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Spectral estimators for structured generalized linear models
via approximate message passing

Yihan Zhang, Hong Chang Ji, Ramji Venkataramanan, and Marco Mondelli

Abstract. We consider the problem of parameter estimation in a high-dimensional general-
ized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-
dependent matrix provide a simple yet surprisingly effective solution. However, despite their
wide use, a rigorous performance characterization, as well as a principled way to preprocess
the data, are available only for unstructured (i.i.d. Gaussian and Haar orthogonal) designs. In
contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To
address the problem, we consider correlated Gaussian designs capturing the anisotropic nature
of the features via a covariance matrix ¥. Our main result is a precise asymptotic charac-
terization of the performance of spectral estimators. This allows us to identify the optimal
preprocessing that minimizes the number of samples needed for parameter estimation. Sur-
prisingly, such preprocessing is universal across a broad set of designs, which partly addresses
a conjecture on optimal spectral estimators for rotationally invariant models. Our principled
approach vastly improves upon previous heuristic methods, including for designs common in
computational imaging and genetics. The proposed methodology, based on approximate mes-
sage passing, is broadly applicable and opens the way to the precise characterization of spiked
matrices and of the corresponding spectral methods in a variety of settings.
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1. Introduction

This paper considers the prototypical problem of learning a parameter vector from
observations obtained via a generalized linear model (GLM) [61]:

vi =q({(xi,*).&). 1<i=<n, (1.1)

where B* € R¢ consists of (unknown) regression coefficients. The statistician wishes
to estimate B* based on the observations y = (y;)7_, € R” and the covariate vec-
tors X1, ..., X, € R%. The vector ¢ = (¢i)7—; € R" contains (unknown) i.i.d. ran-
dom variables accounting for noise in the measurements. The (known) link func-
tion ¢:R? — R is applied element-wise, i.e., ¢(g, &) = (g(g1.€1), .., q(gn, n))
for any g, ¢ € R”. The non-linearity g generalizes linear regression (¢(g,¢) = g + ¢€)
and incorporates various problems in statistics, machine learning, signal processing
and computational biology, e.g., phase retrieval (¢(g, &) = |g| + &) (see [39]), 1-bit
compressed sensing (g(g, €) = sign(g) + ¢) (see [9]), and logistic regression [83].
For estimation in GLMs, several works have considered methods based on con-
vex programming, e.g., [15, 84, 88]. However, these methods often become compu-
tationally infeasible as d grows. Thus, fast iterative methods including alternating
minimization [69], approximate message passing [76], Wirtinger flow [14], iterative
projections [50], and the Kaczmarz method [91] has been developed. Due to their
iterative nature, to converge to an informative solution, these procedures require a
“warm start”, i.e., a vector 3 € R4 whose “overlap” |(ﬂA, ﬁ*)|/(||,§||2||,3*||2) with
B* is non-vanishing for large d. In this paper, we focus on spectral estimators [22],
which provide a simple yet effective approach for estimating 8*, and serve as a warm
start for the local methods above. Spectral estimators have been applied in a range
of problems including polynomial learning [20], estimation from mixed linear regres-
sion [95] and ranking [23]. For the GLM in (1.1), the spectral estimator processes the
observations via a function 7: R — R and outputs the principal eigenvector of the
matrix
n
D= xix] T(y;) e R, (1.2)
i=1
To understand the accuracy of spectral estimators, it is crucial to: (i) characterize their
performance (e.g., in terms of limiting overlap), and (ii) design the preprocessing
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function 7 that minimizes the sample complexity, i.e., the number n of observations
required to attain a desired limiting overlap. This work gives precise answers to both
these questions, providing solid performance guarantees as well as a principled basis
for optimizing spectral estimators used in practical applications.

A line of work [14,21,69] has bounded the sample complexity of spectral estima-
tors obtained from (1.2) for i.i.d. Gaussian designs via matrix concentration inequal-
ities. However, these bounds require the number n of observations to substantially
exceed the parameter dimension d, and they are not sharp enough to optimize 7.
Using tools from random matrix theory, the works [55, 62] obtained tight results in
the proportional regime where n,d — oo and n/d — § for a fixed constant § € (0, co)
(called the ““aspect ratio”). Specifically, a phase transition phenomenon is established:
if § exceeds a critical value (referred to as the “spectral threshold”), then (i) a spectral
gap emerges between the first two eigenvalues of D, and (ii) the spectral estimator
attains non-vanishing correlation with 8*. For § below this critical value, there is no
outlier to the right of the spectrum of D, and the spectral estimator is asymptotically
independent of 8*. This precise characterization allows to derive the optimal prepro-
cessing function that minimizes the spectral threshold [62] and also that maximizes
the overlap for a given § (see [56]). These results are extended by [33,57] to cover a
sub-sampled Haar design, consisting of a subset of columns from a uniformly random
orthogonal matrix.

The line of work above crucially relies on the design matrix X = [xl .. xn]T
being unstructured, namely i.i.d. Gaussian or rotationally-invariant with unit singu-
lar values. In contrast, design matrices occurring in practice are highly structured
and their entries exhibit significant correlations (e.g., in computational genomics [54]
and imaging [13]). In this paper, we capture the correlation and heterogeneity of
the data via general (correlated) Gaussian designs. Specifically, each covariate x;
is an i.i.d. d-dimensional zero-mean Gaussian vector with an arbitrary positive defi-
nite covariance matrix ¥/n € R?*¢. The covariance matrix  captures correlations
between covariates and the heterogeneity in their variances. General Gaussian designs
(e.g., with Toeplitz or circulant covariance structures) have been widely adopted in
high-dimensional regression models [43—45, 85, 87, 97]. However, existing results
largely focus on (penalized) maximum-likelihood estimators for linear and logistic
models [16, 17,82, 83, 100]. An asymptotic theory of spectral estimators for GLMs
with general Gaussian designs has been lacking. One significant challenge is that cur-
rent techniques for i.i.d. and Haar designs all crucially depend on their right rotational
invariance, which fails to hold for correlated covariates.
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1.1. Main results

Our main contribution is to give a precise asymptotic characterization of the overlap
between the leading eigenvector of D and the unknown parameter 8*, as well as the
locations of the top two eigenvalues of D, provided a criticality condition holds. This
is the content of Theorem 3.1, which is informally stated below.

Theorem (Informal version of Theorem 3.1). Consider the GLM given in (1.1) under
a general Gaussian design with covariance ¥ /n. Let us assume that n,d — oo with
n/d — 8 € (0,00). Let ¥ be a random variable whose law is the limiting eigen-
value distribution of X. Fix T:R — R and let B¢ denote the leading eigenvector
of the matrix D defined in (1.2). Then, there exist computable scalars F(§,%,T),
A1(6, 3, T), A2(6, 3, 7)), n(d, 3, T) such that the following holds. If F (6, >, 7)) >0,
then:

(1) the limits of the top two eigenvalues of D equal A1(8, 2, T) > 12(8, 2, T),
respectively; and

@) (=, B*) /1B I2118*]12) — (8, £, T) > 0.

The performance characterization of spectral estimators provided by our main
result opens the way to their principled optimization. In Section 3.1, we optimize
the preprocessing J~ towards minimizing the spectral threshold. A remarkable feature
of the optimal preprocessing is that it depends on the covariance matrix X of the
design only through its normalized trace. In other words, it is universally optimal
over any covariance structure with fixed trace. An important practical implication is
that to apply the optimal spectral estimator, only the normalized trace % Tr(X) needs
to be estimated, instead of the whole matrix X. In the proportional regime, the scalar
% Tr(X) can be estimated consistently using a simple plug-in estimator involving the
sample covariance matrix. In contrast, consistent estimation of X typically requires a
sample size larger than that needed by the spectral estimator itself, see Remark 3.7 for
details. Our result on the optimal spectral threshold also resolves in part a conjecture
in [59] on optimal spectral methods for rotationally invariant designs; see Section 3.2.

The criticality condition F(§, £, 7) > 0 does not depend on the data and can
be easily checked numerically. Whenever the condition holds, our results imply that
(1) the top eigenvalue is detached from the bulk of the spectrum of D, hence con-
stituting an outlier, and (ii) the spectral estimator attains strictly positive asymptotic
overlap. We conjecture that F (8, X, 7) > 0 is in fact necessary to achieve positive
overlap, see Remark 3.4.
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1.2. Technical ideas

Our goal is to characterize top eigenvector and top two eigenvalues of the matrix D
in (1.2), which can be expressed as XTTX, with X = [x1 xn]T e R4 and
T = diag(7 (y)) € R™*". From the analysis for i.i.d. Gaussian designs [55, 62], we
expect that the dependence between 7" and X will, under a suitable criticality condi-
tion, lead to an outlier eigenvalue in the spectrum of D, and when this happens, the
corresponding eigenvector (i.e., the spectral estimator) has non-zero overlap with 8*.
Note that
D=X"TX =3'2XTTX3"2,

where X € R"*4 has i.i.d. N (0, 1/n) entries. If T were independent of X, then D
would be a spiked separable covariance matrix recently studied in [28]. However,
in the GLM setting, y (and, thus, T') depends on X via the 1-dimensional projec-
tion XB*, so results from [28] cannot be applied. Indeed, to the best of our knowledge,
there is no off-the-shelf result in random matrix theory giving spectral information
on D. Existing techniques for i.i.d. Gaussian designs [55, 62] also seem difficult to
extrapolate as X is not isotropic.

To overcome these difficulties, we propose a novel proof strategy using the the-
ory of approximate message passing (AMP). Specifically, AMP refers to a family
of iterative algorithms that are specified by a sequence of “denoising” functions. A
key feature of AMP is the presence of a memory term, which debiases the iterates,
ensuring that their joint empirical distribution is asymptotically Gaussian. This in turn
allows to track their covariance structure via a low-dimensional recursion known as
state evolution [5, 8]. Our key idea is to simulate a power iteration using AMP: via a
judicious choice of denoisers, we ensure that the AMP recursion, once executed for
a sufficiently large number of steps, approximates an eigenequation of D. Then, we
leverage state evolution to:

* identify the location of the outliers in the spectrum of D, by controlling the £,-
norm of the iterates of AMP, and

» establish the limiting correlation between the top eigenvector of D and 8*, by
characterizing the inner product of the iterates with the parameter vector 8*.

The idea of using AMP to simulate an algorithm whose output is aligned with
the estimator of interest has been used to characterize the asymptotic performance
in many settings [10, 11, 32,52, 78, 83]. We highlight that, for the study of spectral
estimators for GLMs, all previous works using AMP as a proof technique [63, 66,99]
require precise knowledge of when a spectral gap emerges. For the settings considered
in those works, complete characterizations of the spectrum are available via known
results from random matrix theory. This is however not the case for our setting with
a correlated Gaussian design. In this work, we exploit random matrix theory tools for
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studying the right edge of the bulk. The fundamental novelty of our approach is that
the more challenging task of locating the spike is accomplished by AMP.

1.3. Related work

Spectral methods. Spectral methods find applications in various domains across
statistics and data science [22] and, as discussed earlier, the spectrally-initialized opti-
mization paradigm is widely employed for estimation from GLMs and their variants.
Beyond GLMs, other applications include community detection [1], clustering [70],
angular synchronization in cryo-EM [80], inference of low-rank matrices [65] and
tensors [64].

Approximate message passing. Approximate message passing algorithms were first
proposed for linear regression [31,46,48], and have since been applied to several sta-
tistical estimation problems, including parameter recovery in a GLM [4,76,77,83,86];
see the review [40] and references therein. In this paper, AMP is used solely as a tool
for analyzing spectral estimators. Following [18, 66, 68], we expect that our results
can be used to analyze general first order iterative methods (including AMP itself)
with spectral initialization. An alternative way to initialize first order methods is via
random initialization. A recent line of work [49, 51] analyzes AMP with spectral and
random initializations in the context of symmetric rank-1 matrix estimation, by estab-
lishing a non-asymptotic state evolution result. A different non-asymptotic analysis
of AMP, leveraging a leave-one-out approach, was recently put forward in [3].

Random matrix theory. The separable covariance matrix model [24,73,94] and its
spiked counterpart [28,29] are related to the matrix D that we study, but as discussed
earlier, the results in these papers cannot be applied to GLMs with correlated designs.
A related (and more general) model is considered in [53], where potential outlier
eigenvalues/eigenvectors are identified via a deterministic equivalent of the resol-
vent. However, [53] provides no explicit condition under which these outliers indeed
emerge. In comparison, our result locates both the right edge of the spectral bulk and
the outlier eigenvalue, yielding an almost sure characterization. Our approach has the
advantage of rendering itself ready for initializing iterative procedures.

Label transformation and generative exponent. The preprocessing function in our
work corresponds to the label transformation technique used in [20, 25]. In fact, the
thresholding filter in [20] is the same as the subset scheme proposed in [89], and it is
a special case of the spectral estimators considered in our paper with preprocessing
function T5%¢'(y) = 1{|y| > Kgupset}- Damian et al. [25] extend the analysis to ten-
sor estimators that provide weak recovery guarantees for n super-linear in d (i.e., not
in the proportional regime considered in this work). This handles settings where the
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optimal spectral threshold identified in Theorem 3.2 (or [62, Theorem 2]) is infinity,
which points to the need of having n that grows faster than d. The insight of [25]
is that applying the optimal preprocessing function 7 * lowers the information expo-
nent of g to its generative exponent, which equals the information exponent of the
functional composition of ¢ with 7 *.

2. Preliminaries

2.1. Generalized linear models with general Gaussian designs

Recall that the goal is to estimate the parameter vector 8* € R4 from observations
obtained via the model in (1.1). We write y = q(XB%*, ¢) € R” for the observation
vector, with the link function ¢ acting component-wise on its inputs. We make the
following assumptions on the model:

(Al) B* ~ P®4 | where P is a distribution on R with mean 0 and variance 1.

(A2) For 1 <i <mn, x; RS N (04, =/n) independent of B*, where & € R4*4
is deterministic and strictly positive definite with empirical spectral distribution® con-
verging weakly to the law of a random variable ¥ compactly supported on (0, 00).

The spectral norm || X, is uniformly bounded over d and, for all ¢ > 0, there exists
do € N such that for all d > d,

supp(ux) C supp(its) + [—¢. c]. (2.1

where px and iy, denote respectively the empirical and limiting spectral distributions
of X, supp denotes their support and “+” denotes the Minkowski sum.

(A3) ¢ =(e1,...,8,) € R" is independent of (8*, X) and has empirical distribu-
tion converging in probability in Wasserstein-2 distance to P, which is a distribution
on R with bounded second moment.

(A4) We work in the proportional regime where n,d — oo with n/d — § for
some § € (0, 00).

Assumption (Al) specifies an i.i.d. prior distribution on the unknown parame-
ter B*. We remark that our analysis carries over to 8* ~ Unif(+/d S?~!) (where S¢~1
denotes the unit sphere in dimension d), giving the same results as for P = N (0, 1).

!For a tuple of distributions P, ..., Px, P1 ® --- ® Py denotes the product distribution
with P; being its i-th marginal. If all P;’s are equal to P, we use the notation P ®k.

The empirical spectral distribution of a p x p matrix is a probability measure that assigns
weight 1/ p to a Dirac mass supported at each of the eigenvalues.
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Spectral estimators are unable to exploit any prior structure in the parameter vector,
since the eigenvectors of the spectral matrix are not a priori guaranteed to obey struc-
tures (e.g., binary, sparse or conic) that may be enjoyed by the parameter. In fact, our
results are universal with respect to P. We leave it for future work to perform parame-
ter estimation with prior information taken into account. Furthermore, our results can
be extended to the setting where 8* has non-i.i.d. prior and in particular can align with
eigenvectors of 3. See Remark 3.5 for the required modifications for such adaptation.

The general Gaussian design in assumption (A2) constitutes the major challenge
of this work. We highlight that no distributional assumption is imposed on the mat-
rix X: this in particular means that X is only left rotationally invariant in law. As
such, the model falls out of the bi-rotationally invariant ensemble which has recently
attracted a flurry of research [12, 37,59, 86, 90]. The requirement of strict positive
definiteness of 3 could be relaxed to positive semidefiniteness with the modification
in the proof that 7! is replaced with the pseudo-inverse =1 and ¥ is replaced with
a proper mixture of 8o (where §, is the Dirac delta measure at A € R) and a certain
absolutely continuous (with respect to the Lebesgue measure) probability measure.
The assumption on uniform boundedness of ||X||, is technical and is satisfied by
many natural covariance structures used in practice, such as Toeplitz or circulant. The
condition (2.1) excludes outlier eigenvalues from the spectrum of X. Otherwise, it is
known that spikes in X will result in spikes in D (see [6,27,28]). These additional
spikes are undesirable from an inference perspective, as they may be confused with
the one contributed by the unknown parameter 8.

The proportionality between parameter dimension ¢ and sample size n in assump-
tion (A4) is a natural scaling since the spectral estimator starts to be correlated with 8*
in this regime.

2.2. Spectral estimator

The spectral estimator is defined as
BP(y, X) = v1(D) € S,

where v (-) denotes the principal eigenvector. We also define random variables
— 1. = — —
(G.?) ~ N(O, E]E[E]> ® P, ¥ =qG,7), 2.2)

and an auxiliary function ,: R — R (for any a > sup supp(7 (¥))):

Q)

Ful) =~ O

(2.3)
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We make the following assumption on the preprocessing function:
(AS5) T:R — R is bounded and satisfies
sup T (y)>0. 2.4)
yesupp(Y)

Furthermore, 7 is pseudo-Lipschitz of finite order, i.e., there exist j and L such that
1T (x) =T ()| < Llx —y|(1+ |x}/~" +|y|/™") forallx, y.

The condition in (2.4) is rather mild: it is satisfied by the optimal preprocess-
ing function (see Theorem 3.2), and it is also required by prior work for ¥ = I
(see [56,62)).

Finally, we single out two technical conditions that guarantee the well-posedness
of the auxiliary quantities appearing in the statement of our main result, Theorem 3.1:

(A6) For any x # 0, let

P x - (supsupp(X)), x >0,
] x- (infsupp(X)), x <0,

where we use supp(X) to denote the support of the density function of . Then for
any x # 0, the random variable X satisfies
) a x? ¥3 ¢
lim E[ _] @ lim E[—_} 2 lim E[—_} Y. (5
y™No Ly —xX e Ly —xX)? ™o [ (y —xX)?

(A7) The function 7~ satisfies

lim _ E[F,(7)] < lim _ E[G?F (V)] € . 2.6)

a\ssup supp(7 (¥)) aysupsupp(T (¥))

Assumptions (A6) and (A7) are mild and common in related work. In fact, as-
sumption (A7) appeared in a similar form in [55, (A.5)], and it is common in the
random matrix theory literature as well (see, e.g., [30, Assumption 6 “Thickness of
the bulk edge”, p. 129]). Assumption (A6) is similar to assumption (A7), but instead
imposed on X. Note that assumptions (A6) and (A7) do not a priori impose any
dependence of 7 on ¢ or X. We remark that these two conditions can be removed,
at the price of a slightly more involved definition of such auxiliary quantities; see
Remark 3.3.
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3. Main results

Our main contribution, Theorem 3.1, gives a precise asymptotic characterization of
the overlap between the leading eigenvector of D and the unknown parameter, pro-
vided a criticality condition is satisfied. This condition ensures that D has a spectral
gap in the high-dimensional limit. Theorem 3.1 also gives asymptotic formulas for
the location of the right edge of the bulk and for the (right) outlier eigenvalue of D.
To state the results, we require some definitions. For a € (sup supp(7 (Y)), 00),
let
(supsupp(2)E[Fa(Y)], E[Fa(Y)] > 0,
s(a) == 4 (infsupp(Z))E[F,(Y)], E[F.(Y)] <O, (3.1
0, E[F.(Y)] = 0.

Note that s(a) also depends on % and 7. For a > sup supp(7 (Y)), define the function
2\2
y(a) —E[F,(Y)]Z

o(a) = L_E[Gzﬁa(?)m[

E[X] ] Vv(a) =ay(a), (32

where y(a) is an implicit function of a given by the unique solution in (s(a), 00) to

=1 [ > } (3.3)
§ Ly(a) —E[Fa(M)]Z ] '

To see existence and uniqueness of the solution, note that for any a > sup supp(7 (¥))
such that E[F,(Y)] # 0, tE[Z/(y — E[F(Y)]Z)) is a strictly decreasing (since X
is strictly positive) function of y which approaches co as y N\ s(a) (see (a) in (2.5))
and approaches 0 as y " oo. If E[F,(Y)] = 0, the solution y(a) = %E[i] > 0is
obviously unique.

Next, using v and ¢, we define two parameters a*, a° that govern the validity of
our spectral characterization. It can be shown (see Lemma E.3) that v is differentiable
and has at least one critical point. Let a® > sup supp(7 (Y)) be the largest solution to

Y'(a®) = 0. 3.4)
We then define ¢: (sup supp(7 (Y)), o0) — R by flattening ¥ to the left of a°:
¢(a) = ¢ (max{a,a}). (3.5)

Finally, let a* be the largest solution in (sup supp(7 (Y)), co) to the following equa-
tion:

¢(a*) = p(a™). (3.6)

Proposition D.1 shows that such a solution must exist. The functions ¢, v, ¢ are plotted
in Figure 1 for two examples of covariance matrix X.
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Toeplitz Circulant

6571 1r
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(a) The Toeplitz case with § = 0.2. (b) The circulant case with § = 1.5.

Figure 1. Plots of the functions ¢, 1, £: (sup supp(7 *(¥)), o0) — oo defined in (3.2) and (3.5)
with 7* obtained by truncating the optimal preprocessing and X given by the Toeplitz or cir-
culant matrices (see Section 4.1.1 for details).

Then, the limits of the top two eigenvalues of D are given by

A= é‘(a*)’ Ay = é-(aO)’ (3.7)

and the asymptotic overlap admits the following explicit expression:

5 2
(1—11)2)152[ — )3} _ _] 1/2
y(@*)—E[F+ (V)X ]) . 38)

'=( B ) >
(1 —w)E[ g mme) T Y El e s, o

where the function ,+(-) is defined in (2.3) and the ancillary parameters w;, w, are
given by:

o 5 -, 52 2
wl"aﬁﬁﬂE[(EﬁﬁG _J)f“(y)} [war—szw?ni]

1 _ 3
—E[F,«(Y)? IE[ S ] 3.9
5B O S R e G2

It 50 2
wy = gIE[fa*(Y) ]IE[ oo - 2}. (3.10)
(y(a*) — E[Fa (Y)]Z)

We note that, given a* > a°, n is well defined as the fraction under the square root
is strictly positive. This is because (i) all three expectations in (3.8) are positive
(X > 0 in assumption (A2) and y(a*) > s(a*)); (ii) w; > 0 (see Proposition G.1);
and (iii) 1 — wp > 0if a* > a° (see item (3) of Proposition D.6).

We are now ready to state our main result, whose proof is given in Section 5, with
several details deferred to Section A.
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Theorem 3.1 (Performance characterization of spectral estimator). Consider the set-
ting of Section 2 and let assumptions (A1) to (A7) hold. Suppose a* > a°. Then, the
top two eigenvalues A1(D), A>(D) of D satisfy’

plimA{(D) = Ay, lim Ay(D) = A, almost surely, (3.11)
d—o00 d—00

and A1 > A, where p-lim denotes the limit in probability. Furthermore, the limiting

overlap between the top eigenvector v1(D) and B* equals

L lwi(D). )
p-lim

=17 > 0. (3.12)
d>oo  1B*I2

Remark 3.1 (Uniqueness of a*). Recall that the parameter a* is the largest solution
in (sup supp(7 (Y)), 00) to (3.6). With additional assumptions, we can show that (3.6)
admits a unique solution; see Proposition D.3 for details. We expect that the additional
assumptions can be removed and the solution to (3.6) in (sup supp(7 (Y)), oo) always
exists and is unique.

Remark 3.2 (Consistency with isotropic covariance). We note that, by setting ¥ =14,
we recover the existing result on i.i.d. Gaussian designs (i.e., [62, Lemma 2]).

Remark 3.3 (Removing assumptions (A6) and (A7)). We first note that assump-
tion (A6) requires law(X) to have sufficiently slow decay on both the left and right
edges, and assumption (A7) requires such behavior on the right edge of law(7 (Y)).
However, both assumptions can be removed at the cost of a vanishing perturbation
of £, T around their edges in the definitions of A1, A5, n in (3.7) and (3.8). The
perturbed quantities, denoted by A, A5, 1/, are guaranteed to satisfy both assump-
tions. Hence, Theorem 3.1 ensures that the high-dimensional limits of the top two
eigenvalues and of the overlap for the perturbed matrix D’ are given by A}, A}, 7/,
respectively. An application of the Davis—Kahan theorem [26] shows that, as the per-
turbation vanishes, the top two eigenvalues and overlap obtained with D’ coincide
with those given by the unperturbed matrix D. Furthermore, since A}, A}, n" are
continuous with respect to the perturbation, their limits as the perturbation vanishes
exist. Therefore, the latter limits must equal the high-dimensional limits of the top two
eigenvalues and overlap given by the original D. The formal argument is deferred to
Section C, and by a similar argument, assumptions (A6) and (A7) in Theorem 3.2
below can be removed as well.

3For a symmetric matrix M € RP*?, we write its (real) eigenvalues as Aq(M) >
- > Ap(M) and the associated eigenvectors (normalized to have unit £>-norm) as
vi(M),...,vp(M) e sl
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Remark 3.4 (Phase transition). Our characterization of the outlier eigenvalue and
the overlap is valid given an explicit and checkable condition a* > ¢° not depending
on the data (y, X). Informally, it guarantees that the aspect ratio § exceeds a certain
threshold which leads to a spike in D. We conjecture that this condition is in fact
necessary, in the sense that otherwise the spectral estimator fails to achieve a positive
limiting overlap and the top eigenvalue sticks to the bulk of the spectrum of D. It is
easy to verify that A; = A, and n = 0 precisely when a* = ¢°, indicating a continuous
phase transition at the conjectured threshold.

Remark 3.5 (Non-i.i.d. prior). We expect that all results in the paper can be extended
to the more general setting in which * may be asymptotically aligned with the eigen-
vectors of . We describe the required modifications below. Suppose that * € R is
such that p-lim;_, o d ~![|8*||3 = 1 and the following empirical probability measure
admits a weak limit in probability:

d

vl(E) P _
2 IIﬂ E do0

The measure o records the alignment between 8* and each of the eigenvectors of X.
Note that in the special case where 8* has i.i.d. entries (with mean 0 and variance 1)
considered in the paper, o equals the law of X. This can be seen by examining the
convergence of the Stieltjes transform of . In the state evolution analysis, whenever
the limit of d T'E[(B8*, f(£)B*)] (for some f:R — R that applies to ¥ according to
functional calculus) needs to be computed, we would write

1B*112 K (B*, vi(5))>
d ; 18*112

*12
— lim ]E[”ﬁde/f(A)Q(dk)}

d—o00

.1 X x .
Jim JE[B /@] = jJim B[ 1Gs®)|

- / FO) 2(dh).

We expect that such modifications can allow us to obtain analogous results for gen-
eral 8* potentially correlated with eigenvectors of X.

Remark 3.6 (Spectrally initialized AMP). Whenever § is large enough so that our
spectral estimator becomes effective, one can analyze spectrally initialized Bayes-
AMP by running AMP with linear denoisers as designed in the paper for a large
(but constant with respect to n, d) number of steps and then transitioning to Bayes-
optimal denoisers. This corresponds to the strategy pursued in [66]. However, we note
that Bayes-AMP in general requires the knowledge of 3 which is not assumed to be
available in our paper for the design of spectral estimators.
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3.1. Optimal spectral methods for general Gaussian designs

Theorem 3.1 holds for an arbitrary function 7 subject to mild regularity conditions.
This enables the optimization of  to minimize the spectral threshold, i.e., the small-
est § such that a* > a°. The result on the optimization of the preprocessing function
is stated below and proved in Section B.

Theorem 3.2 (Optimal spectral threshold). Consider the setting of Section 2, let
assumptions (A1) to (A4), and (A6) hold, and let T be the set of functions T:R — R
satisfying assumptions (AS) and (A7). Then the following two statements hold.

(1) There exists T € T such that a* > a° holds if

S G ——G?—l -1
§> A@) = IE[§]2 (/ &) Aot i dy) . (3.13)
supp

E[Z2] EMUIGH

with p(Y | G) the conditional density of Y = q(G,¥) given G, determined
via the joint distribution in (2.2). In this case, if

" A(d) E[p(y | G_)(]E[E] G 2)] A(S) )_1
=1- +1—4/— 3.14
T ( ] E[p(y | G)] 5 ( )

is pseudo-Lipschitz of finite order, then the spectral estimator using the pre-
processing function T* achieves strictly positive limiting overlap.

2 Conversely, suppose that the functlon @ defined in (3.2) is strictly decreasing
forevery T € T. If there exists T € T such that a* > a°, then § satisfies (3.13).

Remark 3.7 (Mild dependence of 7* on X). The optimal function 7* in (3.14)
depends on X only through its first moment, or equivalently it depends on X only
through its normalized trace. We highlight that approximating 5 Tr(X) from the data
is significantly easier than approximating the whole matrix X. In fact, dl Tr(X) can be
estimated consistently via the plugin estimator % Tr(X T X). Specifically, achieving
a root mean square error of ¢ only requires n = @ (¢ ~2), which is trivially satisfied
by assumption (A4). In contrast, the sample complexity needed to estimate ¥ with
sufficient accuracy may be larger than that required by the spectral estimator itself.
Specifically, achieving an error of ¢ in spectral norm for the estimation of X via
the sufficient statistic X ' X requires n = ©(d¢2); see [74, Exercise VI.15], [92,
Section 24.2]. Note that, to estimate X, n scales linearly with d and the proportionality
constant may be larger than the critical value of § in the right-hand side of (3.13);
instead, to estimate ler(E), n does not depend on d and, hence, the estimate is
consistent for all § > 0.
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Remark 3.8 (Sufficient condition for 7* being pseudo-Lipschitz). The assumption
in Theorem 3.2 that 7* is pseudo-Lipschitz of finite order is satisfied by models
that contain an additive component of Gaussian noise (regardless of the variance of
the Gaussian noise). This requirement is mild, and common in the related literature;
see, e.g., [4]. Specifically, consider the GLM y = §(X8*,¢’) + ¢”, where g(X8*, ')
satisfies assumptions (A1) to (A4), and (A6) and is independent of &” ~ N (0,,,021},)
(for some o > 0). Then, one can verify that

E[p(y 1 6)(51567)]
E[p(y | G)]

and hence 7 *(y), is pseudo-Lipschitz of finite order.

Remark 3.9 (Monotonicity of ¢). The second part of Theorem 3.2 assumes the
monotonicity of ¢. One readily checks that this holds when = =1 (i.e., & = I).
Furthermore, in Section D.1, we prove that ¢ is strictly decreasing for non-negative 5~
(Proposition D.2) and give numerical evidence that the same result holds for general 7
(Remark D.1).

3.2. Optimal spectral methods for rotationally invariant designs

The inequality (3.13) can be interpreted as giving the optimal spectral threshold, i.e.,
the minimal § above which positive overlap is achievable by some spectral estimator.
Furthermore, this threshold is attained by 7* in (3.14). As § gets close to the spec-
tral threshold A(8), 7* approaches the following function (obtained by replacing

VA(S)/8 in T* with 1):

T ) = 1— Elp(y | G)]

E[p(v | ) (5562

When X = [;, 7* minimizes the spectral threshold [62] and maximizes the overlap
for any § above that threshold [56]. Supported by evidence from statistical physics,
it is conjectured in [59, Conjecture 2] that the optimality to hold for the more gen-
eral ensemble of right rotationally invariant designs. Although our design X is only
left rotationally invariant, if the unknown parameter is Gaussian (8* ~ N (04, 7))
or uniform on the sphere (f* ~ Unif(\/g S9-1Y), the model in (1.1) is equivalent
to one with a design that is also right rotationally invariant. Therefore, Theorem 3.2
proves [59, Conjecture 2] for a class of spectral distributions of X — specifically, those
given by the multiplicative free convolution of the Marchenko—Pastur law with a mea-
sure compactly supported on (0, co). Formally, with the following two assumptions
in place of assumptions (A1) and (A2), Theorem 3.2 implies Corollary 3.3:
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(A8) B* ~ Unif(v/d S4~1) or B* ~ N (04, 12).

(A9) X = [xl xn]T € R4 can be written as X = BQT, with the rows
of B € R4 satisfying assumption (A2) and Q ~ Haar(Q(d)) independent of every-
thing else, where O (d) is the orthogonal group in dimension 4.

Corollary 3.3. Consider the setting of Section 2 and let assumptions (A3), (A4),
(A6), (A8), and (A9) hold. Then, the conclusions of Theorem 3.2 hold.

Proof. By assumption (A9), X = BX'/207, where B € R"*¢ has i.i.d. N(0,1/n)
entries and ¥ € R4 is a covariance matrix satisfying assumption (A2). Let
D = X " diag(T (q(XB*.))) X
= 03'2B7 diag(T(¢(BZ'2Q T p*,£))) B=1/20T,
D = ='2B T diag(T (¢(BEV2Q 7 B* ¢))) BXV/?,
D = 3V2B7 diag(T (¢(BZ'/?B*,¢))) BT /2.

Then, we have

[(vi(D), B*)] _ [(Qui(D), %)l I(v1(l3),QT/3*)|g|<v1(5),l3*)|.

18* 12 18*112 107 B*12 18*112
The first equality uses that, if (A, v) is an eigenpair of D, then (1, Qv) is an eigen-
pair of QDQT for O € O(d). The second equality holds as Q is orthogonal. The
third passage follows since by assumption (A8), 8* L QT B* for Q € Haar(O(d))
independent of 5*. Now Theorem 3.2 applies to the rightmost side of (3.15), which
completes the proof. |

(3.15)

4. Numerical experiments

We consider noiseless phase retrieval (y; = |{x;, 8*)|) in Section 4.1 and Poisson
regression (y; ~ Pois({x;, *)?)) in Section 4.2, and evaluate the performance of the
spectral estimator with different preprocessing functions. In all plots, “sim” and “thy”
in legends denote simulation results and theoretical predictions, respectively.

4.1. Phase retrieval

4.1.1. Synthetic data. For all the synthetic experiments, we take the parameter 8* ~
Unif(+/d S4~') and d = 2000. We plot the overlap between the spectral estimator
and B*, as a function of the aspect ratio §. Each value is computed from 10 i.i.d.
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trials, the error bar is at 1 standard deviation, and the corresponding theoretical predic-
tions are continuous lines with the same color. We consider three types of covariance
matrix X:

(i) Toeplitz covariance, ¥; j = p'i_f I for1 <i, Jj <d with p = 0.9, as considered
in [97, Section 4] and [45, Section 5.3].

(ii) Circulant covariance, X; j = cofori = j, %; j =cjfori +1<j <i +/¢
andi +d —{ < j <i+d—1,%;; =0otherwise, withco = 1,¢; =0.1,£ = 17,
as considered in [44, Section F] and [43, Section 5.1].

(iii) Identity covariance, ¥ = 1.
We compare spectral estimators using different preprocessing functions:

(i) The optimal choice in (3.14) with truncation, i.e.,
T (y) = max{l —E[Z]/(6y?), —K*},

with K, = 10. The truncation ensures that the preprocessing is bounded as required
by our theory and, by taking K, sufficiently large, it does not affect performance.

(i1) The trimming scheme [21], i.e.,

.Ttrim(y) — SyZ/E[f]]jl{\/gb;V\/E[i] < Ktrim}’

with Kyim = /7.
(iii) The subset scheme [89], i.e.,

T (y) = H{V3y|/ VEIE] = Kupser

with Kgbset = +/2. The values of both Kyim and Kpser are taken from [62, Sec-
tion 7.1] where they are optimized to yield the smallest spectral threshold for ¥ = 1.

(iv) The identity function with truncation, i.e.,

Ti(y) = min{max{«/gy/ \/ﬁ, —Kid}, Kid},

with Kj4 equal to 3.5 and 3 for circulant and Toeplitz covariances, respectively. Empir-
ically, the performance under these choices of Kjyq does not differ much from avoiding
the truncation, i.e., Kjg = oo.

We also compare the performance with a whitened spectral estimator, which re-
quires knowledge of the covariance ¥. The whitened spectral estimator is given by

prec = 720y (D.), 4.1)
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Toeplitz Toeplitz (opt vs. whitened)

0.8 e I
I opt, sim 3
—— opt, thy
% trfm, sim % 0.6
= trim, thy =
g { subset, sim g
°© —— subset, thy © 04
(whitened) opt, sim| .
(whitened) opt, thy § opt, sim
0.2 ——opt, thy

(whitened) opt, sim
(whitened) opt, thy

0¢
0 5 10 15
)
Circulant Circulant (opt vs. whitened)
1 0.995
0.8 § opLsim 0.99
— opt, thy
% 0.6 tr?m, sli1m %
— trim, thy =
§ f subset, sim § 0.985
© 04 —— subset, thy ©
{ (whitened) opt, sim| § opt, sim
—— (whitened) opt, thy 0.98 ——opt, thy
0.2 f (whitened) opt, si
—— (whitened) opt, thy|
o2 AL 0.975
0 1 2 3 4 5 8 10 12 14
) )

Figure 2. Overlap of spectral estimators with different preprocessing functions for noiseless
phase retrieval when the covariate vectors are independent zero-mean Gaussians with Toeplitz
(top row) and circulant (bottom row) covariance.

where D. := (X=7Y/2)T diag(7 (y))(X £~1/2). This estimator uses % to whiten X
and computes the principal eigenvector of D, obtained via the decorrelated covari-
ates X ©71/2. As the eigenvector can be thought of as an estimate of £1/28* it is
left-multiplied by /2 to produce an estimate of *. Formal results and proofs
on B:"° are deferred to Section F.

Figure 2 shows that our proposed optimal spectral estimator significantly out-
performs the trimming/subset schemes for both Toeplitz (top) and circular (bottom)
covariances. Furthermore, in a large interval of §, the performance of the whitened
spectral estimator in (4.1) (which requires ) is significantly worse than that of the
standard spectral estimator (which does not require ), even though optimal prepro-
cessing functions are employed for both.

In Figure 3, the plots for Toeplitz, circulant and identity covariance are super-
imposed. An interesting observation is that there is no universally best covariance
structure, even if the optimal preprocessing function with respect to the correspond-
ing covariance is adopted.
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Toeplitz/Circulant/Identity Low § Moderate § High §
1 0.45 L
0.65 0.9
0.8 04 06 0.85
% 2.0.35 o o 0.8
0.6 5] < <
= = = +0.75
5 5 03 50.55 5 07
= 04 = = = U
=) © 0.25 o 05 ©0.65
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02 0.55
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0 1 2 3 4 5 02 04 06 08 1 12 0.8 1 12 14 16 2 25 3 35
8 . . § §
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Figure 3. Overlap of spectral estimators with optimal preprocessing function for noise-
less phase retrieval when the covariate vectors are independent zero-mean Gaussians with
Toeplitz/circulant/identity covariance. The right three panels respectively zoom into regimes
where § takes low, moderate and high values to demonstrate that in this particular setting, any
one of the three types of covariance structures can attain the highest overlap.

4.1.2. Real data. We also demonstrate the advantage of the optimal preprocessing
given by our theory for data sets popular in quantitative genetics and computational
imaging.

Specifically, the design matrices for the first two plots of Figure 4 are obtained
from two GTEx data sets “skin sun exposed lower leg” (56200 x 701) and “muscle
skeletal” (56200 x 803) [54]. These matrices record gene counts and therefore contain
non-negative entries. We preprocess them as follows: (i) remove all-0 rows, (ii) build
a matrix by sequentially including each row only if it has an overlap smaller than 0.3
with all existing rows, and (iii) center and normalize each row such that it has zero
mean and unit variance. All these operations are typical in genetic studies; see, e.g.,
the widely used tool set PLINK [19]. The unknown parameter vector is given by
B* ~ Unif(+/d S4~1) for d € {701, 803}. For each §, the design matrix is formed
by the first |d§]| rows of the above preprocessed matrix. The value of overlap for
each § is computed from 100 i.i.d. trials where the randomness is only over 8*, and
the error bar is reported at 1 standard deviation. The truncation levels for different
preprocessing functions are chosen as follows: for 7*, we set K, = 100; for 7™ and
Fsubset for each §, we choose Kiim and Kgypser in §0.25i : 1 < i < 40} to maximize
the respective overlaps (averaged over 100 trials); for 71 we do not truncate, i.e.,
Kiq = oo. Despite the advantage due to the adaptive choice of the truncation level for
the trimming/subset scheme, the preprocessing we propose still performs vastly better
than all alternatives.

The design matrices for the last two plots of Figure 4 follow a coded diffrac-
tion pattern [13], i.e., X is obtained by stacking in its rows the matrices F DS,
FD,S,...,FDgS.Here,6 € Z>1, F € R4*4 ig a Discrete Fourier Transform matrix,
S e R4xd jg diagonal containing i.i.d. uniformly random signs, and Dy, D, ..., Dg €
C4xd gre diagonal with elements following one of these two distributions:
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GTEXx skin sun exposed lower leg ~ GTEx muscle skeletal Image, CDP uniform Image, CDP octanary

—f— Optimal —§— Trimming —§— Subset Identity

Figure 4. Overlap of spectral estimators for noiseless phase retrieval when the design matrix
is obtained from two Genotype-Tissue Expression (GTEx) data sets (first two plots) and two
coded diffraction patterns (CDP) (last two plots).

(i) uniform modulation, (Dy);; "< Unif([—10, 10]), and
(ii) octanary modulation [13, (1.9)], (Dy); i law(lj) with D = Dy D>,

— 1 — 4 1
law(D,) = 1(51 4+86-1+6-i4+36) and law(D,) = 581/“/5 + 38\/5

For fractional § € (0, 00), we first construct a matrix of size [§]d x d and then ran-
domly subsample |dd | — |8]d rows from the last block F'Dr51S to obtain a design
matrix of size |8d | x d.

The parameter 8* in the last two plots of Figure 4 is a 75 x 64 RGB image of the
painting “Girl with a Pearl Earring”. The 3 color bands give 3 matrices in [0,256]7°%64
The parameter vectors B3, B, B €S4~! (with d = 75 x 64 = 4800) are then obtained
by vectorizing, centering, and normalizing each of these matrices. For each &, we
have 5 i.i.d. trials where the randomness is only over X. In each trial, we compute
3 spectral estimators using the same X and observations ygr, Vg, yg € R" generated
from Bg, B, Bg respectively. We report the mean of 5 x 3 = 15 overlaps for each §
with error bar at 1 standard deviation. The truncation levels for different preprocess-
ing functions are K, = 10, Kyj, = V7, Kapset = ~/2, Kig = oo. For all data sets,
our proposed preprocessing (optimal in red) outperforms previous heuristic choices
(trimming [21] in black, subset [89] in blue, and identity in green).

4.2. Poisson regression

We also consider the Poisson regression model y; ~ Pois((x;, 8*)?), where 8* ~
Unif(+/d S?=1) and d = 2000. The covariance matrix ¥ is taken to be Toeplitz or
circulant with the same parameters as in Section 4.1.1. We again consider 3 prepro-
cessing functions:

(i) the optimal one T*(y) = (y — E[Z]/8)/(y + 1/2),
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Toeplitz Circulant
0.7
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Figure 5. Overlap of spectral estimators with different preprocessing functions for Poisson
regression with correlated Gaussian design with Toeplitz (left panel) and circulant (right panel)
covariance.

(ii) the trimming function 7™ (y) = y1{|y| < Kyims}» and
(iii) the subset function 7% (y) = 1{|y| > Kgupser,6 }-

For each 8, Kisim,s, Ksubser,s are optimized over [0.5, 50], [0.5, 20], respectively, so as to
maximize the overlap. Note that since y; is Z>¢-valued, it suffices to consider Kyim s,
Kubset,s of the form K + 1/2 for an integer K. The numerical results are shown in
Figure 5.

5. Proof of Theorem 3.1

5.1. Overview of the argument

The outlier location and asymptotic overlap in Theorem 3.1 are derived using a vari-
ant of AMP for GLMs, known as generalized approximate message passing (GAMP)
([76], [40, Section 4]). An instance of GAMP is specified by two sequences of denois-
ing functions, (g;);>0 and ( f;+1)¢>0. Starting with initialization #~! = 0,, € R” and
some 7% € RY, for r > 0 the GAMP iterates are computed as:

u' = Xv' bt w0 =gl y),

1 1~ 0ge(u's y)i
= — (1. t; = — ________:_____’
= ivg,(u';y) ”;:1 ol
t+1 v 1t ~t ~t+1 t+1 (5'1)
VT =X -0, VT = fi (0T,
d
1 Z Afrr1 (0t

t+1 ’
n 2’]).
i=1 i

L.
b1 = ;le frar1 @) =
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where we recall X = X ¥ 1/2. To handle = I, the denoising functions g,: R” x
R” — R" and f;41:R¢ — R need to be non-separable, i.e., they cannot be decom-
posed in terms of functions acting component-wise on the vector inputs.

AMP algorithms come with an associated deterministic scalar recursion called
state evolution which describes the limiting distribution (as d — oc0) of the AMP iter-
ates u’ € R” and v’ ! € R¥ using a collection of Gaussian vectors. The covariance
structure of these Gaussians admits a succinct representation which can be recur-
sively tracked via the state evolution. The state evolution result for GAMP with non-
separable denoisers is not immediately available — we prove it by reducing such a
GAMP to a general family of abstract AMP algorithms introduced in [42] for which
a state evolution has been established. This is detailed in Section 5.2. We note that
state evolution results for an abstract AMP similar to those in [42] can also be found
in [81].

The key idea is to design a GAMP algorithm that simulates the power iteration
v!*tl = Dv? /|| Dv!||,, via a careful choice of denoising functions g, and f;4;. To
this end, we set

g’ y) = Fu', 1>0,

where F = diag(¥ (y)) € R™*", and the functions ¥, (f;+1):>0 are specified later.
With this choice for g;, we have

1 ¢ _
==Y F) S EF@)] =c. 120
n i=1

where we recall that Y is defined in (2.2). Thus, the GAMP iteration, with c; replaced
with its high-dimensional limit, becomes

u' =X f,(0") = b, Fu'"', o't = XTFul —cf,(v").

We show in Section 5.5 that u?, v’ ™1, b,, f;11 converge in probability as ¢ — oo, i.e.,
there exist v € R", v € R4, b € R and f:Rd x R4 — R4 such that

t+1

1
lim lim —|u’ —u|, =0, — vl =0,

t—>00 n—>00 ﬁ tllgolo dlin;o ﬁ”v
. . . . . 1 t+1 _
Jim, Jim [b —p| =0, Jim lim |l frs1 0~ )2 = 0.
Thus, we obtain
u=2Xf)—bFu, v=X'Fu—cf().

The first equation for u implies

u= (I, +bF)'X f(v).
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1/2

Substituting this into the equation for v and multiplying both sides by X'/<, we have

220+ ef(v) = BV2XTF(U, + bF) ' XSV2E712 £ (v). (5.2)

At this point, we consider the following choice of ¥ and f:

70

0=

f)=(ylg—cZ) "o
for some a, y € R to be specified. Then, (5.2) becomes

512 () = —SV2PRTTREV2E12 £(0) = DRV f(0),
ay ay

which is an eigenequation of D with eigenvalue ay =: A; and eigenvector (possibly
scaled by a constant) 712 f(v) = ~V2(yI; — ¢X)~! Tv. Assuming a spectral gap,
we expect that A; equals the limiting value of A1 (D) and £~1/2 f(v) is asymptotically
aligned with v (D).

It remains to pick a, y which are in principle free parameters. Our choice is
motivated by the fixed points of state evolution characterized in Section 5.3, and it
simplifies the derivations. Specifically, the limiting Onsager coefficient is given by

d d <
1 Bf(v), 1 -1 n—oo 1 b
b=-— = - Ij—cX) 'Y).. -E = |.
n ; av; n ;((V a=C%) )’=’ § Ly—cX
Then, we choose (a, ) to satisfy
. .1 tH1V 2 _
Jim Lim gllfm(v Wz=1, b=1 (5.3)

The constraint on || f;+1(v"*1)||3 normalizes the GAMP iterate so that, as ¢ grows, its
norm does not blow up or vanish. Using state evolution and the characterization of its
fixed points, we can show that the conditions (5.3) can be written as

(et )2 )
e LNem” oty —Er @@ -TanEl o,

e T
1=-E — —|.
§ Ly —E[FX¥)/(a—TX)]=
Proposition D.4 shows that in the presence of a spectral gap, (5.4) is equivalent to
C(a) = ¢(a), with @, ¢ defined in (3.2) and (3.5). Thus, from (3.6), we have that

(a,y) = (a*,y(a")).
With the above choice of denoisers, the GAMP iteration can be expressed as

. D .,
pitl = prowe) o'+ e, (5.5)
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*1 and error term 7. We show in Section A.5 that &’

for some auxiliary iterate 0*
asymptotically vanishes as ¢ grows. Now, if e is zero, (5.5) is exactly a power itera-
tion for M := (a*y(a*))~' D. The convergence of this power iteration to the leading
eigenvector of M (or, equivalently, of D) crucially relies on the existence of a spectral
gap, i.e., on the fact that limg_, oo A1 (D) > limg o0 A2(D).

To pinpoint when a spectral gap exists, we establish the limiting value of A,(D).
In Section 5.4, we prove that A, (D) converges to A, := a®y(a®), where a° is given as
in (3.4). This is obtained by interlacing the eigenvalues of D with those of a “decou-
pled” matrix D in which X is replaced with an i.i.d. copy X independent of T.
The support of the limiting spectral distribution of D is characterized in [24, Sec-
tion 3], when T is positive semidefinite. By extending this analysis, we deduce the
desired characterization of A,. One technical challenge is that, when T is not positive
semidefinite, the roles of X and T are not interchangeable in determining A, whereas
in [24] this symmetry simplifies the arguments.

Given the normalization in (5.3), the largest eigenvalue of M converges to 1 and,
thus, limg 00 A1(D) = A1 := a™y(a*). Hence, the criticality condition for the exis-
tence of a spectral gap reads a*y(a*) > a®y(a®). This is equivalent to a* > a°, as
adopted in Theorem 3.1, by the monotonicity properties of the function i (a) = ay(a)
in (3.2) (see Lemma E.1).

To formalize the above reasoning, assume a* > a° and execute (5.5) for ¢’ steps
to amplify the spectral gap:

o~ MUY, (5.6)

where the error terms can be neglected by taking ¢ sufficiently large (and also much
larger than ¢’). Now, we look at the rescaled norms || - ||2/+/d of both sides of (5.6).
As a result of the GAMP state evolution, the rescaled norm of the left-hand side
57+ ||/~/d can be accurately determined in the high-dimensional limit. Further-
more, it converges to an explicit strictly positive constant in the large ¢ limit, by
convergence of state evolution. Thus, inspecting the right-hand side of (5.6) allows
us to conclude that A1 (M) must be 1 in the high-dimensional limit. Indeed, if that is
not the case, |M" 9" ||/~/d would be either amplified or shrunk geometrically as ¢’
grows, violating the equality in (5.6). At this point, we have

lim Al(D) = /\1, lim /\2(D) = 12,
d—00 d—o00

and that ¥’ is asymptotically aligned with the top eigenvector vy (D), provided a* > a°
Then, the limiting overlap between S* and vy(D) is the same as that between §*
and v’, which is again derived using state evolution.

The rest of this section is organized as follows: Section 5.2 presents the state
evolution of GAMP with non-separable denoisers, Section 5.3 establishes its fixed
points when GAMP simulates a power iteration, Section 5.4 characterizes the right
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edge of the bulk of D, and Section 5.5 puts everything together concluding the proof
of Theorem 3.1.

5.2. State evolution of GAMP with non-separable denoisers

In order to precisely state the state evolution result for GAMP, we require the notion
of pseudo-Lipschitz functions with matrix-valued inputs and outputs.

Definition 5.1 (Pseudo-Lipschitz functions). A function : R¥*™ — R&™ is called
pseudo-Lipschitz of order j if there exists L such that

%nh(x) —hO)r < %nx e

. [1 +(lele) ™+ (%nqu)H] 57

for every x, y € RF*m,

We will consider sequences of functions A;: RKi*™ — R4>*™ indexed by i — 0o
though the index i is often not written explicitly. We call a sequence of functions
(hi:Rkixm s RE>Xmy, uniformly pseudo-Lipschitz of order j if there exists a con-
stant L such that for every i > 1, (5.7) holds. Note that L is a constant as i — oo.

Define the random vectors

B* ~ P®d, %* — 21/2%*’
1 = (5.8)
(G, ) ~ ,/v(o,,, EIE[E]I,,) ® PO, Y =q(G.e).

If B* ~ Unif(v/d S~1), P should be taken to be N (0, 1).
We further impose the following assumptions which guarantee the existence and
finiteness of various state evolution parameters:

(A10) The initializer 7° € R? is independent of X. Furthermore,
N N
p-lim — 27>
d—o0

exists and is finite. There exists a uniformly pseudo-Lipschitz function fy: R — R4
of order 1 such that

Jim —E[(fo(fB ), fo(B%)] Sp-limélli?"llé,

d—o0

and for every uniformly pseudo-Lipschitz i: R¢ — R of finite order,

p-lim3l<v h(B)) = Jim [(fo(?B ), h(B"))];

d—o0
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in particular, limits on both sides of the above two displayed equations exist and are
finite. Here, we have set f* = £1/28* and we recall that 8* ~ P®¢ from assump-
tion (Al). Let ¥ € R, 6y € R>¢. Forany ¢t > 0,

Jim —E[(fo(?B ), i1 (TB* + 3y Wy))]

exists and is finite, where Wy ~ N (04, 1) is independent of B*.
(All1) LetV € R, and T € R?*2 be positive definite. For s, > 0,

lim SE[{fo1 0 + F), i 08 + F)]

d—o00

exists and is finite, where
(B* (N, N")) ~ N (04, ) @ N (020, T ® I7).

Let L€ Rxp, and S € R2*2 be positive definite. For any s,7 > 0,

lim l]E[(gs(G—l—M Y).g:(G + M'; Y))]

n—00 1
dim_ -~ E[(dive 8000.9(8.€)) g1 7 g=G.0e]
exist and are finite, where
(G.e. M, M') ~ N0y, i%1,) @ PE" @ N (020, S ® I,) and Y = q(G,¢).

The state evolution result — formally stated below — asserts that, for each t > 0,
in the large n limit, the joint distributions of the AMP iterates (8*, v, v2, ..., v/ +1)
and (g = XB*, u® u', ..., u’) converge to the laws of (B*, Vi, Vs, ..., Vi41) and
(G,Uy,Uy,...,U;), respectively. For t >0, the random vectors U; eR” and V; 41 € R4
are defined as:

U= w:G+ouWuye, Vigr= Xi+1B* + ovi+1Wrest, (5.9

where Wy s ~ N (0p, I,,) is independent of (G, €), and Wy ;41 ~ N (04, [5) is inde-
pendent of B*. The constants s, Ous, X¢+1, Ov,r+1 are recursively defined, starting
from

1
Mo = B[] Jim ;E[CB* fo(B* N,
1 B[S (5.10)
020 = plim (@, 7%) - 222

n—oo N 8
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For t > 0, we have

5§ 1 N
Xt+1 = ﬁnll)ngo ;E[(G,gt(UﬁY))] — Mt nll>n;o ;E[leU, gz(Ut;Y)],

| (5.11)
Vi1 = Jim ~E[(&(Ur:Y). g(Us: )],
and 3
5] Jim ;EU% [ Ver))]. .
> .1 E[Z] , '
0y 1 = lim ;E[(ft(vt-i-l)’ fiVesn))] = —5 M

The two sequences of random vectors (Wy ;) >0 and (Wy s 41) >0, are each jointly
Gaussian with the following laws:

ou,oWu,0 ov,1 Wy
ovaWua ova2Wy

. NN(O(I—Fl)ncht@In)a : NN(0(1+1)d7‘Ijt ®Id),
ou:Wu, ov,+1 Wy 41

(5.13)
where ®,, ¥, € RCTDXC+D e matrices with entries:
1o o EX
(@)1, = p-lim —(3°,3°) — [ ]ué,

n—oo N 8

. 1 Gk Yk Yk
(P)1,541 = lim —E[(fo(B*) — uoB*, fs(Vy) — nsB*)] forl <s <1,

n—o0o 1
(5.14)
I ,
(P)r+1,5+1 = nlgrolo _E[<fr(V)_,Uvr?B fs(V)_PLs )] forl <rs=<t,
(5.15)
(Ye)r+1,54+1 = nlgrolo _E[<gr(Ur7 Y), gs(Us; Y))] forO<rs=<t.
(5.16)

Note that forr =5, (V) r41,,41 = ‘712/,r+1 is consistent with (5.11) and

(®)r+1,,+1 = lim lE[(fr(V)—erEB* fr(V)_,ur )]

= nlggo ;E[(fr(vr)7 fr(Vr)>]
=2yt lim CE[(f (%), 8] + 2 Jim L E[(B*,§7)]

E[E]+ LEE] _

o1
= nll)ngo ;]E[(fr(vr)’ fr(Vr)>] 2/’Lr 8 I’Lr 5 - UU,r
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is consistent with (5.12), where the last line above follows from the definition of w,
in (5.12). As (G, Wy,. ..., Wy,) are jointly Gaussian by (5.13), their covariance
structure (and therefore that of (G, Uy, ..., U;) in view of (5.9)) is completely deter-
mined by the constants defined in (5.10), (5.11), (5.12), (5.14), and (5.15). Simi-
larly (Vi — 1B*, ..., Vig1 — f1418%) = (ova Wy, .. -+ 0V,1+1Wy,r41) are jointly
Gaussian by (5.9) and (5.13), hence the covariance structure of (8*, V1,..., Vi41) is
completely determined by the constants in (5.11) and (5.16).

We are now ready to present the state evolution result. Its proof, deferred to Sec-
tion A.1, reduces the GAMP iteration in (5.1) to a family of abstract AMP algorithms
introduced in [42] for which a general state evolution result has been established. In
the abstract AMP algorithm, iterates are associated with the edges of a given directed
graph, and the denoising functions are allowed to be non-separable, as needed in our
case.

Proposition 5.1 (State evolution). Consider the GLM in Section 2.1 subject to ass-
umptions (A1) to (A4) and the GAMP iteration in (5.1). Let initializers i~ ' = 0,
and 7° € R? satisfy assumption (A10). For every t > 0, let (g;: R*" — R,
and (fi41:R? — Rd)dzl be uniformly pseudo-Lipschitz functions of finite constant
order subject to assumption (Al11). For any t > 0, let (hy: RPC+2) R),>1 and
(hy: REC+2) R)g>1 be two sequences of uniformly pseudo-Lipschitz test functions
of finite order. Then,

p-lim 7y (g, u® u', ... u") —E[h1(G. Uy, Uy, ..., U] =0,
n—>oo

- - (5.17)
p-limhy(B* v v, ') —E[ha(B*. Vi, Va. ... . Vig1)] = 0,

d—o00

where (Us, Vi41) >0 are given in (5.9).

5.3. GAMP as a power method and its fixed points

We now formalize the argument in Section 5.1. Recall the definition of Y in (2.2)
and s(-) in (3.1). Let

A = {(a,)/) ca > supsupp(T(Y)),y > s(a)}

and (a*, y(a*)) € + be defined through (3.6), where the largest solution a¢* is taken.
For convenience, for the rest of the paper, we will use the shorthand

y =y, y°=y@®). (5.18)
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If a* > a® (where a° is defined in (3.4)), Proposition D.4 shows that this pair of
equations is equivalent to (5.4). Furthermore, let

Ful) = s a> supsupp(T (7). 510

F = diag(Fo+(y)), ¢ = E[F(Y)].

Let us initialize the iteration in (5.1) with %! = 0,, and 7° € R4 defined in (5.30),
and for subsequent iterates, set

g y)=Fu',  fip1(') = (g lg —eX) IS0 >0 (5.20)

Recall from assumptlon (AS) that 7: R — R is bounded and pseudo-Lipschitz of
finite order. Since a* > sup supp(7(Y)), Fo+: R — R is also bounded and pseudo-
Lipschitz of finite order. Therefore, for every t > 0, (g;:R” x R" — R"),>; is a
sequence of uniformly pseudo-Lipschitz functions of finite order in both arguments.
The parameter y;4+1 € (s(a*), 00) is such that

1
p-lim z||ft+1(vt+1)”2 = Jim — E[l fer1(Ve+)3] = (5.21)
d—o00

for t > 0. The first equality above follows from the state evolution result in Proposi-
tion 5.1. For notational convenience, let

Bip1 = (yip1lg — c)7' . (5.22)

Since y;41 > s(a*) and || 2|5 is uniformly bounded by assumption (A2), || B;+1 |2 is
uniformly bounded. Therefore for every t > 0, (f;41:R? — ]Rd)dzl is a sequence
of pseudo-Lipschitz functions of order 1.

With the above definitions, the Onsager coefficients become

1 d
¢ = r—lTF(F), biy1 = ;TT(BH—I)» (5.23)

for every t > 0. Furthermore, the state evolution in (5.12) and (5.11) specializes to the
following recursion

e = lim —]E[(% )T B, V],

[E] n—>oo n
E[T
of, = lim —IE[VTBTB,V,] EX] 2
’ "*8°°" | 5 (5.24)
T G v
i1 = B[] nlgl;o;E[G diag(Fa (V) Ut ] — i E[Fax (V)]

.1 .
0p 11 = lim —E[U," diag(Fa=(Y))*Uy].

n—-oon
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Let

>3 2
Z1 ::E[ ——= _2}, Zy ::E[ ——= _2}. (5.25)
(r* — E[Fq=(Y)]Z) (r* — E[Fax(Y)]D)
Note that z1, z5 > 0. Recalling wq, w, from (3.9), and (3.10), define

= — oy = \/ - (5.26)
r= (1 —w2)z1 + wizz’ Y (1 —wp)z1 + wizz’ '
1 2 1—
o= — E[ _ _] W2 : (5.27)
E[X] Ly*-E[Fe«MIZ]Y (I —w2)z1 + wiz2
o 1/6
v (I —wz)zy + wiz2

E 3 L g 32 2
' ( [(V* —E[f"a*(f)]i)z] E[5] [V* —lE[&"a*(?)]E]

I 52 o 52 2\ 12
—E — E[G*Fu+(Y)“]E — .
TEEP [(y*—Em*(Y)]E)Z] (G Far ()] [y*—JEm*(Y)lz])

(5.28)

Note that all these quantities are well defined provided a* > a°. Indeed, w; > 0 and
1 — wy, > 0 under the latter condition. Also, the second factor in the definition of oy
is positive since the sum of the first two terms is non-negative by Cauchy—Schwarz
and the third term is positive. Define also y# as the unique solution in (s(a*), 00) to

1=l]E[37*()7)2]E[ x? — } (5.29)
§ ¢ (yf = E[F(V)]2)2 ] '

The well-posedness of y# follows the same reasoning after (3.3).

We now characterize the fixed points of state evolution and show that the recursion
can be initialized precisely at the fixed point. The proof of the next two lemmas are
obtained via a series of manipulations which are deferred to Sections A.2 and A.3.

Lemma 5.2 (Fixed points of state evolution). The quintuple

(MnUU,t, Xt+1,0Vt+1, Yi+1)

in the recursion given by (5.24) and (5.21) has 3 fixed points FP,,FP_,FPy € R>:

FP"F = (/’L’O—U? X’O—V’ V*)’ FP_ = (_l’L7O—U9_Xvo—V7 V*)’

L g 52 ‘1/2n
FPO‘(O’%’O’ [(yﬂ—E%(?)}i)z} ’y)’

where the parameters on the right are given in (5.18) and (5.26) to (5.29).
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We initialize the AMP iteration with

il =0, 7°:=pp*+1-u2E[E]w eR?, (5.30)

where we have set 8* = S1/28* w ~ N (04, ;) is independent of everything else
and p is given in (5.27). This choice is valid since from the proof of Lemma 5.3 one
can deduce that 1 — u2E[X] > 0. The scaling ensures that plimg_, o [7°(3/d = 1
almost surely. According to (5.10), (5.30) gives that the state evolution parameters are
initialized as

N
Mo = — = lim —FE (%*,%*) =M,
1.0 0. E[Z] 1 E[Z] '
0G0 = lz_lfofil ;(UO, %) — TM% =5 TMZ'

Lemma 5.3 (State evolution stays put). Initialized with (5.31) above, the parameters
(ItsOUL, X141, 0Vi+1) >0 Of the state evolution recursion in (5.24) and (5.21) stay
at the initialization, that is, for every t > 0:

*
Mt = MK, OyUr =0U, Xt+1 = Xs OVgi+1 =0V, VYi+1 =YV ,

where the right-hand sides are defined in (5.18) and (5.26) to (5.28).

5.4. Right edge of the bulk of D
Let

D ==2XTTXS'2 with T = diag(7 () = diag(T (¢(X=V2B*.¢))), (5.32)

and X € R hasiid N (0, 1/n) entries, independent of 7. One should think of D
as a “decoupled” version of D in the sense that X and T are independent and no out-
lier eigenvalue is expected to show up in the spectrum of D. This is to be contrasted
with D = £Y/2XTT X $1/2 in which T depends on X (see (5.32)), and the top eigen-
value of D will be detached from the bulk of the spectrum provided that a* > a°.
Given the above intuition, one expects that the behavior of the right edge of the
bulk of D resembles that of D. This is made formal in the following lemma, which is
proved in Section A.4. The idea is to first show that )L3(ﬁ) < A(D) < Aq (13) using
the variational representation of eigenvalues, and then use [38, 98] to show that both
A1(D) and A3(D) converge to the right edge of the bulk of D. We comment on the
second step. Building on the almost sure weak convergence result of the empirical
spectral distribution of D [98, Theorem 1.2.1], it was proved in [73, Theorem 1] that
almost surely there exists no eigenvalue outside the support of the limiting spectral
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distribution, and [24, Section 3] further characterized the support. However, both [73]
and [24] assumed a positive semidefinite 7" which corresponds to 7 > 0. Thus, we
build on [98, Theorem 1.2.1] and use a recent strong asymptotic freeness result of
GOE and deterministic matrices [38, Theorem 4.3] which guarantees the absence
of eigenvalues outside the support of the limiting spectral distribution. Of particu-
lar benefit to our purposes is that neither [98, Theorem 1.2.1] nor [38, Theorem 4.3]
requires 7" to be PSD.

Lemma 5.4. Consider the matrices D and D in (1.2) and (5.32), respectively. Denote
by L the limiting spectral distribution of D. Then, we have

dlim A2(D) = supsupp(jtp) almost surely.
—00

Next, we characterize the right edge of the support of i 5. The detailed proof of
the lemma below is given in Section E, and it generalizes the analysis in [24, Sec-
tion 3], showing that the same characterization of the support therein also holds for a
possibly non-positive T (or equivalently 7). The critical obstacle for non-positive T
is that the Stieltjes-like transform z — E[7(Y)/(T(Y) — z)] no longer maps the
complex upper-half plane into itself, rendering parts of [24] using this property unus-
able. We treat this problem by considering meromorphic generalizations of various
concepts in [24] (e.g., Proposition E.8 in Section E plays the role of [24, Proposi-
tion 1.2]).

Lemma 5.5. Let a°® > sup supp(T (Y)) be the largest critical point of V. Then, we
have

supsupp(ii 5) = ¥ (a®). (5.33)

5.5. Concluding the proof of Theorem 3.1
In this final section, we show the following lemma.

Lemma 5.6. Consider v' obtained from the GAMP iteration in (5.1) with denoisers
in (5.19) and (5.20) and initializers in (5.30). Let ¥ = S7V2(y*I; — ¢Z)"1 20l
Ifa* > a°, then

=t D 2
lim p—limw —1, plimA (D) = A; > Ao, (5.34)
120y 500 [v* ”2 d—>00
where A1, Ay are defined in (3.7).

Then, (5.34) directly gives the first part of (3.11) in Theorem 3.1; the second part
follows from Lemmas 5.4 and 5.5; and the expression in (3.12) for the overlap is a
consequence of state evolution, whose proof is given at the end of this section.
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Proof of Lemma 5.6. Recall the following definitions: B4 in (5.22), f;+1(v'*T!) =
By vt (see (5.20)) and ¢ = E[F,+(Y)] (see (5.19)). Let

1 )
b=-E|l———— |, B=@*l;—cX)"'y, 5.35
5 [y*_cz} (y*1qg —cX) (5.35)

be the fixed points of b;41, B;+1, respectively, where y* (together with a*) satis-
fies (5.4). Note that b = 1 by (3.3). For ¢ > 1, define

el =u' —u"! eR",

eh =0t —yf e RY. ©-30)
The GAMP iteration in (5.1) can be written as
u' = XBov' —b,Fu'™",
VIt = XTFu' — ¢, Bt
Using the first equation in the second, we get
Vit = (XTFX —¢;15)Biv' — b, X T F2ul ™. (5.37)

Using the definition of e} in the iteration for u’, we have
u' =l = XBv' — b, Fu'"! —el.
Solving for u’~1 yields
u' ™' = (b, F + I,) ' X B;v' — (b, F + I,)'et.

Then, we can eliminate u’~! in the iteration for v’*! by substituting the right-hand
side above in (5.37) and, after some manipulations, we obtain

VT = [XTF(bF 4+ 1) 7' X —ci 14| Bov' + b XTF2(b, F + 1) el
We expand b; and B; respectively around their fixed points b and B to write
V' = [XTFOF + 1,)7'X —cl;] B!
+ (b —b)XTF(bsF + I,) "(bF + 1,) ' X B,
+ " = y)XTFOF + 1™ 8 (rila = ¢ (" g — e2) 7' 20
+ (et =B +c(yi —y ) (yida — 2 (y g —cZ) T SV
+ b XTF2(b,F + I,) et
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Using the definition of eé, we further have

(Ig + cBW'™* = XTF(bF + 1,) ' X Bv' + cBé},
+ (b —=b)X"F(b,F + I,)""(bF + I,) ' X B,v'
+ (7 —y)XTFOF + L) ' X(yida — )7 (" g — )7 S0
+ (et —)Bv' +c(ye =y ) yily — ) (y* 1y — cZ) ' 0!
+ b, XTF2(b;F + I,) et (5.38)

Define ¢! € R by

e i=cZV2Bel + (b —b)SV2XTF(b,F + I,) ' (bF + I,) ' X B,v*
+ (= y)S PXTFOBF + L) ' X (yilg — ) (y* g — c2) I sv!
+ (et =SB + ey =y TP (yelg — e 2) (¥ 1y — )T T
+ b, ZV2XTF2(b, F + 1) el (5.39)

Multiplying both sides of (5.38) by ©!/2, we arrive at
Y21 + eBW' T = SV2XTF(DF + I,) ' X Bv' + €.

By the definition of D (see (1.2)) and the choice of F = (see (5.19)), we note that

~ ~ 1
SV2XTFOF + 1,)'X3'/? = —D
a
(recall from (5.35) that b = 1). Also, by the definition of B (see (5.35)), we have the
identity

1
—3x'2(I; + ¢B) = 7'/2B, (5.40)
y

both sides of which we define to be B € R4*4. Using the above observations and
letting
o't = Byt e RY, (5.41)

we obtain

oIl = MYt 4 Fet’ where M = A—I,M =a*y*, (5.42)

which takes the form of a power iteration with an error term.

It is now convenient to shift the spectrum of M to the right so that all of its eigen-
values are positive. Specifically, choose £ > 0 to be a sufficiently large constant. By
(A.66), it suffices to take £ = Cp + 1 > || D||2 + 1, where the constant Cp € (0, 00)
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is defined in (A.65). Adding %ﬁ’ *1 on both sides of (5.42) and using the definitions
of ¥* in (5.41) and €}, in (5.36), we have

¢ Dlly , €, 1
1 ’\l‘-l-l — ’\t —B t o t‘
( +)t1) A +11 62+V*e

Using the following notation:

~ D+ {1y P 12 ~ a*
=——2  ¢l.= Bel + r 5.43
P A WU e R P (543)
we write the iteration as
o't = Mo et (5.44)

By construction, M is strictly positive definite, and all results concerning the spectral
properties of M can be easily translated to those of M by canceling the shift £.

Suppose that the iteration in (5.44) has been run for a certain large constant ¢t > 0
steps. We further run it for an additional ¢’ steps for some large constant ¢/ > 0. By
unrolling the iteration down to time #, we obtain

o = MUY 4 et (5.45)
where
t/
~t,t/ = ZMl‘/—S’e\t-i-s—l. (546)

Taking the normalized squared norm 5 [|/I3 on both sides of (5.45) and sending first d,
then ¢, and finally ¢’ to infinity, we get the left-hand side

1 ~
lim lim p- 11m—||v’+t |2 = lim lim p-lim — | Bv'*" |2
1001700 g_, 00 1'—00 1200 5_,

1 ,
= lim lim p- hmd [Z7Y2(p* 14 — eZ) I+ 2

t/'—00t—>00 5,

= lim lim lim —]E[||E V2(p* 14 — ) ' SVpr|3]

t'—o00 t—>00 d

= lim lim lim EE[HE V2% 1 — D) 8% 2] 42,

t’'—00 t—>00 d—>00
+ EE[IIE‘I”(V*M — ) S Wyege 3]0 g

= lim lim lim
t’'—00 t—>00 d—>o00

1
(SE[® 2220 4 = D) 27 (0 g — D) B2V B il

| e B
+ <E[W, D0 g = D) ST (0 g = eX) IEWV,H,/]UIZ,,H,/)
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lim lim E 25 2 +E z 2
= m 1m _— / _— ’
P01 | (y* —cx)? Xi+e 7 —c3)? OV 1+t
32 )
—El—= |24+ E|:—_j|02 =2, 5.47
[(y*—cz)z}‘ v —c52)” G4D

where we use the state evolution result (Proposition 5.1) in the third equality. Taking
%||||§ and the same sequential limits on the right-hand side, we have

1 A L) /
lim lim p—limEHMt o et (5.48)

t'—o00 t—>00 d—00

We claim that :
lim lim p—limg||§t’t/||§ =0, (5.49)

t’'—o00 I—>00 d—00
which implies, by the triangle inequality, that (5.48) is equal to

1~
lim lim p—limg”Mt o')|3. (5.50)

t’'—o00 t—>00 d—>00

The proof of (5.49) requires the technical analysis of various error terms, and it is
deferred to Section A.5. The quantity in (5.50) can be decomposed as

| N 1=y -~
SIMUR3 = [ M7 (T 4 T35

1 A L) ~ 1 rt/ A~
= ZIMUTE |3 + M T3 +

2

d(M”Hﬁ’,M”HLﬁ’), (5.51)

where IT := v;(D)v;(D)T and I+ := I; — I1. Note that the eigendecomposition
of M" is

d d

M= XM Yo (MY (MT)T =Y 3 (M) v (D)vi (D)7
i=1 i=1

since for any univariate polynomial P with real coefficients and any matrix K € Réxd

P (K) shares the same eigenspace with K and its eigenvalues are {P(A; (K))}ie(1,....d}-
Therefore, the first term on the right-hand side of (5.51) equals

d 2
> Ai(M) v (D) (D) T TTD"

i=1
1 A ~
= I v (D)v1 (D) T3

(Ul(D), ﬁt)Z

I o~
LRI PR

1
d 2

= (V) (5.52)
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The third term on the right-hand side of (5.51) vanishes:

1 A L/ A L)
E(M’ o', MY T1+%7)

d
1 Al ~ ot A~
= R 01015 00 (D) 1Y (D). (D)) = 0. 55
i=2

To analyze the second term on the right-hand side of (5.51), we define the matrix
B d
M = MTI* =" 2;(M)v;(D)vi(D)T.

We then have

I o~
EHMI o' |3 =

d 2
1 ~
v > Ai(M) vi(D)vi(D) D'
=2

2

1 -~ R ﬁt 2
= i < T
_ I
d

_ v

max [ M]3
veSd—1

o1 (M")?

”2A (Mt )2 ”2A (M)Zt' _ ”21 (M)2t’
where the passages in the second line follow from the positive definiteness of M.

We have proved in Section 5.4 (see Lemmas 5.4 and 5.5) that almost surely
lim Ay (D) = Ay :=a®y°.
d—o00

Recalling from (3.2) and (3.5) the definitions of ¥, {, we can alternatively write A, =
Y(a®) =¢(a®) asin (3.7). Alsorecall from (5.42) that A; = a*y* = ¢ (a™). Under the
condition a* > a°, we further have 1; = {(a*) as in (3.7). Thus, by the monotonicity
of ¥ (see Lemma E.1), we obtain the strict inequality A; > A, in the second part
of (5.34).

In words, the limiting value of A, (D) is strictly less than A;. In view of (5.43),
this gives that limg_ o /\2(]\71 ) < 1, which implies

lim lim p-limsup — y, ||Mt 4o |2

/=00 100" 4,
|

< lim lim p-limsup ——=
t'—o0 =00 g .

At”z 4
2025 (M2
7 2(M)

112
< 1im (hm p-lim %)(dum Ja(H)2) = 0. (5.54)
—>00

t/—>00 \I—>00 4 .

The last equality holds since the limit in the first parentheses is finite (see (5.47)).
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Combining (5.52), (5.54), and (5.53), we obtain that the quantity in (5.50) equals

lim lim hm— Mo
t'—00 t—>00 2_)00 d ” ”2

, D ”\t 2
= lim lim p-limA;(M)* (D). ¥7)7

/=00 100y _, oo d

i im0 (i 12170

1'—00 1700 g _, o0 d—o0 d

D). Dt 2
( lim p-lim A (M)>? )( lim p-lim M) (5.55)
1'=00 g 500 TP 4o d

Now, putting (5.47) and (5.55) together, we arrive at the following relation:

( lim p-lim A1 (#)%" )( lim p-lim M)

1'=00 g 500 TP g0 d

By (5.47), this is equivalent to

~1\2
1= ( lim p-limA;(M)%" )( lim p-lim M) (5.56)

/=00 g 500 X d—>00 0|5

This allows us to conclude:

. D 7’\t 2
p-limA; (M) =1, lim p- hmw =1. (5.57)

d—o0 12004 500 013

Indeed, otherwise if the limit of )L1(1\7I )2 is different from 1, the right-hand side
of (5.56) will either be 0 (if p-lim;_, ., A1 (M)?€[0, 1)) or oo (if p-limy_, ., A1 (M)? €
(1, 00)) once the limit with respect to ¢’ — oo is taken. However, this contradicts the
left-hand side of (5.56). Since M is positive definite, )LI(M ) must converge to 1
(instead of —1). Finally, note that by (5.43), the first identity in (5.57) gives that
p-lim;_, ., A1(D) = A and the second equation says that 0’ is asymptotically aligned
with v (D). This concludes the proof of (5.34). [

Proof of (3.12). Since 7" is asymptotically aligned with vy (D) by (5.34), the overlap
between vy (D) and 8* is the same as that between 0’ and B* in the large ¢ limit.

Specifically,
WD).BY2 B B oy
= - D [ A
THE o va) - 5 )
i)‘t ﬂ* i)\t ,8*
2l——, — D)y— ——,—). 5.58
+ 2 ) = e ) G.38)
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Note that (5.34) implies

~t
lim p-lim| —— =0.
100 oo | 107]12
Therefore, we have
ﬁl ﬁ* 2
0 < lim p- hm<v1(D) —_, —>
100 4 500 192" vd
ot |1?
< hm plimjv (D) — ——| =0,
~%0 400 (8 (PY P

and

nt

at :3* D /3* ‘
0 < lim p-lim{{———, _
t_’°°5—>oo‘<||vt||2 Tl ®) = =)

1’)\1‘

1) =5,

< lim p-lim
1= 500

2

Then, taking the limit with respect to d and ¢ on both sides of (5.58), we obtain

(vi(D).p*)* _ (0", B*)?

p-lim = lim p-lim
d—oo  lIB*II3 2% 4 00 ||v I3
lim p-lim -5 (07, B*)2

t—>00 d—>00

lim L1195t 112
A ptim 7 |07
the right-hand side of which we compute below.

Note that the denominator has already been computed in (5.47) and equals v2.
The numerator can be computed in a similar way using state evolution. Recalling
from (5.41) and (5.40) that 9" = £1/2Bv’, we have

. i (62‘ ,3*)2
Jm prim =

= lim lim d—E[%*T ~12y,)?

t—>00 d —>00

1 *T —1/2 phx12

. _ _ 2
= (lim Xt)(dli)n;oﬁE[%*TZ 2014 — c3) T 2 Y28%] )

t—00

i 2
y*—cX
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Finally, recalling the expressions of y, oy in (5.26), we obtain

(v1(D), B*)* _ XE[S/(y* —cD)P

AU T V2
_ PE[E/(* — D)
E[Z2/(y* — cZ)2x? + E[S/(y* — cZ)*]o}
_ (1 - w)E[E/(y* — D))
(1= w)E[Z?/(y* — )] + wiE[Z/(y* — cZ)?]
=,
as defined in (3.8). ]

6. Discussion

Information-theoretic limits. In some settings (e.g., phase retrieval), spectral esti-
mators saturate information-theoretic limits when the design matrix is either i.i.d.
Gaussian [62] or obtained from a uniformly random orthogonal matrix [35]. That
is, below the optimal spectral threshold, no estimator can achieve weak recovery,
i.e., strictly positive asymptotic overlap with 8*. Thus, it is natural to ask whether
the spectral threshold in (3.13) is information-theoretically optimal for weak recov-
ery in problems such as phase retrieval with correlated design. Positive evidence
in this regard comes from the comparison with [60] which heuristically derives the
information-theoretic weak recovery threshold for general right rotationally invariant
designs. As mentioned in Section 3.2, by taking a Gaussian prior on §*, the model
in (1.1) is equivalent to one in which X is right rotationally invariant, and the threshold
derived in [60] in fact coincides with the expression in (3.13) (see Remark G.1). An
interesting future direction would be to establish whether (and under what conditions)
spectral estimators achieve the information-theoretic weak recovery threshold, or con-
versely to provide evidence of the existence of a statistical-to-computational gap.

Optimal covariance design. Since our results characterize the performance of spec-
tral estimators for a Gaussian design with any covariance X, a natural question is to
characterize the ¥ that induces the maximal overlap. A similar problem is consid-
ered in [58] which studies the impact of the spectrum of a bi-rotationally invariant
design matrix on the performance of a family of algorithms known as expectation
propagation. In contrast, we consider spectral estimators, and our general Gaussian
design is only left rotationally invariant. In our context, given the characterization of
the limiting overlap n = (8, =, 7) in (3.8) and the expression for the optimal pre-
processing 7* in (3.14), the problem can be formulated as maximizing n(Z, 7*, §)
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over X, for any fixed §. Remarkably, Figure 3 in Section 4 shows that picking ¥ = I
may not be optimal for the phase retrieval problem. This is in contrast with [58], where
it is proved that “spikier” spectra are better for phase retrieval.

Unknown link function. The optimal preprocessing function 7* in (3.14) depends
on the link function ¢g. We now discuss the scenario where ¢ is not exactly known.

In the special case where the link function is parametrized by 6 (of fixed dimen-
sion) that can be obtained from the moments of the random variable Y, we can
consistently estimate 6 with o(n) samples using the empirical moments of the obser-
vation vector y. This is, for example, the case when the observations have additive
Gaussian noise of unknown variance. One can then apply our spectral estimator using
the remaining n — o(n) samples with 7* constructed from the consistent estimate
of ¢ above. By a simple matrix perturbation argument, the same recovery guarantees
of the paper continue to hold under the same asymptotic aspect ratio 8.

If ¢ belongs to a non-parametric function class or if the parameters 6 cannot be
estimated from moments of Y, then one can still construct T (without knowing q)
such that the spectral estimator achieves positive asymptotic overlap with 8* when §
is sufficiently large, see [25, Corollary 4.4]. We note that the analysis of [25] considers
identity covariance, but as the focus is not on obtaining a tight result in terms of §, we
expect the same to hold if the covariance is well conditioned. Importantly, this comes
at the price that 7 no longer achieves the optimal spectral threshold as 7 * does in our
Theorem 3.2.

Generalized linear models with unknown link function, also known as single-
index models, have been studied in the high-dimensional regime under various ass-
umptions on the link [2,36,41,72,75,79]. Sawaya et al. [79] recently studied single-
index models under assumptions similar to our paper (Gaussian covariates, and the
proportional high-dimensional regime n/d — §). Their paper suggests the following
three-step procedure to estimate both the signal §* and the non-parametric link ¢:

(i) obtain a pilot estimate of 8*, e.g., by using ridge regression,
(ii) use the pilot estimate to obtain an estimate ¢ of the link function, and
(iii) use ¢ to obtain an improved final estimate B .

However, the theoretical guarantees in [79] rely on sample splitting which is subop-
timal and reduces statistical efficiency. (In sample splitting, the n samples are split
into two sets, with the first set used for steps (i)—(ii) and the second set used for
obtaining the final estimate in step (iii).) If the link-function is parametrized by a low-
dimensional 6 of fixed dimension k, e.g., the class of cubic B-spline functions [75],
the number of samples required for estimating the link (e.g., via gradient descent)
could be relatively small, but we expect this would still be a constant fraction of n
since a reasonably accurate pilot estimate is required. In summary, developing sample-
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efficient spectral estimators for GLMs with unknown link function is an important
open question, which we leave to future work.

Discovering spikes in random matrices via AMP. Our proof strategy offers a new,
general methodology for analyzing large spiked random matrices. We expect this
strategy to be useful in a variety of statistical inference problems beyond GLMs with
correlated Gaussian designs, including rotationally invariant designs [59], mixtures
of GLMs [99], principal component analysis with inhomogeneous noise [47], and the
universality of spiked random matrices [34, 90]. For many models, the “null” setting
in which no information is present can be understood using tools from random matrix
theory. When statistically informative components emerge as spectral outliers, our
proof recipe can be carried out — as long as an AMP iteration can be designed to sim-
ulate the desired power iteration. Suitably combining the analysis for AMP with the
random matrix theory arguments for the bulk then allows one to determine the exact
outlier locations and estimation accuracy.

Organization of the appendix. Section A contains the proofs of a number of inter-
mediate results useful to show Theorem 3.1. Section B contains the proof of The-
orem 3.2. Section C shows how to remove assumptions (A6) and (A7). Section D
states and proves a few useful properties of auxiliary functions and parameters. Sec-
tion E contains the proof of Lemma 5.5. Section F establishes the performance of the
whitened spectral estimator. Section G presents some useful auxiliary results.

A. Details of the proof of Theorem 3.1

A.1. Proof of Proposition 5.1

We start by defining the state evolution random vectors (U;, V;41)¢>0 in a different,
but equivalent form. Let Uy € R” be a Gaussian random vector whose joint distribu-
tion with G is given by [ § ] ~ N (024, Qo ® 1), where Qo € R>*? is defined as

QO:[ FEIS] nmmo%EU%*,fo(%*))]} A
limy oo SE[(B*. 6(B")]  §(p-limg ooz 13°12)° |

For each ¢t > 0, define the random vectors U; € R” and V;4; € R4 such that

G QL
|:U ] ~N(022,92: ® 1), Vig1 = xe+1B +ovit1Wyisi, (A2)
t
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where Wy, 41 ~ N (04, 1) is independent of B* and Q; € R?*2, y,,; € R, and
ov.+1 € R are defined recursively as

limy—oo sE[(B*, fi(V))]  limpoco SE[(f:(V0), f:(V0)]

D PR
Xi+1 = lim —E[divg (U, G.¢)].
n—>oo N

o [ 1E[5) nmnﬁoo%E[(%*,ﬁ(Vt))]} (A.3)

1 (A4)
Vi1 = Jim —E[{g(Ui:Y). g:(Us:Y))].

Here the function g;: (R")> — R" is given by 2,(U;, G, ¢) = g:(U;;: q(G, ¢)).
We now show that the alternative representations of U; and y;+1 in (A.1) to (A.4)
are equivalent to (5.9) to (5.12).

Proposition A.1. The random vectors (G, U;) defined in (A.2) can be alternatively
written as
Ui = G +ouWuy, (A.5)

where (G, Wu,) ~ N (0n, BELL) @ N (0, 1), for 1 = 0,

Ho = E;] A, %E[w* fo(B)].
1o E[i] , (A.6)
7o = plim e (7.7 = =
and fort > 1,
8 *
= R LELE 001 ) o
0f = lim VE[(f(Ve). fiV)] - e,

Furthermore, the scalar x4+ defined in (A.4) can be alternatively written as

] o1 )
Xit+1 = ﬁnl—)oo ;EUG g:(Uy; Y))] —/Ltnlgfolo ;E[leUt g:(Us; Y)]- (A.8)

Proof. The decomposition of U; in (A.5) and the expressions of (s, oy, in (A.6)
and (A.7) can be easily obtained from (A.1) and (A.3) using the following elementary
property of Gaussian random variables. If

o o
(G1,G2) ~ N(Oz, |: b 1’2:|),
012 022
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then their joint law can be realized as

52
(G17G2)g(G172G1+ 02,2—#W),
\ 1,1

where W ~ N (0, 1) is independent of G.
To show (A.8), we use the chain rule and Stein’s lemma. We have

i1 = nll,n;o;ZE[igf(Ut’G &)i ]

, 9
=n£“;o;§E[aG,- (via(G.0), ]

" 0
= nli)n;o%Z( [Egt(ﬂtG +ou,Wu,s:q(G, 8))]

- B[ 5 U V1)) (A9)

I §
= lim —Z(ﬁE[Gigt(MtG+O—U,tWU,t;q(G’8))i]

n—oo p 4
i=1

_/'LtE[

8 o1 .
IEI[Z] Jim ;E[(G,g,(U,; V)] = Jim ;]E[leU, g:(Ui ).

aU”g,(U,;Y)i]) (A10)

Equation (A.9) follows from the chain rule of derivatives:

0
G (U:q(G.e)), = e (1:G + 0v,: Wu.i:q(G. ),
d ad
= WUt U, g Y)i + 8—Gigt(Ut§Q(G,5))i-
Equation (A.10) is by Stein’s lemma, noting that G ~ N (0, IE:Egjln). ]

Next, we show the desired state evolution result.

Proof of Proposition 5.1. Define the rescaled version of X as

)?::,/ X e R4,
n+d

Note that each entry of X isiid. according to N (0, 1/(n + d)) and that
g=Xp* = XB*.
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Consider a pair of matrix-valued iterates p* € R"*2 and ¢’ € R4*2 defined as
p =il ¢]eR™2 4 = [5’ — i1 od] e RY?2, (A11)

where (i1*, ¥, ¥1-1)r=0 C R"T4+1 will be specified later in (A.24). For (i, j) €
{1,...,n} x{1,2}, we use pj € R" and p; ; € R to denote the j-th column and
the (i, j)-th entry of the matrix p’, respectively. Similar notation is used for other
matrix-valued iterates. Consider also a pair of denoising functions 77;: R?*3 — R4*2
and p;: R*3 — R"*2 defined as

wi(q's B*) = \/ [ft(‘h + KB B ]eRdxz’ (A.12)

where ( f; , &1)r>0 Will be specified later in (A.24). We claim that the iteration

_162—’

P =Xg - B P =pe(pie),

g [ dm@sBHin dmia'iB i
{, = ! Z 94; | 34; >
t = = o
n+d = i (@'3B%)in @' B%)in
- dq! dq!
t+1 v 15t _ ~t—1,T l.1~t t lf* (A.13)
¢ =Xp=q"m, g =mq;p),
w [ 0c@h0in i (phie)in
m, = ! ;| P}
;=
n+d — A (p'38)in i (P'38)in
L, op} >

initialized with 7_; =0, p_; =0and p®=[11° g],¢°=[v" 04] (for some ii® e R",
70 € R to be specified later in (A.24)), is equivalent to the following iteration:

- Sy o v ol - 9 fr (¥
W =X fi @) = biEa @), b= Z ftait h
s (A.14)
- ST . ¥ e . 0g, ('; y)i
t+1 _ v T t. t—1 _ ¢
U = XTEW ) — & fra (0T, & = —Z T

initialized with f:l =0,5_1 =0and #° € R, ?° € RY.
Let us verify the equivalence. By the design of the matrix-valued iterates in (A.11)
and the matrix-valued denoisers in (A.12), we have

Po=o( gl =22l a e 0] =]EELEGy o).
7= nt([ﬁt a0 F) = e B,
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Furthermore, by chain rule of derivatives, the matrices £,, m, specialize to

1 G| [ ntd 305G
L = Z n 9o

n+di=1 0 0

_ [ o] L [ o
n—+d 0 0 n+d|0 0f
/n+d Bgz(u ,y), /n+d ag (i’ ,q(g 081 (u'3q(8:8))i n ¢t i
m; = - ‘

n+d n+d|0 O

i=

Using these expressions, we write the iteration in (A.13) as

o= "R [ F]
_[Wg,_l(ﬁf—l;y) On]\/glg 8 ’

[t =B 0] = X7 [ 2 gty o]
e 5[

Expanding the above equations into vector form and using the relation between X
and X, we obtain

B = X0 —biga Y y), g = XB
FH = TGt y) = & foa (1Y),

which matches (A.14) and the definition of g.

The iteration in (A.13) is an instance of the abstract graph-based AMP iteration
proposed in [42]. To see this, consider a simple graph on two vertices vq, v, with two
directed edges € = (v1, v2) to & = (va, v) between them. The tuple (X, p’, 7;) is
associated with the edge & and the tuple (X T, ¢, p;) is associated with . We record
below the state evolution results in [42, Section 3.3] for our special case of (A.13),
and then translate them to (A.14). For each ¢ > 1, define two sequences of random
matrices

(Po, P1,..., Pt) ~ N(O2n+1), Or ® In),

(Q0,01.-.., Q1) ~ N(02g(141). Bt ® 1),
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where P, € R"™2, Q, € R?*2 (0 < r < 1), and the entries of the covariance matrices
0,, B; € R2e+Dx2(+D) yre specified recursively as follows: for 0 < r,s < 1,

Elm(Qr; B%) T 15(0sB%)] € R,

O)r+1,5+1 = 11Holon+

) 1
(EB)rt1s41 = nll)ngo mE[Pr(Pr§ e)" ps(Py; 8)] € RP2,

The notation (Py, Py, ..., P;) € (R™2?)*! should be interpreted as a 2n(t + 1)-
dimensional vector given by - _
(Po)1
(Po)2

(P;f)l
| (Pr)2 |

where (P;); (0<r<t, j €{1,2}) denotes the j-th column of P, € R"*2. The notation
(Q0.01,...,0;) € (R¥*2)'*1 should be interpreted in a similar way. Accordingly,
O, 8; € Rz(’“)xz(’“) are block matrices whose (r + 1,5 + 1)-th (0 < r,s <1)
block has size 2 x 2.

The state evolution result in [42, Theorem 1 and Section 3.3] asserts that for any
uniformly pseudo-Lipschitz functions A1: R2*¢+D 5 R, f,: R24C+D 5 R of finite
order,

p-limh (p°, p'.....p") —E[h1(Po. P1..... P1)] =0,

n—-oo

) (A.15)
p-limhy(g°.q".....q") —E[h2(Qo. Q1..... Q1) =
d—00
With the reduction in (A.11) and (A.12), the state evolution iterates become
Pe=[0 G|, 0=[Vi- 7 ® 04).
whose covariance structure specializes to
. 1 n+drs « ~ o= =
(©)r 4151 —nlggoHdE[ " B[R B ]]
lim LE[/,(V)T (V)] lim JE[/ (V)T %]
= | "> ~ ~ , (A.16)

lim E[f(V)T87] l1m 1E[(B*) 78]

n;wnidlﬁ[[ﬁm;m o] [yEee@an o]

(B)rt1,s41 = lim
|:lim LR [Z, (T ¥) T & (Uy: V)] 0}
= | n—>o0 .
0 0

(A.17)
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Reorganizing the elements of P;, O, and ®;, E;, we obtain

(G Uo,.... Up) ~ N(Opia2). 01 ® L),

(A.18)
(Vo — 718", — 711" )’\’N(Od(t—i-l)’ut@Id)

where the entries of ®, € RUT2*@+2) 3pnq §, ¢ RE+FD*E+D ape obtained as fol-
lows from ®; and E,. Recalling that each entry (®;),, (E;),s of O, &/, respec-
tively, is itself a 2 x 2 matrix, we use ((©;)rs)i,j» ((E¢)r,s)i,j to denote the (i, j)-th
(i, j € {1,2}) entry of (®;),s, (E¢)r.s, respectively:

©)11 = (O)11),, O)1s = (On)s-1,5-1),, 2<s<1+2,
(ét)r,s = (ét)s,r = ((®t)r—1,s—1)1,17 2<r<s=<t+2,
(ét)r,s = (ét)s,r = ((Et)r,s)l’lv I<r=<s=<t+1

We further transform ©, by introducing Q; € R2*2, d, € RU+TD*XC+D Firgt, we
have (G, U,) ~ N (03, Q,), where

- ® e
g, =| @I Odime | poe (A.19)
(®l‘)1,t+2 (®Z)t+2,t+2

Next, applying the representation in (A.5) to (G, l7t), we write
fjt =G + 5U,1WU,1-

Here fi; can be derived in a way similar to Proposition A.1:

-~ O 142 (O 410411, ) 1 g
= - = = = lim —E V) ' B* (A.20)
A @ ®01.1 ) A SO0 T

where the last equality is obtained by recalling (A.16). Moreover,
Gu.oWu0,-- 50 Wus) ~ N Opia1y Dr @ L)
are jointly Gaussian whose covariance can be derived from é,. Forany 0 <r,s <t,
@252 = BTy, U)] = frits @1 + [ (G0, Worr. 50,5 W),
from which we obtain

. 1w . - e
(Pr)r+1,5+1 = ;E[(UU,rWU,r’UU,sWU,s)] = (On)r+2,5+2 — frts(Or)1,1

((®t)r+1,r+1)1,2((®t)s+1,s+1)1,2
((®t)1,1)2,2 ’

= ((®t)r+1,s+1)1,1 - (A.21)
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We claim that the above expression equals

tim ~E[(J7 (Vo) — i B fo(7) - i8]

n—oon

Indeed,
Jim VB[ )~ B () — 18]
Jim (B[, (V)] ~ BB (7). 8]
— BB (7). B + i L E[(B*, B7)])
= 1im. %EM(%), F(7]
B[4 (7). 89)) (Jim, ~ E[(E ). 87)]),

 E[3] <n»oo n

which agrees with (A.21). In the last equahty, we use (A. 20)

Fmally, fort >0,letGy, WV P V, Yi— 1% where WV, ~N(0,1)is 1ndepen—
dent of B*. From (A.18), we have (Gy,9 WV,o, e Oy WV,,) ~NOg¢+1), B @ 1g),
where é, has entries

~ . 1 o o~ o >
(E)r+1s+1 = ((Et)r+1,s+1)1,1 = nlgfolo ;E[(g,(U,; Y), g(Us:Y))].  (A22)

With (fi;, 5y, ) (or equivalently Q ), EI/J,, Ti—1s o ¢ at hand, (A.15) naturally trans-
lates to the following state evolution result. For any uniformly pseudo-Lipschitz func-
tions A1: R?C+2) 5 R, R4E+2) 5 R of finite order,

p-limh1 (g, %o, . ... 1) — E[h1(G, Uy, ..., Up)]

n—>oo

07

T o . (A.23)
p—hmhz(ﬂ ,Uo,...,U;)—E[hz(fE ,V(),...,Vt)] =0.

d—o00

Note that the AMP iteration in (A.14) is almost the same as that in (5.1) albeit with
a difference in time indices. Indeed, the following relabeling maps (A.14) to (5.1),

precisely

ﬁZt—l — ut—l’ 521 — Ut, t > 1’

00 =00 fo) =7,
§2-1 =81, &2 =0, f;t—l =0, f;t = fi (A.24)
Y20—2 =0, Yor—1 = Y1, t>1,
=0, fo=0j1=0

The change of indices above is similar to that presented in [42, Appendix A].
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The change of time index in (A.24) also maps respectively (fi2;—1,0y,2¢—1) (or
equivalently $25;_1), ®2/_1, ¥2r—1, Bos in (A.19) to (A.21), and (A.22) to (i1, 0v)
(or equivalently ), ®;, x;, ¥; in (5.12), (5.14) to (5.16), and (A.3). Thus, the con-
vergence result in (A.23) translates to (5.17), which completes the proof. ]

A.2. Proof of Lemma 5.2

We start by simplifying the recursion in (5.24) using the distributional properties of
various random variables/vectors in (2.2), (5.8), and (5.9). First,

§ . 1 .~ B -
e = —= lim —E[(B*) (yilqg — ) 'S(0:B* + ovuWys)]  (A25)

E[X] n—>oon
§ . 1 Tk - Yk
= X’E[i] lim ;E[(?B VT (yela — cX) ' 28] (A.26)
8 1
= 1 lim ;E[%*TEl/z(ytld —c3)lTnl2p] (A.27)
_ ! E[ >’ } (A.28)
TES Ly —EFe- @i '

Equation (A.25) is by the definition of B; (see (5.22)) and V; (see (5.9)). Equa-
tion (A.26) holds since Wy, is independent of B*. Equation (A.27) is by the definition
of B* (see (5.8)). In (A.28) we use Proposition G.2, the distribution of B* (see (5.8))
and the assumption d/n — 1/4.

Second,

.1 ~ _ ~ .
ULZ,J = lim —IEZ[()(,?B +OV’[WV,t)TE(szd_CE) 22()(,?13 +0V,,WV,t)]

n—-oo n
E[Z]
B

1
= 22 lim —E[(B") S22 (y 1y — cZ) 22 2/25*]
n—>oo n

.1 _ E[Z
+ o, Jim ~E[Wy, S(rila —cZ) 2 SWr,] - %u%
1 x3
- —E[ NS z}x?
§ L(y: —E[Fax(Y)]D)

+1E[ 2% ] 2 _pise (A29)
5 L —EF (527 5 '
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1 2 2
-5(¢| |- a2l o) )7
(y: — E[fa MID)2] E[E] Ly —E[Fa(Y)]E

+ IE[ > ] o2 (A30)
§ Ly —E[Fax(N)])2 ] 7" '
where we use (A.28) in (A.30).
Third,
8
Xt = s Mm, ;E[Gleagua*(Y))(utG + ov Wur)]
- /MIE[S%* (V)] (A.31)
8 - .
]E[i lim ;E[G diag(Fa+(Y))G s — wiE[ Fax (V)] (A.32)
—_— ;2 —_ *
=E (E[ ]G 1)fa (Y)]ut (A.33)

1 § = - x?
= __E[(—_GZ — 1)$a*(y)]1E[ - _]X,. (A.34)
E[X] L\E[X] ye — E[Fax(Y)]Z
Equation (A.31) is by the definition of U; (see (A.5)). Equation (A.32) holds since

Wy s is independent of G, and hence also independent of Y. Equation (A.33) follows
since each entry of G and F,+(Y) is i.i.d., and hence

Jim LE[GT diag(Fa- (V)G ]= lim %ZE[G,?%*(Y,.)]
i=1
= E[G2F, (7).

Equation (A.34) follows from (A.28).
Fourth,

.1 .
012/,z+1 = nll)m _E[(/LtG + UUtWUt)T d1ag(?a*(Y))2(M,G + UU,zWU,z)]

= u? lim _IE[Gleag(fF (Y)) ]

n—-oon
1 s
+ OU,, nli>nolo ;E[WU’, dlag(Jfa* (Y))2 Wu,t]
= E[G*Fax (V)| ] + E[Far (V)? |07, (A.35)
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_ ~2 g v\2 22 ]2 2
_EEMMG““”ﬁ%w—meﬂﬁ *i

S (P
T (i~ ElFar (V)]5)2

1 32 2
-yl )2
E[Z] Ly = E[Fe(Y)]X

E[Fa+(Y)?] 22 >

§ |:(Vt — E[Fg* (Y)]i)z}aw (A.36)
D 2
= é(E;E[(L_Gz_I):Fa*(Y)Z}]E[ 52 _ _}
LA Vi — E[Fax(Y)]Z
— 23
e
+ E[F, (Y)?] Tl

E[Fa (Y)?] 52 .

s E[(% — E[F, (Y)]§)2:|OVJ' (A.37)

Equation (A.36) is by (A.28) and (A.30).
Furthermore, the right-hand side of (5.21) equals:

.1
lim ~E[V,}, B Br1Vis]

d—oo d
.1 ~
= lim —E[(x1+1B* + ov,es1 Wr41) "
d—oo d
Eir1la — ) TS ((141B* + ovier 1 Wrpt1) |

S D _ .
= xfﬂdlggo SE[® T3y — ¢£)7253/28%]

.1 _
+012/’t+1dll>m —E[Wy) 1 2 es1la — cX) 2EWypp1 ]
53

oo d
:X%-HE[ o ]+012/t+1E[ > oA }
(Ye+1 — E[Fax (Y)]E)? ’ (Ye+1 — E[Fax (Y)]X)?
We therefore obtain the following more transparent expression for y; 41 (cf. (5.21)):

=l sy
T Len - ElFa (V)]E)?

22

+ o E[ —— ] (A.38)
P e — EFar (V)]E)?

where y;41,0v,41 are computed via (A.34) and (A.37). Again, using a similar mono-

tonicity argument as that following (3.3), we readily have that the solution to the above

equation must exist in (s(a*), co) and is unique (where we use (b) and (¢) in (2.5)),

and therefore y; is well defined.
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Next, we solve the fixed points of the above state evolution recursion. Suppose the
state evolution parameters [Ls, Oy, X¢+1, OV,i+1, Vi1 converge to i, oy, X, ov, V,
respectively, as  — co. Then the latter quantities satisfy the following set of equations
which are obtained by removing the time indices in (A.28), (A.30), (A.34), (A.37),
and (A.38):

- : [ = } (A.39)
T EE y—Em bk .
2
:1(E|: :| l_ E|: 52 _ _i| )Xz
8 ()/ E[‘?’ (Y)]Z)Z E[E] y — [E[j:’a* (Y)]E
1 52 X
i EE[(V — E[Fax (17)]2)2}’"’ (A.40)

8 . 52
2 —l _G2 1\ 7. (7 32 2
v 8( [(E[E] B ) ol )] [y—E[sva*(Y)]i]

53
E?a*leE[ E__DZ
T O G e )

E[Fy- (V)] 52 ,
T G i .
1—IE[ i ] 2+E[ 25 ] 2 (A.43)
o —EFOE2) T —EF D2 '

We observe from (A.41) that a trivial fixed point of y is y = 0. This implies,
via (A.39), that u = 0. Equations (A.42) and (A.43) then become

E[Fa+(Y)? ¥2 ¥2
Far )]E[ = _z]aé, 1=E[ — _z]aé,
8 (v — E[Fax(Y)]X) (v — E[Fax(Y)]X)
from which y and 012, can be solved. To be specific, y is the unique solution in
(s(a*), o) to:

op =

_ E[ﬁa*(Y)Z]E[ 22 :|
8 (y —E[Fax(N]E)2 ]

and 07 is given by
1

2
UV == = — = .
E[Z2/(y — E[Fax(Y)]X)?]
Finally, 012] can be solved using (A.40): 012] =1/4.
Now assume y # 0. Equation (A.41) implies

5% (a5 )7 O )
= E|(——G>—1)F(Y) — (A.44)
E[X] E[X] y —E[Fe+(Y)]Z
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from which y can be solved: y = y*. Recall that y* (together with a*) is well defined
through (5.4) and a* is taken to be the largest solution.

Given y, (A.39), (A.40), (A.42), and (A.43) form a linear system with unknowns
p?, 03, x?, 0. Combining (A.43) and (A.42) and using the definitions of w1, w,
z1, 22 in (3.9), (3.10), and (5.25), we obtain

2 l—wz

- (1—wz)zy + wizp

2 w1
oy = . A.45
v (I —w2)zy + wyz2 ( )

X

Note that the above solution is valid since 1 — w,, w1, z1, z» are all positive, provided
a* > a® (see item (3) in Proposition D.6 and Proposition G.1). According to (A.39)
and (A.40), this immediately implies

2_ ] E[ i ]2 1= ws (A.46)
# T EEPR Ly —E[FMIZ] (I —wa)zy +wizp’ :

U s\l —EFs(N)D)2]  E[E] Lyt -E[Fs (V)T
) 1-— Wy
(1 —w2)z1 +wiz2

. lIE|: 2 :| wy
§ Ly* —E[Fa=(Y)]E)? (1_— w2)z1 + WiZ2

3 1/8 ( [ 3 ]
(1= wa)z 4wz (y* —E[Fu+ (Y)]Z)?

1 2 2
—-——F _
E[X] [V*—E[%*(Y)]E}

1 52 =2 T2
* E[EJZE[(V* —E[?a*(f)]i)z}E[G Far (1))
52 2
]E|:V* —Em*(?ni} ) (A47)

where the last equality follows from the definitions of wj, w,. This concludes the
proof.

A.3. Proof of Lemma 5.3

For each ¢t > 0, the next value of ((t;+1,0U 41, Xt+2, OV,1+2, Vi+2) only depends
on the current value of (i, OUs. Xr+1.0V,i+1. Ye+1). Hence, to show that the state
evolution parameters do not change, it suffices to check that (o, 0v,0, X1, 0v,1, Y1)
coincides with the fixed point (i, oy, x,ov, y™*).

By the construction of the AMP initializer (1", 7°%) € R” x R4, we have o =
(see (5.31)). It is easy to verify that oy ¢ given by (5.31) coincides with oy derived
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in (A.47). Indeed,

020 = +(1 - E[S]?)

S

1 ( 1 [ >? ]2 1—ws )
= (1-——F S— (A.48)
§ E[Z] Ly*—E[Fax(M]E] (I —w2)z1 + w122
1/8

= 1—
(1 —w)z1 + uiza (( W2)z1 + Wwiz2

1 ¥2 2
weon b - )

_ 1/6 (IEZ|: %3 :|
C (I —w)z +wiz U L(y* — E[F (V)]D)?

1 2 2
- —F _
E[X] [V*—E[%*(Y)]E}

1 32 - -
+—F ———— |E[G*F,+(Y)?
EEP [(y*—Em*(Y)lz)Z] (6% (7))
52 2
IE[ - _] ) (A.49)
y* —E[Fax(Y)]Z
= op.

We use the expression of u (see (A.46)) in (A.48) and the expressions of wy,w», 21,22
(see (3.9), (3.10), and (5.25)) in (A.49).
We then verify y; = y. By (A.33),

5 = —
=E|(==G>—1)Fux(Y
X1 [(E[E] ) ax( )1|M0
§ = -1 1 32
=E[(—_ 62—1)%*(1/)} = E[ - _]
E[X] E[X] Ly* —E[fax(Y)]E
1-— Wy
(I —wa)z; + wyzp
Comparing the above expression with y in (A.45), we see that it suffices to verify

E[(L(‘;Zq)%*(?)} L E[ i _ _}:1,
E[X] E[X] Ly* —E[Fa(Y)]Z

which is true since the fixed point y = y* satisfies (A.44).

Next, we show oy,; = oy. Using (A.35), we have
oy = E[G*For (V)] + E[Far (V)]0

V)2
=E[G*Fu+(Y)*|u* + M(l — E[Z]p?)
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:@E[(Lm_l)f (Y)} Em;(m

8 E[X]
= ;_IE[(L_GZ — 1)3@*(?)2}
SE[X] E[X]
E[ 32 ]2 1—ws N E[Fq+(Y)?]
y* —E[F«(N)]Z] (1 —w2)zy + wizz §
— 1 E[f'{va*(y)z] 1
N (1—w2)21 +U)122((w1_ 5 Zl)( —U)z)
+ M((l W)z + wlZz)) (A.50)
_ 1 E[Fa (Y)?]
B (1 —wy)z1 + wyzs (wl T2t Twlzz)
= o A51)
(1 —=w2)z1 + w122 (A.
— 2.

Equation (A.50) is by the definitions of wy, z;. Equation (A.51) is by the definitions
of Wy, z,, in particular, wy = (E[F4+(Y)?]/8)z2.
Finally, it remains to verify y; = y*. By (A.38), y; is the unique solution to

3 22
SIS SN0 o
s K T 4TI I AT e

- 4|y s
(11 —ElFMIE2] VL - E[F (V)]E)?

1
- (1 — w2)21 + wizo ( f’a*(Y)]E)z]

E|
E
T [(m E[ 7o (Y)]E)ZD

Rearranging the terms, we have

23
0=(1- —E V)|3
( wz)(zl [m _E[ﬁa*(Y)]E)ZD

22
— K — . A.52
o (ZZ [m - IE[%(Y)]E)ZD (A32)

We argue that y; has to equal y* for the above equation to hold.
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Note that both (1 — w,) and w; are strictly positive (provided a* > a°; see Propo-
sition D.6 (3) and Proposition G.1). If y; < y*, then by the definitions of zy, z5,

>3 2
Z]<]E|: P — :|, 22<E|: - —— :|,
(1 — E[Fax (Y)]2)? (11 — E[Fax (Y)]2)?

and hence the right-hand side of (A.52) is strictly positive, which is a contradiction.
A similar contradiction can be derived if y; > y*. Thus, y; = y*. This concludes the
proof.

A4. Proof of Lemma 5.4
Lemma A.2. Consider the matrix D in (1.2). Define another matrix D as
li — 21/2)21'7‘“1)?21/2 c Rdxd’
where T € R®=D*0=1 i 4 diagonal matrix satisfying:
M(T) 2 M(T) 2 2a(T) 2 Ao (T) = -+
2 At (T) 2 At (T) 2 An(T),

and X € R®=D%4 copsists of i.i.d. N (0, 1/n) entries, independent of T. Then for
everyn,d > 1, it holds almost surely that

23(D) = 22(D) < 2(D). (A.53)
Proof. Recall g = X E * and

D = 3'V2X T diag(7 (¢(XT'/2*,¢))) X T/?
= $'2X 7 diag(T (¢(XB*,¢))) X V2.

We can decompose X into the sum of two pieces: one along the direction of g and the
other perpendicular to g. Furthermore, by isotropy of Gaussians (see [67, Lemma 3.1],
[93, Lemma 2.1]), the distribution of X remains unchanged if the perpendicular part
is replaced with an i.i.d. copy. Specifically,

¥&m,X+nLx,

where
1 T
Mg = —>88 Hg =1, — I,
gl
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and X € R is an i.id. copy of X. Using the variational representation of eigen-
values, we can bound the second eigenvalue of D by the first eigenvalue of a related
matrix in which 7" and X are “decoupled”. Indeed,

A>(D) =  min max v V2XTTXSY?yp (A.54)
VcRY veynsd-—1
dim(V)=d—1
4 . Ts1/2 & 1\ T & 1{\w1/2
= min max v X o X +117X) T(II, X + 1 X)X "/ “v
YcR?  veVnsd-l (M s X) (M s X)
dim(V)=d—1
ZI/ZXng gT

lgll2  lgll2

= min max v (
VcRY  veynSd—1
dim(V)=d—1

T¥y1/2
XX
.T(Lg—
gl llgll2

EI/ZX:T T R
max UT(—gg_ + El/zXTH(é)

vesd—! lgllz Nl
(v.31/2X Tg/lIgll2)=0

Tyy1/2
Xz .
: T(ig— + H;XEW)U (A.55)
Iglz  llgll2
T(y1/2 Tl 1os1/2
< max v (ZV2XTHL)T (M XE2)

veSd—1

1/2¢ Tl 1 ¢¥s1/2
=L (22X O T X212).

1/2 9Tl
+ 312X ng)

+ H;)?EI/Z)U

IA

In (A.54) and subsequent steps, the minimization is over all (d — 1)-dimensional
subspaces 'V C R?. In (A.55), instead of minimizing over all (d — 1)-dimensional
subspaces, we take a particular one:

21/2}?1—
Vo = {veRd :<v,—g>=0} cRY.
lgll2
Writing the eigendecomposition of Hé‘ as Hg; =0, — ene,—l'— YO T for some Q €
O (n) and using the left rotational invariance of X , we continue as follows:
M (SV2XTIETIIEXSY?)

=0 (SVXT QU —ene])QTTQUn — ene, ) QT XE'1?)

L (ZV2XT (1, — ene])QTTO(I, — ene) )X TV?)

= 11 (SYV2X T (1, — ene, )T (I — ene, )X TV/?), (A.56)

where in (A.56) we define T := QT TQ. Although T isno longer diagonal, we note
that it has the same eigenvalues as T, i.e., {T (y1),..., T (yn)}-
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For convenience of the proceeding calculations, let us write X and T in block

S | X ~ | T, s
X = " ’ T = " -~ ’
[XJ } [ST fn}

where X_,, € R@=Dx4 congist of the first n — 1 rows of X; 7, € R@=Dx@=1 g the
top-left (n — 1) x (n — 1)-submatrix of T and7, € Risthe bottom-right element of T.
Note that by the Cauchy interlacing theorem, the eigenvalues of T (ie., the diagonal
elements of T') are interlaced with those of T, ie.,

forms:

M(T) = M (Top) = Aa(T) = Aa(Ty) > -+
o> gt (T) = Ayer (Top) = An(T). (A.57)

Now, returning to bounding A,(D):

ll(Zl/z)?T(In - e,,e;,r)f(ln - e,,enT))?zl/2)

— (ZI/ZXT [()TT Ono—l:| )?21/2>

Ton Op_y || X
21/2 ] n Un-1 n | s1/2
( o', 0 X,

1 I/ZXTnT—nX 21/2)

d ~ A
= 2 (212X, diag(Ai(Ton), o Apm1 (Ton)) X BV/2).
The last step follows from the left rotational invariance of X_p. Denoting
X = X_, e ROV T = diag(A1(Tp), . . . Ane1(T-p)) € ROTDX(=D)

we obtain the upper bound in (A.53).
We then prove a lower bound on A5 (D), again using the Courant-Fischer theorem.
Recall

ZI/Z)FT T R
A2(D) L min max UT(—g g —i—El/zXTH(Jg‘)

VCRY  vevnsd-l lgll2  lgll2
dim(V)=d—1
TXEI/Z .
T( g g—+n§x21/2)v.
gl lgl2

Let V* C R? be a minimizer. Since dim('V*) = d — 1, it can be written as

"V*:{ve]Rd:(v,v*)=0}
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for a vector v* € S?~1. We proceed as follows:

21/2)?1— T R
Ax(D) < max vT(—g g + EI/ZXTH;)
veSa—1, (v,v*)=0 gl gl
T)?El/2 N
-T(ig— + Hglle/z)v
gl llgll2
EI/ZX'T T R
> max UT(—g g + El/zXTH;)

veS4—1 (y,v*)=0 ”g”Z ”g”Z

(v,2V2X T g/lgll2)=0
. T(LgTX_E”z
lgll2 gl
= max UT(EI/Z)?TH;)T(H;)?EUZ)U
veSdil, (v,v*)=0
(v, 212X Tg/lgl2)=0

+ Hgl)?Zl/z)v

= max v (SV2XTION)T(MTFXTY2)v (A.58)
UE‘uOﬂSdfl
>  min max UT(EI/Z)?TH;)T(H?)/(\ZUZ)U
UCRY  veUNSI—1
dim(U)=d—-2

_ /29Tl L{sl/2
= A3(E X M, TH XX )
In (A.58), we let

21/2)?1'
Up = {” €RY: (v.v*) = <U’Tg> B 0} c R
gll2

If v* and £/2X T g/| gl happen to be collinear, then introduce an additional con-
straint (v, u) = 0 for an arbitrary vector u € S¢~! orthogonal to v* and the ‘=’
in (A.58) becomes ‘>’. Furthermore, we have dim(Ugy) = d — 2.

Finally, by the same reasoning as for the upper bound (in particular (A.57)),
12T Ll ©y1/2
A3 (2 X HpTHg XX )
d ST .. N
= 23(2V2X T, diag(Ai(T), ..., Ane1(T)) X 2V/?),

where X_, € R®~D*d hagijd. & (0, 1/n) entries and is independent of everything
else. This concludes the proof of Lemma A.2. ]

Note that (A.57) in the above proof implies that T has the same limiting spec-
tral distribution as 7 which is in turn given by law(7 (Y)). Now the only difference
between the bound in Lemma A.2 and the one in Lemma 5.4 is that n in the lat-
ter is replaced with n — 1 in the former. However, this is immaterial asymptotically
asn,d — oowithn/d — 4.
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To prove Lemma 5.4, it then remains to show that both the upper and lower
boundAs in Lemma A.2 converge to the same limit sup supp(i 5). It suffices to consider
A1,3(D) (instead of A1 3(D)).

Since the following result may be of independent interest, we isolate the required
assumptions and state it in a self-contained manner:

(A4) n,d — ocowithn/d — 6.
(A12) ||Z|2 and ||T ||2 are uniformly bounded over .

(A13) The empirical spectral distributions ur and wy of T and X converge
respectively to g and Xy, with (i, ity # 8¢. Furthermore, for all ¢ > 0 there exists
no € N such that whenever n > ny we have

supp ur C supp iir + [—¢,¢], suppus C suppias + [—¢, ] (A.59)

(A14) The support of 7 intersects with (0, 00), i.e.,
sup supp i > 0.

The uniform boundedness of |||, has been assumed in assumption (A2). The
uniform boundedness of |||, follows from the boundedness of 7~ in assumption (A5).
In assumption (A13), the convergence of ur = % > i1 87 (a((x;.8*).6)) and the first
part of (A.59) follows from the law of large numbers; the convergence of uy has
been assumed in assumption (A2) and the second part of (A.59) is the same as (2.1).
Neither i nor jix can be 8y since 7 is not constantly 0 by (2.4), and X is strictly
positive. Assumption (A14) is implied by sup,, ¢ .7y 7 () > 0 in assumption (A5).

Lemma A.3 (1 (13) converges to the right edge, [38, Theorem 4.3]). Suppose that
assumptions (A4) and (A12) to (A14) hold true. Consider the matrix D in (5.32) and
let 5 denote its empirical spectral distribution. Then, almost surely, |1 ;; converges
to a deterministic probability measure [ 5 on R and

lim )L](la) = sup supp(iL p5)-
d—o00

Lemma A.4 (A3(ﬁ) converges to the right edge). Suppose that assumptions (A4)
and (A12) to (A14) hold true. Then

dlim A3(D) = supsupp(jitp) almost surely.
—>00

Proof. To derive the limit, we show a pair of matching upper and lower bounds.
Denote A° = sup supp(it ;). The upper bound is straightforward:

lim A3(D) < lim A;(D) = supsupp(f ),
d—oo d—oo

where the equality is by Lemma A.3.
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As for the lower bound, we would like to show: for any A < A°,

lim A3(5) > A almost surely.
d—o0

By the choice of A, there exists a constant ¢ > 0 such that i 5(4, 00) > 2¢. Recall
that by [98, Theorem 1.2.1], almost surely i 5 weakly converges to i 5. Therefore,
with probability 1, for every sufficiently large d, (A, 00) > ¢ > 3/d. This means

1, N 3
S{iedtdy (D) = 2} = 5,

that is, 13(5) > A, which completes the proof of the lower bound and hence the
lemma. [

A.S. Proof of (5.49)

Recall from (5.43) and (5.39) the definition of ¢’. We will first provide a suite of
auxiliary bounds on the spectral norms of various matrices in Section A.5.1. They
will prove useful in the sequel. We then show in Section A.5.2 that

. . 1 ‘ . . 1 ‘
Jim lz;horgl—nllelllz =0, tgrgog-_lg—llezllz =0. (A.60)
Next, using this, we show in Section A.5.3 that
1
lim p-lim —||&’||, = 0. (A.61)
100 y_, o0 ﬁ

Finally, in Section A.5.4 we prove (5.49), i.e.,

I .
lim lim p-lim —— [|&%"||, = 0.
1'=001=00 g4_s00

A.5.1. Bounding the norms of various matrices. We first recall the following ele-
mentary facts regarding the spectral norm, singular values and eigenvalues of a matrix.

For any matrix K € R"*¢,

IKll2 = 01(K) = \/M(KTK) = \/Al(KKT).
If K is symmetric (n = d), this is further equal to
IKl2 = vA1(K?) = max{|21(K)]. [Aa (K)I}.

If K is PSD, then singular values coincide with eigenvalues, and hence

[K]l2 = A1(K).
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Using these facts, we have
lim | 2], = lim A;(Z) = supsupp(Z) =: Cx, (A.62)
d—>o0 d—o0
lim ||T]|, = lim max |7 (y;)|
n—oo d—oo i
= max{|infsupp(‘T()7))|, |sup supp(‘T(Y))|} = Cr, (A.63)
~ — ~ 1
lim | X2 = i MXTX)=1+— = Cg, A.64
Jim (X = lim /A1 (XTX) +J§ 7 (A.64)

where the last two lines hold almost surely. Note that Cx, < oo since || X||, is uni-
formly bounded (see assumption (A2)) and Cr < oo since T is bounded (see assump-
tion (A5)). The last line follows since XT X is a Wishart matrix and its top eigenvalue
converges almost surely to the right edge (1 + 1/+/8)2 of the support of its lim-
iting spectral distribution, the Marchenko—Pastur law [96]. Additionally, note that
=%, = C’Ec for any k € R, since X is PSD. Using the sub-multiplicativity of matrix
norms, we then have the following bound for D:

lim | D], = lim |SY2XTTXZV?|,
d—o00 d—o0
< lim [|SY2|IIX|3IT |2 = CsCECr =: Cp. (A.65)
d—o00
Since D is a symmetric matrix, || D], = max{|A;1(D)|, |A4(D)|}, and therefore for
every sufficiently large d, it holds almost surely that
—(Cp +1) =24(D) =M (D) =Cp + 1. (A.60)

The extra +1 term is to exclude fluctuation when d < d for some constant d.
Recall that a* > sup supp(7 (¥)) and denote

Cr = |inf supp(7 ()], Cr = supsupp(7(Y)) > 0.

Then, we have the following bound for F':

T (v:
lim [Fll = lim max — D
n—00 n—oo i q* — T(yi)
max; |7 (y; C
o mNITONL O

n—oo a* —max; T (y;) ~ a* — Cr
Recall
B = (y*ls —E[F(V)]T) 'S,

and y* > s(a*). Therefore, y*I; — E[F,+(Y)]Z is positive definite. We can then
bound the spectral norm of B as follows:

_ _ C
lim |Bll> < lim [[y*Iq = E[Fax (D]Z], T2 £ ——— = Cp. (A67)
d—o0 d—o0

y* —s(a*)
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Recalling B=3"Y2Band using (A.62) and (A.67), we have

. ~ . —-1/2 CB
lim ||Bl> < lim [|Z],"7||Bll2 £ ——= =: Cj3.
d—o0 d—o0

Vinfsupp(Z)
D+tly

Note that Cz < oo since Y > 0 (see assumption (A2)). Recalling M = YS! and

using (A.65), we have

[Dll2 + 1€ _ Cp + 1€

lim | M|, < li
Jm Ml < lim T = Tt d]

=C (A.68)

§>

A.5.2. Bounding el, el. To prove (A.60), or equivalently,

1
lim p-lim —||e} |3 = 0, Jlim p-lim — ||e;||§ =0,
=00y 500 N >0 g 500
we follow the proof strategy of [63, Lemma 5.3]. The idea is to express these quan-
tities as state evolution parameters and show that they converge to the desired fixed
points. Writing

! —ipz 1 2 b 2 -1
Sleilly = St —uTHE = I+ e = .
1 1 2
2 1 2 12 2 1
Fllezll = S =v'l5 = S G + S lvlE = S (0,

and using the state evolution result in Proposition 5.1, we have
p- 11m—||el||2 = hm —IE[(U,, U,)] + lim —E[(Ut_l, U,_l)]
n—oo N n—-oon

—2 lim —IE[(U,, Ur-1)]

n—-oo n

E[E] E[X]
= —— U7 + 00, + ——Hi 00
5 -~ 5
E[X o1
—2( ES ]Mt/vl«t—l + lim _E[(GU,tWU,t,OU,t—IWU,t—l)])s
n—oon

and

1 .1 1
pim 2 = i o0 Vo] + i 20 )

1
—2 lim =E({(V;i1,V;
Jim SE[(Virr, Vi)
= E[E]X?H + 012/,z+1 + E[E]Xf + Ulz/,t

_ 1
_Z(E[Z]Xt-i-l)(t +d11m EE[(O—V,H—lWV,t-I—lvUV,tWV,t>])-
—00
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By Lemma 5.3, the values of iy, 00u ¢, X¢+1,0v,:+1 do not change with ¢ and are equal
to u,ou, x,oy. Therefore, to show (A.60), it suffices to show

.1
lim lim —E[(ou,Wu,,0ou—1Wus—1)] = of.
t—ocon—oo 1

. .1 ’
lim ~ lim E]E[(UV,I-HWV,H—LUV,ZWV,I>] = 0y.

t—>00 d—>o00

From the state evolution, we have
1
(®¢)r41,, = lim —E[(UU,t Wu, UU,t—IWU,t—l)]
n—oon
1 -, -
= nlggo ;E[(ft(vt) —weB*, fr—1(Vi—1) — e—1B )]
. 1 -,
= lim —E[(f; (VD). fi-1(Vi—1))] = pte Tim —E[(fi—1(Vi=1), B")]
n—oon n—>oon

.1 ~ AR RS
— ey lim —E[(f;(V2),B*)] + peps—1 lim —E[(B*,B8*)]
n—oon n—oon

= lim [0 fia O]~ S g, (A.69)

where the last equality is by (5.12); and
1
(W)ir1,s = lim —E[{ov,41Wyit1.0v.: Wy)]
d—oo d

1
= lim —E[{g/(U:Y), gi—1(Ui-1:Y))]. (A.70)

n—oon

Recall from (5.20) that g,(U;;Y) = FU; and f;+1(Vi4+1) = Bs41Vi+1. Therefore,
we have

lim %E[(ft(vt), ft—l(Vz—l))]

n—oo

1 ~ ~
= lim —E[(x/B"* + oy, WV,t)TBtTBt—l(Xt—I%* + ovi—1 Wyi—1)]

n—oon

N T .
= JiXi- lim ~E[B Ts12BT B, x1/2%8*]

1
+ lim —E[(ov, W) B Bio1(0v—1 Wri-1)]

n—oon

IE[ >3 }
= XeXr-15 = S
L — e D) (i1 — ¢5)

1 32 1
+ - = — lim —E|{oy Wy, ovi—1Wys—1)],
; [(yt—cz)(yt_l—cm]deood LovaWics-ova-s W]

(A1)
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where we use Proposition G.3 in the last step. Similarly, we have

lim lIE[(gt(Ut; Y), gr—1(Us—1; Y))]

n—oon

1
= lim —E[(M;G +ou, WU,t)TFZ(Mt—lG + ov-1 WU,t—l)]

n—>oo n
1 1
= Uefhe—1 nll)ngo ;E[GTFZG] + nll)ngo ;E[(UUJ WU,t)TFZ(GU,t—IWU,t—l)]
= pipi—1E[G?Fox (Y)?]
_ 1
+E[Fe (V)] lim —E[ {00, W1, 00,-1Wu,i-1)] (A.72)

Letting

o1
7 := lim _E[(UU,IWUJ,O—U,t—IWU,t—1>]7

n—oo n

1
= lim =E({oy: Wy ,ovi—1Wyi—1)|,
wy o [( VWV, Ovei—1 Wyt 1)]

and using (A.71) and (A.72) in (A.69) and (A.70), we obtain a pair of recursions
for t;, w;:

I]E[ >3 }
T = Yt Xt—13 = =
AT = D) (i1 — 02

E>] + IE[ > j|a) (A.73)
R [T Teurs i i |
Ot = ot B[G2 For (FP] + E[Foe (7], (AT

Using (A.73) in (A.74), we further obtain

Wi+1 = ?E[(ﬁéz - 1)$a*(y)2:|ﬂzﬂt—1
E[Fux(Y)? 3
e S ]E[m — D) (i —ci)]
+ E[fa*(y)z] |: _ 52 _ i|wt'
8 (vt — cE)(yi—1 — cX)
We would like to show
Jim w4y = 0% (A.75)

To this end, we will upper bound the lim sup and lower bound the lim inf both by 012,.
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Let
_ E[%*(?)Z]E[ 52 }
Pr="" e — D) (i1 —c2) ]’
S g
qr = E[(E[E]G 1) Fax(Y)™ | e pe—1
E[fa*(y)z] |: 23 j|
tXt— E = = |
MR G — D) —c5)
and

o =liminfw;11, © =limsupw;4;.
t—>00 t—00

Then by subadditivity of lim sup,

o = limsupgq; + p;w;
t—>00

< lim q¢ + (Jim pr)(limsup )
CEEILN( 8 o ]
i
E[Fux(Y)?] 33 ,  E[Fa+(Y)? 32 _
T E[(y*—ciy] T E[(y*—ci)Z]“”

where the inequality holds since lim;—o, p; > 0. Rearranging terms on both sides
gives

5 < (1 _ E[%*(Y)ZJE[ D D‘l
8 (y* —cX)?

(EEILI( 3 o \por ey B2 T,
(8 E[(E[E]G l)f“*(y)]“+ 5 E[(y*—ci)z}x)'

Note that the term in the first parentheses is positive since it is nothing but 1 — w;
which is positive whenever a* > a°. We claim that the right-hand side is equal to 012,.
This can be seen from the fixed point equations of the state evolution recursion.
Indeed, from (A.35) and (A.29), we have the following identity for 0‘2,:

0% = E[G2F,+ (V)?|u® + E[For (V)]0

= E[G?F,«(Y)*|u? E _
(G2 Far (V)? ] + = e
E[‘?‘l* (7)2] 22 2 E[fa* (7)2] 31,2
g ]E|:(V* —]E[}‘a*(Y)]i)z]"V —5  E[XuS. (AT6)

Solving for JIZ,, we obtain exactly the upper bound on w.
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Analogously, a lower bound on @ can be derived using superadditivity of lim inf:

w = liminfg; + p:w;
t—>00

%

Jm, e+ (fim, 7o) (iminfer)

= @E [(LGZ — 1) For (17)2}“2

§ E[Z]
E[Fax (Y)?] DN » | E[Far(Y)?] 52
T E[(V*—Ci)z} T E[(y*—ci)Z]Q'

Rearranging and using (A.76) gives @ > 012,. This establishes (A.75).
Next, using (A.75) in (A.73), we get

i 1E[ 3 ] , E[X] 2 1E[ 32 } )
1 T = = - =_- — - - = 0 .
oo ' 8 L (y* —c3)? X A (y*—cx)2 "

By (A.29), the right-hand side is precisely 0[21. Therefore, we conclude
: 2
tl_l)rglo =%y,
which, together with (A.75), completes the proof of (A.60).

A.5.3. Bounding ¢’. Letus now prove (A.61). Recall from (5.43) and (5.39) that e’
comprises the following terms:

~t ~t ~t ~t ~t ~t ~t
e =€1+€2+€3+€4+€5+e6,

where
L ~ a*c
5t _ B t EI/ZB t’
S P 62+Al+£ ©
*
&l = L —(b—b)S2XTF(bF + 1,) " (bF + 1,) ' X B!,
A+ 4
. a* 5 -
o3 = L y)EV2XTF(bF + 1)

X(ydg — D) Ny Iy — D) IS,

At a*(ct _C)

=_——" B,
S P s
e5 = ae (7R a0 DRI (79 PSS 5) Ruy () RO ) R M
A+ 4L
~t a*bi 12 5T 2 -1t
ol = =L SV2RTF2(h,F + I,) el

T A+ 0
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Since the AMP is initialized so that the state evolution parameters stay fixed (see
Lemma 5.3), for every t > 1 and y; = y*, we immediately get

e =et=0,. (A.77)

By convergence of the empirical spectral distribution of X (see assumption (A2)), for
every t > 1,

d 1 s
dlin;o by = dhm —Tr((yelg — ) ') = EE[)/, — c§i| = b,

and consequently

1
p-lim —|&l|], = 0. (A.78)
d—oo Vd
By convergence of the noise sequence ¢ = (g1, ..., &,) (see assumption (A3)) and
independence of covariate vectors (x1, ..., X,) (see assumption (A2)),

1 _
p-limc; = p-lim — Tr(F) [fa*(Y)] =

n—oo n—oo

and consequently
L
p-lim —||&} |l = 0. (A.79)
d—oo Vd
We use the bounds developed in the previous sections to bound € and é/. Specif-
ically,

I .
lim p-lim —=[2{]»
—>00

d—o00
= ||e§||2 ‘ ‘ 1/2 ||€§||2
< lim p-lim B + b)) B
Hoogm‘h ‘n R e [ I
‘ el
—|Cz C lim p-lim =0, A.80
—(Alw TARAE )aoo‘dtooﬁ (4.50)
lim p-lim —[|&/ |
t_)ood—>00
< lim p-nm‘L‘||2||”2||5f||2||F||%||(th TR lalz
100 4,0 A1 \/E
~ lim phm‘ “ V2RI~ o lal g
t_)ood—wo 1 \/_
JCxCzC2 a*—C t
_ YOCrCr( ﬂIMpﬁmwmzzQ (A.82)

A1+ £] 1500y oo Vd
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To obtain (A.81), it is useful to recall F = T(a*I, — T)~! (see (5.19)) and observe
from (5.23) and (5.4) that b; = 1 for every ¢t > 1 (where we use y; = y* for every
t > 1 from Lemma 5.3).

Combining (A.77) to (A.80) and (A.82) yields (A.61), as required.

A.5.4. Bounding &%, Finally, we prove (5.49). Recalling the definition of &%
in (5.46) and using the triangle inequality and the sub-multiplicativity of norms, we
have
1 1t/
lim lim p-lim —|e"" |»
t/—o00 t—>00 d—00
t/

< lim lim p -lim — ||M||t—S||é\t+s 1”
\/EZ 2

t’—)oot—>00
s=1
t’ 1
— lim i li 1\7[’/_S<1—’+S1)
im_Jim > ( fim [47]15) (p-lim —= "+

’
t’—o00 t—>oos=1 d—>00

1
< lim ZCt (hm phm\/gﬂetﬂ_l”z) =0,

t/—>oo

which implies (5.49). The inequality in the penultimate line is by (A.68) and the last
equality is by (A.61).

B. Proof of Theorem 3.2

We first prove item (2) of Theorem 3.2. Suppose that the condition a* > a° holds
for some 7 € T. If ¢ is strictly decreasing on (sup supp(7 (Y)), 00), this condition is
equivalent to the following one:

5% (e ) O [
<——E|(—=G*—1)Fe () |E |,  (®B.D
E[X] E[X] y° — E[Fee (Y)]Z

by item (4) of Proposition D.6. We assume a® = 1. This assumption is without loss of

generality due to scaling invariance. Indeed, the threshold condition for § (i.e., (B.1)
above) and the self-consistent equations for (a°, y°) (see (D.15) and Lemma D.5)
only depend on (a°, 7°) through F,0(Y'). Therefore, they continue to hold if (a°, T) is
replaced” with (1, 7 /a®). Let 4(y) = 7 (y)/(1 — T (y)) for notational convenience.
The definition of (a°, y°) in (D.15) can then be written as

—]E[{,’(Y)z]E[(L)Z} 1—1E[L] (B.2)
yo—E[gMIZ/) I 8 Ly —E[gMI=]

“Note that a°® > sup supp(7(Y)) > 0.
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Let pg denote the density of G ~ N(0,E[X]/8), and p(- | g) the conditional
density of y = ¢(g,¢) € R given g € R where ¢ ~ P.. Then, using the Cauchy-
Schwarz inequality, the second factor on the right-hand side of (B.1) can be bounded
as follows:

8 § = %
E|(—=G>- 1)55 Y } [(—_G2 - 1) Y ]
[(E[ ) W E[X] "o
=/ /pG(g)p(ylg)(Lg —1)3(y)dgdy
supp(¥) E[X]

)
= G| —=G?* - 1)} d
awa)[my|)(E[] 400 dy

_[ EOlOGEET N e ey

supp(Y) E[p(y | G)]
3 ( E[p(v | G)(g5G* - 1]’ )1/2
= U Ep(y | G)] g

B 1/2
(/ _Ebu|mwwfw)
supp(Y)

E[p(r 1 O (556> - )" \v2
- dy) E[gd@)?])?  ®3
(Lmﬁ> E[p(y | G)] y) [#07)7] (B.3)

Applying the Cauchy—Schwarz inequality to the third factor on the right-hand side
of (B.1), we obtain

1 E[ 2 }: 1 E[ 2 }
E[Z] Ly —E[fe(M)IT] E[E] Ly°-E[gX)]Z

1 [ s _]
=_——F D>
E[Z] Ly -E[gY)]Z

E[iz]l/z 5 2q1/2
ety EK .__)} . B4
E[X] ye —E[¢(Y)]E

Combining (B.3) and (B.4), we have that the right-hand side of (B.1) is bounded from
above by

E[£?)'/? E[p(v | O)(g5G -1 12
D (/ dy)
EE \app(@) E[p(y | G)]

= 241/2
1| (—sms) |
EIOTE G e

$211/ E G)(--G2 -1 1/2
LEEPR( IO OF
supp

=l Vs,
E[S] Elp(y | G)]
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where the equality follows from the first identity in (B.2). Using this in (B.1), we have

] E[p(y | G)(g5G>~ )\
N ]E[Z]z (/ ) [p(y I )(]E[E] )] d ) . (B.5)
supp(Y)

E[Z2] Elp(y | G)]

In words, the condition above (which is independent of the choice of 77) holds for
any J that satisfies (B.1) and therefore achieves a positive overlap.

In the following, we show that the condition above is tight by proving item (1) of
Theorem 3.2. Specifically, whenever (B.5) holds, we exhibit a preprocessing function
T*:R — R that meets (B.1) and therefore must induce a positive overlap.

Suppose that (B.5) holds. As before, we choose the scaling such that a® = 1.
Constructing 7 *(y) is equivalent to constructing

()
1=T*(y)
We require the following notation. Denote the right-hand side of (B.5) by A(§). More-
over, we have

$ () = (B.6)

_ _ 5 =
mo(y) =E[p(y | G)]. ma(y) = ]E[p(y | G)- ﬁGz]

Before presenting the construction of ¢*, we first observe that the integrals of both
mg and m; are equal to 1:

/'_mww=E/_m@WNﬂ=L
supp(Y) supp(Y)

- ~ 5
_my(y)dy =E (/ _p(y | G)d )—_ Gz} (B.7)
[upp(Y) maley L \Jsupp(Y) P | g ]E[Z]

= E_L_GZ} =1.
LE[X]

Now, consider

wion . |AG) (ma(y) )
$*() = 5 (mo(y) 1). (B.8)

We claim that §* satisfies (B.1) and (B.2) and therefore attains positive overlap. In
fact, we claim that §* satisfies a stronger condition than (B.1), which is displayed
below in conjunction with (B.2):

[5 1 5 g £
A E[E]E[(E[E]G —1)51 (Y)}]E[W—E[&’*(Y)]i}

1= els e > )1
8 ye—E[g*M)Z) |

(B.9)
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where

1= 11&:[ 2 } (B.10)
§ Lye—E[g*(IE] '

Note that the first identity in (B.9) implies (B.1) since § > A(§) by (B.5).
Let us verify the validity of (B.9). By the construction of ¢* (see (B.8)),

E[¢*(F)] = / | ) dy

supp

[A(S)
26 / ma(y) —mo(y)dy =0, (B.11)
supp(¥)

where the last equality follows from (B.7). Using this in (B.10), we can solve y°
explicitly: B
o _ E[X]

y° = —5 (B.12)

Consequently, the first two identities of (B.9) can be simplified as follows. First look

at the first identity of (B.9). The right-hand side equals

1 s - _ 32
— E|l|—G?*-1 *Yi|IE|: _ _}
E[S) [(E[E] )5‘( N e @s

_ SE[X?] § = .
R Gouabad] B
_ SE[Z?]

[2]2 supp(Y) (mZ(y) o mO(y))g (y) dy

/AG)S - E[Z?] (m2(y) —mo(y))?
B E[Z]? /suppav) mo(y) 4 B9

Equation (B.13) is by (B.11) and (B.12). Equation (B.14) is by (B.8). Therefore, the
first identity of (B.9) is equivalent to

_ E[i]z( (m2(y) = mo(y))? )‘1

The right-hand side is the same as that of (B.5), hence the first identity of (B.9) indeed
holds by the definition of A($).

Next, we move to the second identity of (B.9). Using (B.11) and (B.12) again, the
right-hand side equals

_E[gz*(?)z]E[(yo _E;*(?)]i)z}

- - E[Z? E[Z?
o1F OG5 = St

[9*(V)?]



Y. Zhang, H. C. Ji, R. Venkataramanan, and M. Mondelli 266

N v 2
- A(S)E[E:z]E[(mZ({) - 1) }
E[X]? [\mo(Y)
o EEY (m(y)_ )2 _
—A(5)E[§]2 Supp(y)mo(y) 700) 1) dy =1,

which verifies the second identity of (B.9). The second line uses the definition of ¢*
in (B.8) and the last equality is by the definition of A(§) (see the right-hand side
of (B.5)).

To complete the proof, it remains to verify that 7
Recalling (B.6) and (B.8), we have

gk

satisfies assumption (AS5).

A@) (ma2(y)
Py = O VT (o) — 1)
1+4*(y) A(a) my(y)
I+ (MO(y) - 1)

/A(S ma(y) A(8
mo(y) +1-

By definitions, both m, and m are non-negative functions. Therefore,

1
inf T*()>1-———— > —00, (B.15)

yesupp(Y) 1— /%

where the last inequality holds since § > A(8) by the assumption in (B.5). Also, it
trivially holds that
sup T*(y) <1< o0. (B.16)
yesupp(Y)

It is easy to see that 7*(y) > 0 if and only if m(y) > mo(y). We first claim
that m, and m are not identically equal. Otherwise, A(d) (i.e., the right-hand side
of (B.5)) is infinity and § satisfying (B.5) is also infinity, violating assumption (A4).
Moreover, by (B.7),

_ ma(y) —mo(y)dy = 0.
supp(¥')
It follows from the mean value theorem for definite integrals that there exists y €
supp(Y') such that m,(y) > mg(y), which implies

sup T*(y)>0. (B.17)
yesupp(Y)

Since T* is assumed to be pseudo-Lipschitz of finite order, putting (B.15) to (B.17)
together verifies assumption (AS5).

Note that, by the arguments in Section C, 7* does not need to satisfy assump-
tion (A7) to have positive limiting overlap. In fact, if (3.13) holds and T* does



Spectral estimators for structured generalized linear models via AMP 267

not have a point mass at the boundaries of its support (otherwise assumption (A7)
automatically holds), we can create such point masses via a perturbation. Now, the
perturbed function satisfies assumption (A7) and it has positive limiting overlap for
all sufficiently small perturbations. Then, an application of the Davis—Kahan theorem
shows that we can set the perturbation to 0, and obtain the desired result for 7 *. This
concludes the proof.

C. Removing assumptions (A6) and (A7)

We show that the conclusions of Theorem 3.1 remain valid even if ¥ and/or T fail to
satisfy assumption (A6) and/or (A7). To do so, we create f], T that closely approxi-
mate X, 7 and satisfy assumptions (A6) and (A7). Theorem 3.1 then applies to 7.
We then show using a perturbation analysis that the same characterizations also hold
for X, 7 once the perturbation is sent to zero. The detailed proof is presented below
where we assume that both assumptions (A6) and (A7) are violated. The proof when
only one of them holds is analogous and is omitted.
We first construct 3. Note that if

P(Z = infsupp(E)) > 0, P(Z = supsupp(L)) > 0, (C.1)

then assumption (A6) is automatically satisfied and one can take T = . In what
follows, we assume that both probabilities in (C.1) are zero. (Again, the case where
exactly one of the probabilities is zero can be handled verbatim and the details are
omitted.) Write the eigendecomposition of X as ¥ = Zflzl 1 (2 (D)v; ()T . By
the convergence of the empirical spectral distribution of X (see assumption (A2)), we
have that for any sufficiently small ¢ > 0, there exists § > 0 (depending on ¢) such
that for every sufficiently large d,

T ety (D) 2 (VI -8 € l6/2.]
$|{i ell...dy: hi(D) < (VI(®D +6)%)| € [s/2.¢].

Let & € R9* be the matrix obtained by truncating the spectrum of X:

d
E=Y wEuE@uE’,

i=1

i (VI(E) - £ M) = (Va(®) -8
1(E) =1 (V@ +8)> L(E) < (V(E) +£)°,

Ai(2), otherwise .

where
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It is easy to check that T still satisfies assumption (A2) if ¥ does. Moreover, upon
truncation, the limiting spectral distribution of T has positive mass on both the left
and right edges, and hence obviously satisfies assumption (A6).

Let us then construct 7. Clearly, if

IP’(‘T(}_’) = sup supp(T(I?))) >0, (C.2)

then (2.6) is satisfied. We therefore assume that the above equation holds with equal-
ity. In this case, we truncate 7~ slightly below its supremum to create 7 which satis-
fies (2.6). Specifically, for any ¢ > 0, there exists £ > 0 (depending on ¢) such that

]P’(T(Y) € [sup supp(’J‘(Y)) — £, sup supp('J'(I?))]) €c/2.¢].
Define 7 as B
T (y) := min{T (y). sup supp(7 (Y)) — &}.

Note that 7 depends on ¢. Also, it satisfies (C.2) and therefore (2.6). It is easy to see
that assumption (AS5) will not be violated after the truncation.

Now the conclusions of Theorem 3.1 hold for X, 7.1In particular, a*, @° can be
defined using (3.4) and (3.6) but with 7 and the limiting spectral distribution of .
It then suffices to show that as long as a* > a°, the difference between the spectral
statistics under =, 7 and those under <, T is vanishing as ¢ — 0. Let

D=S28TTEs2. = S2KTFRS2,
where
T = diag(T(y)), T := diag(’J:(y)).
Then
|ID=Dl, = |=V2XTTXSV2 - S\2XTTXSV?,
< ”21/25(“TT5(“21/2 _ il/z)'(“TT)'gzl/z“2
+ |IEV2XTTXSY2 _SI2XTT X2,
+ Hil/szfj(“Euz _ il/szrffil/Zuz
< |=V2 = SV XIBIT 201 =2l
F IS RAXIBIT = T 201?12
+ ISR XIBIT =2 = £12),
< 2=V = EV2 L XIZIT (2112
+IZ2RBIXIBIT = T2
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< 25(1 + % + 0.01)2(sup supp(7 (Y)) + 0.01)(supp(Z) + 0.01)

— 1 2
+ (supp(Z) + 0.01)(1 v 0.01) £
<, (C.3)

where the bound on the penultimate line holds almost surely for every sufficiently
large d, and c¢; > 0 in the last line is a constant independent of d. The +0.01 terms
are to exclude deviations for small d. Furthermore, if a* > a@°, Theorem 3.1 guaran-
tees that there exists a constant c; > 0 such that for every sufficiently large d, with
probability 1,

X1(D) = A2(D) = ca. (C4)
Using (C.3) and (C.4) in the Davis—Kahan theorem (Proposition G.4), we obtain
. ~ ~ 4D = D|l>
D) —vi(D)|2, D D <— <4 ,
m1n{||vl( ) —v1(D)|l2, [[vi(D) + vi( )||2} = M(D)—A(D) c1&/ca

which implies

* *

floor 223 o 2 =, oo om0 22}

min [[vy(D) — v1(D)||2
oe{—1,1}

<4ci§/ca. (C.5)

IA

By Theorem 3.1, the condition &* > @° also implies that the overlap between vy (D)
and B* converges in probability to n > 0. Since ¢ > 0 (and therefore &) can be made
arbitrarily small, (C.5) then allows us to conclude that the overlap between v (D)
and B* also converges to 7. This proves (3.12) for D.

Using (C.3) and Weyl’s inequality, we have forany i € {1,...,d},

|Ai(D) = A;(D)| < | D = Dz < c1&,

which in particular establishes (3.11) for D. This completes the proof.

D. Properties of auxiliary functions and parameters

D.1. Existence and uniqueness of a*
Recall the functions ¢, : (sup supp(7 (Y )), 00) — R defined in (3.2).

Proposition D.1 (Existence of a*). Let assumption (A7) hold. Then, the equation
@(a*) = ¢(a*) has at least one solution in (sup supp(7 (Y)), c0).
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Proof. Recall that both ¢ and ¢ are defined on (sup supp(7 (Y)), co). It is not hard to
see from (3.3) that y is a continuous function. Therefore, ¢, i, { are also continuous.
We will show
lim  ¢(a) > lim _ ¢(a), lim ¢(a) < lim ¢(a). (D.1)
a™sup supp(T(Y)) aNgsup supp(7(Y)) a/ oo a /0o
Then by the intermediate value theorem, this immediately implies the result.

We will explicitly evaluate the four limits. To this end, let us first study the limiting
values of y(a) defined through (3.3).

Limiting values of y. By inspecting the defining equation, it is clear that
E[S]

o1 [ > }
lim -E | = ,
>0 8 Ly —E[F(DIS] 8y

and hence
E
lim y(a) = —, (D.2)
a—>o0
which is positive and finite. We also claim that

lim  y(a) = oo. (D.3)
a™sup supp(7(Y))

Otherwise, for any finite y, by (d) in (2.6),
1 T
aNsupsupp(T (7)) 8 [y — E[Fo(Y)]Z

which violates (3.3). The possibility of

=0,

lim _ y(a) = —o0
asup supp(T (Y))

can be similarly excluded.

Limiting values of ¢. We claim that

E[Z?]
E[Z]?

lim ¢(a) =oco, lim ¢(a) = SE[G*T (Y)]

) < 00. (D.4)
a\ysup supp(7(Y))

The limit towards the right boundary of the domain is easy to verify:

—,  T) 2
a—o00 a—o0 E[E] 1-7 (Y)/a )/(a) - E[ﬁa(Y)]E

=;E[627(?)]E[ 2 }
E[3] E)/8

E[X?]
E[Z]?

=SE[G*T (Y)]
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where we use (D.3) in the second equality. To show the first equality in (D.4), let us
start by observing that for any a > sup supp(7 (Y)),

0< IE|: ! — _]
y(a) —E[Fa(Y)]Z
1 [ b } 8
< - — K =— | = - —. (D5)
infsupp(X) Ly(a) —E[F(Y)]Z inf supp(X)

The second inequality is valid since inf supp(Z) > 0 by assumption (A2), and hence

b
inf supp(X)

almost surely. The last equality is by the definition of y(-) (see (3.3)). On the other
hand, a simple application of the Cauchy—Schwarz inequality yields:

- S 2
§2=E x - _]
_y(a)—IE[J'*‘f(Y)]E

)y 1

2
<E = . =
T L@ —E[FMID)V? (y(a) - E[%(Y)]Z)l/z]

e ]
<E =—— |E —|.
Ly(a) —E[F.(Y)]Z] Ly(a) —E[F.(Y)]Z

Rearranging and using (D.5) gives:

E[ 25 — _:|Z & - ZS-infsupp(i),
y(a) — E[F(Y)]Z E[1/(y(a) — E[Fa(Y)]D)]

the right-hand side of which is a strictly positive lower bound independent of a. From
here, we conclude

o 52
lim  gla) = lim L_E[Gzﬁa(Y)]]E[ - _}
aesupsupp(7 (¥)) aNesupsupp(7(¥)) E[X] y(a) — E[F(Y)]Z

:Oo,

since the middle term converges to oo by (e) in (2.6) and the remaining terms are
lower bounded by some positive constant as a \ sup supp(7 (¥)).

Limiting values of {. By definition,

lim t(a) =¢(a®) = ¢¥(a®) < oo. (D.6)

ausup supp(T (¥))

Using (D.2), we obtain

Jim f(a) = lim y(a) = lim ay(a) = co. (D.7)
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Finally, combining (D.4), (D.6), and (D.7) gives (D.1), which completes the proof
of the proposition. ]

Proposition D.2 (Monotonicity of ¢). Let assumption (A5) hold. Suppose

inf _ 7 (y)>0. (D.8)
y€supp(Y)

Then, the function ¢ is strictly decreasing.

Proof. We show that ¢ is strictly decreasing by proving ¢’ < 0. Let us start by com-
puting ¢’. Recall

— _ ~2 (v iz
E[Zlp(a) = E[G aJ’a(Y)]E[y(a) _E[ﬁa(Y)]i]'

Using the chain rule, we obtain

_ o x2
E[X]¢’ =—IEGZ3TC,Y2E[ __}
Hle = =R G mas
o s ol 2 )
ElG ”"(Y)]E[W(a) TSI U R vl A
(D.9)
The derivative of y can be accessed via the implicit function theorem. Let
H(a,y) = 1IE[L} -1
TSy EmRGE]
Recalling (3.3), we see that y(a) is the solution y to H(a,y) = 0. We have
d 1 -z N —-7(Y)
100 = 58| o —mmaee 2 v )
SN/ N S
§ La-T@)*] Ly —E[F(V)]D)2]
and ; _
1 by
a0 = 38| g

By the implicit function theorem,

4 EH@y@)

4"~ " Ha @)

__BIT(0)/@ - TOPIEE (@) ~E[FIE?] o

E[Z/(y(a) - E[Fa(Y)]D)?]
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Using this, we simplify the second term of (D.9):

~E[Garu(F o R et o )
ElG ”"(Y)]E[(y(a)—Em(?)@z AR el
a2, (v 22 ’
= Elo ”"(Y)]E[(ﬂa) —Em(?)]i)z}y (@
= T(Y) ¥3
~El¢ “"'”(Y)]E[m - 7(?))2}?‘[@@) - Em(?)]i)z}
— E[G%a7, (?)]E[ x? ] E[T(V)/(a - T (V)]
‘ (@) - E[F(DIZ)1] EE/((@) - EF(D]Z)]
—E[G*a¥. (?)]E[ T }]E[ 2 } (D.11)
‘ @—TM)2] L@ —E[F.MI)2]

Let us argue that the right-hand side is negative. First note that since
(i) a > supsupp(7(Y)) > 0,
(i) infsupp(7(Y)) > 0 by (D.8), and
(iii) 7 (Y) is not almost surely zero by assumption (A5),
the common factors are positive:
IE[G%%(Y)]]E[&] > 0. (D.12)
(@a—T(Y))?

Then we apply the Cauchy—Schwarz inequality to obtain:

52 2
E __
[()/(a) - IE[%(Y)]E)Z]

$1/2 $3/2 2
:E[ _ . — _} (D.13)
y(@) —E[Fa(N)]Z y(a) - E[Fa(Y)]Z
I ke o
<E __ |E — (D.14)
(v(a) — E[F,(Y)]X)? (v(a) — E[Fa(Y)]X%)?

Equation (D.13) is valid since X is positive and y(a) > s(a). The inequalities (D.12)
and (D.14) jointly imply that the right-hand side of (D.11), i.e., the second term
of (D.9), is non-positive, as claimed. Moreover, the first term of (D.9) is strictly neg-
ative. We therefore conclude that ¢’(a) < 0 for any a > sup supp(7 (). n

Remark D.1 (Monotonicity of ¢). The monotonicity property of ¢ relies on the non-
negativity of 7 in (D.8). We believe that this assumption can be relaxed. In fact,
numerical evidence suggests that ¢ is monotone: we report in Figure 6 that in the
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Toeplitz Circulant
201 3
2.5
15
2
S0t S5
S S
1 L
5 L
0.5
0 : : : : - 0
1 2 3 4 5 6 1 2 3 4 5 6
a a

Figure 6. Plots of the function ¢ defined in (3.2) with parameters specified in Remark D.1.

setting of noiseless phase retrieval ¢ (g, &) = |g| with optimal preprocessing function

T(y) {1 ! 10}

=maxjl — —, —
y 5y2
(where § = 0.1), the function ¢ is strictly decreasing and convex in (1, co) (note
that sup supp(7'(Y)) = 1) when X is Toeplitz with p = 0.9 or circulant with ¢y = 1,
c¢1 = 0.1, £ = 17. Note that the function T here is not everywhere non-negative.

Proposition D.3 (Uniqueness of a*). Let assumption (A5) hold. Suppose ¢ is strictly
decreasing. Then, p(a*) = {(a*) has a unique solution in (sup supp(7 (Y)), 00).

Proof. The uniqueness of a* follows from several properties that have been proved
for ¢ and ¢. Recall the assumption that ¢ is strictly decreasing and that { is non-
decreasing by Lemma E. 1. Furthermore, from the proof of Proposition D.1 (in partic-
ular, (D.4), (D.6), and (D.7)), we know that in the interval (sup supp(’]’(?)), 00), ¢
strictly decreases from oo to a finite constant, whereas ¢ increases from a finite con-
stant to co. By the intermediate value theorem, the solution to ¢(a*) = ¢(a™) must
exist and is unique. ]

D.2. Equivalent definitions of a°, a* and equivalent description of
sup supp(i 5)

Let A C R? be the domain on which the potential solutions to various self-consistent
equations of interest are to be considered:

A= {(a,y) :a > supsupp(T(Y)), y > s(a)},

where s(a) is defined in (3.1).
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Proposition D.4 (Equivalent definitions of ¢°, a*). The following statements hold.:

* In the domain A, the unique solution (a°, y°) to

| [N ) 2
=3B O\ s |
_ V - [ ao( )] (D15)
= 5= ]
§ Ly° —E[Fee(Y)]Z
is the same as the unique solution to the following equations:
Y'(@®) =0, y°=y@°). (D.16)
e Let (a*,y™) be the solution in A to
f(a*) = @), y*=yla"), (D.17)

such that a™ is the largest among all solutions. If a* > a°, then (a*, y™) is also a
solution to (5.4).

Proof. We start by showing the equivalence between (D.15) and (D.16). We will argue
that ¥'(a) = 0 if and only if (D.15) holds. The derivative of v’ is

V(@) = 7@ +ay'(@
E[T(V)/(a = T (N)IE[E?/ (v(@) - ElFa(T)] D))
E[S/(r(@) — E[F(D]T)

=y(a)—a-

El

where the formula for ¢’ has been derived in (D.10). Using the above expression and
rearranging terms, we can write the equation ¥'(a) = 0 as

[ y(@)E ]_ [ ag (¥) }
(y(a) - E[F.(N)ID)2]  L@—T(Y))?

22
E[ e —— } (D.18)
(y(a) — E[Fa(Y)]2)?

We rewrite the first two terms in the above equation in the following way:

[-simass) ==z
(v(@) —E[F ()] Ly@ - E[f(Y)]E

£2 _
E ____le[s.@)1.
! |:()/(61)—IE[%(Y)]2)2:| [Fa(¥)]

} =E[Fa(Y)] + E[Fa(Y)?].

IE[ aT (Y)
(@a—T(Y))?
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Using the right-hand sides above in place of the left-hand sides in (D.18), we see that
the term E[X2/(y(a) — E[F,(Y)]Z)?|E[F,(Y)] cancels on both sides and (D.18)
becomes

E[ > _}zE[ﬁa(Y)Z]E[ > }
(@) —E[Fa(Y)]Z (v(a) — E[Fa(Y)]%)?

The left-hand side equals § since y(a) satisfies (3.3). Therefore, the above equation
matches (D.15).
Next, assuming that (D.17) holds, we verify (5.4). For any a > a°,

¢(a) = ¥ (a),
hence (D.17) can be written as
32 _
B L j’“(Y)]E[wa) —Em(?ni} =@

or equivalently,

LE[ © G257 )} [ >’ ]Jy(a)
w5 L y@) —E[F(NIS] ~ B[S

To show that the above equation is the same as (5.4), it suffices to verify

§y(a) _ 1 ¥2
G e bl RACES

We rewrite the first term on the right-hand side as

1 2
E[S] E[F(D]E [y(a)—Ew«‘a(Y)]i}
1 1
CEEIEF(Y)] o o
' (E[Emmvzz - y(a)gE[f_uY)]z} N E[ y(@E[Fa(V)]E D
y(a) —E[Fa(V)]Z y(a) — E[Fa(V)]Z

11
~ E[S]E[Fa(Y)]

. (_E[E[%(mi] + y(a)EW?)]E[ §f~ V)E D

_ V(Ci) [ D _]_
E[X] Ly(a) -E[F.(Y)]Z

—
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Noting that y(a) satisfies (3.3), we further obtain

52
;E[%(Y)]E[ E(v _ _]zéy(g)_l
E[X] y(a) — E[F.(Y)]Z E[X]
This then implies (D.19), and hence (5.4). ]

Finally, we derive an alternative form of (5.33) in terms of a°, y° defined through
a pair of self-consistent equations. The proof follows from verifying that ¢’ (a®) = 0
is algebraically equivalent to (D.15), as shown in Proposition D.4 above.

Lemma D.5. The description of sup supp(ii ) in Lemma 5.5 is equivalent to
supsupp(it ) = a°y”,

where (a°, y°) € A solves (D.15), and a® is the largest among all such solutions.

D.3. Alternative formulations of a* > a°

The following proposition is a direct consequence of the monotonicity properties
of ¥, ¢ (see Proposition D.2 and Lemma E.1).

Proposition D.6. The following conditions are equivalent:
(1) a* > a°.
(2) &(a®) > E(a®).
(3) ¢'(a*) > 0, or more explicitly

1>1E[3~‘a*(?)2]E[ 2% — }
J (y* = E[Fax (Y)]E)?

i.e., 1 > wy by recalling the definition of w, in (3.10).

(4) If the function @: (sup supp(7 (Y)), 0c0) — R defined in (3.2) is strictly de-
creasing, the above conditions are further equivalent to W (a®) < ¢(a®), or
more explicitly

<L_E[(L_GZ—1)3«;O(Y)]E[ i - _].
E[Z] L\E[X] y® — E[Fae (Y)]Z

E. Proof of Lemma 5.5

Recall from (5.32) the definition of D € R4*4:

D =3x12XTrxxl/2,
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We already know that both Al(ﬁ) and )k3(13) converge to the upper edge A° =
sup supp L ;; of the limiting spectrum (see Lemmas A.3 and A.4). The main goal
of this section is to prove the characterization of the upper edge A° in Lemma 5.5. We
deduce Lemma 5.5 from the following lemma. We present the proofs of Lemmas 5.5
and E.1 at the end of this appendix.
Lemma E.1. Let a € (supsupp L, 00). Then, the following hold:

(1) Ify (@) > A° foralld > a, then ¥'(a) > 0.

(2) Ify'(a) > O, then Y (a) ¢ supp i .

We will see in Lemma E.3 that ¢° is indeed well defined. More precisely, ¥ is

an analytic function with at least one critical point, and ¥’ (a) converges to a positive
number as a — 00.

E.1. Properties of ¥

Recall that ¥: (sup supp i1, o0) — R is defined by ¥ (a) = ay(a). With a slight
modification to the definition of y(a), we have the following result.
Lemma E.2. The following statements hold:

(1) The sets 8,8’ C R defined by

$ := {a > supsupp it :IE[&%(Y)] = 0},
S = {a > supsupp fir : —E[Fa(Y)] = é}

are finite.

(2) Foreacha € (supsupp i, 00) \ S, there exists a unique
o = w(a) € R\ (infsupp [z, sup supp iiz)

such that ;
_ N _
§ [ anro = [ dise), E.1)
RI—a RS—®

(3) The map w: (sup supp ur,00) \ S — R defined in item (2) extends meromor-
phically to an open set in C containing (sup supp it, 00). The extension is
analytic at each a € (sup supp i, o0) \ S, has a pole at each a € § and a
zero ateacha € §'.

(4) The function v (sup supp iur, 00) — R defined by ¥ (a) = ay(a) satisfies

v@ =9 [ 2 qpss). vaeupsuppiir o)\ S €2)

R § —w(a)
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Furthermore, the function  extends analytically to an open set in C contain-
ing (sup supp L, 00), and has zeros precisely at S’

Proof. Note that the function a — —E[%,(Y)] is analytic in (sup supp {1, 00), SO
both § and $§’ cannot have accumulating points in (sup supp jt7, 00). Thus, in order
to prove item (1), it suffices to prove that §, §” are contained in a compact subset of
(sup supp juT, 00). By the assumptions on 7 ((d) in (2.6)), we have
lim = —E[F,(Y)] = —o,
a™\sup supp L

hence § and S’ are contained in [x, co) for some x > sup supp 7. Also, we have the
series expansion

E[T(Y)] E[T (Y)z]
a

—E[Fa(Y)] = - +0@?), asa— oo,

where E[7 (Y)?] > 0 by the assumption in (2.4). This already proves that §’ is boun-
ded, as —E[F,(Y)] converges to 0 as a — oo. Similarly, the same expansion implies
that for large enough x > sup supp i, we have

_E[F,(7)] e {(O’ o0) HETMI<0.y
(—00,0) ifE[T(Y)] >0

Thus, § N [x, 00) = @. This concludes item (1).
For item (2), we only need to notice that the right-hand side of (E.1) is a bijection

between R \ (infsupp iix, supsupp itx) and R \ {0}. Notice further that the right-hand
side is analytic in @ with strictly positive derivative whenever w is well defined:

d s s
— duy = | ——=dus.
do Jg s —w px /I;(S—a))2 b
We now turn to item (3). Since the left-hand side of (E.1) is an analytic function
of a, it immediately follows from analytic inverse function theorem that @ extends

analytically to a neighborhood of (sup supp 7, o0) \ §. Similarly, for each a >
supsupp 7 (Y) witha ¢ § U §’, we find that @ (a) := 1/w(a) solves

5 [ L dpr o) = -t [ — s i

Defining @(a) = 0 for a € § and following the same reasoning as for w, one easily
finds that @ extends analytically to a neighborhood of (sup supp iz, ©) \ §’. By
analytic continuation, @ extends to a meromorphic function on a neighborhood of
(sup supp i, o0) with poles at §. From (E.1) we immediately find that the zeros of @
are exactly at §’.
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Finally, for item (4), note that by a trivial rescaling we have
4 _
0@ [+ dmr @ = (.
RI—a

which implies
V@ = —a0(@ [ o dmr@). a¢s. E3)
RI—a

Using the definition of @, we immediately have (E.2) from (E.3). Also, (E.3) already
shows that 1 is a meromorphic function on a neighborhood of (sup supp 7, 0o) by
item (2), with possible poles at §. Hence, we only need to check that each a € §
is a removable singularity for ¥. Recall that w(z) — oo as z — a € §, so that by
dominated convergence

sw(z) _ a_. .=
V() =—< | ———dus(s) = —dug(s) — =E[X]. =
—w(2) 5 R $/w(z) — 8
Lemma E.3. We have
E[Z I
lim ¢'(@) = o) = gm0V E4)
a—>00 b} Rea—oco Ima
where we identified \ with its analytic extension. We also have
li =00 = li . E.5
Am y(@) =oo=  lm  va) (E.5)

In particular, the set of critical points of ¥ is non-empty and bounded from above (as
a subset of R).

Proof. We compute the derivative of ¥ as

’ _ Sw(a) — ’ S2 _
§y'(a) = —/R mduz(s) —aw'(a) A md#z(s)
_ sw(a) _ B _ -1
= [ (o) as | = o s
'/R ( —a) dﬁT(t)/R mdﬁz(s)- (E.6)

Furthermore, notice from item (2) of Lemma E.2 that |w(a)| — oo as @ — o0, so that
the second term in (E.6) satisfies

, sw(a)? -1 s?w(a)? ta
alggo( G —w@) “Z(S)) /R(s @y 2O Jo e )
E[EZ]
- EE Mo/ —ap O =0
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Therefore, we conclude that the first equality in (E.4) holds as
1 - 1. —
lim ¥'(a) = < lim / 5@ o) = LR[S
a—00 5

6 a—oo Jr s —w(a)

The second equality can be proved analogously, except that the following identity
replaces (E.6):

Imy(a) sw(a) _ s _ -1
TRl Wd“‘”]“SR"[“](/RWO‘““))

f| - /JLT()/]RI ()lzdﬁz(S),

where we used

Imw(a) s _ -1 t
e~ (L e o) [ o,

from (E.1).
Notice that the first equality in (E.5) follows from the first equality in (E.4). For

the second equality in (E.5), recall from assumption (d) in (2.6) that

lim /R—dm(z)_—

a\ysup supp L7 r—

which implies

lim  w(a) =supsupp iz
a™\sup supp it

via item (2) of Lemma E.2. Plugging these in the definition of v in (E.2) and using
sup supp it > 0 prove ¥ (a) — oo. |

E.2. Complex analytic characterization of i 5

Lemma E.4 ([98, Theorem 1.2.1]). Letm ip denote the Stieltjes transform of the lim-
iting eigenvalue distribution L. Foreachz e H:={z € C: (z) > 0}, m = mp 5 (z)
is characterized as the unique solution (m, my, my) of the following system of equa-
tions:

—zm=(1-8)+6 [ 1/(0 +mit)dur(r),

—zm = [p 1/(1 + mas)diis(s), (E.7)

—zm =14+ 8zmim,,

subject to the constraint m,my, zm, € H. All of m, my, my are analytic in H as a
Sfunction of z.
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We adopt the notation m(zZ) = (z) and m; (Z) = m;(z) (i € {1,2}). The major
difference from the case of positive 7 is that m, might not be in H; still the sec-
ond equation in (E.7) is well defined as m»(z) € {z7'w: w € H} C C \ (—o0, 0]
(cf. when T is positive then m; € H and zm; € H for both i € {1,2}). Alternatively,
using the last equation in (E.7) to substitute m in the first two equations, we may write
the system of two equations for my, mj:

{ —zmy = § [g5/(1+ mas) iz (s), ES)
—zmy = [gt/(1 +mit)dur(r).
For later purposes, we define for all z, w € C \ R,
1? _
hew = | s s O
52 _
e = [ T T et P20
so that 1 (z,Z) and I»(z, Z) are positive since m; (Z) = m;(z). Note also that
zmi ()] <87 (2. D)2, |zma(2)] < (2. D), (E9)
by Cauchy—Schwarz.
Lemma E.5. Forall z € H,
8|]7|211(z,2)12(z,2) <1 (E.10)
Consequently,
mEPHED) <5 ImEPhE?) <8 E1D)

Proof. Dividing the first line of (E.8) by z and then taking imaginary parts, we get

i (2) = 1/ s di (s)—l sz + s2zmy(z)
BE5 e 220+ mas) TV TS Jo 2PN+ ma(2)s2

Similarly taking the imaginary part of the second line of (E.8) gives

dis(r). (B.12)

B t _ _ t2my(z) _
zmy(z) = _/Rl-l—m—l(z)td’uT(t) —/Rmd,bw(l)- (E.13)

Combining (E.12) and (E.13), we obtain
sz
dmi(z :/ dis (s
1(2) e RN T ma ()52 mx(s)

my(z) 12 _ §2 B
" 2|2 (/R|1+m1(z)z|2 d“T(’))(/Rmduz(S)). (E.14)
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Since Imm1(z) and the first term on the right-hand side of (E.14) are positive for
all z € Hl, we have proved (E.10):

1 12 _ 52 ~
8|z |? (/R |1+ my(z)1? dMT(t)) (A; mdﬂz(ﬂ) <1, Vzel.

For (E.11), we only need to notice from (E.10) and (E.9) that

1 1
2 — — J—
Imi|°11(z,2) < Wll(Z,Z)Iz(Z,Z) <3

and the second line in (E.11) follows similarly. ]

Note also that (E.10) implies for all z € H that

@) 411 = e Gllma)] < L VRGIRED V5 E19

~ ozl

where we used the third line of (E.7) in the first, (E.9) in the second, and (E.10) in the
last inequality.

Lemma E.6. Let D C H be bounded. Then, there exists a constant K > 0 depending
only on DO, Ly, and [t such that

|zm1(2)] < K, [zm2(2)| £ K, Vz e D.

Proof. We only consider |zm;(z)|, and the same argument applies to |zm5(z)|. The
proof is by contradiction. Suppose that there exists a sequence zx in £ such that

|zkm 1 (zx)| — oo.
Then by combining (E.15) with the third equation in (E.7), we have |m,(zx)| — 0.
Therefore, by dominated convergence (together with sup supp iis < 00), we have

N
=4 li = 1li ——du = du € R,
Jim e = i, [ ey ) = [ 140

which gives a contradiction to |zgm(zg)| — oo. ]

Lemma E.7. Forall z € H, we have

I
0 < (infsupp itx) < Sw < (supsupp itx). (E.16)
Imm(z)
For each bounded © C MH, there exists a constant K depending only on D, i,
and it such that
Im(zmy(z)) < K1 Immy(z), z € D. (E.17)
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Proof. To see (E.16), note that the second line of (E.7) implies

1 _

Comparing (E.18) with (E.12) proves (E.16).
For (E.17), we recall from (E.13) and (E.10) that

§|z|?
12(2,2).

Imzmy(z) =Immq(z) - I1(z,2) < Imm;(z) -
By definition of I5(z,Z), we have

|Z|2 B §2 B -1
L(z,7) (/]R |z +Zm2(2)5|2dMZ(S))

-1
52([(supsuppﬁz)-Izmz(2)|]2+IZIZ)(/Rszdﬁz(S)) . (E19)

Since D is bounded, the right-hand side of (E.19) is bounded by a constant for
all z € D. This proves (E.17). [ ]
Proposition E.8. The following assertions hold:

(1) There exist two finite measures v1, v on R such that the following holds: for
all z € H, we have

1 E[Z
[ e =m. n(®) = 2
RX—Z ]
1 _ E[Z -
/ dva(x) = zmy(2) +/ tdupr (), va(R) = g]E[fi'(Y)z].
RX—Z R 8
(E.20)
Consequently, we have
SUpp vy = suppji, Suppva C suppiip, (E21)

so that my and my are respectively analytic and meromorphic functions on
R\ supp it .
(2) Forall x > A°, we have

1 _
€ (sup supp i, 00),
mi(x)

mzl(x) € (R U {oo}) \ (infsupp i, sup supp jix), (E.22)
1

limsup ——11(z,2)12(z,2) < 1,
z—>x,zeH 8|Z|

where we used the convention 1/0 = oo in the second assertion.
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Proof. We start with the proof of item (1). First, notice that once (E.20) is proved,
(E.21) immediately follows from Lemma E.7 and Stieltjes inversion. In order to prove
the first identity in (E.20), since m is an analytic self-map of H, by Nevanlinna—Pick
representation theorem it suffices to check

lim sup n|mq (in)| < oo. (E.23)

n—00

Suppose the contrary, so that there exists a sequence 1 — oo with g |m1 (ing)| — oo.
Then by (E.15), we find that |m5(ing )| — 0. On the other hand by (E.8), we have

. o1 s _
iy i) = /R e (). (E.24)

so that the dominated convergence theorem (with || X||, = (1)) leads to a contradic-
tion as

dizs(s)

/ a = 1/sd_ (s)
R 1+ ma(ing)s s Jr pate)

Thus we have proved the first line of (E.20).
Next, we prove the corresponding representation for zm,(z), the second line
of (E.20). As before, it suffices to prove

1
i NI I
kgl;onklml(lnk)l 5 Lm

lim sup n < 00.

n—>oQ

inma(in) + /R ¢ dfir (1)

To this end, we use (E.8) to write

t2
Z(Zmz(Z) +/1;tdﬁT(l)) = Zml(Z)/l;mdﬁT(l). (E25)

Taking the limit along z = in — ioo, by (E.20) we have
myi(z) >0 and zmi(z) - —vi(R)
(note that vy (R) is finite due to (E.23)), so that
sim in(imatin + [ 1077 0)) = @) [ 2are)
Finally, given the two representations in (E.20), we have

my(in), ma(in) — 0 as n — oo.

Then v (R) and v, (R) can be computed by taking the limits of (E.24) and (E.25) as
z = in — ioo. This completes the proof of item (1).
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Now we prove item (2). Notice that m is analytic, negative-valued, and increasing
on (A°,00), and that limy_, o, m1 (x) = 0. Therefore, the image of the half line (A°, c0)
under x +— —1/m(x) is again a half-line (yg, co) for some yo > 0. Next, notice
from (E.11) that for all x € R,

12 1

limsup |m1(z)|*11(z,Z) = limsup / dur(t) < =. (E.26)
z—x,zeH z—>x,zeH JR |t - (_1/m1(2))|2 8

On the other hand, by the assumptions on 7 (see (d) in (2.6)) and Cauchy—Schwarz,

there exists an £ > 0 so that

t2
li = —d t = E.27
weyrftl)eH[;g |l‘ |2 MT( ) / |Z |2 /LT( ) ~ ( )

forall y € (supsupp i, supsupp i + €). Combining (E.26) and (E.27), we conclude
that (yg, 00) does not intersect with (sup supp L7, sup supp it + ¢€), so that

Yo = supsupp iir + €.

This proves the first assertion of item (2).

The proof of the second assertion in item (2) follows similar lines, except that
we view x > —1/m(x) as an analytic (instead of meromorphic) function mapping
into the Riemann sphere C U {co}. Consequently, the closure of the image of (1°, c0)
under z — —1/m5,(z) is a connected real interval in the Riemann sphere; or equiva-
lently, it is the image of a closed connected arc in the unit circle under stereographic
projection. Next, notice from the assumptions on T (see (b) in (2.5)) that there exists
an € > 0 so that

§2
lim / ———dux(s) > 8
R |5 — w|

w—y,weH

forall y € (infsuppts — &, infsupp s ) U (supsupp it s, supsupp itz + €). Therefore,
(E.11) implies that the image of (A°, c0) under x = —1/m5(x) does not intersect with
the two segments of length &, while containing oo in its closure since m;(x) — 0 as
x — oo. This proves the second assertion of item (2).

For the final assertion of item (2), recall from (E.14) that for all z € H,

8|1|211(Z 2)15(z,2)
_ Imz s
~ $Immy(2) Jr 221 4+ ma(2)s

1 -1 S )
= (0 mp0) L s e =)

2 dizs(s)
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where we used (E.ZO) in the second equality. Taking the limit z — x > A°, we have

1— limsup ——=11(z,2)12(z,2)

z—x,zeH 8| |2

1 ! -
= (5/ — dvl(y)) / s(x2 + 52 limsup |Zm2(Z)|2) 1dﬁg(s) > 0,
R |y_x| R z—x,zeH
where we used Fatou’s lemma in the first equality and Lemma E.6 in the last inequal-
ity. This concludes the proof of Proposition E.8. ]

E.3. Proofs of Lemmas 5.5 and E.1

Proof of Lemma 5.5 given Lemma E.1. Notice that since a° is the largest critical point
of ¢ and limy—c0 ¥/ (a) > 0, we find that ¥'(a) > 0 for all a € (a°, 0), i.e. ¥ is
strictly increasing on [a°, 00).

Next, we prove ¥ (a®) <A°. Note from the contrapositive of item (1) of Lemma E. 1
that if ¢ > sup supp ;t5 and ¥'(a) < 0, then there exists an @ > a such that ¥ (a@) < A°.
We may apply this to the largest critical point a° since ¥'(a®) = 0, so that ¥ (@) < A°
for some a@ > a°. As ¥ is increasing in [a°, 00), we conclude ¥/ (¢°) < ¥ (@) < A°

Conversely, item (2) of Lemma E.1 implies (¥ (a®), 00) N supp L5 = @, so that
A° < ¢ (a®). Therefore, we have ¥ (a°) = A°. [

Proof of item (1) of Lemma E.1. Let a € (sup supp i1, 00) satisfy the assumption of
item (1) of Lemma E.1, that is, ¢ (a) > A° for all @ > a. First of all, we prove that
there exists a complex neighborhood U of [a, 0o) such that

w=—1/mi(yw)), ow)=-1/my(yw)), Yw e U. (E.28)

Here we remark that ¥ (@) > A° by assumption, so that all four functions of w in (E.28)
are well defined by Proposition E.8; those in the first and second equalities are analytic
and meromorphic, respectively.

Recall from Lemma E.3 that for large enough a > a, there exists a neighborhood V'
of @ so that Im ¢ (w)/ Im w > 0 for every w € V. Then, it also follows that, for each
weVNH,

t 12

. ACO) . / Y dmra) | = Imw/ —_4Er() > 0. (E29)
w(w) RI—W R |t — wl|?

Also notice that the triple (¥ (w),—1/w,—1/w(w)) satisfies the same system of equa-

tions as in (E.8):

1ﬁ(w) so(w) . _ B 1 p B
W= s ams = =} [ g

(E.30)
v (w)

t —
m A;—dILT(I) / mdMTU)-
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Therefore, by the uniqueness of the solution of (E.8), we conclude

(¥ (w),—1/w.~1/oW)) = (¥ (w),m (Y (w)).m2(y(w))), weVNH. (E3)

By Proposition E.8 and the assumption of item (1), in both sides of (E.31) are mero-
morphic functions defined on a neighborhood of [a, c0), so that the identity holds in
the whole (connected) neighborhood.

We now prove ¥'(a) > 0, provided a ¢ § U §’. Recall from (E.6) that

-1
’ _ T
8§y (a) = (/R (s @) dug(s))
[ // sw(a) n ta 52 d/jz(s)dﬁT(t)] (E.32)

t—a(s—w@)? (t—a)?(s—w)?

Note that the second line in (E.32) can be written as

t s 12 S2 ~ B
B 8/ / [_t —as—w(a) + (t —a)2 (s — w(a))2] dus(s)dpr(t)

521//(01)2 §2 _ B
C do@)? / / (= 2R G = oty H=E) ).

Then, we use (E.28) for w = a to substitute ¢ and w(a) in (E.32) to obtain

v (a)? -
V'(a) = 21//(a) (/R a dﬁ):(s))

a’w(a)? (s — w(a))?

(1= e h @ @B @ @) 20 @3
where we used 0 < |my (¥ ()|, ¥ (a)] < oo fora # § U 8’ and (E.22).

It only remains to prove ¥'(a) > 0 fora € § U §’. Since § and §’ are both finite,
we may consider a sequence dy > a such that dx ¢ S U §" and dy — a. Since ¥ is
analytic at a and the second line of (E.33) is strictly positive by Proposition E.8, is
suffices to prove

. V(@)? s _ !
e (@) (/R G—w@)? * E(s)) =0

If a € § so that w(ay) — oo, we have
L Y(@)? / s _ o\
1 d
A @ \n G=w@) =@

~ 2 —1
= v(a)? hm (/ ( wizl?) )) dﬁZ(S))

_ Y()?
~ E[X]

> 0,
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where in the last inequality we used a € § implies a ¢ S’, which in turn gives ¥ (a) #0.
Finally, for a € §’, we use w(dy) — 0 to write

_ Y(ax)? s _ T y(@)?
klggo w(dy)? (/R (s — w(dy))? dMZ(S)) - E[i—l] klgrolo w(dy)?

a2 . ~ 2 B a2
T SE[z] klggo(/R s — w(ag) “E(S)) ~ $2E[Z] ~ 0

where we used the definition of V¥ in the second equality and inf supp itz > 0 in the
last inequality. This concludes the proof of item (1) of Lemma E.1. |

Proof of item (2) of Lemma E.1. Since ¥'(a) > 0, there exist small neighborhoods U
and V respectively of a and ¥ (a) and an analytic inverse function ¥ ~': ¥V — U of .
We first prove that

-1 -1 )

z, , = (z,mq(z),my(2)), VzeVNH. (E.34)
( Y12 o 1(2)) ( )

Following (E.30), we easily find that (z, —1/v¥~1(2), =1/ (¥~ (2))) satisfies (E.8).

Also, there is an open subset V' C V N H so that Imy~1(z) > O forall z € V'; to

see this, we write

Imy~'(z) = Im[(x/f_l)’(W(a)) (2 =y @)]+0(z - v (@)

——Imz + O(|z — ¥ (a)|

G ( ) ( )
Hence, it suffices to take V' = {z : |z — ¥ (a)| < 2Imz < r} with small enough r > 0
in order to have ¥ ! (V') C H. Then, by (E.29) it also follows that

yA
Im[_w(w—l(z»] >0

As in the proof of item (1) of Lemma E.I, the uniqueness of the solution of (E.8)
implies (E.34) for z € V'. Finally, the conclusion extends to V' N H by analytic con-
tinuation.

Since ¥ maps (sup supp jit, oo) to R, its inverse function ¥ ! is real-valued
on V N R. Hence, it follows

1

| =0, xeVnNR.
w‘l(erin)]

lim Imm (x +in) = lim Im[—

n—0 n—0
Then, applying Stieltjes inversion to (E.20), we have suppv; NV = @. And finally,
by (E.20), we conclude supp ji 5 N V' = @, so that ¥ (a) ¢ supp L 5. This completes
the proof of item (2) in Lemma E. 1. ]
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F. Performance of the whitened spectral estimator

In this section, we characterize the limiting overlap of the whitened spectral estimator,
whose definition we recall from (4.1):

BP(y, X, ) := =7 2u(D.), (E.1)

where

D, = Z(E_l/zxi)(E_l/zxi)TT(%’)

i=1

_ E_I/ZXTTXE_I/Z — X'TTX’ — E_I/ZDE_I/Z.

As discussed in Section 4, one can think of X!/2 B* as an auxiliary parameter in the
model y = g(X X 1/2 B*, e) with design matrix X . Therefore, the top eigenvector of

D. = X" diag(T (¢(X='/2B*,¢))) X

estimates X'/28* and £~1/2v(D,) estimates 8*. We highlight that computing this
spectral estimator requires knowledge of .

As before, our results concerning B are expressed in terms of a few functions
and parameters. Define

@a, Ve, Cat (sup supp(T (Y)), oo) —R,af € (sup supp(T (Y)), oo)

as
wAa)::—ﬁi—E[Gzﬁz(Yﬂ, wgp)::a(l-+mi3g(Yﬂ),
E[X] 8
al = arg min Va(a), &u(a) = y.(max{a,al}),
a&(supsupp(7 (Y)),00)
where %, is given in (2.3), and a* € (sup supp(7 (Y)), oo) as the unique solution to

£a(al) = ¢ (al).

Both a? and a are uniquely defined, as shown in [55, Theorem 2.1 (1)] and [62,
Lemma 2 (1)]. In fact,

s _
ﬁﬁc~wmu

so our functions ¢., V., {. match ¢, ¥, ¢ in [55] by taking « in [55] to be /E[X]/§.
The formula of the asymptotic overlap 7. is:

_ 1 — SE[F,x (Y)?] 12
" (1 + SE[(E[8/Z]G? — 1)3%:(?)2])
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Theorem F.1 (Whitened spectral estimator). Consider the above setting and let as-
sumptions (A1) to (A5) hold. Suppose a* > a’. Then, the top two eigenvalues A1 (D),
Aa(D) of D satisfy

p-limA;(D) = ¢(ak), dlim A2(D) = ¢(a?) almost surely,

d—o00
and L (a¥) > C(a?). Furthermore, the limiting overlap between the spectral estimator
B = =712y (D.) and B* equals
(B, B*)]
p_

d—oo B lI211B*1I2

We emphasize that, even if the spectral estimator is now computed with respect
to X whose rows have identity covariance, the observation y still depends on X

=n.>0

through y = ¢(X=/2B*, ¢) and there is no easy way to further invert out $!/2
therein. Thus, we cannot reduce to the ¥ = [; case studied in [55,62], and we follow
a strategy similar to that described in Section 5 to prove Theorem 3.1.

Proof of Theorem F.1. Consider the generic GAMP iteration in (5.1). Let ¥.: R — R
be an auxiliary preprocessing function to be chosen later. Set

Ut+1
fir1@ T = — >0, (E2)
ﬂt-{-l

for a sequence (B;+1):>0 to be specified later via state evolution. One should think of
the normalization B;41 > 0 as By4+1 = limg_eo||[v* 1 ||2/~/d , so that

1
1' - t+1 — 1’
dglgo ﬁl|ﬁ+1(v )”2

as in (5.3). Furthermore, we set
gt(ut;y):FAut7 t207 (F3)

where F. = diag(F.(y)) € R and #.(y) € R" is obtained by applying F. to each
entry of y. The coefficients b;41, c; specialize to

1
8Br+1’

Following the argument of Section 5.5, we can show that u?, v ™1, B, converge

biy1 =

=E[F.(Y)] =

respectively to u € R”, v € R4, B € R in the following sense

1 1
lim lim —|u’ —ul], =0, 11m lim —|v' "' —v|, =0,
\/—

t—>00 n—>00 \/_ —>00 d —

lim |B;41 — B = 0.
t—00
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Then in the ¢ — oo limit, the GAMP iteration becomes

1 ~ ~ 1
u=—-Xv—bFu, v=X'Fu——cv,
B p

where b = 1/68 is the limit of b;41 as ¢t — 0. Solving u in terms of v from the first
equation, we get

1 ~
U= B(ln +bF) ' Xv.
We then use this to eliminate u from the equation for v and obtain:
(B+cw=X"F.(,+bF) ' Xv. (F.4)

Our aim is to choose . judiciously to turn the above equation into an eigenequation
for D. = X TTX. First, to simplify the derivation, we require » = 1 which will be
the case if B = 1/6. Next, we choose

Fu() = Fur (), (F.5)

where the right-hand side is defined in (2.3) and a is to be specified later. With these
choices, (F.4) becomes

1 l 1.5 1
(— +c)v =—X'TXv=—D,v,
8 a* a*

which, upon multiplying by a’ on both sides, is an eigenequation of D, with respect
to the eigenvalue

1 1 _
a’:(g + c) - af(g n E[}‘af(y)]),
and the corresponding eigenvector (up to scaling) v. The value of a’ is fixed when

we enforce 8 = 1/§ which in turn enforces » = 1. From the state evolution analysis
presented below, 8 can be derived and therefore a’ is defined as the solution to

]

= lim =E|[==G*—1|Fx(¥Y F.6

b= Jim s = (67 1)) = . o

Let us consider the unique solution a* to (F.6) in (sup supp(7 (Y)), oo) and let

Far:R — R be defined in (F.5). Set the denoisers (f;41, g¢)s>0 in (5.1) to those
given in (F.2) and (F.3) and initialize the GAMP iteration with

7' =0, °=pf*+/1-wE[S]weR?, (F7)

where w ~ N (04, 1) is independent of everything else and u is given in (F.8) below.
Given all these configurations, the state evolution recursion specializes to

) 8 —E[(% )T% ]Xt ﬁ,

;= —= lim Le[ @7 } —— lim
® E[X] n—>oon |:( ) ,Bt E[X] n—>oon ,Bt B
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1 ;7 E[Z
o, = lim —E[VtT—;] - _ES ]Mg

! T & | | T E[E]
- En]‘l‘c}o ;E[(% )TB*|x? + ﬁ—%nlgxgo ;IE[WV’[WVJ]U‘%[ _T“%
1EZ] , 11, EE , oy,

fd X — =0 __//l/ — o0
BT T R I
51

xt+1=E[i]n1££.‘o;E[GTFAUt] [ For (7))
8 1

T — —

_E[(-G2 1) ISR P NG
‘E[(E[E]G 1) (Y)]“"E[(E[E]G l)f‘“(y)}ﬂ/

Oy 41 = lim lIE[UTFZU,]

n—o00 n

lim —IE[GTFAZG]/Lf—I— lim lE[WJJFfWUJ]oLZ,J

n—-oon
= E[G2%,+(Y) ]Mz"‘E[ +(Y)?]og,
o2
_— ) GZW* Y E[F «(Y
[ ()]ﬂt+ [aA()]gﬁt
o=

.1 ~ T & .1 T
= dlggo EE[(%*) B (711 "‘dlfolo E]E[WV,I+1WVst+1]OIZ/',t+1
= E[Z])X41 + 0041
There are 3 fixed points of ((tr, 0vs, Xi+1,0V.i+1, Br+1):

FP+ = (4,0u, X, 0v, ﬂ), FP_ = (—p.ou,—x.0ov.B).
_ 1/2 1 1/2
FPo—( 0[5 (D7) B[ () )

where u, oy, x, oy, B are given by
ﬂ—]E[( 5 G* 1)37 (1?)]—
— T L\E[T] “rl

B B2 — E[F,x (V)] 12

- (E[i] ~ BB [7,. ()2 + ﬂ—zE[sz‘a:(?)2])
~( et 120 N )1/2
E[Z] - SE[Z]E[Fyx (Y)?] + S2E[G2F,x(V)?]

El
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(82E Fur (V)21 )1/2
1= 5 E[Fer (Y)?]
( E[G?F: (Y)?] )”2

E[Z] - SE[S|E[F, *(Y)2]+821E[G237 (Y)?]

1 — SE[F,x (Y)?] 12
= ]) ,

X _
B (E[i] — SE[Z]E[F,x (Y)2] + §2E[G2F,» (V)2

oy SE[G*F,x (Y )] 172
= N (E[i]—SIE[_] E[F.:(Y)?] + §>E[G>F, (7)2]) '
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(E.8)

Furthermore, the initialization scheme given in (F.7) guarantees that the quintuple

(e, 0ULs Xt+1,0V,0+1, Br+1) stays at FP for every ¢ > 0.
Executing similar arguments in the proofs of Lemma 5.4 and of (5.34) gives

t+1 D,))2
lim p-lim ™, v (D)) =1,

1200 4 oo [V FHZ01(D)I3 (F9)

p-limA{(D.) = {(a}) > {(a?) = 11m Aa(D.).

d—o0

Recall from (F.1) that the whitened spectral estimator is defined as

g = 57120,(D.).

Given the result in (F.9), the overlap between B:°° and B* is asymptotically the same

as that between ©~1/2p'+1 and B* which we compute below:

lim p-lim -5 (212t HT g*)2

1' l 1=00 d—oo

m p-1m =

%0 4o IZ V20 TBIA* 3~ Jim plim & 5172013
d—o0

(E_I/ZUZ_H, ,8*)2

’

the numerator and denominator of which are given respectively as follows:

1
lim p—limﬁ(E_l/zv’H,ﬁ*)z = lim lim d—]E[(% ) TEV28 P 42,

t—>00 d—00 t—>00 d—>o00
= X s
1
- —1/2 t+1)12 _ - T 2
tgn;ogildeIE v tgn;odlggodE[(?B D e

1 _
+ EE[WJH—I X 1WVJ+1]012/,t+1

X +IE[E:|UV
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Using the expressions of y, oy, we obtain

(Y- R
d—oo I1BXCI31B*3  x2 +E[1/Z]o7
= — $E[For (V)?]
3 — $E[Far (V)2 + E[1I/S]E[G2F,x (Y )?]
1 —8E[F,x(Y)?]
1+ SE[(E[5/S]G2 — )F,= (V)]

3

which concludes the proof. ]

G. Auxiliary results

Proposition G.1 (w; > 0). Let w; be defined in (3.9). Then wy > 0.

Proof. By definition, we have

w1

G2 (V)2 52 g
E|G*Fu+(Y)"|E =
(6% [y*—E[?«f*(Y)]z]

— 52 2
E|Fx(Y)|E S—
[Far ()] [y*—E[%*(Y)]E]

T EEP

 SE[Z]

+ 11@[3«‘ *(?)Z]E[ 2 }
g (r* — E[Far (N2 ]

The first term is strictly positive. It suffices to show that the sum of the last two terms
is non-negative. This follows from the Cauchy—Schwarz inequality:

]E|: 52 _ _:|2: |:_1/2. 23/2 _ _:|2
y* —E[Fex(Y)]Z y* —E[Fe=(Y)]Z

gE[i]E[ > = ]
(v* — E[Fax(Y)]2)?

Rearranging terms and noting that the common factor %E[?a* (Y)?] in the last two
terms is positive, the proof is complete. |

Proposition G.2. Let W ~ P®? where P is a distribution on R with mean 0 and
variance 0%, Let B € R?*4 denote a sequence of deterministic matrices such that the
empirical spectral distribution of %B converges to the law of a random variable X.
Then

1 -
lim —E[WTBW] = ¢’E[Z].
d—oo d
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Proof. The proof follows from a straightforward calculation:

1
dll)n;og]E[WTBW] =d1LrI;OEiXJ;E[Bi,ij/}‘]

4

.1 5 . 02 S
= lim EZE[W ]Bi,i :dlin;ojTr(B) =0°E[X]. =

Proposition G.3. Let (G, H) ~ ([ a ] ["p ] ® ld> Let B € R4*4 denote a
sequence of deterministic matrices such that the empmcal spectral distribution of % 7B
converges to the law of a random variable X. Then

lim —JE[GTBH] = pE[Z].

—)OOd

Proof. The proof follows from a straightforward calculation:

lim l]E[GTBH] = lim —ZE B: ;G H;]

d—o00 d—oo d

= lim —ZIE [GiH;]Bi; = Jim. —Tr(B)—,oIEl[E] n

d—oo d

Proposition G.4 (Davis—Kahan [26]). Let A, B € R?*¢ be symmetric matrices. Then

min{[|v (A) — vi(B) |2, [vi(4) + vi(B)ll2}
- 4|A — B2
~ max{A1(4) — 12(4), A1(B) — A2(B)}’

Note that the minimum on the left-hand side is to resolve the sign ambiguity
since v is an eigenvector if and only if —v is.

Remark G.1 (Spectral threshold with right rotationally invariant designs). The opti-
mal spectral threshold for phase retrieval with right rotationally invariant designs
was derived by Maillard et al. in [60, equation (11)], and this expression coincides
with (3.13). To see this, note that (3.13) involves the limiting spectral distribution
of ¥ only through its first two moments. One can then express the same result using
the limiting spectral distribution fiyTy of X TX = $12XTX 512 which equals
the free multiplicative convolution between the Marchenko—Pastur law MP, (with
A = 1/8) and law(X). In particular, let A be the random variable with law fiyT y.
By using the moment-cumulant relation [71, Section 2.5] and an identity relating the
square free cumulants of law(X) to the rectangular free cumulants of law(XZ) X MP; /8
[7, Remark 2], we have that E[A] = E[S] and E[A?] = E[£?] + $E[Z]?. Using these
identities to write (3.13) in terms of the first two moments of A, we readily obtain that
this expression coincides with [60, equation (11)].
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