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The metric for matrix degenerate Kato
square root operators

Gianmarco Brocchi and Andreas Rosén

Abstract. We prove a Kato square root estimate with anisotropically degenerate
matrix coefficients. We do so by doing the harmonic analysis, using an auxiliary Rie-
mannian metric adapted to the operator. We also derive L2-solvability estimates for
boundary value problems, for divergence form elliptic equations with matrix degen-
erate coefficients. Main tools are chain rules and Piola transformations, for fields in
matrix weighted L2 spaces, under W 1;1 homeomorphism.

1. Introduction

Our point of departure is the celebrated Kato square root estimate

(1.1) k
p
� divArukL2.Rd / Å krukL2.Rd /

proved in [5], where the complex-valued coefficient matrix A is assumed only to be
bounded, measurable, and accretive. After its formulation by Tosio Kato (see [22] and
p. 332 of [23]), already the one-dimensional result, d D 1, was solved only 20 years later
by Coifman, McIntosh, and Meyer [14]. The higher-dimensional result, in d � 2, took
an additional 20 years (see [5]), and a reason was that the non-surjectivity of r requires
a more elaborated stopping time argument in the Carleson measure estimate at the heart
of the proof. That the estimate (1.1) is beyond the scope of classical Calderón–Zygmund
theory for d � 2, is clear from the fact that, in general, the Kato square root estimate may
hold in Lp.Rd / only for p in a small interval around p D 2, depending on the matrix A.
See p. 7 of [2].

In this paper, we consider the extension of (1.1) to weighted L2 estimates. Cruz-Uribe
and Rios [16] proved the weighted Kato square root estimate

(1.2) k
p
�.1=w/ divArukL2.Rd ;w/ Å krukL2.Rd ;w/

for a Muckenhoupt weight w 2 A2.Rd / and degenerate coefficient matrices A satisfying

RehA.x/v; vi & w.x/jvj2; jA.x/j . w.x/ for all x 2Rd ; v 2Cd :
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Figure 1. Geodesic disks in the metric of
Example 3.7 are ellipses whose principal
axes are the eigenvectors of the matrix A.x/.
These ellipses shrink anisotropically towards
the origin.
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Figure 2. Geodesic disks in the metric of
Example 3.8 for a D 1 are ellipses with
increasing eccentricity.

It should be noted that Rubio de Francia extrapolation is not applicable here, since the
operator �.1=w/ divAr and the L2.w/-norm are coupled. However, under additional
assumption on w, Cruz-Uribe, Martell, and Rios [15] proved (1.2) with degenerate coeffi-
cients also in the unweighted L2.Rd /-norm.

We shall, however, follow a different path, where we seek to decouple A from w

in the operator �.1=w/ divAr. To this end, we consider more general anisotropically
degenerate elliptic operators �.1=a/ divAr, where the complex-valued scalar function
a.x/ is controlled by a scalar weight � as

Re a.x/ & �.x/; ja.x/j . �.x/;(a)

and the complex matrix function A.x/ is controlled as

RehA.x/v; vi & hW.x/v; vi; jW.x/�1=2A.x/W.x/�1=2j . 1;(A)

by a matrix weight W , meaning that W.x/ is a positive definite matrix at almost every
point x 2Rd . The second condition in (A) is equivalent to

hA.x/v; vi . hW.x/v; vi for all x 2Rd ; v 2Cd :

Note carefully that for such degenerate elliptic operators �.1=a/ divAr, not only the
size of the two coefficients a and A can differ unboundedly, but the size of A.x/v can
vary unboundedly between different directions v 2Cd , jvj D 1, at x 2Rd . Figures 1
and 2 show ellipses centred at a point x whose principal axes are the eigenvectors of the
matrix A.x/. These are two examples of such anisotropically degenerate matrices A.x/,
which are discussed in more details in Examples 3.7 and 3.8.



The metric for matrix degenerate Kato square root operators 2087

The natural norms for the operator �.1=a/ divAr appear using the standard duality
proof of the Kato square root estimate in the special case of self-adjoint coefficients aD �
and A D W :

k
p
�.1=�/ divW ruk2

L2.�/
D h�.1=�/ divW ru; uiL2.�/

D hW ru;ruiL2.Rd / DW kruk
2
L2.Rd ;W /

:

Note that the matrix-weighted space L2.Rd ; W / does not see the scalar weight �. Our
problem is thus to understand under what conditions on � and W the matrix-weighted
Kato square root estimate

(1.3) k
p
�.1=a/ divArukL2.Rd ;�/ Å krukL2.Rd ;W /

holds for general a and A satisfying (a) and (A), respectively. We study (1.3) using
a framework of first-order differential operators, which goes back to [6] and [9]. The
approach consists in proving boundedness of theH1 functional calculus for perturbations
of a first-order self-adjoint differential operator D, perturbed by a bounded and accretive
multiplication operator B . In our context, we set

(1.4) D D

�
0 �.1=�/ divW
r 0

�
; B D

�
�=a 0

0 W �1A

�
:

The operators D and B act on the Hilbert space H D L2.�/˚ L2.W /. The perturbed
operator

(1.5) BD D

�
0 �.1=a/ divW

W �1Ar 0

�
has spectrum in a bisector around the real line, and we show the boundedness of the H1

functional calculus for BD, as defined in Section 1.2. The Kato square root estimate (1.3)
then follows from the boundedness of the sign function of BD, namely, from the estimate

(1.6) k

p
.BD/2 Œ u0 �kH Å kBDŒ u0 �kH

since
p
.BD/2 D sgn.BD/BD and

p
.BD/2 D

24q� 1a divAr 0

0

q
�W �1Ar 1

a
divW

35 ;
while the right-hand side of (1.6) is equivalent to krukL2.W / as desired.

The proof of (1.1) from [5] uses a local T b theorem for square functions, with test
functions b constructed using the elliptic operator, which reduces the problem to a Car-
leson measure estimate. In the isotropically degenerate case with W D �I , boundedness
of the H1 functional calculus of BD and, in particular, (1.6), was proved in [8]. It is
important to note that the proof in [8] does not require B to be block diagonal, as com-
pared to the one in [16], as [8] uses a more elaborate double stopping argument for the
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test function and the weight. Our results in the present paper do not require B to be block
diagonal either. Non-block diagonal B are important in applications to boundary value
problems, see [3, 4] and references therein. We extend Section 4 of [7] to anisotropic
degenerate elliptic equations in Section 4.

When trying to prove boundedness of theH1 functional calculus for our operatorBD
from (1.5), following the local T b argument in [8], one soon realises that the main obstacle
when W ¤ �I is the L2 off-diagonal estimates for the resolvents of BD. In all previous
works, one has an estimate

(1.7) k.I C i tBD/�1ukL2.F / . �
�dist.E; F /

t

�
kukL2.E/;

with �.x/ rapidly decaying to 0 as x ! 1 and dist.E; F / being the distance between
sets E;F � Rd . So the resolvents are not only bounded, but act almost locally at scale t .
When W ¤ �I , this crucial estimate in the local T b theorem may fail. Indeed, the com-
mutator estimate used in the proof of (1.7) fails, as it requires the boundedness of

ŒD; �� D

�
0 �

1
�
Œdiv; ��W

Œr; �� 0

�
:

This is a bounded multiplier on L2.�/˚ L2.W /, with norm kr�kL1 , only if jW j . �.
But even assuming this latter bound, it is still unclear to us how to extend the remain-
ing part of the Euclidean proof from [8] which seems to require non-trivial two-weight
bounds.

The way we instead resolve this problem is to replace the Euclidean metric with a
Riemannian metric g adapted to the operatorBD. We show in Section 3 that the Euclidean
operator BD on L2.Rd ; �/˚ L2.Rd ICd ; W / is in fact similar to an operator BMDM
acting on L2.M;�/˚L2.TM;�I / for a auxiliary Riemannian manifoldM with metric g
and a single scalar weight � associated with � and W .

HM WD L
2.M; �/˚ L2.TM; �I / HM

H WD L2.Rd ; �/˚ L2.Rd ICd ; W / H :

P

DMBM

DB

P�1

Figure 3. We will use a unitary map P and its inverse, introduced in Section 2 and defined in (3.1).

Note that the scalar weight � determines the norms both on scalar and vector functions.
Thus, we have reduced to the situation in [8], but with Rd replaced by a manifoldM . The
Euclidean proof in [8] has been generalised to a class of manifolds in [7], notably those
with positive injectivity radius and Ricci curvature bounded from below. Applying [7]
to BMDM gives boundedness of its H1 functional calculus and, via similarity, also for
our anisotropically degenerate operator BD on Rd . This, in particular, shows the matrix-
weighted Kato square root estimate (1.3) for a class of weights .�; W / determined by
the properties of .g; �/. The examples at the end of Section 3 show that indeed this class
covers weights beyond [8]. In a forthcoming paper, we shall relax further the hypotheses
on the auxiliary manifold .M; g/.
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Notations

For two quantities X; Y � 0, the expression X . Y means that there exists a finite, pos-
itive constant C such that X � CY . The expression X & Y means Y . X . When both
expressions hold simultaneously, with possibly different constants, we will write X Å Y .
Given a matrix W the quantities jW j and kW kop denote any of the equivalent matrix
norms of W .

As discussed before, the Kato square root estimate follows from the boundedness of
functional calculus for a bisectorial operator BD. Here we recall these concepts.

1.1. Bisectorial operators

For an angle � 2 Œ0; �=2/, consider the closed bisector

S� WD ¹z 2 C W jarg.z/j � �º [ ¹0º [ ¹z 2 C W jarg.�z/j � �º:

Definition 1.1 (Bisectorial operator). A closed, densely defined operator D on a Hilbert
space is bisectorial if there exists an angle � 2 Œ0; �=2/ such that

• the spectrum �.D/ is contained in the bisector S� ,
• outside S� we have resolvent bounds: k.�I �D/�1k . 1=dist.�; S� /.

Given a densely defined operator D, its domain will be denoted by dom.D/. If D is
bisectorial, we have the topological (not necessarily orthogonal) splitting (see Proposi-
tion 3.3 (ii) in [4])

H D ker.D/˚ im.D/;

where ker.D/ WD ¹u 2 dom.D/ W Du D 0º is always closed and im.D/ WD ¹Du 2H W

u 2 dom.D/º. In particular, restricting D to the closure of its range gives an injective
bisectorial operator.

1.2. Bounded holomorphic functional calculus

Given � 0 > � , with � 0; � 2 Œ0; �=2/, let VS� 0 be the interior of the bisector S� 0 . Denote
byH1. VS� 0/ the space of bounded holomorphic functions on VS� 0 . Given an injective oper-
ator D which is bisectorial on S� , we say that D has bounded H1 functional calculus
on VS� 0 if for all function f 2H1. VS� 0/, we can define a bounded operator f .D/ with
norm bound

kf .D/kH!H . kf kL1. VS� 0 /:

For a non-injective operator D, the H1 functional calculus can be extended to the
whole space H by setting

f .D/�ker.D/ WD f .0/I�ker.D/;

for f W ¹0º [ VS� 0 ! C such that f � VS� 0 2 H
1. VS� 0/.
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1.3. Quadratic estimates

Let  be any function in H1. VS� 0/ which is non-vanishing on both sectors and decaying
as j .�/j . j�js.1C j�j2s/�1 for some s > 0. We call the class of such functions ‰. VS� 0/.
A bisectorial operator D acting on a Hilbert space H satisfies quadratic estimates if

(1.8)
� Z 1

0

k t .D/uk
2
H

dt
t

�1=2
. kukH

holds for all u 2H and all  2‰. VS� 0/, where  t .�/ WD  .t�/. IfD satisfies (1.8) for one
such  , then (1.8) holds for all  2‰. VS� 0/. For simplicity, we take  .�/D�=.1C�2/.
Bisectorial operators D, for which both D and D? satisfy the quadratic estimates (1.8)
have a bounded H1 functional calculus. See Section 3 (E) of [1], where this is shown
for sectorial operators. The extension to bisectorial operators is straightforward. See also
Section 6.1 of [3] for a short derivation of the needed estimates.

1.4. Weights

A scalar weight is a function x 7! �.x/ which is positive almost everywhere, while a
matrix weight is a matrix-valued function x 7! W.x/ such that W.x/ is a symmetric,
positive definite matrix at almost every x. We will consider weights on Rd and, more
generally, on a complete Riemannian manifold M with Riemannian measure dy.

Definition 1.2. Let W be a matrix weight. A multiplication operator B is said to be
W -bounded if

jW 1=2BW �1=2j . 1 a.e.,

and it is said to be W -accretive if

RehW 1=2BW �1=2v; vi & jvj2 a.e., for all v 2Cd :

Note the following:
• B isW -bounded if and only if the map v 7! Bv is bounded in the norm v 7! jW 1=2vj.

• B is W -accretive if and only if the map v 7! Bv is accretive with respect to the inner
product hWv; vi associated to the norm jW 1=2vj.

• For scalar weights W D w, this reduces to standard unweighted notions of bounded-
ness and accretivity.
When W is a block diagonal matrix Œ � 0

0 w
�, we will use the notation .�˚w/, and say

that a multiplication operator is .�˚ w/-bounded and .�˚ w/-accretive.
A special class of weights are the Muckenhoupt weights, which are defined in terms of

averages. Let B D B.x; r/ be a geodesic ball of radius r > 0 centred at x. If jBj denotes
the Riemannian measure of a ball B , the average of a scalar weight � over B is«

B

� dy WD jBj�1
Z
B

� dy:
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Definition 1.3 (Muckenhoupt AR2 weights). Let R > 0 be fixed. A scalar weight �WM !
Œ0;1� belongs to the Muckenhoupt class AR2 .M/, with respect to the Riemannian mea-
sure dy, if

Œ��AR2
WD sup

y02M
r<R

� «
B.y0;r/

�.y/ dy
�� «

B.y0;r/

1

�.y/
dy
�
<1:

We say that a weight � 2A2.M/ if

Œ��A2 WD sup
R>0

Œ��AR2

is finite.

We also introduce local Muckenhoupt weights, as these are used to apply dominated
convergence locally, for example, in proving the density of smooth functions in matrix-
weighted Sobolev spaces. Note that we do not use the Aloc

2 property quantitatively.

Definition 1.4 (Local Muckenhoupt weights). Let � � Rd be an open set, and let �
andW be a scalar and a matrix weight, respectively. We say that � is in Aloc

2 .�/ if for any
compact K � �,

sup
B�K

� «
B

�.x/ dx
�� «

B

1

�.x/
dx
�
<1;

where the supremum is over ballsB . Similarly,W is inAloc
2 .�/ if for any compactK ��,

sup
B�K




� «
B

W.x/ dx
�1=2� «

B

W �1.x/ dx
�1=2


2

op
<1;

where k�kop is the operator norm on the space of linear operators acting on Cd .

As in Definition 1.4, we define Aloc
2 .M/ on a manifold M for scalar weights. One

can show that for scalar weights, it holds that AR2 � A
loc
2 for any R > 0. Defining matrix

weights on a Riemannian manifold M is more subtle. At any y 2M , W.y/ should be a
positive definite map of TyM , and in a chart 'WRd ! M , it should be represented by
W' WD .d'/�1W.d'?/�1. However, the following example indicates that the matrix A2
condition onW' is not in general invariant under transition maps between different smooth
charts '.

Example 1.5. Let W WR! R2�2 be the matrix weight

W.x/ D

�
cos.x/ sin.x/
� sin.x/ cos.x/

� �
1 0

0 1C 2r

� �
cos.x/ � sin.x/
sin.x/ cos.x/

�
:

The constant diagonal matrix W.0/ D Œ 1 0
0 1C2r � is trivially a matrix A2 weight such that

ŒW.0/�A2 D 1 for any r � 0. A direct computation shows that

lim
r!C1




� « �

0

W.x/ dx
�1=2� « �

0

W �1.x/ dx
�1=2


2

op
D1:

See also Proposition 5.3 in [11] and Example 4.3 in [10].
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Therefore, we make the following auxiliary definition.

Definition 1.6. A matrix weight W 2 End.TM/ belongs to Aloc
2 .M/ if at each y 2M ,

there exists a chart ' such that .d'/�1W.d'?/�1 is a weight in Aloc
2 .R

d /.

2. Two scalar weights in one dimension

Following the historical tradition of the Kato square root problem, we first consider the
one-dimensional problem. We treat this case separately since all one-dimensional mani-
folds are locally isometric, so no hypothesis on the Riemannian metric g is needed, only
hypothesis on the weight �.

In dimension d D 1, the matrix weight W.x/ reduces to a scalar weight w.x/, and
r D div D @x is the derivative. Consider the differential operator

(2.1) D D

�
0 �.1=�/@xw

@x 0

�
:

Let �WR ! R be a “rubber band” parametrisation, a map stretching the real line, with
y D �.x/ for x 2R. To see g and � appear, we consider the pullback

(2.2) P W

�
v1.y/

v2.y/

�
7!

�
v1.�.x//

v2.�.x//�
0.x/

�
D

�
u1.x/

u2.x/

�
:

The basic observation is the following.

Lemma 2.1. Let �;w be two weights that are smooth on an interval I �R. Let �WI !R
be such that �0.x/D

p
�.x/=w.x/. SetM WD �.I /�R. Let �.�.x// WD

p
�.x/w.x/ and

(2.3) DM WD

�
0 �.1=�/@y�

@y 0

�
:

Then the map P defined in (2.2) is an isometry between the Hilbert spaces H DL2.I;�/˚

L2.I; w/ and HM WD L
2.M; �/˚ L2.M; �/, and P�1DP D DM .

Proof. We verify that PDM D DP. This amounts to checking the equality .Š/ in

PDM

�
v1
v2

�
D

�
..�1=�/@y�v2/ ı �

�0.@yv1/ ı �

�
.Š/
D

�
�.1=�/@xw.v2 ı �/�

0

@x.v1 ı �/

�
D DP

�
v1
v2

�
:

The identity for the second component is the chain rule in Theorem A.2 in one dimension.
The identity for the first component is seen by multiplying and dividing by �0:

1

�.�.x//�0.x/
� �0.x/@y.� v2/.�.x//

.Š/
D

1

�.x/
@x.w.x/�

0.x/.v2 ı �/.x//;

and noting that

(2.4) �.x/ D �.�.x//�0.x/; w.x/�0.x/ D �.�.x//:
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Using the identities in (2.4) and the definition of P, the weighted norms ku1kL2.�/ and
ku2kL2.w/ becomeZ

ju1.x/j
2�.x/ dx D

Z
jv1.�.x//j

2 �.�.x//�0.x/ dx D
Z
jv1.y/j

2 �.y/ dy;Z
ju2.x/j

2w.x/ dx D
Z
jv2.�.x//�

0.x/j2w.x/ dx D
Z
jv2.y/j

2 �.y/ dy:

This shows that P is an isometry and concludes the proof.

Lemma 2.1 shows that, formally,D in L2.I;�/˚L2.I;w/ is similar toDM , defined
in (2.3), acting on L2.M; �/ ˚ L2.M; �/, to which [8] applies. So, for non-smooth �
and w, we need that � 2A2.R; dy/ and the map � to be absolutely continuous (in order
to apply change of variables and chain rule, as in Appendix A), which amounts to �0 Dp
�=w 2 L1loc. This holds, in particular, if �; w 2Aloc

2 , which we need in order to apply
Theorem A.2. Note that, since �,w�1 are in L1loc, by Cauchy–Schwarz, �0 2 L1loc too.
Somewhat more subtle, to ensure that we obtain a complete manifold M , we must also
take into account the completeness of the image of �, which, in the one-dimensional case,
is the y-axis. See also Example 2.5. This corresponds to the problem of defining D as
self-adjoint operator in L2.�/ ˚ L2.w/. Indeed, if � maps onto an interval M ¨ R,
boundary conditions need to be imposed for DM to be self-adjoint in HM , and hence
for D D PDMP�1 to be self-adjoint. Although this can be done, here we limit our study
to the case in which M is a complete manifold. See also Example 2.5 below.

Theorem 2.2. Consider a possibly unbounded interval I D .c1; c2/� R. Let � and w be
weights in Aloc

2 .I / and assume thatZ c

c1

r
�

w
dt D

Z c2

c

r
�

w
dt D1 for c1 < c < c2:

For some fixed c 2 .c1; c2/, let

�.x/ D

Z x

c

r
�

w
dt and �.y/ WD

p
�.��1.y//w.��1.y//:

Assume that �2A2.R;dy/. LetD be the operator defined in (2.1), and letB be a .�˚w/-
bounded and .�˚w/-accretive multiplication operator on L2.I; �/˚L2.I; w/, as in
Definition 1.2. Then BD and DB are bisectorial operators satisfying quadratic estimates
and have bounded H1 functional calculus in L2.I; �/˚ L2.I; w/.

Proof. The operator DM in (2.3) has domain H1
� ˚ .H

1
� /
?, where

H1
� WD ¹v 2L

2.�/ W @yv 2L
2.�/º

and the adjoint space .H1
� /
? D ¹v 2L2.�/ W .1=�/@y�v 2L

2.�/º. This space is isometric
to the domain of @y in L2.1=�/. See Lemma 2.3 in [7], which shows that the operators r
and div – and in particular @y in one dimension – have dense domains and are closed
operators. The operator D has domain H1

�;w ˚ .H
1
�;w/

?, where

H1
�;w WD ¹u 2 L

2.�/ W @xu 2 L
2.w/º
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and the adjoint space .H1
�;w/

? D ¹u 2 L2.w/ W .1=�/@xwu 2 L
2.�/º. Note that the oper-

ator .1=�/@xwWL2.w/! L2.�/ is unitary equivalent to @x WL2.w�1/! L2.��1/, since
the multiplication by w is a unitary map from L2.w/! L2.w�1/.

The pullback transformation P maps between the domains of DM and D. Indeed,
if v 2H1

� , then, by Theorem A.2 applied with v D � and V D �, we have that

u WD ��v 2L2.�/ and @xu D @x.�
�v/ D ��.@yv/ D �

0.@yv/ ı � 2 L
2.w/;

since v� D � and V� D w. Similarly, we see that the L2-adjoint of ��, ��=�0, maps

¹u 2 L2.w�1/ W @xu 2 L
2.��1/º ! H1

��1
:

By applying Theorem A.3 with v D w�1 and V D ��1, we see that both v� and V �

equal 1=�, so we have that .�0/�1��u 2 L2.��1/ and

@y

���
�0
u
�
D
��

�0
.@xu/ 2 L

2.��1/:

Let BM WD P�1BP. We show that B is .�˚ w/-bounded and .�˚ w/-accretive if and
only if the operator BM is .� ˚ �/-bounded and .� ˚ �/-accretive. The .� ˚ �/-bounded-
ness of BM means that

(2.5)
Z
.Œ � 00 � �P

�1BPv;P�1BPv/ dy .
Z
jŒ � 00 � �

1=2vj2 dy:

Let u D Pv. Then the left-hand side of (2.5) equals

hP�1Bu;P�1Bui
L2
�h
� 0
0 �

i� D hPP�1Bu;Bui
L2
�h
� 0
0 w

i�;
where we used that P�1 D P?, since P is an isometry, as shown in Lemma 2.1. The same
applies to show that BM is .� ˚ �/-accretive if and only if B is .�˚ w/-accretive.

Now, to prove the theorem, we can apply Theorem 3.3 in [8] to DMBM , where
DM WD P�1DP. It follows that DMBM satisfies quadratic estimates. The same holds
for the operator DB via the isometry P, and for BD D B.DB/B�1.

Remark 2.3. Since the Riemannian measure of �.J / for any subinterval J � I is given
by
R
J
�0.x/ dx, the condition � 2A2.R; dy/ explicitly means that for all intervals J , we

have

(2.6)
� Z

J

�.x/ dx
�� Z

J

1

w.x/
dx
�
.
� Z

J

r
�

w
dx
�2
:

Note that the hypothesis �; ��1; w; w�1 2L1loc and, more precisely, �; w 2Aloc
2 , is not

used quantitatively, but only to ensure that:
(1) L2.I;�/ and L2.M; �/ are contained in L1loc.dx/, so that the derivatives in the oper-

ator D can be, and are, interpreted in the sense of distributions,
(2) the isometry P maps dom.DM / bijectively onto dom.D/.
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x

y

Case 1

x

y

Case 2

x

y

Case 3

Figure 4. Completeness of the y-axes. In Case 1, �.x/ D
p
x on RC can be extended to an odd

bijection R! R. In Case 2, �.x/ D �1=x is not surjective onto R. In Case 3, �.x/ D ln.x/ is a
bijection from RC to R.

A way to extend Theorem 2.2 to more rough weights would be to define the domain
dom.D/ as the image of dom.DM / under the isometry P. In this way, one only requires
that

p
�=w 2 L1loc and (2.6) uniformly for all J � I , but, in this generality, the derivatives

in D do not have the standard distributional definition.

In one dimension, we have the following implication. It is not clear to us if such
relation between .�;w/ and � exists in higher dimension. See Theorem 2.2 below.

Proposition 2.4. If �;w 2A2.I; dx/, then � 2A2.R; dy/, where dy D �0.x/ dx.

Proof. The weight � is in A2.R; dy/ if (2.6) holds for all J � R. The A2 condition on an
interval J for � and w meansZ

J

�.x/ dx .
jJ j2R

J
1=�.x/ dx

and
Z
J

1

w.x/
dx .

jJ j2R
J
w.x/ dx

�

Applying Cauchy–Schwarz twice gives, as claimed,� Z
J

� dx
�� Z

J

1

w
dx
�
.

jJ j4

.
R
J
1=�/.

R
J
w/
�

�
jJ j2R

J

p
w=� dx

�2
�

� Z
J

r
�

w
dx
�2
:

Example 2.5. Consider the power weights �.x/ D x˛ and w.x/ D x�ˇ for x > 0. Then

�0.x/ D .
p
x /˛Cˇ and �.�.x// D .

p
x /˛�ˇ :

In computing ��1, we distinguish three cases.
Case 1. ˛ C ˇ C 2 > 0.
In this case, �.x/ D 2

˛CˇC2
.
p
x /˛CˇC2 is strictly positive and increasing. Thus,

�.y/ D
�˛ C ˇ C 2

2
y
� ˛�ˇ
˛CˇC2

:

The weight � 2A2.dy/ if and only if �1 < ˛�ˇ
˛CˇC2

< 1, or equivalently if ˛ > �1 and
ˇ > �1.
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Case 2. ˛ C ˇ C 2 < 0.
In this case, � is negative and equals 1

c
xc , where c D .˛ C ˇ C 2/=2 < 0 and

�.y/ D .�cy/
˛�ˇ

˛CˇC2 > 0:

The weight � 2A2.dy/ if and only if �1 < ˛�ˇ
˛CˇC2

< 1 or, equivalently, if ˛ < �1 and
ˇ < �1.

Case 3. ˛ C ˇ D �2.
In this case �0.x/D1=x and so �.x/D lnx. Then ��1.y/Dey and �.y/D .ey/.˛�ˇ/=2

is in A2.dy/ if and only if ˛ D ˇ D �1.
In either case, � 2A2 if and only if sgn.˛ C 1/ D sgn.ˇ C 1/. Case 2 shows that it is

possible that � 2A2 even if � and w are not. Note that in the extension of Case 1 to an
odd bijection, and in Case 3, the map � is a bijection and maps onto a complete manifold,
while in Case 2 the map � is not surjective. See Figure 4.

Assuming that j˛j; jˇj < 1 and extending to power weights �.x/ D jxj˛ and w.x/ D
jxj�ˇ , Theorem 2.2 applies and gives quadratic estimates for the operator BD, where

D D

�
0 �jxj�˛@xjxj

�ˇ

@x 0

�
;

on the weighted space L2.R; jxj˛/˚ L2.R; jxj�ˇ /.

Corollary 2.6. Let I �R and let �;w 2 Aloc
2 .R/ satisfy the assumptions of Theorem 2.2.

In particular, � 2A2.R; dy/. Let a and b be two complex-valued functions on I such that

�.x/ . Re a.x/; ja.x/j. �.x/;
w.x/ . Re b.x/; jb.x/j. w.x/

(2.7)

for a.e. x 2 I . Then the following Kato square root estimate holds:

k
p
�.1=a/@xb@x ukL2.I;�/ Å k@xukL2.I;w/:

Proof. Consider the multiplication operatorB D Œ�=a 0
0 b=w

�. The hypothesis in (2.7) yields
that B is bounded and accretive. Since

B D

�p
� 0

0
p
w

�
B

�p
� 0

0
p
w

��1
holds for any diagonal matrix B , we have that B is Œ � w �-bounded and Œ � w �-accretive.
The desired estimate follows by applying Theorem 2.2 to B and D, as defined in (2.1).
Indeed, the perturbed operator BD equals

BD D

�
0 �.1=a/@xw
b
w
@x 0

�
;

and so
k
p
�.1=a/@xb@x ukL2.I;�/ D k

p
.BD/2 Œ u0 �kH :
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The boundedness of the H1 functional calculus for BD on H D L2.I; �/˚ L2.I; w/

implies that sgn.BD/ is a bounded and invertible operator on H . Sincep
.BD/2 D sgn.BD/BD;

we have

k

p
.BD/2 Œ u0 �kH Å kBDŒ u0 �kH Å kDŒ u0 �kH Å k@xukL2.I;w/:

In one dimension, it is well known from [14] that the Kato square root estimate,
for uniformly bounded and accretive coefficients, is equivalent to the L2 boundedness
of the Cauchy singular integral on Lipschitz curves. It is therefore natural to investigate
what implications Corollary 2.6 has for the boundedness of the Cauchy singular integral.
Although the following two examples do not give any new result, we include them since
the observations may be useful in future work.

Example 2.7 (Cauchy integral on rectifiable graphs). Consider a curve 
 WD .t; '.t// as
the graph of a function 'WR! R. The curve 
 is Lipschitz if and only if '0 2L1.

The Cauchy singular integral

C
 .x/ WD
i

�
p:v:

Z 1
�1

u.y/

y C i'.y/ � .x C i'.x//
.1C i'0.y// dy

and its boundedness on L2.
/ for Lipschitz curves, is a classical and famous problem
in analysis. It was first showed by Calderón [12] that C
 WL2.
/ ! L2.
/ for a curve

 �C with small Lipschitz constant k'0kL1 . This smallness assumption was removed by
Coifman, McIntosh and Meyer in [14], where only k'0kL1 <1 was assumed. Finally,
David [17] showed that C
 is bounded on L2.
/ if and only if the curve 
 is Ahlfors–
David-regular, meaning that the one-dimensional Hausdorff measure H1 restricted on the
curve satisfies

H1.
 \ B.x; r// Å r;

for any ball B.x; r/ centred at x 2 
 . A crucial observation due to Alan McIntosh, which
led to the seminal work [14], is that the Kato estimate

k
p
�.1=a/@xb@x ukL2.R/ Å k@xukL2.R/;

for b D 1=a, implies the L2-estimate for C
 on Lipschitz curves. See also Kenig and
Meyer [24].

One can ask if the weighted estimates in Corollary 2.6 can be used to prove that C

is bounded on Ahlfors–David-regular graphs more general than Lipschitz graphs. This
is still unclear to us. The natural strategy is as follows. As in [26], the Cauchy singular
integral can be written as sgn..1=a.x//i@x/, for multiplier a.x/ D 1C i'0.x/, see also
Consequence 3.2 in [9]. Note that the arclength measure on 
 is

ds WD
p
1C .'0/2 dx D � dx:

The boundedness of C
 in L2.
; ds/ thus amounts to

ksgn..1=a/i@x/ukL2.R;�/ . kukL2.R;�/:
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By functional calculus, this is equivalent to

k
p
�.1=a/@x.1=a/@x ukL2.R;�/ . k.1=a/@xukL2.R;�/ D k@xukL2.1=�/:

The latter estimate would follow from Corollary 2.6, with b D 1=a, w D 1=�, if the
hypotheses were satisfied, since in this case,p

�=w D � D
p
1C .'0/2 and �.y/ D

p
�w D 1:

However, Corollary 2.6 does not apply here, since the accretivity condition Rea.x/D 1&
�.x/ is not satisfied, unless '0 is bounded.

We end this section by noting that the matrix-weighted Kato square root estimate (1.3),
which we consider in this paper, despite looking like a two-weight estimate, should be seen
as a one-weight estimate, as the proof of Theorem 2.2 clearly shows. In the following
example, we see that our results apply only when the weights in the square root operator
correctly match the weights in the norms.

Example 2.8 (Two-weight Hilbert transform). Consider the two-weight estimate

(2.8) kHukL2.�/ . kukL2.w/
for the Hilbert transform

Hu.x/ WD
i

�
p:v:

Z
R

u.y/

y � x
dy:

The problem of characterising for which weights �;w the estimate (2.8) holds was solved
in [25]. If we use functional calculus to write H as

p
�@2x.i@x/

�1, then (2.8) amounts to

(2.9) k

q
�@2x ukL2.�/ . k@xukL2.w/:

Changing variables y D �.x/ and u.x/ D v.�.x// as in Lemma 2.1, and using the chain
rule @x D �0@y , the two-weight estimate (2.8) becomesZ ˇ̌q

�.�0@y/2v.�.x//
ˇ̌2
�.x/ dx .

Z
j.�0.x/@yv/.�.x//j

2w.x/ dx:

Choosing �0.x/ D
p
�.x/=w.x/ gives .�0/2w D � in the right-hand side. Changing vari-

ables and using � ı � D
p
w� yields

�.x/ dx D
p
�.x/w.x/ �

p
�.x/=w.x/ dx D .� ı �/.x/ � �0.x/ dx D �.y/ dy:

Thus, estimate (2.8) holds if and only if the one-weight estimate

(2.10) k

q
�.�@y/2vkL2.�/ . k@yvkL2.�/

holds with the weight

�.y/ WD �0.��1.y// D
p
�.��1.y//=w.��1.y//

in the Kato square root operator. Corollary 2.6 does not apply directly to (2.10), nor
to (2.9), since it requires that the weights in the Kato square root operator correctly match
the weights in the norms.
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3. The .�;W / manifoldM

We now seek to generalise the results in Section 2 to higher dimension d � 2, starting with
Lemma 2.1. To cover general matrix weights W , we need to allow for more general dif-
feomorphisms �W� � Rd !M , where now M is some auxiliary smooth d -dimensional
Riemannian manifold, and� is an open set in Rd . The metric g forM will be determined
by � and W , but not the differential structure on M . In general, smooth weights .�;W /
will define a metric g for a manifold with non-zero curvature. For this reason, we need to
allow for curved manifolds. Also, we will soon work with homeomorphisms � which are
not smooth. So, while as sets and topological spaces M and � � Rd can be identified,
their differential structures will differ. A manifestation of this is that the metric g on M
will be smooth with respect to the differential structure on M , but not with respect to the
one on Rd . The natural pullback generalising (2.2) for the differential operator D in (1.4)
is now

(3.1) P W

�
v1.y/

v2.y/

�
7!

�
v1.�.x//

.d�x/?v2.�.x//

�
DW

�
u1.x/

u2.x/

�
:

Here v1WM ! C is a scalar function on M and v2 is a section of the cotangent bun-
dle T ?M , which we identify with TM using the metric g. This is important because,
although we can view v2 as a vector on M , it is a 1-form, so its pullback is obtained by
multiplying v2 ı � by the transpose .d�/? of the Jacobian matrix d�. Below J� denotes
the determinant of the Jacobian matrix det.d�/ WD det.g/1=2, where g D .d�/?d� is the
Riemannian metric on M pulled back to Rd .

Here and below, to ease notation, we shall identify maps defined on Rd and on M
through �, writing for example rMv1 for .rMv1/ ı �. We use v.y/ for functions defined
on M and u.x/ for functions defined on Rd . With a slight abuse of notation, we use the
abbreviations J�.y/, d�y and u.y/ for J�.��1.y//, d���1.y/ and u.��1.y//. The differ-
ential operators r and div are always defined on Rd .

To write the operator DM similar to D, we need the chain rule

ru1 D .d�/?rMv1;

which holds in the weak sense by Theorem A.2. We also require the L2-adjoint result for
vector fields u2WRd ! Cd , in Theorem A.3. We compute

P�1DP

�
v1
v2

�
D P�1D

�
v1 ı �

.d�?xv2/ ı �

�
D P�1

�
�.1=�/ divW Œ.d�?xv2/ ı ��

r.v1 ı �/

�
(3.2)

D P�1
�
�.1=�/ divM ¹J�1� d�x.W.d�x/?v2/ºJ�

ru1

�
D

�
�.1=�/J� divM ¹J�1� d�y.W.d�y/?v2/º

rMv1

�
:

We obtain the following generalisation of Lemma 2.1.

Lemma 3.1. Assume that � is a scalar weight on Rd and that W is a matrix weight
on Rd . Assume that � and W are smooth around �.x0/2Rd . Set

g WD �W �1 and � WD �=
p

detg:
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Let M be a Riemannian manifold with chart .U; �/ around x0 and metric g in this chart.
Let

(3.3) DM WD

�
0 �.1=�/ divM �

rM 0

�
:

Then the map PW L2.U; �/ ˚ L2.T U; �I / ! L2.��1.U /; �/ ˚ L2.��1.U /I Cd ; W /,
defined in (3.1), is an isometry, and P�1DP D DM .

Remark 3.2. There is a one-to-one correspondence between the pairs of weights .�;W /
and the pairs .g; �/ of Riemannian metric and weight, since inversely � D �

p
detg, and

W D .�
p

detg/g�1.

Proof of Lemma 3.1. To obtain the operator DM with a single scalar weight � on a mani-
fold, in (3.2), we require that

.1=�/J� D 1=� and J�1� d�W d�? D �I;

where I is the identity matrix. The first condition yields � D J��. Since the volume
change is J� D

p
detg, we have � D �=

p
detg as stated. For the second one, since the

metric in a chart � is g D d�? d�, and the matrices d� and d�? commute with the scalars �
and J�, we have

W

J��
D d��1.d�?/�1 D .d�? d�/�1 D g�1;

and so g D �W �1. To see that the map P in (3.1) is an isometry, it is enough to compute

(3.4)
Z

Rd

ju1.x/j
2�.x/ dx D

Z
M

jv1.y/j
2 �
p

detg
.y/

™
D�.y/

dy;

where dy is the Riemannian measure on M . AlsoZ
Rd

hW.x/u2.x/; u2.x/i dx D
Z

Rd

hW.x/.d�x/?v2.�.x//; .d�x/?v2.�.x//i dx(3.5)

D

Z
M

hW d�?v2.y/; d�?v2.y/i
dy
p

detg

D

Z
M

D 1
p

detg
d�W d�?v2.y/; v2.y/

E
dy

D

Z
M

jv2.y/j
2 �.y/ dy:

This concludes the proof.

We aim to prove a matrix-weighted Kato square root estimate on��Rd , by applying
Theorem 1.1 in [7] to the one-scalar-weight operator DM on M in (3.3) and pulling back
the result to Rd . However, this requires a modification of Lemma 3.1, since Theorems 1.1
and 1.2 in [7] only apply to prove inhomogeneous Kato square root estimates, because
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only local square function estimates can be proved onM without further hypothesis on its
geometry at infinity. As in equation (2.5) of [7], we introduce inhomogeneous first-order
differential operators

zD D

240 I �.1=�/ divW
I 0 0

r 0 0

35 acting on zH WD

24 L2.�;�/

L2.�;�/

L2.�ICd ; W /

35 ;(3.6)

zDM D

24 0 I �.1=�/ divM �

I 0 0

rM 0 0

35 acting on zHM WD

24 L2.M; �/

L2.M; �/

L2.TM; �/

35 ;(3.7)

where divergence and r in (3.6) are on Rd , and the square brackets denote the sum of
spaces. The domains of the operators r and rM are the weighted Sobolev spaces

H1
�;W .�/ WD ¹f 2W

1;1
loc .�/ W f 2L

2
loc.�;�/ with rf 2L2loc.�IR

d ; W /º;

H1
� .M/ WD ¹f 2W

1;1
loc .M/ W f 2L2loc.M; �/ with rMf 2L2loc.TM; �I /º;

respectively, so dom.r/DH1
�;W .�/ and dom.rM /DH1

� .M/. The closed operator�div
with domain

dom.div/ D ¹h 2 L2loc.�IR
d ; W �1/ W divh2L2loc.�;�

�1/º

is the adjoint of r with respect the unweighted L2 pairing. In the same way, �divM is the
closed operator with domain

dom.divM / D ¹h 2 L2loc.TM; �
�1/ W divM h2L2loc.M; �

�1/º;

and it is the adjoint of rM with respect the unweighted L2 pairing on M .
In Lemma 3.1, we assumed, qualitatively, that � was a smooth diffeomorphism. In

the following results of this section, we relax this condition to a Sobolev W 1;1 regularity,
which suffices for the proof. Already in one dimension, we have seen the usefulness of
such weaker regularity assumption in Example 2.5.

Consider the pullback zPW zHM !
zH via �2W 1;1

loc given by

zP W

24v1.y/v0.y/

v2.y/

35 7! 24 v1 ı �

v0 ı �

d�?v2 ı �

35 DW 24u1.x/u0.x/

u2.x/

35 :
The map zP preserves the domains of the operators zD and zDM .

Lemma 3.3. The map zP is an isometry, and zP.dom. zDM // D dom. zD/.

Proof. For scalar-valued functions, apply Theorem A.2 with v D � and V D �I . Note
that since � ı � D �=J�, we have v� D �. Also, since the metric d��1.d��1/? D g�1 D
��1W , it follows that V� D W . For vector fields, if Eu 2 L2.�IRd ; W �1/ with div Eu in
L2.�;��1/, apply Theorem A.3 with V D W �1 and v D ��1. Indeed, V � D ��1I and
v� D ��1, so

J�1� �� Eu D J
�1
� d� Eu ı ��1 2 L2.TM; ��1I /
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and
div
���
J�
Eu
�
D
��

J�
.div Eu/ 2 L2.M; ��1/:

As in the proof of Lemma 3.1, one sees that zP is an isometry. A calculation as in (3.2),
shows that

zP�1 zDzP D zDM :

We have the following generalisation of Theorem 2.2.

Theorem 3.4. Let��Rd be an open set, and let �W�!M be aW 1;1
loc homeomorphism

onto a complete, smooth Riemannian manifold .M;h/. Let � andW be scalar and matrix
weights in Aloc

2 .�/. Assume that the metric on M pulled back via � is

g D �W �1;

and define the scalar weight � D �=
p

detg on M . Let zD be the differential operator
in (3.6), and let zB be a .� ˚ � ˚ W /-bounded, .� ˚ � ˚ W /-accretive multiplica-
tion operator on zH as in Definition 1.2. If the manifold M has Ricci curvature bounded
from below and positive injectivity radius, and if � 2AR2 .M/, for some R > 0, then zB zD
and zD zB are bisectorial operators that satisfy quadratic estimates and have boundedH1

functional calculus in zH .

Remark 3.5. The Riemannian manifoldM is assumed to be smooth with smooth metric.
But since the map � is not smooth in general, the pullback g of the smooth metric of M
on � may be non-smooth. See Figure 5.

M

� � Rd Rd

�

'�1ı�

'

Figure 5. The Riemannian manifold M , with a chart ' from its smooth atlas. A function f on M
is smooth if f ı ' is smooth. But f ı � is not in general smooth, since the map '�1 ı � is only
in W 1;1.

Proof of Theorem 3.4. Given the differential operator zD as in (3.6), consider the operators
zDM WD zP�1 zDzP given in (3.7) and the operator zBM WD zP�1 zB zP.

Lemma 3.1 shows that the extended pullback transformation zP is an isometry between
the weighted spaces zHM and zH . Indeed, let u D zPv; then

hzP�1. zBu/; zP�1. zBu/i zHM
D hzPzP�1. zBu/; zBui zH ;

from which follows that zBM is .� ˚ � ˚ �I /-bounded and .� ˚ � ˚ �I /-accretive if and
only if zB is .�˚ �˚W /-bounded and .�˚ �˚W /-accretive.
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The result in Lemma 2.3 of [7] implies that zDM is self-adjoint, and so is the opera-
tor zD D zP zDM zP�1, since zP is unitary. By Theorem 1.1 in [7], the operator zBM zDM has
boundedH1 functional calculus in L2.M ICd ˚ TM; �I /. The same holds for the oper-
ator zB zD via the isometry zP, and for zD zB D zB�1. zB zD/ zB .

Analogous to Corollary 2.6, we derive from Theorem 3.4 the following Kato square
root estimate.

Corollary 3.6. Assume that �W�! M , �, W , g and � satisfy the hypotheses of Theo-
rem 3.4. Consider the operator

Lu WD �
1

�
divAru �

1

�
div.Ebu/C

1

�
hEc;rui C d � u;

where the matrix

B WD

"
d ��1=2 EcW �1=2

W �1=2 Eb��1=2 W �1=2AW �1=2

#
is bounded and accretive with respect to the Euclidean metric, meaning that

B 2 L1 and inf
x2�
v2Cd

RehB.x/v; vi
jvj2

& 0:

Then the Kato square root estimate

k
p
aLukL2.�;�/ Å krukL2.�ICd ;W / C kukL2.�;�/

holds for any complex-valued function a 2 L1.�/ such that inf� Re.a/ & 1.

Proof. Apply Theorem 3.4 to zD defined in (3.6) and coefficients

zB D

24a 0 0

0 d ��1 Ec

0 W �1 Eb W �1A

35 :
By the hypothesis on the coefficient and the property of a, the matrix zB is .�˚ �˚W /-
bounded and .�˚ �˚W /-accretive, see Definition 1.2. By Theorem 3.4, the operator
zB zD has bounded H1 functional calculus on zH D L2.�; �/2 ˚ L2.�ICd ; W /. This

implies the boundedness and invertibility of the operator sgn. zB zD/, and so by writingp
. zB zD/2 D sgn. zB zD/ zB zD;

we have


q. zB zD/2 h u0
0

i



zH
Å



 zB zDh u0

0

i



zH
Å



 zDh u0

0

i



zH
Å krukL2.�;W / C kukL2.�;�/:

This concludes the proof, since
p
. zB zD/2 applied to Œu 0 0�T equals Œ

p
aLu 0 0�T.
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We end this section with some examples of matrix weights and discuss when the
hypotheses on the manifold M , associated with �;W are met. To obtain examples of �
and W , we consider manifolds M embedded in RN , obtained as graphs of functions
'WRd ! Rm, with N D d Cm. In Theorem 3.4, we thus have

� W Rd !M; x 7! .x; '.x// D .x; y/;

with Jacobian matrix d�x D .I;d'x/T. By reverse engineering, we get from ' an example
of a Riemannian metric on Rd :

g D d�?x d�x D I C d'?x d'x :

For any choice of scalar weight �, this yields an example of a matrix weight W D �g�1.

Example 3.7. Consider the graph of

(3.8) '.x1; x2/ D
� x1

x21 C x
2
2

, x2

x21 C x
2
2

�
D .y1; y2/;

for x D .x1; x2/ 2 R2 n ¹.0; 0/º. Here, �.x1; x2/ D .x1; x2; '.x1; x2// and M � R4 is
complete and asymptotically isometric to R2 both when jxj2 D x21 C x

2
2 ! C1 and

when jxj2! 0. Therefore, the Ricci curvature and the injectivity radius are bounded from
below by a compactness argument. In this case,

g' D I C d'?x d'x D
�
1C

1

jxj4

� �
1 0

0 1

�
is a conformal metric. Therefore, this only gives scalar weighted examples ofW to which
Theorem 3.4 applies. To see a more general matrix weight W appear, we can tweak (3.8)
by composing ' with a non-conformal diffeomorphism. Consider

�.x1; x2/ D
�
h
� x1

x21 C x
2
2

�
, x2

x21 C x
2
2

�
;

where h.t/ D t
p
1C t2, for t 2R. Again M is asymptotically isometric to R2 both as

jxj2 !1 and when jxj2 ! 0, so the geometric hypotheses on M are satisfied. To see
that the metric g� obtained from �, and hence the matrix W , is not equivalent to a scalar
weight, we verify that the singular values of d�x do not have bounded quotient. We cal-
culate

@x1 �.t; 0/ D .h
0.1=t/ � .�1=t2/; 0/ and @x2 �.t; 0/ D .0; 1=t

2/;

so the ratio j@x1�j=j@x2�j.t; 0/D jh
0.1=t/jÅ 1=t !C1 as t ! 0C. The geodesic discs

in the metric g� are shown in Figure 1.

To apply Theorem 3.4, we need the Riemannian manifold .M;h/ to satisfy the geomet-
ric hypothesis in Theorem 1.1 of [7], namely, that the Ricci curvature Ric.M/ is bounded
from below andM has a positive injectivity radius. In a forthcoming paper, we shall, how-
ever, relax the positive injectivity radius assumption in [7], so that Theorem 3.4 applies to
this example.
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Example 3.8. LetM be the graph of the scalar function '.x;y/D .x2C y2/�a, for a>0.
The Gaussian and the Ricci curvature coincide in this case, since we are in dimension two.
So, as x2 C y2 ! 0C, the Ricci curvature behaves asymptotically like �.x2 C y2/2a.
This can be checked via the Brioschi formula for the Gaussian curvatureK in terms of the
first fundamental form, see p. 13 of [18]. For a surface described as graph of the function
z D '.x; y/, as in our case, we have

K D
'xx 'xy � '

2
xy

.1C '2x C '
2
y /
2
D �

.1C 2a/4a2.x2 C y2/2a

Œ.x2 C y2/2aC1 C 4a2�2
Å �.x2 C y2/2a

as j.x; y/j ! 0C, and a > 0. So the Ricci curvature is bounded below, but the injectiv-
ity radius is not bounded away from zero. Indeed, as discussed in Section 2.1 of [7], the
geometric hypothesis in Theorem 1.1 of [7] implies, in particular, that geodesic balls of
radius 1 are Lipschitz diffeomorphic to Euclidean balls. But this is not true in this exam-
ple, so [7] does not apply to this manifold. Geodesic discs in this metric g� are shown
in Figure 2.

4. Matrix degenerate boundary value problems

We show in this final section how the methods in this paper yield solvability estimates for
elliptic boundary value problems (BVPs) for matrix-degenerate divergence form equations

(4.1) divAru D 0;

on a compact manifold � with Lipschitz boundary @�. We assume that there exists a
matrix weight V that describes the degeneracy of the coefficients A, in the following way.

Lemma 4.1. Let V be a matrix weight and let A be a multiplication operator. The follow-
ing are equivalent:

• V �1=2AV �1=2 is uniformly bounded and accretive;
• V �1A is V -bounded and V -accretive;
• for all vectors v;w 2CdC1, we have

(4.2) RehAv; vi & hV v; vi and jhAv;wij . hV v;wi:

A weak solution u to (4.1) is a function such that ru 2 L2loc.T�; V /, where T� is
the tangent bundle on �. Since the weighted space L2loc.T�; V / ,! L1loc.T�/, we have
that Aru 2 L1loc.T�/ and ru 2 L1loc.T�/, so u 2W 1;1

loc .T�/ by the Poincaré inequality.
Further, we assume given a closed Riemannian manifoldM0 and, for ı > 0, a bi-Lipschitz
map

(4.3) �0 W Œ0; ı/ �M0 ! U � �; .t; x/ 7! �0.t; x/;

between a finite part of the cylinder R �M0 and a neighbourhood U of the boundary @�,
so that �0.¹0º �M0/D @�; see Figure 6. When @� is a strongly Lipschitz boundary, that
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is, when @� is locally the graph of a Lipschitz function, such a map �0 can be constructed
using a smooth vector field that is transversal to @�.

To analyse a weak solution u of (4.1) near @�, we define the pullback u0 WD u ı �0
on the cylinder C0 WD Œ0; ı/ �M0. Then u0 satisfies

(4.4) divC0 A0rC0u0 D 0;

with coefficients

(4.5) A0 WD J�0.�0/
�1
� A.�

�
0/
�1;

where .�0/� denotes the pushforward via �0, so

J�1�0 .�0/�.v/ WD J
�1
�0

d�0.v ı ��10 /

is the Piola transformation, and ��0v D .d�0/?v ı �0 denotes the pullback via �0. See
Section 7.2 and Example 7.2.12 in [27] for more details on this transformation. The dif-
ferential operators in (4.4) are

(4.6)
rC0u0 WD Œ@tu0;rM0u0�

T;

divC0 Ev0 WD @t .e0 � Ev0/C divM0.Ev0/k;

where e0 denotes the vertical unit vector along the cylinder, and .Ev0/k is the tangential
part of Ev0. Define the pulled-back matrix weight

V0 WD J�0.�0/
�1
� V.��0/

�1:

Lemma 4.2. The matrix V �1=2AV �1=2 is uniformly bounded and accretive on a neigh-
bourhood U of the boundary @� if and only if V �1=20 A0V

�1=2
0 is uniformly bounded and

accretive on Œ0; ı/ �M0.

Indeed, the condition (4.2) for A and V is seen to be equivalent to (4.2) for A0 and V0.
To obtain solvability estimates, we require that the matrix weight V0 has the structure

(4.7) V0.t; x/ D

�
�.x/ 0

0 W.x/

�
;

meaning that V0 is constant along the cylinder C0 and that the vertical direction is a prin-
cipal direction of V0. The functions � andW are assumed to be scalar and matrix weights
on M0, respectively. Using a transformation of coefficients A 7! B from [4], the diver-
gence form equation (4.4) can be turned into an evolution equation

(4.8) .@t CDB/f0 D 0;

for the conormal gradient

f0 WD Œ.1=�/@�A0u0;rM0u0�
T

of u0 on the cylinder Œ0; ı/ �M0. Here,

@�A0u0 WD e0 � A0rC0u0

is the conormal derivative. We make this correspondence precise in the following lemma.



The metric for matrix degenerate Kato square root operators 2107

Lemma 4.3. A function u0 is a weak solution to the divergence form equation

divC0 A0rC0u0 D 0; with A0 D
�
a b

c d

�
;

if and only if its conormal gradient f0 solves the Cauchy–Riemann system (4.8) with

D D

�
0 �.1=�/ divM0 W

rM0 0

�
and B D

�
�a�1 �a�1b

W �1ca�1� W �1.d � ca�1b/

�
:

The operatorD is self-adjoint onL2.M0;�/˚L
2.TM0;W /, andB is .�˚W /-bounded

and .�˚W /-accretive.

Proof. Consider the transformation of the coefficient A0 7! I.A0/ given by

I

��
a b

c d

��
D

�
a�1 �a�1b

ca�1 d � ca�1b

�
:

This map is an involution and preserves accretivity and boundedness (see Proposition 3.2
in [4]). Following [4, 7], the divergence form equation (4.4) is equivalent to

(4.9)
�
@t C

�
0 �divM0

rM0 0

�
I.A0/

��
@�A0u0
rM0u0

�
D

�
0

0

�
:

Then a computation shows that

(4.10) I

��
v1 0

0 W1

� �
a b

c d

� �
v2 0

0 W2

��
D

�
v�12 0

0 W1

�
I.A0/

�
v�11 0

0 W2

�
:

We introduce weights into the system (4.9) as follows:�
1=� 0

0 I

��
@t C

�
0 �divM0

rM0 0

� �
1 0

0 W

� �
1 0

0 W �1

�
I.A0/

�
� 0

0 I

� �
1=� 0

0 I

��
D

�
@t CD

�
1 0

0 W �1

�
I.A0/

�
� 0

0 I

���
1=� 0

0 I

�
;

where we used that multiplication by .1=�/ and @t commute, since � is independent of t .
Using (4.10), we define

B WD

�
1 0

0 W �1

�
I.A0/

�
� 0

0 I

�
D I

��
��1 0

0 W �1

�
A0

�
1 0

0 I

��
:

The argument of I on the right-hand side is .�˚W /-bounded and .�˚W /-accretive.
Since I preserves accretivity and boundedness, B is uniformly bounded and accretive.
The reader can check that B coincides with the expression given in the statement of the
lemma.

We note thatDB , withD and B from Lemma 4.3, has the same structure as the opera-
tors considered in Section 3, if we replace Rd by a compact manifoldM0. As in Section 3,
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Figure 6. The neighbourhood U of @� in � is transformed by the bi-Lipschitz map ��10 into
the cylinder Œ0; ı/ �M0, with anisotropic degenerate coefficients A0. The coefficients A1 on the
cylinder Œ0; ı/ �M1 are isotropically degenerate.

we use a metric onM0 adapted to the weights �;W ; we assume the existence of a smooth,
closed Riemannian manifold .M1; g1/ and a W 1;1

loc -homeomorphism �WM0 !M1, such
that the pullback of the metric g1 on M1 via � is

g0 WD �
�g1 D �W

�1;

and we defined the scalar weight

(4.11) � WD ���=
p

detg1

on M1, where ��� D � ı ��1 denotes the pushforward via �. We extend the map � to a
map between the corresponding cylinders by setting

�1 W Œ0; ı/ �M0 ! Œ0; ı/ �M1; .t; x/ 7! .t; �.x//:

The extension of the Riemannian metric on the cylinder and its pullback via �1 are

(4.12) zg1 WD

�
1 0

0 g1

�
; zg0 D �

�
1 zg1 WD

�
1 0

0 �W �1

�
:

In the following, the variable x is in M0, while y D �.x/ 2 M1. We denote by dx, dy
and dz the Riemannian measures on M0, M1 and on �, respectively; see Figure 6. We
also denote by dist0 and dist1 the distance functions onM0 andM1 induced by g0 and g1.

Note that A1 is isotropically degenerate, meaning that V1 D �I is a scalar weight in
each component. Weak solutions to the anisotropically degenerate equation (4.4) corre-
spond to weak solutions to an isotropically degenerate equation on Œ0; ı/ �M1.

Lemma 4.4. Define the coefficients A1 on the cylinder Œ0; ı/ �M1 by

A1 WD
1

J�1
.�1/�A0�

�
1 D

1

J�1
d�1.A0 ı ��11 / d�?1 :

Then A1=� is uniformly bounded and accretive. Moreover, the function u1 D u0 ı ��11 on
C1 D .0; ı/ �M1 is a weak solution to

(4.13) divC1 A1rC1u1 D 0
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if and only if u0 is a weak solution to

(4.14) divC0 A0rC0u0 D 0

on C0 D .0; ı/ �M0.

Proof. Define the matrix weight

V1 WD
1

J�1
.�1/�V0.�1/

�

on Œ0; ı/ �M1. Replacing ��10 by �1 in Lemma 4.2, shows that V �1=21 A1V
�1=2
1 is uni-

formly bounded and accretive. We have

V1 D
1

p
detg1

�
1 0

0 d�

� �
� 0

0 W

� �
1 0

0 d�?

�
D

�
� 0

0 �I

�
;

since J� D
p

detg1 and J�1� d�W d�? D �I . It follows that

V �1=21 A1V
�1=2
1 D A1=�:

If rC0 u0 2 L
2.V0/, then .��11 /�rC0 u0 D rC1.u0 ı �

�1
1 / is in L2.TC1; �I /. Moreover,

A0rC0 u0 2 L
2.TC0; V

�1
0 /, so the non-smooth Piola transformation in Theorem A.3

shows that

divC1

.�1/�

J�1
.A0rC0u0/ D

.�1/�

J�1
.divC0 A0rC0u0/ D 0

in L2.C1; ��1/. This completes the proof.

Since A1 is isotropically degenerate, we can apply results from Section 4 of [7] to
obtain solvability estimates of BVPs for divC1 A1rC1u1 D 0. One can then translate to
matrix-weighted norms on the cylinder C0 and in � to obtain the corresponding results
for our BVPs for matrix-degenerate equations. To illustrate this, we consider the L2 non-
tangential maximal Neumann solvability estimate

(4.15) krukX . k@�A0u��MkL2.M;!�10 /;

proved in Theorem 1.4 of [7]. In the notation of the present paper, the right-hand side
of (4.15) is � Z

M1

je0 � A1rC1u1j
2 1

�
dy
�1=2

;

where rC1u1 is the full gradient of u1 as defined in (4.6). Note that

(4.16) rC1u1 D .�
�
1/
�1
rC0u0 and

1

�
dy D

�J�
�

�
.J� dx/ D

J 2�

�
dx:

Since A1 D J�1�1 .�1/�A0�
�
1 , we get

e0 � A1rC1 u1 D J
�1
�1
.��1e0/ � A0rC0 u0 D J

�1
�1
e0 � A0rC0 u0;
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and since J�1�M0
D J�, by using (4.16), we haveZ
M1

je0 � A1rC1u1j
2 1

�
dy D

Z
M0

je0 � A0rC0u0j
2 1

�
dx:

As for the left-hand side in (4.15), translating the Banach norm in equation (4.13) of [7]
to our present notation gives

kruk2X D

Z
M1

j zN�.�rC1u1/j
2 � dy C

Z
�

hV ru;rui.1 � �/2 dz;

where �.t/ is a smooth cut-off towards the top of the cylinder, for example, �.t/ D
max¹0;min.1;2� 2t=ı/º. Note that in the second term, with abuse of notation, we denoted
again by � the pullback � ı ��10 on �. We recall the definition of the modified non-
tangential maximal function zN� used on the cylinder Œ0; ı/ �M1.

Definition 4.5 (Modified non-tangential maximal function). Let c0 > 1, c1 > 0 be fixed
constants. For a point .t; y/ 2 Œ0; ı/ �M1, we define the Whitney region

W1.t; y/ WD .t=c0; c0 t / � B1.y; c1 t /;

where B1 denotes the geodesic ball of M1 with respect to the metric dist1. Then the non-
tangential maximal function at a point y1 2M1 is

zN�f .y1/ WD sup
t2.0;c0ı/

� 1

�.W1.t; y1//

“
W1.t;y1/

jf .s; y/j2 �.y/ ds dy
�1=2

;

where the measure �.W1.t; y1// is taken with respect to the weighted measure � ds dy and
equals t .c0 � c�10 /�.B1/.

Consider on M0 the distance dist0.x; �/ WD dist1.�.x/; �.�//, which is the geodesic
distance on M1 pulled back to M0. The Whitney regions on Œ0; ı/ �M0 are

W0.t; x/ WD .t=c0; c0 t / � ¹� 2M0 W dist0.x; �/ < c1tº:

Changing variables with y1 D �.x1/, since W0.t; x1/ D �1.W1.t; y1//, we get

(4.17)
“
W1.t;y1/

�.y/ ds dy D
“
W0.t;x1/

�.x/ ds dx DW �.W0.t; x1//:

Changing variables using �1 and the expression of the metric zg1 in (4.12), we also get“
W1.t;y1/

j�.s/rC1u1j
2 �.y/ ds dy

D

“
W0.t;x1/

�.s/2hd��11 .d��11 /?rC0.�
�
1u1/;rC0.�

�
1u1/i�.x/ ds dx

D

“
W0.t;x1/

�.s/2hŒ � 0
0 W

�rC0u0;rC0u0i ds dx;
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since d��11 .d��11 /? D zg�11 and ��1 u1 D u0. We also haveZ
M1

j zN�.�rC1u1/j
2 �.y/ dy D

Z
M0

j zN0.�rC0u0/j
2�.x/ dx;

where the new modified non-tangential maximal function is

zN0f .x1/ WD sup
t2.0;c0ı/

� 1

�.W0.t; x1//

“
W0.t;x1/

hŒ � 0
0 W

�f .s; x/; f .s; x/i ds dx
�1=2

;

and �.W0.t; x1// is as in (4.17).

Figure 7. Non-tangential approach regions. On the left, the �;W -adapted approach regions: in the
first �W �1 !1 at M0, in the second region �W �1 ! 0. On the right, the corresponding non-
tangential conical approach regions to M1.

Note that the approach regions for zN0, shown in Figure 7 (left), are intimately con-
nected to the failure of standard off-diagonal estimates for the resolvent of the opera-
tor DB from Lemma 4.3. On the other hand, such off-diagonal estimates do hold for the
corresponding operator associated to divC1 A1rC1u1 D 0, from Proposition 4.2 in [7].
And, indeed, on M1 we have standard non-tangential approach regions on the right in
Figure 7, and in Theorem 1.4 of [7].

For our solvability result, we also need the analogue of the Carleson discrepancy k�k�
from equation (4.10) in [7] for a multiplier E on the cylinder Œ0; ı/ �M0, with Whitney
regions W0 and balls B0 � M0 taken with respect to the distance dist0. � ; �/. The quan-
tity kEk2� is given by

sup
�2M0

r<ı

“®
0<t <r
x2B0.�;r/

¯� sup
.s;�/2W0.t;x/

jV0.�/
�1=2E.s; �/V0.�/

�1=2
j

�2 dt
t

�.x/ dx
�.B0.�; r//

,

where �.B0.�; r// D
R
B0.�;r/

�.x/ dx.
Summarising, we have obtained the following solvability result for the Neumann BVP

for anisotropically degenerate divergence form equations (4.4).

Theorem 4.6. Let � be a compact manifold with Lipschitz boundary @�, and let A be a
matrix-valued function on� whose degeneracy are described by a matrix-weight V , as in
one of the conditions of Lemma 4.1. Let �0 be the bi-Lipschitz map defined in (4.3). Let
A0 D A0.t; x/ and V0.t; x/ be the matrices transformed via �0 as in (4.5) and assume
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that V0 D Œ � 0
0 W

� for a scalar weight � and a matrix weight W , as in (4.7). Assume that
the matrix A0.t; x/ has trace

A0.x/ WD A0.0; x/ D lim
t!0

A0.t; x/:

Assume the existence of a smooth, closed Riemannian manifold .M1; g1/, and a W 1;1
loc -

homeomorphism �WM0 ! M1 between the manifolds at the base of the cylinders, as in
Figure 6. We assume also that the scalar weight � in (4.11) is a Muckenhoupt weight
in A2.M1/.

Then there exists " > 0, depending only on Œ��A2.M1/, kV
�1=2
0 A0V

�1=2
0 kL1 the accre-

tivity constant of V �1=20 A0V
�1=2
0 , and the structural geometric constants of M1, i.e.,

dimension, injectivity radius, and lower bound on the Ricci curvature, such that if

(1) the Carleson discrepancy kA0 � A0k� < ",

(2) the trace A0 is close to its adjoint as operator on L2.C0; V0/, namely,

sup
x2M0

jV0.x/
�1=2.A?0.x/ � A0.x//V0.x/

�1=2
j < ";

then the Neumann solvability estimateZ
M0

j zN0.�rC0u0/j
2� dx C

Z
�

hV ru;rui.1 � �/2 dz .
Z
M0

j@�A0u0j
2 1

�
dx

holds for all weak solutions u to divAru D 0 in �, with near boundary values u0 of u,
in C0, as above.

Proof. Apply Theorem 1.4 in [7] to the isotropically degenerate equation (4.13) on the
cylinder Œ0; ı/ �M1 (see Figure 6). Translation of this result to the anisotropically degen-
erate equation divAru D 0 in � (and the Lipschitz equivalent equation divC0 A0rC0u0
D 0 on the cylinder Œ0; ı/ �M0, near @�) gives the stated result. We have seen above the
translation of the solvability estimate. The translation of the Carleson discrepancy and the
almost self-adjointness hypothesis is done similarly using Lemma 4.2 withA;A0 replaced
by A1; A0 and a change of variables in the integrals.

The solvability estimates for theL2 Dirichlet and Dirichlet regularity BVPs from The-
orem 1.4 in [7] and the Atiyah–Patodi–Singer BVPs from Theorems 4.5 and 4.6 in [7] can
similarly be extended to anisotropically degenerate equations. We leave the details to the
interested reader.

A. W 1;1 pullbacks and Piola transformations

We generalise the commutation theorem (Theorem 7.2.9 and Lemma 10.2.4 in [27]) for
external derivatives and pullbacks toW 1;1

loc homeomorphisms and weighted L2 fields. (We
only deal with the scalar and vector case which we need, and only on Rd .) Throughout this
section, �WRd ! Rd is assumed to be a W 1;1

loc homeomorphism, meaning that � and ��1

are continuous, with the weak Jacobian matrices d� and d��1 in L1loc.
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Theorem A.1 (Change of variables). Let � � Rd be an open set. If � is a W 1;1
loc homeo-

morphism, then Z
�

f .�.x//J�.x/ dx D
Z
�.�/

f .y/ dy

holds for all integrable, compactly supported functions f .

See Theorem 2 and Section 3 of [21] for a proof.
For f 2C1c .R

d / and h2C1c .R
d IRd /, the chain rule in the weak sense reads

(A.1) �

Z
f .�.x// divh.x/ dx D

Z
.d�x/?.rf /.�.x//h.x/ dx:

This holds for W 1;1
loc homeomorphism �, as readily seen by mollifying � and passing to

the limit. We first extend to non-smooth f :

Theorem A.2 (Non-smooth chain rule). Assume v; V 2Aloc
2 and f 2L2.v/ is compactly

supported, with weak gradient rf 2L2.V /. Let � be aW 1;1
loc homeomorphism. Define the

weights

v�.x/ WD J�.x/v.�.x//; V�.x/ WD J�.x/ d��1x V.�.x//.d�x/?/�1;

and assume v�; V� 2Aloc
2 . Then ��f D f ı �2L2.v�/ has weak gradient

r.��f / D ��rf D d�?.rf ı �/ 2 L2.V�/:

Proof. Mollify
ft WD �t � f;

so that rft D �t � rf . It follows that ft ! f in L2.v/ and rft !rf in L2.V / using
dominated convergence and bounds for the vector Hardy–Littlewood maximal operator
introduced by Christ and Goldberg [13], see Theorem 3.2 in [19] and Appendix B. Note
that

k��f kL2.v�/ D kf kL2.v/ and k��.rf /kL2.V�/ D krf kL2.V /:

Apply the chain rule (A.1) to ft and � for a fixed test function h. We can pass to the limit
in t and conclude, since the left-hand side of (A.1) is bounded, asZ

jft .�.x// � f .�.x//jv�.x/ dx .
� Z
jft .�.x// � f .�.x//j

2v�.x/ dx
�1=2

D

� Z
jft .y/ � f .y/j

2v.y/ dy
�1=2
! 0;

where the first integral is on the compact support of h and we used Theorem A.1 when
changing variables. For the right-hand side in (A.1), using that jV �1� j 2 L

1
loc, we boundZ

jhV 1=2� .��.rft / � �
�.rf //; V �1=2� hij dx .

� Z
jV 1=2� .��.rft / ��

�.rf //j2 dx
�1=2

D

� Z
jV 1=2.rft � rf /j

2 dy
�1=2
! 0:

This concludes the proof.
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Changing variables in (A.1) gives

(A.2) �
Z
f .y/

1

J�.��1.y//
.div h/.��1.y// dy D

Z
rf .y/ �

� 1
J�

d�h
�
.��1.y// dy:

We refer to the transformation applied to h on the right-hand side of (A.2), as the Piola
transformation J�1� ��, where �� denotes the pushforward via �. This transformation is
the adjoint of the pullback �� with respect to the unweighted L2 pairing.

We extend identity (A.2) to non-smooth vector fields h.

Theorem A.3 (Non-smooth Piola transformation). Assume that v; V 2 Aloc
2 and that h 2

L2.Rd IRd ; V / is compactly supported, with weak divergence div h 2L2.Rd ; v/. Let �
be a W 1;1

loc homeomorphism. Define the weights

v�.y/ WD J�.�
�1.y//v.��1.y//; V �.y/ WD .J�.d�?/�1V d��1/ ı ��1.y/;

and assume v�; V � 2Aloc
2 . Then

J�1� ��h D
� 1
J�

d�h
�
ı ��1 2 L2.V �/;

with weak divergence

div.J�1� ��h/ D
� 1
J�

div h
�
ı ��1 2 L2.v�/:

Proof. The proof is analogous to the one of Theorem A.2. We mollify

ht WD �t � h

component-wise, so that ht ! h in L2.Rd IRd ; V /, and divht ! divh in L2.Rd ; v/, by
dominated convergence and bounds for the vector Hardy–Littlewood maximal operator,
as in the proof of Theorem B.1. Apply the chain rule (A.2) to ht and � for a fixed test
function f . We pass to the limit in t and note that, since .v�/�1 2L1loc, the left-hand side
of (A.2) is bounded by� Z ˇ̌̌ 1

J�.��1.y//
.div ht � div h/.��1.y//

ˇ̌̌2
v�.y/ dy

�1=2
D

� Z
j.div ht � div h/.x/j2v.x/ dx

�1=2
! 0;

where the first integral is on the compact support of the test function f , and then used
Theorem A.1 and kJ�1� ��.divh/kL2.v�/ D kdivhkL2.v/ when changing variables. For the
right-hand side of (A.2), since j.V �/�1j 2 L1loc, we boundZ ˇ̌̌

.V �/�1=2rf � .V �/1=2
���
J�
.ht / �

��

J�
.h/
�ˇ̌̌

dy

.
� Z ˇ̌̌

.V �/1=2
���
J�
.ht � h/

�ˇ̌̌2
dy
�1=2
D

� Z
jV 1=2.ht � h/j

2 dx
�1=2
! 0;

where we used that kJ�1� ��hkL2.V �/ D khkL2.V /. This concludes the proof.
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B. Approximation in weighted Sobolev spaces

We include a generalisation to our two weights and matrix weight setting of the classical
mollification argument due to Friedrichs.

Given an open set � � Rd , let � and W be a scalar and matrix weights respectively,
both in Aloc

2 .�/ as in Definition 1.4. Consider the weighted Sobolev space

H .�/ WD H 1
.�;W /.�/ WD ¹u 2 L

2.�;�/ W ru 2 L2.�IRd ; W /º:

The space Hloc.�/ is defined analogously by requiring that u and the weak gradient ru
are in the corresponding spaces L2loc.�;�/ and L2loc.�IR

d ; W /.
We consider a local version of the vector Hardy–Littlewood maximal operator MW

introduced by Christ and Goldberg [13]. For � � Rd , let

(B.1) M�
W .Eu/.x/ WD sup

B3x
B��

«
B

jW 1=2.x/W �1=2.y/Eu.y/j dy;

where the supremum is taken over balls containing x, which are contained in�. The oper-
atorMW is bounded from L2.Rd IRd / to L2.Rd /, see Theorem 3.2 in [19]. Equivalently,
ifM is the Hardy–Littlewood maximal operator, thenM.jW 1=2.x/ � j/maps vector-valued
functions in L2.Rd IRd ; W / to scalar functions in L2.Rd /. In particular, we will use
that M�.jW 1=2.x/ � j/ is continuous from L2.�IRd ; W / to L2.�/.

Theorem B.1 (Muckenhoupt–Friedrichs). Let � � Rd , and let � and W be scalar and
matrix weights in Aloc

2 .�/. Then, for any u2Hloc.�/, there exists a sequence ¹unºn2N in
C1c .R

d / such that

un ! u in L2loc.�;�/;

run�! ! ru�! in L2.!IRd ; W /; for all ! � �;

where ! has compact closure inside �, and u�! is the restriction of u to the set !.

Proof. We create the approximating sequence un by mollification. Let f be the approxi-
mation of the identity

f .x/ WD

´
ce�1=.1�jxj

2/ for jxj < 1;
0 otherwise;

where the constant c is chosen so that f is normalised in L1. Then f 2C1c .B.0; 1// is
radially decreasing on Rd . Let ft be the L1-rescaling f .x=t/1=td . By Corollary 2.1.12
in [20], for any locally integrable function u, it holds that

(B.2) sup
t>0

.ft � juj/.x/ �Mu.x/ for a.e. x 2Rd ;

where M is the Hardy–Littlewood maximal operator. Since f is an approximation of the
identity, the sequence ut WD u � ft converges pointwise almost everywhere to u as t ! 0.
The bound (B.2) provides a domination in L2.!; �/ for any compact subset ! � �, and
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for any weight � 2 Aloc
2 .�/, so we can conclude via the dominated convergence theorem

that un ! u in L2loc.�;�/.
For the convergence of rut to ru in L2.�IRd ; W /, we extend the bound in (B.2)

using the local vector maximal operator in (B.1). For a vector-valued function v, the con-
volution f � v is intended component-wise. Notice that, by linearity of the convolution,
for any matrix-valued function A.x/, we have

A.x/.f � v/.x/ D .f � A.x/v/.x/ D

Z
Rd

f .x � y/A.x/v.y/ dy:

Moreover, since all norms on a finite dimension vector space are equivalent and f is non-
negative, we have

j.f � v/.x/j Å
dX
jD1

j.f � vj /.x/j � .f � jvj/.x/:

Putting these two estimates together, we can apply the bound (B.2) to obtainˇ̌
sup
t>0

A.x/.ft � v/.x/
ˇ̌
� sup
t>0

.ft � jA.x/vj/.x/ �M.jA.x/vj/.x/;

for almost every x. The local vector maximal operatorM�.jW 1=2.x/ � j/ is bounded from
L2.�IRd ;W / to L2.�/. We can conclude by dominated convergence, which amounts to
applying Fatou’s lemma to the following non-negative scalar sequence

22 jM�.jW 1=2.x/ruj/.x/j2 � jW 1=2.x/..fn � ru/.x/ � ru.x//j
2:

This concludes the proof.
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