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Knots of low knot Floer width

David Popović

Abstract. This paper classifies the chain homotopy equivalence types of knot Floer
complexes CFKFŒU;V �.K/ of knot Floer width 2. They have no nontrivial local sys-
tems. As an application, this shows that all Montesinos knots admit a basis that can
be simultaneously horizontally and vertically simplified.

1. Introduction

Knot Floer homology is a powerful link invariant that was constructed in [7] and [12]
based on an earlier family of 3-manifold invariants called Heegaard Floer homology [8].
In its most general version [16], it is given by the chain homotopy type of a chain complex
CFKFŒU;V �.K/ over F ŒU; V �, equipped with a Z˚Z grading .grU ; grV /. By considering
the grading ı D 1

2
.grU C grV / instead, one can define the knot Floer width w.K/ of

K � S3 as max ı � min ı C 1. The knot invariant w.K/ has recently been of interest,
since it has been shown that it can be used to provide lower bounds on the Turaev genus
of K in [6], dealternating number of K in [15], and invariant ˇ.K/ in [14].

In this paper, we study the Z˚Z graded chain homotopy types associated to knots of
low width. The case w.K/ D 1 is completely understood by the results in [9] – the knot
Floer complexes split into a width 1 staircase and a number of width 1 squares. See also
Section 4.2 for a precise restatement of these results. The classification of chain homotopy
types associated to knots with w.K/ D 2 is significantly more challenging and the main
result of this paper.

Theorem 1.1. Let K � S3 be a knot with w.K/ D 2 and let CFKFŒU;V �.K/ be its knot
Floer complex. Then the chain homotopy type of CFKFŒU;V �.K/ splits uniquely as a direct
sum of a standard complex (Definition 2.2, see also Figure 2) of width at most 2 and some
of the following trivial local systems:

, , , , , . . .

and their reflections over the lines y D ˙x.
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The primary motivation for studying this question is three-fold. A complete classifica-
tion of knot Floer complexes, without any restrictions on w.K/, exists over the quotient
ring R D F ŒU; V �=.UV / by the author’s earlier work (see Theorem 1.2 in [10]). It estab-
lishes a chain homotopy equivalence

CFKR.K/ ' C.a1; : : : ; a2n/˚ L1 ˚ � � � ˚ Lk ;

where C.a1; : : : ; a2n/ is a standard complex, L1; : : : ; Lk are local systems (Defini-
tion 2.3), and all summands are unique up to permutation and chain homotopy equiva-
lence. Refining this classification to one over F ŒU; V � seems intractable in general, but is
just about possible for knots of width 1 and 2.

Secondly, in none of the examples of knot Floer homology that have been computed
thus far, a nontrivial local system has been observed. Theorem 1.1 provides a partial
explanation as for why this is the case – in the realm of low crossing numbers where
CFKFŒU;V �.K/ can be systematically computed, the majority of the knots have width 1
or 2 and thus their local systems will always be trivial.

Finally, and relatedly, the following question goes back at least as far as [5], and prob-
ably further.

Question 1.2. Does every knot Floer complex CFKFŒU;V �.K/ admit a basis that is simul-
taneously vertically and horizontally simplified?

Note that in terms of the classification theorem over R, this is equivalent to whether
the local systems Li are always trivial. Theorem 1.1 shows that this is the case for all
knots of width 2.

Corollary 1.3. All knot Floer complexes of knot Floer width 2 admit a basis that is simul-
taneously horizontally and vertically simplified.

It was proven in Corollary 1.3 of [14] that Montesinos knots have width � 2. This
immediately lets us state the following topological corollary.

Corollary 1.4. Knot Floer complexes of Montesinos knots admit a basis that is simulta-
neously horizontally and vertically simplified.

It would perhaps also be interesting to note that all but one of the local systems from
Theorem 1.1 do appear as summands of CFKFŒU;V �.K/ for various knots K. With the
exception of one special shape, we exhibit them in certain iterated cables of the figure
eight knot in Section 5.

Rather than as a standalone result, we expect that our classification will find its place
in the future of knot Floer research. When a new knot Floer invariant is discovered, it
is initially typically only computed for all L-space knots and knots of width 1, because
further calculations tend to be challenging without a complete understanding of the knot
Floer chain homotopy type over F ŒU; V �. With the use of Theorem 1.1, the invariants can
be computed on further examples.

Another aspect in which our results could be interesting is for the study of Dehn surg-
eries. Using the results in this paper, Sorya has shown in [13] that the vast majority of all
knots up to 17 crossings admit only finitely many non-characterizing surgery coefficients
in Q n Z.
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Thirdly, several families of knots of independent interest have been shown to have knot
Floer width 2. For example, the pretzel knots are a special family of Montesinos knots and
not even their knot Floer complexes are known in general. Theorem 1.1 and Corollary 1.4
significantly restrict their chain homotopy type.

2. Background

We briefly define the terms we will be operating with in this paper. Let K � S3 be a knot
and let F D Z=2Z. The knot Floer complex CFKFŒU;V �.K/ is a finitely generated Z˚Z
graded chain complex over F ŒU; V � with a differential @ and grading gr D .grU ; grV /

satisfying gr.U / D .�2; 0/, gr.V / D .0; �2/, and gr.@/ D .�1; �1/. See [7] for the
original paper where knot Floer complexes were defined, and [16] or [10] for a longer
exposition of the construction that matches our conventions. The knot Floer complex
CFKFŒU;V �.K/ itself is not a knot invariant, only its chain homotopy type is. The lat-
ter has a minimal rank representative, unique up to isomorphism of chain complexes by
Lemma 4.22, with F ŒU; V � instead of R1, in [10]. For the rest of this paper, we use the
notation CFKFŒU;V �.K/ to refer to some minimal rank representative of its chain homo-
topy class. With this caveat, the standard definition of

bHFK.K/ D H�.CFKFŒU;V �.K/˝FŒU;V � F/

would be equivalent to the one in which we do not take homology. One can collapse grU

and grV to a single grading ı D 1
2
.grU C grV /.

Definition 2.1. The knot Floer width of a knot K is

w.K/ D max¹ı.x/ j x 2 bHFK.K/º �min¹ı.x/ j x 2 bHFK.K/º C 1;

where the maximum and minimum are taken over all x that are homogeneous with respect
to gr and hence ı.

Knot Floer width is traditionally defined in terms of the Maslov grading M and the
Alexander grading A. It is the number of different diagonals needed to depict the complex
CFKFŒU;V �.K/ in the plane whose coordinate axes are A and M . Since M D grU and
A D 1

2
.grU � grV /, each diagonal is specified by the quantity M � A D ı and the two

definitions coincide.
The most important tool we will use in this paper is the classification theorem over

R D F ŒU; V �=.UV /. In order to state it, we first need to define standard complexes and
local systems. Both of these concepts are more easily conceptualized pictorially (see Fig-
ure 1) rather than via formal definitions, but we include the latter nonetheless. For a longer
discussion of standard complexes and local systems, we recommend Section 4 of [1] and
Section 3 of [10], where these terms were originally defined.

Definition 2.2. Let n2N0 and let a1; : : : ; a2n be a sequence of nonzero integers. A stan-
dard complex C.a1; : : : ; a2n/ is a free chain complex over R with a distinguished basis
B D ¹x0; : : : ; x2nº and a differential @ encoded pictorially as follows. For each odd i ,
there is a horizontal arrow of length jai j connecting xi and xi�1. For each even i , there
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is a vertical arrow of length jai j connecting xi and xi�1. The direction of the arrow is
determined by the sign of ai . If ai > 0, then the arrow goes from xi to xi�1, and if ai < 0,
then the arrow goes from xi�1 to xi .

Definition 2.3. Let .L; @/ be a finitely generated free chain complex over R with no
arrows of length 0. Then L is an indecomposable local system if it

(1) admits a simplified decomposition (Definition 3.1 in [10]),
(2) is indecomposable as a chain complex over R, and
(3) has torsion homology (Definition 2.2 in [10]).

A local system is a direct sum of indecomposable local systems of the same shape (Defini-
tion 3.5 in [10]) and in the same position in the plane. A local system is trivial if it admits
a simplified basis (Definition 2.5 in [10]) and nontrivial otherwise.

We are now in a position to state the classification theorem over R D F ŒU; V �=.UV /.
See Figure 1 for the pictorial restatement of the theorem.

Theorem 2.4 ([10]). Let K � S3 be a knot and let CFKR.K/ be its link Floer complex.
Then

CFKR.K/ ' C.a1; : : : ; a2n/˚ L1 ˚ � � � ˚ Lk ;

where C.a1; : : : ; a2n/ is a standard complex and L1; : : : ;Lk are local systems. Moreover,
the direct summands are unique up to permutation.

CFKR.K/ ' ˚ ˚ ˚

standard complex local systems

Figure 1. A schematic depiction of Theorem 2.4. The knot Floer complex of a knot K splits into a
standard complex and local systems.

This theorem tells us what knot Floer complexes look like over R. In the rest of the
paper, we will use the techniques of [11] to characterize which of those of width 2 can
be lifted to complexes over F ŒU; V �. In order to achieve this goal most efficiently, let us
introduce the following conventions and terminology.

Definition 2.5. Let .C; @C / be a chain complex over R. We say that .C; @C / has a chain
complex lift . yC;@ yC / if . yC;@ yC / is a chain complex over F ŒU;V � such that yC˝FŒU;V �RŠC .

Note that standard complexes are by definition endowed with a distinguished basis
¹x0; : : : ; x2nº, that is homogeneous with respect to gr. More generally, we will assume that
a basis B, homogeneous with respect to gr, has been picked for any free chain complex C
over R or F ŒU; V �. For the rest of this paper, whenever we write x 2 C , we actually
mean x 2B.
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Definition 2.6. Let .C; @/ be a free chain complex over R or F ŒU; V �. For any x; y 2C
and a; b 2N0, let h@x; U aV byi 2F denote the coefficient of U aV by in @x.

3. Preliminary observations

In this section, we make some initial observations about knot Floer complexes of low
width.

Observation 3.1. Let K be a knot. If w.K/ D 1, then every arrow of CFKFŒU;V �.K/

is of length 1 in a horizontal or vertical direction. If w.K/ D 2, then every arrow of
CFKFŒU;V �.K/ is horizontal or vertical of length at most 2, or a diagonal arrow that moves
by 1 in both directions. Moreover, the length 1 horizontal and vertical arrows preserve ı,
and the remaining arrows increase it by 1.

Proof. Let x; y 2CFKFŒU;V �.K/ be generators with h@x; U aV byi D 1. Then

gr.U aV by/ D gr.x/ � .1; 1/;

and so
gr.y/ D gr.x/C .2a � 1; 2b � 1/:

Hence
ı.y/ D ı.x/C aC b � 1:

The conclusion follows by the upper bounds on w.K/.

Observation 3.2. LetK be a knot withw.K/� 2 andL a direct summand of CFKR.K/.
Then L has a chain complex lift.

Proof. Let B be the distinguished basis of L and denote by yL the F ŒU; V �-submodule of
CFKFŒU;V �.K/ spanned by B. We show that yL is a chain complex, therefore establishing
the claim. Assume for the contradiction that @2¤ 0 and let x;y2B be two generators such
that h@2x;U aV byi D 1 for some a;b2N. In pictorial terms, one can think of the equation
h@2x;U aV byi D 1 as there being an odd number of ways in which one can travel from x

to U aV by in two steps, i.e., by passing through a single other generator z 2 yL on the way.
On the other hand, since CFKFŒU;V �.K/ does satisfy @2 D 0, there must exist at least one
alternative, additional way of traveling from x to U aV by in CFKFŒU;V �.K/ in two steps.
Such a path is necessarily not fully internal to yL, so it must contain at least one genera-
tor not in yL. Since x; y 2 yL, this must be the intermediate generator, let us denote it by
z0 2CFKFŒU;V �.K/. However, since w.K/ � 2, considerations of ı grading from Obser-
vation 3.1 imply that .a; b/2 ¹.1; 1/; .1; 2/; .2; 1/º. This implies that the alternative way
cannot contain two consecutive diagonal arrows and hence z0 must be connected to x or y
with a horizontal or vertical arrow. This means that z0 2 yL, which is a contradiction.

With this in mind, it is sufficient to classify the standard complexes and local sys-
tems that have chain complex lifts. Our previous work contains an elementary algorithm
(Algorithm 3.12 in [11]) that characterizes standard complexes that can be lifted to chain
complexes over F ŒU; V �=.U 2V 2/. In the presence of w.K/ � 2 restriction, this is the
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same as lifting to F ŒU; V �. See Figure 2 for some such lifts of width 2 standard com-
plexes. Therefore, we focus on the local systems in the next section.

C.1;�1; 1;�1;�2; 1/

(a)

C.1;�2;�1; 1; 2;�2;�1; 1/

(b)

C

(c)

Figure 2. Lifts of some width 2 standard complexes to chain complexes over F ŒU; V �. Figure (c)
depicts the lift of the standard complex C.�1; 2; 1;�1; 1;�1; 1;�1;�2; 1;�1; 1; 2;�1/.

4. Knots of low width

4.1. Names of chain complexes

In this subsection, we introduce certain chain complexes that will play a role in the subse-
quent classification.

Definition 4.1. A width 1 staircase is a standard complex C.1;�1; : : : ; 1;�1/, a standard
complex C.�1; 1; : : : ;�1; 1/, or a standard complex C.1;�1; : : : ; 1;�1/ together with an
additional arrow of length 1 pointed towards one of the endpoints.

Note that the case C./DRhx0iwith a single generator x0 and @D 0 is also subsumed
by this definition. More generally, there are four different types of width 1 staircases
depending on whether one starts and ends with horizontal or vertical arrows. One example
of each type is depicted in Figure 3.

(a) (b) (c) (d)

Figure 3. Examples of different types of width 1 staircases.
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Definition 4.2. A width 2 staircase is a local system consisting of two width 1 staircases
connected by two length 2 arrows and some diagonal arrows.

There are four different types of width 2 staircases, the “thickened” versions of differ-
ent types of width 1 staircases. Three of these types are depicted in Figure 4.

(a) (b) (c)

Figure 4. Examples of different types of width 2 staircases.

Definition 4.3. Let .C; @/ be a finitely generated chain complex over F ŒU; V �.
(1) A loop is a subcomplex D of C generated by 5 generators a, b, c, d , and e, such

that @ restricted to D satisfies

@a D 0; @b D U 2aC UVe; @c D Ud C Vb; @d D V 2e C UVa and @e D 0:

We say that such a loop starts at a and ends at e. A loop is drawn in Figure 5a and
its mirror in Figure 5b.

(2) A special shape is a subcomplex E of C generated by 6 generators a, b, c, d , e,
and f such that @ restricted to E satisfies

@a D Vf; @b D U 2aC UVe; @c D Ud C Vb; @d D V 2e C UVa;

@e D Uf; and @f D 0:

A special shape is shown in Figure 5c.

a b

cd

e

(a) (b)

a b

cd

ef

(c)

Figure 5. A loop from a to e in (a), its mirror in (b) and a special shape in (c).
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4.2. Knots of width 1

Knots of width 1 are also called Floer homologically thin, and their knot Floer complexes
over F ŒU; V � were completely described in Lemma 7 of [9] by the following theorem.

Theorem 4.4. Let K � S3 be a knot with w.K/ D 1. Then CFKFŒU;V �.K/ splits as a
direct sum of a width 1 staircase of even length and width 1 squares.

For any n2N, there are exactly two different types of width 1 staircases of length 2n
(i.e., with 2n C 1 generators): C.1;�1; : : : ; 1;�1/ and C.�1; 1; : : : ;�1; 1/. They are
depicted in Figure 3a and Figure 3b for n D 2. The case n D 0 corresponds to F ŒU; V �
with the zero differential.

4.3. Knots of width 2

Knots of width 2 are more complicated, and classifying their knot Floer complexes is
the main result of this paper. We begin our analysis by a series of simple observations
that culminate in Proposition 4.10, a weaker version of Theorem 1.1 stated over the ring
R D F ŒU; V �=.UV /. The rest of the subsection is dedicated to carefully lifting the results
from R to F ŒU; V �.

Recall the content of Observation 3.2: if a local system L is a direct summand of
CFKR.K/, then it has a chain complex lift. Such a lift can be obtained by taking the
tensor product L˝R F ŒU; V � and adding some diagonal arrows to L. With this in mind,
we make it our standing convention that all local systems L in this subsection have chain
complex lifts. Our proofs frequently start with L˝R F ŒU;V � and investigate the potential
lifts, in course leading us to learn about the original L we started with.

Lemma 4.5. Let L be a local system. Then the shape ofL contains two consecutive terms
of the same sign.

Proof. Intuitively, having terms of alternating sign means that L is extending in the north-
west-southeast direction, so it cannot form a closed shape. More formally, assume thatL is
a counterexample drawn in the plane and let x 2L. Consider the partial order on Z2 given
by .i; j /� .i 0; j 0/ if i � i 0 and j � j 0. With respect to this order, any generator y 2Lwith
graph-theoretic distance d.x; y/ � 2 is in the position of the plane that is not comparable
to the position of x. On the other hand, since L is a local system, it is possible to start
at x, walk along the edges of L and return to x, or to U kV kx for some k 2Z, in finitely
many steps. For instance, Example D in Figure 18 of [10] shows a local system in which
we return to UVx, rather than to x itself, after finitely many steps. This is a contradiction,
because the positions of x and U kV kx are comparable for any k 2Z.

Having established that the shape of any local system contains at least two consecutive
terms of the same sign, we can investigate these parts of the local systems further.

Lemma 4.6. LetL be a local system such that the shape of L contains a subsequence 1, 1
or �1, �1. Then L is a width 1 square.
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Proof. There are four cases to consider, depending on whether the first arrow is horizontal
or vertical and on whether the sequence is 1, 1 or �1, �1. They are not substantially
different, so we deal with one of them and leave the rest to the reader.

Let us label the generators in question by a, b, and c so that h@b; Uai D 1 and
h@c; V bi D 1. Since L lifts to a chain complex over F ŒU; V �, there must exist a gener-
ator d 2L such that a, b, c, and d form a width 1 square.

Lemma 4.7. LetL be a local system such that the shape of L contains a subsequence 2, 2
or �2, �2. Then w.L/ � 3.

Proof. As in Lemma 4.6, this follows from Observation 3.1. In more detail, there are four
cases to consider, but we only treat one. Let us label the generators in question by a, b
and c so that h@b; U 2ai D 1 and h@c; V 2bi D 1. Then ı.a/ D ı.b/C 1 D ı.c/C 2. It
follows that w.L/ � ı.a/ � ı.c/C 1 D 3.

Therefore, all local systems of width 2 contain at least two consecutive terms x, y of
the same sign and such that ¹jxj; jyjº D ¹1; 2º. There are now eight cases, namely the four
sequences .2; 1/, .1; 2/, .�2;�1/, .�1;�2/, each splitting into two cases depending on
whether the first arrow is horizontal or vertical. The analysis of each of these cases is very
similar, so we explore one in depth, leaving the rest to the reader.

Lemma 4.8. Let L be a local system of width 2 containing generators a, b and c such
that h@b; U 2ai D 1 and h@c; V bi D 1. Then L is a width 2 staircase or it contains a loop
starting at a.

Proof. We first perform a change of basis such that all vertical and horizontal isomor-
phisms, with the possible exception of the isomorphism to which the arrow from b to a
belongs, are given by the identity matrix. In other words, we put a local system L into a
standard form as in Proposition 3.7 of [10]. Most of the case analysis goes through without
this assumption, but we will need it as we approach Figure 7a.

Let d be the generator of L that is connected to c with a horizontal arrow. There are
several cases depending on the length and direction of this arrow.

Case 1. There is an arrow from d to c of length 1 or 2.

a b

c d

Such complexes cannot be lifted to chain complexes over F ŒU; V �, so this case does not
arise.

Case 2. h@c; U 2d i D 1, i.e., there is an arrow from c to d of length 2.

a b

cd
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Since L is a mod UV reduction of a chain complex over F ŒU; V �, it follows that there
must be a vertical arrow from d to a and L is equal to

a b

cd

This is a width 2 staircase.
Case 3. h@c; Ud i D 1, i.e., there is an arrow from c to d of length 1.

a b

cd

Since @2c D 0, there must be a diagonal arrow from d to a. Consider the vertical arrow
incident on d and let e be its other endpoint. If the arrow is pointing from d to e, then it
must have length 2 since @2c D 0 cannot be established otherwise, cf. Lemma 4.6. This in
turn forces a diagonal arrow from b to e and we have established a loop in L starting at a.

a b

cd

e

The remaining case is when the arrow is pointing from e to d . Its length must be 1, since
otherwise ı.e/� ı.a/� 2 andw.L/� 3. Since @2e D 0, there must be an even number of
ways of traveling from e to a in two steps. Because it is possible to pass through d , there
must be another path through a new generator f and there are only two possible locations
for this generator. They are depicted on the pictures below.

a b

c

e

d

f

a b

c

e

df

The left picture is a width 2 staircase, so in this case we are done. In the right picture, the
generators e and f possess a property we wish to axiomatize.

Definition 4.9. Let .C; @/ be a finitely generated chain complex over F ŒU; V �. A pair of
generators x; y 2C satisfying h@x;UVyi D 1 and with outgoing vertical arrows is called
a crest pair. A pair of generators x; y 2C satisfying h@x; UVyi D 1 and with incoming
horizontal arrows is called a trough pair.

A crest pair and a trough pair are schematically drawn in Figure 6.
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x

y

(a) A crest pair.

x

y

(b) A trough pair.

Figure 6

Resuming the argument, let x; y 2L be a crest pair such that there is a path con-
sisting of horizontal and vertical segments connecting x and y. Consider the horizontal
arrow incident on y and denote its other endpoint by z. Assume first that the arrow goes
from y to z. In that case, it must be of length 1 since otherwise ı.x/ � ı.z/ � 2. Since
@2x D 0, there is an even number of ways of traveling from x to z. Because one path
passes through y, there must exist another path passing through a different generator w.
The two possible locations for w are depicted on the following pictures.

x

yz

w x

yz

w

The case on the left completes the local system and we obtain a width 2 staircase. The case
on the right provides us with the trough pair z;w, and a similar analysis can be carried out
by considering the vertical arrow incident on w. Provided the arrow is incoming, the local
system will either be completed into a width 2 staircase or we will obtain a new crest pair.
Since L is finitely generated, the crest and trough pairs will stop alternating at some point
and L will be completed into a width 2 staircase.

The above process assumes that there is always an outgoing horizontal arrow from
the lower generator of a crest pair and an incoming vertical arrow to the upper generator
of the trough pair. Let us now investigate what happens if this is not the case, i.e., if for
example at some point the lower generator of a crest pair has an incoming horizontal
arrow. Such a scenario is depicted in Figure 7a. The crest pair generators are denoted by x
and y, and there is a horizontal arrow from z to y. Such an arrow must necessarily be of
length 2, since if it is of length 1, we are in the setting of Lemma 4.6, which leads to a
contradiction. Let a; b; c 2L be the generators as labeled on Figure 7a. Because @2z D 0,
there must be an even number of paths from z to a of length 2. This forces a diagonal
arrow from z to b. Here we are using the fact that L is horizontally simplified away from
the bottom edge. There must also be an even number of paths from z to c of length 2,
which forces the existence of a new generator d together with a vertical arrow from z to d
and a diagonal arrow from d to c. The situation is depicted in Figure 7b. Note again that
since L is vertically simplified, d cannot be the generator that is already drawn. Now the
horizontal arrow incident on d must be incoming and of length 1 and one can continue
with the analysis until one reaches the “end" of the staircase as shown in Figure 8a.
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y

a b

c

x

z

(a)

y

a b

c

x

z

d

(b)

Figure 7. Subfigure (a) demonstrates the case of Lemma 4.8 in which the lower generator of a
crest pair x; y has an incoming horizontal arrow. Subfigure (b) is a deeper analysis of this case that
eventually shows that such a case does not arise.

g

z

e

f

(a)

h

z

f

(b)

Figure 8. Subfigure (a) depicts continuation of the analysis from Figure 7 to the point when one
reaches the end of the staircase. Subfigure (b) shows the ensuing contradiction, since the strands of
generators f and h eventually diverge near z.

Since @2e D 0 is required, there is another way of traveling from e to g in two steps.
But e is already incident on its unique horizontal and vertical arrows and g is already inci-
dent on its unique vertical arrow. We emphasize that, while g is not necessarily incident on
only one horizontal arrow, since the bottom edge of the figure is not necessarily horizon-
tally simplified, all horizontal arrows at g have the same direction and length. Therefore,
the alternative way of traveling from e to g in two steps passes through f as shown in
Figure 8b. However, this is not how local systems work, since the strands of generators f
and h eventually diverge near z. This is a contradiction which shows that such a scenario
cannot happen in a local system.

The analysis of the case in which there is an outgoing vertical arrow from the upper
generator of a trough pair is entirely analogous and shows that such a situation cannot
arise either.

With the help of Lemma 4.8, we are now able to classify local systems that appear in
width 2 knot Floer complexes.
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Proposition 4.10. Let K � S3 be a knot with w.K/ D 2 and let CFKR.K/ be its knot
Floer complex over R. Then CFKR.K/ splits uniquely as a direct sum of a standard
complex of width at most 2 and some of the following trivial local systems:

, , , , , . . .

and their reflections along the lines y D ˙x.

Note that the statement of Proposition 4.10 is almost identical to the statement of The-
orem 1.1. The only difference is in the choice of the ring we are working over. In the case
of the proposition, this is R D F ŒU; V �=.UV /, which does not see the diagonal arrows
in the full complex CFKFŒU;V �.K/. As such, Proposition 4.10 is a weaker result than
Theorem 1.1, but nonetheless provides a good stepping stone towards the general result.

Proof of Proposition 4.10. Let L be a local system of width 2 and assume it is depicted
in the plane in a horizontally simplified basis. By the remark preceding Lemma 4.8, one
of the eight similar cases arises. We have explored one of them in depth in Lemma 4.8
and noted that all others allow for a similar conclusion. We are done if L is a width 2
staircase. If not, thenL contains a loop, say a loop from a to e. Let f be the other endpoint
of a horizontal arrow incident on e. If there is an arrow from e to f , then it must have
length 1 since otherwisew.L/� ı.d/� ı.f /C 1� 3. Since @2bD 0 andL is horizontally
simplified, the only possible alternative way of traveling from b to f in two steps passes
through a. In other words, we must have @a D Vf and the local system is the special
shape. Otherwise there is an arrow from f to e. Note that the generator a is above and to
the left of e and we claim that its position in the plane cannot be reached again. To see that,
travel from f in the direction away from a via vertical and horizontal arrows until the first
arrowA that points upwards or to the left. By our assumption, it is preceded by an arrowB
pointing to the right or downwards. In either case, we see that A or B has length 2 and that
the arrows A and B satisfy the conditions of Lemma 4.8. Because L can no longer be a
width 2 staircase, we either obtain a contradiction or another loop, whose final endpoint is
further down and to the right. It follows that none of the generators U kV ka for k 2Z can
be reached again. Therefore, all local systems of width 2 are width 2 staircases and the
special shape. Forgetting the diagonal arrows now yields the required classification.

Proposition 4.10 describes the direct summands of CFKR.K/. The knot Floer com-
plex can be lifted to CFKFŒU;V �.K/, but the decomposition into indecomposable sum-
mands might not be identical. In other words, different local systems over R might be-
come connected over F ŒU; V � in the presence of diagonal arrows. They may also become
connected to the standard complex. We call such diagonal arrows between different local
systems or between a local system and a standard complex external. By finding a suitable
change of basis, we show in Proposition 4.11 that all external arrows can be removed, thus
lifting the results of Proposition 4.10 from R to F ŒU; V �.
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We begin with some notation. LetK0;K1; : : : denote the trivial local systems as drawn
in the statement of Theorem 1.1: K0 is the special shape, K1 is a 1 � 1 square, K2 is a
2 � 1 rectangle, and so on. As a useful mnemonic, one can observe that for n � 1, Kn has
area n. Let

K
0;

K
1;

K
2; : : : be their reflections over the line y D �x. Note that K0 D

K
0

and K1 D
K
1, while the rest of the local systems Kn are not symmetric over this line.

Proposition 4.11. Let C be a chain complex over F ŒU; V � of width 2 and let

L 2 ¹K0; K1; : : : ; º [ ¹
K
0;

K
1; : : : º

be a local system such that C Š L˚ C 0 over R for some chain complex C 0. Then C Š
L˚ C 0 over F ŒU; V �.

Proof. This is the content of Lemma 4.12, Lemma 4.13 and Lemma 4.14.

Lemma 4.12. If C Š K1 ˚ C
0 over R, then C Š K1 ˚ C

0 over F ŒU; V �.

In other words, a 1 � 1 square can be completely disconnected from the rest of the
complex, even in the presence of diagonal arrows.

Proof. Let the square K1 have vertices a; b; c; d as depicted:

ab

cd

If there are no diagonal arrows incident onto any of the vertices of the square, then we
are already done. Otherwise, there are 8 cases depending on which of the square vertices
a diagonal arrow is incident on and what the direction of this arrow is. Note that the
four cases with outgoing arrows are symmetric to the four cases with incoming arrows.
Since the presented analysis can easily be adapted to any case related by a symmetry, it is
sufficient to deal with the four cases involving incoming diagonal arrows to a, b, c and d .

Case 1. There is an incoming arrow at a.
Let e be the other endpoint of the arrow. Since @2e D 0, there is an even number of

ways of traveling from e to b and from e to c in two steps. This means that besides passing
through a, there is another way of traveling from e to b in two steps and another way of
traveling from e to c in two steps. These two ways must be as depicted:

ab

c

d

ef

g

It is also required that @2f D0. The only way in which this can be achieved while keeping
the picture horizontally and vertically simplified is if there is a vertical arrow from f to h
of length 1 and a diagonal arrow from h to d . Since there are an even number of ways of
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traveling from e to h in two steps, we must have a horizontal arrow from g to h. The
situation is as depicted:

ab

c

d

ef

gh

Let us perform the basis change that sends g 7! g C Ua, h 7! h C Ub, and fixes the
remaining generators. This basis change removes all depicted diagonal arrows, keeps the
basis horizontally and vertically simplified and does not add any new diagonal arrows
incident on the original square with vertices a; b; c; d . To see this, note that g and h have
no incoming diagonal arrows, since they are in the higher grading and a and b have no
outgoing diagonal arrows since they are in the lower grading.

Case 2. There is an incoming arrow at b.
Let e be the other endpoint of this diagonal arrow incident on b. Since @2e D 0, there

is another generator f with a vertical arrow from e to f of length 1 and a diagonal arrow
from f to d , as depicted:

a

b

c

d

e

f

Considering the hypothetical horizontal arrow incident on f , the following two cases arise
naturally.

Case 2.1. There is no horizontal arrow incoming to f . Since f is in the higher grading,
this means that the arrow from e to f is the only incoming arrow to f . In this case, one
can make the change of basis f 7! f C Ub. This removes the depicted diagonal arrows
from e to b, f to d and does not add any diagonal arrows incident on the original square
with vertices a; b; c; d for the same reason as in Case 1.

Case 2.2. There is a horizontal arrow incoming to f . Let g be its other endpoint.
Because the complex has width 2, the arrow from g to f must be of length 1. Since
@2g D 0, there is another way of traveling from g to d in two steps and hence there is a
diagonal arrow from g to c as depicted:

a

b

c

d

e

f g
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Now if h is another generator with a vertical arrow from h to g, then it must be of length 1
as well, and the condition that @2h D 0 implies that there is a diagonal arrow from h to a,
moving us back to Case 1. We may thus assume that there are no incoming vertical arrows
incident on g and so g has no incoming arrows at all. This lets us perform a change of basis
g 7! gCUa and f 7! f CUb, which removes the diagonal arrows from the picture and
does not add any diagonal arrows incident on the original square with vertices a; b; c; d .

Case 3. There is an incoming arrow at c.
This case is completely analogous to the case with an incoming arrow at b due to the

symmetry.
Case 4. There is an incoming arrow at d .
Let e be the other endpoint of this diagonal arrow. If there is an incoming horizontal or

vertical arrow at e, it must be of length 1 since the complex has width 2. A vertical arrow
implies the existence of a diagonal arrow incoming to b and a horizontal arrow implies
the existence of a diagonal arrow incoming to c. This means that they can be dealt with
first, since we are in Case 2 or 3. Therefore, we can assume that there are no incoming
arrows at e. Performing the change of basis e 7! e C Ub hence removes the diagonal
arrow incident on d while it does not add any diagonal arrows incident on the original
square with vertices a; b; c; d .

In all cases, we have strictly decreased the number of diagonal arrows incident on the
original K1. Therefore, the process terminates after finitely many steps, culminating in
a basis in which K1 is disconnected from the rest of the picture, that is, C Š K1 ˚ C

0

over F ŒU; V �.

By Lemma 4.12 we may assume in further analysis that there are no K1’s in the
decomposition – if there are, we can disconnect them first. We now prove an analogous
result for K0’s.

Lemma 4.13. If C Š K0 ˚ C
0 over R, then C Š K0 ˚ C

0 over F ŒU; V �.

Proof. Let the generators of the special shapeK0 be labeled as in Figure 5c. By symmetry,
it is again sufficient to deal with the three cases of potential incoming diagonal arrows
to K0. In the argument, we induct on the set of diagonal arrows incident on any of the
vertices a; b; c; d; e; f of K0. In other words, whatever case we find ourselves in, we will
perform a change of basis such that the resulting set of diagonal arrows incident on K0 is
a strict subset of the initial set of diagonal arrows incident on K0.

Case 1. There is an incoming external diagonal arrow at a.
Let g be the other endpoint of this diagonal arrow incident on a. Since @2gD 0, there is

another way of traveling from g to f in two steps, implying the existence of a generator h
with a vertical arrow from g to h of length 1 and a diagonal arrow from h to f .

a b

cd

ef

g

h
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If h has no incoming horizontal arrows, then h has no incoming arrows other than that
from g and a change of basis h 7! hCUa can be used to remove the two diagonal arrows
presently in the picture. This does not add any new diagonal arrows either. In the other
case, h has an incoming horizontal arrow, necessarily of length 1. Let i be its other end-
point and note that @2i D 0 necessitates the existence of a diagonal arrow from i to e.
Note that i has no incoming arrows – a vertical incoming arrow to i would create a K1

summand, but those have been ruled out by Lemma 4.12. Therefore one can perform the
change of basis h 7! hC Ua and i 7! i C b, which removes the diagonal arrow from g

to a without adding any new diagonal arrows incident on any of the vertices a;b; c;d; e;f
of the original K0.

Case 2. There is an incoming external diagonal arrow at e.
Due to the symmetry, this case is completely analogous to the case with an incoming

external diagonal arrow at a.
Case 3. There is an incoming diagonal arrow at f .
Let g be the other endpoint of the diagonal arrow incident on f . If g has any incoming

horizontal or vertical arrows, they must be of length 1 and the condition @2 D 0 implies the
existence of new diagonal arrows incident on a or e, moving us back to the previous cases.
Therefore, we may assume that g has no incoming arrows. Performing the basis change
g 7! gCUa removes the starting diagonal arrow without adding any new diagonal arrows
incident on any of the vertices a; b; c; d; e; f of the original K0.

In all cases, the original diagonal arrow was removed after performing the change
of basis. While it is possible that some diagonal arrows were introduced anew in the
process (for example, from i C b in Case 1), no new diagonal arrows incident on K0

were added. Therefore, the process terminates after finitely many steps, resulting in the
basis in which K0 is disconnected from the rest of the picture, i.e., C Š K0 ˚ C

0 over
F ŒU; V �.

Finally, the external diagonal arrows incident on the remaining local systems are
removed.

Lemma 4.14. LetL be any other local system of width 2, i.e., aKn or
K
n for some n� 2.

If C Š L˚ C 0 over R, then C Š L˚ C 0 over F ŒU; V �.

Proof. We follow the same strategy as in the previous lemma. At each step, we will strictly
decrease the number of external diagonal arrows incident on L. Note that the analysis of
the case in whichKn has outgoing diagonal arrows is completely analogous to the analysis
of the case in which

K
n has incoming diagonal arrows. As such, it is sufficient to show

how to remove all incoming diagonal arrows intoL. This splits the analysis into four cases.
Case 1. L D Kn for some odd n.
There are n� 2 generators ofL that are in the lower ı grading. As depicted in Figure 9,

split them into
� blue generators, all of whose adjacent horizontal and vertical arrows are incoming,

and
� red generators, all of whose adjacent horizontal and vertical arrows are outgoing.
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Note that the generators on the “lower edge” of L are alternating between blue and
green. If there is an incoming external diagonal arrow into a green generator, the condition
@2 D 0 implies the existence of an incoming external diagonal arrow into a blue generator.
Hence, it is sufficient to show how to remove all external diagonal arrows incident on blue
generators.

Let a2L be a blue generator incident on some external diagonal arrow as in Figure 9a.
Let x be the other endpoint of this arrow. If x has no incoming arrows, then the basis
change x 7! xC b removes the external diagonal arrow from x to a. Note that, whenever b
has other outgoing diagonal arrows to y1; : : : ; yn, the above change of basis creates new
diagonal arrows from x to y1; : : : ; yn. However, x …L and y1; : : : ; yn …L, so the newly
created diagonal arrows are not incident on L.

Similarly, let us now assume that x has some horizontal incoming arrow. Let its other
endpoint be y as in Figure 9b. Since @2y D 0, there must be a diagonal arrow from y

to c, which in turn implies the existence of a vertical arrow from y to z of length 1 and
a diagonal arrow from z to e. If now x and z are not incident on any undrawn incoming
arrows, the basis change x 7! x C b, y 7! y C d , z 7! z C f can be used to remove the
diagonal arrows from x to a, y to c and z to e without adding any new diagonal arrows
incident on the vertices of L.

a

b x

(a)

a c

e

f

db x y

z

(b)

Figure 9. Subfigure (a) demonstrates Case 1 of Lemma 4.14. If x has no incoming arrows, then the
simple basis change x 7! x C b removes the diagonal arrow from x to a without adding any new
arrows incident on the vertices ofL. If x has an incoming horizontal arrow, then the requirement that
@2 D 0 forces the configuration depicted in Subfigure (b). If z has no incoming horizontal arrows,
then the basis change x 7! x C b, y 7! y C d , z 7! z C f removes the diagonal arrows from x

to a, y to c, and z to e without adding any new diagonal arrows incident on the vertices of L.

Similar reasoning works more generally if x or z are incident on some additional
horizontal or vertical arrows: one keeps drawing the upper width 1 staircases until its
endpoints are not incident on any undrawn incoming arrows. At this point, the natural
change of basis removes the initial diagonal arrow without adding new diagonal arrows
incident on L.
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The above discussion implicitly assumes that the endpoints of the width 1 staircase
will stop being incident on additional horizontal and vertical arrows before we “reach the
end of L”. We now argue that this is indeed always the case. Let a be the lowest blue
generator and let b be the other endpoint of the external arrow incident on a. For the sake
of contradiction, assume that b is incident on an incoming horizontal arrow and denote its
other endpoint by c as depicted.

a

b c

Now @2c D 0, so there must be another way of traveling from c to a in two steps.
However, this is not possible while maintaining the complex vertically and horizontally
simplified. This is a contradiction and means that b was not incident on any undrawn
incoming arrows as required. The other end of L lends itself to a completely analogous
treatment.

The analysis of the remaining cases is largely similar. First, if the endpoints of the
width 1 staircase stop being incident on additional horizontal and vertical arrows before
one reaches the end of L, we perform the same change of basis as in Case 1. In the
remaining cases, we therefore focus solely on the situation when the width 1 staircase
reaches the end of L. As we shall see, there are only two types of ends of L, so Case 2 is
the only real outstanding case.

Case 2. L D
K
n for some odd n.

Let a be the lowest blue generator and let b be the other endpoint of the external
arrow incident on a. If b is incident on an incoming horizontal arrow, let c denote its other
endpoint as depicted:

f1

a d

b c

e1e2f2

Since @2c D 0, there must be a diagonal arrow from c to d . Note that we do not have
control over what happens at c – if might or might not be incident on any vertical arrows,
but this will fortunately not be important for us. We perform the change of basis b 7!
b C Vd and ei 7! ei C fi where ei are the remaining generators of the width 1 staircase
and fi are the generators of L drawn in the same spatial location in the plane. Note that
the other end of L allows for a very similar analysis so we omit it here.

Case 3. L D Kn for some even n.
The upper end of L locally looks like the ends of L in Case 1, and the lower end of L

locally looks like the ends of L in Case 2. As a result, the same arguments works.
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Case 4. L D
K
n for some even n.

The upper end of L locally looks like the ends of L in Case 2, and the lower end of L
locally looks like the ends of L in Case 1. As a result, the same arguments works.

In all cases, the number of external diagonal arrows incident on L has strictly de-
creased after the change of basis was performed. In fact, no diagonal arrows incident on
vertices of L were drawn anew. This guarantees that the process is finite and results in a
basis for C such that L is a direct summand.

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. Proposition 4.10 establishes the corresponding classification result
over the ring R D F ŒU; V �=.UV /. Proposition 4.11 shows that the direct summands as
chain complexes over R remain the direct summands as chain complexes over F ŒU; V �.
The unique remaining direct summand is the standard complex.

Remark. It follows from the statement of Proposition 4.11 that the local systems in the
decomposition of CFKR.K/ have the same shapes as the local systems in the decom-
position of CFKFŒU;V �.K/. Moreover, it is proven in Algorithm 3.12 of [11] that the
standard complex of width 2 admits a unique lift to a complex over F ŒU; V �. Therefore,
CFKFŒU;V �.K/ can be uniquely reconstructed from CFKR.K/ up to isomorphism.

4.4. Knots of higher width

As we have seen in the preceding subsections, the classification of chain homotopy equiv-
alence types of chain complexes over F ŒU; V � becomes much more complex as w.K/
is increased from 1 to 2. When w.K/ D 3, Observation 3.2 no longer applies and many
new, qualitatively different examples of local systems that can be lifted to complexes over
F ŒU; V � emerge, such as the complexes depicted in Figure 10.

Figure 10. Chain complexes over F ŒU; V � of width 3 whose mod UV reduction is a direct sum of
F ŒU; V � and a local system.

We believe the class of chain homotopy types of complexes of width 3 is already too
diverse to admit a concise description. However, the following natural question might be
within reach.
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Question 4.15. Is there a knot Floer-like complex of width 3 that has a nontrivial local
system?

The notion of a knot Floer-like complex is just a formal axiomatization of chain com-
plexes we have been studying in this paper, i.e., finitely generated free chain complexes
over F ŒU; V � with some additional requirements regarding the Z ˚ Z grading, homol-
ogy and symmetry. See Definition 2.3 in [10] for a precise definition of a knot Floer-like
complex.

Theorem 1.1 shows that knots of width 2 have no nontrivial local systems and Exam-
ple P in Theorem 1.4 of [10] shows that there is a knot Floer-like complex of width 4
with a nontrivial local system. The answer to Question 4.15 would determine the minimal
width needed for the existence of nontrivial local systems in the algebraic setting.

5. Realization of local systems

This section shows that, with the possible exception of the special shape, all local systems
from Theorem 1.1 appear as direct summands of CFKFŒU;V �.K/ for some knots K. We
will use certain iterated cables of the figure eight knot as K, although we later remark
that other options are possible. The main technology of this section are the Hanselman–
Rasmussen–Watson interpretation of CFKR.K/ as immersed curves on a punctured torus
[2, 3], and Hanselman–Watson’s cabling results [4]. Let us review the results of these
papers.

We begin with an explanation about how knot Floer complexes CFKR.K/ can be
represented by immersed curves. As in Section 4.2 of [2], we draw the immersed curves
on an infinite strip Œ0; 1� �R with Z many punctures at ¹1=2º � ¹1=2C k j k 2Zº. After
identifying .0; t/ � .1; t/ for all t 2R, this strip becomes a cylinder and thus a Z-sheeted
covering space of a punctured torus. The composition with the covering projection can be
used to recover the immersed curves on a punctured torus.

The knot Floer complex generators are drawn in the middle of the strip between
consecutive punctures. The height of these generators are determined by the Alexander
grading A D 1

2
.grU � grV /, so that the generators with the same Alexander grading lie

between the same punctures. Horizontal arrows correspond to the arcs connecting the
generators on the right, and vertical arrows correspond to the arcs connecting the gener-
ators on the left. It is readily verified that the above requirements imply that the arrows
of length l correspond to arcs passing by l punctures until they switch to the other side.
See Figure 11 for the CFKR.41/ of the figure eight knot and the corresponding immersed
curve. See also Section 6 of [10].

In [4], the authors present a very nice geometric way of working out the immersed
curves of the .p; q/-cable of K from the immersed curves of K.
(1) Draw p copies of the immersed curves and the punctures associated to CFKR.K/.

The i th copy is drawn on Œi � 1; i � � R, it is stretched vertically by a factor of p
and then moved downwards by qi . That is, to draw the i th copy, we apply the trans-
formation .x; y/ 7! .x C i; py � qi/ to the original immersed curve associated to
CFKR.K/.
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Figure 11. A knot Floer complex CFKR.41/ associated to the figure eight knot in .a/ and the cor-
responding immersed curve 
 in .b/. The figure also contains the information about the Alexander
gradings of the depicted generators.

(2) Apply the diffeomorphism Œ0; p� �R! Œ0; 1� �R, which moves all punctures hor-
izontally and sends them to ¹1=2º � ¹1=2C k j k 2Zº. The images of the immersed
curves under this diffeomorphism are the immersed curves of Kp;q . See Figure 12
for an example.

We will now see this in action as we construct cables of the figure eight knot whose
CFKFŒU;V �.K/ contains width 2 local systems. Let us remind ourselves that K0; K1; : : :

denote the trivial local systems as drawn in the statement of Theorem 1.1:K0 is the special
shape, K1 is a 1 � 1 square, K2 is a 2 � 1 rectangle, and so on.

Proposition 5.1. For all n � 1, Kn is a direct summand of CFKFŒU;V �.K/ for some K.

• If n D 1, one can take K D 41.

• If n D 2, one can take K D .41/2;1.

• If n � 3 is odd, one can take K D .41/n;�2.

• If n � 4 is even, one can take K D ..41/n=2;1/2;1.

In the statement of the proposition, 41 denotes the figure eight knot, and the sub-
script p;q denotes the .p; q/-cable of the underlying knot.

Proof. It is well known that CFKFŒU;V �.41/ is the complex in Figure 11a, establishing the
case nD 1. In all other cases, rather than computing the immersed curves representation of
CFKR.K/ in its entirety, we will only be interested in some of its structure. In particular,
we always disregard the standard complex summand and most of the local systems.

Let first n be even. Consider the .n=2; 1/-cable of the figure eight knot, whose im-
mersed curve is drawn in Figure 11. Applying the cabling process as described above, we
draw n=2 copies of the figure eight curve staggered in height as depicted in Figure 12a.

This is the step (1) of the cabling process. In step (2), we translate the punctures hor-
izontally, which modifies the curves. See Figure 12b for the result of this operation on
the rightmost curve. We convince ourselves that it corresponds to the local system with
the shape of a horizontal .n=2/ � 1 rectangle. Similarly, the leftmost curve corresponds
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(a) (b)

Figure 12. Calculation of the immersed curve of the .n=2;1/-cable of the figure eight knot 41 in case
n D 8. Figure (a) shows n=2 copies, staggered in height, of the immersed curve associated to 41.
Figure (b) shows what happens to the rightmost immersed curve after translating the punctures so
that they lie on the same vertical line. In terms of local systems, this corresponds to a horizontal
.n=2/ � 1 rectangle.

to the vertical .n=2/ � 1 rectangle. Note that in particular this shows that 2 � 1 rectan-
gles K2 appear as summands of CFKFŒU;V �..41/2;1/, which settles the case n D 2. In all
other cases, we will investigate what these two rectangles look like after taking a further
.2; 1/-cable.

Consider the immersed curve corresponding to the horizontal .n=2/ � 1 rectangle and
determine what happens to it after we take the .2; 1/-cable. We start by drawing two
copies of the curve, one slightly below and to the right of the other one. Each of them uses
n=2C 1 punctures. Focusing on the left copy, we observe that after sliding the punctures
into a vertical line, all right arcs and all but the topmost and bottommost left arcs have
length one. The topmost and bottommost left arcs have length two. See Figure 13. In
terms of chain complexes, this immersed curve corresponds to the width 2 staircase of
shape 1;�1; : : : ; 1;�1; 1;�2;�1; 1; : : : ;�1; 1;�1; 2; : : : , where each of the blocks of 1’s
and �1’s contains n � 1 numbers, because there are 2.n=2 C 1/ D n C 2 punctures in
total. This width 2 staircase is precisely the local system Kn as required.

Finally, if n � 3 is odd, we consider the .n;�2/ cable of the figure eight knot. After
drawing n copies of the immersed curve in the first part of the cabling process, we focus on
the middle copy 
 of the curve. Let p1 and pnC1 be the punctures that 
 is looping around
and let p2; : : : ;pn be the punctures whose height lies between them, ordered so that higher
punctures have a lower index. After sliding the punctures into a vertical line, the immersed
curve will pass entirely to the left of p2, entirely to the right of p3, entirely to the left of p4,
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(a) (b)

Figure 13. Continuation of the calculation from Figure 12 – a further .2;1/-cable is taken. Figure (a)
shows two stretched copies of the immersed curve corresponding to the horizontal .n=2/ � 1 rect-
angle. Figure (b) shows what happens to the left immersed curve after translating the punctures so
that they lie on the same vertical line. In terms of local systems, this immersed curve corresponds
to Kn.

and so on. In other words, except for the topmost left arc and the bottommost right arc, that
have length 2, the immersed curve of the .n;�2/-cable will keep alternating between the
sides with arcs of length 1. The local system that corresponds to this immersed curve has
shape 1;�1; : : : ; 1;�1;�2; 1;�1; : : : ; 1;�1; 2; : : : , where the first block of 1’s and �1’s
has nC 1 terms and the second block of 1’s and �1’s has n � 3 terms. This is precisely
the width 2 staircase Kn as required.

Remark. Proposition 5.1 above exhibits the local systems Kn as direct summands of
CFKFŒU;V �.K/ for some knots K. Correspondingly, the local systems

K
n are direct sum-

mands of the knot Floer complexes of their mirrors.

Note that the information from immersed curves is in general only sufficient to deter-
mine CFKR.K/ rather than CFKFŒU;V �.K/. However, this is not a problem in our case,
since the complexes that correspond to the immersed curves from the proof admit a unique
lift to chain complexes over F ŒU; V �. These lifts are exactly Kn.

Finally, not much was special about our use of the figure eight knot in the state-
ment of Proposition 5.1 – the same local systems appear in cables of any knot whose
CFKFŒU;V �.K/ contains a square. These are for example all alternating knots whose
Alexander polynomial has at least 1 coefficient with an absolute value strictly greater
than 1.
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