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Tensor products of Drinfeld modules and convolutions
of Goss L-series

Wei-Cheng Huang

Abstract. Following the same framework of the special value results (by Papanikolas and the
author) of convolutions of Goss and Pellarin L-series attached to Drinfeld modules that take values
in Tate algebras, we establish special value results of convolutions of two Goss L-series attached to
Drinfeld modules that take values in [y ((%)). Applying the class module formula of Fang to tensor
products of two Drinfeld modules, we provide special value formulas for their L-functions. By way
of the theory of Schur polynomials these identities take the form of specializations of convolutions
of Rankin—Selberg type. Finally, we show an explicit computation of the regulators appearing in
Fang’s class module formula for tensor products as well as symmetric and alternating squares of
Drinfeld modules.
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1. Introduction

1.1. Motivation

Given an elliptic curve E over Q, its L-function has the form

L(E,s)=]]@p(r™ 7",
)4

where Q,(X) € Z[X] depends on the reduction of E at p. Recall that if £ has a good
reduction at p and £ # p is a prime, the polynomial Q,(X) € Z[X] is the characteristic
polynomial of the Frobenius element of the Galois group Gal(Q/Q) on the £-adic Tate
module of E and it is independent of £. (e.g., see [47]).
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It makes sense to consider the tensor products of Tate modules and study the corre-
sponding L-functions (see [17,23]), but it is still an open problem what the corresponding
geometric objects are. However, this works out well in the function field. By Anderson [2],
the category of abelian 7-modules is anti-equivalent to the category of ¢-motives, which
are analogous to abelian varieties and pure motives in the function field setting. We are
interested in the L-function of a tensor product of Drinfeld modules, which is defined to
be the corresponding ¢#-module of the tensor product of the corresponding ¢-motives.

Guided by a series of articles by Angles, Demeslay, Gezmis, Pellarin, Taelmann,
Tavares Ribeiro [7,9, 18, 19, 25, 45, 49-51], Papanikolas and the author [37] defined a
t-module E(¢ x 1) by some kind of twisting of two Drinfeld modules ¢ and . Then its
associated L-function includes a Rankin—Selberg type convolution of a Goss L-series and
a Pellarin L-series (see [37, Thms. 6.2.3 and 6.3.5]) and can be evaluated using Demes-
lay’s class module identity (see [37, Cors. 6.2.4 and 6.3.6]).

Inspired by these convolutions, it is natural to consider the Rankin—Selberg type con-
volution of two Goss L-series and ask to what extent the regulators are related to the
special values of logarithms. This leads us to study Goss L-series of tensor products,
symmetric squares and alternating squares of Drinfeld modules (see Theorem A and
Corollary B). We also provide explicit expressions of their regulators for the rank 2 case
(see Corollary C and Theorem D) in terms of these L-values and logarithms. We now
summarize these results.

1.2. Convolution Goss L-functions and special values

Let F, be a field with ¢ = p™ elements for p a prime. For a variable 6 we let A := F,[6)]
be the polynomial ring in 8 over Fy, and let K := [F,(6) be its fraction field. We take
Koo i= Fy((671)) for the completion of K at oo, and let Co, be the completion of an
algebraic closure of K. We normalize the co-adic norm |-|s, on Co so that |0 = ¢,
and letting deg := —ordeo = log, |00, We see that dega = degg a for any a € A. We let
A4 denote the subset of monic elements of A. Finally, we let A[z] be the ring of twisted
polynomials in t with coefficients in A, subject to the relation ta = a9t fora € A.
Let A = Fy[t], and let ¢, ¥: A — A[r] be Drinfeld modules defined over A by

pr=0+K1T+ +iT . Yr=0+mr+- . ke eF (12.01)

Thus ¢ has rank » and ¥ has rank £, and moreover because their leading coefficients are
in F, both ¢ and ¥ have everywhere good reduction.

1.2.2. Characteristic polynomials of Frobenius. For our Drinfeld module ¢ in (1.2.1),
if we fix f € Ay irreducible of degree d and let A € A be irreducible with A(6) # f,
then by work of Gekeler, Hsia, Takahashi, and Yu [24, 36, 52], the characteristic poly-
nomial Py r(X) = Char(z?, T5(¢), X) = X" + ¢, 1 X"V 4+ -« 4+ ¢o € A[X] of ¢
acting on Ty (¢), the A-adic Tate module of the reduction of ¢ modulo f, satisfies ¢y =
(=" Xs(f)f,where xp(a):=((—=1)"T1k,)%e% and y4 = Xd_>l . We further let Pq;’,f(X) €
K[X] be the characteristic polynomial of t¢ acting on the dual space of T (¢). See Sec-
tion 2.4 for more details.
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1.2.3. L-functions of tensor products. For the Drinfeld module ¢ from (1.2.1), Goss
defined the L-function,

Lo =[Tos = Y 1,
f

acAy

where Q;{ f(X ) is the reciprocal polynomial of Pq;’ f(X ). The multiplicative function
He: Ax — Ais defined by the generating series,

oo
D ue(f™MX™ = Q¥ (fX)7".
m=1
One of our main goals is to express Dirichlet series for L-function of tensor products in
a similar explicit fashion. If £ = ¢ ® v, Cauchy’s identity (see Theorem 2.5.12) implies
that the L-function L(E", s) has a convolution interpretation, following the situation for
Maass forms on GL,, (see [12,28]). When E = Sym? ¢ or /\2 ¢, Littlewood’s identities
(see Theorem 2.5.15) imply that the L-function L(EY,s) can be factored into a twisted
Carlitz zeta function and intriguing L-functions involving p, @ (A4)" ~1 — A defined
in [37]. See Section 2.6 for details.
When r, £ = 2, we define an L-function L(py X fy,, s) as follows. If r = £

relar,....ar—)py(a, ... ,ar-1)
L(py X py,s) = 8 .
’ Y a§+ ar1XE:A+ (a1 "'ar—l)z(alag"'a;f%)s

If r < ¢, then

L(pg X py,s) = Z

ap,...ar€A4

Xo(arpg(an,....ar—py(ar,....ar, 1,...,1)
(al...ar)z(alag...a;)s :

In this way, we interpret L(py X iy, 5) as a convolution of two Goss L-series. Since
¢V =¥ Q¢ (see [34, Prop. 2.5], Remark 3.1.5), the r > £ case is the same as the
r < £ case in the sense of switching the rolls of ¢ and . We further define two L-functions
as follows.

5 re(a?,....a2_))
L(fig.s) = Z Z o LA 1r_1)s7

2 2
NN aias ---a
aj€A4 ar—1€A4+ r 1) ( 162 r—1

and

ar,...,Ar—
Ligsy= Y, ettt
al...ar_l(alaz...ar_l)s

Alyenns ar—1€A4
ai=1if2 i
For the cases E = ¢®2, Sym? ¢, /\> ¢, the L-series above are related to L(E, s) by the
following result (stated as Theorems 4.3.14,4.3.17,4.4.10 and 4.4.13). We let L(A4, y,s)=
> aca, X(a@)-a™* be the twist of the Carlitz zeta function L(A4,s) = }_ abya
completely mutiplicative function y: Ay — F .

acAy
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Theorem A. Let ¢, y: A — A[t] be Drinfeld modules of ranks r and { respectively with
everywhere good reduction, as defined in (1.2.1). Assume that r, £ = 2.

(@) Ifr = ¢, then
L((d) ® 1//)\/75) = L(As X¢X1/f’rs + 2) : L(I'l'gb X [Lw,S).
(b) Ifr < ¥, then
L((¢ ® w)vvs) = L(”’q& X [1,1/,,5).
(c) Assume further that p # 2, then

L((Sym®¢)V.s) = L(A, x3.rs +2) - L(fLy.5).

and
(D" +1

L((/Z\¢)v,s> - L(A,)(¢, % + 1) P Ly s).

Substituting s = 0 in Theorem A provides special value identities for L(p g X pty;,0),
L(jty,0) and L(jiy,0). Fang’s class module identity (Theorem 4.2.2), which relates the
special L-values of an abelian #-module E to its regulator Regy and class module H(E),
implies the following corollary (stated as Corollaries 4.3.15, 4.3.18,4.4.11 and 4.4.14).

Corollary B. Let ¢, : A — A[t] be Drinfeld modules of ranks r and £ respectively with
everywhere good reduction, as defined in (1.2.1). Assume that r, £ = 2.

(@) Ifr = ¢, then
I"¢(als--~sar—l)ﬂx//(als-~~9ar—l)
Ly iy0) = Y o Y G,
41€A+ a,_1€A+ 1 r-l1

_ Reggoy - [H@ @ V)],
L(A, xpxv-2)

(b) Ifr < ¥, then

Z X¢(d,)ﬂ¢(a1, ... ,a,_l);l,v,(al, coap, 100000
(ay---ay)?

= Regyoy - [HG @ V)],

(c) Assume further that p # 2, then

L(fig0)= Y - > po(@} .. a2))  Regyue,-[HSym?¢)],
:0) = g 2
a1€A+ ar7]EA+ (al ar_l) L(A’Xd”Z)

and
2
L. 0) = ﬂ¢(a1»-~-»ar—l) _ Reg/\z¢-[H(/\ ¢)]A
(ﬂ¢’ )_ Z ai---da - [l Vil
al,...,ar71€A+ 1 r—1 L(A’ X¢’ 1) 2

ai=1if24i
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We now assume r = 2 and suppose ¢; =60 +k1 7 +k, 7> and Logy(2)=2_,>0 Bmzd".
In Section 5.2 we define Fy-linear power series L;(z), L}(z), Z,-(z), e.g., see (5.2.24)—
(5.2.30) as well as matrices L,, € Mat4(K) for m > 1, see Corollary 5.2.31, which com-
bine to make the coordinate functions of the logarithm series of ¢ ® ¥, Sym? ¢ and /\2 ¢.
The main result in this part of the paper (Corollary 5.2.31) is the following.

Corollary C. Let ¢:A — A[t] be a Drinfeld module given by ¢ = 0 + k11 + k212 with
Ky € ]qu, then

Z1 Z1 1 1 qm
z
(a) Logye: (2) = (2) + ( L )Zmal Lo | on |/
Z4 Z4 ——1 z3

24

qm
1 i

Z1 Z1 1 1 zg'"

(b) Logsymzq,(;z) - (2) S G A A D oy Fy ey |

3 Z3 — 5 — 5 1 z
2ky  2kp 2

qm
Z3

©) LogAz¢(z) =z + Lo(2).

We further define the dilogarithm series Log, ,(z) = Ym0 ,B,znzqm and z,-(z) in
(5.3.4)—(5.3.6), and obtain the following result on regulators (stated as Theorem 5.3.7).
Note that L;(z) is related to L} (z) by the chain rule [42, Lem. 2.4.6] (see also (5.3.10)).

Theorem D. Let ¢: A — A[t] be a Drinfeld module given by ¢; = 6 + k17 + k212 with
Ky € ]F;.

(a) Assume that deg(k1) < (¢ + 1)/2. Then Reg 2, = LogAz¢(1).
< 1. Then

(1)  We have an explicit formula for Reggymz2 ¢ involving values of dilogarithm

(b) Assume that deg(k1)

series Logg »(2) and values of power series Li(z), L; (z) and Zi(z).
(i) Regyer = Reggym2 ¢ -Reg/\z¢.

Remark 1.2.4. From Theorem D we see the regulators can be explicitly expressed in
terms of coordinate functions of logarithms.

1.3. Outline

After summarizing preliminary material in Section 2, we define tensor products, symmet-
ric and alternating squares of Drinfeld modules from the aspect of 7-motives and explore
their properties in Section 3. In Section 4 we review the theories of Goss L-series, as
well as Fang’s class module formula. We consider the L-function of ¢ ® v, Sym? ¢ and
/\* ¢. Then we introduce the convolution L-series L(pgy X py,5), L(fLy,s) and L(fLy,s),
relate them to L(¢ ® ¥, s), L(Sym? ¢, s), L(/\2 ¢, s) and twisted Carlitz L-series, and
investigate special value identities using Fang’s class module formula. We provide explicit
expressions of regulators Regy g, . Regg, 2, and Reg Ao for rank 2 case in Section 5.
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2. Preliminaries

2.1. Notation

We will use the following notation throughout.

A = F,[0], polynomial ring in variable 6 over IF,.
At = the monic elements of A.

K = F,(0), the fraction field of A.

Koo = F,(61)), the completion of K at co.

Coo = the completion of an algebraic closure Koo of Koo.

|'|oo; deg = oo-adic norm on C,, extended to the sup norm on a finite-dimensional
Coo-vector space; deg = — ordeo = 10g,||oo-

Fr = A/fAfor f € Ay irreducible.

A = [F,[t], for a variable ¢ independent from 6.

T, = Tate algebra in t = {)_a;t" € Coo[t] | |ailoo — 0} = completion of

Coo[t] with respect to Gauss norm.

2.1.1. Rings of operators. For a variable ¢ independent from 6 we let A := [F,[t]. We
let T; denote the standard Tate algebra, T; € Co[t], consisting of power series that
converge on the closed unit disk of Co,, and we define

Tt(Km) =T, N Koo[m] = Fq[t]((e_l)),

where the latter set consists of Laurent series in 6! with coefficients in the polynomial
ring I [1]. We let ||-|| denote the Gauss norm on Ty, such that || Y52 a; ' || = max; {|@; | o)
under which T; is a complete normed C-vector space, and likewise T;(Ko) is a com-
plete normed Ko-vector space. We extend the degree map on Co, to T; by taking deg =
log, ||-[|. We further let Ty denote the Tate algebra, Ty € Coo[t], consisting of power
series that converge on the closed disk of radius |0]s, and ||-||¢ denote the norm on Ty
such that |50 a;t' |lg = max;{g" - |ai]oo}-

2.1.2. Frobenius operators. We take t: Co, — Cq for the g-th power Frobenius auto-
morphism, which we extend to C((¢)) by requiring it to commute with z. For g =
Y cit! € Coo((t)), we define the n-th Frobenius twist,

gWi=1"(g) =Y f't'. Vnel.
Then 7 induces an [, (¢)-linear automorphism of T, and the fixed ring of 7 is T} = [F4[t].

2.1.3. Twisted polynomials. Let R be any commutative IF;-algebra, and let 7: R — R
be an injective [F,-algebra endomorphism. Let R” be the F,-subalgebra of R of elements
fixed by t. For n € Z for which t” is defined on R and a matrix B = (b;;) with entries
in R, we let B™ be defined by twisting each entry. That is, (b; j)(") = (bl.(J'.’)). For ¢ > 1
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we let Mat, (R)[t] = Maty(R[z]) be the ring of twisted polynomials in T with coefficients
in Mat; (R), subject to the relation tB = Bt for B € Mat,(R). In this way, R is a left
Maty (R)[t]-module, where if 8 = By + Bi7 + --- + B,y t™ € Maty(R)[r] and x € R¢,
then

B(x) = Box + BixV 4 ... + B,x™. (2.1.4)

If furthermore t is an automorphism of R, then we set o := 771 and form the twisted
polynomial ring Mat, (R)[c], subject to 0B = BT Vg for B € Mat,(R). Then R is a left
Maty (R)[o]-module, where for y = Co + C10 + --- + C,,0™ € Maty(R)[o] and x € R¢,

y(x) = Cox + Clx(_l) 4+t me(—m).

For B € Maty(R)[z] (or y € Maty(R)[o]), we write 98 (or dy) for the constant term
with respect to t (or o). We have natural inclusions of [F,-algebras,

Maty(R)[r] € Matg(R)[z], Maty(R)[o] € Maty(R)[o],
into twisted power series rings, where the latter holds when 7 is an automorphism.

2.1.5. Ore anti-involution. We assume that : R — R is an automorphism, and recall
the anti-isomorphism *: R[t] — R[o] of F,-algebras originally defined by Ore [43] (see
also [33, §1.7], [42, §2.3], [46]), given by

(Xl:bizi) = ibl-(_i)oi.

i=0 i=0

One verifies that («f)* = B*a* for o, B € R[t]. For B = (B;;) € Maty ¢ (R[7]), we set
B* = (B})" € Matg (Ro]).

which then satisfies

(BC)* = C*B* € Mat,,;»\ (R[O']), B € Matyxy (R[r]) C € Matyypm (R[r]) (2.1.6)

The inverse of *: Matg ¢ (R[t]) — Matyxx (R[0]) is also denoted by “x.”

2.1.7. Orders of finite F [x]-modules. For F[x] a polynomial ring in one variable over
a field F, we say that an F[x]-module is finite if it is finitely generated and torsion. Now
fix a finite F[x]-module M. Then there are monic polynomials fi,..., fz € F[x] so that

M = F[x]/(f1) & - & F[x]/(fo)-

We set [M|F[x] == f1--- f¢ € F[x], which is a generator of the Fitting ideal of M, and
we call [M]Fr[y] the F[x]-order of M.If my: M — M is left-multiplication by x, then

[M]Fx) = Char(my, M, X)|x=x,

where Char(m,, M, X) € F[X] is the characteristic polynomial of m, as an F-linear map.
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For a variable y independent from x, but M still an F[x]-module, we will write
[M]Fpy) = [M]Fxlx=y = Char(mx, M, y).
This will be of particular use for us when M is an A-module (or A-module), where
[M]4 = [M]al;=¢ = Char(m,, M.0) € A, (or [M]a = [M]sl;=¢ = Char(m,, M) € A),
coercing A-orders and A-orders to be elements of our scalar fields.

2.2. Drinfeld modules, Anderson z-modules, and their adjoints

Given afield F O I, and an IF,-algebra map «: A — F, we call I an A-field. The kernel of ¢
is the characteristic of F, and if ¢ is injective then the characteristic is generic. If F € Cy
has generic characteristic, then we always assume that ¢ () = 6. Otherwise, ((t) =: 0 € F.

2.2.1. Drinfeld modules and Anderson z-modules. A Drinfeld module over F is defined
by an I4-algebra homomorphism ¢: A — F[z] such that

b =041+ 417", kr #O0. (2.2.2)
We say that ¢ has rank r. We then make F into an A-module by setting
t-x:=¢;(x)=0x+kx7+-+kx7, xeF.

Similarly an Anderson t-module of dimension £ over F is defined by an [, -algebra homo-
morphism ¥: A — Mat, (F)[z] such that

Ve = 0y, + Ext + -+ Eut®, E; € Maty(F), (2.2.3)

where 8y, — 0 -1 is nilpotent. A Drinfeld module is then a #-module of dimension 1. We
write ¥ (F) for F¢ with the A-module structure given by a - X := 1/, (x) through (2.1.4).
Similarly, we write Lie(y)(F) for F* with F[t]-module structure defined by v, for
a € A. For a € A, the a-torsion submodule of v (F) is denoted

ylal = {x € F* | ya(x) = 0}.

Given t-modules ¢: A — Maty (F)[z], ¥: A — Mat,(F)[r], a morphism n: ¢p — ¥ is
a matrix 7 € Matyxx (F[t]) such that n¢, = ¥,n for all a € A. Moreover, 1 induces an
A-module homomorphism 7: ¢ (F) — ¥ (F), and we have a functor ¢ — ¢ (F) from
the category of r-modules to A-modules. We also have an induced map of F[t]-modules,
dy:Lie(¢)(F) — Lie(¥)(F).

Anderson defined ¢-modules in [2], and following his language we sometimes abbre-
viate “Anderson #-module” by “¢-module.” For more information about Drinfeld modules
and 7-modules see [33,53].
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2.2.4. Exponential and logarithm series. Suppose now that ' € C, has generic char-
acteristic and that ¥ is defined over F. Then there is a twisted power series Exp,, €
Mat, (F)[z], called the exponential series of ¥, such that

o0
Expy, = Y Bit'. By =1l B; € Ma(F).
i=0

and for all a € A, Expy, - d¥, = ¥, - Exp,,. This functional identity for @ = 7 induces
a recursive relation that uniquely determines Exp,,. That the coefficient matrices have
entries in F is due to Anderson [2, Prop. 2.1.4, Lem. 2.1.6]. The exponential series induces
an I, -linear and entire function,

o
Expy: (Cgo — (Cﬁo, Exp, (z) = ZBiz(i), z:=(z1,...,20)",
i=0

called the exponential function of . That Exp,, converges everywhere is equivalent to
lim [B;|1/4 =0 < lim deg(B;)/q’ = —oc.
1—>00 1—>00

We also identify the exponential function with the [F;-linear formal power series Exp,, (z) €
Coo [[Z]](Z. The functional equation for Exp,, induces the identities,

Expy, (0Va2z) = Ya(Expy (2)), VYa €A

The exponential function of ¥ is always surjective for Drinfeld modules, but it may not be
surjective when £ = 2. We say that y is uniformizable if Exp,,: Cf;o — (Cﬁo is surjective.
The kernel of Expv, ccC ﬁo,

Ay = kerExpv,,

is a finitely generated and discrete 91 (A)-submodule of C¥_ called the period lattice of .
Thus if ¥ is uniformizable, then we obtain an exact sequence of A-modules,

) Expy,
0= Ay > C;y — ¥(Cyx) — 0.
As an element of Mat, (F)[z] the series Exp,, is invertible, and we let
Log, = Exp@1 € Maty(F)[z]

be the logarithm series of ¥, satisfying
o0
Log, = > Cit'.  Co=1Ig C; € Maty(F).
i=0

Together with the logarithm function, Log,, (z) = Y ;- Ciz® € Cyo[2]*, we have 3y, -
Log,, = Logy, ¥4 and v, (Log, (z)) = Logy, (¥4(2)), for all a € A. In general Log,, (z)
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converges only on an open polydisc in C f;o. For example, if ¢: A — Cqo[7] is a Drinfeld
module as in (2.2.2), then Log(z) converges on the open disk of radius Ry, where

Ry = |9|;omax{(degl€i—qi)/(qi—1)\1$i$r,KﬁéO} (2.2.5)

(see [20, Rem. 6.11] and [39, Cor. 4.5]).

2.2.6. Adjoints of r-modules. Assume now that F' is a perfect A-field and that {: A —
Mat, (F)[z] is an Anderson t-module over F' defined as in (2.2.3). The adjoint of v is
defined to be the IF,-algebra homomorphism v *: A — Mat, (F)[o] defined by

Vo= (Ya)*, VaeA

Since for a, b € Awe have Y, = Vo ¥p = VpVa, (2.1.6) implies that ¢ * respects multipli-
cation, which is the nontrivial part of checking that ¥ * is an [F,-algebra homomorphism.
From (2.2.3), we have

YE=W)* = @y) + (ET)To 4+ (ES)Tov,

and so for any x€ F*, we have ¥ (x) = (0y,)"x + (Ef_l))TX(_l) 4o+ (ES)TXEW),
In this way, the map ¥* induces an A-module structure on F¢, which we denote *(F).
Similarly we denote Lie(y*)(F) = F* with an F[t]-module structure induced by oy
for a € A. For a € A, the a-torsion submodule of ¥ *(F) is denoted

Y*la] = {xe F* |y} (x) = 0}.
If n: ¢ — V¥ is a morphism of £-modules as above, then n* € Maty ¢ (F)[o] provides
a morphism 7*: ¢* — ¢* such that n*y) = ¢ n* for all a € A (and vice versa). Fur-
thermore, dn*: Lie(y*)(F) — Lie(¢*)(F) is an F[t]-module homomorphism. Adjoints
of Drinfeld modules were investigated extensively by Goss [33, §4.14] and Poonen [46].

2.3. t-motives and dual 7-motives

For this subsection we fix a perfect A-field F and z-module y: A—Maty (F)[r] asin (2.2.3).
Recall that 8 = ((¢) € F.

2.3.1. t-motive of ¥. We let My := Maty,(F[r]), and make My into a left F[t, 7]
module by using the inherent structure as a left F'[t]-module and setting

a-m:=myy, me My, acA
Then My, is called the ¢-motive of . We note that for any m € My,
(t—0)"-metMy,

since dvy; — 61, is nilpotent (and F is perfect). If we need to emphasize the dependence
on the base field F', we write

Mw(F) = M,/, = Mat; ¢ (F[‘C])
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A morphism 7: ¢ — ¥ of t-modules over F of dimensions k and £, defined as in Sec-
tion 2.2, induces a morphism of left F[t, r]-modules ;' My — Mg, given by nf(m) =
mm for m € My, . The functor from 7-modules over F' to t-motives over F is fully faithful,
and so every left F[¢, r]-module homomorphism My — Mg arises in this way.

By construction My, is free of rank £ as a left F[r]-module, and we say £ is the
dimension of My, If My is further free of finite rank over F[t], then My is said to
be abelian and r = rankp[;) My is the rank of My. We will say that ¥ is abelian or
has rank r if My possesses the corresponding properties. The z-motives in Anderson’s
original definition in [2] are abelian, as will be most of the ¢#-motives in this paper, but for
example, see [11], [33, Ch. 5], [42, Chs. 2—4], [35] for f-motives in this wider context.

2.3.2. Dual ¢t-motive of ¥. We let Ny := Mat;¢(F[o]), and similar to the case of -
motives, we define a left F[¢, 0]-module structure on Ny, by setting

a-n:=ny,, nechNy, ach

The module Ny, is the dual t-motive of Y. As in the case of £-motives, for any n € Ny, we
have (t —6)¢-n e o Ny . Also if we need to emphasize the dependence on F, we write

Nv,(F) = (N'v, = Matxy (F[O’])

Again for a morphism 7: ¢ — ¥ of -modules of dimensions k and ¢, we obtain a
morphism of left F[t, o]-modules, n*: Ny — Ny, given by nt(n) == ny* forn € Ng.
Also, every morphism of left F[t, c]-modules Ny — Ny, arises in this way.

The dual 7-motive Ny, is free of rank £ as a left F[o]-module, and £ is the dimension
of Ny. If Ny is free of finite rank over F[t], then we say Ny is A-finite, and we call
r = rankg[;](Ny) the rank of Ny . It has been shown by Maurischat [41] that for a -
module v, the z-motive M., is abelian if and only if the dual z-motive Ny, is A-finite. In
this case the rank of My is the same as the rank of MNy. We will say that ¥ is A-finite or
has rank r if Ny has those properties. Dual #-motives were initially introduced in [3] over
fields of generic characteristic. See [11,35,41], [42, Chs. 2-4], for more information.

We call m = (my,...,m;)" € Matyx1(My (F)) a basis of My (F) if my,...,m,
form an F'[t]-basis of My (F). Likewise n = (ny, ... ,n,)7 € Mat,«; (Ny(F)) is a basis
of Ny (F)ifny,...,n, form an F[t]-basis of Ny (F). We then define I', & € Mat, (F[t])
so that

tm=Im, on= ®n.

It follows that detI" = ¢ (¢ — 9)3, det® =c'(t — 9)6, where ¢, ¢’ € F* (e.g., see [42, §3.2]).

Then T represents multiplication by t on My, and ® represents multiplication by o on Ny,.

Example 2.3.3. Carlitz module. The Carlitz module C: A — F[t] over F is defined by
Ct = 5 —+ T,

and it has dimension 1 and rank 1. Then m = {1} is an F[t]-basis for Mc = F|[z], and
n = {1} is an F[t]-basis for Nc = F[o]. One finds that T - 1 = (¢t — 6) - 1 in M and
o-1=(t—-0)-1linMN,sol' =D =1¢—90.
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Example 2.3.4 (Drinfeld modules). Let ¢: A — F|[z] be a Drinfeld module over F of
rank r defined as in (2.2.2). Then m = (1, 7,..., 7"~ !)7 is a basis for My and n =

1,0,... ,U’_I)T is a basis for Ny, . Furthermore, tm = I'm and on = ®n, where
0 1 0
r= : : : , 2.3.5)
0 0 1
(t—0)/kr —kx1/kr -+ —Kr_1/Kr

and ® occurs similarly. See [15, §3.3-3.4], [42, Exs. 3.5.14, 4.6.7], [44, §4.2] for details.

2.4. Tate modules and characteristic polynomials for Drinfeld modules

We fix a Drinfeld module ¢p: A — A[z] of rank r in generic characteristic, given by
¢or =0+ KT+ +r,7, ki €A, kr #O.

Letting f € A4 be irreducible of degree d, the reduction of ¢ modulo f is a Drinfeld
module ¢: A — Fr[r] of rank ro < r, where Fr = A/fA. Then ¢ has good reduction
modulo f if rg = r or equivalently if f } k.

For A € A} irreducible, we form the A-adic Tate modules,

Tp() = limp[A™].  T($) = lim$[A"].

As an A;-module, Ty(¢) = A}, and if A(6) # f, then likewise T (p) = Ai". Fixing
henceforth that A(0) # f, we set Pr(X) := Char(z¢, T3 (¢), X)|;—¢ to be the charac-
teristic polynomial of the ¢¥-th power Frobenius acting on T} (¢) but, for convenience,
with coefficients forced into A (rather than A). Thus we have

Pr(X) = X"+ crym1 X071 + o + o € A[X]. (24.1)

Takahashi [52, Prop. 3] showed that the coefficients are in A and are independent of the
choice of A (see also Gekeler [24, Cor. 3.4]). We note that if ¢ has good reduction mod-
ulo A and if ¢y € Gal(K*?/K) is a Frobenius element, then (e.g., see [31, §3], [33, §8.6])

Char (t%, T;.(¢), X) = Char (ay, Ta(¢), X) € A[X].

2.4.2. Properties of Py (X). The following results are due to Gekeler [24, Thm. 5.1] and
Takahashi [52, Lem. 2, Prop. 3].

* Wehave ¢y = cflf for some ¢y € .

* Theideal (Pr(1)) € A is an Euler-Poincaré characteristic for a(IFf).

* Theroots y1,...,¥r, of Pr(x)in K satisfy degy y; = d/ro.

Extending these a little further, for 1 < j < ro, we have degg c,,—; < jd/ro. Additionally,

[¢Fr)], = crPr(D)
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by [14, Cor. 3.2]. Here we use the convention from Section 2.1.7 that

[6E], = [6F],]—o-

Following the exposition in [14, §3], we let PfV(X) := Char(z?, Ty.(¢)", X)|;—¢ be the
characteristic polynomial in K[X] of ¢ acting on the dual space of Tj (¢). We let Q 7 (X)
= X"Ps(1/X) and Q}’ (X) = X" P])’(I/X) be the reciprocal polynomials of Py (X)
and Pj)/ (X), and consider

OY(fX)=14crerX +crea fX2 4o Hcpepyy fTOT2XO7 fop fromlxmo,
f S f SfEro f

To denote the dependence on ¢, we write Py 7 (X), Qg, r(X), etc.
We use Q}ﬁ (fX)and Qr(X) to define the multiplicative functions g andvg: Ay — A,
which satisfy the following relations on the powers of a given f:

= 1 - 1
MY = —————, mX™ = . 2.4.3
mzzluw X" = 5e mzzlw,(f X" = 5 (243)

2.4.4. Everywhere good reduction. Hsia and Yu [36] have determined precise formulas
for ¢y in terms of the (g — 1)-st power residue symbol. Of particular interest presently is
the case that ¢ has everywhere good reduction, i.e., when k, € IF;. In this case, Hsia and
Yu [36, Thm. 3.2, Egs. (2) and (8)] showed that ¢, = (—1)" 4+ 4 This prompts the
definition of a completely multiplicative function y4: A4 — FJ',

2o(@) = (=) li,) e, (2.4.5)

for which we see that ¢y = (—1)"x(f). Letting Y4: A+ — FJ be the multiplicative
inverse of x4, we see that

PrX)=X"+caX '+ +aX+ D xe(f)

r D xe(er e (=D"xp(f)er-
++X 1+"'+%X (2.4.6)
(=D"xs(f)

+ I ,

PY(X)=X

and likewise
Qr(X) =l+cra X+ +aX ™+ (=) 7p(f) - fX,
OF(fX) =1+ D xp(NerX + -+ (=D g (Ner f/2X77 247)
+ =D e (N STTIXT

Moreover,
1o (f) = (D" g (Ner. ve(f) = —crm1. (2.4.8)
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We record the induced recursive relations (cf. [14, Lem. 3.5]) on py and vy, where taking
m + r = 1 and using the convention that ug(b) = vg(b) = 0ifb € K \ Ay,

r—1
1o (S = pg (N (S = (=) 1o () D ei [T g (f™F77)

j=2
— (=D 26 (ST g (f™), (2.4.9)
r—1
v (f™ ) = v (g (S = e jug (f™H)
j=2
— (=D 1 () fre(f1). (2.4.10)

2.5. Schur polynomials

We review properties of symmetric polynomials and especially Schur polynomials. For
more details on symmetric polynomials see [1, Ch. 8], [37, §2.5], [48, Ch. 7]. Letting x =
{*1,..., xp} be independent variables, the elementary symmetric polynomials {e; }!_, =
{en,i}i—y S Z[x] are defined by

n
Y e®T = (1+x1T)(A + x2T) - (1 + x,T). (2.5.1)
i=0
We adopt the convention that e; = 0if i < 0 or i > n. The complete homogeneous sym-
metric polynomials {h;}i>o = {hn,i}iz0 € Z[X1,...,Xx,] are defined by

1

ghi(X)Tl T 0—xT) (0 —x2T) (I —xuT)’ (2.5.2)

and similarly if i < O then we take #; = 0. Then h; consists of the sum of all monomials

in xq,...,x, of degree i. The Vandermonde determinant is
vy = ] i—x).
1<i<j<n

When nonzero we have dege; =i and degh; = i,and degV = ('2’)

Definition 2.5.3. For polynomials P(T)= (T —x1)---(T—xy) and Q(T)=(T—y1)---
(T — yg), we set
(P ONT) = [] (T —xiy)).

1<i<k
1<j<t

‘We further set

Sym* P)(T) = [] (T —xix)),

1<i<js<k

(/Z\P)(T)z [T @ —xixp).

1<i<j<k
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Letting By, be the coefficient of 7" in (P ® Q)(T), we find that B,, is symmetric in both
X1,...,X¢ and yq, ..., Yy, its total degree in x1, ..., xg is k€ — m, and its total degree in
Y1,...,Ygis also k€ —m. As such,

B € Zlek 1 (X). ... e jet—m(X):eg,1(Y). - .- e iet—m(¥)].

The coefficients of (P ® Q)(T) and its inverse (P ® Q)(T)~! are expressible in terms
of Schur polynomials (see Theorem 2.5.12 and Corollary 2.5.13 for (P ® Q)(T)™1).

2.5.4. Schur polynomials. Let A denote an integer partition of length #, i.e.,
A=A A € ZE,

satisfying Ay = --- = A, = 0. We set

xikr‘rn—l L x’)ltn-i-n—l
-1 . .
Sp(X) = $3,0, (X) := V(x)7 - det [ R W (2.5.5)
1 n
x%" e xr/}”

We have the following properties (see [1, §8.3] and [48, §7.15]).
*  s5;(x) is a symmetric polynomial in Z[xq, ..., X,].
o degsp(x) = A1+ -+ Ap.

e« ForO0<i<nwehaves]...10..-0(x) = ¢;(x).
—— N —

* Fori =0wehaves;(...0(x) = ki(x).
——
n—1
The polynomial s, is called the Schur polynomial for A. Following the exposition of Bump
and Goldfeld [12, 28], when n = 2 (which we now assume), we consider the subset of
Schur polynomials where A, = 0 as follows. For integers k1, ...,k,—1 = 0, form

A=+ +kpr,ka+--+kp1,....kn1,0,0).

We set Sk, ... k,_, (X) to be the Schur polynomial s,, i.e.,
xlf‘+"'+k"*1+"_1 oo xkrtetkntn
xllc2+~~~+k,,_1+n—2 o x’l§2+~~-+k,,_1+n—2

Skyodin (X) = V(x)"! - det : : . (25.6)
xllfnfl‘i’l e x’]fn—l‘f’l
1 1
The degree of Sk, ...k, ,(X)is k1 +2ky + -+ + (n — Dk,—1.
Lemma 2.5.7. Let A = (A1,..., Ay) be an integer partition. Then



W.-C. Huang 16

As a result, we see from the properties of s, above that

S0.....0.1,0,....00 =ei(x), 1<i<n-1, (2.5.8)
i-th place
Si0.... 0® =hi(x), i=0. (2.5.9)
b b b
n—2
Lemma 2.5.10. Forky,...,ky,—1 = 0, we have
(xl .. .xn)kl-'r...-‘rknfl . Sk1 ,,,,, K1 (x1_17 o x;l) — Skn,l ..... ko (X)

2.5.11. Cauchy’s identities.

Theorem 2.5.12 (Cauchy’s identity, see [1, Cor. 8.16], [12, §2.2], [48, Thm. 7.12.1]). For
variables X = {x1,..., Xy} andy = {y1,...,yn}, let X =x1---xpand Y = y1--- yp.
Then as power series in Z[x, y][T],

[] a-xiym)?

1<i,j<n

o0 o]
=(1-XxYyrH! Z Z S (%) Sy (y) TR ka4 (1=Dkn-r
k1=0 kn—1=0

k=(k1,....kn—1)
If instead we have x = {x1,...,x,}andy = {y1, ..., y¢} with n < £, then Cauchy’s
identity reduces to the following result by setting x,+; = --- = x; = 0 and simplifying.

Corollary 2.5.13 (Bump [12, §2.2]). Forvariablesx ={x1,...,x,}andy ={y1,...,y¢}
withn < £, let X = x1 -+ x,. Then as power series in Z[x, y|[T],

o0 [ee]
1_[ (1—x; yj T)_l = Z cee Z Sk (X) Sk (y)Xk,, Tk1+2k2+'“+nk,, '
1si<n k1=0 kn=0
1<j<t =S

k'=(ky,....kn,0,...,0)
2.5.14. Littlewood’s identities.

Theorem 2.5.15 (Littlewood [40, (11.9;2), (11.9;4)]). For variables x = {x1, ..., Xy}, let
X = x1 -+ xn. Then the following identities hold as power series in Z[x][T].

(a) Forn =2, we have

1_[ (1 —x,-ij)_l

1<i<j<n
o0 [e'e}
=(1-Xx2T"7! Z Z Sy (x) Thr+2ka (1= Dkny
k1=0 kn—1=0

2|k; forall i
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(b) Forn = 2, we have

l_[ (1- x,-ij)_l
1<i<j<n
= (=XT"P) 37 STt
k1 ..... kn_1€Z+
k=(k1,....kn—1)
ki=0if2+i
where &€ = #

2.6. The function p4

We review the function p, and its properties explored in [37, §6.1] by Papanikolas and
the author. They in fact defined the function p 4 and its *“dual” version v. For the purpose
of the present paper, we only list the properties for the function .

Let f € A4 beirreducible, and let Py r(X) and P(;’, f (X) be defined as in (2.4.6). We

let o, ...,a, € K be the roots ode;’f(X).Forkl,...,qu > 0, we define
Ro(f5 R = Sk (@) - fRT TR (2.6.1)

where Sk, . . k., is the Schur polynomial of (2.5.6). We note that by (2.4.7) and (2.5.8),

05 /(fX)=1—ps(fil.... DX +ps(l £l 1) fX>
o (D) T g (1L ) X
+ (=D xe (/)X (2.6.2)

We then extend g 4 uniquely to functions on (4+)" ~1, by requiring thatif ay,...,a,_,
bi,...,by,—1 € Ay satisfy

gcd(a1 ---a,_l,bl "'br—l) = 1,

then
Relarby,....ar—1br—1) = pylar,...,ar—1)py(b1,...,br—1).
Proposition 2.6.3 ([37, Prop. 6.1.5]). Fora, ay,...,ar—1 € A4, the following hold.
(a) ;L¢(a1,...,ar_1) e A.
b) wyla ... 1) = pgla)
(c) We have

degy py(an, ..., ar—1)

1
< ;((r —1)degga; + (r —2)deggas + --- + degg arfl).
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We also list some recursive relations of the function u4 induced by relations on Schur
polynomials ([37, (6.1.7), (6.1.9), (6.1.11)], cf. [28, p. 278]). Fix f € A irreducible, and
fork,kq,...,k,—1 =0,

k k ky—
l'l'q}(f ,1,...,1)[L¢(f1,...,f l)
= Z M¢(fk1+m°_m' 7 fk2+m1—Mz’ L fkr—1+mr—2_mr—])
1=k r—1 £k—
iy S <k X (Y fRm.

ForO<k<r-—1,

Ro(Looo LAl Dy (FF L fRr)

k-th place
= Z M¢(fk1+m0_ml , fk2+m1—m2’ o fkr—l+mr—2_mr—l)
Mo+ 1=k e
(mOw-O,mr—l)erIkll ,,,,, kr_1 X ()T

In particular for k& > 1 (cf. [28, p. 278]),

ro(FE L DRy (1)

= (UL D (L AL D
ro(FE L DR £ 1L ])

= s (S5 LD (L AL D,
Re(fE 1L Dpg(L L £iL,.., 1)

= (L AL D+ pg (UL AL S,
ro(fE L Dpg(L. o 1 f)

= (S L)+ g (L) 2 () S,

2.7. Matrix operations

Fixing a subring R C L, with 1, we say M € Mat,(R) represents an R-module homo-

morphism f: R" — R” with respect to a basis v = (v1,...,v,)" € Mat,»1(R") if
S (1)
fvi= = Mv.
S(vr)

Remark 2.7.1. This is slightly different from the usual sense in linear algebra. For exam-
ple, if we let My, M, € Mat, (R) represent two R-module homomorphisms f, g: R” — R",
respectively, then M, My represents f o g. In fact, My is the transpose of the matrix rep-
resentation of f in the usual sense.
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Fori, j =1,...,r, we define, assuming characteristic of R is not 2,
o = v ®vj, Bij = %(Ui ®uvj +v; Qi) Vij = %(Ui ® vj —v; ® Vi),
and consider the following basis of R-modules in lexicographical order
V1 = {aij}i; S (R
V2 = {Bij}i.; € Sym*(R"), (2.7.2)

2
Vs = {yijhi; S \R).
Definition 2.7.3. Let M € Mat,(R), and let ¥);, %), and %))3 as in (2.7.2). Then M rep-
resents some R-module homomorphism f: R” — R”. We define the following matrix
operations

2
M®? € Mat,»(R), Sym?(M) € Mat,c1n (R), A\M) e Mat¢_n (R)

to be matrices representing f®2, Sym?( f) and /\2( f) with respect to )1, %), and )3,
respectively.

Remark 2.7.4. In Definition 2.7.3, by a direct checking, the matrix M ®? is the Kronecker
tensor square of M.

Example 2.7.5. Suppose r =2 and M = (M;;); j=1,2 € Mat(R). Then

My My MMy MiaMyy Mix My
(a) M®2 — (Manl M1 Mz MixMs, M12M22>

M1 My M1 Mz Maax My MaaxMis |7

Mo Mz May Moz Moz My Moz Moo

) M121 2M1 My, M122
(b) Sym“(M) = | MiiMa1 MiiMay+MizMz MixMas |.
M3 2M>1 M2 M2,

© NM) = det(M).
Lemma 2.7.6. For M € Mat, (R), we let T (M) denote M ®2, Sym?(M) or \*(M). Then
for My, M, € Mat,(R), we have the following properties.
@) T (M M) =T (M\)T (M>). Furthermore, T(M~1) =T (M)~ ' if M eGL,(R).
b)) TMMD)y =T M) forn = 0.

Proof. The first part follows from Remark 2.7.1, and the second part follows from the fact
that entries of 7 (M) are polynomials in entries of M over [F,. |

3. Tensor products of Drinfeld modules

Tensor powers of Drinfeld modules were initiated by Anderson [2] from the aspect of ¢-
motives. Later Hamahata [34] further studied symmetric powers and alternating powers of
Drinfeld modules, and provided explicit models as #-modules. In this section, we recover
Hamahata’s models from the aspect of #-motives.
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We fix two Drinfeld modules ¢, ¥: A — A[r] defined over A with everywhere good
reduction as in (1.2.1), and their #-motives My = Coo[7], My = Cqo[r]. For convenience,
Ko =10 = 0.

3.1. Tensor products of Drinfeld modules defined over A

The tensor product of Mg and My, is
My @ My = My @[] My

equipped with a left C [, 7]-module structure by using the Coo[t]-module structure from
the tensor product over C[#] and setting

T-(a1 @az) =ta; ®taz, ay € Mg, az € My.

In the sense of [2], My ® My is a pure t-motive, and its weight, denoted by w(Mg @ My ),

is defined to be
rankCoo[r] M¢ ® Mlp

rankc, ;] Mg @ My
Combining this with [2, Prop. 1.11.1], the dimension of Mg ® My, is

w(My @ My) =

rankc (7] Mg @ My = (w(¢>) + w(w)) -ranke, 1] Mg @ My

1 1
=(—+—)-r-€:r+€.
ro £

More generally, the n-th tensor power of My is

MZ" = My ®Colr] - OCult] Mg

n times

equipped with a left C [z, ]-module by using the C o [t]-module structure from the tensor
power over C[t] and setting

T (1 ® - Qay) =101 Q- QTadp, aj € M.

M?" is a pure ¢-motive of weight

w(M) == G.1.1)

.
Lemma 3.1.2 (Khaochim [38, Lem. 4.4]). The set
ytt=el,.. 19 r®l,... " 1)

is a basis of Mg ® My as a Cx[t]-module.

With the Co[7]-basis in Lemma 3.1.2, we obtain a model E of the tensor product of
¢ and ¥ which is a #-module of dimension r + £ defined over A by solving the following
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equation for E;:
tou(sy, ..., Srqe) =UE(S1, ... 85r40)" (3.1.3)

for all u € Mat; x4 (Coo[7]).

Definition 3.1.4. Suppose r < £. The tensor product of ¢ and V¥ is the t-module ¢ ®
¥:A — Mat,¢(A[r]) of dimension r + £ defined over A satisfying (3.1.3). Explicitly,

from [38, Def. 4.5]
o X1 | X
(P®Y) = (T3‘T4)7

where X1 € Matyx((A[t]), X2 € Matyx,(A[]), X3 € Mat,«¢(A[t]), X4 € Matyx,(A[t])
are defined by

0

K1T 0

1

X] K1T 0 s

K1T 0

Kr—1T'™
KT

KrT kit 0
K1 ot Kr—1 Ky
Ko T e KT

_ -1
Xo = | kpt" )

771‘[ o e e nz_l‘[ ne‘c 9

7’]2‘[2 e “ee . e r]e‘cz 7]1‘[ 9

X3 . . , X4 —

net” M1t e om0

Remark 3.1.5. As pointed out in [38, Rem. 4.8], our model for ¢ ® ¥ is in fact Hama-
hata’s ¢ ® ¢, but they are isomorphic as 7-modules by [34, Prop. 2.5].

3.2. Symmetric and alternating powers of Drinfeld modules defined over A

Let &, be the n-th symmetric group and sgn: &,, — {%1} be the sign function. The n-th
symmetric power of Mg is the C[t, 7]-submodule

Sym” My = Spanc_ 4 { Z o) @+ ® ag(n)} C M?". 3.2.1)

0EG,
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Itis also a pure t-motive of weight w(Sym” Mg) = w(a%f") by [2, Prop. 1.10.2]. Together
with (3.1.1), the dimension of Sym” My is

n
rankc [} Sym” My = — - rankc ;] Sym” My

.(r +n—1) _ (r ~|—n—1). (32.2)
n n—1

The n-th alternating power of My is the Co[t, T]-submodule

NS

n
N\ Mo = Spanc_ g { 3 sen@)@o) @+ @ o)} € ME".

0e6,

Similar to symmetric powers, it is a pure z-motive of weight w(/\" My) = w(er") and
dimension

n n n r r—1
rankc [7] /\M¢ =n-w(¢p) - rankc [ /\M¢ = ( ) = ( _ 1). (3.2.3)

n n
Lemma 3.2.4. Suppose p # 2.
(@) The set
X, = {1®1,%(1®‘L’+‘L’®1),...,%(1®‘Kr+‘l.'r®1)}

is a Coo[1]-basis for Sym> M.
(b) The set

1 1
B={508c-te .. s0er " @)

is a Coo[t]-basis for N M.

Proof. By (3.2.2) and (3.2.3), it suffices to show that the two sets span the corresponding
t-motives as Co[7]-modules.

For the first part, we observe that the elements in Sym2 Mg are of the form, a;, b; €
My = Coolt], fi € Colt],

Zf,--(ai®bi+bi®ai)
:Z((ﬁ-ai)@)bi-i-bi@(ﬁ'ai))

= Z Z Zhi J1 jzfmin(jl’h)(l ® L=l + Llii=r2l ® 1),
I J1 J2

where 4; j, j, € Co. So it suffices to show, for m = 0,

Sm =1 & ‘Cm —+ Tm & 1e Spancoo[r] %1. (325)
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We proceed by induction on m. It is clear that (3.2.5) holds form =0, ...,r. Form > r,
we consider

;
Ly = 1R ")+ (" ) @1 =Y k" emri. (3.2.6)
i=0
On the other hand,
t- Emfr = ¢t & AT A &® ¢t
Z;:() Ki TiSm—r—i ifr<m-—r,
B T KiT Emr—i + lei_lm Km—riT"TE ifr >m—r.

(3.2.7)

Combining (3.2.6) and (3.2.7), and using that «, # 0, in both cases &, is a Coo[7]-linear
combination of {§; ;":_01, and the result follows by the induction hypothesis.
For the second part, by a similar observation, it suffices to show, form = 1,

{m =1® 1" —1t" ® 1 € Spanc__ ] X2. (3.2.8)

We again proceed by induction on m. It is clear that (3.2.8) holds form = 1,...,r — 1.
Note that £ = 0, so we cannot use the same process for the case m = r. In fact, it follows
by expressing - (1 ® 1) in two ways. Note that

1-(1®)=¢: 1 =1Q ¢,

which gives
r—1
-1 Z
é‘r = =K, Ki ;i‘
i=1

For m > r, we consider

Llner = 1R (") = (") @1 =D k" ey (3.2.9)
i=0

On the other hand,
tlmr =0 @T" " =" @ ¢
{ Z;:o Kﬂ’fm—r—i ifr <m-—r,

o o o (3.2.10)
Yoo KiT Cmer—i — iy Km—riT" 78 ifr >m—r.

Similarly, combining (3.2.9) and (3.2.10), the result follows by the induction hypothe-
sis. ]

In the same fashion as for tensor products, we define symmetric and alternating squares
of ¢ as follows.
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Definition 3.2.11. We assume p # 2.

(a) The symmetric square of ¢ is the t-module Sym? ¢: A — Mat,  ; (A[r]) of dimen-
sion r + 1 defined over A given by

0 0 K1 < Kr—1 Ky

K1T 0 0 kKot e KpT
(Sym2¢)z= I(2‘L’2 K1T 0 + :

: ' ' 0 k7!

Krfr cen K1T 0 O

(b) The alternating square of ¢ is the t-module /\2 ¢: A — Mat,_; (A[7]) of dimen-
sion r — 1 defined over A given by

KoT K3T v Kr—1T KT

K372 Kat? o KkpT?

Kr_[r—l
In other word, the T-expansions of (Sym? ¢); and ( /\2 ¢); are
(Sym®$); = Bo + Bit + -+ + B, 7',

2
(/\¢), =01+ Cit+-+ Crgt" ™,

010 010 .
where B; = ( B0 ) € Mat, +1(A) and C; = ( c7To ) € Mat,_;(A) with
Ki Kig1 s Kr —Kig1 ot K1 —Kr
Bl — Kj e Kp—q ’ Ci’ _ Ki ’
Ki Ki

of sizes (r —i + 1) x (r —i 4+ 1) and (r —i) x (r — i), respectively.

Proposition 3.2.12. The tensor structures $®2, Sym?(¢) and /\2 (¢) are uniformizable.
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Proof. By [2, Thm. 4], it suffices to show that M g is rigid analytically trivial, in the sense
of [37, §2.4.6], for E = ¢®2, Sym?(¢) and /\2(¢). We let 7 (M) denote the correspond-
ing matrix operation. Example 2.3.4 provides that (1,7, ..., 7"~!)" is a basis for M with
I' in (2.3.5) representing multiplication by 7 on M. Then by choosing a basis for Mg in
the same way as (2.7.2), we observe that 7 (I") represents multiplication by T on Mg.

Furthermore, by [44, §4.2] (see also [37, Ex. 2.4.12]), the t-motive My is rigid
analytically trivial with rigid analytic trivialization denoted by T € GL,(T;). Then by
Lemma 2.7.6,

TV =7 (D) =7 (@Y =T ()T (T,
which implies 7(YT")" is a rigid analytic trivialization for Mg. [
Remark 3.2.13. By a direct computation, the T-expansion of (Sym? ¢), is of the form
E() + El‘( + -4 Ezr‘l,'zr,

with gi =0forr +1<i <2r,and where Er is a lower triangular matrix with Krz on the
diagonal. Similarly, the 7-expansion of ( /\2 ¢);2 is of the form

Co+ Cit+ -+ Copt? 2,

with éi =0forr+1<i <2r—2, and where 5, is a lower triangular matrix with /crz
on the diagonal. Therefore, the top coefficients of (Sym? ¢),2 and ( /\2 ¢),2 are invertible
(kr # 0). A similar computation can also be done for (¢®2),2, which gives the same
conclusion as symmetric and alternating squares. So ¢®2, Sym” ¢ and /\2 ¢ are almost
strictly pure in the sense of [42], which implies pure by [32, Rem. 2.2.3], [33, Rem. 5.5.5],
[42, Rem. 4.5.3]. This explicates the purity of their z-motives.

4. Convolution L-series

In a series of articles [29-31], [33, Ch. 8f] Goss defined and investigated function field
valued L-series attached to Drinfeld modules and z-modules defined over finite extensions
of K. These L-functions possess a rich structure of special values, initiated by Carlitz [13,
Thm. 9.3] for the eponymous Carlitz zeta function and continued by Goss [31], [33, Ch. 8].
Anderson and Thakur [4] further revealed the connection between Carlitz zeta values and
coordinates of logarithms on tensor powers of the Carlitz module.

Taelman [49-51] discovered a breakthrough on special L-values for Drinfeld modules
that related them to the product of an analytic regulator and the A-order of a class module.
These results have been extended in several directions, including to z-modules defined
over K and more refined special value identities [5, 6,8, 10, 14,21,22,26,27].

4.1. Goss L-series

Let ¢: A — A[r] be a Drinfeld module over A with everywhere good reduction as in (1.2.1).
Goss [31, §3], [33, §8.6] associated the Dirichlet series

Lv.)= ] o™ Le.o= ] o™

feAy, irred. feAy, irred.
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where as in Section 2.4, Qs (X) € A[X] is the reciprocal polynomial of the characteristic
polynomial Pr(X) of Frobenius acting on the Tate module T} (¢) and Q/Y (X) € K[X]
is the reciprocal polynomial of va (X) arising from Ty (¢)". In the future we will write
simply “T | ¢ to indicate that a product is over all irreducible feAy.

Remark 4.1.1. [37, Cor. 3.7.3] makes the calculation of Pr(X) and PfV (X) reasonable
(and hence Q7 (X) and Q}’ (X) also). See [37, Rem. 5.1.2] for the details.

The bounds on the coefficients of Py (X) from Section 2.4.2 imply that L(¢, s) con-
verges in Ko for s € Z and that L(¢V,s) converges for s € Zxq (e.g., see [14, §3]).
Goss extended the definition of these L-series to s in a non-archimedean analytic space,
but we will not pursue these extensions here. We will henceforth assume s € Z.

By (2.4.3), we find that

L@ = T L
acA4

(see [14, Egs. (12)—(14)]). In particular, for the Carlitz module PCVf X)=X-1/f,s0

LEs) = Y iy =+ D)

acAy

is a shift of the Carlitz zeta function.
Taelman [51, Thm. 1] proved a special value identity for L(¢", 0) as follows. First,
_ S [Frla
0y = = = — : (4.12)
4 DX - Pr(D)  [p(Fp)],
where the first equality follows from (2.4.7) and the second from Gekeler [24, Thm. 5.1]
(and also from [37, Cor. 3.7.8] combined with the definition of Pr(X)). We then have
[Frla

L(¢V.,0) = [ | =25~ = Reg, - H(¢), (4.13)
1;[[¢0Ff>]A ’

where the first equality follows from (4.1.2) and the second is Taelman’s identity. The
formula on the right contains the regulator Regy € Koo and the order of the class module
H(¢) € A (see [51] for details). We will use Fang’s generalization of Taelman’s formula
to -modules. See Theorem 4.2.2.

4.2. Fang’s class module formula

In [21], Fang proved an extension of Taelman’s class module formula to abelian Ander-
son ¢-modules defined over the integral closure of A in a finite extension of K. Later
Angles, Ngo Dac and Tavares Ribeiro [6] extended the class module formula for admissi-
ble Anderson modules for more general ring, which comes from global function field over
a finite field. For the purpose of the present paper, it suffices to focus on Fang’s identity,
thus we will mainly provide a summary of it.



Tensor products of Drinfeld modules and convolutions of Goss L-series 27

Let E: A — Maty(A[r]) be an abelian Anderson ¢-module defined over A. The expo-
nential series Expg € K[r] of E induces an [F;-linear function

Expg k. :Lie(E)(Kx) = E(Kx) <= Expg g, : K'Y — K&
Now Lie(E)(Ks) has a canonical K -vector space structure, but Fang [21, p. 303]

pointed out that it has another structure of a vector space over F,((z~!)). Namely we
extend 0: A — Maty (K ) to an F,-algebra homomorphism,

Fo™) = Mate(Koo) : Y et > 3 ¢ - 0B,
J=Jo JZJo
Notably, the series on the right converges by [21, Lem. 1.7]. Furthermore, as Fang sub-
sequently continued, Lie(E)(K) obtains an F, (1 ~1))-vector space structure via . For
any g € I, ((t*qz)), we have dg = g - I, and so Lie(E)(Kwo) has dimension £g*¢ as over
F, ((t_ql)), which implies it has dimension £ over Fg((t™1)). Since Koo = Fg((671)) =
F,((t~1)), we will abuse notation and use the map 9 to define new Koo-vector space and
A-module structures on Lie(E)(K) that are possibly different from scalar multiplica-
tion. With respect to this K-structure, Fang showed [21, Thm. 1.10] that

Lie(E)(A) C Lie(E)(Ko)
and
Expz k.. (E(A)) C Lie(E)(Koo)
are A-lattices in the sense of [21, Def. 1.9]. In particular, they have rank £ as an A-modules
via 0.
Choose A-bases {vy,...,v¢}and {A1,...,Ap} of Lie(E)(A) and EXpE}KOO (AY) via d
respectively, and let V' € GLy(K ) be chosen so that its columns are the coordinates of

A1, ..., Ap with respect to vy, ..., vy (via d). Following Taelman [50, 51], Fang defined
the regulator of E as

Regp =y -det(V) € Koo, y €F, 4.2.1)

where y is chosen so that Regz has sign 1 (leading coefficient as an element of F, ((6~1))
is 1). This value is independent of the choice of A-bases.
Also following Taelman, Fang [21, Thm. 1.10] defined the class module of E as
E(Kso)
Expg k., (Lie(E)(Keo)) + E(A)’
and he proved that H(E) is a finitely generated and torsion A-module. Fang’s class module
formula is the following.

H(E) =

Theorem 4.2.2 (Fang [21, Thm. 1.10]). Let E: A — Maty(A[z]) be an abelian Anderson

t-module. Then _
1_[ [Lie_(E)(]Ff)]A
f [E(Ff)]A

where the left-hand side converges in K .

= Regg - [H(E)]A’



W.-C. Huang 28

4.3. L-series of Tensor product of Drinfeld modules over A

Let ¢, : A — A[r] be Drinfeld modules defined over A of ranks r and £ respectively as
in (1.2.1). Recall the t-module ¢ ® ¥: A — Mat, 1 ¢(A[7]) defined over A4 as in Defini-
tion 3.1.4.

4.3.1. Characteristic polynomials of Frobenius and L-series of ¢ ® ¥. Let f € A4
be irreducible of degree d, and let A € A be irreducible so that A(0) # f. Let

Pgp.2: Gal(K*?/K) — Aut (Tx(¢)) = GL,(Ay)

be the Galois representation associated T} (¢), and similarly define py, 1: Gal(K*®/K) —
Aut(Ty (y)) for ¥. The A-adic Tate module

Ty(¢ ® ) = lim($ ® ¥)[1"] = A}
induces another Galois representation
Poey.a: Gal(K*P/K) — Aut (T5.(¢ ® ¥)) = GL¢(Ay).

As outlined in Section 2.4, if ay € Gal(K*P/K) is a Frobenius element for f, then
because ¢ and ¥ have good reduction at f,

Char (ar, Ta(¢). X )|1=9 = Py, s (X). Char (ar. Ty (¥). X)|i=6 = Py, s(X).
both of which lie in A[X]. We define
Pyoy, s (X) := Char (ar, Th(¢p @ V). X)|;=.
P;f@w’f(X) := Char (af. T, (¢ ® V), X)|;=¢.
Recall the notation (P ® Q)(X) from Definition 2.5.3. By [34, Thm. 3.1], we then have

Pooy,r(X) = (P, r ® Py, r)(X) € A[X],

(43.2)
Pioy (X) = (Py  ® PJ ()(X) € K[X].

We further set Qggy, 7 (X) and Q¥® v f(X ) to be their reciprocal polynomials. We now
consider the L-function

L(¢®v).5) =[] Qe (" s=0. (4.3.3)
s

4.3.4. Special L-values of tensor product. Fixing f € A4 irreducible, we let
¢ ® ¥:A— Mat, ¢ (Fr[t])
denote the reduction modulo f. Recall the completely multiplicative functions
Xos Xy Ay > B

as in (2.4.5). We have the following proposition for determining [¢ ® ¥ (IFf)]4 in term of
the value Pygy, £ (1).
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Proposition 4.3.5. Let f € Ay be irreducible. For ¢ @ y: A — Mat,((Fr[z]) defined
above,

TR r P 5 (1) r
[FR@VEN], = 16 xu(f) - Pogy,r(1) = % fre

Proof. Let A € Ay be irreducible so that A(6) # f. Let K}‘}r be the maximal unramified
and separable extension of Ky, and let K]'lr D) OJT oM J‘,“ be its subring of f-integral
elements and its maximal ideal. Because ¢ and ¥ have everywhere good reduction, we
see from [52, Thm. 1] (see also [33, Thm. 4.10.5]) that

dA", YA € OF, VYm=1.
Moreover, the natural reduction maps
P(OFA™ = $[A"] = A", Y (OMIA™] = y[A"] = Y[A"]., Vm =1,

are A-module isomorphisms (e.g., see [52, §2]), which gives isomorphisms on Tate mod-
ules commuting with the Galois action

Ti(p) = To(d), Ta(¥) = Ta(¥). (4.3.6)

Together with [34, Thm. 3.1], the following diagram of Aj-modules commutes:

T (pQY) ——————— Tu(¢p @ V)

2 Ti(p ® V)
lz

T3(9) @, Th(¥) ——— Ta(9) ®n, Ta (V).

Furthermore, the maps in the diagram above commute with the Galois action, which im-
plies
Pysy, r(X) = Char (t7, Ta (¢ ® ¥), X).

Now as Pr(X) = (Pg,r @ Py, r)(X) by (4.3.2), it follows from (2.4.6) and Defini-
tion 2.5.3 that the constant term of Py (X) is

Pr(0) = (/) ay (f) fTHE 4.3.7)

By [37, Cor. 3.7.8], it remains to show )(d,(f)e)(v, (f)" - Pygy, r (1) € A is monic.
Indeed, writing P (X) = Zfio bi X', b; € A[X]and letting co....,c,_; € A be given
as in (2.4.1), Definition 2.5.3 implies that, for 0 < m < rf — 1, each b,, is a polynomial in
Co, ..., cr—1 with coefficients in IF,. Assigning the weight » — i to each ¢;, then as formal
expressions, each monomial in ¢y, ..., c,—1 in b, has the same total weight r{ — m.
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That is, if ¢° -+ ¢;"7' is a monomial in by,, then Z;;(l) (r —i)n; = r{ —m, and so by
Section 2.4.2,

r—1
d d d
degy(cg” -+ l31) < Y = mi(r—i) = ~(rl—m) = dl— 7’"
i=0

From (4.3.7), this is an equality if m = 0. On the other hand, this inequality implies,
O0<m<rd—1 = degyb, <dl.
Therefore from (4.3.7), x¢ (f)g)(,p(f)’ -Pygy, (1) € A is monic. |

For each irreducible f €A, (4.3.2) implies that Q;f@p’f (1) =Pyey, r (1) /Pyay, r (0).
By combining Proposition 4.3.5 and also the relation (4.3.3), we are able to obtain the
following identity for L(¢ ® ¥V ,0), which shows that Fang’s class module formula (The-
orem 4.2.2) applies to the special values we are considering.

Proposition 4.3.8. We have
[F7 )4
1;[ (s vEN],
4.3.9. Convolution L-series of ¢ ® ¥. We investigate

L@ ®y)Y.s) =[[ Qo (f ™" (4.3.10)
’

from (4.3.3). We at first fix f € A irreducible, and we let ayq, ..., o, € K be the roots of
P;/,(X), and we let B1, ..., B¢ € K be the roots of PJ/,(X). We split it into two cases.

For r = £. As Qg®w,f(X) is the reciprocal polynomial of P;f@w,f(X) = P¢V,f(X) ®
Pl;f’, f(X ), we can expand de)® " f( £7%)7! using Cauchy’s identity (Theorem 2.5.12).
We note from (2.4.6) that a1 -+~ o, = x¢(f)f ' and B1---Br = xy(f)f L. By the
definitions of p 4 and p, from (2.6.1), Theorem 2.5.12 implies

Q(;@w’f(f_s)_l
= (1_%)_1 i i Sk(“)Sk(ﬂ)f_s(kl+2k2+‘“+(r_1)kr71)

k1=0 ky—1=0
k=(k1,....kr—1)

:(I—M)_l Z ﬂqb(fkl,...,fkrfl)ﬂw(flnnu’fk,,l)
ki,.

er+2 fZ(k] +kottkr—1)+s(k1 +2kr -+ (T —Dkr—1)’

(4.3.11)

kr—1=0

where @ = (@1,...,a,) and B = (B1,..., B,). We define the twisted Carlitz zeta function

LA xxy.8) = Y M (4.3.12)

acAy
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and finally we define the L-series,

IL¢(a1,---,ar—l)ﬂq/;(al,---,ar—l)
Ly X fy,s) = i . (43.13)
] ¥ Z Z (a1 __,ar_l)Z(alag.,_a:_%)s

ai€Ay ar_1€AL

The convergence of this series in K, can be deduced from Proposition 2.6.3 (d) for s = 0.
By examining the Euler products of the L-series, we arrive at the following result.

Theorem 4.3.14. Let ¢, : A — A[t] be Drinfeld modules both of rank r = 2 with every-
where good reduction, as defined in (1.2.1). Then

L((¢®Y)7.5) = L(A, xpxy.rs +2) - L(Rg X fy.5).

We can substitute s = 0 into Theorem 4.3.14 and obtain the following special value
identity.

Corollary 4.3.15. Let ¢, ¥: A — A[t] be Drinfeld modules both of rank r = 2 with every-
where good reduction, as defined in (1.2.1).

M/¢(alv"'7ar—1)”'¢(al""’ar—l)
Lty X fy.0) =
(g X Ry 0) = o ) @ a)

al€A4 ar_1€A

_ Reggoy - [HG @ V)],
L(A, xpxv-2)

For r <{. Using thato - --a, = x4 (f) f !, we apply Bump’s specialization of Cauchy’s
identity (Corollary 2.5.13), and similar to calculations in Section 4.3.9, we find

Q;j(g)w,f (f_s)_l

o0 o0
= Y S @SB (g f) f T fi btk k)
k1=0  k,=0
k=(k1,....kr—1)

k'=(k1,....kr,0,...,0)

Ly B Sy R L D 1R

20k k) +sGer 2k +F k) :

ki,....kr=0
The expression [Lw(fkl ... f% 1,...,1) generically has 1’s in exactly the last £ — 1 —r
places. We thus define the L-series when r < £,
L(IL¢ X ”’wa S)

- Z Xolar)pglan,....ar—)py(ay,....ar, 1,...,1)
' (ay---a,)*(a1a3---ay)’ '

(4.3.16)

al,...,arEA+

Similarly, the Euler products of these L-series yield the following theorem.
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Theorem 4.3.17. Let ¢, : A — A[t] be Drinfeld modules of ranks r and £ respectively
with everywhere good reduction, as defined in (1.2.1). Assume that r, £ = 2 and that r < {.
Then

L((¢ @ ¥)V.s) = Ly X py.9).
We can substitute s = 0 into Theorem 4.3.17 and obtain the following special value

identity.

Corollary 4.3.18. Let ¢, y: A — A[t] be Drinfeld modules both of rank r = 2 with every-
where good reduction, as defined in (1.2.1). Assume that r, £ = 2 and that r < £. Then

X¢(a,);1,¢(a1, .. .,ar_l);l,v,(al, coap, 100000
(al --.ar)z

L(pg x py,0) = Z

= Regyey - [HG @ V)],

Remark 4.3.19. Note that the case r > £ is included in the case r < £ since ¢ ® ¥ is
isomorphic to ¢ ® ¢ as t-modules by [34, Prop. 2.5].

4.4. L-series of symmetric and alternating squares of Drinfeld module over A

We assume p # 2. Let ¢: A — A[r] be Drinfeld modules defined over A of rank r as
in (1.2.1). Recall the £-module Sym? ¢: A — Mat, 1 (A[z]) and /\2 ¢: A — Mat,_;(A[z])
defined over A as in Definition 3.2.11. Following the same process as in Section 4.3.1, We
define

P 24 r(X) := Char (ar, T3 (Sym® ¢), X)|, _,.

P;’ymz 4.7 (X) = Char (. Ty (Sym® ¢). X)|, _,.

and

’

t=0

P, (X):= Char (af, TA</2\¢>), X)

P}, ,(X) = Char (ay, TAV(/Z\qﬁ), X)

Recall the notations (Sym? P)(X) and ( /\2 P)(X) that were introduced earlier in Defini-
tion 2.5.3. By [34, Thm. 5.9], we then have

t=0

Pgy2 6,7 (X) = (Sym® Py, r)(X) € A[X],

P g, (X) = (Sym® Py 1)(X) € K[X], (4.4.1)
and .
P/\2¢’f(X) = (/\ P¢,f)(X) € A[X],

) 4.4.2)

Py, (X) = (/\ quf)(X) e K[X].
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We further set Qg s (X) and QE [ (X) to be their reciprocal polynomials for E = Sym? ¢

or /\2 ¢. We now consider the L-functions

L(Sym*>$)".s) = [ [ Qgueg /™) 520, (4.4.3)
s

L((/Z\"b)V’S) =11Q%, /™7 s=0. (4.4.4)
s

4.4.5. Special L-values of symmetric and alternating squares. Fixing f € Ay irre-
ducible, similar to the tensor products, we denote

Sym? ¢: A — Mat, 11 (Fr[z])

and

2
/\¢:A — Mat,—y (Fr[z])
the reductions modulo f. We also have the following useful proposition for determining

the desired quantity [Sym? ¢(Fs)], and [ A? ¢(F)], in term of the values Py 24 (1)
and P g f( 1), respectively.

Proposition 4.4.6. Let f € A, be irreducible. For Sym?* ¢: A — Mat, 1 (F rlz]) and
N> ¢:A — Mat,_, (Fr[r]) defined above,

S r(r+1 P m2 1
By )], = 0™ F g (11 P (1) = n2med D i
P24, 7 (0)
and
2 r(r=1) r? Po, (1)
O], =0 2 g = 280

Proof. In a similar fashion to the proof of Proposition 4.3.5, following from [34, Thm. 5.9]
the diagrams of Ay -modules below commutes:

Ta(Sym? ) —— Ty (Sym?¢)  Ta( /N ¢) ———— Ta(/N\ ¢)

e T;(Sym’ () e T(N(@)
L le
Sym? (Ta(¢)) —— Sym* (Ta()) A2 (Ta(¢)) —=— A2 (Ta($))
Furthermore, the maps in the diagram above commute with the Galois action, which
implies
Pg.24 (X) = Char (t%, T),(Sym?® ¢), X),
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and
2
P, (X) = Char (rd, TA</\¢), X)
The remaining part follows by the same process of the proof of Proposition 4.3.5. ]
For each irreducible f € Ay, (4.4.1) and (4.4.2) imply that
P, 24 +(1 (1)
ser D4 oY, )= /\ 0.1

Pgymz g, 7 (0) N o.f /\ b f(O)

By combining Proposition 4.4.6, (4.4.3) and (4.4.4), we obtain the following identities for
L(Sym? ¢V, 0) and L(A\? ¢, 0), which show that Fang’s class module formula (Theo-
rem 4.2.2) applies to the special values we are considering.

Q;/ymZ ¢’f(1) =

Proposition 4.4.7. We have

L((Sym2¢>V0>=H& L((A0)"0) = [Tt
L [sym? 6 (Fy) 7 [N2o@Ep)],

4.4.8. Convolution L-series of symmetric and alternating squares. We investigate

2 \'2
L(Sym?$)".5) = [T Qe 7 L((A9) o) =1, (/™
S S

from (4.4.3) and (4.4.4). Same as we did in tensor product cases, we at first fix f € A4

irreducible, and we let oq, . . ., @, € K be the roots of PV (X) andweletBy,....fr e K

be the roots of PJ f(X ). Instead of applying Cauchy’ s 1dentity, we should apply Little-
re e v -1 v -1

wood’s identities to analyze stm2 ¢,f(X) and Q/\2 ¢,f(X) .

Symmetric square. As Q;/ymz o.f

PY o, (X) = (Sym? P} )(X),

we can expand QS m? g, f( f %)~ using Littlewood’s identity (Theorem 2.5.15 (a)). We
note from (2.4.6) that a; - --&, = x(f)f ™. By the definitions of Ry from (2.6.1), The-
orem 2.5.15 (a) implies

v —s\—1
Sym2 o.f (f )

2\ —1 ©© o] e
(1 20) S Y sula e

k1=0 kr—1=0

(X) is the reciprocal polynomial of

k=(k1,....kr—1)
2|k; forall i
—1 2k 2k
_ 1_X¢(f)2 Z Il’q}(f 17-~-7f 1)
o frst2 o T f2(k1+k2+“~+kr—1)+5(k1+2k2+“'+("—1)kr—1) ’
Loeees r—1=0



Tensor products of Drinfeld modules and convolutions of Goss L-series 35

where &« = (¢, ..., a,). Recalling the twisted Carlitz zeta function
Xp(a)?
L(Aa X?}’s) = Z ¢a—ss
aeA+

and finally we define the L-series,

2 2
Liigs)= Y « ¥ rolar - ;1) — (4.4.9)

2
aj€Ay a,—1€AL (al"'ar—l)z(alaz.‘.a:—l)s

The convergence of this series in Ko, can be deduced from Proposition 2.6.3 (d) for s = 0.
After some straightforward simplification we arrive at the following result.

Theorem 4.4.10. Let ¢: A — A[t] be Drinfeld module of rank r = 2 with everywhere
good reduction, as defined in (1.2.1). Then

L((Sym® ¢)".s) = L(A, x5.rs +2) - L(jLy. 5).

We can substitute s = 0 into Theorem 4.4.10 and obtain the following special value
identities.

Corollary 4.4.11. Let ¢: A — A[t] be Drinfeld module of rank r = 2 with everywhere
good reduction, as defined in (1.2.1).

Sy Rl Retgy [HS )],

L(ik,,0) = =
(Ro-0) @ ar1)? (4. 3.2)

a1€A+ ar71€A+

Alternating square. We splits it into three cases. As QY, (X)) is the reciprocal poly-

N o.f
nomial of

s 0= (A5 )00

we can expand QY oS ( f7%)~! using Littlewood’s identity (Theorem 2.5.15 (b)) for the
first two cases. We recall from (2.4.6) that o -+ = y4(f) f ™', and Ry from (2.6.1).
Letting @ = (a1, ...,a,) and w = | 5], we have the following 1dentities.

Case 1. Forr =23and2 }r —1,
g ST
-1 [e%s) [e%s)
_ (1 _ X¢(f)) Z Z S (cr) f 3 C1 2kt wh)

f F+1
k1=0 ky=0
k=(0,k1,0,k2,....kv,0)

:(1_X¢(f))_l 3 ol UAREYY RITEY )
k

f%-‘rl fk1+k2+ Atk sk +2ka++wky) ’
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Case?2. Forr 23and2|r —1,

& 00
7\2¢,f(f_s)—1 = Z Z Sy () f =3 Ger+2kaetwky)

k1=0 kyw=0
k=(0,k1,0,k2,....kw)

I S UV RN

Fhitkatothy+s (ki +2k+twky)

Case 3. If r = 2, then

-1

\ —s\—1 __ Xd’(f)
Qe 0 = (1-2800)

Considering the twisted Carlitz zeta function
._ Xo(a)
L(A xg.8) = ) “2=,
a€A+

and finally we define the L-series,

~ ;L¢(a1,.-.,ar—l)
. . . 4.4.12
(7F)) Z a---ar—1(aras---a’"})s ( :

75 N ar71€A+
ai=1if2 }i

The convergence of this series in K, can be deduced from Proposition 2.6.3 (d) for s = 0.
After some straightforward simplification we arrive at the following result.

Theorem 4.4.13. Let ¢: A — A[t] be Drinfeld module of rank r = 2 with everywhere
good reduction, as defined in (1.2.1). Then
=D"+1

L(AD) ) = Lltre 1) L

We can substitute s = 0 into Theorem 4.4.13 and obtain the following special value
identities.

Corollary 4.4.14. Let ¢: A — A[t] be Drinfeld module of rank r = 2 with everywhere
good reduction, as defined in (1.2.1).

wylay,...,ar—1) Regp [H(A2¢)]
Z Au ! = Ao (—1)’+1A'

75 P ar71€A+ dy---dr-1 L(A,X¢, 1) 2
a;=1if24i

Remark 4.4.15. In the case r = 2, from (4.4.12), the L-series L(iy,s) = 1. Theo-
rem 4.4.13 and Corollary 4.4.14 imply

L((A9)"5) = LA gons 4 1.

2

L(A x4.1) =Reg )z, [H(/\q&)]A

L(ﬁqs’()) =

and
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In fact, the alternating square /\2 ¢ is a Drinfeld module of rank 1 defined by ( /\2 P) =
0 — kpt. In this case, the class module H(/\2 ¢) is trivial, and Reg/\z¢ = Log/\z¢(l).
We refer readers to the next section for more details on regulators of tensor products,
symmetric and alternating squares. In conclusion,

L(A, x¢.1) = Log 2 ,(1).

5. Regulators of tensor products, symmetric and alternating squares

In this section, we provide explicit expressions for the regulators of the tensor, symmetric,
and alternating squares of Drinfeld modules of rank 2, which require explicit formulas for
logarithms derived in Section 5.2. To compute logarithms, we review Anderson’s expo-
nentiation theorem in Section 5.1.

5.1. Anderson’s exponentiation theorem

We let E: A — Mat;(Cso[7]) be a uniformizable almost strictly pure #-module of rank r
in the sense of [42], and letm = (my,...,m;)" € Mat,x1(Mg) be a basis of its 7-motive
ME = Mat; ¢ (Coo[7]) with &g denoting multiplication by t on Mg. Picking n =
(n1,...,n,)" € Mat,x1(NE) to be a basis of its dual z-motive Ng := Mat;x¢(Coo[0]), a -
frame for E is a pair (g, ®g), where @ g represents multiplication by o with respect to n,
and tg: Mat; x, (Co[t]) = NE is amap given by for & = («q,...,a;) € Mat;x(Coolt]),

tg(@) =a-n=any + -+ apn,.

Forn = Zf:o a;ot € Ng witha; € Matx¢(c,,)» We then define two maps &g, £1: Ng —
(Cgo by setting

/ T
eo(n) = ay, &1(n):= (Zai(i)) .

i=0
We have the following two results by Anderson.

Lemma 5.1.1 (Anderson [35, Prop. 2.5.8] and [42, Lem. 3.4.1]). There exists a unique
bounded C . -linear map

€0 = €o,£: (Matyx¢(Tp), [-9) = (C&, |'loo)
of normed vector spaces such that &g |uat, ., (Coolt]) = €0 © LE-

We further let &1 = 81, := €1 0 tg: Mat1x, (Coo[t]) = (Cﬁo. Then we state the Ander-
son’s exponentiation theorem below.

Theorem 5.1.2 (Anderson [35, Thm. 2.5.21], [42, Thm. 3.4.2]). Let E:A — Maty(Cqo[7])
be an A-finite t-module of rank r with t-frame (tg, ®g). Fix h € Maty«,(Cxo[t]), and
suppose there exists g € Matyx,(Tg) such that

g Vo —g=h
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Then
Expg (60(g +h)) = &;(h).

Let§ e Cﬁo, and define hg € Mat;x, (C[t]) as in [42, (4.4.21)]. Considering
g= ) h{""V (@5 (@5 € Mati, (To),
m=0
by verifying directly, we have
g(*l)CDE —g=hg.
Theorem 5.1.2 and [42, Prop. 4.5.22] imply
Expg (.5 (he + Y (" (@F)™ - (@5 V)) = & (5.13)
m=1

Remark 5.1.4. The construction above generalizes Chen’s construction for Drinfeld mod-
ules [16, Rem. 3.1.8] to uniformizable almost strictly pure z-modules.

5.2. Logarithms of tensor structures

From now on, we fix a Drinfeld module ¢: A — A[t] of rank 2, given by ¢y = 6 + 17 +
k272, where k, € ]F;. In this subsection, we follow the processes in [42] to compute &
and h¢ in (5.1.3), which allow us to provide expressions of logarithms of tensor structures.
It requires that the 7-modules E := ¢®2, Sym?(¢), /\2 (¢) are uniformizable and almost
strictly pure, which are followed by Proposition 3.2.12 and Remark 3.2.13.

5.2.1. Calculation of &.

The case tensor square. We let E = ¢®2, and let Ny = Coo[0] be the dual z-motive of
¢. First of all, we define a -module E: A — Maty(Cx[7]) from the dual -motive

Ng = =/V¢®2 = Cool0] @[] Cool0]
in a similar way as in Section 3.1. To be precise, one can verify that
it ={1®1.1®co®1.0°® 1} (52.2)

is a Co[o]-basis of Nz (cf. Lemma 3.1.2). Then we obtain E by solving the following
equation for E; :
tou(sy,....s2) =ak(s1,...,54)"

for all u € Mat; x4 (Cool0]). Explicitly, we have

0 K1T K1T K2‘L'2
~ 0 K2T
Ec=1 0 0
K1 K2T K1T
K2 0
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By calculating directly, we have an isomorphism U} = Uy, from EtE given by

1
_k1
Ug = 1 | € GL4(Cx) S GL4 (Coo[t]).
PR
K2
By the C[0]-basis in (5.2.2), we identify Nz with Mat;x4(Coo[0]) by setting s; > s;,
where 81, . .., 84 is the standard basis vectors in Mat;x4(Cso[0]). In this way, the Co[t]-
basis

{1®1,1®0,00®1,0®0}

is identified with
{niYi_; = {s1,82,83,081}.

Furthermore, by Example 2.3.4 we note that

1
®2 = e
0 1 K2 Kz1
®E = (DE = d _Ki—l) = —0 Ki—)
K2 K2

(—? - _(—'ff
=92  &Ue-0) kVa-p) w2
K3 «3 3 3

represents multiplication by o on Ng and N .
We observe that there exists C € GL4(Coo|t]) so that

(t—0)°

_ (t—9)

Cop = (t—0)
1

To calculate &y by [42, Prop. 3.5.7], we follow [42, Rem. 3.5.11] to define

Iny(DEF — 01y) kD ke,
Vi = g”‘l ! € GL4(Coo) € GLa (Coo[t]).
np 1

8n3 1

Note that V:p — Eisan isomorphism of z-modules with p: A — Mat4(Co[7]) defined
by
pe=VE)EVE.

Now we have isomorphisms of 7-modules:

vE . UL
p— E —E,
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which gives isomorphisms of dual #-motives

8Y% U
Ny 20 s OV g

Then the Coo[t]-basis ng = (n1,...,n4)" of Nj gives Coo[t]-bases
ng =nzUg and n,=nzVg;' (5.2.3)
of Ng and N,, respectively. The ¢-frame tg: Mat; x4(Cso[t]) — NEg can be computed by
tg(f) =1z (HUE = t,o(O)VEUE, forf e Matixa ((Coo[t]).

We let 9;:F; (t) — [, (¢) be the first hyperderivative with respect to ¢. By applying [42,
Prop. 3.5.7] to p and using Ug, Vg € Maty(Cyo),

&o(f) = eo(te () = (VEUE) €0, (f)

9:(f1) k207 (f1)]r=6
_ | A _ f3(0)
= (VEUg) b » = £(8) s 5.24)
/i £18) =4 5(6)

forf = (fl, Cee f4) € Mat1X4((Coo(t)).

The case symmetric square. We let £ = Sym?(¢). Similar to the tensor square case,
one check directly that

1 1
{siyi_, = {1 1, 5(1 Qo +0o®1), 5(1 ®o*+0’® 1)} (5.2.5)

is a Coo[o]-basis of Ny = Sym?(Ny) C N¢®2 (cf. (3.2.1), Lemma 3.2.4). In the same
fashion for the tensor square, we define the 7-module £: A — Mats(Coo[z]), given by

0 K1T K12
E, = Kf_l) 0+ Kt K17t |,
K2 0

which is isomorphic to E by Ug: E — E, where

1

_f

22 | € GL3(Co) € GL3 (Coo[t]).

1
2
Ki_l) Klki_l)

T 262 23

Ug =
1

We identify Nz with Mat; x3(Coo[0]) by setting the Coo[0]-basis in (5.2.5) s; > s;, where
S1, S2, 83 is the standard basis vectors in Mat; x3(Cso[c]). In this way, the C[t]-basis

1
{1®1,§(1®0+0®1),6®0}
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is identified with
{ni}?zl = {Sl, S2, USl}.

Furthermore, by Example 2.3.4 we note that

1
O l —0 Ki_l)
O = d; = Sym? e el k2 )
e K (t—6)2 _2,({*"0—9) V)2
5 © ©
represents multiplication by o on Ng and Nj.
We observe that there exists C € GL3(Co|t]) so that
(t—0)
Cog = (t—10)
1
Again, we follow [42, Rem. 3.5.11] to define
Iny(DE? — 61) P
Vg = any =11 € GL3((Coo) € GL3 ((Coo[r])~
8)’12 1

Note that Vi:p — E is an isomorphism of #-modules with p: A — Mats(Coo[z]) defined
by
pr = (VE) 'E, V.
Now we have isomorphisms of #-modules:

vE _ UL
p— E —E,

which gives isomorphisms of dual #-motives

Y% U
N, OVE NE’ UE Ne.

Then the Coo[f]-basis ng = (n1,n2,n3)" of Ng gives Coo[f]-bases
ng =ngUg and n, = nE-VE_1 (5.2.6)

of Ng and N, respectively. So the 7-frame ¢ g: Mat;x3(Cx[t]) = NE can be computed
by

te(®) = z(OUE = ,,()VEUE, forf € Matyx3 (Coo[t]).
By applying [42, Prop. 3.5.7] to p and using Ug, Vg € Mat3(Cq),

3¢ (f1) 120:(f1)]1=9
Eo®) = (VEUr) €0,,(0) = (VeUr)" | fi = SRO) |
L )=\ fA0) - £ f0)

forf = (fl, fz,f3) S Mat1x3((Coo(t)).
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The case alternating square. By Definition 3.2.11, the alternating square of ¢ is given

by /\2 ¢: = 6 — ka1, which is a Drinfeld module of rank 1. It follows by [42, Ex. 3.5.14]
that, for f € Coo(2),

&o(f) =1(0).
5.2.7. Calculation of hg. The key step involves applying [42, (4.4.21)], which utilizes
the matrix V representing Hartl-Juschka’s isomorphism, as described in [35, Thm. 2.5.13]
(see also [42, Thm. 4.4.9]). To compute the matrix V', we apply [42, Cor. 4.5.20 (a)],

reducing the problem to computing the matrices X, Y, and B, which are defined in [42,
§4.5]. We provide detailed computations for each case of tensor structures.

The case tensor square. We let E = $®2. In the same fashion as the Nz in Section 5.2.1,
we identify Mg = Mfz with Mat; x4 (C[7]) by setting s; > s;, where {si};‘=1 is the
Coo[7]-basis in Lemma 3.1.2. Then the C[¢]-basis

{I®,10r,t®1,t®1)

is identified with
{mi}?=1 = {81,52,83, 781} (5.2.8)
On the other hand, by a direct computation, the C[¢]-basis of Ng in (5.2.3) is

K1
$4,83 — —84,82,084 .
K2

By Remark 3.2.13, the top coefficient of E,2 is invertible, so the matrices X, ¥ €
Matgx4(Coo[t]) in [42, Cor. 4.5.20 (a)] come from solving the following equations.

S1 S1
S2 S2
S3 S1 S3 Sa
K1
S4 S S4 S3 — —8,4
=X s =Y K2 s
TS$1 S3 081 )
(15) 781 0So 0S4
783 083
TS4 0S4
which give
1 ko ok ok X%
1 1
g
K2
* ok k% 1
X - B Y =
1 * *
* k *
* k *
* 1
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Remark 5.2.9. The entries *’s in X and Y can be found explicitly, but we just do not
need them for the later computations.

By Definition 3.1.4, the matrix B € Matg(Cy) in [42, Cor. 4.5.20] is given by

Bi | By
B= :
(Bz 0 )

where if we write E; = By + B1t + B»12, then

0 K1 K2 0 0 00O 0000
_ 0 _ K1 K2 _ 0 00O
By = 0 , B = 1 i , By = 0000 (5.2.10)
0 K1 K> 000
Then by [42, Cor. 4.5.20],
&1
w Kt oKk1o K2
V=XW) BTy =|f1 K2 ) (5.2.11)
K1 K2
K2
By the proof of Proposition 3.2.12,
1
®2 =6 _fk
~ ~ 0 1 K K
bp =392 = <,_e ) = ) T | 6212
K2 k2 k2 K2
=62 _k@=0) k=8 £
© © © ©
We let m = (my, ..., ms)" be the Coo[t]-basis for Mg in (5.2.8), and write &g =

Z?:o 171-1" with 171' € Maty(C). By [42, (4.4.21)], together with (5.2.10)—(5.2.12), and
recall that § = (§1,...,&4)" € C2,, we have

h; =@h@+¢@mg+@mw@+3gm+3g®»fv

(0 5—3 52 ——((l —0)&1 — K18 + K2§4))

K2 K2 K>

_ ((l —0)61 + k183 + 1284

K2

s %_3, ég_z, O) € Matj x4 ((Coo[l]) (5.2.13)
The case symmetric square. We let £ = Sym? ¢. In this case, we identify Mg =
Sym?(My) with Mat x3(Coo[7]) by assigning the Coo[]-basis in Lemma 3.2.4 (a) to the

standard basis vectors sy, $3, $3. Then the C[¢]-basis

1
{1®1,5(1®T+r®1),f®f}
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is identified with
{miY_, = {s1.82. 781} (5.2.14)

On the other hand, by a direct computation, the C[¢]-basis of Ng in (5.2.6) is

1 K1
S3, =S — —S83,083¢.
72 2/(2 ’

By Remark 3.2.13, the top coefficient of E;2 is invertible, so the matrices X, Y €
Matex3(Coo[t]) in [42, Cor. 4.5.20 (a)] come from solving the following equations.

S1 S1
S S2
S 51 S 53
3 3
=X|s |, =Y 3525583 |,
781 0SSy 2
781 0S3
8o OS2
783 083
which give
1 * ok ok
K1
K2 2
* k% 1
X = N Y =
1 * *
* * * *
* * 1

By Definition 3.2.11 (a), the matrix B € Matg(Co) in [42, Cor. 4.5.20] is given by

B, | B
B —
(Bz 0 )

where if we write E; = Bg + B17 + B,t2, then

0 k1 k2 0 0 0 0 0 O
B()= 0 s B]Z K1 K2 0], Bzz 0 0 0]. (5215)
0 0 K1 0 K2 0 0
Then by [42, Cor. 4.5.20],
2
’;—1 2/(1 K2
_ INTRTY _ 2
V=XDNBY =2 20 . (5.2.16)
K2
By the proof of Proposition 3.2.12,
1
~ ~ 0 1 =6 _fr
Bp =Sym2(Py) =Sym? [ ,op . | = @ o |. 5217
K2k =02 _Hrk=0) ki
© © ©
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We let m = (mq, ma, m3)" be the Co[t]-basis for Mg in (5.2.14), and write E)E =
32, Uitt with U; € Mat3(Cop). By [42, (4.4.21)], together with (5.2.15)~(5.2.17), and
recall that § = (&1, &2,£3)" € C3,, we have

he = (Uimé + 1Uomé + Uom(Bot + B1ED + Boe@))" . v
= (0’ E—Z’—%(([ — 9)51 — KIEZ + K2§3)) . V
K2 K5
_ ((l —0)&1 + k162 + K263

K2

s 252,0) € Mat;x3 ((Coo[l]) (5.2.18)

The case alternating square. By [42, (4.6.12)], for § € Cq,
hy = ¢
since /\2 ¢ is a Drinfeld module of rank 1.

5.2.19. Conclusion. We let E = ¢®2, Sym? ¢ or /\2 ¢ of dimension £ with the Drinfeld
module ¢: A — A[r] given by ¢p; = 0 + k17 + k72 With ky € [/, and let Tg be the cor-
responding matrix operator defined in Section 2.7, and write Log, (z) = o Bmzd" €
K]z].

El-Guindy—Papanikolas [20, (6.4), (6.5)] constructed rational functions B,,(¢) € K(¢)
such that 8,,(6) = B,, for m = 0. By their construction, for m < 0, B,,(¢) = 0 and
Bo () = 1. We state a recursive formula for By, (¢) with rank 2 assumption below.

Lemma 5.2.20 (ElI-Guindy—Papanikolas [20, Lem. 6.12 (b)]). For m = 1, the sequence
B (t) satisfies the following recurrence:

(m—1)

B(t) = 1B, 1 (1) +

K2
t—9m
The proposition below provides an expression of
REm = (q)El)(m) ... (q;;jl)(l)
in terms of these rational functions.

Proposition 5.2.21. Form = 1,

Bu(t) £f,3L(r))

Bua(t) 2580 ,(0)

Rem=TE (

Proof. By Lemma 2.7.6, it suffice to show that

Bu(t) 2 35,}110))
Bna(t) 22 BY,(0)

t—

Rom = (051" - (@5H Y = (
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Indeed, a direct calculation shows that

D

1 K2

CD;I =\|t—0 -0],
1 0

which gives, by applying Lemma 5.2.20 with m = 1,

(1)
ﬁqb,l:(q);l)(l):(ﬁ;gg temf (’))

For m = 2, the first column of R ;, follows by [16, Lem. 3.1.4], and the second column
of Rg,m, follows from the results of the first column and the following formula:

— K
[Rpmliz = [RG_1 (@3H D], =[RS 1 [(@H V], = B, —— -

IR
Remark 5.2.22. Instead of looking at dual 7-motives, Khaochim and Papanikolas [39,

Lem. 4.2] provided a similar expression for the first column of, for m = 0,

1

e &7 @H P @TH,

for Drinfeld modules.

Theorem 5.2.23. Suppose that E = ¢$®2, Sym? ¢ or /\2 ¢ of dimension £ with the Drin-
feld module ¢: A — A[t] given by ¢, = 0 + k1T + kT2 with ks € Fy. We let z =
(z1,...,2¢)". Then

Bu(®)  m Bli(1) ‘
Logy(z) =z + €o.E (hgm)’f}; ( =0 € K[z]".
r; Bm—1 (t) P K92(1)£(1)2(Z)

Proof. Note that &g, g is additive and by a direct computation that &g, g (h,) = z in each
case. Since 3, € K, the result follows by (5.1.3), Proposition 5.2.21. ]

We define Em = IB,(,,I)(I)|,=9 € K,and B8], := 0;(Bim(t))|;=¢ € K, and the following
F,-linear series in K[z]:

Liz) =Y Limz?" =) prz?". (5.2.24)
m=1 m=1

Ly(z) =Y Lomz?" =) BuPm1z"". (5.2.25)
m=1 m=1

Li(z) =Y Lyuz?" =) 2BmBz?". (5.2.26)
m=1 m=1

Ly@) =) Lymz® = ) (BrBm—r + BB )27 (5.2.27)

m=1 m=1
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Lo(z) =) Lomz?" = Z(ﬁmﬂm 2= BnaBm)z?. (52.28)

= 0 — 9(1)
Li(z) = n; Limz?" = m Z BonPm—-129", (5.2.29)
Lyz) =) Lomz?" = o 9(1) Z,Bm Buo1z". (5.2.30)

m=1

Combining Theorem 5.2.23 and the formulas for 77, &g, h, in previous subsubsections,
we obtain explicit expressions for logarithms of tensor structures.

Corollary 5.2.31. Let ¢: A — A[t] be a Drinfeld module ¢: A — A[t] given by ¢; =
0 4+ k1T + k2% with ky € FX, and let

Lim+(0—0")LY . oLy, kL, +klh,, kL),

_p(m)y ~ ~ ~ (m) ~ -
(6 Ko; )Ll,m LO,m+L2,m _le +L2m Ll

,m
Lm:= 9—pmy ~ - . - EMat4(K)
QL 1,m L2,m LO,m+1_L1,m+L2,m Ll,m

(m) (m)
%le L2,m L1m+L2m Ll,m

form =1, then
z1 z1 11 "
4
@ Log¢®z(§§)=(§§)+( ' )zmzle 5|
Z4 Z4 —*11 23

Z1 Z1 ! 1 1 z3
® Loggueg (2)=(2)+( 4 4 |Tueiln| 20 |

25 2Ky Zf]m
Z3
(c) LogA2¢(z) =z+ Zo(z).
5.3. Expressions for regulators
‘We maintain the same notation as in Section 5.2.19, let ey, . . ., e; be standard basis vectors

of C c{o and denote dg: K — K to be the first hyperderivative with respect to 6.
Lemma 5.3.1 (cf. [19, Prop. 2.5]). The set {e; }le is an A-basis of Lie(E)(A) via 0.

Proof. It suffices to show that, for o € Lie(E)(A) = A%, there exist by, ..., by € A such

that
£

a =Y 0Ep e (5.3.2)

i=1

We only show the case E = Sym? ¢. The remaining two cases follow by similar methods.
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Observe that

' 0 k1 k2 ! 0! i@i_ll(l iQi_le
OE, = (0E,)' = 0 = 6" .
0 0"

which implies, for b € A4,

b k10g(b) K204(b)
8Eb(,) = b
b

Therefore, the existence of b; follows by rewriting (5.3.2) to

by + k10g9(b2) + k20¢(D3)
o= by . [ ]
bs

Lemma 5.3.3. Suppose that {vy,...,v;s} C Kﬁo is an A-basis ofEXpEfKoo (AY) via 0. If
we write
(ri,..., I'[)T = (v1,...,Vg) € Maty(Koo),

then we have
r1—k10g (r3)—K20¢(rs)
(a) Regyez =y -det( :; )
r4
r1—Kk109 (r2)—k20¢(r3)
() Reggury =7 - det( B )

r3

(©) Regpz, =vy- det(ry).

Proof. By the definition of Regg in (4.2.1), the lemma follows by expressing v; in terms
of standard basis vectors via d using the same method as in the proof of Lemma 5.3.1. =

Similar to (5.2.26) and (5.2.27), we further define Bm = 0g(Bm(t))|;=¢ € K, and the
following F,-linear series in K[z]:

Logy,(z) =z + Li(z2) = Y _ Baz?". (5.3.4)
m=0
i)=Y Limz" =) 2BmPmz*", (5.3.5)
m=1 m=1
La() =Y Lomz" =Y (BmPm-1 + BmbPm-1z"". (5.3.6)
m=1 m=1

Theorem 5.3.7. We have the following formulas for regulators.
(a) Assume that deg(k1) < (¢ + 1)/2. Then

K‘ i~ o~
Reg/\z¢ = LogAz¢(1) =1+ 0_—20(1) Z(ﬁmﬂm—z — Bm—1Bm—-1)-

m>1
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(b) Assume that deg(k1) < 1. Then
() Reggyy2y = v -det(M), wherey € [ is chosen so that it has sign 1, and

1+ L1(0)  —Li(k1) =22 La(1) = dp(kr)  —k2L1(1)
M=| —i'Li(0) Logu,(1)+ k5" Lilkr) +2La(1) Li(1)
—ky ' Logg () k3" Logg (1) +2La(1)  Logg (1)
(i) Regye> = Regg 2 - Reg/\z¢.
Proof. By [20, Cor. 6.9], the assumptions on deg(k;) imply that the logarithm series

Logye2(2), Logsymz¢(z) and Log A2 ¢(z) converge at standard basis vectors. We may

choose
{LogE(el),...,LogE(eg)} (5.3.8)

as an A-basis of Expgf Koo AY). We start with calculating Regye2. By Corollary 5.2.31 (a),
the matrix

1
(Logge2(e1), . ... Logyez(e4)) = ! 1 X
_% 1
Logs,(D+0L, (D=L} (0)  KkaLj(1) Li(ic1) + k2 Ly (1) k2L (1)
2 (0Li(1) = L1(9))  Logp,(D+La(1)  ELi(c) + La(1) Ly(1)
= (0L (1) - L1(9)) Ly(1)  Logp,(D+ELite)+La(1) Li(1)
< (OL1(1) = L1(6)) L (1) M4 LLi(k1) + La(1)  Logg,(1)

(5.3.9)
For f € K(t), by [42, Lem. 2.4.6], we have the chain rule
3¢ ()le=6 — 36 (f(9)) = —39(f)li=6- (5.3.10)

Then by applying Lemma 5.3.3 (a) with the A-basis of ExpEfKoo (A*) given in (5.3.8),
(5.3.9)and (5.3.10) as well as (5.3.5) and (5.3.6) give the following expression for Regyo2,
for some yge2 € Ff,

Regye: = pyo2X

1—0Li()+ Li(®)  —x2La(1) —Li(k1) — k2 La(1) = dg (k1) —k2Ly(1)

(L1 (1) = L1(8))Log 2 , (1) + L2(1) S Li(k1) + La(1) Li(1)

(0L (1) = L1(9)) Ly(1) Log 2 (1) + & L1(k1) + La(1) Li(1)

& (BL1(1) = L1(6)) La(1) 94 2Lk + La(l)  Logy (1)
(5.3.11)

We then proceed the following row and column operations

(@) Ry~ Rz —Rj,
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(b) C3 = C2 + C3,
() Ci+—Cq— %c4.

Then the determinant becomes
Log/\z ¢(1) -det(M).

One can check, by similar calculations for Sym? ¢ and /\2 ¢, that the first factor gives
Reg A2 g and the second factor gives Regg,,2 4, which complete the proof. ]

Remark 5.3.12. We conclude with the following two remarks about special values.

(a) Theorem 5.3.7 shows that special values of the dilogarithm function Log, ,(z) of
¢ appear in the regulators of ¢®2 and /\2 ¢.

(b) The formulas in Theorem 5.3.7 give explicit expressions for special values of
convolution L-series appearing in Corollaries 4.3.15, 4.3.18,4.4.11 and 4.4.14.
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