that either (A.4) holds or that the points
¹P;Q;R; Sº are 2ˇ-circular. Throughout the proof, we will repeatedly use the following
fact, often without mentioning it explicitly: if Œx1x2x3� holds, then

@.¹x1; x2; x3º/ � ˇ ” d.x1; x2/C d.x2; x3/ � d.x1; x3/C ˇ:

It will be more convenient to name x WDR and y WDS , to better distinguish these points
from P andQ. Up to swapping x and y, we can assume that f .x/� f .y/, hence we need
to consider only the following three cases:

(1) f .x/ D �d.x; P / and f .y/ D �d.y; P /,
(2) f .x/ D �d.x; P / and f .y/ D Cd.y; P /,
(3) f .x/ D Cd.x; P / and f .y/ D Cd.y; P /.

Case 1. f .x/ D �d.x; P / and f .y/ D �d.y; P /.
This is equivalent to the validity of both ŒxPQ� and ŒyPQ�. Using the assumption

f .x/ � f .y/ and the triangle inequality, we see that in this case, (A.4) is equivalent to

(A.5) d.x; y/C d.y; P / � d.x; P /C 2ˇ:

We need to consider also the point Q. At least one of the conditions ŒxQy�, ŒxyQ� and
ŒyxQ� holds. Suppose first that ŒxQy� holds. Using the assumptions @¹P;Q;R; Sº � ˇ
and d.P;Q/ � 2ˇ, we find that

d.x; y/C 4ˇ � Œd.x; P /C d.P;Q/�C Œd.y; P /C d.P;Q/�

ŒxPQ� ; ŒyPQ�
� d.x;Q/C d.y;Q/C 2ˇ:

However, this leads to a contradiction, since then

d.x; y/ � d.x;Q/C d.y;Q/ � 2ˇ
ŒxQy�
� d.x; y/ � ˇ;

which is impossible (since ˇ > 0). Thus ŒxQy� in Case 1 cannot occur. If instead ŒxyQ�,
we have

d.x; P /C d.P;Q/ � d.x;Q/
ŒxyQ�
� d.x; y/C d.y;Q/ � ˇ

ŒyPQ�
� d.x; y/C d.y; P /C d.P;Q/ � 2ˇ;
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which shows (A.5). Finally, if ŒyxQ� holds, we have

d.y; P /C d.P;Q/ � d.x;Q/
ŒyxQ�
� d.x; y/C d.x;Q/ � ˇ

ŒxPQ�
� d.x; y/C d.x; P /C d.P;Q/ � 2ˇ;

which coupled with the assumption d.x; P / � d.y; P / shows again (A.5).
Case 2. f .x/ D �d.x; P / and f .y/ D d.y; P /.
This means that ŒxPQ� holds, and ŒyPQ� does not hold. In this case, (A.4) is equival-

ent to

(A.6) d.y; P /C d.x; P / � d.x; y/C 2ˇ:

Since ŒyPQ� does not hold, at least one of the two options ŒPyQ�, ŒPQy� must be valid,
so we only need to prove that in these two sub-cases either (A.6) is true or that x; y; P;Q
are 2ˇ-circular.

Case 2a. ŒPyQ� holds.
We have

d.y; P /C d.x; P /
ŒPyQ�
� d.P;Q/ � d.y;Q/C d.x; P /C ˇ

ŒxPQ�
� d.x;Q/ � d.y;Q/C 2ˇ � d.x; y/C 2ˇ;

which yields (A.6) in this case.
Case 2b. ŒPQy� holds.
If ŒxPy�, then (A.6) trivially holds true. If instead ŒxyP �, then

d.P;Q/
ŒxPQ�
� d.x;Q/ � d.x; P /C ˇ

ŒxyP �
� d.x;Q/ � d.x; y/ � d.y; P /C 2ˇ

ŒPQy�
� d.x;Q/ � d.x; y/ � d.P;Q/ � d.Q; y/C 3ˇ

� �d.P;Q/C 3ˇ:

Therefore, d.P;Q/ � 3ˇ=2, which is impossible since d.P;Q/ > 2ˇ by assumption.
Hence it remains to consider the case when ŒP xy� holds. We need to consider now

also the point Q and the cases ŒyQx�, ŒyxQ�, and ŒxyQ�. If ŒyQx�, then

d.x; y/
ŒyQx�
� d.y;Q/C d.Q; x/ � ˇ

ŒxPQ�
� d.y;Q/C d.x; P /C d.P;Q/ � 2ˇ

� d.y; P /C d.x; P / � 2ˇ;

which implies (A.6) in this case. If instead ŒyxQ�, then

d.P;Q/
ŒPQy�
� d.P; y/ � d.Q; y/C ˇ

ŒyxQ�
� d.P; y/ � d.y; x/ � d.x;Q/C 2ˇ

ŒxPQ�
� d.P; y/ � d.x; y/ � d.x; P / � d.P;Q/C 3ˇ

� �d.P;Q/C 3ˇ:

Therefore, analogously as in a previous case, d.P;Q/ � 3ˇ=2, which is impossible since
d.P;Q/ > 2ˇ by assumption.
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Hence we are left with the case when ŒxyQ� holds. Summarizing the current assump-
tions, we are in the situation where ŒPQy�, ŒxPQ�, ŒQyx� and ŒyxP � hold. Applying
Lemma A.1, we obtain that x; y; P;Q are 2ˇ-circular.

Case 3. f .x/ D d.x; P / and f .y/ D d.y; P /.
That is, neither ŒxPQ� nor ŒyPQ� holds. Since d.x;P /D f .x/ � f .y/D d.y;P / by

assumption, the desired condition (A.4) simplifies in this case to

(A.7) d.x; y/C d.x; P / � d.y; P /C 2ˇ:

If ŒyxP �, then (A.7) holds true even with “2ˇ” replaced by “ˇ” on the right-hand side. In
the following, we assume therefore that ŒyxP � does not hold. Since d.y; P / � d.x; P /,
the only way ŒyxP � can fail is if d.x; y/ > d.y;P /. In that case we have ŒxPy�, which we
now add as a standing assumption to all the following sub-cases.

Case 3a. ŒxQP � and ŒyQP � hold.
This is similar to Case 1: using d.P;Q/ � 2ˇ, we find that

d.x; y/C 4ˇ � Œd.x;Q/C d.P;Q/�C Œd.y;Q/C d.P;Q/�

ŒxQP� ; ŒyQP�
� d.x; P /C d.y; P /C 2ˇ

ŒxPy�
� d.x; y/C 3ˇ;

which is impossible (since ˇ > 0). Thus the Case 3a cannot occur under the standing
assumption that ŒxPy�.

Case 3b. Exactly one of ŒxQP � and ŒyQP � holds.
Assume first that ŒxQP � holds and ŒyQP � does not hold. Since in Case 3 also ŒyPQ�

does not hold, we must necessarily have that ŒPyQ�. This, together with the assumption
d.x; P / � d.y; P /, yields

d.y; P /
ŒPyQ�
� d.P;Q/

ŒxQP�
� d.x; P / � d.y; P /:

Therefore d.y;P /D d.P;Q/, which by ŒPyQ�would imply that also ŒyQP � holds, which
is a contradiction. Thus, Case 3b can only occur if ŒyQP � holds and ŒxQP � does not hold.

Since also ŒxPQ� does not hold in Case 3, we must necessarily have that ŒP xQ�. Then

d.y; P /
ŒyQP�
� d.y;Q/C d.Q;P / � ˇ

ŒPxQ�
� d.y;Q/C d.P; x/C d.x;Q/ � 2ˇ

� d.y; x/C d.P; x/ � 2ˇ:

This concludes the proof of (A.7) in Case 3b.
Case 3c. Neither ŒxQP � nor ŒyQP � holds.
As the assumptions in Case 3 also rule out the validity of ŒxPQ� and ŒyPQ�, we

must necessarily have that ŒP xQ� and ŒPyQ� in Case 3c. We also recall the standing
assumption ŒxPy� to which we reduced the discussion at the beginning of Case 3.

We need to consider also the points x, y and Q together, and distinguish the cases
ŒxyQ�, ŒyxQ�, and ŒxQy�. If ŒxyQ�, then

d.x; y/C d.x; P /
ŒxyQ�
� d.x;Q/ � d.y;Q/C d.x; P /C ˇ

ŒPxQ�
� d.P;Q/ � d.y;Q/C 2ˇ � d.P; y/Cd.y;Q/ � d.y;Q/C2ˇ:
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Thus (A.7) holds true in this case. Next we assume ŒyxQ� instead of ŒxyQ�. We apply
an analogous argument as before, but use additionally the assumption d.x; P / � d.y; P /.
This yields

d.x; y/C d.x; P / � d.x; y/C d.y; P /
ŒyxQ�
� d.y;Q/ � d.x;Q/C d.y; P /C ˇ

ŒPyQ�
� d.P;Q/ � d.x;Q/C 2ˇ � d.P; x/C d.x;Q/ � d.x;Q/C 2ˇ

� d.P; y/C 2ˇ;

which confirms (A.7) also in this case. It remains the case when ŒxQy� holds. Sum-
marizing, the current assumptions are ŒxPy�, ŒPyQ�, ŒyQx� and ŒQxP �. We can apply
Lemma A.1 and obtain that x; y; P;Q are 2ˇ-circular.

We now prove Lemma 4.29 concerning the attraction to circular points.

Proof of Lemma 4.29. It suffices to prove the statement for ˇ > 0. Let P1; P2; P3; P4 2X
be four points as in the statement, i.e., @¹P1; P2; P2; P4º � ˇ, d.Pi ; Pj / > 15ˇ for all
i ¤ j , and they are 4ˇ-circular:

(A.8) d.Pi ; Pj / �4ˇ d.Pk ; Pl /;

for any choice of (distinct) indices 1 � i; j; k; l � 4.
To conclude the proof of the statement of the lemma, it is sufficient to prove that if

@¹P1; P2; P2; P4;Qº � ˇ, then

(A.9) d.Q; ¹P1; P2; P3; P4º/ � 15ˇ; Q2X:

We argue by contradiction, that is, we assume that @¹P1;P2;P2;P4;Qº � ˇ and that there
exists Q 2X such that d.Q; Pi / > 15ˇ for every i 2 ¹1; 2; 3; 4º. We make the following
claim.

Claim. For every choice of (pairwise distinct) indices i; j; k2¹1; 2; 3; 4º, there
exists a 2ˇ-isometry f W ¹Q;Pi ; Pj ; Pkº ! R.

This claim will be applied in “Case 2” later in the proof. To prove the claim, assume
towards a contradiction that its statement is not true for some choice of i; j; k2¹1; 2; 3; 4º.
Then, since d.Q; Pi / � 2ˇ for every i D 1; 2; 3; 4; from Lemma 4.28 we must have that
the points Q;Pi ; Pj ; Pk are 2ˇ-circular. This implies that

d.Q;Pi / �2ˇ d.Pj ; Pk/; d.Q;Pj / �2ˇ d.Pi ; Pk/ and d.Q;Pk/ �2ˇ d.Pi ; Pj /;

which combined with (A.8) gives

(A.10) d.Q;Pi /�6ˇ d.Pl ; Pi /; d.Q;Pj /�6ˇ d.Pl ; Pj / and d.Q;Pk/�6ˇ d.Pl ; Pk/;

where ¹lº D ¹1; 2; 3; 4º n ¹i; j; kº. Up to reordering the indices i; j; k, we can assume
that d.Pl ; Pi / � max¹d.Pl ; Pj /; d.Pl ; Pk/º. From this last inequality and d.Pi ; Pj / �4ˇ
d.Pl ;Pk/ (recall (A.8)), we obtain d.Pi ;Pj /� d.Pl ;Pi /C 4ˇ. In fact, this inequality can
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be improved to d.Pi ; Pj / � d.Pl ; Pi /. Assume towards a contradiction that d.Pl ; Pi / <
d.Pi ; Pj /. Then, under the current assumptions, @¹Pl ; Pi ; Pj º � ˇ would imply that

d.Pl ; Pj /C d.Pl ; Pi / � d.Pi ; Pj /C ˇ � d.Pl ; Pi /C 5ˇ;

which contradicts the initial assumption d.Pl ; Pj / > 15ˇ. Thus we know that in fact,

max¹d.Pi ; Pj /; d.Pl ; Pj /º � d.Pl ; Pi /;

from which @¹Pl ; Pi ; Pj º � ˇ implies that

(A.11) d.Pl ; Pi / �ˇ d.Pl ; Pj /C d.Pj ; Pi /:

Similarly, since d.Q; Pi / �6ˇ d.Pl ; Pi /, d.Q; Pl / > 15ˇ, d.Pl ; Pi / > 15ˇ, and we are
assuming @¹Pi ; Pl ;Qº � ˇ, we can check that the only possibility is

(A.12) d.Q;Pl / �ˇ d.Q;Pi /C d.Pi ; Pl /:

Indeed, if the maximum of ¹d.Q; Pi /; d.Pi ; Pl /; d.Q; Pl /º was achieved by d.Q; Pi /
or d.Pl ; Pi /, then using d.Q; Pi / �6ˇ d.Pl ; Pi / and @¹Pi ; Pl ; Qº � ˇ would lead to a
contradiction with d.Q;Pl / > 15ˇ. Hence d.Q;Pl / � max¹d.Q;Pi /; d.Pi ; Pl /º, which
implies (A.12). Combining (A.12) and (A.10) we obtain

2d.Pi ; Pl / � 7ˇ
(A.10)
� d.Q;Pi /C d.Pi ; Pl / � ˇ

(A.12)
� d.Q;Pl / � d.Q;Pj /C d.Pj ; Pl /

(A.10)
� 2d.Pl ; Pj /C 6ˇ;

which contradicts (A.11), since ˇ > 0 and d.Pi ; Pj / � 15ˇ. This concludes the proof
of the above claim on thus the existence of 2ˇ-isometry f W ¹Q;Pi ; Pj ; Pkº ! R for all
(pairwise distinct) i; j; k 2 ¹1; 2; 3; 4º.

We now return to the proof of (A.9) by contradiction. Up to relabelling, we can also
assume that d.P1; P3/ D max1�i;j�4 d.Pi ; Pj /. Then, Since @¹P1; P2; P3; P4º � ˇ, we
have ŒP1P4P3�, ŒP1P2P3� and

(A.13) d.P1; P3/ �ˇ d.P1; P2/C d.P2; P3/; d.P1; P3/ �ˇ d.P1; P4/C d.P4; P3/:

Moreover, we must have

(A.14) d.P2; P4/ �ˇ d.P2; P3/C d.P3; P4/; d.P2; P4/ �ˇ d.P2; P1/C d.P1; P4/;

as can be easily deduced from (A.13), recalling also that d.P2;P4/�4ˇ d.P1;P3/ (by 4ˇ-
circularity), that d.P1;P3/Dmax1�i;j�4 d.Pi ;Pj / and that d.Pi ;Pj / > 15ˇ. For example
if we had instead d.P2; P3/ �ˇ d.P2; P4/C d.P3; P4/, it would imply that d.P2; P3/ >
d.P1; P3/, which is false.

Consider now the points P1, Q and P3. There are three possible cases: ŒP1P3Q�,
ŒP1QP3�, and ŒP3P1Q�. However, since the assumptions on P1 and P3 are symmetric, up
to swapping P1 and P3 we can distinguish only two cases: ŒP1P3Q� or ŒP1QP3�.
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Case 1. ŒP1P3Q� holds.
Then

d.P1; P4/C d.P4; P3/C d.P3;Q/ � 2ˇ
(A.13)
� d.P1; P3/C d.P3;Q/ � ˇ

ŒP1P3Q�
� d.P1;Q/ � d.P1; P4/C d.P4;Q/;

which shows that

(A.15) d.P4;Q/ �2ˇ d.P4; P3/C d.P3;Q/:

Analogously, exchanging P4 with P2 (again using (A.13)), we can show that

(A.16) d.P2;Q/ �2ˇ d.P2; P3/C d.P3;Q/:

However, the above two relations will lead to a contradiction, recalling @¹P2;Q;P4º � ˇ.
Indeed, up to exchanging P2 and P4, we can assume that either ŒP2QP4� or ŒP2P4Q�
holds. If ŒP2QP4� holds, then

d.P2; P4/
ŒP2QP4�
� d.P2;Q/C d.Q;P4/ � ˇ

(A.15) ; (A.16)
� d.P2; P3/C d.P4; P3/C 2d.P3;Q/ � 5ˇ

� d.P2; P4/C 2d.P3;Q/ � 5ˇ:

The above however contradicts d.P3;Q/ > 15ˇ. Suppose instead ŒP2P4Q�. Then

d.P2;P4/
ŒP2P4Q�
� d.P2;Q/� d.P4;Q/Cˇ

(A.15)
� d.P2;P3/� d.P4;P3/C3ˇ < d.P2;P4/;

where in the second step we used also the triangle inequality and in the last inequality we
used that d.P4; P3/ � 15ˇ and that d.P2; P4/ � d.P2; P3/ (which comes from the first
part of (A.14) and d.P3; P4/ > 15ˇ). This is a contradiction which shows that Case 1
cannot happen.

Case 2. ŒP1QP3� holds.
Recall that by the claim (A.9), we have the existence of maps f W ¹Q;P1;P2;P3º!R

and gW ¹Q; P1; P3; P4º ! R that are 2ˇ-isometries. From the fact that d.P1; P3/ �
d.Pi ; Pj / for all i; j and that d.Pi ; Pj / � 15ˇ for all distinct i; j (part of the initial
assumptions), the point f .P2/ must lie in the interval with endpoints f .P1/; f .P3/.
Similarly, from the assumption ŒP1QP3� (and again from d.Q; Pi / � 15ˇ for every
i D 1; 2; 3; 4), it follows that also f .Q/ must lie in the same interval. Hence, up to
replacing f with �f and swapping the labels of P1 and P3 (observe that the current
assumptions are symmetric in P1 and P3), we can assume that

(A.17) f .P1/ � f .Q/ � f .P2/ � f .P3/:

Analogously, the point g.P4/must lie in the interval with endpoints g.P1/; g.P3/, and up
to replacing g with �g, we can also assume that

g.P1/ � g.P4/ � g.P3/:
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There remain two possibilities for the position of g.Q/:

(A.18) g.P1/ � g.Q/ � g.P4/ or g.P4/ � g.Q/ � g.P3/:

Suppose that g.P1/ � g.Q/ � g.P4/ holds. As f and g are 2ˇ-isometries (and since
d.Pi ; Pj / � 15ˇ, d.Q;Pi / � 15ˇ for every i; j D 1; 2; 3; 4, i ¤ j ), from this and (A.17)
we deduce that

d.P1; P2/ �ˇ d.P1;Q/C d.Q;P2/ and d.P1; P4/ �ˇ d.P1;Q/C d.Q;P4/:

Therefore,

d.P2; P4/ � d.P2;Q/C d.Q;P4/ � d.P1; P2/C d.P1; P4/ � 2d.P1;Q/C 2ˇ
(A.14)
� d.P2; P4/ � 2d.P1;Q/C 3ˇ;

which contradicts d.P1;Q/ � 15ˇ > 0. If instead g.P4/ � g.Q/ � g.P3/ is satisfied, we
have

d.P1; P2/ �ˇ d.P1;Q/C d.Q;P2/ and d.P4; P3/ �ˇ d.P4;Q/C d.Q;P3/:

Therefore

d.P1; P3/C d.P2; P4/ � d.P1;Q/C d.Q;P3/C d.P2;Q/C d.Q;P4/

� d.P1; P2/C d.P4; P3/C 2ˇ;

from which using the first of both (A.13) and (A.14) on the left-hand side, we deduce

d.P1; P2/C 2d.P2; P3/C d.P3; P4/ � 2ˇ � d.P1; P2/C d.P4; P3/C 2ˇ:

This however gives d.P2; P3/ � 2ˇ, which is a contradiction because by assumption
d.P2; P3/ � 15ˇ > 0.
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