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Minimal semiinjective resolutions
in the Q-shaped derived category

Henrik Holm and Peter Jørgensen

Abstract. Semiinjective resolutions of chain complexes are used for the computa-
tion of Hom spaces in the derived category D.A/ of a ring A. Minimal semiinjective
resolutions have the additional property of being unique. The Q-shaped derived cat-
egory DQ.A/ consists of Q-shaped diagrams for a suitable preadditive category Q,
and it generalises D.A/. Some special cases of DQ.A/ are the derived categories of
differential modules, m-periodic chain complexes, and N -complexes, and there are
many other possibilities. The category DQ.A/ shares some key properties of D.A/;
for instance, it is triangulated and compactly generated. This paper establishes a
theory of minimal semiinjective resolutions in DQ.A/. As a sample application, it
generalises a theorem by Ringel and Zhang on differential modules.

1. Introduction

This paper generalises the theory of minimal semiinjective resolutions in D.A/, the classic
derived category of a ring A, to DQ.A/, the Q-shaped derived category.

The Q-shaped derived category was defined in [18] and [20]; see [19] for a quick
introduction. The objects of DQ.A/ are Q-shaped diagrams of A-modules, where Q is
a suitable preadditive category. For example, Q could be given by Figure 1 or Figure 2
with the relations that N consecutive arrows compose to zero for some fixed N > 2, and
then DQ.A/ would be the derived category of N -complexes or m-periodic N -complexes.
The case N D 2 shows that DQ.A/ can be specialised to D.A/, but there is a range of
other choices of Q enabling the construction of bespoke categories DQ.A/, which are
compactly generated triangulated categories like D.A/.

The theory of minimal semiinjective resolutions in D.A/was developed by Avramov–
Foxby–Halperin [1], Christensen–Foxby–Holm (Appendix B of [5]), Foxby (Section 10
of [10]), García Rozas (Sections 2.3 and 2.4 of [12]), Krause (Appendix B of [28]), and,
in an abstract version, by Roig [31]. Minimal injective resolutions of modules are a spe-
cial case, and minimal semiinjective resolutions in D.A/ have a range of applications.
Chen–Iyengar and Foxby used them to investigate the small support (see Proposition 2.1
in [4] and Remark 2.9 in [9]), Christensen–Iyengar–Marley used them to prove results on
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Figure 1. A chain complex is a diagram of this form.

Ext rigidity (see Proposition 3.2, Proposition 3.4 and Theorem 5.1 in [6]), Enochs–Jenda–
Xu linked them to relative homological algebra (see Theorem 3.18 in [8]), and Iacob–
Iyengar used them to characterise regular rings (see Proposition 2.10 in [23]).

Motivated by this, we will develop a theory of minimal semiinjective resolutions
in DQ.A/. We will provide different characterisations of minimal semiinjective objects
in Theorem 3.1 and use them to establish the existence and uniqueness of minimal semi-
injective resolutions in Theorems B, C and D. As a sample application, we will generalise
Ringel and Zhang’s result (Theorem 2 in [30]) on differential modules; see Theorem E.

Background

Let us explain the notation and definitions which will be used in the rest of the paper. First,
we fix the following.

• k is a hereditary noetherian commutative ring.
• A is a k-algebra.
• Mod.A/ is the category of A-left modules, and Inj.A/ is the full subcategory of injec-

tive modules.
• Q is a small k-preadditive category whereQ0 denotes the class of objects andQ.�;�/

the Hom functor. Using the terminology of Setup 2.1 in [19], we assume that Q satis-
fies the following conditions.
– Hom finiteness: Each Q.p; q/ is a finitely generated free k-module.
– Local boundedness: For each q 2 Q0, the sets

¹p 2 Q0 j Q.q; p/ ¤ 0º and ¹p 2 Q0 j Q.p; q/ ¤ 0º

are finite.

– Serre functor: There is a Serre functor Q
S
�! Q for which there are isomorphisms

Q.p; q/ Š Homk

�
Q.q; Sp/;k

�
, natural in p and q.

– Strong retraction: There are fixed decompositions of k-modules

Q.q; q/ D .k � idq/˚ rq

for q in Q0 which satisfy
(i) rq ı rq � rq ,
(ii) Q.p; q/ ıQ.q; p/ � rq for p ¤ q.

The ideal in Q defined by

r.p; q/ D

´
rq if p D q,

Q.p; q/ if p ¤ q,

for p; q 2 Q0 is called the pseudoradical.
– Nilpotence: The pseudoradical satisfies rN D 0 for some integer N > 1.
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Figure 2. An m-periodic chain complex is a diagram of this form.

Secondly, we recall some items from [18] and [20].
• The category of Q-shaped diagrams with values in Mod.A/ is

Q;AMod D ¹k-linear functors Q �! Mod.A/ º:

It is a Grothendieck abelian category which generalises the abelian category of chain
complexes of A-modules; see 2.5 in [19]. In Q;AMod, the Hom functor is HomQ;A,
the i th Ext functor is ExtiQ;A, and the full subcategory of injective objects is Q;AInj.
For f and g in HomQ;A.X; Y /, we write f � g if f � g factors through an object
of Q;AInj.

• If A D k, then A will be omitted from the notation in the previous bullet point. For
instance, we have

QMod D ¹k-linear functors Q �! Mod.k/ º:

• The class of exact objects in Q;AMod is

(1.1) E D ¹X 2 Q;AMod j pdQ.X/ <1º D ¹X 2 Q;AMod j idQ.X/ <1º:

It generalises the class of exact chain complexes; see 3.2 and 3.4 in [19]. In the for-
mula, pdQ.X/ and idQ.X/ are the projective and injective dimensions of X viewed
as an object of QMod by forgetting the A-structure.

• The class of weak equivalences in Q;A Mod is

(1.2) weq D
°
X

x
�! Y in Q;AMod

ˇ̌̌
x D pj where j is monic with cokernel
in E , and p is epic with kernel in E

±
:

It generalises the class of quasi-isomorphisms of chain complexes; see 3.3 and 3.4
in [19].

• The Q-shaped derived category, obtained by inverting the morphisms in weq, is

DQ.A/ D weq�1Q;AMod:

It generalises the classic derived category of A; see 3.10 in [19].
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• For each q in Q0, there are stalk functors

Shqi D Q.q;�/=r.q;�/ and S¹qº D Q.�; q/=r.�; q/

which take the value k at q and zero elsewhere; they are objects of QMod, respectively
Qop Mod. Given i in Z, they permit the definition of the (co)homology functors

(1.3) Hi
Œq�.�/ D ExtiQ.Shqi;�/ and HŒq�

i .�/ D TorQi .S¹qº;�/:

These are k-linear functors Q;AMod �! Mod.A/ which generalise the classic (co)ho-
mology functors on chain complexes; see 3.4 in [19].

• The classes E and weq satisfy

E D ¹X 2 Q;AMod j H1
Œq�
.X/ D 0 for q in Q0 º(1.4)

D ¹X 2 Q;AMod j HŒq�
1 .X/ D 0 for q in Q0 º

and

weq D ¹X
x
�! Y in Q;AMod j H1

Œq�
.x/ and H2

Œq�
.x/ are isomorphismsº(1.5)

D ¹X
x
�! Y in Q;AMod j HŒq�

1 .x/ and HŒq�
2 .x/ are isomorphismsº:

This generalises the characterisation by (co)homology of exact chain complexes and
quasi-isomorphisms; see 3.4 in [19].

• For each q in Q0, there are adjoint pairs .Fq; Eq/ and .Eq; Gq/ as follows:

(1.6) Q;AMod
Eq // Mod.A/

Fq

}}

Gq

bb
given by

Fq.M/ D Q.q;�/˝
k

M;

Eq.X/ D X.q/;

Gq.M/ D Homk.Q.�; q/;M/:

The functor Eq generalises the functor sending a chain complex to its qth component.
The functors Fq and Gq generalise the indecomposable projective and injective repre-
sentations of Q at q known from quiver representations; see Definition 5.3 in [32].

• For each q in Q0, there are adjoint pairs .Cq; Sq/ and .Sq; Kq/ as follows:

(1.7) Mod.A/
Sq //

Q;AMod

Cq

}}

Kq

bb given by

Cq.X/ D S¹qº˝
Q
X;

Sq.M/ D Shqi˝
k

M;

Kq.X/ D HomQ.Shqi;�/:

The functor Sq generalises the simple representation ofQ at q known from quiver rep-
resentations; see Definition 2.2 in [32]. The functorsCq andKq generalise the functors
sending a chain complex to the cokernel, respectively kernel, of the differentials which
have q as the target, respectively source; see Proposition 7.18 in [18].
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The conditions on Q are mainly due to Dell’Ambrogio–Stevenson–Št’ovíček (Theo-
rem 1.6 in [7]). They are satisfied in the examples whereQ is given by Figure 1 or Figure 2
with the relations that N consecutive arrows compose to zero for some fixed N > 2;
see 2.5 in [19]. The definition of DQ.A/ is based on the insight of Iyama–Minamoto
that the key property of Q which makes DQ.A/ well behaved is the existence of a Serre
functor on Q; see [26] and Section 2 of [25].

Semiinjective objects

The following is the key definition of this paper. Note that part (i) appeared in 3.6 of [19],
and that the class E ? was used intensively in [18, 20].

Definition A. (i) A semiinjective object in Q;AMod is an object in the class

E ? D ¹ I 2Q;AMod j Ext1Q;A.E ; I / D 0 º:

(ii) A minimal semiinjective object in Q;AMod is a semiinjective object whose only
subobject in Q;AInj is 0.

(iii) A semiinjective resolution of X in Q;AMod is a weak equivalence X �! I with I
semiinjective.

(iv) A minimal semiinjective resolution of X in Q;AMod is a weak equivalence X �! I

with I minimal semiinjective.

These concepts generalise (minimal) semiinjective chain complexes and (minimal)
semiinjective resolutions of chain complexes; see Proposition 2.3.14 and Section 2.4
of [12], and 3.7 in [19]. Semiinjective chain complexes are due to Bökstedt–Neeman, who
used the term “special complexes of injectives” (see Section 2 of [2]), and García-Rozas,
who used the term “DG-injective complexes” (see Proposition 2.3.4 in [12]).

One reason for the interest in semiinjective objects is that they can be used to compute
Hom spaces in DQ.A/, which are otherwise hard to access. Each object Y in Q;AMod has
a semiinjective resolution Y �! I by Theorem B(i). IfX is also an object in Q;AMod, then

(1.8) HomDQ.A/.X; Y / Š HomQ;A.X; I /= �

by Proposition 2.1(ii). Equation (1.8) generalises the computation of Hom spaces in D.A/
using semiinjective resolutions of chain complexes; see Corollary 7.3.22 in [5].

Minimal semiinjective objects and resolutions

Our main results establish the existence and uniqueness of minimal semiinjective resolu-
tions as follows.

Theorem B. (i) Each X in Q;AMod has a minimal semiinjective resolution.
(ii) Each semiinjective object I in Q;AMod has the form I D I 0 ˚ J 0 in Q;AMod,

with I 0 a minimal semiinjective object and J 0 in Q;AInj.

Theorem C. If I
i
�! I 0 in Q;AMod is a weak equivalence between minimal semiinjective

objects, then i is an isomorphism in Q;AMod.
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Theorem D. If X
x
�! I and X

x0

�! I 0 are minimal semiinjective resolutions in Q;AMod,
then the following holds.

• The diagram of solid arrows

X
x //

x0

��

I

i
��

I 0

can be completed with a morphism i such that ix � x0 in Q;AMod.

• The morphism i is unique up to equivalence under “�”.

• Each completing morphism i is an isomorphism in Q;AMod.

Note that the first bullet in Theorem D cannot be improved to say ix D x0 instead of
ix � x0.

Another main result is Theorem 3.1, which provides different characterisations of min-
imal semiinjective objects. Finally, Appendix A explains how the results can be specialised
to the theory of minimal semiinjective resolutions in D.A/.

The proof of Theorem B uses the full force of the results on theQ-shaped derived cate-
gory established in [18] and [20] as well as most of the machinery developed in this paper.
The easier Theorems C and D could have been obtained as consequences of Corollaries 1
and 2 in [31] because Theorem 3.1(iii) implies that our notion of minimal semiinjective
resolutions is an instance of the right minimal models of Section 1 in [31]. However, we
provide short, self contained proofs for the benefit of the reader.

Differential modules

As a sample application of our theory, we will generalise Ringel and Zhang’s result (The-
orem 2 in [30]) on differential modules.

A differential module over the ringA is a pair .M;@/withM in Mod.A/ andM
@
�!M

an endomorphism with @2 D 0. This notion was defined by Cartan–Eilenberg under the
name “modules with differentiation”, see [3], p. 53. There is a Grothendieck abelian
category Diff.A/ of differential modules over A in which the notions of injective and
Gorenstein injective objects make sense, see Section 7 of [28]. The homology func-

tor Diff.A/
H
�! Mod.A/ is defined on objects by H.M; @/ D Z.M; @/= B.M; @/, where

Z.M; @/ D Ker @ is the cycles, and B.M; @/ D Im @ the boundaries.
A notable result on differential modules was proved by Ringel and Zhang in Theo-

rem 2 of [30]. They worked with finite dimensional differential modules over the path
algebra of a finite, acyclic quiver. We provide the following generalisation to arbitrary
differential modules over a hereditary ring.

Theorem E. Assume that A is a left hereditary ring. Then the homology functor

Diff.A/
H
�! Mod.A/
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induces a bijection

(1.9)

8<: Isomorphism classes of Gorenstein
injective objects without non-zero
injective summands in Diff.A/

9=; H
�!

²
Isomorphism classes
in Mod.A/

³
:

To place this result in a wider context, recall from Section 7 of [28] that if A is a
Grothendieck abelian category, then GInj A , the full subcategory of Gorenstein injective
objects of A , is a Frobenius category with projective-injective objects given by Inj A ,
the injective objects of A . The naïve quotient category GInj A = Inj A is triangulated, by
Theorem I.2.6 in [15], and is important in the context of Gorenstein approximations and
Tate cohomology. Understanding the objects of GInj A = Inj A amounts to understanding
the objects of GInj A up to injective summands, see Theorem 13.7 in [16], and this is
accomplished by Theorem E for A D Diff.A/.

Theorem E will be proved by translating the left-hand set of equation (1.9) to the
set of isomorphism classes of minimal semiinjective differential modules. The inverse
bijection to (1.9) is induced by sendingM to a minimal semiinjective resolution of .M;0/.
Theorem E is an injective analogue of Corollary 1.4 in [34].

Structure of the paper

Section 2 proves some preliminary results. Section 3 provides different characterisations
of minimal semiinjective objects in Theorem 3.1 and uses them to prove Theorems B, C,
and D. Section 4 proves Theorem E. Appendix A shows how our theory specialises to the
theory of minimal semiinjective resolutions in D.A/.

2. Preliminary results

This section proves some preliminary results required to establish the theorems stated in
the introduction. Notation and definitions from the “Background” part of the introduction
will be used freely.

Proposition 2.1.
(i) There are isomorphisms

HomQ;A.X; I /= � // HomDQ.A/.X; I /;

natural with respect to X in Q;AMod and I in E ?.

(ii) If X and Y are in Q;AMod and Y �! I is a semiinjective resolution, then there is
an isomorphism

HomQ;A.X; I /= � // HomDQ.A/.X; Y /:

(iii) If X �! Y is a weak equivalence in Q;AMod and I is in E ?, then the induced map

HomQ;A.Y; I /= � // HomQ;A.X; I /= �

is an isomorphism.
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Proof. (i) Use Theorem 6.1(b) in [18], and its proof, to get a “Hovey triple”

.Q;AMod;E ;E ?/:

Then apply Theorem 2.6 in [13], where the Hovey triple is called “abelian model cate-
gory”, noting that the “core” Q;AMod\E \ E ? is Q;AInj by Theorem 4.4(b) in [18].

(ii) Compose the isomorphism from part (i) with the inverse of the isomorphism

HomDQ.A/.X; Y /
// HomDQ.A/.X; I /

which results from the weak equivalence Y �! I inducing an isomorphism in DQ.A/.
(iii) By part (i), the morphism X �! Y induces a commutative square

HomQ;A.Y; I /= � //

��

HomDQ.A/.Y; I /

��
HomQ;A.X; I /= � // HomDQ.A/.X; I /;

where the horizontal maps are isomorphisms. The right-hand vertical map is an isomor-
phism because the weak equivalence X �! Y induces an isomorphism in DQ.A/, so the
left-hand vertical map is also an isomorphism.

Proposition 2.2. Let 0 �! X 0
x0

�! X
x
�! X 00 �! 0 be a short exact sequence in Q;AMod.

(i) x0 is a weak equivalence ” X 00 is in E .

(ii) x is a weak equivalence ” X 0 is in E .

Proof. For each q in Q0, there are long exact sequences

� � � �! HŒq�
iC1.X

00/ �! HŒq�
i .X

0/
x0�
�! HŒq�

i .X/
x�
�! HŒq�

i .X
00/ �! HŒq�

i�1.X
0/ �! � � �

and

� � � �! Hi�1
Œq� .X

00/ �! Hi
Œq�.X

0/
x0�
�! Hi

Œq�.X/
x�
�! Hi

Œq�.X
00/ �! HiC1

Œq�
.X 0/ �! � � � :

Combining these with Theorems 7.1 and 7.2 in [18] proves the lemma.

The following lemma, and later parts of the paper, use the notions of (special) preen-
velopes, left minimal morphisms, and envelopes, see Definitions 2.1.1 and 2.1.12 in [14].

Lemma 2.3. Let E be in E .

(i) Each Q;AInj-preenvelope E
e
�! J is a special E ?-preenvelope.

(ii) Each Q;AInj-envelope E
e
�! J is an E ?-envelope.
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Proof. (i) Since e is a Q;AInj-preenvelope in the abelian Grothendieck category Q;AMod,
it is a monomorphism; see Corollary X.4.3 in [33]. It defines a short exact sequence

0 �! E
e
�! J �! E 0 �! 0;

which induces an exact sequence

HomQ;A.J; I /
e�

�! HomQ;A.E; I / �! Ext1Q;A.E
0; I /

for each I . Since J is in E by Theorem 4.4(b) in [18], we have E 0 in E by the last part of
Theorem 4.4 in [18].

If I is in E ?, then Ext1Q;A.E
0; I / D 0, whence e� is an epimorphism. But J is in E ?

by Theorem 4.4(b) in [18], so e is an E ?-preenvelope. It is special because E 0 is in E ,
which is equal to ?.E ?/ by Theorem 4.4(b) in [18].

(ii) Since e is a Q;AInj-envelope, it is an E ?-preenvelope by part (i). Since it is an
envelope, it is a left minimal morphism. Hence it is an E ?-envelope.

Lemma 2.4. Let ¹FqMq

'q
�! Xºq2Q0 be a family of monomorphisms in Q;AMod. Then

the induced morphism a
p2Q0

FpMp
'
�! X

is a monomorphism.

Proof. By definition, ' is the unique morphism such that the following diagram is com-
mutative for each q in Q0:

FqMq

�q

��

'q

$$
p̀2Q0

FpMp '
// X;

where �q denotes the coproduct inclusion. The diagram can be extended as follows:

FqMq

�q

��

'q

%%
0 // Ker' //

p̀2Q0
FpMp '

//

OO

��

X

p̀02Q0nq
Fp0Mp0 :

OO
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Here the column is a biproduct diagram, 'q is a monomorphism by assumption, and the
row is left exact. Applying the Serre functor S to q gives an object Sq inQ0, and applying
the functor KSq to the diagram gives the following:

KSq.FqMq/

KSq.�q/

��

KSq.'q/

((
0 // KSq.Ker'/ // KSq

�
p̀2Q0

FpMp
�

KSq.'/

//

OO

��

KSq.X/

KSq
�

p̀02Q0nq
Fp0Mp0

�
:

OO

Since KSq is additive, the column is a biproduct diagram. Since KSq is a right adjoint by
equation (1.7), hence left exact, KSq.'q/ is a monomorphism and the row is left exact.

We now compute as follows:

KSq

� a
p02Q0nq

Fp0Mp0
� .a/
Š KSq

� Y
p02Q0nq

Fp0Mp0
� .b/
Š

Y
p02Q0nq

KSqFp0Mp0

.c/
Š

Y
p02Q0nq

KSqGSp0Mp0
.d/
Š 0:(2.1)

We explain the isomorphisms:
(a) holds because p̀02Q0nq

Fp0Mp0 Š
Q
p02Q0nq

Fp0Mp0 by Proposition 3.7 in [20]
since Q satisfies condition Local boundedness from the introduction;

(b) holds because KSq respects products since it is a right adjoint by equation (1.7):
(c) holds because Fp0Mp0 ŠGSp0Mp0 by Lemma 3.4 in [20] sinceQ satisfies conditions

Hom finiteness and Serre functor from the introduction;
(d) holds because KSqGSp0 D 0 for Sq ¤ Sp0 by Lemma 7.28(b) in [18].

The column in the last diagram is a biproduct diagram, so equation (2.1) implies that
KSq.�q/ is an isomorphism. But KSq.'q/ is a monomorphism, so the commutative trian-
gle in the diagram implies that KSq.'/ is a monomorphism, whence left exactness of the
row implies KSq.Ker '/ D 0. This holds for each q in Q0, so Proposition 7.19 in [18]
implies Ker' D 0, since the pseudoradical r of Q satisfies condition Nilpotence from the
introduction. Hence ' is a monomorphism, as claimed.

Lemma 2.5. LetM m
�!N be an essential extension in Mod.A/ (that is, a monomorphism

with essential image). Then FqM
Fqm
���! FqN is an essential extension in Q;AMod for each

q in Q0.

Proof. The functor Fq is exact by Corollary 3.9(a) in [18], so FqM
Fqm
���! FqN is a

monomorphism. Up to isomorphism, it can be written GpM
Gpm
���! GpN by Lemma 3.4
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in [20], where p D Sq. We must prove that if X � GpN has zero intersection with the

image of Gpm, then X is zero. So let X
x
�! GpN denote the inclusion and assume that

0 //

��

X

x

��
GpM

Gpm
// GpN

is a pullback diagram; we must prove that X is zero.
For r in Q0, the functor Kr is a right adjoint by equation (1.7), hence left exact. It

follows that there is a pullback diagram

0 //

��

Kr .X/

Kr .x/

��
Kr .GpM/

Kr .Gpm/

// Kr .GpN/:

If r ¤ p, then Kr .GpN/ D 0 by Lemma 7.28(b) in [18], whence the diagram implies
Kr .X/ D 0. If r D p, then KrGp Š id by Lemma 7.28(b) in [18]; in particular, the
diagram is isomorphic to a pullback diagram

0 //

��

Kr .X/

��
M

m
// N:

Since M m
�!N is an essential extension, this implies Kr .X/ D 0.

Hence Kr .X/ D 0 for each r in Q0, so Proposition 7.19 in [18] implies X D 0 since
the pseudoradical r of Q satisfies condition Nilpotence from the introduction.

Remark 2.6. We recall two properties of adjoint functors.
(i) The adjunction isomorphism HomA.M; EqX/ �! HomQ;A.FqM;X/ maps a mor-

phism
M

�
�! EqX

to the adjoint morphism
FqM

'
�! X

defined as the composition of the morphisms

(2.2) FqM
Fq�
���! FqEqX

"X
�! X;

where " is the counit of the adjoint pair .Fq; Eq/.
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(ii) If the diagram

(2.3)

M
m //

�

��

N

�

}}
EqX

is commutative, then so is the diagram

(2.4)

FqM
Fqm //

'

��

FqN

 
||

X;

where the adjoint morphisms of � and � are ' and  .

Lemma 2.7. Let q in Q0 and X in Q;AMod be given. Consider a morphism M
�
�! EqX

with adjoint morphism FqM
'
�! X . If ' is a monomorphism, then � is a monomorphism.

Proof. Assume that ' is a monomorphism. Then Fq� is a monomorphism since ' is the
composition of the morphisms in equation (2.2). There is an exact sequence

0 �! Ker� �!M
�
�! EqX;

hence an exact sequence

0 �! Fq Ker� �! FqM
Fq�
���! FqEqX

because Fq is exact by Corollary 3.9(a) in [18]. Since Fq� is a monomorphism, this shows
Fq Ker� D 0, whence Ker� Š CqFq Ker� Š 0 by Lemma 7.28(a) in [18]. So � is a
monomorphism.

Lemma 2.8. Let q in Q0 and X in Q;AMod be given.

(i) The following set of A-left submodules of EqX is non-empty and has a maximal
element with respect to inclusion:

M D

°
M � EqX

ˇ̌̌ the inclusion morphism M �! EqX has an adjoint
morphism FqM �! X which is a monomorphism

±
:

(ii) Suppose that EqX is in Inj.A/. Then so is each maximal element of M .

Proof. (i) The set M is non-empty because it containsM D 0. We will use Zorn’s lemma
to prove that M has a maximal element, so suppose that I is a totally ordered subset
of M ; we must prove that I has an upper bound in M .
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There is a small filtered category I whose objects are the modules in I and whose

morphisms are the inclusions between modules in I . There is a functor I M
�! Mod.A/

acting as the identity on objects and morphisms, and the colimit of M is

C D
[
i2I

M.i/:

We will prove that C is in M whence it is clearly an upper bound for I in M . That is,
we will prove that the inclusion morphism C



�!EqX has an adjoint morphism FqC

'
�!X

which is a monomorphism.
For each morphism i

˛
�! j in I , there is a commutative diagram

C




��

M.i/
M.˛/ //

�i
..

�i //

M.j /

�j

66

�j
&&
EqX;

where all arrows are inclusions. The universal cone to C is ¹M.i/
�i
�! C ºi2I , and the cone

¹M.i/
�i
�! EqXºi2I induces the inclusion morphism C



�! EqX . Remark 2.6(ii) gives

an induced commutative diagram

FqC

'

��

Fq
�
M.i/

� Fq.M.˛// //

Fq.�i /
//

'i //

Fq
�
M.j /

�
Fq.�j /

77

'j

((
X;

where 'i , 'j and ' are the adjoint morphisms of �i , �j and 
 . The functor Fq is a

left adjoint hence preserves colimits, so ¹Fq
�
M.i/

� Fq.�i /
����! FqC ºi2I is the universal

cone to the colimit of Fq ıM . The last diagram shows that ¹Fq
�
M.i/

� 'i
�! Xºi2I is

a cone inducing the adjoint morphism FqC
'
�! X . Since the M.i/ are in M , the 'i are

monomorphisms. Since Q;AMod is a Grothendieck abelian category, filtered colimits pre-
serve monomorphisms, so ' is a monomorphism as desired.

(ii) Let M � EqX be a maximal element of M . Since EqX is in Inj.A/, to prove
that M is in Inj.A/ we will assume M � N � EqX with M essential in N and prove
M D N ; this is sufficient by Lemma V.2.2 and Proposition V.2.4 in [33].
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Let M m
�!N be the inclusion and consider Remark 2.6(ii). There is a commutative

diagram (2.3) where � and � are the inclusions into EqX , and the remark gives the com-
mutative diagram (2.4) where ' and  are the adjoint morphisms of � and �. Assume
M ¨ N . Since M is maximal in M , the morphism ' is a monomorphism but the mor-

phism  is not. But then diagram (2.4) contradicts that FqM
Fqm
���! FqN is an essential

extension by Lemma 2.5.

3. Main theorems

This section provides different characterisations of minimal semiinjective objects in The-
orem 3.1 and uses them to prove Theorems B, C and D, which were stated in the introduc-
tion. Not all parts of Theorem 3.1 are required for the subsequent proofs, but we consider
them worthwhile in their own right. Notation and definitions from the “Background” part
of the introduction will still be used freely.

Theorem 3.1. Let I be a semiinjective object in Q;AMod. The following conditions are
equivalent.

(i) If J � I with J in Q;AInj, then J D 0. That is, I is minimal in the sense of Defi-
nition A(ii).

(ii) If E � I with E in E , then E D 0.

(iii) Each weak equivalence I �! X in Q;AMod is a split monomorphism.

(iv) If an endomorphism I
f
�!I inQ;AMod induces an automorphism in DQ.A/, then f

is already an automorphism.

(v) For q in Q0 and D in Inj.A/, if FqD �! I is a monomorphism, then D D 0.

(vi) For q in Q0 and M in Mod.A/, if FqM �! I is a monomorphism, then M D 0.

(vii) For q in Q0 and M in Mod.A/, if a monomorphism M
�
�! EqI satisfies

(3.1) Im
�
FqM

Fq�
���! FqEqI

�
\ZqI D 0;

then M D 0. Here we write

ZqX D Ker.FqEqX
"X
�! X/

for X in Q;AMod, where " is the counit of the adjoint pair .Fq; Eq/.

Proof. Before starting the proof proper, we recall from Theorem 6.5 in [18] that E ? is a
Frobenius category with projective-injective objects Q;AInj, and that there is an equiva-
lence

DQ.A/ Š
E ?

Q;AInj
�

The right-hand side is the naïve quotient category, which has the same objects as E ? and
Hom spaces obtained by dividing by the subspaces of morphisms factoring through an
object ofQ;AInj. Equivalently, the Hom spaces are obtained by dividing by the equivalence
relation “�”. Hence condition (iv) can be replaced by
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(iv’) If an endomorphism I
f
�! I in Q;AMod induces an automorphism in E ?=Q;AInj,

then f is already an automorphism.
See also Proposition 2.1(i).

(i)) (ii). Let E � I with E in E be given. Since Q;AMod is a Grothendieck abelian
category, there is a Q;AInj-envelope E �! J , see Proposition V.2.5 and Corollary X.4.3
in [33]. It is an E ?-envelope by Lemma 2.3(ii), so we can factorise as follows, where the
vertical arrow is the inclusion:

E

��

// J

j
��

I:

SinceE �! J is an essential extension, j is a monomorphism. Identifying J with its image
under j , we have E � J � I . But then J D 0 by (i) and E D 0 follows.

(ii)) (vi). Let FqM �! I be a monomorphism. Since FqM is in E by Lemma 7.14
and Theorem 7.1 in [18], we have FqM D 0 by (ii). But then M Š CqFqM D 0 by
Lemma 7.28(a) in [18].

(vi)) (v) is clear.
(v)) (i) Let J � I with J in Q;AInj be given. Combining the proof of Lemma 7.29

in [18] and Lemma 3.4 and Proposition 3.7 in [20], we can write J up to isomorphism
as p̀2Q0

FpDp , where each Dp is in Inj.A/. If q is in Q0, then there is a commutative
diagram

FqDq
�q //

'q

��

p̀2Q0
FpDp;

j

yy
I;

where �q denotes the coproduct inclusion, and j the inclusion of J into I . Since �q and j

are monomorphisms, so is FqDq
'q
�! I . But then Dq D 0, by (v). This holds for each q

in Q0, so J D 0.
(i)) (iv’): This part of the proof is divided into three steps.

Step 1. Assume that an endomorphism I
f
�! I in Q;AMod induces the identity mor-

phism in E ?=Q;AInj. We will prove that f is a monomorphism.

The assumption means that there are morphisms I
a
�! J

b
�! I with J in Q;AInj such

that idI �f D ba. Composing with the inclusion Ker f
k
�! I gives .idI �f /k D bak,

that is, k D bak. Since k is a monomorphism, so is bak, and hence so is ak. By the proof
of Proposition 2.5 in [33], there is a commutative diagram

Ker f � //

ak

��

J 0

j 0

}}
J;



H. Holm and P. Jørgensen 2324

where � is a Q;AInj-envelope and j 0 the inclusion of a subobject, and this gives bj 0� D
bak D k. Since k is a monomorphism, so is bj 0�, and hence so is bj 0, since � is an
essential extension. So bj 0 lets us view J 0 as a subobject of I , whence J 0 D 0 by (i).
Hence Ker f D 0 and f is a monomorphism, as claimed.

Step 2. Assume that an endomorphism I
f
�! I in Q;AMod induces an automorphism

in E ?=Q;AInj. We will prove that f is a monomorphism.

Pick I
g
�! I such that g induces an inverse of f in E ?=Q;AInj. Then gf induces the

identity morphism in E ?=Q;AInj, whence gf is a monomorphism by Step 1. Hence f is
a monomorphism.

Step 3. Assume that an endomorphism I
f
�! I in Q;AMod induces an automorphism

in E ?=Q;AInj. We will prove that f is an automorphism.
By Step 2, we know that f is a monomorphism, so there is a short exact sequence

(3.2) 0 �! I
f
�! I �! J �! 0;

which induces an exact sequence

Ext1Q;A.E; I / �! Ext1Q;A.E; J / �! Ext2Q;A.E; I /

for each E. If E is in E , then the outer terms are zero. This is true for the first term
because I is in E ?. For the third term, it is true because I is in E ?, while .E ; E ?/ is
a hereditary cotorsion pair by Theorem 4.4(b) in [18]. Hence the middle term is zero,
so J is in E ?. Thus, (3.2) is a short exact sequence with terms in E ?, so induces a tri-
angle in the triangulated category E ?=Q;AInj by Lemma I.2.7 in [15]. Since f induces
an automorphism, J must induce the zero object whence J is in Q;AInj. But then J is
projective-injective in the Frobenius category E ?, so (3.2) is split exact. Up to isomor-
phism, J is hence a subobject of I so J is zero by (i). So (3.2) proves that f is an
automorphism.

(iv’)) (iii): Let I
i
�! X be a weak equivalence. It follows from Proposition 2.1(iii)

that there is a morphismX
x
�! I such that xi induces the identity morphism in E ?=Q;AInj.

Hence xi is an automorphism by (iv’). If � is the inverse, then �xi D idI , which shows
that i is a split monomorphism.

(iii)) (i): Let J � I with J in Q;AInj be given. There is an induced short exact

sequence 0 �! J �! I
f
�! X �! 0, and J is in E by Theorem 4.4(b) in [18], so f is a

weak equivalence by Proposition 2.2(ii). But then f is a split monomorphism by (iii),
whence J D 0.

(vi), (vii): Each of conditions (vi) and (vii) requires that M D 0 under certain cir-
cumstances. It is hence enough to prove that the two sets of circumstances are the same.
We will do so by proving that if FqM

'
�! I is the adjoint morphism of M

�
�! EqI , then

FqM
'
�! I is a monomorphism ”

²
M

�
�! EqI is a monomorphism

which satisfies equation (3.1).

For the implication “)”, assume that FqM
'
�! I is a monomorphism. ThenM

�
�! EqI is

a monomorphism by Lemma 2.7, and M
�
�! EqI satisfies equation (3.1) because the
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composition of the morphisms FqM
Fq�
���! FqEqX

"X
�! X is a monomorphism, since

it equals FqM
'
�! I by equation (2.2). For the implication “(”, assume that M

�
�!

EqI is a monomorphism which satisfies equation (3.1). Then FqM
'
�! I is a monomor-

phism because it equals the composition of the morphisms FqM
Fq�
���! FqEqX

"X
�! X by

equation (2.2), and this composition is a monomorphism since FqM
Fq�
���! FqEqI is a

monomorphism by Corollary 3.9(a) in [18], while M
�
�! EqI satisfies equation (3.1).

Proof of Theorem B. (ii) For each q in Q0, Lemma 2.8(i) says there is a submodule

Dq � EqI maximal with respect to the property that the inclusion Dq
ıq
�! EqI has an

adjoint morphism FqDq
'q
�! I which is a monomorphism. The module Dq is in Inj.A/

by Lemma 2.8(ii) because EqI is in Inj.A/ by Theorem E in [20].
We claim that the object

J 0 D
a
q2Q0

FqDq

is in Q;AInj. To see so, observe that J 0 can be written asY
q2Q0

GSqDq

by Lemma 3.4 and Proposition 3.7 in [20], and that GSqDq is in Q;AInj by Lemma 3.11
in [18], since Dq is in Inj.A/. There is a unique morphism '0 such that the following
diagram is commutative for each q in Q0:

FqDq

�q

��

'q

!!
J 0

'0
// I ;

where �q denotes the coproduct inclusion. Combining with Remark 2.6(i) provides the
following commutative diagram:

FqDq

'q

  

�q

��

Fqıq // FqEqI
"I // I

J 0
'0

// I:

The morphism '0 is a monomorphism by Lemma 2.4. Since J 0 is in Q;AInj, the mor-
phism '0 is a split monomorphism which can be viewed as the inclusion of a direct
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summand. The diagram shows that

(3.3)
the image of the monomorphism 'q is contained in
the direct summand J 0 for each q in Q0.

Consider the complement I 0 of J 0 in I . Then I Š I 0 ˚ J 0, so it is clear that I 0 is
semiinjective. To complete the proof, we will prove that I 0 is minimal semiinjective by
proving that it satisfies the condition in Theorem 3.1(v). So let q inQ0 andD in Inj.A/ be

given and assume that FqD
 0

�! I 0 is a monomorphism. Then  0 is the adjoint morphism

of a morphism D
ı 0

�! EqI
0, which is a monomorphism by Lemma 2.7. The inclusion

I 0
i 0

�! I is a split monomorphism, hence so is EqI 0
Eq i

0

���! EqI . The composition ı of

the morphisms D
ı 0

�! EqI
0
Eq i

0

���! EqI is a monomorphism, and there is a commutative
diagram

FqD

 0

!!Fqı
0

// FqEqI 0
"I 0 //

FqEq i
0

��

I 0

i 0

��
FqD

 

==Fqı

// FqEqI "I
// I;

where  0 and  are the adjoint morphisms of ı0 and ı, see Remark 2.6(i). Since  0 and i 0

are monomorphisms, so is  D i 0 0. The diagram shows that

(3.4)
the image of the monomorphism  is contained in
the direct summand I 0, which is the complement of J 0 in I .

Now consider the morphismDq ˚D
.ıq ;ı/
���! EqI . Its adjoint morphism is the compo-

sition of the morphisms

FqDq ˚ FqD
.Fqıq ;Fqı/ // FqEqI

"I // I;

so its adjoint morphism is .'q; / which is a monomorphism by equations (3.3) and (3.4).
Hence .ıq; ı/ is a monomorphism by Lemma 2.7. However, by the maximality ofDq , this
implies ı D 0, and since ı is a monomorphism, it follows that D D 0. Hence we have
proved that I 0 satisfies the condition in Theorem 3.1(v).

(i) By Theorem 5.9 in [18], there is a complete cotorsion pair .E ; E ?/ in the sense
of Definition 2.2.1 and Lemma 2.2.6 in [14]. Hence there is a short exact sequence 0 �!
X

x
�! I �! E �! 0 with I in E ? and E in E . By part (ii) of the theorem, we have I D

I 0 ˚ J 0 with I 0 a minimal semiinjective object and J 0 in Q;AInj. Hence there is a short
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exact sequence 0 �! J 0 �! I
i
�! I 0 �! 0. Note that J 0 is in E by Theorem 4.4(b) in [18].

The morphisms X
x
�! I and I

i
�! I 0 are weak equivalences by Proposition 2.2, so the

composition X
ix
�! I 0 is a weak equivalence by Proposition 5.12 in [22], hence a minimal

semiinjective resolution.

Proof of Theorem C. Let I
i
�! I 0 be a weak equivalence between minimal semiinjective

objects. Theorem 3.1(iii) says that i is a split monomorphism, so there exists a split epi-

morphism I 0
i 0

�! I such that i 0i D idI . But then Proposition 5.12 in [22] implies that i 0

is a weak equivalence, so Theorem 3.1(iii) implies that i 0 is a split monomorphism. In
particular, i 0 is an epimorphism and a monomorphism, hence an isomorphism.

Proof of Theorem D. By Proposition 2.1(iii), the morphism X
x
�! I induces a bijection

HomQ;A.I; I
0/= � // HomQ;A.X; I

0/= � :

This implies the two first bullet points. To prove the third bullet point, observe that the
relation ix � x0 in Q;AMod induces an equality in DQ.A/. This implies that i induces an
isomorphism in DQ.A/ because the weak equivalences x and x0 induce isomorphisms in
DQ.A/. But then i is a weak equivalence in Q;AMod by Theorem 1.2.10(iv) in [21], and
then i is an isomorphism in Q;AMod by Theorem C.

4. Differential modules

This section proves Theorem E, which was stated in the introduction. Our theory can be
specialised to the theory of differential modules by setting

k D Z

and setting Q equal to the k-preadditive category given by

q

@

��

with @2 D 0, and we will do so in this section. Then a Q-shaped diagram is a differential
module as defined in the introduction, so Q;AMod is equal to Diff.A/, the category of
differential modules over A. Note that this Q satisfies conditions Hom finiteness through
Nilpotence of the introduction with pseudoradical given by rq D k � @. We now explain
how some concepts from the theory of Q;AMod specialise to Diff.A/; see also A.2 in [20].

4.1. Cohomology functors (defined in equation (1.3)) specialise as

Hi
Œq� H

for each i > 1, where H is the homology functor on differential modules defined in the
introduction. This can be proved by computing Hi

Œq�
.�/ D ExtiQ.Shqi;�/ using the pro-

jective resolution � � � �! Q.q;�/ �! Q.q;�/ of Shqi.
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4.2. The class E of exact objects (defined in equation (1.1)) specialises as

E  ¹ .M; @/ 2 Diff.A/ j .M; @/ is exact º;

where a differential module .M; @/ is exact if H.M; @/ D 0. This follows from para-
graph 4.1 and equation (1.4).

4.3. Weak equivalences (defined in equation (1.2)) specialise as

weq ¹� j� is a quasi-isomorphism º;

where a morphism � of differential modules is a quasi-isomorphism if H.�/ is an isomor-
phism. This follows from paragraph 4.1 and equation (1.5).

4.4. The class E ? of semiinjective objects will only be specialised when the left global
dimension of A is finite. Then

E ? ¹ .J; @/ 2 Diff.A/ jJ is in Inj.A/ º

by Theorem E in [20], and the right-hand class can be written as

¹ .J; @/ 2 Diff.A/ jJ is Gorenstein injective in Mod.A/ º

by the dual of Proposition 2.27 in [17]. By Theorem 1.1 in [34], the last class can be
written as

¹ .J; @/ 2 Diff.A/ j .J; @/ is Gorenstein injective in Diff.A/ º:

4.5. The class of minimal semiinjective objects will only be specialised when the left
global dimension of A is finite. Then°
I
ˇ̌̌
I is minimal
semiinjective

±
 

°
.J; @/ 2 Diff.A/

ˇ̌̌
.J; @/ is Gorenstein injective without
non-zero injective summands in Diff.A/

±
by paragraph 4.4 and Definition A(ii). Here, the right-hand class modulo isomorphism is
the left-hand class in Theorem E.

4.6. Minimal semiinjective resolutions will only be specialised when the left global
dimension of A is finite. Then they become quasi-isomorphisms .M; @M / �! .J; @J /,
where .J; @J / is Gorenstein injective without non-zero injective summands in Diff.A/.
This follows from paragraphs 4.3 and 4.5 and Definition A(iv).

Recall from the introduction the functors B, Z and H from Diff.A/ to Mod.A/, which
send a differential module to its boundaries, cycles and homology. There is a short exact
sequence in Mod.A/,

(4.1) 0 �! B.M; @/ �! Z.M; @/
�
�! H.M; @/ �! 0;

natural with respect to .M; @/ in Diff.A/.
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The modules B.M; @/, Z.M; @/ and H.M; @/ can be viewed as differential modules
.B.M; @/; 0/, .Z.M; @/; 0/ and .H.M; @/; 0/ with zero differential. There is a canonical
short exact sequence in Diff.A/,

(4.2) 0 �! .Z.M; @/; 0/
j
�! .M; @/ �! .B.M; @/; 0/ �! 0;

natural with respect to .M; @/ in Diff.A/, and H.j / can be identified with the morphism �

in the sequence (4.1).

Lemma 4.7. For .M; @M / in Diff.A/, consider the differential module .H.M; @M /; 0/
with zero differential.

Assume that the sequence (4.1) in Mod.A/ is split exact. Then there exists a monic
quasi-isomorphism .H.M; @M /; 0/

�
�! .M; @M / in Diff.A/.

Proof. Since the sequence (4.1) is split exact, there is a splitting morphism p giving the
following diagram:

(4.3)
0 // B.M; @M / // Z.M; @M /

� //

p

ee H.M; @M / // 0:

We can also view p as a morphism .Z.M;@M /; 0/
p
�! .B.M;@M /; 0/ and use it to construct

the following diagram in Diff.A/:

(4.4)

0 // .Z.M; @M /; 0/
j //

p

��

.M; @M / //

m

��

.B.M; @M /; 0/ // 0

0 // .B.M; @M /; 0/ // .V; @V / // .B.M; @M /; 0/ // 0;

pushout

where the first row is the short exact sequence (4.2), the first square is a pushout square,
and the second row is short exact; see Proposition VIII.4.2 in [29]. The snake lemma
implies Kerp Š Kerm and Cokerp Š Cokerm. Since p is the splitting morphism from
diagram (4.3), we have Kerp Š .H.M; @M /; 0/ and Cokerp D 0. Combining this infor-
mation provides a short exact sequence in Diff.A/,

0 �! .H.M; @M /; 0/
�
�! .M; @M /

m
�! .V; @V / �! 0:

To prove that � is a quasi-isomorphism, it is enough to prove H.V; @V / D 0, by Proposi-
tion 2.2(i) and paragraphs 4.3 and 4.2.

The pushout square in (4.4) induces a short exact sequence

(4.5) 0 �! .Z.M; @M /; 0/

�
j

�p

�
���! .M; @M /˚ .B.M; @M /; 0/ �! .V; @V / �! 0

in Diff.A/ by Proposition 2.53 in [11]. Note that
�
j
�p

�
is indeed a monomorphism since j

is a monomorphism. As remarked before the proposition, H.j / can be identified with �
from diagrams (4.1) and (4.3), and H.�p/ can clearly be identified with

Z.M; @M /
�p
��! B.M; @M /;
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so H
�
j
�p

�
D
� H.j /

H.�p/

�
can be identified with

�
�
�p

�
. This is an isomorphism since p is a

splitting morphism, see diagram (4.3). Hence the long exact homology sequence induced
by (4.5) implies H.V; @V / D 0 as desired.

Proof of Theorem E. Since A is left hereditary, it has finite left global dimension, so para-
graphs 4.1 through 4.6 apply.

It is clear that the homology functor Diff.A/
H
�! Mod.A/ induces a map H as shown

in equation (1.9). We will prove that an inverse map, K, is given by mapping the iso-
morphism class of M in Mod.A/ to the isomorphism class of .J; @J / in Diff.A/, where
.M;0/

�
�! .J; @J / is a quasi-isomorphism and .J; @J / is Gorenstein injective without non-

zero injective summands in Diff.A/.
Such a � is a minimal semiinjective resolution by paragraph 4.6, so it exists by Theo-

rem B(i), and .J; @J / is determined up to isomorphism by Theorem D.
The map K takes values in the left-hand set of equation (1.9) by construction.
(a) HK D id.

The quasi-isomorphism .M; 0/
�
�! .J; @J / provides the second equality in the follow-

ing computation up to isomorphism:

HK.M/ D H.J; @J / D H.M; 0/ DM

(b) KH D id.
Let .J; @J / be Gorenstein injective without non-zero injective summands in Diff.A/.

By paragraph 4.4, we have J in Inj.A/ whence the quotient B.J; @J / of J is also in
Inj.A/ because A is left hereditary. This implies that the sequence (4.1) is split exact,
so Lemma 4.7 gives a quasi-isomorphism .H.J; @J /; 0/

�
�! .J; @J /, and by the definition

of K, this shows
KH.J; @J / D .J; @J /:

A. Minimal semiinjective resolutions in the classic derived category

Our theory can be specialised to the theory of minimal semiinjective resolutions in D.A/
by setting Q equal to the k-preadditive category given by Figure 1 modulo the relations
that consecutive arrows compose to zero, and we will do so in this appendix. Then a
Q-shaped diagram is a chain complex, so Q;AMod is equal to Ch.A/, the category of
chain complexes and chain maps over A, and DQ.A/ is equal to D.A/. Theorems B, C, D
and 3.1 specialise to the following results due to [1], Appendix B of [5], Section 10 of [10],
Sections 2.3 and 2.4 of [12], and Appendix B of [28].

Theorem B for complexes.
(i) Each X in Ch.A/ has a minimal semiinjective resolution.
(ii) Each semiinjective complex I in Ch.A/ has the form I D I 0 ˚ J 0 in Ch.A/, with I 0

a minimal semiinjective complex and J 0 a null homotopic complex of injective mod-
ules.
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Theorem C for complexes. If I
i
�! I 0 in Ch.A/ is a quasi-isomorphism between minimal

semiinjective complexes, then i is an isomorphism in Ch.A/.

Theorem D for complexes. If X
x
�! I andX

x0

�! I 0 are minimal semiinjective resolutions
in Ch.A/, then the following holds.

• The diagram of solid arrows

X
x //

x0

��

I

i
��

I 0

can be completed with a chain map i such that ix is chain homotopic to x0 in Ch.A/.

• The chain map i is unique up to chain homotopy.

• Each completing chain map i is an isomorphism in Ch.A/.

Theorem 3.1 for complexes. Let

I D � � � �! I2
@2
�! I1

@1
�! I0

@0
�! I�1

@�1
��! I�2 �! � � �

be a semiinjective complex in Ch.A/. The following conditions are equivalent.

(i) If J � I with J a null homotopic complex of injective modules, then J D 0. That
is, I is minimal.

(ii) If E � I with E an exact complex, then E D 0.

(iii) Each quasi-isomorphism I �! X in Ch.A/ is a split monomorphism.

(iv) If an endomorphism I
f
�! I in Ch.A/ induces an automorphism in D.A/, then f is

already an automorphism.

(v) Ker @q is an essential submodule of Iq for each q.

The specialisations are obtained by applying Figure 3, which explains how some con-
cepts from Q;AMod specialise to Ch.A/. Note that items (i)-(iv) in Theorem 3.1 specialise
to items (i)-(iv) in Theorem 3.1 for complexes, while items (v)-(vii) in Theorem 3.1 all
specialise to item (v) in Theorem 3.1 for complexes.

For instance, consider Theorem 3.1(vi). The functor Fq from equation (1.6) spe-
cialises to

Ch.A/ Mod.A/;

Fq

xx

given on objects by

FqM D � � � �! 0 �!M
id
�!M �! 0 �! � � �

with M is placed in homological degrees q and q � 1.
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Q;AMod Ch.A/

(a) DQ.A/ D.A/

(b) E exact complexes
(c) weq quasi-isomorphisms
(d) semiinjective object semiinjective complex
(e) semiinjective resolution semiinjective resolution
(f) minimal semiinjective resolution minimal semiinjective resolution
(g) Q;AInj null homotopic complexes of injective modules
(h) � in the category E? chain homotopy of chain maps

Figure 3. SetQ equal to the k-preadditive category given by Figure 1 modulo the relations that con-
secutive arrows compose to zero. Then Q;AMod is equal to Ch.A/. This table explains how some
concepts now specialise. Items (a)-(e) are given by 3.4, 3.7 and 3.10 in [19], item (g) is Exercise 14.8
in [27], and item (h) follows from item (g). Item (f) holds because Theorem 3.1(i), characterising
minimal semiinjective objects in Q;AMod, specialises to Proposition 2.3.14(b) in [12], characteris-
ing minimal semiinjective complexes.

A morphism FqM
'
�! I is a chain map of the following form:

FqM

'

��

D � � � // 0 //

��

M
id //

�

��

M //

@q�

��

0 //

��

� � �

I D � � � // IqC1 // Iq
@q

// Iq�1 // Iq�2 // � � �

Hence Theorem 3.1(vi) specialises to the statement that if M
�
�! Iq and M

@q�
��! Iq�1 are

both monomorphisms, then M D 0. That is, if M
�
�! Iq is a monomorphism for which

Im� \ Ker @q D 0, then M D 0. This is equivalent to item (v) in Theorem 3.1 for com-
plexes.
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