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Universality lifting from a general base field

Vítězslav Kala, Daejun Kim and Seok Hyeong Lee

Abstract. Given a totally real number field F , we show that there are only finitely
many totally real extensions of K of a fixed degree that admit a universal quadratic
form defined over F . We further obtain several explicit classification results in the
case of relative quadratic extensions.

1. Introduction

Thanks to Lagrange, Ramanujan, and Bhargava, among many others, we obtained a very
good understanding of universal quadratic forms, i.e., those that represent all positive
rational integers. Results such as the Bhargava–Hanke 290-theorem [1] may even suggest
that, as soon as a quadratic forms has sufficiently many variables (say, four or five), then
it is actually quite easy for it to be universal.

The situation is still quite similar in rings of integers in number fields K that are not
totally real. Siegel [36] used the circle method to show that the sum of five squares is
universal over non-totally realK if the discriminant ofK is odd (in fact, only four squares
suffice, as spinor genera establish [12]); otherwise the only obstruction is dyadic. Until
today, employing local methods in this indefinite situation continues to be very interesting
and fruitful, e.g., [15, 38].

Surprisingly, things are markedly different when one considers the totally positive set-
ting that we consider in this paper, i.e., totally positive definite quadratic forms represent-
ing totally positive integers OCK in a totally real field K. In this case, already Siegel [36]
learned that the sum of any number of squares is almost never universal, except for four
squares over Q and three squares over Q.

p
5/, see [33].

While Hsia–Kitaoka–Kneser [16] proved the asymptotic local-global principle that
quadratic forms in at least five variables integrally represent all elements of sufficiently
large norm that are represented everywhere locally, the small elements cause serious trou-
ble. Already the aforementioned result of Siegel [36] on the non-universality of sums
of squares employed indecomposables, i.e., totally positive integers ˛ 2OCK that are not
decomposable as the sum ˛ D ˇ C 
 for ˇ; 
 2OCK . Recently, numerous authors used
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indecomposables and closely related tools and ideas to show that, very often, universal
quadratic forms require arbitrarily many variables, first over real quadratic fields [2, 5, 17,
26–29], but also in higher degrees [3,18,20,22,32,34,39]. For other relevant works, often
employing local-global methods, see [4, 6, 10, 11] or the surveys [19, 31].

Not only do indecomposables force universal forms to have large ranks, they also
greatly restrict their possible coefficients. Specifically, the lifting problem asks the follow-
ing question.

Lifting problem. When does it happen that a totally positive definite quadratic form Q

defined over a totally real number field F is universal over a totally real field K � F ?

The first partial answer again goes back to Siegel [36], as the sum of squares is
defined over Q and is never universal over K ¤ Q;Q.

p
5/. Every diagonal form with

Z-coefficient is represented by the sum of squares, and so it cannot be universal either.
However, over Q.

p
5/ there are quite a few universal forms: already in 1928, Götzky [14]

showed the universality of the sum of four squares. Maaß [33] reduced the number of
squares to three, and much later Chan–Kim–Raghavan [5] proved that x2 C y2 C 2z2 is
the only other universal ternary form that is classical, i.e., whose off-diagonal coefficients
are even. Deutsch then used quaternion rings to obtain the universality of q1 D x2C xyC
y2 C z2 C zw C w2 in [7], and of q2 D x2 C y2 C z2 C w2 C xy C xz C xw in [8].
Despite all these results, classifying all universal forms with Z-coefficients over Q.

p
5/

seems to be a non-trivial open problem. Over other fields, examples have been hard to find,
and Deutsch [7] conjectured that q1 is not universal over any other real quadratic field.

This conjecture was established by Kala–Yatsyna [23] who showed that, in fact, there
are no universal forms with Z-coefficients over real quadratic fields different from Q.

p
5/.

They also proved that, ifK has principal codifferent ideal and its degree is 3;4;5, or 7, then
it admits no universal form with Z-coefficients, unless K D Q.�7 C ��17 /, over which q2
is universal (Kala–Melistas [21] observed that the argument actually extends to some
fields in degrees � 43). Gil-Muñoz–Tinková [13] considered more cubic fields, but Kim–
Lee [30] then significantly strengthened these results to cover all cubic and biquadratic
fields, before Kala–Yatsyna [25] showed that in degrees � 5 there are no further fields
having a universal form with Z-coefficients. While the indefinite case is not the focus of
our paper, there have been also very interesting recent results, e.g., by He–Hu–Xu [15]
and Xu–Zhang [38].

The only completely general result that is known in the totally real case concerns the
weak lifting problem: Kala–Yatsyna [24] proved that when one fixes the base field F , the
formQ, and the degree of the extension d D ŒK W F �, then there are at most finitely many
such fields K over which Q is universal.

Our first main theorem significantly strengthens this result by removing the assump-
tion that the form is fixed. As is common in the literature, throughout the paper we work in
the more general language of quadratic lattices (see Section 2 for this and all other precise
definitions), and so we already use it in the formulation of the theorem.

Theorem 1.1. Let F be a totally real number field and d 2N. There are at most finitely
many totally real fields K � F with ŒK W F � D d such that there is an OF -lattice L such
that L˝OK is universal.
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This will be established as Theorem 3.4. The key is to note that it is sufficient to
consider the representability of individual elements (in fact, Theorem 3.3 says that inde-
composables suffice) by lattices of bounded rank (Lemma 3.2) and that one can combine
arbitrarily many representing lattices into one thanks to the existence of universality cri-
terion sets that was recently established by Chan–Oh [6].

In order to obtain a more concrete understanding of the general lifting problem, in the
rest of the article we focus on the – easiest, but already highly challenging – case d D 2
of quadratic extensions K=F .

Not surprisingly, it turns out that things are significantly easier when the base field F
has class number 1 for, e.g., in this case there is a relative integral basis OK D OF Œw�.
Using it, Proposition 4.1 gives a general finiteness criterion in terms of the relative dis-
criminant of the extension K=F .

We further give a computational classification of all real quadratic fields F with class
number 1 and discriminantDF � 200;DF ¤ 193; for which there is an OF -lattice with a
universal lift to a quadratic extensionK=F . The computational part consisted of a series of
programs in Mathematica that were quite fast to run for small DF , took approximately 7
hours forDF D 177, and did not finish within 1 day for the excluded caseDF D 193, see
Remark 5.5.

Theorem 1.2. Table 1 provides the complete list of real quadratic fields F D Q.
p
DF /

with class number 1 and totally real quadratic extensions K=F such that there is an
OF -lattice that is universal over OK , among all fundamental discriminants DF � 200,
DF ¤ 193. For all of them, DF � 56.

This will be proved as Theorem 5.4. We first use Proposition 4.1 to get a finite list
of possible fields K, and then for each of them we check the F -representability (i.e.,
representability by an OF -lattice) of suitable (indecomposable) elements. This restricts
us to the candidate fields from Table 1. For each of these, we prove the existence of an
OF -lattice whose lift toK is universal by using Theorem 3.3(3). To do this, we find all the
indecomposables in K using the geometry of numbers method based on Shintani’s unit
theorem, first developed by Kala–Tinková [22], and then check their F -representability
using Lemma 4.2.

As fields F with larger discriminant DF seem to be much less likely to admit univer-
sality lifting, we in fact formulate Conjecture 5.9 that the list in Table 1 is complete.

While the class number 1 assumption is restrictive, it is not overly so. Out of 30 funda-
mental discriminants < 100, only 4 (viz., 40; 60; 65; 85) give class number greater than 1;
between 100 and 200, it is 10 out of 30. Also for Conjecture 5.9, the very hard ‘class num-
ber one problem’ (and, e.g., Cohen–Lenstra heuristics) predicts that there are infinitely
many real quadratic fields with class number 1.

Finally, in order to go beyond the restriction placed by the assumption that F has class
number 1, we consider extensions by square roots of positive integers.

Theorem 1.3. Let F be a totally real number field and let K D F.
p
e/, where e > 0 is a

square-free integer such that the discriminants of F and Q.
p
e/ are coprime.

If e ¤ 5, then there is no OF -lattice L such that L˝OK is universal over OK .
If F is real quadratic and there is an OF -lattice L such that L˝OF.

p
5/ is universal

over OF.
p
5/, then DF � 4076.
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This result is contained in Theorems 6.3 and 6.6. Note that it provides extra evidence
for Conjecture 5.9 in the case when K is a real biquadratic field.

To conclude and summarize the introduction, our results strongly back up the expec-
tation that universality lifting is quite rare. Significantly, we now have data supporting this
in cases of more general base fields than just the rationals Q. One may be tempted to
hypothesize that the finiteness result of Theorem 1.1 holds even without fixing the relative
degree d , and then attempt to establish more classification results akin to our Theorems 1.2
and 1.3. We anticipate that the further development of these ideas will lead to an exciting
research program requiring many new ideas.

2. Preliminaries

2.1. Notations and terminologies

LetK=F be number fields of degree d D ŒK W F � and let �1; : : : ;�d be embeddings fromK

into C which fix F . The (relative) norm map and the (relative) trace map NK=F WK!F

and TrK=F WK!F are defined, for ˛ 2K, by

NK=F .˛/ D �1.˛/ � � � �d .˛/ and TrK=F .˛/ D �1.˛/C � � � C �d .˛/

respectively. In case when the base field F D Q, we simply write the norm and the
trace map as N and Tr. The relative discriminant �K=F is defined to be the ideal in F
generated by ¹det.TrK=F .aiaj //i;jD1;:::;d j a1; : : : ; ad 2 OKº. Note that when OK is a
free OF -module with a basis b1; : : : ; bd , then �K=F is the principal ideal generated by
det.TrK=F .bibj //.

Throughout this paper, F will denote a totally real number field of degree nD ŒF WQ�
over Q, andK will denote a totally real number field containing F such that ŒK W F �D d .
Let �1 D id; : : : ; �n WF !R be the real embeddings of F . We say ˛2F is totally positive
if �i .˛/ > 0 for all 1 � i � n, and write ˛ � 0. Moreover, we write ˛ � 0 if �i .˛/ � 0 for
all 1 � i � n. Note that if ˛ � 0, then either ˛ D 0 or ˛ � 0, since �i .˛/ D 0 for some i
implies ˛ D 0. We denote by OCF the set of all totally positive elements in OF and denote
by O�F the set of all units of OF . Moreover, we write O

�;C
F D O�F \ OCF . An element

˛ 2OCF is called indecomposable if it cannot be written as ˛ D ˇ C 
 with ˇ; 
 2OCF .
Now we introduce the geometric language of quadratic spaces and lattices. A quadra-

tic space over F is a vector space V over F equipped with a non-degenerate symmet-
ric bilinear form BW V � V !F . We say V is totally positive definite if the associated
quadratic form Q.v/ D B.v; v/ is totally positive definite, that is, if Q.v/ � 0 for all
v 2V n ¹0º. Throughout the paper, we assume that V is totally positive definite, unless
stated otherwise.

A quadratic OF -lattice L on V is a finitely generated OF -module such that FL D V .
We write .L;Q/ to indicate that the OF -lattice L is associated with the quadratic mapQ.
For ˛ 2OCF , we say L represents ˛ if Q.v/ D ˛ for some v 2L. We say an OF -lattice
is universal over OF if it represents every element in OCF . For a field K containing F ,
we may consider L as an OK-lattice, namely, we may consider the OK-lattice L˝OF

OK .
Hence we say an OF -latticeL is universal over OK ifL˝OK is universal as an OK-lattice.
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We may identify a free lattice with a quadratic form, namely, forLDOF v1C � � � COF vr ,
we consider

QL.x1; x2; : : : ; xr / D Q.x1v1 C � � � C xrvr / D
X

1�i�j�r

aijxi xj ; with aij 2 OF :

If the ring OF is a principal ideal domain, then an OF -lattice L has an integral basis,
meaning that L D OF v1 C � � � COF vr for a basis v1; : : : ; vr of V . In the case when OF
is not a principal ideal domain, L may not have an integral basis, but it can be generated
by dim.V /C 1 elements as an OF -module (see 22:5 and 81:5 of [35]). If we are given
quadratic spaces Vi over F and OF -lattices Li on Vi for 1 � i � t , the orthogonal sum
of Li is the OF -lattice L D L1 ? � � � ? Lt on V D V1 ? � � � ? Vt .

Any unexplained notation and terminology on quadratic lattices can be found in [35].

2.2. Real quadratic number fields

Let F D Q.
p
d/ be a real quadratic number field with d > 0 a square-free integer. The

ring OF of algebraic integers of F is described as

(2.1) OF D ZC Z�; where � WD

´
.1C

p
d/=2 if d � 1 .mod 4/;

p
d if d � 2; 3 .mod 4/;

and the discriminant DF WD Disc.F / of F is given as

(2.2) DF D

´
d if d � 1 .mod 4/;
4d if d � 2; 3 .mod 4/:

An integerD is called a fundamental discriminant if it is the discriminant of a quadra-
tic number field. Note from (2.2) that an integer D > 1 is a fundamental discriminant if
and only if it is not divisible by the square of any odd prime and satisfies D � 1 .mod 4/
or D � 8; 12 .mod 16/.

3. General properties for lifting problem

In this section, we discuss some properties of general lifting problem, asking for which
totally real fields F � K there exists an OF -lattice L such that L ˝ OK is universal
over OK . Let us first introduce the following definition.

Definition 3.1. Let K and F be totally real fields such that F � K. We say an element
˛ 2 OCK is F -representable if there exists a totally positive definite OF -lattice L such that
L˝OF

OK represents ˛.

Lemma 3.2. Let K and F be totally real fields such that F � K and ŒK W F � D d . If
˛ 2OCK is F -representable, then there exists an OF -lattice L.˛/ of rank at most d C 1
such that L.˛/˝ OK represents ˛. In particular, if OK is generated by g elements as an
OF -module, say OK D OFw1 C � � � COFwg , then there is a totally positive semidefinite
quadratic form Q such that Q.w1; : : : ; wg/ D ˛.
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Proof. Assume that there is an OF -lattice ` of rank r such that `˝OK represents ˛. As `
and OK are finitely generated OF -module, let us fix generators of them as follows:

` D OF v1 C � � � COF vr COF vrC1 and OK D OFw1 C � � � COFwg ;

where g should be no less than d and g can be taken to satisfy g � d C 1. As ˛ is repre-
sented by `˝OK , there are ˇ1; : : : ;ˇrC1 2OK such thatQ.ˇ1v1C � � �CˇrC1vrC1/D˛.

Writing ˇi D
Pg
jD1 aijwj with aij 2 OF and putting M` D .B.vi ; vj //.rC1/�.rC1/,

A D .aij /.rC1/�g , ˇ D .ˇ1; : : : ; ˇrC1/t 2 OrC1
K and w D .w1; : : : ; wg/t 2 O

g
K , we have

ˇ D Aw and

(3.1) ˛ D Q.ˇ1v1 C � � � C ˇrC1vrC1/ D ˇ
tM`ˇ D w

t .AtM`A/w:

We may associate a free OF -lattice .L D O
g
F ; Q0/ which is totally positive semidefinite

such that the Gram matrix of Q0 is AtM`A. This Q0 with (3.1) proves the ‘in particular
part’ of the lemma.

We may assume that we have taken g D d C 1. If L is totally positive definite, then
L.˛/ WD L is the desired OF -lattice. In the case when L is not totally positive definite, let
us consider the radical rad.L/ WD ¹v 2L j B.v; w/ D 0 for all w 2Lº of L. We have
the radical splitting L D L0 ? rad.L/, where L0 is a regular sublattice of L, mean-
ing that rad.L0/ D 0 (see [35], p. 226). Note that .L0; Q D Q0jL0/ is of rank � d C 1
and L0 is totally positive definite: ifQ.v/ D 0 for some v 2L0, then the Cauchy–Schwarz
inequality Q.v/Q.w/ � B.v; w/2 � 0 implies that B.v; w/ D 0 for all w 2L0. Hence
v 2 rad.L0/ D 0, which yields v D 0. Furthermore, one may easily show that L0 repre-
sents L. Therefore, we may take L.˛/ WD L0. This proves the lemma.

Theorem 3.3. Let K and F be totally real fields such that F � K and ŒK W F � D d . The
following are equivalent.

(1) There exists an OF -lattice L such that L˝OK is universal.

(2) Every element in OCK is F -representable.

(3) Every indecomposable element in OCK is F -representable.

Proof. The implications .1/) .2/ and .2/) .3/ are trivial from the definition. To show
the implication .3/) .1/, we use Proposition 7.1 in [22], which says that the diagonal
quadratic form X

˛ 2�

˛.x21;˛ C x
2
2;˛ C � � � C x

2
s;˛/

is universal over OK , where s is the Pythagoras number of OK (i.e., the smallest posi-
tive integer such that every sum of squares equals the sum of s squares) and � denotes
a finite set of representatives of classes of indecomposables in OK up to multiplication
by squares of units O�2K . Note that the set � is finite because every indecomposable ˛
has norm NK=Q.˛/ � �K=Q (see Theorem 5 in [24]) and, up to multiplication by O�2K ,
there are finitely many elements in OK of bounded norm. From the assumption, there are
OF -lattices L.˛/ such that L.˛/˝OK represents ˛ 2 � .

Therefore the OF -lattice
?˛ 2� L.˛/

?s

is universal over OK .
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Theorem 3.4. Let F be a totally real number field and d 2N. There are at most finitely
many totally real fields K � F with ŒK W F � D d such that there is an OF -lattice L such
that L˝OK is universal.

Proof. Let us start by considering a field K � F with ŒK W F � D d such that there is an
OF -lattice L such that L˝ OK is universal. By Lemma 3.2, for each element ˛ 2OCK ,
there is an OF -lattice L.˛/ of rank at most d C 1 such that L.˛/˝OK represents ˛.

Now we use a theorem of Chan–Oh (Theorem 5.7 in [6]) which says that for an infi-
nite set S of OF -lattices of fixed rank, there exists a finite subset S0 of S such that if an
OF -lattice represents all lattices in S0, then it represents all lattices in S. Thus, there even
exists an OF -lattice LS that represents all OF -lattices in S: for example, LS can be taken
as ?`2S0 `. In particular, for each k 2 N we can take an OF -lattice Lk that represents all
OF -lattices of rank k.

Let LDL1? � � � ?LdC1. Then L representsL.˛/ for all ˛2OCK , and hence L˝OK
represents all ˛ 2OCK , i.e., it is universal over K.

We have thus established that ifK admits a universal OF -lattice, then in fact L˝OK
is universal overK. But this is a situation when we can apply Theorem 2 in [24], according
to which there are only finitely many such fields K.

4. Lifting problems for quadratic extensions over PIDs

In this section, we discuss lifting problems for quadratic extensions K=F of totally real
number fields where the base field F has class number 1 (i.e., OF is a principal ideal
domain). In Section 5, we then further specialize to the case when F is a real quadratic
field.

First, we give a certain finiteness bound on relative discriminant of K=F for those K
having an OF -lattice such that L˝OK is universal.

Proposition 4.1. LetK=F be a quadratic extension of totally real number fields, where F
has class number 1, and let �K=F be the relative discriminant ideal. Fix a set of repre-
sentatives UF of the additive group OF =2OF . Then:

(1) There exists an element�2OCF that is a generator of�K=F andK D F.
p
�/. Such

�2OCF is determined uniquely up to multiplication by squares of units in OF .

(2) For a given �2OCF satisfying .1/, there is a unique element w� 2OK such that

(4.1) OK D OF 1COFw�; t 2 UF ; � D t
2
� 4n; and w� D .t C

p
�/=2;

where t WD TrK=F .w�/ and n WD NK=F .w�/.
(3) Assume that a generator �2OCF of �K=F in .1/ satisfies the following:

� � u2 and � � .2 � u/2 for all u2UF ;(4.2)
and additionally, � � 9 if � � 1 .mod 4OF /:

Then there exists m2OF such that mC w� is totally positive but not F -represen-
table. Thus forK DF.

p
�/, there is no OF -latticeL such thatL˝OK is universal.
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Proof. (1) As OF is principal and 1 2OF is primitive, one can consider an OF -basis
¹1; vº of OK , namely, OK D OF 1COF v. For such a basis, define

�v WD det
� TrK=F .1/ TrK=F .v/

TrK=F .v/ TrK=F .v2/

�
:

One may observe that�v D TrK=F .v/2 � 4NK=F .v/, and�v is a generator of the relative
discriminant �K=F . As

v2 � TrK=F .v/v C NK=F .v/ D 0;

we have v D .TrK=F .v/˙
p
�v/=2. ThusK D F.v/D F.

p
�v/, and�v 2OCF sinceK

is a totally real number field.
To show uniqueness, assume F.

p
�1/ D F.

p
�2/ for some generators �1; �22OCF

of �K=F . Then �2 D �1f 2 for some f 2 F , and since �1;�2 are generators of �K=F ,
we have f 2 O�F .

(2) We first show the existence. From (1) and under the same notation given in the
proof of (1), we have � D �v"2 for some "2O�F . Letting w D v"�1, we have

w D v"�1 D
"�1 TrK=F .v/C

p
"�2�v

2
D

TrK=F .w/C
p
�

2
�

Since TrK=F .w � c/ D TrK=F .w/ � 2c for each c 2OF , there exists a unique c 2OF
such that TrK=F .w � c/ 2 UF . If we put w� D w � c for such c 2OF , then one may
easily check that w� (or its conjugate) satisfies the conditions in (4.1).

To show the uniqueness, consider twow;w02OK satisfying (4.1) instead ofw�. From
OK D OF 1C OFw D OF 1C OFw

0, we may write w0 D aC bw for some a; b 2OF .
Since � D �w 0 D b2�w D b2�, we have b D ˙1. Assume that b D �1, that is, w0 D
a � w. Then noting that TrK=F .w0/ D 2a � TrK=F .w/, we have

a �
TrK=F .w/C

p
�

2
D a �w D w0 D

TrK=F .w0/C
p
�

2
D
2a � TrK=F .w/C

p
�

2
,

which is impossible since this yields
p
�D�

p
�. Therefore, we have bD 1, that is,w0D

a C w, and the condition TrK=F .w/; TrK=F .w0/ 2 UF implies that a D 0, equivalently,
w D w0.

(3) Note that if we findm2OF such thatmCw�2OCK which is not F -representable,
then Theorem 3.3 implies that there is no OF -lattice L such that L˝OK is universal for
K D F.

p
�/.

Letm be an arbitrary element of OF such thatmCw�2OCK . Observe that ifmCw�
is F -representable, then Lemma 3.2 implies that there is a totally positive semidefinite
OF -form Q.x; y/ D px2 C qxy C ry2 in two variables such that

mC w� D Q.1;w�/ D p C qw� C rw
2
�:

Here the coefficients p; q; r 2 OF satisfy p; r; 4pr � q2 � 0. Noting that w2� D tw� � n,
where t WD TrK=F .w�/ and n WD NK=F .w�/, we have

p C qw� C rw
2
� D .p � nr/C .q C t r/w�:
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Since OK D OF 1C OFw�, comparing coefficients of both sides together with n D
.t2 ��/=4 yields

(4.3) p C
� � t2

4
r D m and q C t r D 1:

If there is no solution p;q; r 2OF of the above equation which satisfies p;r;4pr � q2 � 0,
then we may conclude that mC w� is not F -representable.

Takem asm1 WD .�� t2/=4 2 OF . Since� � t2 and� � .2� t /2 from the assump-
tion, we have mC w� 2OCK . Indeed, m1 C w� ¤ 0, since otherwise m1 D �w� 62 OF ;
and writing

m1 C w� D
� � t2

4
C
t C
p
�

2
D

p
�C t

2

�p� � t
2

C 1
�
;

this number becomes totally positive if �.�/� �.t/2 and �.�/� �.2� t /2 for all embed-
dings � of F . Moreover, since m1 � 0 and m1 ¤ 0 as � 62 O2

F , we have m1 � 0. Note
that the first equation of (4.3) is p Cm1r D m1. If p; r ¤ 0, then considering the norm
of both sides we have

NF=Q.m1/1=d D NF=Q.p Cm1r/1=d � NF=Q.p/1=d C NF=Q.m1r/1=d

> NF=Q.m1r/1=d � NF=Q.m1/1=d ;

where d D ŒF W Q�, which is a contradiction. Above, we used the inequality

(4.4) NF=Q.˛1 C ˛2/1=d � NF=Q.˛1/1=d C NF=Q.˛2/1=d

which holds for every ˛1; ˛2 2 OF with ˛1; ˛2 � 0 (see Lemma 2.1(a) in [23] for the
proof). Thus either p D 0 or r D 0. Then we have q D 0 since 4pr � q2 � 0. On the other
hand, as the second equation of (4.3) is q C t r D 1 we have r D 1=t ¤ 0. Thus p D 0
and it follows from p Cm1r D m1 that r D 1, hence t D 1.

Now suppose t D 1. Then we can write � D 1C 4n0, where n0 D .� � 1/=4. Note
that n0 2 OCF since n0 � 0 and n0 ¤ 0 as � 62 O2

F . Let m2 D n0 � 1 and note that

m2 C w� D n
0
� 1C

1C
p
1C 4n0

2
�

Since we are assuming � � 9, we have �.n0/ � 2 for all embeddings � of F . Hence one
may easily show that

�.n0/ � 1C
1 �

p
1C 4�.n0/

2
� 0:

Therefore we have m2 C w� 2 OCK . Note further that NF=Q.n0/ > NF=Q.n0 � 1/ since
�.n0/� �.n0 � 1/� 1 for all embeddings � of F . Takingm asm2 in (4.3), the first equation
p C n0r D n0 � 1 implies that r D 0 since otherwise, by (4.4) we have

NF=Q.n0 � 1/1=d D NF=Q.p C rn0/1=d � NF=Q.p/1=d C NF=Q.rn0/1=d

� NF=Q.rn0/1=d � NF=Q.n0/1=d ;

which is a contradiction. Then the second equation in (4.3) yields q D 1, but this is impos-
sible since the condition 4pr � q2 D �1 � 0 does not hold.



V. Kala, D. Kim and S. H. Lee 2388

For further use, let us prepare a general condition for F -representability.

Lemma 4.2. Let F be a totally real number field and let K D F.
p
�/ be a totally

real quadratic extension of F with �2OCF such that OK D OF 1C OFw�, with w� D
.t C
p
�/=2, where this condition holds for every F of class number 1 by Proposition 4.1.

For u; v 2OF , the following are equivalent.

(1) ˛ D uC vw� 2OCK is F -representable.

(2) There exist p; q; r 2OF such that p; r; 4pr � q2 � 0 and

(4.5) p C qw� C rw
2
� D uC vw�:

Moreover, for every p; q; r , (4.5) is equivalent to

p C
� � t2

4
r D u and q C t r D v:

Finally, if .1/ and .2/ hold, then we have

2uC vt � 0 and r �
4uC 2vt

�
�

Proof. By Lemma 3.2, ˛ is F -representable if and only if there is a positive semidefinite
quadratic formQ D px2 C qxy C ry2 such thatQ.1;w�/D ˛ D uC vw�. Noting that

Q.1;w�/ D p C qw� C rw
2
� D p C qw� C r

�� � t2
4
C tw�

�
;

it is equivalent to that there is a solution p; q; r 2OF satisfying p; r; 4pr � q2 � 0 to the
equation

p C
� � t2

4
r D u and q C t r D v;

which proves the equivalence of .1/ and .2/ and the ‘Moreover’ claim.
To prove the ‘Finally’ part, note that 2˛ D 2uC 2vw� D .2uC vt/C v

p
� 2 OCK

implies that �.2uC vt/˙ �.v/
p
� � 0 for every embedding �WF !R. Hence we have

�.2uC vt/� 0. Now putting p D u� ��t2

4
r and q D v � t r into 4pr � q2 � 0, we have

�r2 � 2.2uC vt/r C v2 � 0. Thus for every embedding �WF !R, we have

�.�r2 � 2.2uC vt/r C v2/ D �.�/�.r/2 � 2�.2uC vt/�.r/C �.v/2 � 0:

As we have �.�/ > 0, solving this quadratic inequality in �.r/ gives

(4.6) �

p
�.2uC vt/2 � �.�v2/

�.�/
� �.r/ �

�.2uC vt/

�.�/
�

p
�.2uC vt/2 � �.�v2/

�.�/
�

As �.�/ > 0 and �.2uC vt/ � 0, we have

�.r/ �
�.2uC vt/C

p
�.2uC vt/2

�.�/
D
2�.2uC vt/

�.�/
�

Hence we obtain r � .4uC 2vt/=�, completing the proof of the lemma.
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5. When F is a real quadratic field of class number 1

In this section, we explore the lifting problem when the base field F is a real quadratic
field of class number 1. Let F D Q.

p
D/ be a real quadratic field of class number 1,

where D > 0 is a fundamental discriminant. Throughout this section, let us denote two
embeddings of F into R by �1 and �2.

Let K=F be a quadratic extension of totally real number fields which admits an
OF -lattice L such that L˝OK is universal. We will classify all such fieldsK D F.

p
�/

with � 2OCF (see Proposition 4.1). In addition to Proposition 4.1, we first give another
way of bounding � when F is a real quadratic field.

Lemma 5.1. Let F be a real quadratic number field with discriminantD DDF and with
two real embeddings �1; �2WF ! R. For every x; y 2R, there exists ˛ 2OF such that

x � �1.˛/ < x C lF and y � �2.˛/ < y C lF ;

where lF D 1
2

p
D C 1.

Proof. Recall that OF D Z1C Z� , where � 2 OF is defined as in (2.1). Pick integers k
such that x � y 2 .�

p
D=2;

p
D=2�C k

p
D, and consider

.x0; y0/ D .x � �1.k�/; y � �2.k�//:

As �1.�/ � �2.�/ D
p
D, we have

x0 � y0 D .x � y/ � k.�1.�/ � �2.�// D x � y � k
p
D 2

�
�

p
D

2
;

p
D

2

i
:

Pick an integer m such that x0 C y0 2 .�
p
D=2 � 2;�

p
D=2�C 2m, and consider

.x00; y00/ D .x0 �m; y0 �m/:

We have

x00 � y00 D x0 � y0 2
�
�

p
D

2
;

p
D

2

i
and

x00 C y00 D x0 C y0 � 2m 2
�
�

p
D

2
� 2;�

p
D

2

i
:

By adding and subtracting two equations, we obtain

2x00; 2y00 2
�
�
p
D � 2; 0

�
) x00 � 0 < x00 C lF and y00 � 0 < y00 C lF :

Noting that

.x00; y00/ D .x0 �m; y0 �m/ D .x � �1.mC k�/; y � �2.mC k�//;

we have

x � �1.mC k�/ < x C lF and y � �2.mC k�/ < y C lF :

Thus ˛ D mC k� 2OF satisfies the conditions of the lemma.
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Proposition 5.2. LetKDF.
p
�/ be a totally real quadratic extension of a real quadratic

field F of class number 1. Let � 2 OCF and w� D .t C
p
�/=2 2 OK be constructed as

in Proposition 4.1. If

(5.1) �1.�/�2.�/ � .2
p
�1.�/C 4lF /.2

p
�2.�/C 4lF /;

then there exists m2OF such that mC w� 2OCK and mC w� is not F -representable.

Proof. By Lemma 5.1, there exists an m 2 OF such that for i D 1; 2,

(5.2)
��i .t/C

p
�i .�/

2
� �i .m/ <

��i .t/C
p
�i .�/

2
C lF :

Note that mC w� ¤ 0 since otherwise, m D �w� 62 OF . Noting that all conjugates of
mC w� in K are �i .m/C .�i .t/˙

p
�i .�//=2 with i D 1; 2, we have mC w� 2OCK .

Now we will show that mC w� is not F -representable. Suppose on the contrary that
mC w� is F -representable. By Lemma 4.2, there exists p; q; r 2OF such that

(5.3) p; r; 4pr � q2 � 0; mC w� D p C qw� C rw
2
�; and �r � 4mC 2t:

If r D 0, then from 4pr � q2 D �q2 � 0 it follows that q D 0 and mC w� D p, which
is contradiction. Thus r � 0 and N.r/ D �1.r/�2.r/ � 1. Applying (5.2) and (5.3), we
may verify that

�1.�/�2.�/ � �1.�/�1.r/�2.�/�2.r/ � �1.4mC 2t/�2.4mC 2t/

D .4�1.m/C 2�1.t//.4�2.m/C 2�2.t// < .2
p
�1.�/C 4lF /.2

p
�2.�/C 4lF /;

which contradicts (5.1). This proves the proposition.

Next, we provide a lemma that says that, up to multiplication by suitable units, we
can view each indecomposable inside a certain parallelepiped. Note that a version of this
lemma was first used by Kala–Tinková (see Section 4 in [22]); here we explicitly formulate
a slightly more general statement.

Lemma 5.3. Let K be a totally real field of degree n � 2, and suppose that "1; : : : ; "n�1
generate a subgroup V of O

�;C
K of finite index. Then for every indecomposable element

˛ 2 OCK , there exist a permutation � of ¹1; : : : ; n � 1º and v 2V such that

˛v D x0 C

n�1X
iD1

xi "�.1/ � � � "�.i/ for some xi 2 Œ0; 1�:

Moreover, if xi D 1 for some i , then ˛v D "�.1/ � � � "�.i/.

Proof. For each permutation � of ¹1; : : : ; n � 1º, let C� � Rn be the cone generated by

1; "�.1/; "�.1/ "�.2/; : : : ; "�.1/ "�.2/ � � � "�.n�1/:
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Since the union of all C� includes a fundamental domain for multiplication by V on RnC
by Theorem 1 in [9], there exist v2V and a permutation � such that ˛v2C� . Let us write

˛v D x0 C

n�1X
iD1

xi "�.1/ � � � "�.i/; with xi � 0:

If xi > 1 for some i , then ˛v � "�.1/ � � � "�.i/ � 0, which contradicts the fact that ˛v is
indecomposable. Thus we have xi � 1 for all i .

Moreover, if some xi D 1, then ˛v � "�.1/ � � � "�.i/, and so the equality must hold
again thanks to the indecomposability of ˛v.

Let us now aim towards a computational classification of all real quadratic fields F
with class number 1 and discriminant� 200,¤ 193; for which there is an OF -lattice with
a universal lift to a quadratic extension K=F .

Theorem 5.4. Table 1 provides the complete list of real quadratic fields F D Q.
p
DF /

and totally real quadratic extensions K=F such that there is an OF -lattice that is univer-
sal over OK , among all fundamental discriminants DF � 200; DF ¤ 193, such that F
has class number 1. For all of them, DF � 56.

Table 1. Complete list of .DF ; K/ for DF � 200;DF ¤ 193.

DF K (LMFDB labels [37])
5 4:4:725:1

8 4:4:1600:1

12 4:4:2304:1, 4:4:3600:1, 4:4:4752:1
17 4:4:4913:1

21 4:4:11025:1

24 4:4:2304:1, 4:4:14400:1
28 4:4:7056:1, 4:4:19600:1
29 4:4:4205:1

33 4:4:13068:1

56 4:4:28224:1

To show the theorem, we proceed as follows. Let F D Q.
p
D/ be a real quadratic

field where D > 0 is a fundamental discriminant. Let us set UF D ¹0; 1; �; 1C �º, where
OF D ZC Z� , with

� D

´
.1C

p
D/=2 if D � 1 .mod 4/;

p
D=2 otherwise:

Let " be the square unit in ¹ı 2O�F
2
j �1.ı/ > �2.ı/º that has the smallest value �1."/.

Let us put 
 WD
p
�1."/=�2."/ D �1."/ and define

F WD
°
˛ 2 FC

ˇ̌̌ 1


�
�1.˛/

�2.˛/
< 


±
:

Noting that " is a generator of O�F
2, one may observe that F is a fundamental domain

of FC with respect to the action of multiplication by squares of units.
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Let K D F.
p
�/ be a totally real number field containing F such that there is an

OF -lattice L such that L˝ OK is universal. We first utilize Propositions 4.1 and 5.2 to
obtain a finite set �1 of elements in OCF to which � might belong as follows.

By Proposition 4.1, we have K D F.
p
�/ for some �2OCF . As the choice of � is

unique up to multiplication by O�F
2, we may assume that�2F . Moreover,� should not

satisfy the conditions in (4.2) by Proposition 4.1(3). We may conclude that � belongs to
a bounded region F \Bcmax , where

Bc WD ¹˛ 2F
C
j �1.˛/ < c or �2.˛/ < cº

for c 2 RC, and

cmax WD max
�
¹�i .u

2/ j u 2 UF ; i 2 ¹1; 2ºº [ ¹�i ..2 � u/
2/ j u2UF ; i 2 ¹1; 2ºº [ ¹9º

�
:

Therefore, we have only finitely many candidates for �, and hence only finitely many
candidates for K. Moreover, note from (4.1) that � � u2 .mod 4OF / for some u 2 UF .
Furthermore, � should not satisfy the condition in (5.1) by Proposition 5.2. It turns out
that (5.1) rules out a significant number of elements in OCF \ F \ Bcmax , especially
when 
 gets too large. We use a computer program to obtain the finite set �1 of all ele-
ments ˛2OCF contained in F \Bcmax such that ˛ � u2 .mod 4OF / for some u2UF and
not satisfying the condition (5.1) with � D ˛.

Let�2�1. We may assign a uniquew�D .t C
p
�/=2 2OK satisfying (4.1) since u2

are distinct modulo 4OF for all u2UF . Let us consider the following test to check, for
m2OF such that ˛m WDmCw� � 0, whether ˛m is F -representable or not. Note that by
Lemma 4.2, ˛m is F -representable if and only if there is a solution p;q; r 2OF , satisfying
p; r; 4pr � q2 � 0, to the equation

p C
� � t2

4
r D m and q C t r D 1:

Moreover, Lemma 4.2 gives us the following bound on r :

0 � r �
4mC 2t

�
�

We may search for every such r 2OF and check if pDm� ��t2

4
r � 0 and 4pr � q2 � 0.

If this holds for some r 2OF in the bound, then ˛m is F -representable; otherwise, ˛m is
not F -representable.

For each�2�1, we go through this test for severalm2OF such thatm��w�, in the
increasing order of TrF=Q.m/. If ˛m D mC w� is not F -representable for one of those
m2OF , then K D F.

p
�/ does not have an OF -lattice such that L˝ OK is universal.

We collect those �2 �1 such that all ˛m are F -representable as a set �2. We note that a
set �2 may be different depending on how many m we test.

Now for each � 2 �2, we try to prove that K D F.
p
�/ has an OF -lattice L such

that L˝K is universal. By Theorem 3.3, it suffices to show that every indecomposable
element in OCK is F -representable. Furthermore, note that ˛ is F -representable if and
only if so are "˛ and �2˛ for all units " 2 O

�;C
F and � 2 O�K . Hence it is enough to show

that every representative of indecomposable element up to multiplication by O
�;C
F O�K

2 is
F -representable.
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We seek to find a set of representatives of indecomposable elements up to multiplica-
tion by O

�;C
F O�K

2. As K is a totally real quartic field, it cannot contain cyclotomic units
except for 1 and �1, so by Dirichlet’s unit theorem, O�K is isomorphic to Z3 � ¹�1; 1º. It
easily follows that O�K

2
' Z3. Meanwhile, O

�;C
K contains O�K

2, so O
�;C
K is of rank 3, and

it is torsion-free. Thus O
�;C
K ' Z3. Since

O�K
2
� O

�;C
F O�K

2
� O

�;C
K

and they are groups, we have
O
�;C
F O�K

2
' Z3:

Let u1; u2; u3 be a basis of O
�;C
F O�K

2.
Let ˛ be an indecomposable element in OCK . It follows from Lemma 5.3 (used with

V DO
�;C
F O�K

2) that, multiplying by an element in O
�;C
F O�K

2 if necessary, we may assume
that ˛ is contained in the 4-dimensional parallelepiped C D

®P4
iD1 aivi j ai 2 Œ0; 1�

¯
generated by 4 elements v1; v2; v3; v4 2 U D ¹1; u1; u2; u3; u1u2; u1u3; u2u3; u1u2u3º.
Writing ˛ D

P4
iD1 aivi for some ai 2 Œ0; 1�, we have

TrK=Q.˛/D
4X
iD1

ai TrK=Q.vi /�
4X
iD1

TrK=Q.vi /�M.U/ WDmax
° 4X
iD1

TrK=Q.vi / j vi2U
±
:

Therefore, we may list all elements ˛ 2OCK with TrK=Q.˛/ � M.U/ and then find the
set Sindec of indecomposable elements among this list. Notice that the indecomposable
elements in Sindec found so far may coincide up to a unit multiplication. For each ˛ D uC
vw� 2 Sindec with u;v2OF , we make use of Lemma 4.2 to check if ˛ is F -representable,
namely, we check if there are p; q; r 2 OF such that p; r; 4pr � q2 � 0 and satisfying

p C
� � t2

4
r D u and q C t r D v:

This can be done by trying all r 2OF such that 0 � r � .4uC 2vt/=�. If every ˛2Sindec
is F -representable, then we may conclude that there is an OF -lattice L such that L˝OK
is universal; otherwise, there is not.

Remark 5.5. We carried out all the computations to prove Theorem 5.4 in Mathematica.
We covered each value ofDF separately using a series of small programs (available upon
request) together with data from LMFDB [37]. The run-time significantly depends on the
size of the region Bc which, in turn, depends on the size 
 of the fundamental unit.

Thus it was fast to run for small values DF < 125 (less than 1 minute each), it took
approximately 7 hours forDF D 177, and did not complete within 1 day for the excluded
case DF D 193. In this case, one would have to check elements with traces up to 8:5
billion as candidates for the discriminant; in the runtime of 1 day we got to trace 0:3 bil-
lion. While it should be possible to finish the check for 193 and some values DF > 200,
it would be difficult to reach significantly larger DF , at least without non-trivial improve-
ments in the algorithm and its implementation.

Let us further illustrate the algorithm on three explicit examples.
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Example 5.6. Let us consider the case whenDD 5, that is, F DQ.
p
5/. Note that OF D

ZC Z� with � D .1C
p
5/=2. Moreover, we have " D ..1C

p
5/=2/2 D .3C

p
5/=2,

hence 
 D .1C
p
5/=2. Proceeding the above steps, we have

�2 D
°
5;
11C

p
5

2
;
11 �

p
5

2

±
:

If�D 5, thenK D F.
p
5/D F , hence this is not the case we are interested in. If�D

.11˙
p
5/=2, then �K=Q D �2F=Q � NF=Q.�/ D 5

2 � 29 D 725. Searching in LMFDB,

there are exactly one totally real quartic field containing F D Q.
p
5/ with �K=Q D 725,

which is labeled 4.4.725.1. For this field K, we could check that every indecomposable
element in OCK is F -representable.

Example 5.7. Let us consider the case when D D 8, that is, when F D Q.
p
2/. In this

case, �2 D ¹5º and for � D 5, K D F.
p
�/ D Q.

p
2;
p
5/. For this field K, we could

check that every indecomposable element in OCK is F -representable. Thus, for this K,
there is an OF -lattice that is universal over OK .

Example 5.8. Let us consider the case when D D 12, that is, when F D Q.
p
3/. In this

case, a totally real quartic field K containing F that has an OF -lattice L such that L˝K
is universal if and only if K is isomorphic to

Q.
p
2;
p
3/; Q.

p
3;
p
5/ and Q

�p
3;

q
9C 4

p
3
�
:

Note that they correspond to LMFDB labels 4.4.2304.1, 4.4.3600.1 and 4.4.4752.1.

Conjecture 5.9. Let F D Q.
p
D/ be a real quadratic field where D is the discriminant

of F . If D > 56 and F has class number 1, then there is no totally real quartic field K
containing F which has an OF -lattice that is universal over OK .

6. Extension by fixed
p
e

Lemma 6.1. Let F1 and F2 be fields of degree n1 and n2, respectively. Suppose that
F1F2 has degree n1n2 and gcd.Disc.F1/;Disc.F2// D 1. Then the discriminant of F1F2
is Disc.F1/n2Disc.F2/n1 and OF1F2 D OF1OF2 .

Proof. Note that we have

Disc.OF1OF2/ D Disc.F1/n2Disc.F2/n1 and OF1OF2 � OF1F2 :

Hence Disc.F1F2/ divides Disc.F1/n2Disc.F2/n1 . Meanwhile, the relative discriminant
formula

Disc.F1F2/ D Disc.F1/n2N.�F1F2=F1/

implies that Disc.F1/n2 divides Disc.F1F2/ and similarly Disc.F2/n1 divides Disc.F1F2/.
As gcd.Disc.F1/;Disc.F2//D 1, we have Disc.F1/n2Disc.F2/n1 j Disc.F1F2/. So it fol-
lows that

Disc.F1F2/ D Disc.F1/n2Disc.F2/n1 D Disc.OF1OF2/:

Thus the inclusion OF1OF2 � OF1F2 should be equality.
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Lemma 6.2. Let e be a square-free integer and F a field with gcd.Disc.F /;DQ.
p
e//D 1.

Then the fieldK D F.
p
e/ is a quadratic extension of F and OK DOF 1COF !e , where

!e D .1C
p
e/=2 if e � 1 .mod 4/ and !e D

p
e otherwise.

Proof. IfK=F is not quadratic, then
p
e 2 F , so Q.

p
e/ � F . It contradicts the assump-

tion gcd.Disc.F /; DQ.
p
e// D 1. Thus K=F is a quadratic extension. Hence we have

OK D OF 1COF !e , by Lemma 6.1.
Noting that Disc.Q.

p
e//DDQ.

p
e/, we may observe that gcd.Disc.F /;�/D 1 can-

not happen. Thus by Lemma 6.1, we have OK D OF 1COF !e .

Theorem 6.3. Let F be a totally real field and let e > 0 be a square-free integer such that
gcd.Disc.F /;�/D 1, where�DDQ.

p
e/. ThenK D F.

p
e/D F.

p
�/ is a totally real

quadratic extension of F . If e ¤ 5, then there is no OF -lattice L such that L˝ OK is
universal over OK .

Proof. First, let us consider the case when e� 2;3 .mod 4/. Note that OK DOF COF
p
e

by Lemma 6.2. Let ne D 1Cb
p
ec and consider the element ˛D ne C

p
e 2OCK . We may

apply Lemma 4.2 with !� D .0C
p
�/=2D

p
e to show that ˛ is F -representable if and

only if pC er D ne and q D 1 for some p; r 2OCF satisfying 4pr � q2 � 0. Since e � ne ,
we should have either r D 0 or p D 0, which is a contradiction as 4pr � q2 D �1 � 0.

Now let us consider the case when e � 1 .mod 4/ with e > 5. Let !e D .1C
p
e/=2

and ne D b!ec. One may show that ˛ D ne C !e 2 OCK . Applying Lemma 4.2 with !e ,
we may verify that ˛ is F -presentable if and only if p C e�1

4
r D ne and q C r D 1 for

some p; q; r 2 OF satisfying p; r; 4pr � q2 � 0. Noting that e � 13, we have

e � 1

4
D

p
e C 1

2

p
e � 1

2
>
jpe C 1

2

k p13 � 1
2

> ne:

Hence we should have r D 0, and hence q D 1, which contradicts 4pr � q2 � 0.

Remark 6.4. Note that the proof of Theorem 6.3 does not work when e D 5 since ˛ D
1C .1C

p
5/=2 D ..1C

p
5/=2/2 is F -representable.

6.1. Extension by
p
5

Motivated by Theorem 6.3, we are interested in investigating totally real number field F
with gcd.Disc.F /; 5/ D 1 which admits an OF -lattice that is universal over F.

p
5/.

LetK D F.
p
5/ and let "D .1C

p
5/=2. By Lemma 6.2, we have OK DOF COF ".

We first introduce a lemma describing conditions for a certain element aC b" 2 OK , with
a; b 2 OF , to be totally positive and F -representable.

Lemma 6.5. Let K D F.
p
5/ and let ˛ D aC b" 2 OK , with a; b 2OF . Then we have

the following:
(1) ˛ 2OCK if and only if a2OCF and .1� "/�.a/ < �.b/ < "�.a/ for every embedding

�WF !R.
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(2) ˛ 2OCK is F -representable if and only if there exist p; q; r 2 OF with p; r; 4pr �
q2 � 0 satisfying

a D p C r and b D q C r:

If this is the case, then 0 � r � a in F and for every embedding �W F !R, with
ˇ D �.b=a/, we have

(6.1)
ˇ C 2

5
�
2

5

p
1C ˇ � ˇ2 � �

� r
a

�
�
ˇ C 2

5
C
2

5

p
1C ˇ � ˇ2:

Proof. To show part (1), note that ˛ 2OCK if and only if �.a/C �.b/" > 0 and �.a/C
�.b/.1� "/ > 0 for every embedding �WF !R. Thus the inequality .1� "/�.a/ < �.b/ <
"�.a/ follows immediately. Noting that " > 0 while 1 � " < 0, we should have �.a/ > 0,
since otherwise, we have either �.a/C �.b/" � 0 or �.a/C �.b/.1 � "/ � 0. Hence we
have a2OCF .

Part (2) follows immediately from Lemma 4.2 and (4.6) with the fact that �.a/ > 0.

Theorem 6.6. Let F be a real quadratic field such that gcd.DF ; 5/ D 1. Then K D
F.
p
5/ is a real quadratic extension of F . Suppose that there is an OF -lattice L such

that L˝ OK is universal over OK . Then DF � 4076, and hence there are only finitely
many such real quadratic fields F .

Proof. Recall that OF D Z1CZ� , where � 2OF is defined as in (2.1) and let �1 D idF
and �2 be two embeddings of F into R. Assuming thatDDDF � 4077, we will construct
a 2OCF and b 2OF such that a C b"2OCK which is not F -representable. The existence
of such an element aC b" immediately implies the theorem.

Assume that D D DF � 4077. We first take a 2OF to be the unique element in
� C Z1 � OF satisfying

(6.2) 2
p
D C 1 < f .a/ WD "�1.a/C ." � 1/�2.a/ � 2

p
D C 1C

p
5:

Such an element exists uniquely since for a0 2 � C Z1,

f .a0 C 1/ D f .a0/C 2" � 1 D f .a0/C
p
5:

Note that �1.a/D �2.a/C
p
D, and hence f .a/D "

p
DC
p
5�2.a/> 2

p
DC 1 implies

that �2.a/ > 0. Moreover,

f .a/ D
p
5 �1.a/C

1 �
p
5

2

p
D

with (6.2) yields the bound of

(6.3)
1
p
5

�3Cp5
2

p
D C 1

�
< �1.a/ �

1
p
5

�3Cp5
2

p
D C 1C

p
5
�
:

Now we construct b 2 2� C Z1 � OF such that

�1.b/ < "�1.a/ and .1 � "/�2.a/ < �2.b/:
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Consider an injective map Q�WOF !R2 defined by Q�.˛/ D .�1.˛/; �2.˛//. Then all the
points Q�.2� CZ1/ lies on the lineLD ¹.x;y/ 2R2 j x � y D 2

p
Dº, placed in every

p
2

distance. Note that the point P D ."�1.a/; .1� "/�2.a// is on the lineL0 D ¹.x;y/ 2R2 W
x � y D f .a/º. Since f .a/ > 2

p
DC 1 from the construction, P is located belowLwith

distance > 1=
p
2. Hence the segment formed by the line L and the intersection of region

¹.x;y/2R2 W x < "�1.a/;y > .1� "/�2.a/º is of length>
p
2. Thus this segment contains

a point P0 in Q�.2� C Z1/, whose inverse Q��1.P0/ is an element b we were looking for.
Next step is to show that aC b" 2 OCK . By Lemma 6.5(1) and since �1.b/ < "�1.a/

and .1 � "/�2.a/ < �2.b/ from the construction, it suffices to show that

.1 � "/�1.a/ < �1.b/ and �2.b/ < "�2.a/:

Note that

�1.b/ D 2
p
D C �2.b/ > 2

p
D C .1 � "/�2.a/(6.4)

� f .a/ � .1C
p
5/C .1 � "/�2.a/ D "�1.a/ � .1C

p
5/;

where we used (6.2) in the last two steps. Using (6.3), we may verify that

"�1.a/ � .1C
p
5/ > .1 � "/�1.a/:

Similarly, one may use (6.2) and (6.3) to obtain �2.b/ < "�2.a/.
We now show that aC b" is not F -representable. Assume to the contrary that aC b"

is F -representable. Then by Lemma 6.5(2), there is r 2OF with 0 � r � a and satis-
fying (6.1). If �2.a/ < �1.r/ < �1.a/ � �2.a/, then since 0 < �2.r/ < �2.a/, we have
0 < �1.r/ � �2.r/ < �1.a/ � �2.a/ D

p
D. However, this is impossible since �1.˛/ �

�2.˛/ 2 Z
p
D for every ˛ 2OF . Thus we have

�1.r/ � �2.a/ or �1.r/ � �1.a/ � �2.a/:

Combining this with �2.a/ D �1.a/ �
p
D and (6.3), we have

0� �1

� r
a

�
� 1�

2
p
5

3C
p
5C 2D�1=2

or
2
p
5

3C
p
5C 2.1C

p
5/D�1=2

� �1

� r
a

�
� 1:

Since we are assuming D � 4077, we have

(6.5) 0 � �1

� r
a

�
� 0:151 or 0:837881 � �1

� r
a

�
� 1:

On the other hand, putting ˇ D �1.b=a/, recalling the bound

"�1.a/ � .1C
p
5/ < �1.b/ < "�1.a/

from (6.4) and combining those with (6.3) and D � 4077, we have the bound

" �
10C 2

p
5

.3C
p
5/
p
4077C 2

� " �
10C 2

p
5

.3C
p
5/
p
D C 2

< " �
1C
p
5

�1.a/
< ˇ < ":
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In this range of ˇ, the left-hand side of (6.1) is increasing while the right-hand side of (6.1)
is decreasing, yielding the bound

(6.6) 0:592 � �1

� r
a

�
� 0:837877:

Since two bounds (6.5) and (6.6) are disjoint, we get a contradiction, which means that
aC b" is not F -representable.
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