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Riesz transform and spectral multipliers for the flow
Laplacian on nonhomogeneous trees

Alessio Martini, Federico Santagati, Anita Tabacco and Maria Vallarino

Abstract. Let T be a locally finite tree equipped with a flow measure m. Let L be
the flow Laplacian on .T;m/. We prove that the first order Riesz transform rL�1=2

is bounded on Lp.m/ for p 2 .1;1/. Moreover, we prove a sharp Lp spectral mul-
tiplier theorem of Mihlin–Hörmander type for L. In the case where m is locally
doubling, we also prove corresponding weak type and Hardy space endpoint bounds.
This generalises results by Hebisch and Steger for the canonical flow Laplacian on
homogeneous trees to the setting of nonhomogeneous trees with arbitrary flow meas-
ures. The proofs rely on approximation and perturbation arguments, which allow one
to transfer to any flow tree a number of Lp bounds that hold on homogeneous trees
of arbitrarily large degree and are uniform in the degree.

1. Introduction

1.1. Summary of the results

Let T denote an infinite tree, i.e., an infinite connected graph with no loops, equipped with
the shortest-path distance d . We identify T with its set of vertices and say that x;y 2 T are
neighbours if d.x;y/D 1; in this case, we write x � y. We shall assume throughout that T
is locally finite, i.e., every vertex has finitely many neighbours; the number of neighbours
of a vertex is also known as its degree.

Let @T be the boundary at infinity of T (defined, e.g., as in Section I.1 of [18]). We
choose a boundary point !� 2 @T that we think of as the root of T . We shall call T a
tree with root at infinity whenever a root !� 2 @T has been fixed. Such a choice induces a
natural partial order on T : namely, for any x; y 2 T , we say that x � y if y belongs to the
semi-infinite geodesic from x to !�. We shall think of T as hanging from its root !�, so
if x � y we say that x is below y and y is above x. In this way, any x 2T has exactly one
neighbour lying above x, which shall be referred to as the predecessor of x and denoted
by p.x/; the remaining neighbours lie below x and form the set s.x/ of successors of x.

We set q.x/ D #s.x/, where # is the counting measure. The tree T is called homo-
geneous if x 7! q.x/ is constant, i.e., if every vertex x has the same degree, which is
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then said to be the degree of the tree. For any positive integer q, we shall denote by Tq
the homogeneous tree of degree q C 1 with a fixed root at infinity (so q.x/ D q for all
x 2Tq); of course, for any positive integer q there is only one such tree Tq , up to iso-
morphisms. While homogeneous trees play an important role in our discussion, one of the
main objectives of the present paper is to develop an analysis also encompassing the case
of nonhomogeneous trees T with root at infinity.

Given a semi-infinite geodesic .xj /j�0 in T with !� as an endpoint, we define the
level function `WT ! Z as

`.x/ D lim
j!1

Œj � d.x; xj /�; x 2T:

It is easily seen that the level function ` is uniquely determined by !� up to an additive
shift; in particular, the collection of the level sets of `, also known as horocycles, does
not depend on the geodesic .xj /j�0. When working with a tree T with root at infinity,
we shall assume that a level function ` has been chosen. Notice that, for any x; y 2T , we
have x � y if and only if d.x; y/ D `.y/ � `.x/.

The following definition describes a natural class of measures on trees with root at
infinity, which are the object of our study.

Definition 1.1. A flow measure on a tree T with root at infinity is a function mW T !
.0;1/ such that

m.x/ D
X
y2s.x/

m.y/; x 2T:

We say that the pair .T;m/ is a flow tree if T is a tree with root at infinity and m is a flow
measure on T .

Variants of the above definition can be found in the literature, also encompassing the
case where the root is a vertex and not a boundary point; we refer the reader to [28] for
a wide-ranging account of flows in probability and analysis on trees, with connections to
computer science and operations research. In this work, we focus on a harmonic analysis
perspective and, specifically, on the study of certain singular integral operators naturally
associated with flow trees; of course, as we are working with a discrete measure, here local
integrability is not an issue, so the term “singular integral” refers to a lack of integrability
at infinity.

The existence of a flow measure on a tree T with root at infinity, in the sense of
Definition 1.1, implies that T has no leaves, i.e., q.x/ > 0 for all x 2T . We shall identify
a flow measure m on T with the discrete measure with density m with respect to the
counting measure # on T . In this way, we can consider Lebesgue spaces Lp.m/ and other
function spaces on T associated with a flow measure m.

In the case of the homogeneous tree Tq , the canonical flow measure mTq is given by
mTq .x/D q

`.x/ for all x2Tq . When q � 2, it is readily seen that themTq -measure of balls
with a fixed centre grows exponentially with the radius. This example shows that, for an
arbitrary flow tree .T;m/, the metric measure space .T;d;m/ need not satisfy the doubling
property; indeed, Theorem 2.5 in [26] shows that the doubling property fails for most flow
trees, so many standard techniques for the analysis of singular integrals are not directly
available in this context. On the other hand, in recent years there has been considerable
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interest in extending aspects of the theory of singular integrals to nondoubling settings
(see, e.g., [7, 8, 21, 37, 40, 48, 49, 51] and references therein), and the present work can be
thought of as a contribution to this effort.

A flow measure m is called locally doubling if for every R > 0 there exists a con-
stant DR such that

m.B2r .x// � DRm.Br .x// 8x 2T; r 2 .0; R�;

where Br .x/ denotes the ball centred at x of radius r with respect to d . It is known that, if
a tree with root at infinity can be equipped with a locally doubling flow measure, then T
has bounded degree, i.e., supx2T q.x/ < 1 (see Corollary 2.3 in [26]). Following the
seminal work [21], a Calderón–Zygmund theory on a locally doubling flow tree .T; m/
was developed in [26], and suitable Hardy and BMO spaces H 1.m/ and BMO.m/ were
introduced (see also [3, 4, 27, 44]). Such theory is applied in this paper to study bounded-
ness properties of singular integral operators associated with a natural Laplacian on flow
trees.

Let .T; m/ be a flow tree, and denote by CT the set of complex-valued functions
defined on T . We define the flow gradient r as

rf .x/ D f .x/ � f .p.x//; f 2CT ; x 2 T;

and the flow Laplacian L as 1
2
r�r (see Section 2 for more details). We prove in Corol-

lary 5.10 that for every p 2 Œ1;1�, the spectrum of L on Lp.m/ is Œ0; 2�. In particular, L

has no spectral gap on L2.m/.
One of our main results deals with Lp boundedness properties of the first order Riesz

transform associated with L, which is defined as R D rL�1=2. The boundedness prop-
erties of R were studied in [21,25,35] in the setting of homogeneous trees equipped with
the canonical flow Laplacian. In this paper, we obtain an analogous result for any tree
equipped with a locally doubling flow measure, and actually the non-endpoint bounded-
ness properties hold true for arbitrary flow trees.

Theorem 1.2. Let .T;m/ be a flow tree. Then the Riesz transform R is bounded onLp.m/
for every p2 .1;1/. Moreover, if m is locally doubling, then R is of weak type .1; 1/ and
bounded from H 1.m/ to L1.m/.

Remark 1.3. The Lp-boundedness for all p 2 .1;1/ of the Riesz transform R implies
that, for any p 2 .1;1/, there exist constants cp; Cp > 0 such that

(1.1) cpkL
1=2f kLp � krf kLp � CpkL

1=2f kLp :

Indeed, the second inequality in (1.1) is clearly equivalent to the Lp-boundedness of R D

rL�1=2; however, by duality, R� is also Lp-bounded, i.e., kL�1=2r�gkp � Cp0kgkp ,
where p0 is the conjugate exponent to p, and by taking g Drf , one gets the first inequal-
ity in (1.1).

We also prove that, apart from trivial cases, R is unbounded fromL1.m/ to BMO.m/
whenever .T;m/ is locally doubling (see Proposition 6.8). This shows that the case p � 2
of Theorem 1.2 cannot be simply obtained by duality considerations from the case p � 2,
and a different approach is needed.
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The Lp boundedness properties of Riesz transforms in discrete settings have received
considerable attention in the literature. For example, in [5, 17, 42, 43] several results are
proved in the context of graphs satisfying the doubling property. The results of [8, 9],
instead, do not require the doubling condition, but assume that the corresponding Lapla-
cian has a spectral gap. As the doubling property may fail for arbitrary flow measures,
while the flow Laplacian L has no spectral gap, our Theorem 1.2 does not fall under the
scope of those results.

Beside Riesz transforms, in this work we also deal with spectral multipliers of L. First
of all, we establish that the flow Laplacian has a differentiable Lp functional calculus:
namely, we prove the Lp boundedness for p 2 Œ1;1� of operators of the form F.L/

whenever F lies in the standard inhomogeneous Sobolev space L2s .R/ of order s > 3=2.

Theorem 1.4. Let .T; m/ be a flow tree. Let s > 3=2. Then, there exists a positive con-
stantCs such that, if F 2L2s .R/, thenF.L/ is bounded onLp.m/ for every p2 Œ1;1� and

(1.2) kF.L/kLp!Lp � CskF kL2s :

Notice that, as the spectrum of L is Œ0; 2�, one can change F WR! C outside Œ0; 2�
without changing F.L/, thus the Sobolev bound on F is effectively only required on a
neighbourhood of the interval Œ0; 2�.

We also obtain a singular integral version of the above result, i.e., the following spec-
tral multiplier theorem of Mihlin–Hörmander type for the flow Laplacian.

Theorem 1.5. Let �2C1c .R/ be supported in .3=4; 5=4/ and such that 0 � � � 1 and
�.1/D 1. Let .T;m/ be a flow tree. Let s > 3=2 and let F WR! C be a Borel measurable
function.

(i) If F satisfies the condition

(1.3) sup
0<t�1

kF.t �/�kL2s C sup
0<t�1

kF.2 � t �/�kL2s <1;

then F.L/ is bounded on Lp.m/ for every p 2 .1;1/. If moreover m is locally
doubling, then F.L/ is also of weak type .1; 1/.

(ii) If m is locally doubling and F satisfies the more restrictive condition

(1.4) sup
0<t�2

kF.t �/�kL2s <1;

then F.L/ is also bounded from H 1.m/ to L1.m/, as well as from L1.m/ to
BMO.m/.

The regularity threshold 3=2 in Theorems 1.4 and 1.5 is sharp, that is, it cannot be
replaced by any smaller number, at least in the case .T;m/ D .Tq; mTq / with q � 2 (see
Proposition 6.13 and Remark 6.14 below). The fact that only a finite order of differenti-
ability of the spectral multiplier F is enough to ensure the Lp-boundedness of F.L/ for
some p ¤ 2 is somewhat remarkable in a nondoubling, exponentially growing setting;
in the discrete realm, one should compare, e.g., the case of combinatorial Laplacians on
homogeneous trees with the counting measure, where Lp-boundedness results for p ¤ 2
require the multiplier to admit a holomorphic extension [15].
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Part (i) of Theorem 1.5 was essentially proved in Theorem 2.3 of [21] for the canonical
flow Laplacian on homogeneous trees. The assumption on the multiplier F in part (i) is
weaker than that in (ii), as the former allows F to be singular not only at 0 but also at 2.
The assumption in part (ii) is analogous to the scale-invariant smoothness assumption
for Fourier and spectral multipliers on Rd and other settings (see, e.g., [22, 31, 38]); the
fact that we restrict the supremum in (1.4) to t � 2 is just due to the boundedness of the
spectrum Œ0; 2� of L.

The fact that the condition on the multiplier F in part (i) is invariant under the change
of spectral variable � 7! 2 � � is a natural consequence of a certain “modulation sym-
metry” of the flow Laplacian L, see (6.15) below. However, while this modulation pre-
serves Lebesgue and Lorentz spaces, it does not preserve the Hardy and BMO spaces on
.T;m/, as it may destroy cancellations. Indeed (see Proposition 6.11 below), theH 1!L1

andL1! BMO endpoint bounds, which hold under the assumption (1.4), may fail under
the weaker assumption (1.3).

An important tool in the proof of the above results is a class of weighted L1 estimates
for the heat kernel of L, denoted by Ke�tL , and its gradient. These estimates, extending
those obtained in [35] in the particular case of homogeneous trees, are of independent
interest and read as follows.

Theorem 1.6. Let .T;m/ be a flow tree. Then, for every " > 0 and t � 1,

sup
y2T

X
x2T

e"d.x;y/=
p
t
jKe�tL.x; y/jm.x/ � c";

sup
y2T

X
x2T

e"d.x;y/=
p
t
jKre�tL.x; y/jm.x/ �

c"
p
t

,

sup
y2T

X
x2T

e"d.x;y/=
p
t
jKe�tLr�.x; y/jm.x/ �

c"
p
t

,

sup
y2T

X
x2T

e"d.x;y/=
p
t
jKre�tLr�.x; y/jm.x/ �

c"

t
,

where c" > 0 is a constant independent of‘ .T;m/. Moreover, for every t > 0,

(1.5)

sup
l2Z

sup
x2T

X
z2T W`.z/Dl

jKre�tL.x; z/jm.z/ �
C

1C t
,

sup
l2Z

sup
x2T

X
z2T W`.z/Dl

jKre�tL.z; x/jm.z/ �
C

1C t
,

where C > 0 is a constant independent of .T;m/.

1.2. Proof strategy

One of the fundamental techniques underlying the proof of our results is transference.
Namely, as we show in Sections 3 and 4 below, any flow tree .T; m/ can be approxim-
ated by a sequence of flow trees .Tj ; mj /, each of which is a quotient of a homogeneous
tree .Tqj ; mTqj

/. In addition, we show that, for a large class of operators in the func-
tional calculus for the flow Laplacian, Lp estimates and weighted L1 kernel estimates can
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be transferred through this quotienting and approximation procedure. This results in the
following “universal transference” result for Lp bounds,

kF.L/kLp.m/!Lp.m/ � sup
q
kF.LTq /kLp.mTq /!L

p.mTq /
;

and in a similar transference result for weightedL1 estimates of the integral kernelKF.L/,
which are valid for any sufficiently regular function F (see Theorem 5.12 below). In par-
ticular, any bound of the above form that holds on homogeneous trees uniformly in q can
be transferred to an arbitrary flow tree.

We also prove analogous transference results for joint functions of the flow gradient r
and its adjoint r� (see Theorem 4.8 below); a technical difficulty here is that r and r�

do not commute in general; however, one can make sense of a “joint functional calculus”
for r and r� by means of noncommutative power series (see Section 2.3). This allows us
to transfer estimates for operators such as r exp.�L/ or r exp.�L/r�, so indeed (once
the transference results are established) the heat kernel bounds of Theorem 1.6 are a direct
consequence of those proved in [35] for homogeneous trees.

The Lp transference results for quotients of flow trees developed in Section 3 below
are similar in spirit to the classical Lp transference results for actions of amenable groups
(see, e.g., [6, 11, 16]). However, also due to the nonhomogeneity of the involved trees, in
our context there does not seem to be an obvious group action to which our transference
results can be reduced. The fact that transference methods can be applied even in a non-
group-invariant context may be another reason of interest for the present work. The results
of Section 4 are somewhat different in nature, as they are based on a perturbative argument
that is affine to those used in other contexts for the transplantation of Lp estimates (see,
e.g., [13, 24, 29, 39]).

We stress once more that, in order for our transference strategy to yield results on
arbitrary flow trees, the original bounds on the homogeneous trees Tq must hold uniformly
in q. As it turns out, one source of such q-uniform bounds is a connection between the
functional calculus for the flow Laplacian on Tq with that on T1, which is expressed in
terms of a certain discrete Abel transform (see, e.g., [14]). This connection was implicitly
used in [35] to derive q-uniform weighted L1 bounds for the heat kernel and its gradient
on Tq , starting from similar estimates on T1. In Section 5 below, we use a similar strategy
to obtain q-uniform weightedL1 estimates for more general functions F.LTq / of the flow
Laplacian, which are at the basis of Theorems 1.4 and 1.5 above.

Notice that the flow tree T1 can be identified with Z with the usual discrete Laplacian.
As the latter can be thought of as a discrete version of R with the standard Laplacian,
one may expect that the multiplier theorems stated above (Theorems 1.4 and 1.5) would
hold under a weaker smoothness assumption, i.e., s > 1=2 instead of s > 3=2: indeed, the
smoothness condition in the classical Mihlin–Hörmander theorem for Fourier multipliers
on Rd (see [22, 38]) is s > d=2. As a matter of fact, the s > 1=2 improvement of Theor-
ems 1.4 and 1.5 is possible if one restricts to the case of T1; this is likely well known to
experts (cf. [1, 16]) and could also be proved by adapting the arguments below. However,
the “Abel transform connection” between T1 and Tq effectively introduces an additional
degree-one weight in L1 estimates (see Proposition 5.6 below), which explains the shift
from 1=2 to 3=2. As already mentioned, this increased smoothness requirement is not just
due to the proof, because we can show (see Proposition 6.13) that, for the canonical flow
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Laplacian on homogeneous trees Tq with q � 2, the threshold 3=2 is sharp and cannot be
lowered.

The above transference results do not apply to weak-type or Hardy space bounds.
This is the main reason why the various endpoint results for singular integrals in the
above theorems are only proved in the context of locally doubling flow trees. Indeed,
in that context, the Calderón–Zygmund theory of [21,26] is available; so one can use it to
prove the desired bounds, by standard dyadic decompositions of the operators of interest,
whereby each dyadic piece satisfies better estimates, which are amenable to transference
techniques.

Even in relation toLp bounds, our transference results do not apply directly to singular
integrals such as Riesz transforms or Mihlin–Hörmander multipliers. In other words, for
these operators, one cannot directly transfer Lp bounds from homogeneous trees to non-
homogeneous ones, so we cannot just use as a black box the results in the homogeneous
setting available in the literature. Nevertheless, we can approximate those singular integ-
rals with appropriate “truncations”, which are no longer singular, and show that the latter
satisfy uniform Lp bounds in the truncation parameter; moreover, by a suitable adjust-
ment of the Calderón–Zygmund theory of [21,26], discussed in Section 6.1 below, we also
obtain the q-uniformity of these Lp bounds on .Tq;mTq /. By transferring the Lp bounds
for the truncations, and then passing to the limit, one eventually recovers the desired Lp

boundedness results for singular integrals on arbitrary flow trees.

1.3. Some open problems

Homogeneous trees Tq with q � 2 are often seen as discrete counterparts of real hyper-
bolic spaces. Indeed, analogues of Theorems 1.2 to 1.6 are known to hold for distinguished
(sub-)Laplacians on hyperbolic spaces and more general solvable Lie groups [19, 21, 30,
32–34, 36, 45–47, 50]. The results of this paper show that the homogeneity constraint on
trees can be dispensed with in the discrete setting; it would be interesting to investig-
ate whether the continuous counterparts also admit more robust versions, with less rigid
assumptions on the operator and the underlying manifold.

The smoothness threshold 3=2 in our multiplier theorems (Theorems 1.4 and 1.5)
also appears in their continuous counterparts on hyperbolic spaces and other solvable Lie
groups [21, 32, 33, 50], where it can be interpreted as half the “pseudodimension” of the
group (see also [12]). As homogeneous trees are expected to capture the “coarse structure”
of hyperbolic spaces, it is not surprising that what plays the role of the “dimension at infin-
ity” in the continuous setting appears in the discrete setting too. In this work we actually
prove that the threshold 3=2 is optimal for the homogeneous tree .Tq; mTq / with q � 2,
while for q D 1 we know it can be lowered to 1=2; it remains an open problem to char-
acterise the optimal threshold for any given flow tree .T; m/ and to determine whether it
may attain intermediate values between 1=2 and 3=2 for certain nonhomogeneous trees
(values below 1=2 are not possible, as T1 D Z is a quotient of any flow tree via the level
function).

As a matter of fact, on homogeneous trees, we can prove the optimality of 3=2 in refer-
ence toL1!L1 andH 1!L1 bounds (see Proposition 6.13), but we do not know wheth-
er a lower smoothness requirement could be enough for weak type .1; 1/ bounds of forLp
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bounds for all p 2 .1;1/. On the other hand, our proof of Theorem 1.5 is fundament-
ally based on L1 bounds for the dyadic pieces in which the singular integral operator is
decomposed (see Theorems 6.1 and 6.2), so in any case nothing better than 3=2 could be
achieved without a substantial change of strategy to prove bounds for singular integrals.

As already mentioned, the endpoint bounds in Theorems 1.2 and 1.5 are only proved
in the case of locally doubling flow trees .T;m/. It would be interesting to know whether,
for example, the weak type .1; 1/ endpoint bounds may also be valid on arbitrary flow
trees. This would appear to be out of reach for the existing Calderón–Zygmund theory on
flow trees [21, 26] and may require new ideas.

The negative H 1 ! L1 boundedness results for the adjoint Riesz transform R� and
certain spectral multipliers F.L/ of the flow Laplacian (see Propositions 6.8 and 6.11)
appear to indicate some limitations of the atomic Hardy spaceH 1.m/ on locally doubling
flow trees .T;m/ defined in [26]. It remains an open problem whether a different definition
of Hardy space could be given this setting, in order to better capture endpoint boundedness
properties of natural singular integral operators; some related investigations can be found
in [8, 44].

In any case, our results do not provide any explicit p D 1 endpoint bounds for the
adjoint Riesz transform R�. In particular, the question whether R� is of weak type .1; 1/
is open even in the setting of homogeneous trees .Tq;mTq / with q � 2 (see [25]), as well
as in the continuous counterpart discussed in [30].

Notation

We write 1S for the characteristic function of a set S . The symbol N denotes the set of
natural numbers, including zero; we write NC for the set N n ¹0º of positive integers. For
a real number x, we denote by xC its positive part max¹x; 0º, and by bxc its integer part
max¹k 2Z W k � xº.

Given two nonnegative quantities A and B , A . B means that there exists a finite
positive constant C such that A� CB , while A� B means A. B and B . A. Moreover,
A .x1;x2;:::;xn B , for some parameters x1; : : : ; xn, means that the implicit constant may
depend on x1; : : : ; xn.

2. Flow trees and flow Laplacians

In this section, we recall a few basic properties of flow Laplacians, obtaining in particular
a description of their Lp spectra. We also introduce some important spaces of functions
on flow trees that will be used throughout, as well as a “joint functional calculus” for
noncommuting operators via power series.

2.1. The flow Laplacian and its spectrum

Let .T;m/ be a flow tree. Define the shift operator †WCT ! C as

(2.1) †f .x/ D f .p.x//; f 2CT ; x 2T:
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From Definition 1.1, it is clear that † is a linear isometry on Lp.m/ for every p 2 Œ1;1�.
Moreover, the adjoint operator †� with respect to the L2.m/ pairing acts on functions
f 2CT as follows:

†�f .x/ D
1

m.x/

X
y2s.x/

f .y/m.y/; f 2CT ; x 2T:

Given a flow tree .T;m/, we define the flow gradient r as I �†, and the flow Lapla-
cian L as 1

2
r�r, where r� is the adjoint operator of r on L2.m/. An easy calculation

shows that L D I �A, where A D .†C†�/=2 is the averaging operator given by

(2.2) Af .x/ D
1

2
f .p.x//C

1

2m.x/

X
y2s.x/

f .y/m.y/; f 2CT ; x 2T:

In the next result, we show that L has no spectral gap.

Proposition 2.1. Let .T;m/ be a flow tree and let L be the corresponding flow Laplacian.
For every p 2 Œ1;1�, the real points of the spectrum of L on Lp.m/ are the points of the
interval Œ0; 2�. In particular, the L2 spectrum of L is Œ0; 2�.

Proof. As L is selfadjoint, by duality (see, e.g., Section VIII.6 of [52]) we may assume
that p � 2, and in particular, p <1.

We first prove that the spectrum of A on Lp.m/ contains Œ�1; 1�. Given � 2R, let us
define f� WT ! C by

f� .x/ D e
i�`.x/; x 2T:

Choose any o2T with `.o/ D 0. For every integer d � 2, define the sets

Vd D ¹x 2 T W x � o; `.x/ � �dº;

Vd D ¹x 2 T W x � o; `.x/ � �d � 1º [ ¹p.o/º;

V ıd D ¹x 2 T W x � o; �d C 1 � `.x/ � �1º:

Consider the function f�;d D f� 1Vd , whose Lp norm is Œm.o/.d C 1/�1=p . It is easy to
see that

Af�;d .x/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

cos � f�;d .x/ if x 2V ı
d
;

0 if x …Vd ;
m.o/

2m.p.o//
if x D p.o/;

1

2
e�i� if x D o;

1

2
ei�.`.x/C1/ if x 2 Vd and `.x/ D �d;�d � 1:

It follows that

kAf�;d � cos �f�;dkp
kf�;dkp

.
m.Vd n V

ı
d
/1=p

Œm.o/.d C 1/�1=p
D
Œm.p.o//C 3m.o/�1=p

Œm.o/.d C 1/�1=p
,
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which tends to 0 as d ! 1. This implies that cos � is in the spectrum of A for every
� 2R. Hence Œ�1; 1� is contained in the spectrum of A on Lp.m/.

As A D .†C†�/=2 is clearly Lp bounded with norm at most 1, the spectrum of A

on Lp.m/ is contained in the closed unit ball centred at the origin of C. As the spectrum
contains Œ�1; 1�, this interval exhausts the real points of the spectrum. In the case p D 2,
as A is selfadjoint, its spectrum is real and therefore Œ�1; 1� is the whole L2 spectrum.

Since L D I �A, we finally deduce that the real points of the Lp spectrum of L are
the points of the interval Œ0; 2�, which is the whole spectrum when p D 2.

We shall complete the characterisation of the Lp spectrum of L in Corollary 5.10
below.

As mentioned in the introduction, an important example of flow tree is the homogen-
eous tree Tq with the so-called canonical flow measuremTq , for any q 2NC. Namely, Tq
is a tree with root at infinity and q.x/ D q for all x 2Tq , while

(2.3) mTq .x/ D q
`.x/; x 2Tq :

We shall denote by †Tq , rTq and LTq the shift operator, the flow gradient and the flow
Laplacian on .Tq; mTq /.

2.2. Function spaces on a flow tree

We now introduce some spaces of functions on a flow tree .T; m/, as well as classes of
operators between these spaces, which will be relevant in the subsequent discussion.

We denote by c00.T / the set of the functions f 2CT with finite support. For a linear
operator OW c00.T /! CT , we denote by KO its integral kernel, i.e., KO WT � T ! C is
such that, for all f 2 c00.T /,

(2.4) Of .x/ D
X
y2T

KO.x; y/f .y/m.y/; 8x 2T:

For any such operator O, the (formal) adjoint O�W c00.T / ! CT is the operator with
integral kernel

KO�.x; y/ D KO.y; x/; x; y 2T;

and satisfies
hO�f; giL2.m/ D hf;OgiL2.m/; 8f; g 2 c00.T /:

We point out that if OWLp.m/ ! Lp.m/ is bounded for some p 2 Œ1;1/, then O is
uniquely determined by its restriction Ojc00.T /, and therefore by its integral kernelKO . In
particular, if p D 1, then

kOk1!1 D sup
y2T

X
x2T

jKO.x; y/jm.x/;

and the formula (2.4) is valid for any f 2L1.m/.
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We denote by B.m/ the set of the bounded operators OWL1.m/!L1.m/ such that the
adjoint O� is also bounded on L1.m/. It is readily checked that B.m/ is a unital Banach
�-algebra with the norm

(2.5) kOkB.m/ D max¹kOk1!1; kO�k1!1º:

Moreover, any O 2B.m/ can also be thought of as a bounded operator on L1.m/, where
Of is given by (2.4) for any f 2L1.m/, and clearly

kOk1!1 D kO
�
k1!1 D sup

x2T

X
y2T

jKO.x; y/jm.y/:

So, we can rewrite (2.5) as

kOkB.m/ D max¹kOk1!1; kOk1!1º:

By interpolation, any O 2B.m/ is also bounded on Lp.m/ for all p 2 Œ1;1�, with

(2.6) kOkp!p � kOkB.m/:

Notice also that

(2.7) kOkp!p D sup
f;g2c00.T /

kf kpDkgkp0D1

jhOf; giL2.m/j;

where p0 is the conjugate exponent to p; this is clear when p <1, because then c00.T /
is dense in Lp.m/, while in the case p D 1 it follows by duality, i.e., by applying (2.7)
for p D 1 to O�.

Finally, it is not difficult to check that the set

Bfin.m/ D ¹O 2B.m/ W sup¹d.x; y/ W KO.x; y/ ¤ 0º <1º

is a unital �-subalgebra of B.m/, and that O.c00.T // � c00.T / for all O 2Bfin.m/. In
addition, by means of the formula (2.4), each O 2Bfin.m/ extends to a linear operator
OWCT ! CT . Clearly, the shift operator†, the flow gradient r and the flow Laplacian L

are all members of Bfin.m/.

2.3. Noncommutative polynomials and power series

It is convenient to introduce some notation for noncommutative polynomials and power
series in multiple indeterminates. This will allow us to consider a sort of “joint functional
calculus” for the two noncommuting operators † and †�, including, e.g., operators of
the form H.L/ for an entire function H on C, as well as more complicated expressions
such as

(2.8) r
kH.L/.r�/h

for all k; h 2 N.
Let d 2 NC. A formal power series in d noncommutative indeterminates Z1; : : : ; Zd

is an expression of the form

(2.9) F.Z1; : : : ; Zd / D
X
N2N

X
˛2¹1;:::;dºN

c˛.Z1; : : : ; Zd /
˛
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for some coefficients c˛ 2 C, where ˛ 2 ¹1; : : : ; dºN is a noncommutative multi-index of
length j˛j WD N 2N, and

.Z1; : : : ; Zd /
˛
WD Z˛1 � � �Z˛N

denotes the noncommutative monomial of multi-degree ˛. In case only finitely many of
the coefficients c˛ are nonzero, then F.Z1; : : : ; Zd / is called a noncommutative polyno-
mial. More generally, if R2 .0;1/ and

kF k.R/ WD
X
N2N

RN
X

˛2¹1;:::;dºN

jc˛j <1;

then we say that the power series F.Z1; : : : ; Zd / is R-absolutely convergent.
The formal power series in d noncommutative indeterminates form an algebra H .d/

with the natural operations; notice that the product of two noncommutative monomials is
given by

.Z1; : : : ; Zd /
˛.Z1; : : : ; Zd /

ˇ
D .Z1; : : : ; Zd /

˛[ˇ

where ˛ [ ˇ is the concatenation of the multi-indices ˛ and ˇ. For any R 2 .0;1/,
we shall write H .d; R/ for the subalgebra of the R-absolutely convergent power series,
and P .d/ for the subalgebra of noncommutative polynomials. It is readily checked that
H .d;R/ is a Banach algebra with the norm k � k.R/, and that k.Z1; : : : ;Zd /˛k.R/ D Rj˛j

for any multi-index ˛. Thus, for any F 2H .d;R/, the series in the right-hand side of (2.9),
thought of as an infinite sum in the Banach algebra H .d; R/, converges absolutely to F
in H .d;R/. In particular, P .d/ is dense in H .d;R/.

Much like their commutative counterparts, noncommutative power series and poly-
nomials can be used to define, via substitutions, certain “joint functions” of a tuple of
noncommuting elements of a (Banach) algebra. Namely, from the above definitions one
immediately deduces the following result.

Lemma 2.2. Assume that K is a Banach algebra andM1; : : : ;Md 2K satisfy kMj kK �
R for j D 1; : : : ; d , where R2 .0;1/. If F 2H .d;R/ is given by (2.9), then the series

F.M1; : : : ;Md / WD
X
N2N

X
˛2¹1;:::;dºN

c˛.M1; : : : ;Md /
˛

converges absolutely in K , and

kF.M1; : : : ;Md /kK � kF k.R/:

We highlight two particular cases of the above assertion, which are especially signi-
ficant for our discussion.
(1) As k†kB.m/ D k†�kB.m/ D 1, for any F 2H .2; 1/ the series F.†;†�/ converges

absolutely in B.m/, and kF.†;†�/kB.m/ � kF k.1/.
(2) As kLkB.m/ D 2, for any H 2H .1; 2/, the series H.L/ converges absolutely in

B.m/ and kH.L/kB.m/ � kHk.2/.



Riesz transform and spectral multipliers for the flow Laplacian 2233

The latter statement actually reduces to the former, because

(2.10) L D
1

2
.I �†�/.I �†/;

and because of the following result.

Lemma 2.3. If H 2H .1; 2/ and F is defined by

(2.11) F.Z1; Z2/ D H..1 �Z2/.1 �Z1/=2/;

then F 2H .2; 1/ and kF k.1/ � kHk.2/.

Proof. Notice that kZ1k.1/ D kZ2k.1/ D 1, so

k.1 �Z2/.1 �Z1/=2k.1/ � k1 �Z2k.1/ k1 �Z1k.1/=2 � 2:

Therefore, Lemma 2.2, applied to the Banach algebra K D H .2; 1/, its element M1 D

.1�Z2/.1�Z1/=2 and the power series H 2H .1; 2/, shows that the substitution (2.11)
indeed defines an element F of H .2; 1/ with the desired norm estimate.

From Lemma 2.3 and the expression (2.10), we deduce that the operators of the form

F.†;†�/; where F 2H .2; 1/;

include, among others, all the operators (2.8) for any k;h2N and anyH 2H .1; 2/. Thus,
the “noncommutative functional calculus” for .†; †�/ based on H .2; 1/ is sufficiently
rich to include many of the operators of interest related to the flow gradient and the flow
Laplacian.

3. Flow submersions and transference

In this section, we develop a transference theory for appropriately defined quotients of
flow trees. We also characterise those flow trees .T;m/ that are quotients of the homogen-
eous tree .Tq; mTq /, in terms of rationality properties of the flow m.

3.1. Submersions and compatible operators

We introduce a particular class of mappings between trees with root at infinity, which
preserve the underlying structure.

Definition 3.1. Let T1 and T2 be trees with root at infinity. We say that � W T1 ! T2 is a
submersion if

�.p.x// D p.�.x//; 8x 2T1;(3.1)
�.s.x// D s.�.x//; 8x 2T1:(3.2)

Observe that (3.1) and (3.2) imply that a submersion � is surjective: indeed, if x02T1,
then any vertex y 2 T2 can be reached from �.x0/ by iteratively taking predecessors and



A. Martini, F. Santagati, A. Tabacco and M. Vallarino 2234

successors. Moreover, iteration of (3.2) gives

�.sn.x// D sn.�.x//; 8n2N;

where sn.x/ is the set of the nth-generation descendants of x. This shows that any sub-
mersion � is strictly increasing, i.e., if x < y on T1, then �.x/ < �.y/ on T2. In particular,

�.�x/ D ��.x/;

where

(3.3) �z WD ¹y 2Tj W y � zº D
[
n2N

sn.z/

is the set of all the descendants of z 2Tj .
By the above properties, a submersion � preserves neighbours, i.e., �.x/� �.y/ in T2

if x � y in T1; in particular, � is a 1-Lipschitz map, i.e.,

(3.4) d2.�.x/; �.y// � d1.x; y/; 8x; y 2T1;

where dj is the (shortest-path) distance function on Tj . Moreover,

(3.5) `.�.x// D `.x/C c� ; 8x 2T1

for some constant c� 2Z; indeed, the equality (3.5) holds for a single vertex x0 2 T1
and some c� 2Z, and then is preserved by iteratively taking predecessors and successors
by (3.1)–(3.2). In particular, up to an appropriate shifting of the level functions, one may
assume that c� D 0, i.e., the submersion � is level-preserving.

Definition 3.2. Let T1 and T2 be trees with root at infinity.
(a) Given a submersion � W T1 ! T2, we say that two flow measures m1 and m2, on T1

and T2, respectively, are �-compatible if

(3.6)
m2.�.x//

m2.p.�.x///
D
m1.�

�1¹�.x/º \ s.p.x///

m1.p.x//
, 8x 2T1:

(b) Let .T1; m1/ and .T2; m2/ be flow trees. We say that � W .T1; m1/! .T2; m2/ is a
flow submersion if � WT1! T2 is a submersion and the flow measuresm1 andm2 are
�-compatible. In this case we also say that .T2; m2/ is a flow quotient of .T1; m1/.

The compatibility property (3.6) says, roughly speaking, that the flow measurem2 can
be thought of as the push-forward of the flow measure m1 via � , provided both flows are
restricted to appropriate subsets of the trees. This idea is made precise in the following
statement.

Proposition 3.3. Let .T1;m1/ and .T2;m2/ be flow trees and let � W .T1;m1/! .T2;m2/

be a flow submersion. Let x 2T1, and let �x be the restriction of � to�x . Then, for every
z 2�.�x/ D ��.x/,

(3.7) m2.z/ D c.x/m1.�
�1
x ¹zº/;

where c.x/ D m2.�.x//=m1.x/. In other words, the measure m2j��.x/ is c.x/ times the
push-forward of the measure m1j�x via �x .
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Proof. We prove (3.7) by induction on the level of z.
If `.z/ D `.x/, i.e., if z D �.x/, then (3.7) is trivially verified.
Now assume that (3.7) holds for all the vertices in ��.x/ whose level is between `.x/

and `.x/� n, where n2N, and pick z 2��.x/ at level `.x/� n� 1. We can then choose
y1; : : : ; yN 2 �

�1
x ¹zº such that p.yj / ¤ p.yk/ if j ¤ k and ��1x ¹p.z/º D ¹p.yj /º

N
jD1.

Then, by (3.6),

m1.�
�1
x ¹zº/ D

NX
jD1

m1.�
�1
¹zº \ s.p.yj /// D

NX
jD1

m2.z/

m2.p.z//
m1.p.yj //

D
m2.z/

m2.p.z//
m1.�

�1
x .p.z/// D

m2.z/

c.x/
,

where in the last step we used the inductive hypothesis.

Definition 3.4. Let .T1; m1/ and .T2; m2/ be flow trees and let � W .T1; m1/! .T2; m2/

be a flow submersion. We define the lifting operator ˆ� WCT2 ! CT1 by

ˆ�f D f ı �:

We say that an operator O 2B.m1/ is �-compatible if there exists QO 2B.m2/ such that

(3.8) Oˆ� D ˆ� QO and O�ˆ� D ˆ� QO
� on L1.m2/:

Remark 3.5. By taking adjoints, the condition (3.8) is equivalent to

(3.9) ˆ��O D QOˆ�� and ˆ��O� D QO�ˆ�� on L1.m1/;

where ˆ�� W L
1.m1/ ! L1.m2/ is the adjoint of the lifting operator ˆ� W L1.m2/ !

L1.m1/, i.e., the fibre-averaging operator

(3.10) ˆ��h.x/ D
1

m2.x/

X
x2��1¹xº

h.x/m1.x/:

Proposition 3.6. Let � W .T1;m1/! .T2;m2/ be a flow submersion and let O 2B.m1/ be
�-compatible. Then ˆ�.L1.m2// is both O- and O�-invariant. Moreover, the operator
QO 2B.m2/ satisfying (3.8) is uniquely determined by O, and

k QOk1!1 � kOk1!1; k QOk1!1 � kOk1!1:

Furthermore, for all x; y 2T2,

K QO.x; y/ D
1

m2.y/

X
z2��1¹yº

KO.x; z/m1.z/; 8x 2�
�1
¹xº;(3.11)

K QO.x; y/ D
1

m2.x/

X
z2��1¹xº

KO.z; y/m1.z/; 8y 2�
�1
¹yº;(3.12)

where the sums converge absolutely.
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Proof. As the operator O is �-compatible, the O- and O�-invariance of ˆ�.L1.m2// is
clear from (3.8). Moreover, asˆ� WL1.m2/! L1.m1/ is an isometric embedding, from
the first equality in (3.8) we deduce that QO D ˆ�1� Oˆ� on L1.m2/, so QO is uniquely
determined by O, and clearly k QOk1!1 � kOk1!1.

In addition, for any f 2L1.m2/, x 2T2 and x 2��1¹xº,

QOf .x/ D Oˆ�f .x/ D
X
z2T1

KO.x; z/ f .�.z//m1.z/;

and a rearrangement of this expression readily shows that the integral kernel of QO is given
by (3.11). Notice that all the above sums converge absolutely, asX

y2T2

jK QO.x; y/jm2.y/ �
X
z2T1

jKO. Nx; z/jm1.z/ � kOk1!1 <1:

The other assertions follow by repeating the above argument with O� in place of O.

Definition 3.7. Let � W .T1; m1/! .T2; m2/ be a flow submersion. We denote by C.�/

the set of the �-compatible operators in B.m1/. Moreover, for any O 2 C.�/, we denote
by �.O/ the unique operator QO satisfying (3.8). Furthermore, we set Cfin.�/DBfin.m1/\

C.�/, and denote by Cfin.�/ the closure of Cfin.�/ with respect to the norm of B.m1/.

In light of Proposition 3.6 and the inequality (3.4), it is easy to verify the following
result.

Proposition 3.8. Let � W .T1;m1/! .T2;m2/ be a flow submersion. Then C.�/ is a closed
unital �-subalgebra of B.m1/, and the mapping

� W C.�/! B.m2/

is a unital Banach �-algebra homomorphism of norm 1. Furthermore, Cfin.�/ and its
closure Cfin.�/ are unital �-subalgebras of C.�/, and �.Cfin.�// � Bfin.m2/.

The following result provides some notable examples of �-compatible operators and
shows why their theory is relevant to the study of the flow gradient and the flow Laplacian.
Recall from Section 2.3 the definition of a joint functional calculus for noncommuting
operators via power series.

Proposition 3.9. Let � W .T1;m1/! .T2;m2/ be a flow submersion. Let†j denote the shift
operator on Tj for j D 1; 2. Then, for any F 2H .2; 1/, we have F.†1;†�1/2Cfin.�/ and

�.F.†1; †
�
1// D F.†2; †

�
2/:

Moreover, if F 2P .2/, then F.†1; †�1/2Cfin.�/.

Proof. Thanks to Proposition 3.8 and the absolute convergence in B.m1/ of the series
F.†1; †

�
1/ for any F 2H .2; 1/, the above statement is an immediate consequence of the

assertion that †1 2Cfin.�/ and �.†1/ D †2, which we now proceed to prove.
Notice that, by (3.1), for all x 2T1,

†1.f ı �/.x/ D f .�.p.x/// D f .p.�.x/// D .†2f / ı �.x/;
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that is, †1ˆ� D ˆ�†2. Moreover, by (3.2),

†�1.f ı �/.z/ D
X

w2s.z/

f .�.w//
m1.w/

m1.z/
D

X
y2s.�.z//

f .y/
m1.s.z/ \ �

�1¹yº/

m1.z/

D

X
y2s.�.z//

f .y/
m2.y/

m2.�.z//
D .†�2f / ı �.z/;

where the third equality follows by applying (3.6) to any x 2��1¹yº \ s.z/. This shows
that .†1/�ˆ� D ˆ�.†2/�, thus †1 2C.�/ and �.†1/ D †2. As clearly †1 2Bfin.m1/,
this completes the proof of the above assertion.

3.2. Transference to flow quotients

Let � be a flow submersion. From Proposition 3.6, we know that

(3.13) k�.O/k1!1 � kOk1!1 and k�.O/k1!1 � kOk1!1

for any �-compatible operator O, i.e., L1 and L1 bounds transfer from O to �.O/. The
relation between the integral kernels of O and �.O/ actually allows us to prove a weighted
variant of these transference estimates.

Proposition 3.10. Let � W .T1;m1/! .T2;m2/ be a level-preserving flow submersion and
let O 2 C.�/. Then, for every weight wWN � Z � Z! Œ0;1/ which is increasing in the
first variable,

(3.14)

sup
y2T2

X
x2T2

w.d2.x; y/; `.x/; `.y// jK�.O/.x; y/jm2.x/

� sup
y2T1

X
x2T1

w.d1.x; y/; `.x/; `.y// jKO.x; y/jm1.x/;

and

(3.15)

sup
x2T2

X
y2T2

w.d2.x; y/; `.x/; `.y// jK�.O/.x; y/jm2.y/

� sup
x2T1

X
y2T1

w.d1.x; y/; `.x/; `.y// jKO.x; y/jm1.y/:

Proof. By (3.12) and (3.4),X
x2T2

w.d2.x; y/; `.x/; `.y// jK�.O/.x; y/jm2.x/

�

X
x2T2

w.d2.x; y/; `.x/; `.y//
X

x2��1¹xº

jKO.x; y/jm1.x/

�

X
x2T1

w.d1.x; y/; `.x/; `.y// jKO.x; y/jm1.x/;
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for any y 2 T2 and y 2��1¹yº, where we used that w is increasing in the first variable.
Taking the supremum over all y 2 T2 gives (3.14). The estimate (3.15) is proved analog-
ously, using (3.11) and (3.4).

Finally, we show that an Lp variant of the transference estimates (3.13) holds for a
subclass of �-compatible operators O. The following result can be thought of as an Lp

transference result, which may be compared, e.g., to those in [6, 11] for actions of amen-
able groups.

Proposition 3.11. Let � W .T1;m1/! .T2;m2/ be a flow submersion and let O 2 Cfin.�/.
Then, for all p 2 Œ1;1�,

(3.16) k�.O/kp!p � kOkp!p:

Proof. In light of (3.13), it is enough to consider p 2 .1;1/. Moreover, thanks to (2.6)
and the boundedness of � WC.�/! B.m2/, it is enough to prove the assertion in the case
O 2Cfin.�/. Indeed, for an arbitrary O 2Cfin.�/, if On 2Cfin.�/ and On ! O in B.m1/,
then �.On/! �.O/ in B.m2/, and therefore, by (2.6), we also have convergence of the
respective Lp ! Lp norms.

Let us thus assume that O 2Cfin.�/, i.e.,

(3.17) N WD sup¹d1.x; y/WKO.x; y/ ¤ 0º <1:

As c00.T2/ is dense in Lp.m2/, we only need to check that

(3.18) k�.O/f kLp.m2/ � kOkp!pkf kLp.m2/

for all f 2 c00.T2/.
If S is a subset of Tj , let us write c00.S/ for the set of the functions in c00.Tj / sup-

ported in S . Recall moreover the notation �x from (3.3), and define, for any x 2Tj ,

�Nx D ¹y 2 �x W dj .x; y/ � N º D
[

y2sN .x/

�y :

Then clearly

c00.T2/ D
[
z2T2

c00.�z/ D
[
z2T2

c00.�
N
z / D

[
w2T1

c00.�
N
�.w//;

where we used the surjectivity of � WT1 ! T2. So we are reduced to proving that, for any
w 2T1, the estimate (3.18) holds for all f 2 c00.�N�.w//.

Let us now fixw2T1. AsLp operator norms are unchanged if the underlying measure
is scaled, by appropriately scaling the flow measures we may assume that m2.�.w// D
m1.w/ when proving (3.18) for all f 2 c00.�N�.w//. Under this assumption, Proposi-
tion 3.3 then tells us that the measure m2j��.w/ is the push-forward via �j�w of the
measure m1j�w . In particular, for all g 2 c00.��w / and all q 2 Œ1;1�,

k1�wˆ�gkLq.m1/ D kgkLq.m2/;
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and moreover,

(3.19) ˆ��1�wˆ�g D g;

where ˆ�� W L
1.m1/ ! L1.m2/ is as in (3.10). Furthermore, for all h 2 c00.�w/ and

q 2 Œ1;1�,
kˆ��hkLq.m2/ � khkLq.m1/:

Finally, by (3.9),
ˆ��O D �.O/ˆ�� on L1.m1/:

Given now f 2 c00.�
N
�.w/

/, by (3.19) we can write

f D ˆ�� 1�wˆ�f;

and moreover, as � is a submersion, supp.1�wˆ�f / � �Nw . From (3.17) we then deduce
that O 1�wˆ�f 2 c00.�w/, so

k�.O/f kLp.m2/ D k�.O/ˆ
�
� 1�wˆ�f kLp.m2/ D kˆ

�
�O 1�wˆ�f kLp.m2/

� kO 1�wˆ�f kLp.m1/ � kOkp!p k1�wˆ�f kLp.m1/
D kOkp!p kf kLp.m2/;

as desired.

3.3. Uniformly rational flows

The results of Section 3.2 show that weighted kernel estimates and Lp bounds for operat-
ors related to the flow gradient and the flow Laplacian can be transferred from a flow tree
to any of its flow quotients. It is therefore of interest to know when a given flow tree is
the flow quotient of another. In this section, we characterise the class of flow quotients of
homogeneous trees.

Definition 3.12. Let .T; m/ be a flow tree. We say that m is a uniformly rational flow
measure if there exists an integer q 2NC such that

q
m.x/

m.p.x//
2 NC; 8x 2T:

In this case, we shall refer to m as a q-uniformly rational flow measure, and correspond-
ingly, .T;m/ will be said a q-uniformly rational flow tree.

Remark 3.13. If T admits a q-uniformly rational flow measure, then q.x/ � q for every
x 2T . So, in this case, T has bounded degree.

Remark 3.14. From (2.3) it is clear that the homogeneous tree .Tq; mTq / is q-uniformly
rational. Moreover, from the �-compatibility condition (3.6) it follows that any flow quo-
tient of a q-uniformly rational flow tree is also q-uniformly rational. Therefore, if a flow
tree .T;m/ is a flow quotient of the homogeneous tree .Tq; mTq /, then m is q-uniformly
rational.
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As we shall see, being q-uniformly rational is not only necessary, but also a sufficient
condition for a flow tree to be a flow quotient of .Tq; mTq /.

We start with an auxiliary result, which provides, for any tree T with root at infinity, a
convenient way to enumerate the successors of any given vertex of T ; this will be of use
when constructing a submersion with image T .

Proposition 3.15. Let T be a tree with root at infinity. Then, there exists a function
ordWT ! N such that

(3.20)
ord.s.x// D ¹0; : : : ; q.x/ � 1º; 8x 2T;

lim
k!1

ord.pk.x// D 0; 8x 2T:

Furthermore, for any given vertex x0 2 T , there exists such a function ord with the addi-
tional property that

ord.pk.x0// D 0 8k 2 N:

Proof. Let p�.x0/ D ¹p
n.x0/ºn2N . Then, for all x 2 T , the set p�.x0/ intersects s.x/

in at most one point. Therefore, for any x 2 T , we can choose a bijection ordx W s.x/!
¹0; : : : ; q.x/ � 1º in such a way that ordx.z/ D 0 if z 2 s.x/ \ p�.x0/. Gluing together
all the functions ordx yields a function ordW T ! N with the desired properties. Indeed,
for any x 2T , the vertices x and x0 have a common ancestor, thus pk.x/2 p�.x0/ for all
sufficiently large k 2N, and therefore ord.pk.x// D 0 for all k sufficiently large.

Definition 3.16. Let T be a tree with root at infinity. A function ordW T ! N with the
properties (3.20) will be referred to as an enumerator of T .

Remark 3.17. If ord is an enumerator of T , then the set

�ord WD ¹x 2T W ord.p.k/.x// D 0; 8k 2Nº

is a bi-infinite geodesic in T with the root !� as one endpoint. Proposition 3.15 therefore
tells us that, for any given x0 2 T , we can find an enumerator ord of T such that x0 2 �ord;
a simple variation of the proof would actually allow us to construct an enumerator ord so
that �ord is any prescribed bi-infinite geodesic with endpoint !�.

The next result, combined with Remark 3.14, shows that being a flow quotient of
.Tq; mTq / is a characterisation of q-uniformly rational flow trees.

Proposition 3.18. Let m be a q-uniformly rational flow measure on a tree T . Then T
is a flow quotient of the homogeneous tree Tq equipped with the canonical flow. More
precisely, for any given w0 2Tq and w0 2 T , we can find a flow submersion � WTq ! T

such that �.w0/ D w0.

Proof. By Proposition 3.15, we can find an enumerator ord of T such that w0 2�ord. In
particular, for all x 2T , we can write

s.x/ D ¹s0.x/; : : : ; sq.x/�1.x/º;

where sj .x/ 2 s.x/ is uniquely determined by ord.sj .x// D j . We now modify this
enumeration of the elements of s.x/, by repeating each element a number of times pro-
portional to its relative m-measure within s.x/. As the relative measures m.y/=m.x/
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for y 2 s.x/ are all rational numbers with common denominator q and add up to one, we
can construct such a noninjective enumeration of s.x/ as a list of length q. In other words,
there exist functions Qsj WT ! T for j D 0; : : : ; q � 1 such that

(3.21) s.x/ D ¹Qs0.x/; : : : ; Qsq�1.x/º; 8x 2T

and moreover, for all x 2T , the function j 7! �x.j / WD ord. Qsj .x// is increasing and

(3.22) #��1x ¹ord.y/º D q
m.y/

m.x/
; 8y 2 s.x/:

In particular, as �x is increasing,

(3.23) ord. Qs0.x// D 0; 8x 2T:

Let now ordq be an enumerator of Tq such that w0 2�ordq . We now claim that there
exists a unique map � WTq ! T such that �.w0/ D w0 and

(3.24) �.x/ D Qsordq.x/.�.p.x///; 8x 2Tq

Indeed, if x2Tq is such that ordq.x/D 0, then (3.23) and (3.24) imply that ord.�.x//D 0;
in other words, �.�ordq / � �ord. As the bi-infinite geodesics �ord and �ordq in T and Tq
contain one element for each level, there is only one way to define a map � W�ordq ! �ord
in such a way that �.w0/ D w0 and � preserves the predecessor-successor relation, i.e.,
so that (3.24) is satisfied for all x 2�ordq . Clearly, such a map satisfies �.�ordq / D �ord.
We can now extend � to the whole Tq by iterated applications of (3.24): more precisely,
we can write Tq as the increasing union

Tq D
[
n2N

�nordq ; where �nordq WD ¹x 2Tq W dTq .x; �ordq / � nº D
[

x2�ordq

sn.x/;

and then inductively extend � to each of the sets �nordq , by using (3.24) and the fact that

p.�nC1ordq / D �
n
ordq :

This completes the proof of the claim.
Now, from (3.24) it is clear that p.�.x//D �.p.x//; moreover, from (3.24) and (3.21)

we also deduce that, for all z 2Tq ,

�.s.z// D ¹�.x/ W x 2 s.z/º D ¹Qsj .�.z// W j D 0; : : : ; q � 1º D s.�.z//;

namely � WTq ! T is a submersion.
It remains to check that m and the canonical flow mTq are �-compatible. For any

x 2Tq , by (3.22),

q
m.�.x//

m.p.�.x///
D #��1p.�.x//¹ord.�.x//º

D #¹j 2 ¹0; : : : ; q � 1º W ord. Qsj .p.�.x//// D ord.�.x//º
D #¹j 2 ¹0; : : : ; q � 1º W Qsj .p.�.x/// D �.x/º
D #¹y 2 s.p.x// W Qsordq.y/.p.�.x/// D �.x/º

D #¹y 2 s.p.x// W �.y/ D �.x/º

D #.��1¹�.x/º \ s.p.x///;
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where in the second to last equality we used that ¹ordq.y/ºy2s.p.x// D ¹0; : : : ; q � 1º

and (3.24). Thus,

m.�.x//

m.p.�.x///
D

#.��1¹�.x/º \ s.p.x///

q
D
mTq .�

�1¹�.x/º \ s.p.x///

mTq .p.x//
,

as desired.

4. Perturbation of flow measures

The construction in Section 3.3 shows that any uniformly rational flow tree is a flow
quotient of a homogeneous tree; in light of the results of Section 3, this means that a
number of estimates for the flow gradient and the flow Laplacian on homogeneous trees
may be transferred to analogous estimates on uniformly rational flow trees.

From Remark 3.14, we know that the uniform rationality constraint on .T;m/ is neces-
sary in order for the flow tree to be a quotient of a homogeneous tree. On the other hand,
this constraint is quite restrictive, as it rules out, e.g., any flow measure m such that the
ratio m.x/=m.p.x// is irrational for some x 2T .

We now show how a perturbative argument can be used, in some cases, to get rid
of such rationality constraint and obtain a sort of transference result that applies to any
flow tree. The key idea is that any flow measure on a tree T can be approximated by
uniformly rational flow measures on suitable subtrees of T , and moreover the estimates
we are interested in are preserved by this approximation process. Of course, in order to
be able to approximate a flow measure m with irrational ratios m.x/=m.p.x//, we will
need to use q-uniformly rational measures with q larger and larger; as a consequence,
we will be able to transfer to an arbitrary flow tree .T; m/ only those estimates that hold
on .Tq; mTq / uniformly in q.

4.1. A perturbative argument

We start by presenting a perturbative argument, showing that many estimates for the joint
functional calculus of .†;†�/ are preserved under pointwise convergence of the underly-
ing flow measure. Similar arguments have been used in different contexts for the purpose
of transplanting Lp estimates (see, e.g., [24], Theorem 5.2 in [29], or Lemma 2.3 in [13]).

Definition 4.1. Let T be a tree with root at infinity. A p-subtree of T is a subset S of T
such that, if x 2S , then p.x/2S too. With the structure induced by T , any such S is also
a tree with root at infinity.

Definition 4.2. Let .T; m/ be a flow tree. An approximating sequence for .T; m/ is a
sequence ..Tj ; mj //j such that:

(a) the Tj form an increasing sequence of p-subtrees of T , and T D
S
j Tj ;

(b) each mj is a flow measure on Tj ;
(c) if we extend by zero each mj to a function on the whole T , then mj ! m pointwise

on T .



Riesz transform and spectral multipliers for the flow Laplacian 2243

Let ..Tj ; mj //j be an approximating sequence of a flow tree .T; m/. We shall denote
by †j , rj and Lj the shift operator, flow gradient and flow Laplacian on .Tj ; mj /,
while †, r and L denote the corresponding operators on .T;m/.

Recall that c00.T / denotes the space of finitely supported functions on T . We shall
identify any f 2 c00.Tj / with its extension by zero to T ; in this way, c00.Tj / is the sub-
space of c00.T / of the functions supported in Tj . As the Tj are an increasing sequence
with T D

S
j Tj , any function f 2 c00.T / also belongs to c00.Tj / for sufficiently large j .

We say that a c00.T /-valued sequence .fj /j converges to f in c00.T / if fj ! f

pointwise and
S
j supp.fj / is finite. In this case, we shall write

fj �!cc
f:

Notice that, if fj �!cc
f , then

S
j supp.fj / is contained in Tk for any sufficiently

large k. In particular, fj 2 c00.Tj / for all j large enough. Therefore, if Oj 2Bfin.Tj /,
then Ojfj 2 c00.Tj / � c00.T / is well defined for any j large enough, and we can con-
struct a new sequence .Ojfj /j in c00.T /; while this sequence is only defined for j large
enough, this will not be a problem for our discussion, as we shall only be interested in
asymptotic properties as j !1.

Our perturbative argument for approximating sequences of flow trees is encoded in the
following two statements.

Proposition 4.3. Let .T;m/ be a flow tree. Let ..Tj ;mj //j be an approximating sequence.
Let f; g 2 c00.T /, and let .fj /j and .gj /j be sequences in c00.T / such that

fj �!cc
f and gj �!cc

g:

Then:
(i) kfj kLp.mj / ! kf kLp.m/ for all p 2 Œ1;1�;

(ii) hfj ; gj iL2.mj / ! hf; giL2.m/ ;

(iii) F.†j ; †�j /fj �!cc
F.†;†�/f for any F 2P .2/.

Proof. Parts (i) and (ii) and trivial.
As for part (iii), it readily follows by iteration from the two particular cases

(4.1) †jfj �!cc
†f and †�j fj �!cc

†�f:

The first convergence in (4.1) is clear, since by (2.1) it follows that

†jfj .x/ D fj .p.x// D †fj .x/

for all j large enough. As for the second one, for any fixed x2T , we have ¹xº [ s.x/� Tj
for all j large enough; thus, for any large enough j ,

†�j fj .x/ D
1

mj .x/

X
y2s.x/

fj .y/mj .y/;

and the right-hand side clearly converges to †�f .x/ as j !1.
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Proposition 4.4. Let .T;m/ be a flow tree. Let ..Tj ;mj //j be an approximating sequence.
Let f; g 2 c00.T /.

(i) For every F 2H .2; 1/,

(4.2) hF.†j ; †
�
j /f; giL2.mj / ! hF.†;†

�/f; giL2.m/

and

(4.3) KF.†j ;†�j / ! KF.†;†�/

pointwise on T � T ; here KF.†j ;†�j / denotes the integral kernel with respect to mj ,
extended by zero to the whole T � T , while KF.†;†�/ denotes the integral kernel
with respect to m.

(ii) For every F 2C Œ0; 2�,

hF.Lj /f; giL2.mj / ! hF.L/f; giL2.m/

and
KF.Lj / ! KF.L/

pointwise on T � T ; here KF.Lj / denotes the integral kernel with respect to mj ,
extended by zero to the whole T � T , while KF.L/ denotes the integral kernel with
respect to m.

Proof. Notice first that the convergence (4.2) follows from Proposition 4.3 whenever
F 2P .2/. We shall now extend this result to any F 2H .2; 1/. Recall first from Sec-
tion 2.3 that

(4.4) kF.†j ; †�j /kL2.mj /!L2.mj / � kF.†j ; †
�
j /kB.mj / � kF k.1/; 8F 2H .2; 1/:

Define now

A D ¹F 2H .2; 1/ W hF.†j ; †
�
j /f; giL2.mj / ! hF.†;†

�/f; giL2.m/; 8f; g 2 c00.T /º:

So, proving (4.2) is the same as proving that A D H .2; 1/. As we already know that
P .2/ � A, and P .2/ is dense in H .2; 1/, it will be enough to show that A is a closed
linear subspace of H .2; 1/.

It is straightforward to check that A is a linear subspace of H .2; 1/. In addition, if
Fn 2A and Fn ! F in H .2; 1/, then, for all f; g 2 c00.T /, by (4.4),

jhF.†j ; †
�
j /f; giL2.mj / � hF.†;†

�/f; giL2.m/j

� Cf;gkFn � F k.1/ C jhFn.†j ; †
�
j /f; giL2.mj / � hFn.†;†

�/f; giL2.m/j

where
Cf;g D sup

j

kf kL2.mj /kgkL2.mj / C kf kL2.m/kgkL2.m/ <1

by Proposition 4.3(i); from this estimate, it is easy to conclude that

hF.†j ; †
�
j /f; giL2.mj / ! hF.†;†

�/f; giL2.m/;

and therefore, by the arbitrariness of f; g 2 c00.T /, that F 2A too. This shows that A is
closed in H .2; 1/, as desired.

Finally, (4.3) readily follows by taking f D 1¹yº and gD 1¹xº in (4.2) for any x;y2T .
This completes the proof of part (i).
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The proof of part (ii) is similar. Here one considers instead the set

B D ¹F 2C Œ0; 2� W hF.Lj /f; giL2.mj / ! hF.L/f; giL2.m/; 8f; g 2 c00.T /º

and shows that B is a closed linear subspace of C Œ0; 2�; in place of (4.4), one can use the
estimate

kF.Lj /kL2.mj /!L2.mj / � kF k1; 8F 2C Œ0; 2�

from the Borel functional calculus. As we already know from the above discussion that B
contains all polynomials, the Stone–Weierstrass theorem implies that B D C Œ0; 2�.

From Propositions 4.3 and 4.4, we finally deduce the following crucial result.

Corollary 4.5. Let .T; m/ be a flow tree, and let ..Tj ; mj //j be an approximating se-
quence.

(i) Let F 2H .2; 1/. Then, for all p 2 Œ1;1�,

(4.5) kF.†;†�/kLp.m/!Lp.m/ � lim inf
j!1

kF.†j ; †
�
j /kLp.mj /!Lp.mj /:

Moreover, for every weight wWT � T ! Œ0;1/,

(4.6)

sup
y2T

X
x2T

w.x; y/ jKF.†;†�/.x; y/jm.x/

� lim inf
j!1

sup
y2T

X
x2T

w.x; y/ jKF.†j ;†�j /.x; y/jmj .x/:

(ii) Let F 2C Œ0; 2�. Then, for all p 2 Œ1;1�,

kF.L/kLp.m/!Lp.m/ � lim inf
j!1

kF.Lj /kLp.mj /!Lp.mj /:

Moreover, for every weight wWT � T ! Œ0;1/,

sup
y2T

X
x2T

w.x; y/ jKF.L/.x; y/jm.x/

� lim inf
j!1

sup
y2T

X
x2T

w.x; y/ jKF.Lj /.x; y/jmj .x/:

Proof. We only prove part (i), as the proof of part (ii) is analogous.
Recall from (2.7) that

kF.†;†�/kLp.m/!Lp.m/ D sup
f;g2c00.T /

kf kLp.m/DkgkLp0 .m/
D1

jhF.†;†�/f; giL2.m/j;

where p0 is the conjugate exponent to p. Moreover, by Propositions 4.3 and 4.4,

jhF.†;†�/f; giL2.m/j D lim
j!1

jhF.†j ; †
�
j /f; giL2.mj /j

� kf kLp.m/kgkLp0 .m/ lim inf
j!1

kF.†j ; †
�
j /kLp.mj /!Lp.mj /;

whence (4.5) follows.
In addition, as KF.†j ;†�j / ! KF.†;†�/ pointwise on T � T by Proposition 4.4, the

estimate (4.6) is an immediate consequence of Fatou’s Lemma.
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4.2. Uniformly rational approximation

We now show that whenever .T; m/ is a flow tree with bounded degree, it is possible to
approximate m with a sequence of uniformly rational flow measures on T . The bounded
degree assumption is needed in order for uniformly rational flow measures to exist on T
(see Remark 3.13).

Proposition 4.6. Let T be a tree with bounded degree and let m be a flow measure on T .
Then, there is a sequence of uniformly rational flow measures on T converging pointwise
to m on T .

Proof. By the bounded degree assumption, there exists q0 2NC such that q.x/ � q0 for
every x 2T . We shall construct, for any q � q0, a q-uniformly rational flow measure mq
on T so that mq ! m pointwise as q !1.

Notice that, as m is a flow measure on T , for every x 2T we have a q.x/-tuple

.m.y/=m.x//y2s.x/

of strictly positive numbers whose sum is 1. The first step in our construction is to approx-
imate these q.x/-tuples with analogous tuples with rational entries with common denom-
inator q.

For any q � q0, define

(4.7) Wq D
°
x 2T W min

y2s.x/

m.y/

m.x/
�
1

q

±
:

Clearly, the sets Wq grow with q and T D
S
q�q0

Wq , because 1=q ! 0 as q !1.
If x 2Wq , then we can pick any yx 2 s.x/ and define a q.x/-tuple .wq.y//y2s.x/ by

setting

wq.y/ D

´
1
q
bq m.y/

m.x/
c if y 2 s.x/ n ¹yxº;

1 �
P
z2s.x/n¹yxº

wq.z/ if y D yx :

By (4.7) we deduce that, for every y 2 s.x/ n ¹yxº, we have wq.y/ > 0, thus

1

q
� wq.y/ �

m.y/

m.x/
and

ˇ̌̌m.y/
m.x/

� wq.y/
ˇ̌̌
�
1

q
I

in addition,

1 � wq.yx/ D
X

y2s.x/n¹yxº

wq.y/ �
X

y2s.x/n¹yxº

m.y/

m.x/
D 1 �

m.yx/

m.x/
� 1 �

1

q
,

so wq.yx/ � 1=q > 0 too. Moreover,ˇ̌̌
wq.yx/ �

m.yx/

m.x/

ˇ̌̌
�

X
y2s.x/n¹yxº

ˇ̌̌
wq.y/ �

m.y/

m.x/

ˇ̌̌
�
q.x/ � 1

q
�
q0 � 1

q
�

Thus, the q.x/-tuple .wq.y//y2s.x/ is made of positive rational numbers with common
denominator q adding up to 1. Moreover, as q !1, the tuple .wq.y//y2s.x/ converges
to .m.y/=m.x//y2s.x/.
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We can extend the definition of the tuple .wq.y//y2s.x/ to all x 2 T and q � q0, by
picking, when x 2 T n Wq , any q.x/-tuple of positive rational numbers with common
denominator q and adding up to 1. As x 2Wq for any sufficiently large q, the convergence
of .wq.y//y2s.x/ to .m.y/=m.x//y2s.x/ as q !1 remains true after the extension. In
other words,

(4.8) lim
q!1

wq.y/ D
m.y/

m.p.y//
, 8y 2T:

Fix a vertex o2 T . We now define mq as the flow measure such that mq.o/ D m.o/
and

mq.y/

mq.p.y//
D wq.y/; 8y 2T:

In particular, mq is a q-uniformly rational flow measure for every q � q0. It remains to
verify that mq ! m pointwise on T as q !1. Pick x 2 T , and let z 2 T be a common
ancestor of x and o. By definition,

(4.9) mq.x/ D
� n�1Y
hD0

1

wq.ph.o//

��m�1Y
kD0

wq.p
k.x//

�
m.o/;

where z D pm.x/ D pn.o/. Since ¹ph.o/ºh<n [ ¹pk.x/ºk<m is a finite set of vertices
independent of q, from (4.8) and (4.9) we readily deduce that mq.x/! m.x/.

Via a covering argument, we can now get rid of the bounded degree assumption and
construct a uniformly rational approximating sequence for any flow tree.

Corollary 4.7. Let .T;m/ be a flow tree. Then there exists an approximating sequence of
.T;m/ made of uniformly rational flow trees.

Proof. Choose a vertex o2T and an enumerator ord such that o2�ord. For any x 2T , let
s0.x/ denote the only successor of x with ord.x/ D 0. Finally, let 
x D ¹sk0.x/ W k 2Nº
for any x 2 T ; in other words, 
x is the infinite descending geodesic starting from x and
where any subsequent vertex is the zeroth successor of the preceding one, according to
ord.

Then, for any w 2T and n2N, the set

QTw;n D ¹p
k.w/ W k 2Nº [ ¹x 2T W x � w; d.x;w/ � nº [

[
x2T Wx�w;d.x;w/Dn


x

is a p-subtree of T of bounded degree, and

Qmw;n.x/ D

8̂<̂
:
m.w/ if x � w;
m.x/ if x � w; d.x;w/ � n;
m.y/ if x 2 
y for some y � w with d.w; y/ D n;

defines a flow measure on QTw;n, which coincides with m on

QSw;n D ¹x 2T W x � w; d.x;w/ � nº:
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In particular, if we set, for all n2N,

Tn D QTpn.o/;2n; Qmn D Qmpn.o/;2n and Sn D QSpn.o/;2n;

then Tn is an increasing sequence of p-subtrees of T , Sn is an increasing sequence of finite
subsets of T , and [

n2N

Tn D
[
n2N

Sn D T:

Moreover, Qmn is a flow measure on Tn which coincides with m on Sn.
By applying Proposition 4.6 to .Tn; Qmn/, we can find a uniformly rational flow meas-

ure mn on Tn such that jmn.x/ � Qmn.x/j � 2�n for all x 2 Sn (here we use that Sn is
finite). As mjSn D QmnjSn , and the Sn form an increasing sequence with

S
n Sn D T , this

proves that mn ! m pointwise on T , where mn is extended by zero to T .
Thus, ..Tn; mn//n is the desired approximating sequence of .T;m/.

4.3. Universal transference

For any flow tree .T; m/, Corollary 4.7 gives us an approximating sequence .Tj ; mj /,
where mj is qj -uniformly rational for some qj 2N. Therefore, according to Proposi-
tion 3.18, .Tj ; mj / is a flow quotient of the homogeneous tree .Tqj ; mTqj

/. As a con-
sequence of the transference results for quotients of Section 3 and the perturbation results
of the present section, we can effectively transfer to .T; m/ those estimates that hold
on .Tq; mTq / uniformly in q.

Namely, by combining Propositions 3.10, 3.11 and 3.18, and Corollaries 4.5(i) and 4.7,
we deduce the following “universal transference” result for the joint functional calculus
of .†;†�/.

Theorem 4.8. Let .T;m/ be a flow tree. Let F 2H .2; 1/. Then, for all p 2 Œ1;1�,

(4.10) kF.†;†�/kLp.m/!Lp.m/ � lim inf
q!1

kF.†Tq ; †
�
Tq
/kLp.mTq /!L

p.mTq /
:

Moreover, for every weight wWN � Z � Z! Œ0;1/ which is increasing in the first vari-
able,

sup
y2T

X
x2T

w.d.x; y/; `.x/; `.y// jKF.†;†�/.x; y/jm.x/

� lim inf
q!1

sup
y2Tq

X
x2Tq

w.dTq .x; y/; `.x/; `.y// jKF.†Tq ;†
�
Tq
/.x; y/jmTq .x/:(4.11)

Remark 4.9. From Section 2.3, we know that the H .2; 1/-based joint functional calculus
for .†; †�/ includes, among others, the operators of the form F.L/ for F 2H .1; 2/.
As we shall see, if we restrict to functions of L, the analyticity condition on F can be
substantially relaxed (see Theorem 5.12 below).

Remark 4.10. In Theorem 4.8, we can take as .T;m/ any homogeneous tree .Tq; mTq /.
As a consequence, for any F 2H .2; 1/ and p 2 Œ1;1�, from (4.10) we deduce that

lim inf
q!1

kF.†Tq ; †
�
Tq
/kLp.mTq /!L

p.mTq /
D sup
q2NC

kF.†Tq ; †
�
Tq
/kLp.mTq /!L

p.mTq /
:
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In other words, Theorem 4.8 says that, for a given F 2H .2; 1/ and p 2 Œ1;1�, the
supremum

sup
.T;m/

kF.†;†�/kLp.m/!Lp.m/

is the same, irrespective of whether .T;m/ ranges among
• all flow trees, or
• all the homogeneous trees .Tq; mTq /, or
• any infinite subclass of the .Tq; mTq /.

Analogous considerations hold for the weighted estimates (4.11).

5. Deriving estimates from homogeneous trees

In light of the universal transference result of Theorem 4.8, in order to obtain estimates
for the functional calculus of .†;†�/ on any nonhomogeneous flow tree, it is enough to
prove analogous estimates on homogeneous trees .Tq; mTq / which are uniform in q. As
we shall see, one way to obtain such uniform estimates is reducing the analysis of the
flow Laplacian and related operators on Tq to that of similar operators on T1, that is, the
discrete group Z equipped with the counting measure and the discrete Laplacian.

The key technical tool that makes this reduction possible is a discrete Abel transform,
taking advantage of the symmetries of Tq to reduce matters to the “one-dimensional case”
of Z. The discrete Abel transform on Tq has already been introduced and used elsewhere,
especially in the context of the analysis on homogeneous trees with the counting measure
and the combinatorial Laplacian (see [14, 15] and references therein). A possibly novel
aspect of our analysis, beside the fact that we work with the flow Laplacian in place of
the combinatorial one, is the focus on the uniformity in q of the estimates on Tq obtained
from Z.

5.1. Analysis on Z

The homogeneous tree T1 of degree 2 can be identified with Z via the level map `WT1!Z,
which in this case is a bijection. Via this identification, the canonical flow measure mT1
of (2.3), that is, the counting measure on T1, corresponds to the counting measure # on Z.

As in Section 2.3 of [25], for every function  in CZ, we define the symmetric gradi-
ent QrZ and the combinatorial Laplacian �Z by

QrZ .n/ D  .n� 1/�  .nC 1/ and �Z .n/ D  .n/�
1

2
. .n� 1/C  .nC 1//

for all n2Z. By comparing the above expression with (2.2), and recalling that the under-
lying flow measure here is the counting measure, it is clear that the combinatorial Lapla-
cian �Z is the same as the flow Laplacian LT1 . Instead, QrZ corresponds to rT1 � r

�
T1

,
i.e., (twice) the skewadjoint part of the flow gradient.

Of course, the operators QrZ and �Z are translation-invariant on Z. In particular, in
terms of the usual group convolution � on Z, we can write

�Zf D f � k�Z ;
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where, for all n2Z,

(5.1) k�Z.n/ D

8̂<̂
:
1 if n D 0;
�1=2 if n D ˙1;
0 otherwise.

We shall take advantage of Fourier analysis to intertwine translation-invariant operat-
ors on Z with multiplication operators on the torus R=.2�Z/. Specifically, for a (nice)
2�-periodic function M WR ! C, we denote by yM its Fourier transform, that is, the
sequence . yM.n//n2Z of the Fourier coefficients of M :

yM.n/ D
1

2�

Z �

��

M.�/ ein� d�; n2Z:

From (5.1), it follows that the inverse Fourier transform of k�Z , i.e., the Fourier mul-
tiplier corresponding to �Z, is the function

(5.2) H.�/ D 1 �
1

2
ei� �

1

2
e�i� D 1 � cos �; � 2R=.2�Z/:

Notice that the image of H is the interval Œ0; 2�, which corresponds to the L2 spectrum
of �Z (see Proposition 2.1).

An elementary computation then allows us to obtain an expression for the skewsym-
metric gradient of the convolution kernel of operators in the functional calculus for the
Laplacian on Z.

Lemma 5.1. For every bounded Borel function F W Œ0; 2�! C,

(5.3) QrZkF.�Z/.n/ D �
1

2�

Z �

��

2i sin � F.1 � cos �/ ein� d� D �2i yMF .n/;

where

(5.4) MF .�/ D sin � F.1 � cos �/; � 2R=.2�Z/;

and yMF denotes the Fourier transform of MF .

Proof. For every n2Z, by (5.2),

kF.�Z/.n/ D
1

2�

Z �

��

F.1 � cos �/ ein� d�

and therefore

QrZkF.�Z/.n/ D kF.�Z/.n � 1/ � kF.�Z/.nC 1/

D
1

2�

Z �

��

F.1 � cos �/ Œei.n�1/� � ei.nC1/� � d�

D
1

2�

Z �

��

F.1 � cos �/ .�2i sin �/ ein� d�;

as desired.
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The reason why we are interested in the kernels QrZkF.�Z/ will become clear in the
next section: the skewsymmetric gradient QrZ appears in the inversion formula for the Abel
transform (see Proposition 5.4 below).

Thanks to the expression in Lemma 5.1, together with the Plancherel formula and other
properties of the Fourier transform, we can establish the following weightedL2 estimates.

Lemma 5.2. For every ˛ 2 Œ0;1/ and F 2L2˛.R/,

(5.5)
X
n2Z

.1C jnj/2˛ j QrZkF.�Z/.n/j
2 .˛ kF k2L2˛ :

Proof. By interpolation, it is sufficient to prove the estimate for ˛ 2 2N.
In addition, from the expression (5.3) it is clear that the kernel QrZkF.�Z/ does not

change if F is modified outside the interval Œ0; 2�. Thus, up to multiplying F with an
appropriate smooth cutoff function, we may assume that suppF � Œ�1; 3�.

A further splitting by means of cutoff functions allows us to reduce to the cases where
suppF � Œ�1; 7=4� and suppF � Œ1=4; 3�, which we shall consider separately.

Let us first assume that suppF � Œ�1; 7=4�. By differentiating (5.4), one can readily
check that, for all h2N,

(5.6)

@2h� MF .�/ D

2hX
`D0

sin1C2.`�h/C.�/ ph;`.cos �/ F .`/.1 � cos �/;

@2hC1
�

MF .�/ D

2hC1X
`D0

sin2.`�h/C.�/ qh;`.cos �/ F .`/.1 � cos �/

for appropriate real polynomials ph;` and qh;` independent of F ; the proof goes by induc-
tion on h, using the chain and Leibniz rules, as well as the fact that sin2 � D 1 � cos2 �
(so any even power of sin � can be absorbed into the polynomial in cos � where needed).

Thus, by Lemma 5.1, the Plancherel formula and (5.6), for all h2N,X
n2Z

jnj4h j QrZkF.�Z/.n/j
2
�h k@

2h
� MF k

2
L2.��;�/

.h
2hX
`D0

Z �

��

ˇ̌
sin1C2.`�h/C.�/ F .`/.1 � cos �/

ˇ̌2
d�:

The change of variables x2 D 1 � cos � , i.e., x D
p
2 sin.�=2/, then shows that

(5.7)

X
n2Z

jnj4h j QrZkF.�Z/.n/j
2 .h

2hX
`D0

Z
R
jx1C2.`�h/C F .`/.x2/j2 dx

�

2hX
`D0

Z 1
0

j�.`�h/C F .`/.�/j2�1=2 d� .h kF k2L2
2h

;

due to our support assumption on F . Combining this estimate with that for h D 0 proves
the case ˛ D 2h of (5.5).
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Assume now instead that suppF � Œ1=4; 3�. Then (5.4) shows that

MF .� C �/ D �MG.�/;

where G.�/ WD F.2 � �/, and in particular suppG � Œ�1; 7=4�. As

k@2h� MF kL2.��;�/ D k@
2h
� MGkL2.��;�/ and kF kL2

2h
D kGkL2

2h
;

the desired estimates are obtained by applying the above computations with G in place
of F .

We now prove a “scale-invariant version” of the above estimate, which will be useful
when discussing spectral multipliers of Mihlin–Hörmander type.

Lemma 5.3. For every ˛ 2 Œ0;1/, F 2L2˛.R/ supported in Œ1=4; 7=4� and t � 1,

(5.8)
X
n2Z

�
1C
jnj
p
t

�2˛
j QrZkF.t�Z/.n/j

2 .˛ t�3=2 kF k2L2˛ :

Proof. Again, by interpolation, it is sufficient to consider the case ˛ 2 2N.
Notice that, for any G supported in Œ�1; 7=4�, from (5.7) we deduce that, if ˛ D 2h,

for h2N, thenX
n2Z

jnj2˛ j QrZkG.�Z/.n/j
2 .˛

X̨
jD0

Z 1
0

j�.j�˛=2/CG.j /.�/j2 �3=2
d�

�

.˛
X̨
jD0

Z 1
0

j�jG.j /.�/j2 �3=2�˛
d�

�
I

in the last inequality, we used that 2.j � ˛=2/C � 2.j � ˛=2/ D 2j � ˛, and therefore
�2.j�˛=2/C .˛ �2j�˛ for 0 � � � 7=4.

We now apply the above bound with G D F.t �/, under the assumption that suppF �
Œ1=4; 7=4�; as t � 1, we have suppF.t �/ � Œ�1; 7=4�, so the bound can be applied. Thus
we deduce that, for every t � 1 and ˛ 2 2N,X

n2Z

jnj2˛ j QrZkF.t�Z/.n/j
2 .˛ t˛�3=2 kF k2L2˛ ;

which clearly implies the bound (5.8).

5.2. The Abel transform connection

We shall now consider the homogeneous tree Tq with q � 2. As before, we equip Tq with
the canonical flow measure mTq given by (2.3), and denote by LTq the corresponding
flow Laplacian.

The aim of this section is to describe a relation between the functional calculi of LTq
and �Z, which is illustrated by the following result. The proof that we present below is
based in a fundamental way on results and ideas from [14], particularly in regards to the
use of the discrete Abel transform on Tq .
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Recall that P .1/ denotes the set of polynomials with complex coefficients in one inde-
terminate. We initially prove the formula (5.9) below for F 2P .1/, in order to avoid
convergence problems; however, by a density argument, the formula extends to any con-
tinuous functions F , and indeed, by applying it to F.�/ D e�t�, one recovers the heat
kernel formula of Proposition 2.4 in [25].

Proposition 5.4. For every F in P .1/,

(5.9) KF.LTq /
.x; y/ D q�

1
2 .`.x/C`.y//EF .d.x; y//; x; y 2Tq;

where EF WN ! C is given by

(5.10) EF .k/ D
X
j�0

q�.kC2j /=2 QrZkF.�Z/.k C 2j C 1/; k 2N:

Proof. On the homogeneous tree Tq , we denote by Aq the averaging operator from (2.2),
i.e.,

Aqf .x/ D
1

2
f .p.x//C

1

2q

X
y2s.x/

f .y/; f 2CTq ; x 2Tq;

so that LTq D I �Aq . Let Mq denote moreover the “isotropic” averaging operator

Mqf .x/ D
1

q C 1

X
y�x

f .y/; f 2CTq ; x 2Tq;

which is adapted to the counting measure # on Tq ; indeed, I �Mq is the combinatorial
Laplacian on Tq . Consider also the operator Hq defined by

Hqf .x/ D q
�`.x/=2f .x/; f 2CTq ; x 2Tq;

which is an isometry from L2.Tq; #/ to L2.Tq; mTq /.
An easy computation shows that

AqHq D
q C 1

2
p
q
HqMq;

so that, for every F 2P .1/,

(5.11) KF.Aq/.x; y/ D q
� 12 .`.x/C`.y//K

F.
qC1
2
p
q

Mq/
.x; y/; x; y 2Tq I

here KF.Aq/ denotes the integral kernel with respect to the flow measure mTq , while
K
F.

qC1
2
p
q

Mq/
is the kernel with respect to the counting measure #.

As is well known (see [14, 15]), thanks to the symmetries of .Tq; #/, the integral
kernel K

F.
qC1
2
p
q

Mq/
.x; y/ only depends on d.x; y/. So, from (5.11), we deduce that (5.9)

holds for some EF WN ! C, and clearly EF is uniquely determined by (5.9). In other
words, we can define EF WN! C as the unique function such that (5.9) holds, and it only
remains to obtain a more explicit expression for such EF in terms of F 2P .1/, namely,
equation (5.10). Notice that, as F 2P .1/, we know that F.L/ 2Bfin.mTq /, thus we must
have EF 2 c00.N/ in this case.
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To compute EF , consider the map � W Tq ! Z defined by �.x/ D `.x/ for every
x 2 Tq . It is easy to see that � is a flow submersion for the canonical flows on Tq
and Z, respectively. Thus from Proposition 3.9, we deduce that F.LTq / 2 Cfin.�/ and
�.F.LTq //D F.�Z/. In particular, Proposition 3.6 gives us a relation between the integ-
ral kernels of F.LTq / on .Tq;mTq / and of F.�Z/ on Z. Taking into account that F.�Z/

is a convolution operator, i.e., KF.�Z/.n;m/ D kF.�Z/.n�m/, this relation can be writ-
ten as

(5.12)

kF.�Z/.m � n/ D
X

x2Tq W`.x/Dm

KF.LTq /
.x; y/ q`.x/

D q.m�n/=2
X

x2Tq W`.x/Dm

EF .d.x; y//

for all m; n2Z and y 2Tq with `.y/ D n, where we also used (5.9).
Now, thanks to the symmetries of Tq , it is easily checked that, for all y 2Tq , d 2N

and r 2Z,
(5.13)

#¹x 2Tq W d.x; y/ D d; `.x/ � `.y/ D rº D

8̂<̂
:
q.d�r/=2 if jr j D d;
.q � 1/q.d�r/=2�1 if d � jr j 2 2NC;
0 otherwise:

From (5.12) and (5.13) we then deduce that

kF.�Z/.m � n/

D q.m�n/=2
1X
kD0

EF .jm � nj C 2k/ #¹x 2 Tq W `.x/ D m; d.x; y/ D jm � nj C 2kº

D qjm�nj=2
h
EF .jm � nj/C

q � 1

q

1X
kD1

qkEF .jm � nj C 2k/
i
:

The above formula can be rephrased as follows:

(5.14) kF.�Z/.n/ D Jq.EF /.jnj/; n2Z;

where for every � 2 c00.N/, the Abel transform Jq.�/2 c00.N/ of � is given by

Jq.�/.j / D q
j=2
h
�.j /C

q � 1

q

1X
kD1

qk�.j C 2k/
i
; j 2N:

By Theorem 2.3 in [15], we know that the Abel transform Jq W c00.N/! c00.N/ is invert-
ible, and we have the inversion formula

J�1q  .n/ D q�n=2  .n/ � .q � 1/
X
j>0

q�.nC2j /=2  .nC 2j /

D

X
j�0

q�.nC2j /=2 QrZ .nC 2j C 1/; n2N:

By using this formula, we can invert the relation (5.14) and obtain (5.10).
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A density argument allows us to extend the previous formula beyond the class of
polynomials.

Corollary 5.5. The formula (5.9) holds true for all F 2C Œ0; 2�.

Proof. From the expression (5.3) it is clear that k QrZkF.�Z/k1 . kF k1; in particular,
the sum in (5.10) converges absolutely whenever F 2C Œ0; 2�, so EF is well defined and

(5.15) kEF k1 . k QrZkF.�Z/k1 . kF k1:

Let A be the set of the functions F 2C Œ0; 2� such that the formula (5.9) holds true. It
is immediately checked that A is a linear subspace of C Œ0; 2�, and from Proposition 5.4
we know that A contains all the polynomials. To conclude that AD C Œ0; 2�, by the Stone–
Weierstrass theorem it is enough to prove that A is closed under uniform convergence.

On the other hand, if Fn 2 A and Fn ! F uniformly on Œ0; 2�, then Fn.LTq / !

F.LTq / in the L2 operator norm, thus KFn.LTq /
! KF.LTq /

pointwise on Tq � Tq .
Moreover, since the map F 7! EF given by (5.10) is linear, the bound (5.15) shows that
the uniform convergence Fn ! F implies the uniform convergence EFn ! EF . Thus,
we can take the limit in both sides of (5.9) and from the identity for the Fn we deduce that
for F .

We shall now use the formula from Proposition 5.4 to derive, for any F 2C Œ0; 2�, a
weighted L1 estimate for the kernel of F.LTq / in terms of a suitable weighted L1 norm
of QrZkF.�Z/; a crucial aspect of the estimate below is its uniformity in q.

Proposition 5.6. For all F 2C Œ0; 2� and all increasing weights wWN ! Œ0;1/,

sup
y2Tq

X
x2Tq

jKF.LTq /
.x; y/jw.d.x; y//mTq .x/ .

X
n2N

nw.n/ j QrZkF.�Z/.n/j;

where the implicit constant does not depend on q.

Proof. By Corollary 5.5, we can apply the formula (5.9) and deduce that, for every y 2Tq ,X
x2Tq

jKF.LTq /
.x; y/jw.d.x; y//mTq .x/

�

X
x2Tq

w.d.x; y// q.`.x/�`.y//=2
X
j2N

q�.d.x;y/C2j /=2 j QrZkF.�Z/.d.x; y/C 2j C 1/j

�

X
x2Tq

q.`.x/�`.y//=2
X
j2N

q�.d.x;y/C2j /=2w.d.x; y/C 2j C 1/

� j QrZkF.�Z/.d.x; y/C 2j C 1/j;

as w is increasing. By the estimateX
x Wd.x;y/Dn

q.`.x/�`.y//=2 � qn=2.nC 1/
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from Lemma 2.7 in [35], we then deduceX
x2Tq

jKF.LTq /
.x; y/jw.d.x; y//mTq .x/

.
X
n2N

qn=2 .nC 1/
X
j2N

q�.nC2j /=2w.nC 2j C 1/ j QrZkF.�Z/.nC 2j C 1/j

�

X
n2N

X
j2N

q�j .nC 2j C 1/w.nC 2j C 1/ j QrZkF.�Z/.nC 2j C 1/j

D

X
j2N

X
n�2jC1

q�j nw.n/ j QrZkF.�Z/.n/j .
X
n2N

nw.n/j QrZkF.�Z/.n/j;

where we used the change of indices nC 2j C 1 7! n.

5.3. Differentiable functional calculus and heat kernel estimates for the flow
Laplacian

Due to the uniformity in q of the estimates for polynomial functions F.LTq / of the flow
Laplacian on the homogeneous tree Tq in Proposition 5.6, we can apply Theorem 4.8 to
obtain analogous estimates on any flow tree of bounded degree.

Corollary 5.7. Let .T; m/ be a flow tree. For every F 2H .1; 2/ and every increasing
weight wWN ! Œ0;1/,

(5.16) sup
y2T

X
x2T

jKF.L/.x; y/jw.d.x; y//m.x/ .
X
n2N

nw.n/ j QrZkF.�Z/.n/j;

where the implicit constant does not depend on .T;m/.

We now combine the above inequality with the estimate on Z from Lemma 5.2 to
deduce a weighted L1 estimate for sufficiently smooth functions of a flow Laplacian.
To this purpose, we shall exploit the following local density property of polynomials in
Sobolev spaces; this is likely well known to experts, but we include a brief proof for the
reader’s convenience.

Lemma 5.8. Let s2 Œ0;1/. For allF 2L2s .R/ and �2C1c .R/, there exists a sequenceFn
of polynomials such that �Fn ! �F in L2s .R/.

Proof. As C1c .R/ is dense in L2s .R/, it is enough to prove the result for F 2C1c .R/.
Take a compact interval Œa; b� � R containing supp � and N 2N such that N > s; it is
then enough to show that there exists a sequence of polynomials Fn such that F .k/n !F .k/

uniformly on Œa; b� for all k D 0; : : : ; N .
In other words, it is enough to show that polynomials are dense inCN Œa;b�; this can be

readily proved by induction on N . For N D 0, this is just the Stone–Weierstrass theorem.
If the result is proved for N and if F 2 CNC1Œa; b�, then we can find a sequence Pn
of polynomials such that Pn ! F 0 in CN Œa; b�. Thus, by taking Fn to be the primitive
of Pn with Fn.a/ D F.a/, we obtain another sequence of polynomials Fn with Fn ! F

in CNC1Œa; b�.
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We can now prove the weighted L1 estimate for kernels KF.L/ associated to suffi-
ciently smooth functions F .

Proposition 5.9. Let .T; m/ be a flow tree. For every ˛ � 0 and " > 0, and for every
F 2L2

˛C3=2C"
.R/,

(5.17) sup
y2T

X
x2T

jKF.L/.x; y/j .1C d.x; y//
˛ m.x/ .˛;" kF kL2

˛C3=2C"
:

Moreover, for every increasing weight wWN ! Œ0;1/ satisfying w.n/ .w .1C n/˛ for
all n2N, the estimate (5.16) holds for all F 2L2

˛C3=2C"
.R/.

Proof. Let �2C1c .R/ be such that supp� � Œ�1; 3� and �jŒ0;2� D 1. In place of (5.17),
we shall prove the apparently stronger estimate

(5.18) sup
y2T

X
x2T

jKF.L/.x; y/j .1C d.x; y//
˛ m.x/ .˛;" k�F kL2

˛C3=2C"

for all F 2L2
˛C3=2C"

.R/.
Assume first that F is a polynomial. By Corollary 5.7, the Cauchy–Schwarz inequality

and Lemma 5.2,

(5.19)

sup
y2T

X
x2T

jKF.L/.x; y/j .1C d.x; y//
˛ mTq .x/

.
X
n2N

n .1C n/˛ j QrZkF.�Z/.n/j

.
�X
n2N

.1C n/2˛C3C2" j QrZk.�F /.�Z/.n/j
2
�1=2�X

n2N

.1C n/�1�2"
�1=2

.˛;" k�F kL2
˛C3=2C"

;

where we used that kF.�Z/ only depends on F jŒ0;2� and therefore k.�F /.�Z/ D kF.�Z/.
This proves (5.18) when F is a polynomial.

A density argument then allows us to extend the validity of the bound (5.18) to any
F 2L2

˛C3=2C"
.R/. Indeed, by Lemma 5.8, there exists a sequence Fn of polynomials such

that �Fn! �F inL2
˛C3=2C"

.R/. Applying (5.18) to the polynomials Fn �Fm then shows
that the sequence of kernels KFn.L/ is a Cauchy sequence and converges (with respect to
the weighted norm in the left-hand side of (5.18), thus also pointwise) to a function HF
on T � T satisfying

sup
y2T

X
x2T

jHF .x; y/j .1C d.x; y//
˛ m.x/ .˛;" k�F kL2

˛C3=2C"
:

On the other hand, by Sobolev’s embedding, the Fn converge uniformly to F on Œ0; 2�,
thus the operators Fn.L/ converge to F.L/ in the L2 operator norm; this implies the
pointwise convergence of the corresponding convolution kernels, so the limit HF of the
kernels KFn.LTq /

must be KF.LTq /
, and (5.18) follows.
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Take now any increasing weight wWN ! Œ0;1/ satisfying w.n/ .w .1C n/˛ . From
the estimate (5.18), we deduce in particular that

(5.20) sup
y2T

X
x2T

jKF.L/.x; y/jw.d.x; y//m.x/ .w;˛;" k�F kL2
˛C3=2C"

for all F 2L2
˛C3=2C"

.R/.
Moreover, arguing as in (5.19), from Lemma 5.2 and the Cauchy–Schwarz inequality,

we also deduce that

(5.21)
X
n2N

nw.n/ j QrZkF.�Z/.n/j .w;˛;" k�F kL2˛C3=2C"

for all F 2L2
˛C3=2C"

.R/. In particular, for a given F 2L2
˛C3=2C"

.R/, if we take as before
a sequence Fn of polynomials such that �Fn ! �F in L2

˛C3=2C"
.R/, then the kernels

KFn.L/ and kFn.�Z/ converge toKF.L/ and kF.�Z/ in the sense of the weighted Lebesgue
norms in the left-hand sides of (5.20) and (5.21). We can therefore apply (5.16) to the poly-
nomials Fn and then pass to the limit as n!1 to deduce the analogous estimate (5.16)
for F .

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that F 2 L2s .R/ for some s > 3=2. Then, by Proposi-
tion 5.9,

sup
y2T

X
x2T

jKF.L/.x; y/jm.x/ .s kF kL2s ;

so F.L/ is bounded on L1.m/ and

kF.L/kL1!L1 .s kF kL2s :

By applying the above estimate to the conjugate function F , we obtain an analogous L1

bound for F.L/, which is the adjoint of F .L/. By interpolation, it follows that F.L/ is
bounded on Lp.m/ for p 2 .1;1/.

As a consequence, we can complete the characterisation of the Lp spectrum of flow
Laplacians.

Corollary 5.10. Let .T; m/ be a flow tree and p 2 Œ1;1�. The Lp spectrum of L is the
interval Œ0; 2�.

Proof. In light of Proposition 2.1, it only remains to prove that the Lp spectrum of L is
real. On the other hand, if z 2C nR, then the function Fz.�/ D .� � z/�1 is smooth and
bounded on R with all its derivatives, so by Theorem 1.4 the operator Fz.L/D .L� z/�1

is bounded on Lp.m/ for all p 2 Œ1;1�; thus C n R is in the Lp resolvent of L, as
desired.

A further consequence of Proposition 5.9 is the following result, extending the class
of compatible operators for a flow submersion to all sufficiently smooth functions F.L/
of the flow Laplacian; this should be compared with Proposition 3.9 above, which only
gives this result for analytic functions F .
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Proposition 5.11. Let � W .T1; m1/! .T2; m2/ be a flow submersion. Denote by Lj the
flow Laplacian on .Tj ;mj / for j D 1;2. LetF 2L2

3=2C"
.R/ for some "> 0. ThenF.L1/2

Cfin.�/ and �.F.L1// D F.L2/.

Proof. Let � 2 C1c .R/ be such that supp � � Œ�1; 3� and �jŒ0;2� D 1. Much as in the
proof of Proposition 5.9, we can find a sequence of polynomials Fn such that �Fn ! �F

in L2
3=2C"

.R/. Since the spectrum of Lj is Œ0; 2�, clearly

F.Lj / D .�F /.Lj / and Fn.Lj / D .�Fn/.Lj /; for j D 1; 2.

In particular, from Theorem 1.4 it follows that Fn.Lj /! F.Lj / in B.mj / as n!1.
Since Fn.L1/ 2 Cfin.�/ and �.Fn.L1// D Fn.L2/ by Proposition 3.9, and moreover
� W C.�/ ! B.m2/ is continuous by Proposition 3.8, we deduce that F.L1/ 2 Cfin.�/

and �.F.L1// D F.L2/, as desired.

Combining Proposition 5.11 with Propositions 3.10 and 3.11 shows that Lp estimates
and weighted kernel estimates for operators of the form F.L/ with F sufficiently smooth
can be transferred via flow submersions. As these estimates are also amenable to perturb-
ative arguments by Corollary 4.5(ii), we conclude that the “universal transference” result
of Theorem 4.8 extends to sufficiently smooth (but not necessarily analytic) functions of
the flow Laplacian.

Theorem 5.12. Let .T; m/ be a flow tree. Let F 2L2
3=2C"

.R/ for some " > 0. Then, for
all p 2 Œ1;1�,

kF.L/kLp.m/!Lp.m/ � lim inf
q!1

kF.LTq /kLp.mTq /!L
p.mTq /

:

Moreover, for every weight wWN � Z � Z! Œ0;1/ which is increasing in the first vari-
able,

sup
y2T

X
x2T

w.d.x; y/; `.x/; `.y// jKF.L/.x; y/jm.x/

� lim inf
q!1

sup
y2Tq

X
x2Tq

w.dTq .x; y/; `.x/; `.y// jKF.LTq /
.x; y/jmTq .x/:

Finally, we establish the heat kernel bounds for flow Laplacians on arbitrary flow trees
stated in the Introduction.

Proof of Theorem 1.6. In the case .T;m/D .Tq;mTq / and t � 1, the desired estimates are
established in Theorem 1.1 and Proposition 2.8 of [35]; as these estimates hold uniformly
in q, and moreover the operators exp.�tL/, r exp.�tL/, exp.�tL/r�, r exp.�tL/r�

are of the form F.†;†�/ for appropriate choices of F 2H .1; 2/ (see Section 2.3), we can
directly apply the universal transference result of Theorem 4.8 to deduce the analogous
estimates on any flow tree .T;m/.

It remains to prove the bounds (1.5) when 0 < t < 1. These follow directly from the
fact that re�tL is bounded on L1.m/ and L1.m/, uniformly in t , as both r and e�tL
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are. More precisely,

sup
x2T

X
z2T W`.z/Dl

jKre�tL.x; z/jm.z/ � kre
�tL
kL1!L1 . 1;

sup
x2T

X
z2T W`.z/Dl

jKre�tL.z; x/jm.z/ � kre
�tL
kL1!L1 . 1;

as required.

6. Singular integrals

In this final section, we discuss boundedness results for spectral multipliers and Riesz
transforms on flow trees, thus completing the proofs of Theorems 1.2 and 1.5. The univer-
sal transference results of the previous sections, as well as the heat kernel estimates and
the L1 bounds for functions of the flow Laplacian, are here combined with an appropriate
singular integral theory adapted to the nondoubling setting of flow trees.

6.1. Calderón–Zygmund theory on locally doubling flow trees

A basic tool that we shall use to establish boundedness properties of singular integrals
on a locally doubling flow tree is the following result, which is based on the Calderón–
Zygmund and Hardy space theory developed in [26] on locally doubling flow trees, on
the basis of the Calderón–Zygmund theory for certain nondoubling spaces in [21]. Spe-
cifically, the statement below can be obtained from Theorem 1.2 in [21] and Theorem 5.8
in [26]; in the case of a homogeneous tree, the statement can be found in Proposition 3.1
of [35]. We refer to [3,4,26,44] for the definitions of the atomic Hardy space H 1.m/ and
the dual space BMO.m/ on a flow tree .T;m/ used throughout.

Theorem 6.1. Let .T; m/ be a locally doubling flow tree. Let O be a bounded operator
on L2.m/, whose integral kernel decomposes as

KO.x; y/ D
X
n2Z

Kn.x; y/; 8x; y 2T;

in the sense of pointwise convergence. Assume that there exist constants C > 0, c 2 .0; 1/
and a > 0 such that, for all n2Z,

sup
y2T

X
x2T

jKn.x; y/j .1C c
nd.x; y//am.x/ � C;

sup
y2T

X
x2T

jryKn.x; y/jm.x/ � C c
n:

Then, the operator O is of weak type .1; 1/, bounded on Lp.m/ for every p 2 .1; 2�, and
bounded from H 1.m/ to L1.m/.

The above result is not enough for implementing our transference strategy and obtain-
ing Lp bounds for singular integrals on arbitrary flow trees, beyond the locally doubling
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case. Indeed, by following the proofs in [21,26] in the case .T;m/D .Tq;mTq /, one would
deduce Lp bounds which may depend on q (for example, several q-dependent bounds
appear in the construction of Calderón–Zygmund decompositions in the proof of The-
orem 3.1 in [21], and similar issues appear in [26]). Nevertheless, with some adjustments
of the arguments in [21, 26] we can establish the following sharper version of Theorem
6.1 in the case of homogeneous trees.

Theorem 6.2. Let q 2NC, q � 2. Let O be a bounded operator on L2.mTq /, whose
integral kernel decomposes as

KO.x; y/ D
X
n2Z

Kn.x; y/; 8x; y 2Tq;

in the sense of pointwise convergence. Assume that there exist constants C > 0, c 2 .0; 1/
and a > 0 such that, for all n2Z,

(6.1)

sup
y2Tq

X
x2Tq

jKn.x; y/j .1C c
nd.x; y//amTq .x/ � C;

sup
y2Tq

X
x2Tq

jryKn.x; y/jmTq .x/ � C c
n:

Then, the operator O is of weak type .1; 1/ and bounded on Lp.mTq / for every p 2 .1; 2�,
where the bounds on O only depend on C , a, c and kOkL2.mTq /!L

2.mTq /
, but not on q.

Proof. By a careful inspection of the proofs in [26], applied to the case of .Tq; mTq /,
one realises that the source of q-dependence in the Calderón–Zygmund decompositions
(particularly in the constants in Theorem 3.6 of [26]) lies in the construction of admissible
trapezoids and their dyadic splitting in Sections 3.1 and 3.2 of [26]: namely, the maximum
number of dyadic children of a trapezoid grows linearly in q, and a corresponding growth
appears in the maximum ratio between the measures of a trapezoid and one of its children.
We now explain how to modify that construction, by expanding the collection of admiss-
ible trapezoids, so that the bounds on the number of children and the father-child measure
ratio are uniform in q.

For any interval I D ¹x 2Z W a � x < bº in Z (where a; b 2Z and b > a), we shall
denote by I� and IC its approximate left and right halves, defined by

I� D ¹x 2Z W a � x < b.aC b/=2cº and IC D ¹x 2Z W b.aC b/=2c � x < bº:

If I is not a singleton, then the sets I� and IC are disjoint nonempty intervals in Z whose
union is I , and we declare them to be the children of I ; instead, if I is a singleton, then
we declare I to be the only child of I .

Let Iq D ¹0; : : : ; q � 1º. We define Dq to be the smallest collection of subintervals
of Iq including Iq and all its descendants (children, children of children, and so on). Fix
an enumerator ordWTq ! Iq of Tq , and, for any x 2Tq and j 2 Iq , let sj .x/ be the only
successor of x with ord.sj .x// D j . For any x 2Tq , any h0; h00 2NC with h00 > h0, and
any I 2Dq , we define

Rh0;h00;I .x/ D ¹y 2 Tq W h
0
� d.x; y/ < h00º \

[
j2I

�sj .x/:
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Notice that, when I D Iq , we recover the sets Rh
00

h0
.x/ defined in Section 3.1 of [26]; on

the other hand, if I D ¹j º is a singleton, then R1;2;I .x/ D ¹sj .x/º is a singleton too. We
declare Rh0;h00;I .x/ to be an admissible trapezoid if either I D Iq and 2 � h00=h0 � 12,
or if 2 � h00=h0 < 4 and I 2 Dq is arbitrary. It is readily checked that the collection of
admissible trapezoids defined here is finer than that constructed in Section 3.1 of [26] with
parameter ˇ D 12.

Much as in Section 3.2 of [26], we now describe the dyadic children of an admissible
trapezoid Rh0;h00;I .x/. We distinguish a few cases:
• if 4 � h00=h0 � 12 (so necessarily I D Iq), then we cut the trapezoid horizontally and

declare Rh0; 2h0;I .x/ and R2h0; h00;I .x/ to be the children of Rh0; h00; I .x/;
• if 2 � h00=h0 < 4 and I 2Dq is not a singleton, then we cut the trapezoid vertically

and declare Rh0; h00; I�.x/ and Rh0; h00; IC.x/ to be the children of Rh0; h00; I .x/;
• if 2 � h00=h0 < 4, I D ¹j º is a singleton and h1 � 2, then

Rh0; h00; I .x/ D Rh0�1;h00�1;Iq .sj .x//

and we reduce to the previous cases;
• if I D ¹j º is a singleton, h1 D 1 and h2 D 3, then we cut the trapezoid horizontally

and declareR1;2;I .x/ andR2;3;I .x/DR1;2;Iq .sj .x// to be the children ofR1;3;I .x/;
• if I D ¹j º is a singleton, h1 D 1 and h2 D 2, then R1;2;I .x/ is a singleton and is the

only child of itself.
A comparison of the above construction with that in Section 3.2 of [26] shows that

here we have simply introduced a few “intermediate generations” between the original
admissible trapezoids: specifically, when making vertical cuts, in place of immediately
splitting a trapezoid Rh0; h00;Iq .x/ into the q trapezoids Rh0�1;h00�1;Iq .y/ with y 2 s.x/ as
in [26], here we introduce as intermediate steps the trapezoids Rh0; h00; I .x/ where I 2Dq .
The advantage of the present construction is that any admissible trapezoid has now at
most two dyadic children, and moreover the ratio of the measures between an admissible
trapezoid and a child is bounded uniformly in q. In addition, if R D Rh0; h00; I .x/ is an
admissible trapezoid, then clearly diam.R/ . h0 with a q-independent implicit constant;
furthermore, if we set R� D ¹y 2 Tq W d.y; R/ < h0º, then R� � R1;h0Ch00�1;I .x/, and
the ratio of the measures of R� and R is also q-uniformly bounded.

Thanks to these q-uniform bounds in the construction of admissible trapezoids, we can
now follow the arguments in Sections 3.3 and 3.4 of [26] to construct Calderón–Zygmund
decompositions of functions in L1.mTq / with q-independent bounds. By combining this
with the arguments in Section 1 of [21], we finally deduce, for any operator O satisfying
the assumptions of Theorem 6.2, a weak type .1; 1/ bound that may depend on kOk2!2
and the constants in (6.1), but not otherwise on q; the same q-independence is then shared
by the corresponding Lp bounds for p 2 .1; 2/ derived from the Marcinkiewicz interpol-
ation theorem.

6.2. The Riesz transform on a flow tree

Let .T; m/ be a flow tree. We denote by R the Riesz transform on T , formally defined
as the operator R WD rL�1=2, where L is the flow Laplacian associated to m. From the
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definition of the flow Laplacian in Section 2.1, it is clear that

(6.2) kL1=2f k2
L2.m/

D hLf; f i D
1

2
krf k2

L2.m/
; 8f 2L2.m/;

whence it follows that R is bounded on L2.m/ with norm
p
2. The purpose of this section

is studying Lp boundedness properties of R for p ¤ 2.

Lemma 6.3. Let .T;m/ be a flow tree. The integral kernel of R is

(6.3) KR.x; y/ D
1
p
�

Z 1
0

Kre�tL.x; y/
dt
p
t

, 8x; y 2T;

where the integral converges absolutely for any x; y 2T .

Proof. Let ¹Fnºn2N be the sequence of functions defined on .0;1/ by

(6.4) Fn.s/ D
1
p
�

Z n

0

e�ts
dt
p
t

, s > 0:

Then, it is clear that Fn � FnC1 for every n 2N and that Fn converges pointwise on
.0;1/ to the function F.s/D 1=

p
s. Moreover, thanks to (6.2), an application of the Borel

functional calculus allows us to conclude that rFn.L/! R in the strong L2 operator
topology (see also Proposition 4.1 in [36]). Hence for every x; y 2T ,

jKrFn.L/.x; y/ �KR.x; y/j
2m.x/m.y/ � kŒrFn.L/ �R�1¹yºk22;

which tends to 0 as n!1. It follows that

lim
n!1

KrFn.L/.x; y/ D KR.x; y/; 8x; y 2T:

On the other hand, by the estimates (1.5) we deduce that

lim
n!1

1
p
�

Z n

0

Kre�tL.x; y/
dt
p
t
D

1
p
�

Z 1
0

Kre�tL.x; y/
dt
p
t

,

with absolute convergence of the integrals, and (6.3) follows.

We now proceed with the proof of the Lp boundedness properties for p � 2 of the
Riesz transform R stated in Theorem 1.2, as well as the corresponding endpoint bounds.

Proof of Theorem 1.2, case p � 2 and endpoint bounds. Let .T;m/ be a flow tree. Denote
by R.0/ and R.1/ the operators defined by

R.0/
D

1
p
�

Z 1

0

re�tL
dt
p
t

and R.1/
D

1
p
�

Z 1
1

re�tL
dt
p
t

,

so that R D R.0/ CR.1/.
Sincere�tL is bounded onL1.m/ andL1.m/ uniformly in t 2 .0;1/, as bothr and

e�tL are, it follows by Minkowski’s integral inequality that R.0/ is bounded on Lp.m/
for every p 2 Œ1;1�. Hence R.1/ D R �R.0/ is L2-bounded.
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Assume now that m is locally doubling. In this case, we can follow the proof given
in [35] for the case of a homogeneous tree to deduce the required boundedness properties
of R.1/. Namely, we consider the dyadic decomposition

R.1/
D

1X
nD0

1
p
�

Z 2nC1

2n
re�tL

dt
p
t
DW

1X
nD0

R.1/
n ;

and from the heat kernel bounds of Theorem 1.6, we deduce the following kernel estimates
for the dyadic pieces:

(6.5)

sup
y2T

X
x2T

jK
R
.1/
n
.x; y/j e"d.x;y/=2

n=2

m.x/ . 1;

sup
y2T

X
x2T

jryKR
.1/
n
.x; y/j e"d.x;y/=2

n=2

m.x/ . 2�n=2

(see Lemma 3.5 in [35]). Thus, from Theorem 6.1 we deduce that R.1/ is bounded
from H 1.m/ to L1.m/, is of weak type .1; 1/ and bounded on Lp.m/ for all p 2 .1; 2�.

It remains to prove the Lp boundedness for p 2 .1; 2/ of R.1/ on an arbitrary flow
tree .T; m/. We will achieve this by means of the transference results in the previous
section. Namely, if we set

R.N/
D

1
p
�

Z 2N

1

re�tL
dt
p
t

,

then R.N/ ! R.1/ as N !1 in the strong operator topology of L2.m/; thus

kR.1/
kLp.m/!Lp.m/ � sup

N2NC

kR.N/
kLp.m/!Lp.m/:

On the other hand, we can write R.N/ D rGN .L/, where

GN .z/ D
1
p
�

Z 2N

1

e�tz
dt
p
t

is an entire function; thus, the universal transference result of Theorem 4.8 applies, and

sup
N2NC

kR.N/
kLp.m/!Lp.m/ � sup

N2NC

sup
q
kR

.N/
Tq
kLp.mTq /!L

p.mTq /
;

where
R
.N/
Tq
D rGN .L/:

Thus, we are reduced to proving, for p2 .1;2�, anLp bound for the R
.N/
Tq

which is uniform
in both q and N .

On the other hand, much as before, we can consider the dyadic decomposition

R
.N/
Tq
D

1
p
�

Z 2N

1

rTqe
�tLTq

dt
p
t
D

N�1X
nD0

1
p
�

Z 2nC1

2n
rTqe

�tLTq
dt
p
t

,
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and for each dyadic piece we have the kernel estimates of (6.5), which hold uniformly
in N and q. Moreover, trivially

kR
.N/
Tq
kL2.mTq /!L

2.mTq /
�
p
2

(see, e.g., Proposition 4.1 in [36]). Therefore, the operators R
.N/
Tq

satisfy the assumptions
of Theorem 6.2 uniformly in q and N , whence we deduce their Lp boundedness for
p 2 .1; 2� with the required uniformity.

To prove the case p > 2 of Theorem 1.2 we shall employ a different strategy, which is
partly an adaptation of the strategy used in [25] in the case of homogeneous trees.

We start by showing that the integral kernel of the Riesz transform on a flow tree is
related to the corresponding kernel on a quotient.

Proposition 6.4. Let � W .T1; m1/! .T2; m2/ be a flow submersion. Let Rj denote the
Riesz transform on .Tj ; mj / for j D 1; 2. Then, for every x; y 2T2 and x 2��1¹xº,

(6.6)

KR2
.x; y/ D

1

m2.y/

X
z2��1¹yº

KR1
.x; z/m1.z/;

KR�2
.x; y/ D

1

m2.y/

X
z2��1¹yº

KR�1
.x; z/m1.z/:

Proof. The idea is to exploit Proposition 3.6, however the Riesz transforms Rj are un-
bounded on L1.mj / and L1.mj /, so the theory of �-compatible operators does not
directly apply to them. On the other hand, for any N 2 NC, the truncated integrals FN
from (6.4) are entire functions, thus the operators

R
.N/
j WD rjFN .Lj / D

1
p
�

Z N

0

rj e
�tLj

dt
p
t

are in B.mj /. Therefore, from Proposition 3.9 we deduce that R
.N/
1 2 Cfin.�/ and that

�.R
.N/
1 / D R

.N/
2 .

Thus, by Proposition 3.6,

K
R
.N/
2

.x; y/ D
1

m2.y/

X
z2��1¹yº

K
R
.N/
1

.x; z/m1.z/ D
1

m2.x/

X
z2��1¹xº

K
R
.N/
1

.z; y/m1.z/

for all x; y 2T , x 2��1¹xº and y 2��1¹yº, i.e.,

(6.7)

Z N

0

K
r2e

�tL2 .x; y/
dt
p
t
D

1

m2.y/

X
z2��1¹yº

Z N

0

K
r1e

�tL1 .x; z/m1.z/
dt
p
t

D
1

m2.x/

X
z2��1¹xº

Z N

0

K
r1e

�tL1 .z; y/m1.z/
dt
p
t
�
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Notice now that, by (1.5),X
z2��1¹yº

jK
r1e

�tL1 .x; z/jm1.z/;
X

z2��1¹yº

jK
r1e

�tL1 .z; y/jm1.z/ .
1

1C t
�

Hence, by Fubini’s theorem and the dominated convergence theorem, we can take the limit
as N !1 in (6.7) and deduce thatZ 1

0

K
r2e

�tL2 .x; y/
dt
p
t
D

1

m2.y/

X
z2��1¹yº

Z 1
0

K
r1e

�tL1 .x; z/m1.z/
dt
p
t

D
1

m2.x/

X
z2��1¹xº

Z 1
0

K
r1e

�tL1 .z; y/m1.z/
dt
p
t

,

that is, by Lemma 6.3,

KR2
.x; y/ D

1

m.y/

X
z2��1¹yº

KR1
.x; z/m1.z/ D

1

m.x/

X
z2��1¹xº

KR1
.z; y/m1.z/:

In light of the relation between the kernels of an operator and its adjoint, this proves the
identities in (6.6).

In the following statement, we use the notation

Q†n D

´
†n if n � 0;
.†�/�n if n < 0:

Moreover,

(6.8) QkZ.n/ D
2
p
2

�

n

n2 � 1=4
; n2Z;

is the convolution kernel of
QRZ WD QrZ�

�1=2
Z ;

i.e., the skewsymmetric part of the discrete Hilbert transform on Z (see [2] or equa-
tion (2.5) in [25]).

Proposition 6.5. Let .T;m/ be a flow tree. Then, for all f 2 c00.T /,

(6.9) .R �R�/f D
X
n2Z

QkZ.n/ Q†�nf

in the sense of pointwise convergence on T .

Proof. It is straightforward to check that the identity (6.9) can be equivalently rewritten
in terms of integral kernels as follows:

(6.10) KR�R�.x; y/ D

8̂<̂
:
Œ QkZ.`.x/ � `.y//�=m.y/ if x < y;

Œ QkZ.`.x/ � `.y//�=m.x/ if x > y;

0 otherwise:

Our proof will focus on verifying this kernel identity.
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First of all, from equation (4.4) in [25] we already know that the result holds true on
any homogeneous tree Tq , thus

(6.11) KRTq�R�Tq
.x; y/ D

8̂<̂
:
Œ QkZ.`.x/ � `.y//�=mTq .y/ if x < y;

Œ QkZ.`.x/ � `.y//�=mTq .x/ if x > y;

0 otherwise:

Assume now that .T;m/ is a q-uniformly rational flow tree. Then, by Proposition 3.18,
there exists a level-preserving flow submersion � W .Tq;mTq /! .T;m/. So, by (6.11) and
Proposition 6.4, given x; y 2T and x 2��1¹xº,

KR�R�.x; y/

D
1

m.y/

h X
z2��1¹yº Wz>x

QkZ.`.x/ � `.z//C
X

z2��1¹yº Wz<x

QkZ.`.x/ � `.z//
mTq .z/

mTq .x/

i
D

QkZ.`.x/ � `.y//

m.y/

h X
z2��1¹yº Wz>x

1C
X

z2��1¹yº Wz<x

mTq .z/

mTq .x/

i
:

If x 6< y and y 6< x, by the strict monotonicity of � there cannot exist a z 2��1.y/ such
that x < z or z < x, and thus from the above formula we deduce that KR�R�.x; y/ D 0

in this case. If instead y > x, then y D p`.y/�`.x/.x/, so the only z 2��1¹yº comparable
with x is given by z D p`.y/�`.x/.x/, and the above formula gives

(6.12) KR�R�.x; y/ D
QkZ.`.x/ � `.y//

m.y/
�

Finally, if y < x, as R �R� is skewadjoint,

KR�R�.x; y/ D �KR�R�.y; x/ D �
QkZ.`.y/ � `.x//

m.x/
D

QkZ.`.x/ � `.y//

m.x/
,

where we applied (6.12) with x and y swapped, and used that QkZ is real and odd. This
concludes the proof of (6.10) in the case .T;m/ is uniformly rational.

Finally, consider an arbitrary flow tree .T;m/. By Corollary 4.7, there exists an approx-
imating sequence ..Tj ;mj //j where eachmj is uniformly rational. So we know that (6.10)
holds for each .T;mj /, i.e.,

(6.13) KRj�R�j
.x; y/ D

8̂<̂
:
Œ QkZ.`.x/ � `.y//�=mj .y/ if x < y;

Œ QkZ.`.x/ � `.y//�=mj .x/ if x > y;

0 otherwise

for all x; y 2 Tj . Since the right-hand side of (6.13) clearly converges to that of (6.10)
as j ! 1, it only remains to check that KRj�R�j

! KR�R� pointwise on T � T , or
equivalently, that KRj

! KR pointwise. Indeed, by Lemma 6.3,

KR.x; y/ D
1
p
�

Z 1
0

Kre�tL.x; y/
dt
p
t
; KRj

.x; y/ D
1
p
�

Z 1
0

K
re
�tLj .x; y/

dt
p
t
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and we know from Proposition 4.4 that K
re
�tLj .x; y/! Kre�tL.x; y/ as j !1 for

any x; y 2 T and t > 0. Thus, in light of the bound (1.5), the desired convergence result
follows from the dominated convergence theorem.

After establishing the crucial identity (6.9), we can now proceed by following closely
the strategy of [25] to derive Lp boundedness properties of R �R� from those of QRZ.
For the reader’s convenience, we briefly describe the main steps.

We need to introduce some more notation, analogous to the one in Section 3 of [25].
Let .T; m/ be a flow tree. The flow measure m determines a Borel measure � on the
punctured boundary � WD @T n ¹!�º, which is uniquely defined by the condition

�.�x/ D m.x/; 8x 2T;

where �x WD ¹! 2 �W x 2 .!; !�/º. Correspondingly, we equip the product � � Z with
the product measure � � #.

We define the lifting operator ‰WCT ! C��Z by

‰f .!; n/ D f .!n/;

where !n is the unique vertex of level nwhich belongs to .!;!�/. Furthermore, we define
the shift operator � WC��Z ! C��Z by

�g.!; n/ D g.!; nC 1/; ! 2�; n2Z:

Easy computations show the following properties of the lifting operator ‰ and the shift
operator � , which can be found in Propositions 3.1, 3.2 and 3.4 of [25] in the case of
homogeneous trees.

Proposition 6.6. The following properties hold.

(i) ‰ is an isometric embedding from Lp.m/ to Lp.� � #/ for every p 2 Œ1;1�. Cor-
respondingly, the adjoint operator ‰� is bounded from Lp.� � #/ to Lp.m/ with
norm 1.

(ii) For any p 2 Œ1;1�, an operator A is bounded on `p.Z/ if and only if id� ˝ A is
bounded on Lp.� � #/, and their norms are the same.

(iii) For any n2Z,
Q†n D ‰

��n‰:

We can now proceed to prove the Lp boundedness of the skewsymmetric part of the
Riesz transform.

Proposition 6.7. Let .T;m/ be a flow tree. Then, for all p2 .1;1/, the operator R �R�

is bounded on Lp.m/, and more precisely,

(6.14) kR �R�kLp.m/!Lp.m/ � k QRZk`p.Z/!`p.Z/:

Proof. Recall that QkZ is the convolution kernel of QRZ. In light of Proposition 6.6(iii), we
can rewrite the identity from Proposition 6.5 as

.R �R�/f D
X
n2Z

QkZ.n/‰
���n‰f D ‰�.id� ˝ QRZ/‰f:
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From Proposition 6.6(i)–(ii), we therefore deduce the bound (6.14). As QRZ is bounded
on `p.Z/ for any p 2 .1;1/ (see, e.g., [20] or Proposition 2.3 in [25]), the desired result
follows.

Finally, we complete the proof of Theorem 1.2.

Proof of Theorem 1.2, case p > 2. We already know from the case p � 2 of Theorem 1.2
that R is bounded on Lp.m/ for all p 2 .1; 2/, which means that R� is bounded on
Lp.m/ for all p 2 .2;1/. As R � R� is also bounded on Lp.m/ for p 2 .2;1/ by
Proposition 6.7, the sum R D R� C .R � R�/ must also be bounded on Lp.m/ for
p 2 .2;1/.

We end the section with a negative boundedness result for R and its adjoint.

Proposition 6.8. Let .T;m/ be a locally doubling flow tree which is not isomorphic to Z,
i.e., such that q.x/ > 1 for some x 2 T . Then, R� is unbounded from H 1.m/ to L1.m/
and, consequently, R is unbounded from L1.m/ to BMO.m/.

Proof. Since R is bounded from H 1.m/ to L1.m/ by Theorem 1.2, it suffices to prove
the unboundedness from H 1.m/ to L1.m/ of R �R�.

By our assumption on T , we can choose x1 2 T such that q.p.x1// � 2, and denote
by x2 a vertex in s.p.x1// different from x1. Define

f D 1�x1 and g D
1¹x1º
m.x1/

�
1¹x2º
m.x2/

,

and observe that f 2L1.m/ and g 2H 1.m/. As x1 and x2 are not comparable with
respect to the ordering of T , by (6.10) and (6.8) we see that

jhf; .R �R�/gij D
ˇ̌̌ X
x Wx�x1

X
y2T

KR�R�.x; y/
�1¹x1º.y/
m.x1/

�
1¹x2º.y/
m.x2/

�
m.y/m.x/

ˇ̌̌
D

ˇ̌̌ X
x Wx<x1

KR�R�.x; x1/m.x/
ˇ̌̌
�

X
x Wx<x1

1

d.x; x1/m.x1/
m.x/

D

1X
nD1

1

n

m.s.n/.x1//

m.x1/
D

1X
nD1

1

n
D1;

where the equality
m.s.n/.x1// D m.x1/

is due to the fact that m is a flow measure. This shows that .R � R�/g does not lie
in L1.m/, as desired.

6.3. Spectral multipliers of the flow Laplacian

In this section, we prove Theorem 1.5, establishing Lp boundedness properties for func-
tions F.L/ of the flow Laplacian under suitable scale-invariant smoothness conditions
on F .
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One of the fundamental ingredients in the proof is the following scale-invariant version
of the weighted L1 estimate of Proposition 5.9, which corresponds to the estimate on Z
from Lemma 5.3.

Proposition 6.9. Let .T; m/ be a flow tree. For every ˛ 2 Œ0;1/ and ˇ > ˛ C 3=2, for
every F 2L2

ˇ
.R/ supported in Œ1=4; 7=4�,

sup
t�1

sup
y2T

X
x2T

jKF.tL/.x; y/j
�
1C

d.x; y/
p
t

�˛
m.x/ .˛;ˇ kF kL2

ˇ
:

Proof. Let " > 0 be such that ˇ D ˛ C 3=2C ".
Let F 2L2

ˇ
.R/ and t � 1. By Proposition 5.9, we can apply the estimate (5.16) to the

function F.t �/2L2
ˇ
.R/ and the weight w.n/ D .1C n=

p
t /˛ , thus

sup
y2T

X
x2T

jKF.tL/.x; y/j
�
1C

d.x; y/
p
t

�˛
m.x/

.
X
n2N

n
�
1C

n
p
t

�˛
j QrZkF.t�Z/.n/j �

p
t
X
n2N

�
1C

n
p
t

�˛C1
j QrZkF.t�Z/.n/j:

As " > 0, the Cauchy–Schwarz inequality and Lemma 5.3 then give

sup
y2T

X
x2T

jKF.tL/.x; y/j
�
1C

d.x; y/
p
t

�˛
m.x/

�
p
t
�X
n2N

�
1C

n
p
t

��1�2"�1=2�X
n2N

h�
1C

n
p
t

�3=2C˛C"
j QrZkF.t�Z/.n/j

i2�1=2
.˛;ˇ kF kL2

ˇ
;

where we used that X
n2N

�
1C

n
p
t

��1�2"
�" t

1=2 for t � 1.

The above estimate, combined with the gradient heat kernel bounds of Theorem 1.6,
gives an L1 estimate for the gradient of the integral kernel of F.tL/.

Corollary 6.10. Let .T;m/ be a flow tree. For every " > 0, every F 2L2
3=2C"

.R/ suppor-
ted in Œ1=4; 7=4� and every t � 1,

sup
y2T

X
x2T

jryKF.tL/.x; y/jm.x/ ." t�1=2 kF kL2
3=2C"

:

Proof. Define
G.�/ D F.�/ e�

and write
F.tL/ D G.tL/ e�tL;



Riesz transform and spectral multipliers for the flow Laplacian 2271

so that
KF.tL/.x; y/ D

X
z2T

KG.tL/.x; z/Ke�tL.z; y/m.z/;

and
ryKF.tL/.x; y/ D

X
z2T

KG.tL/.x; z/ryKe�tL.z; y/m.z/:

It follows that

sup
y2T

X
x2T

jryKF.tL/.x; y/jm.x/

�

�
sup
z2T

X
x2T

jKG.tL/.x; z/jm.x/
� �

sup
y2T

X
z2T

jryKe�tL.z; y/jm.z/
�

." kGkL2
3=2C"

t�1=2 ." t�1=2 kF kL2
3=2C"

;

where we applied Proposition 6.9 to the function G with ˛ D 0 and ˇ D 3=2C ", and the
gradient heat kernel bound from Theorem 1.6.

We can now prove Theorem 1.5. To do so, we shall use the modulation operator
EWCT ! CT defined by

.Ef /.x/ D .�1/`.x/f .x/; x 2T; f 2CT :

It is easily seen that E is selfadjoint and involutive, and preserves the norms in Lp.m/,
p 2 Œ1;1�, and L1;1.m/. In addition,

E†E D �†; E†�E D �†� and EAE D �A

where A D .†C†�/=2 is as in (2.2), which implies that

(6.15) ELE D 2I �L:

The latter identity shows why it is natural that the assumption on F in Theorem 1.5(i) is
invariant under the change of variables � 7! 2 � �.

Proof of Theorem 1.5. Let us first prove part (ii); here we assume that .T; m/ is locally
doubling. Using smooth cutoff functions, we writeF as a sumF DF .0/CF .1/, withF .0/

supported in .�1; 1=2/ and F .1/ supported in .1=4;1/. From the assumption (1.4) on F ,
it follows that

(6.16) sup
t>0

kF .0/.t �/�kL2s <1 and kF .1/kL2s <1;

In particular, by Theorem 1.4, F .1/.L/ is bounded on Lp.m/ for every p 2 Œ1;1�.
We now consider F .0/ and choose a function � 2C1c .R/ such that supp� � .1=4; 1/

and
P
`�0 �.2

`�/ D 1 for every �2 .0; 1=2/. Define

F
.0/

`
D F .0/.2�`�/�:
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By Proposition 6.9 and Corollary 6.10 applied with t D 2`,

(6.17)

sup
y2T

X
x2T

jK
F
.0/
`
.2`L/

.x; y/j
�
1C

d.x; y/

2`=2

�"
m.x/ ." kF .0/.2�`�/�kL2s ;

sup
y2T

X
x2T

jryKF .0/
`
.2`L/

.x; y/jm.x/ ." 2�`=2 kF .0/.2�`�/�kL2s

if s > 3=2C ". As

sup
`�0

kF .0/.2�`�/�kL2s . sup
t>0

kF .0/.t �/�kL2s <1;

it follows that the decomposition

F .0/.L/ D
X
`�0

F
.0/

`
.2`L/

satisfies the integral conditions of Theorem 6.1, whence we deduce that F .0/.L/ is bound-
ed fromH 1.m/ to L1.m/, from L1.m/ to L1;1.m/, and on Lp.m/ for p2 .1; 2�; thus the
same boundedness properties are shared by F.L/ D F .0/.L/C F .1/.L/. As F.L/� D
F .L/ and F satisfies the same smoothness assumptions as F , by duality we also deduce
the boundedness of F.L/ from L1.m/ to BMO.m/ and on Lp.m/, p 2 Œ2;1/.

Let us now prove part (i) when .T;m/ is locally doubling. Here, by using cutoff func-
tions, we can decompose F D F0 C F2, where supp F0 � .�1; 5=4/ and supp F2 �
.3=4;1/. From (1.3), it then follows that

sup
t>0

kF0.t �/�kL2s <1 and sup
t>0

kF2.2 � t �/�kL2s <1:

From part (ii), we then deduce that F0.L/ and F2.2 � L/ are of weak type .1; 1/ and
bounded on Lp.m/ for all p 2 .1;1/. On the other hand, from (6.15) we deduce that
F2.L/D EF2.2�L/E; since E preserves the norms inLp.m/, p2 Œ1;1�, andL1;1.m/,
the operator F2.L/ inherits the corresponding boundedness properties of F2.2 � L/.
Therefore also F.L/ D F0.L/C F2.L/ is of weak type .1; 1/ and bounded on Lp.m/
for 1 < p <1, as desired.

It remains to discuss part (i) for any arbitrary flow tree .T; m/; in this case we only
need to prove the Lp boundedness of F.L/, 1 < p <1, whenever F satisfies the con-
dition (1.3), and actually, by duality, it is enough to consider the case p � 2. Moreover,
the same argument as above, using the decomposition F D F0 C F2 and the modulation
operator E , allows us to reduce to the case where F satisfies the stronger condition (1.4).

In this case, as in the proof of part (ii) above, we decompose F D F .0/ C F .1/, and
deduce from Theorem 1.4 the Lp boundedness of F .1/.L/ for all p 2 Œ1;1�. Moreover,

F .0/.L/ D
X
`�0

F
.0/

`
.2`L/ D lim

N!1
F
.0/

.N/
.L/;

in the sense of the strong operator topology on L2.m/, where

(6.18) F
.0/

.N/
D

NX
`D0

F
.0/

`
.2`�/ D F

NX
`D0

�.2`�/:
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In particular,

kF .0/.L/kLp.m/!Lp.m/ � sup
N2N
kF

.0/

.N/
.L/kLp.m/!Lp.m/;

so in order to conclude it is enough to check that, for any p 2 .1; 2�, the truncations
F
.0/

.N/
.L/ of F .0/.L/ are bounded on Lp.m/ uniformly in N .

On the other hand, from (6.18) and (6.16) it is clear that each F .0/N is in L2s .R/; thus,
by applying Theorem 5.12, we deduce that

kF .0/.L/kLp.m/!Lp.m/ � sup
N2N

sup
q
kF

.0/

.N/
.LTq /kLp.mTq /!L

p.mTq /
:

So we are reduced to proving an analogous bound for the truncations on the homogeneous
tree Tq , which however must be uniform both in N and q.

An Lp bound for each F .0/
.N/
.LTq / can be deduced following the proof of part (ii)

above on the tree .Tq; mTq /. Indeed, here we have the dyadic decomposition

F
.0/

.N/
.LTq / D

NX
`D0

F
.0/

`
.2`LTq /;

and each dyadic piece satisfies the kernel estimates (6.17), which hold uniformly in N
and q. Moreover, clearly

kF
.0/

.N/
.LTq /kL2.mTq /!L

2.mTq /
� kF

.0/

.N/
k1 � kF

.0/
k1:

In other words, the truncations F .0/
.N/
.LTq / satisfy the assumptions of Theorem 6.2 uni-

formly in N and q; thus, for any p 2 .1; 2�, we deduce their Lp.mTq / boundedness with
the same uniformity in q and N , as required.

The assumption on the multiplier F in Theorem 1.5(i) does not imply the boundedness
of F.L/ from H 1.m/ to L1.m/. This follows from the next result.

Proposition 6.11. Let .T;m/ be a locally doubling flow tree. For any s > 3=2, there exist
functions F WR! C satisfying

(6.19) sup
t>0

kF.2 � t �/�kL2s <1

and such that F.L/ is not bounded from H 1.m/ to L1.m/.

Proof. Arguing by contradiction, assume instead that there exists s > 3=2 such that, for
any function F satisfying (6.19), the operator F.L/ is bounded from H 1.m/ to L1.m/.
An application of the closed graph theorem then shows that the bound

(6.20) kF.L/kH1.m/!L1.m/ � C sup
t>0

kF.2 � t �/�kL2s

holds for some C 2 .0;1/. We shall now contradict the validity of this bound.
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Fix ˛ 2R n ¹0º and consider the function

(6.21) G.�/ D �i˛;

which satisfies the condition
sup
t>0

kG.t �/�kL2s <1

for every s > 0. Define F D G.2 � �/. Then obviously

(6.22) sup
t>0

kF.2 � t �/�kL2s <1:

Consider the flow tree Z equipped with the counting measure. It is not difficult to see
that the operator G.�Z/ D �

i˛
Z is L1-unbounded; indeed,

k�i˛Z
.n/ D

2i˛
p
�

�.1=2C i˛/

�.�i˛/

�.jnj � i˛/

�.jnj C 1C i˛/
, n2Z;

(see, e.g., equation (1.12) in [10]), and known asymptotics for the Gamma function (see,
e.g., equation (5.11.12) in [41]) show that jk�i˛Z .n/j �˛ jnj

�1 for large jnj, so

G.�Z/ı0 D k�i˛Z
… L1.Z/:

On the other hand, the function aD ı0� ı�1 is an atom inH 1.Z/ and, by Theorem 1.5(ii),
G.�Z/a2L

1.Z/. Then

F.�Z/a D EG.�Z/Ea D EG.�Z/.ı0 C ı�1/ D EG.�Z/.2ı0 � a/

D 2EG.�Z/ı0 � EG.�Z/a:

Since EG.�Z/a 2L
1.Z/ and EG.�Z/ı0 …L

1.Z/, we conclude that F.�Z/a …L
1.Z/.

Hence F satisfies (6.22), but F.�Z/ does not map H 1.Z/ into L1.Z/, thus contradicting
the bound (6.20) in the case of the flow tree Z.

We shall now use transference results to construct a similar counterexample for every
locally doubling flow tree. To do so, we first multiply the function G defined in (6.21) by
a smooth cutoff function, thus obtaining a new multiplier H supported in Œ0; 3� such that
H jŒ0;2� D GjŒ0;2� and, for every s > 0,

sup
t>0

kH.t �/�kL2s <1:

In particular, as the L2-spectrum of �Z is Œ0; 2�,

(6.23) H.2 ��Z/ D G.2 ��Z/ D F.�Z/:

Given � 2 C1c .R/ supported in .�2; 2/ such that �.�/ D 1 for � 2 Œ�1; 1� and 0 �
� � 1, define Hn.�/ D H.�/.1 � �.n�//, for n 2N. Then Hn is supported in Œ0; 3� n
.�1=n; 1=n/, it is smooth and, for every s > 0,

(6.24) sup
n2N

sup
t>0

kHn.t �/�kL2s <1:
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Moreover, Hn tends to H pointwise and boundedly on .0;1/ as n!1, and thus
Hn.2��Z/ tends toH.2��Z/ in the strong operator topology on L2.Z/. In particular,
Hn.2 ��Z/a tends to H.2 ��Z/a in L2.Z/ as n!1. Since, by (6.23),

H.2 ��Z/a D F.�Z/a;

which is not in L1.Z/ by the above construction, it follows that

sup
n
kHn.2 ��Z/akL1.Z/ D1:

Let now .T; m/ be a locally doubling flow tree and let � W T ! Z be the submersion
defined by �.x/ D `.x/, x 2T . Then, by Proposition 5.11,

Hn.2 �L/ 2 C.�/ and �.Hn.2 �L// D Hn.2 ��Z/:

Define
b D 1¹oº �†1¹oº;

which is in H 1.m/ and such that ˆ��b D a, where ˆ� is the lifting operator associated
to � , and ˆ�� is its adjoint, as in (3.10). From (3.9), it follows that

ˆ��Hn.2 �L/b D Hn.2 ��Z/aI

as ˆ�� WL
1.m/! L1.Z/ has norm 1,

sup
n2N
kHn.2 �L/bkL1.m/ � sup

n2N
kHn.2 ��Z/akL1.Z/ D1:

Thus, if we set Fn D Hn.2 � �/, then

sup
n2N
kFn.L/kH1.m/!L1.m/ D1I

together with (6.24), this shows that the Fn provide a counterexample to (6.20).

Finally, we discuss the optimality of the threshold 3=2 in the above multiplier theorems
in the case of the homogeneous trees. We start with a preliminary lemma.

Lemma 6.12. Let .T; m/ be a locally doubling flow tree. Then, the flow gradient r is
bounded from L1.m/ to H 1.m/.

Proof. For all f 2L1.m/, we can write

f D
X
x2T

f .x/m.x/ bx ; with bx WD
1¹xº
m.x/

�

Thus,
rf D

X
x2T

f .x/m.x/rbx :
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Moreover, from Definition 4.4 in [26] it is clear that

rbx D
1¹xº � 1s.x/

m.x/

belongs to H 1.m/, with H 1-norm uniformly bounded in x 2T . Thus,

krf kH1.m/ �

X
x2T

jf .x/jm.x/ krbxkH1.m/ . kf kL1.m/;

as required.

We now show that the smoothness threshold 3=2 in Theorems 1.4 and 1.5 cannot be
replaced by any smaller quantity. As explained in Remark 6.14, this is a consequence of
the following result, where L1s .R/ denotes the L1 Sobolev space of order s on R; much
as in [31], the idea is to test the above multiplier theorems on a truncated version of the
Schrödinger propagator.

Proposition 6.13. Let �0 2C1c .R/ be such that supp�0 � .�1=2;1=2/ and �0jŒ�1=4;1=4�
D 1. For all t 2R, let

Ft .�/ D e
it��0.�/:

Then, for all s � 0,

(6.25) kFtkL1s .s .1C jt j/s; 8t 2R:

Moreover, there exists t0 > 0 such that

(6.26) kFt .LTq /kH1.mTq /!L
1.mTq /

&q t3=2; 8t � t0; q � 2:

Proof. An elementary computation shows the validity of (6.25); indeed, clearly

kF
.k/
t k1 .k .1C jt j/k

for all k 2N, which implies the result for integer s; the case of fractional s follows by
interpolation.

It remains to prove the lower bound (6.26). By Lemma 6.12, it will be enough to prove
that

kFt .LTq /rTqkL1.mTq /!L
1.mTq /

&q t3=2; 8t � t0; q � 2

for a sufficiently large t0 > 0.
From Corollary 5.5, it follows that

KFt .LTq /
.x; y/ D q�.`.x/C`.y//=2EFt .d.x; y//;

thus also

KFt .LTq /rTq
.x; y/ D KFt .LTq /

.x; y/ �
1

q

X
z2s.y/

KFt .LTq /
.x; z/

D q�.`.x/C`.y//=2
h
EFt .d.x; y// � q

1=2 1

q

X
z2s.y/

EFt .d.x; z//
i
:
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In particular, if x 6< y, then

1

q

X
z2s.y/

EFt .d.x; z// D EFt .d.x; y/C 1/;

so

(6.27) KFt .LTq /rTq
.x; y/ D q�.`.x/C`.y//=2 QEFt .d.x; y// if x 6< y;

where, also in light of (5.10) and Lemma 5.1,

(6.28)

QEFt .k/ D EFt .k/ � q
1=2EFt .k C 1/

D

X
j�0

q�.kC2j /=2 Œ QrZkFt .�Z/.k C 2j C 1/ �
QrZkFt .�Z/.k C 2j C 2/�

D
1

i�

X
j�0

q�.kC2j /=2
Z �

��

sin � Ft .1 � cos �/ .1 � ei� / ei.kC2jC1/� d�

D
q�k=2

i�

Z �

��

sin � Ft .1 � cos �/ .1 � ei� /
�
1 �

e2i�

q

��1
ei.kC1/� d�

D
q�k=2

i�
Iq

�k C 1
t
I t
�

for all k 2Z and t > 0; here

Iq.�I t / D

Z
R
eit�� .�/Aq.�/ d�;

��.�/ D 1 � cos � C ��;

Aq.�/ D .1 � e
i� / sin �

�
1 �

e2i�

q

��1
�0.1 � cos �/ Q�0.�/

and Q�0 2C1c .R/ is such that supp Q�0 � .��=2; �=2/ and Q�0jŒ��=3;�=3� D 1.
We now study the oscillatory integral Iq.�I t /. Notice that

�0�.�/ D sin � C � and �00� .�/ D cos �:

Thus, if j�j � 1=2, then the phase function �� has critical points �k � .�1/k arcsin �
where k 2Z, and the only critical point lying in the support of the amplitude Aq is the one
for k D 0, i.e.,

�c.�/ WD � arcsin �:

Moreover, clearly
�00� .�c.�// D

p
1 � �2 � 1;

i.e., the critical point is nondegenerate. The method of stationary phase (see, e.g., The-
orem 7.7.6 in [23]) then shows that

Iq.�I t / D
p
2�i

t�1=2p
1 � �2

eit�� .�c.�//Aq.�c.�//CO.t
�3=2/ as t !1;



A. Martini, F. Santagati, A. Tabacco and M. Vallarino 2278

uniformly in j�j � 1=2. In particular, in the region where 1=4 � j�j � 1=2, we have

jAq.�c.�//j � 1

and
jIq.�I t /j & t�1=2; 8t � t0

for some sufficiently large t0 > 0.
By (6.28), this shows that, for all t � t0, and all k 2N such that t=4 � k C 1 � t=2,

j QEFt .k/j & q�k=2 t�1=2:

Therefore, by (6.27), for all t � t0,

kFt .LTq /rTqkL1.mTq /!L
1.mTq /

� sup
y2Tq

X
x2Tq Wx 6<y

jKFt .LTq /rTq
.x; y/j q`.x/

�

X
k2N

j QEFt .k/j .k C 1/ q
k=2 &

X
k W t=4�kC1�t=2

t�1=2 .k C 1/ � t3=2;

as required. In the middle step, we used the fact that, for all y 2Tq and k 2N,X
x2Tq Wd.x;y/Dk; x 6<y

q.`.x/�`.y//=2 � qk=2.k C 1/;

which is proved much in the same way as equation (2.18) in [35].

Remark 6.14. Clearly (6.26) implies an analogous lower bound for the L1 operator norm
of Ft .LTq /, while (6.25) implies an analogous upper bound for kFtkL2s , because Ft is
supported in Œ�1=2; 1=2�; this shows that the bound (1.2) cannot hold for any s < 3=2,
thus proving the optimality of Theorem 1.4 on .Tq; mTq / with q � 2. Moreover,

sup
0<t�2

kF.t �/�kL2s .s sup
0<t�2

kF.t �/�kL1s .s kF kL1s

for all s � 0, where � is as in Theorem 1.5; thus, similar considerations prove that no
bound of the form

kF.LTq /kH1!L1 .s sup
0<t�2

kF.t �/�kL2s

may hold when s < 3=2 and q � 2; an application of the closed graph theorem (as in
the proof of Proposition 6.11) then shows the optimality of the H 1 ! L1 bound of The-
orem 1.5(ii). This discussion actually shows that the threshold 3=2 remains optimal even
when the smoothness conditions in Theorems 1.4 and 1.5 are strengthened by replacingL2s
with L1s .
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