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Regularity for solutions of non-uniformly elliptic
equations in non-divergence form

Jongmyeong Kim and Se-Chan Lee

Abstract. We prove an Aleksandrov–Bakelman–Pucci estimate for non-uniformly
elliptic equations in non-divergence form. Moreover, we investigate the local beha-
vior of solutions of such equations by proving local boundedness and a weak Harnack
inequality. Here we impose an integrability assumption on ellipticity representing
degeneracy or singularity, instead of specifying the particular structure of ellipticity.

1. Introduction

In this paper, we study regularity properties for solutions of non-uniformly elliptic equa-
tions in non-divergence form. To illustrate the issue, let us begin with the simplest example:
a second-order, linear elliptic equation in non-divergence form:

(1.1) aijDiju D f in B1;

where the coefficient matrix aD .aij /1�i;j�n and the nonhomogeneous term f are meas-
urable. In order to capture the ellipticity of a, we introduce

(1.2) �.x/ WD inf
�2Rn

� � a.x/�

j�j2
and ƒ.x/ WD sup

�2Rn

� � a.x/�

j�j2
�

In particular, we say a D .aij / is uniformly elliptic if there exist ellipticity constants 0 <
�0 � ƒ0 <1 such that

�0 � �.x/ � ƒ.x/ � ƒ0:

The regularity theory of (possibly nonlinear) uniformly elliptic operators in non-diver-
gence form is by now classical; we refer to the comprehensive books [9,25] and references
therein. In particular, Aleksandrov [1], Bakelman [4] and Pucci [42] independently proved
a maximum principle: if u2C.B1/\W

2;n
loc .B1/ is a strong subsolution of (1.1), then there

exists a constant C D C.n; �0; ƒ0/ > 0 such that

sup
B1

u � sup
@B1

uC C Ckf �kLn.�C.uC//;
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where �C.uC/ is the upper contact set of uC D max¹u; 0º; see Section 2 for the precise
definition. The ABP maximum principle has become a fundamental tool in establishing
local estimates for the associated equations, such as local boundedness, weak Harnack
inequalities and interior Hölder estimates.

The goal of this paper is to develop the ABP maximum principle and to derive interior
a priori estimates for solutions of non-uniformly, nonlinear elliptic equations. In our frame-
work, the ellipticity functions 1=� and ƒ are not necessarily bounded, but they satisfy
some integrability conditions. To be precise, we let B1 be a unit ball in Rn and define two
measurable functions �;ƒWB1 ! Œ0;1� such that � � ƒ,

(1.3) 1=� 2 Lp.B1/ and ƒ 2 Lq.B1/:

It is noteworthy that the uniformly elliptic case corresponds to the choice p D q D 1.
Moreover, we define the following generalized versions of the Pucci extremal operators:

MC
�;ƒ

.M/.x/ WD ƒ.x/
X
ei�0

ei .M/C �.x/
X
ei<0

ei .M/;

M��;ƒ.M/.x/ WD �.x/
X
ei�0

ei .M/Cƒ.x/
X
ei<0

ei .M/;

where x 2B1, M 2 �n WD ¹M jM is an n � n real symmetric matrixº and the ei .M/ are
the eigenvalues of M . For constant ellipticity �0 and ƒ0, it reduces to the classical Pucci
extremal operators; see [9, 14] for instance.

Throughout the paper, we assume that a pair .p; q/ satisfies

(1.4)
1

p
C
1

q
�
1

n
,

and we set the constants �; � 2 Œn;1� to satisfy

1

�
D
1

n
�
1

p
�
1

q
and

1

�
D
1

n
�
1

p
�

Then we are concerned with an L� -strong solution u of

MC
�;ƒ

.D2u/.x/ � f .x/ or M��;ƒ.D
2u/.x/ � f .x/

for a nonhomogeneous term f 2L� .B1/; see Section 2 for details.
We begin with the Aleksandrov–Bakelman–Pucci estimates for L� -strong subsolu-

tions. Several corollaries of Theorem 1.1 are discussed at the end of Section 3.

Theorem 1.1 (ABP estimates). Let f 2L� .B1/ and suppose that u 2W 2;� .B1/ is an
L� -strong solution of

MC
�;ƒ

.D2u/ � f in B1:

Then there exists a universal constant C D C.n/ > 0 such that

sup
B1

u � sup
@B1

uC C C
� Z

�C.uC/

�f �.x/
�.x/

�n
dx
�1=n

:
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After the celebrated works by Aleksandrov, Bakelman and Pucci, the ABP maximum
principle has been widely studied in different contexts. Just to name a few, the ABP
estimate, concerning uniformly elliptic/parabolic equations in non-divergence form, was
achieved for
(i) viscosity solutions of fully nonlinear elliptic equations [7, 8];
(ii) strong solutions of linear parabolic equations [36, 45];
(iii) viscosity solutions of fully nonlinear parabolic equations [46];
(iv) Lp-viscosity solutions of fully nonlinear elliptic/parabolic equations [10, 15];
(v) viscosity solutions of fully nonlinear elliptic equations with gradient growth terms

[34, 35].
We refer to [6, 19] for improvements of the ABP estimates in other directions. On

the other hand, non-uniformly elliptic equations with particular structure have been con-
sidered relatively recently by several authors in various circumstances: [3,18,28] when an
operator is given by jDuj
M˙

�0;ƒ0
.D2u/ with 
 > �1, [2] for p-Laplace equations and

the mean curvature flow, and [29,40] for elliptic equations that hold only where the gradi-
ent is large. In this paper, we concentrate on analyzing non-uniformly elliptic equations
whose degeneracy and singularity are implicitly encoded in the integrability of 1=� andƒ.

We next move our attention to local estimates for solutions of Pucci extremal operat-
ors. We first show a local boundedness result for strong subsolutions.

Theorem 1.2 (Local boundedness). Let f 2L� .B1/. Suppose that u 2W 2;�
loc .B1/ is an

L� -strong solution of
MC
�;ƒ

.D2u/ � f in B1:

Then for 0 < t � n, we have

sup
B1=2

u � C
�


.uC/t=n ƒ

�




n=t
Ln.B1/

C




f �
�





Ln.B1/

�
for a universal constant C D C.n; t/ > 0.

In particular, for t > 0, there exists C D C.n; t; k1=�kLp.B1/; kƒkLq.B1// > 0 such
that

sup
B1=2

u � C
�
kuCkL�t=n.B1/ C




f �
�





Ln.B1/

�
:

We also prove a weak Harnack inequality for viscosity supersolutions under a stronger
assumption on .p; q/.

Theorem 1.3 (Weak Harnack inequality). Let f 2L� .B1/ and assume that

1

p
C
1

q
<

1

2n
�

Moreover, suppose that u2W 2;�
loc .B1/ is an L� -strong solution of

M��;ƒ.D
2u/ � f in B1:
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If u is nonnegative in B1, then we have

kukLt .B1=2/ � C
�

inf
B1=2

uC



f
�





Ln.B1/

�
for some positive constants t and C which depend only on n, k1=�kLp.B1/ and kƒkLq.B1/.

As consequences of Theorem 1.2 and Theorem 1.3, we provide a Harnack inequality
and a version of interior Hölder estimates of strong solutions in Section 4.

We now describe two simple, but interesting observations regarding our main theor-
ems:

(i) For n D 1 and 
 > 0, let us consider a linear operator Lu D jxj
uxx in B1 D
.�1; 1/. We then claim that u.x/ D jxj is a C -viscosity solution of Lu D 0 in B1; see
Definition 2.4 for the definition of C -viscosity solutions. Indeed, for x0 2 B1 n ¹0º, then
uxx.x0/ D 0 and so Lu.x0/ D 0 in the classical sense. For x0 D 0, if we let ' 2C 2.B1/
be a test function such that u � ' has a local maximum (or minimum) at 0, then

L'.0/ D jxj
 'xxjxD0 D 0:

Therefore, we conclude that u is a viscosity solution of Lu D 0 in B1.
On the other hand, if we choose ellipticity functions �.x/ D ƒ.x/ D jxj
 , then it

immediately follows that a viscosity solution u of Lu D 0 in B1 satisfies

MC
�;ƒ

.D2u/ � 0 and M��;ƒ.D
2u/ � 0 in B1:

Moreover, it is easy to see that ƒ2L1.B1/ and 1=�2Lp.B1/ for any p < 1=
 , while u
does not enjoy the (weak) minimum principle in B1. Hence, even though we impose
stronger integrability conditions on 1=� and ƒ than (1.3), Theorem 1.1 does not hold
for general “viscosity solution” u. In other words, this example shows that the “strong
solution” condition on u is essential in our framework.

(ii) For n D 2, we consider a linear operator Lu D 2uxx C y2uyy in B1 D ¹.x; y/ j
x2 C y2 < 1º. Then ellipticity functions are given by �.x; y/ D y2 and ƒ.x; y/ D 2,
where 1=�D jyj�2 … L1.B1/. It follows from a direct calculation that u.x;y/D y2 cosx
is a classical (or strong) solution of Lu D 0 in B1. Since u.0; 0/ D 0 D min@B1 u, u does
not satisfy the strong maximum principle and the weak Harnack inequality. In short, this
example guarantees the necessity of (a version of) integrability criteria on 1=� and ƒ in
Theorem 1.3. Nevertheless, the optimality of our assumption on .p; q/ is not satisfied by
this example, and it remains an interesting open problem.

Let us finally discuss similar consequences for linear non-uniformly elliptic equations
in divergence form. In particular, as a variational counterpart of (1.1), the authors of [5,44]
considered a weak solution u of

�Dj .aijDiu/ D 0 in B1;

where the ellipticity of a is measured by � and ƒ defined in (1.2). In [44], Trudinger
established interior estimates such as local boundedness, Harnack inequality and a version
of Hölder regularity for weak solutions, provided that 1=�2Lp.B1/ andƒ2Lq.B1/, with

1

p
C
1

q
<
2

n
�
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Recently, Bella and Schäffner [5] improved the result by replacing the condition with

1

p
C
1

q
<

2

n � 1
,

and proved that this condition is indeed sharp. The strategy of both papers mainly relied
on a modification of the Moser iteration method, which is not available for operators in
non-divergence form. We also refer to [16, 41] for related results.

The paper is organized as follows. In Section 2, we summarize several notations which
will be used throughout the paper. Section 3 is devoted to the proof of Theorem 1.1 by
adopting sequential approximation techniques. Finally, in Section 4, we investigate local
behaviors of strong solutions: local boundedness for subsolutions and a weak Harnack
inequality for supersolutions.

2. Preliminaries

We first introduce a concept ofL� -strong solutions for the Pucci extremal operators M˙
�;ƒ

.

Definition 2.1 (L� -strong solutions). Let f 2L�loc.B1/. A function u 2W 2;�
loc .B1/ is an

L� -strong solution of MC
�;ƒ

.D2u/ � f in B1 if

MC
�;ƒ

.D2u/ WD ƒ.x/
X
ei�0

ei .D
2u.x//C �.x/

X
ei<0

ei .D
2u.x// � f .x/ a.e. in B1;

where the ei .M/ are the eigenvalues of M 2 �n.
Similarly, a function u 2W 2;�

loc .B1/ is an L� -strong solution of M�
�;ƒ

.D2u/ � f

in B1 if

M��;ƒ.D
2u/ WD �.x/

X
ei�0

ei .D
2u.x//Cƒ.x/

X
ei<0

ei .D
2u.x// � f .x/ a.e. in B1:

Remark 2.2. The constants � and � are chosen to satisfy that .ƒ=�/D2u and f=� are
contained in Ln-space. If 1=� and ƒ further belong to L1-space, then it corresponds to
the uniformly elliptic setting with p D q D1 and � D � D n. In this case, Definition 2.1
coincides with the definition of Ln-strong solutions given in [10].

We provide now a few simple properties of M˙ DM˙
�;ƒ

.

Lemma 2.3. Let M;N 2 �n. Then the following hold a.e.

(i) M�.M/ �MC.M/.

(ii) M�.M/ D �MC.�M/.

(iii) M˙.˛M/ D ˛M˙.M/ if ˛ � 0.

(iv) MC.M/CM�.N / �MC.M CN/ �MC.M/CMC.N /.

For later uses, we also define C -viscosity solutions when �, ƒ and f are continuous;
see [9, 14], for instance.
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Definition 2.4 (C -viscosity solutions). Let �; ƒ; f 2C.B1/ with 0 � �.x/ � ƒ.x/ for
x 2B1. A function u2C.B1/ is a C -viscosity solution of MC

�;ƒ
.D2u/ � f in B1 if for

all ' 2 C 2.B1/ and any point x0 2 B1 at which u � ' has a local maximum, one has

MC
�.x0/;ƒ.x0/

.D2'.x0// � f .x0/:

In a similar way, a function u2C.B1/ is a C -viscosity solution of M�
�;ƒ

.D2u/� f inB1
if for all ' 2 C 2.B1/ and any point x0 2 B1 at which u� ' has a local minimum, one has

M��.x0/;ƒ.x0/.D
2'.x0// � f .x0/:

The upper contact set �C will be used for the proof of ABP estimates.

Definition 2.5. For a function uW� ! R and r > 0, the upper contact sets of u are
defined by

�C.u/ D �C.u;�/ D ¹x 2� j 9p 2Rn such that u.y/ � u.x/C hp; y � xi, 8y 2�º;

�Cr .u/ D �
C
r .u;�/ D ¹x2� j 9p 2Br .0/ such that u.y/�u.x/Chp; y�xi, 8y2�º:

For sets A1; A2; : : :, we define

lim sup
j!1

Aj WD

1\
nD1

[
k>n

Ak :

Lemma 2.6 (Lemma A.1 in [10]). Let uj , j D 1; 2; : : :, be functions defined on sets �j ,
where �j are open and increase to �; that is, �j � �jC1 and

S
j �j D �. Let uj

converge uniformly to a continuous function u on each �j . Then

(i) lim supj!1 �C.uj ; �j / � �
C.u;�/.

(ii) lim supj!1 j�
C.uj ; �j /j � j�

C.u;�/j.

(iii) lim supj!1 �Cr .uj ; �j / � �
C
r .u;�/.

We finally state the cube decomposition lemma, which shall be appropriate for our
purposes in Section 4.

Lemma 2.7 (Lemma 9.23 in [25]). Let K0 be a cube in Rn, w 2L1.K0/, and set

Dk D ¹x 2K0 j w.x/ � kº for k 2R:

Suppose that there exist constants ı 2 .0; 1/ and C > 0 such that

sup
K0\K3r .z/

.w � k/ � C;

whenever k and K D Kr .z/ � K0 satisfy

jDk \Kj � ı jKj:

Then it follows that, for all k,

sup
K0

.w � k/ � C
�
1C

log.jDkj=jK0j/
log ı

�
:
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2.1. Applications

In this section, we present concrete examples of degenerate or singular equations in non-
divergence form, which are contained in our framework.

(i) Issacs equations.
Issacs equations, which naturally arise in probability theory [22] (stochastic control

and differential games), are given by

inf
˛

sup
ˇ

.A˛ˇ .x/D
2u.x// D f in B1;

where A˛ˇ . �/ (for any ˛ and ˇ in index sets) are matrices satisfying

�.x/In � A˛ˇ .x/ � ƒ.x/In;

with 1=� 2 Lp.B1/ and ƒ 2 Lq.B1/. We note that linear elliptic operators with ellipti-
city � and ƒ, and the Pucci extremal operators M˙

�;ƒ
, can be understood as special cases

of Issacs operators.
(ii) Monge–Ampère equations.
The Monge–Ampère equation, which appears from the prescribed Gaussian curvature

equation [21] (or “Minkowski problem”), is a fully nonlinear, degenerate elliptic equation
given by

detD2u D f in B1:

It has important applications in convex geometry and optimal transportation. For simpli-
city, we consider an equation

(2.1) G.D2u/ WD log detD2u D logf:

Then we have Gij D uij , where uij denotes the inverse of the Hessian matrix D2u.
Thus, if we denote by � and ƒ the ellipticity functions defined in (1.2) for the coefficient
matrix .uij /, then we observe that 1=ƒ and 1=� are the smallest and largest eigenvalue
of D2u, respectively. Since

u is convex if and only if (2.1) is degenerate elliptic, and
u is uniformly convex if and only if (2.1) is uniformly elliptic;

we can interpret the integrability assumptions (1.3) on 1=� and ƒ as some “intermediate”
convexity on u. In other words, there exist two measurable functions h;H WB1 ! Œ0;1�

such that
h.x/In � D

2u.x/ � H.x/In;

with
h�1 2 Lq and H 2 Lp:

We point out that [11, 37] developed a Harnack inequality for solutions of the linearized
Monge–Ampère equations. Later, [38] extended this result under relaxed assumption on
the convexity, which partially overlaps with ours. More precisely, Maldonado [38] dealt
with linear degenerate/singular equations, whose coefficient matrix has a specific structure
given by .D2'/�1; see the structural conditions in [38] for details.
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Further interior and boundary regularity results on a class of Monge–Ampère equa-
tions can be found in [12, 20] for the uniformly elliptic setting, and in [26, 27, 43] for the
degenerate elliptic setting.

(iii) Equations with particular degeneracy/singularity.
In [17], the authors employed the partial Legendre transform to convert the two-

dimensional Monge–Ampère equation

detD2u D jxj˛ for ˛ > 0

into the linear equation

(2.2) vxx C jxj
˛ vyy D 0 in B1:

Then the pair .p; q/ corresponding to the ellipticity functions given by �.x; y/ D jxj˛

and ƒ.x; y/ D 1 satisfy the structural condition (1.4) when ˛ < 1=2. In fact, (2.2) is a
particular example of (degenerate elliptic) Grushin operators; see [23, 24, 39] for related
results.

Moreover, a similar type of equation can be found in an extension problem related
to the fractional Laplacian [13]. To be precise, the solution u of the degenerate/singular
equations ´

�xuC z
.2s�1/=s uzz D 0 in Rn � Œ0;1/;

u D f on Rn � ¹0º;

satisfies
.��/sf .x/ D �C.n; s/ uz.x; 0/

for s 2 .0; 1/. We note that u solves the equation in the (unbounded) half space Rn �
Œ0;1/. It is easy to check that the ellipticity functions of this problem satisfy the integ-
rability conditions (1.3) when .nC 1/=.2nC 3/ < s < .nC 1/=.2nC 1/. We refer to [33]
for related examples.

3. ABP estimates

In order to prove Theorem 1.1, we are going to provide a version of Proposition 2.12
in [10] (ABP estimates for continuous coefficients and C -viscosity solutions) and of
Theorem 4.6 in [47] (the existence of Ln-strong solutions for Dirichlet problems). It is
noteworthy that an additional approximation technique is required to control the ellipti-
city functions � and ƒ, which are not necessarily bounded in L1.

Lemma 3.1. Let f 2C.B1/. Assume �;ƒWB1! .0;1/ and 1=�;ƒ 2 C.B1/. Moreover,
suppose that u2C.B1/ is a C -viscosity solution of

MC
�;ƒ

.D2u/ � f in B1:

Then there exists a universal constant C D C.n/ > 0 such that

sup
B1

u � sup
@B1

uC C C
� Z

�C.uC/

�f �.x/
�.x/

�n
dx
�1=n

:
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Proof. We will follow the proof provided in Appendix A of [10]. We begin by assuming
that u2C 2.B1/ \ C.B1/ and later remove this assumption via approximations. We set

r0 D
supB1 u � sup@B1 u

C

2
�

For r < r0, let p 2Br and let Ox 2B1 be a maximum point of u. �/ � hp; � i, so that

u. Ox/ � hp; Oxi � u.x/ � hp; xi or u.x/ � u. Ox/ � hp; x � Oxi

for any x 2B1. It follows that

sup
B1

u � u. Ox/ � 2jpj � 2r < 2r0 D sup
B1

u � sup
@B1

uC;

and then 2.r0 � r/C sup@B1 u
C <u. Ox/: In particular, we have Ox 2B1 and u. Ox/ > 0. Since

Du. Ox/Dp andD2u. Ox/� 0, we conclude that for 0< r < r0, �Cr .u
C/ is a compact subset

of B1 and

Br D Br .0/ D Du.�
C
r .u

C// and D2u.x/ � 0 on �Cr .u
C/ � ¹u > 0º:

We now employ the change of variables p D Du.x/ to obtain

(3.1)
Z
Br

dp �
Z
�Cr .uC/

j detD2uj dx �
Z
�Cr .uC/

�
�trD2u

n

�n
dx:

Since MC
�;ƒ

.D2u/.x/ � f .x/ and D2u � 0 on �C.uC/, we have

�tr.D2u/ � f .x/ on �C.uC/

and (3.1) implies

rnjB1j D

Z
Br

dp �
1

nn

Z
�C.uC/

�f �.x/
�.x/

�n
dx:

Since �, ƒ and f are continuous, the general case follows from the standard approxima-
tion argument as in Appendix A of [10]; see the remark below for more comments.

Remark 3.2 (Sup-convolutions). In order to regularize u in the proof of Lemma 3.1, one
needs to deal with the sup–convolution of u together with a mollification. In fact, given
u2C.�/ and " > 0, the sup-convolution of u is defined by

u".x/ WD sup
y 2�

�
u.y/ �

1

2"
jx � yj2

�
:

Then the sup-convolution u" satisfies the following useful properties (see [30–32] for
details):

(i) u" is Lipschitz continuous on �, and u" ! u uniformly on � as "! 0.
(ii) u" is semiconvex; more precisely, there exists a measurable function M W�! �n

such that for a.e. x 2�,

u".y/ D u".x/C hDu".x/; y � xi C
1

2
hM.x/.y � x/; y � xi C o.jy � xj2/

and
M.x/ � �1

"
I:
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(iii) If u"� is a standard mollification of u", then D2u"� � �.1="/I and

D2u"�.x/!M.x/ a.e. in � as �! 0:

(iv) Let f and F be continuous. If u is a C -viscosity solution of

F.D2u; x/ � f .x/ in �;

then u" is a C -viscosity solution of

F ".D2u"; x/ � f ".x/ a.e. in �2."kukL1.�//1=2 ;

where �ı WD ¹x 2� j dist.x; @�/ > ıº for ı > 0, and

F ".N; x/ WD sup
jx�yj�2."kuk1/1=2

F.N; y/ and f ".x/ WD inf
jx�yj�2."kuk1/1=2

f .y/:

An inf-convolution v", which can be defined in an analogous way, satisfies similar
properties.

Lemma 3.3. Let f 2 Ln.B1/,  2 C.@B1/ and assume that 1=�;ƒ 2 C.B1/. Then there
exists an Ln-strong solution u 2 C.B1/ \W

2;n
loc .B1/ of

(3.2)

´
MC
�;ƒ

.D2u/ D f in B1;

u D  on @B1:

Moreover, u satisfies the uniform estimate

(3.3) kukL1.B1/ � k kL1.@B1/ C Ckf=�kLn.B1/:

We note that the lemma still holds if we replace the operator MC
�;�

with M�
�;�

.

Proof. Due to the continuity of � and ƒ in B1, we observe that

0 < �0 D min
B1

� � max
B1

ƒ D ƒ0 <1:

Thus, we can understand the first equation of (3.2) as

F.D2u; x/ D f in B1;

where F.N; x/ WD M�.x/;ƒ.x/.N / is a .�0; ƒ0/-elliptic operator. Then the existence of
an Ln-strong solution u follows from Theorem 4.6 in [47]; a similar existence result
in a different setting can be found in Corollary 3.10 of [10]. Moreover, the uniform
L1-estimate (3.3) can be obtained by applying Lemma 3.1 for˙u.

We are now ready to prove the first main theorem.

Proof of Theorem 1.1. We employ several regularization techniques; more precisely, we
approximate the ellipticity functions � andƒ, and then the forcing term f . For simplicity,
we may omit “a.e.” if no confusion occurs.
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(i) Approximation of � and ƒ.
We first define truncated ellipticity functions

�0j WD .� ^ j / _ j
�1 and ƒ0j WD .ƒ ^ j / _ j

�1;

which satisfy

k1=� � 1=�0j kp ! 0; kƒ �ƒ0j kq ! 0 and j�1 � �0j � ƒ
0
j � j:

Since C.B1/ is dense in Lp.B1/ for any p 2 Œ1;1/, we can take two sequences of func-
tions ¹�j º1jD1 � C.B1/ and ¹ƒj º1jD1 � C.B1/ such that

.2j /�1 � �j � ƒj � 2j; k1=�j � 1=�
0
j kp < j

�1 and kƒj �ƒ
0
j kq < j

�1:

In particular, we have

(3.4) k1=�j � 1=�kp ! 0 and kƒj �ƒkq ! 0:

We now would like to find the inequality satisfied by u, in terms of Pucci extremal oper-
ators with ‘good’ ellipticity �j and ƒj . Indeed, since u2W 2;� .B1/ satisfies

MC
�;ƒ

.D2u/ D ƒ.x/
X
ei>0

ei .D
2u.x//C �.x/

X
ei<0

ei .D
2u.x// � f .x/;

we observe that

MC
�j ;ƒj

.D2u/ D ƒj
X
ei>0

ei .D
2u/C �j

X
ei<0

ei .D
2u/

D ƒ
X
ei>0

ei .D
2u/C .ƒj �ƒ/

X
ei>0

ei .D
2u/

C �
X
ei<0

ei .D
2u/C .�j � �/

X
ei<0

ei .D
2u/ DW fj :

By recalling that f 2L� .B1/, ƒ 2 Lq.B1/ and D2u2L� .B1/, it turns out that

fj D f C .ƒj �ƒ/
X
ei>0

ei .D
2u/C .�j � �/

X
ei<0

ei .D
2u/ 2 Ln.B1/:

(ii) Approximation of fj .
For fixed j 2N, let ¹fj;kº1kD1 � C

1.B1/ be a sequence of smooth functions such that

(3.5) kfj;k � fj kn ! 0 as k !1:

Then we let  j;k 2 W
2;n

loc .B1/ \ C.B1/ solve´
M��j ;ƒj .D

2 j;k/ D fj;k � fj in B1

 j;k D 0 on @B1;

whose existence is guaranteed by Lemma 3.3. From the estimate (3.3),

k j;kk1 � Ck.fj;k � fj /=�j kn;

where the constant C > 0 is independent of k 2N. Therefore, it immediately follows that

(3.6) k j;kk1 ! 0 as k !1:
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(iii) Conclusion. ABP estimates.
If we set w WD uC  j;k � k j;kk1, then we observe that

MC
�j ;ƒj

.D2w/ �MC
�j ;ƒj

.D2u/CM��j ;ƒj .D
2 j;k/

� fj C .fj;k � fj / D fj;k :

Since �j , ƒj and fj;k are regularized enough so that Lemma 3.1 is applicable, we have

sup
B1

w � sup
@B1

wC C C
� Z

�C.wC/

�f �
j;k
.x/

�j .x/

�n
dx
�1=n

:

By letting k !1 together with (3.5), (3.6) and Lemma 2.6, we deduce

sup
B1

u � sup
@B1

uC C C
� Z

�C.uC/

�f �j .x/
�j .x/

�n
dx
�1=n

:

Moreover, by applying Hölder’s inequality, we obtain


f �j
�j
�
f �

�





n
�




fj
�j
�
f

�





n

�




� 1
�
�
1

�j

�
�
X
ei<0

ei .D
2u/





n
C




 1
�j
.ƒj �ƒ/

X
ei>0

ei .D
2u/





n
C




 f
�j
�
f

�





n

�




 1
�
�
1

�j





p
kƒkq kD

2uk� C



 1
�j





p
kƒj �ƒkq kD

2uk� C



 1
�j
�
1

�





p
kf k� :

Therefore, by passing the limit j !1 together with (3.4), we finally conclude that

sup
B1

u � sup
@B1

uC C C
� Z

�C.uC/

�f �.x/
�.x/

�n
dx
�1=n

as desired.

Remark 3.4. Although we only deal with elliptic equations in the present paper, we
expect that our method for deriving the ABP estimates can be extended to parabolic equa-
tions with some modifications. For example, one may follow the proof of Theorem 2 in [2]
to prove the parabolic counterpart of Lemma 3.1.

Corollary 3.5. Let f 2L� .B1/. Suppose that u2W 2;� .B1/ is an L� -strong solution of

M��;ƒ.D
2u/ � f in B1:

Then there exists a universal constant C D C.n/ > 0 such that

sup
B1

u� � sup
@B1

u� C C
� Z

�C.u�/

�f C.x/
�.x/

�n
dx
�1=n

:

Proof. The conclusion immediately follows by considering �u instead of u in the proof
of Theorem 1.1.
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Corollary 3.6. Let �;ƒ; f 2C.B1/ with 0 � � � ƒ in B1. Suppose that u2W 2;�
loc .B1/

is an L� -strong solution of MC
�;ƒ

.D2u/ � f in B1. Then u is also a C -viscosity solution
of MC

�;ƒ
.D2u/ � f in B1.

Proof. Since � � n, we have u2C.B1/. We assume by contradiction that for some ' 2
C 2.B1/, u � ' has a (strict) local maximum at x0 2 B1 and

MC
�.x0/;ƒ.x0/

.D2'.x0// < f .x0/:

By the continuity of �, ƒ and f , we have

MC
�;ƒ

.D2'/ < f

near x0. On the other hand, we observe from Lemma 2.3 that

MC
�;ƒ

.D2.u � '// �MC
�;ƒ

.D2u/ �MC
�;ƒ

.D2'/ > 0 a.e. in B�.x0/ for some � > 0:

We now apply Theorem 1.1 in B�.x0/ to conclude that

.u � '/.x0/ � sup
@B�.x0/

.u � '/;

which leads to a contradiction.

We say a measurable function F W �n � B1 ! R is .�. �/;ƒ. �//-elliptic if

M��;ƒ.N /.x/ � F.M CN; x/ � F.M; x/ �MC
�;ƒ

.N /.x/

for any M;N 2 �n and x 2B1 a.e.. We note that the Pucci extremal operators M˙
�;ƒ

are
.�. �/; ƒ. �//-elliptic. The notion of L� -strong solution defined in Definition 2.1 can be
easily extended to such fully nonlinear operators F .

Corollary 3.7 (Comparison principle). Let f 2L� .B1/ and let F be .�. �/;ƒ. �//-elliptic.
Suppose that u; v 2 W 2;� .B1/ are, respectively, L� -strong subsolution and supersolution
of F.D2w; x/ D f .x/ in B1. If u � v on @B1, then u � v in B1.

Proof. By the definition of .�. �/;ƒ. �//-ellipticity, we have

MC
�;ƒ

.D2.u � v//.x/ � F.D2u; x/ � F.D2v; x/ � 0:

The desired result follows from Theorem 1.1.

4. Local estimates

In this section, we utilize the ABP maximum principle (Theorem 1.1) to obtain interior a
priori estimates ofL� -strong solutions of non-uniformly elliptic Pucci extremal operators.
We refer to Theorems 9.20 and 9.22 in [25] for local boundedness and weak Harnack
inequality for strong solutions of uniformly elliptic linear equations.

We begin with the local boundedness for L� -strong subsolutions.
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Proof of Theorem 1.2. For simplicity, we omit “a.e.” if no confusion occurs. For ˇ � 2 to
be determined later, we define an auxiliary function � by

(4.1) �.x/ D .1 � jxj2/ˇ :

Then a direct calculation shows

Di� D �2ˇxi .1 � jxj
2/ˇ�1;

Dij� D �2ˇıij .1 � jxj
2/ˇ�1 C 4ˇ.ˇ � 1/xi xj .1 � jxj

2/ˇ�2:

By setting v D �u, we have

MC
�;ƒ

.D2v/ DMC
�;ƒ

.�D2uCDu˝D�CD�˝DuC uD2�/

�MC
�;ƒ

.�D2u/CM��;ƒ.Du˝D�CD�˝DuC uD
2�/

DW I1 C I2;

where we write .x ˝ y/ij D xiyj for x; y 2Rn. We first obtain that

I1 D �MC
�;ƒ

.D2u/ � �f � �f �:

On the other hand, it follows from the definition of the upper contact set that for any
x 2�C.vC/ D �C.vC; B1/, v.x/ is nonnegative and

jDv.x/j �
v.x/

1 � jxj
�

Thus we have

jDuj D
1

�
jDv � uD�j �

1

�

� v

1 � jxj
C ujD�j

�
� 2.1C ˇ/��1=ˇu on �C.vC/.

Therefore, we utilize the estimates

jDuj jD�j � 4ˇ.1C ˇ/��2=ˇv � 8ˇ2��2=ˇv;

ujDij�j � .2ˇ�
1=ˇ
C 4ˇ.ˇ � 1//��2=ˇv � 4ˇ2��2=ˇv

to derive
I2 � �20ƒn

2ˇ2��2=ˇv on �C.vC/.

We now apply the ABP estimates (Theorem 1.1) to derive

(4.2)
sup
B1

v � C
� Z

�C.vC/

h�ˇ2ƒ.x/��2=ˇ .x/vC.x/
�.x/

�n
C

�f �.x/
�.x/

�ni
dx
�1=n

� C
��

sup
B1

vC
�1�2=ˇ 

.uC/2=ˇƒ=�



n
C kf �=�kn

�
:

Here we choose ˇ D 2n=t .� 2/. Then an application of Young’s inequality

ab �
as

s
C
bs
0

s0
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for

s D .1 � t=n/�1; s0 D .1 � 1=s/�1; a D
�
s" sup

B1

vC
�1=s

and b D .s"/�1=s

gives

(4.3)
�

sup
B1

vC
�1�t=n

� " sup
B1

vC C cn;t "
1�n=t for any " > 0:

In particular, (4.2) and (4.3), together with the choice

" D
1

2C
k.uC/t=nƒ=�k�1n ;

yield that
sup
B1=2

u � C
�
k.uC/t=nƒ=�kn=tn C kf

�=�kn
�
:

Finally, an application of Hölder’s inequality concludes that

sup
B1=2

u � C
�
k1=�kn=tp kƒk

n=t
q ku

C
k�t=n C kf

�=�kn
�
:

We now move our attention to the weak Harnack inequality for L� -strong supersolu-
tions.

Proof of Theorem 1.3. For " > 0, we set

u D uC "C kf=�kn;

w D � logu; v D �w and g D f=u;

where � is the auxiliary function defined by (4.1), with ˇ � 2 to be determined later. It is
easily checked that

Diw D �u
�1Diu;

Dijw D u
�2DiuDju � u

�1Diju D DiwDjw � u
�1Diju:

Then a direct calculation yields that

(4.4)

MC
�;ƒ

.D2v/

DMC
�;ƒ

.�D2w CDw ˝D�CD�˝Dw C wD2�/

DMC
�;ƒ

.��u�1D2uC �Dw ˝Dw CDw ˝D�CD�˝Dw C wD2�/

�MC
�;ƒ

.��u�1D2u/CM��;ƒ.�Dw ˝Dw CDw ˝D�CD�˝Dw/

CM��;ƒ.wD
2�/

� �g�CM��;ƒ.�Dw ˝Dw CDw ˝D�CD�˝Dw/CM��;ƒ.wD
2�/:

(i) We first prove the following Cauchy–Schwarz inequality for matrices:

˙.Dw ˝D�CD�˝Dw/ � ��1D�˝D�C �Dw ˝Dw:
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It can be written in an equivalent form: for any a 2 Rn,

jh.Dw ˝D�CD�˝Dw/a; aij � h.��1D�˝D�C �Dw ˝Dw/a; ai:

Indeed, this inequality follows from the following simple observation:

h.b ˝ c/a; ai D Œ.b ˝ c/a�i ai D .b ˝ c/ij ajai D ai bi aj cj D ha; biha; ci

for any a; b; c 2 Rn.
(ii) We control the term ��1jD�j2 as

��1jD�j2 � 4ˇ2�1�2=ˇ :

(iii) The eigenvalues of D2� are

4ˇ.ˇ � 1/.1 � jxj2/ˇ�2 jxj2 � 2ˇ.1 � jxj2/ˇ�1 with multiplicity 1;

�2ˇ.1 � jxj2/ˇ�1 with multiplicity n � 1:

Let ˛ WD 1=.3n/. We note that the first eigenvalue becomes nonnegative if

˛ � jxj � 1 and ˇ � 1C 1=.2˛2/:

Therefore, for ˛ � jxj � 1 and ˇ � 1C 1=.2˛2/, we obtain

M��;ƒ.D
2�/

D �Œ4ˇ.ˇ � 1/.1 � jxj2/ˇ�2 jxj2 � 2ˇ.1 � jxj2/ˇ�1� �ƒ.n � 1/Œ2ˇ.1 � jxj2/ˇ�1�

D �Œ4ˇ.ˇ � 1/.1 � jxj2/ˇ�2 jxj2� � .�C .n � 1/ƒ/Œ2ˇ.1 � jxj2/ˇ�1�

D 2ˇ.1 � jxj2/ˇ�2 Œ2�.ˇ � 1/ jxj2 � .�C .n � 1/ƒ/.1 � jxj2/�:

On the other hand, if jxj � ˛, then

M��;ƒ.D
2�/ � �ƒnŒ2ˇ.1 � jxj2/ˇ�1�:

By plugging the previous estimates obtained in (i), (ii) and (iii) into (4.4), we have

MC
�;ƒ

.D2v/ � �g� � ��1MC
�;ƒ

.D�˝D�/CM��;ƒ.wD
2�/

D �g� � ��1ƒ jD�j2 CM��;ƒ.wD
2�/

� �jgj � 4ˇ2ƒ �
2ƒnˇ

1 � ˛2
vC 1¹jxj�˛º C 2ˇ.1 � jxj2/�2 Œ2�.ˇ � 1/jxj2

� .�C .n � 1/ƒ/.1 � jxj2/�vC 1¹jxj�˛º
DW zf

on �C.vC/. We now apply the ABP estimates (Corollary 3.5) to derive

sup
B1

v � C
� Z

�C.vC/

� zf �.x/
�.x/

�n
dx
�1=n

:
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Therefore, by recalling that kg=�kn � 1, we obtain

sup
B1

v � C C Cˇ2kƒ=�kn C Cˇkƒ=�kn � sup
B1

v � j¹jxj � ˛º \ ¹v > 0ºj1=n

C C sup
B1

v
� Z

˛�jxj�1

h�ƒ
�
�

ˇ

1 � jxj2

�
C

ˇ

1 � jxj2

in
dx
�1=n

:

Since 1=p C 1=q < 1=.2n/, an application of Hölder’s inequality yields thatZ
˛�jxj�1

h�ƒ
�
�

ˇ

1 � jxj2

�
C

ˇ

1 � jxj2

in
dx �

Z
¹˛�jxj�1º\Uˇ

�ƒ
�

�2n
dx

� k1=�k2np kƒk
2n
q jUˇ j

1�.2n/=p�.2n/=q;

where

Uˇ WD
°
jxj � 1 W

ƒ.x/

�.x/
�

ˇ

1 � jxj2

±
:

We also have the following inequality:

jUˇ j �
ˇ̌̌°ƒ
�
� ˇ

±ˇ̌̌
� ˇ�2n

Z
jƒ=�j2n:

Hence, there exists a constant ˇ > 0, which depends only on k1=�kp , kƒkq and n, such
that Z

˛�jxj�1

h�ƒ
�
�

ˇ

1 � jxj2

�
C

ˇ

1 � jxj2

in
dx �

1

.2C /n
�

By combining all estimates above, we conclude that

sup
B1

v � C C C sup
B1

v � j¹jxj � ˛º \ ¹v > 0ºj1=n �

In order to finish the proof, we would like to exploit the cube decomposition lemma
(Lemma 2.7). For this purpose, let us define KR.z/ to be the open cube, parallel to the
coordinate axes, with centre z and the side length 2R. Since B˛ � K˛.0/ �� B1 for
˛ D 1=.3n/, we have

sup
B1

v � C
�
1C sup

B1

vCjKC˛ j
1=n
�
;

where KC˛ WD ¹x 2K˛ j v > 0º. Hence, whenever

jKC˛ j

jK˛j
� � WD Œ2.2˛/nC ��1;

we obtain
sup
B1

v � 2C:

We point out that
(i) this procedure is stable under the transformation x ! ˛.x � z/=r for Br=˛.z/ �

B1.0/;
(ii) we can repeat this argument for w � k instead of w for arbitrary k 2 R.
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Thus, by applying Lemma 2.7 with ı D 1 � �; K0 D K˛.0/ and ˛ D 1=.3n/, we
obtain

sup
K0

.w � k/ � C
�
1C

log.jDkj=jK0j/
log ı

�
;

where Dk D ¹x 2K0 j w.x/ � kº. In other words, if we write

�t D j¹x 2K0 j Nu > tºj; with t D e�k ;

then
�t � C

�
inf
K0
Nu=t
��
;

where C and � are positive universal constants. By recalling Lemma 9.7 in [25], we obtainZ
B˛

Nut � C
�

inf
B˛
Nu
�t
;

for t D �=2. The desired weak Harnack inequality follows by letting "! 0, together with
the covering and scaling argument.

We remark that if u is a strong solution of F.D2u; x/ D f .x/ for a .�. �/; ƒ. �//-
elliptic operator F with F.0; x/ D 0, then u is contained in the (extended) Pucci class,
i.e., u satisfies

MC
�;ƒ

.D2u/ � �jf j and M��;ƒ.D
2u/ � jf j:

Indeed, the following corollaries hold for a wide class of functions: not only solutions of
degenerate/singular fully nonlinear equations, but also functions in the (extended) Pucci
class.

Corollary 4.1 (Harnack inequality). Let f 2L� .B1/. Assume that

1

p
C
1

q
<

1

2n
�

Moreover, suppose that u2W 2;�
loc .B1/ be an nonnegative L� -strong solution of

MC
�;ƒ

.D2u/ � �jf j and M��;ƒ.D
2u/ � jf j in B1:

Then there exists a constant C > 0, depending only on k1=�kp , kƒkq and n, such that

sup
B1=2

u � C
�

inf
B1=2

uC kf=�kLn.B1/

�
:

Proof. The Harnack inequality immediately follows from the local boundedness (The-
orem 1.2) and the weak Harnack inequality (Theorem 1.3).

In the uniformly elliptic framework, an application of the Harnack inequality (Corol-
lary 4.1) in an iterative manner yields a priori Hölder estimates of solutions. Nevertheless,
due to the dependence of the constant C on k1=�kp and kƒkq , this argument is in general
not valid anymore in the non-uniformly elliptic situation. Instead, we have the following
large-scale Hölder continuity, as in Theorem 5.1 of [44] and Corollary 4.2 of [5]. We set

y�.r/ WD sup
r�R�1

� −
BR

��p
�1=p

and yƒ.r/ WD sup
r�R�1

� −
BR

ƒq
�1=q

for r 2 .0; 1/.
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Corollary 4.2 (Hölder continuity “on large scales”). Let f 2L� .B1/. Assume that

1

p
C
1

q
<

1

2n

and that u2W 2;�
loc .B1/ be an L� -strong solution of

MC
�;ƒ

.D2u/ � �jf j and M��;ƒ.D
2u/ � jf j in B1:

Moreover, suppose that y�.r1/ <1 and yƒ.r1/ <1 for some 0 < r1 < 1=4.
Then for all r 2 Œr1; 1=2�, we have

osc
Br
u � Cr˛

�
kukL1.B1/ C kf=�kLn.B1/

�
;

where C and ˛ are positive constants depending only on n, y�.r1/ and yƒ.r1/.
In particular, if we further assume that y�.0C/ <1 and yƒ.0C/ <1, then the clas-

sical Hölder continuity of u holds.

Proof. For a scaled function ur .x/ WD u.rx/, we observe that ur is an L� -strong solution
of

MC
�r ;ƒr

.D2ur / � �jfr j and M��r ;ƒr .D
2ur / � jfr j in B1;

where
�r .x/ WD �.rx/; ƒr .x/ WD ƒ.rx/ and fr .x/ WD r

2f .rx/:

Moreover, we have

kƒrkLq.B1/ D
� Z

B1

ƒq.rx/ dx
�1=q
D

� −
Br

ƒq.y/ dy
�1=q

and
kfr=�rkLn.B1/ D rkf=�kLn.Br / � rkf=�kLn.B1/:

Therefore, the desired oscillation control follows from the standard iteration and scaling
argument; see, for instance, Lemma 8.23 in [25].
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