
Math. Stat. Learn. 8 (2025), 305–322
DOI 10.4171/MSL/53

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On low frequency inference for
diffusions without the hot spots conjecture

Giovanni S. Alberti, Douglas Barnes, Aditya Jambhale, and Richard Nickl

Abstract. We remove the dependence on the ‘hot-spots’ conjecture in two of the main theorems
of the recent paper of Nickl (2024). Specifically, we characterise the minimax convergence
rates for estimation of the transition operator Pf arising from the Neumann Laplacian with
diffusion coefficient f on arbitrary convex domains with smooth boundary, and further show
that a general Lipschitz stability estimate holds for the inverse map Pf 7! f from H2 ! H2

to L1.

1. Introduction

We revisit here two results of the recent paper of Nickl [12] and begin by recalling its
setting. The density of a diffusing substance in an insulated medium, say a bounded
convex domain O of Rd (d � 1) with smooth boundary @O, is described by the solu-
tions u to the parabolic partial differential equation (PDE) known as the heat equation,
@u=@t D Lf u. The divergence form elliptic second order differential operator

Lf D r � .f r/

is equipped with Neumann conditions @u
@�
D 0 at @O, where �.x/ is the (inward point-

ing) normal vector at x 2 @O. Here, r and r� are the usual gradient and divergence
operators, and f WO! Œfmin;1/, fmin > 0, is a positive, scalar ‘diffusivity’ function.

As is well known, solutions to this heat equation describe the probability densities
of diffusing particles .Xt / solving the stochastic differential equation (SDE)

dXt D rf .Xt / dt C
p
2f .Xt / dWt C �.Xt / dLt ; t � 0; (1)

started at X0 D x 2 O, where Wt denotes d -dimensional Brownian motion. The pro-
cess is reflected when hitting the boundary @O of its state space: Lt is a ‘local time’
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process acting only when Xt 2 @O. In the statistical setting considered in [12], we
are given equally spaced observations from (1): X0; XD; : : : ; XND , where D > 0

is a fixed observation ‘time’ distance – one sometimes [8] speaks of low frequency
measurements since we do not let D ! 0 in the asymptotic framework. By allow-
ing a ‘burn in’ phase (i.e., waiting a fixed amount of time), one can assume that
X0 � Unif.O/, the uniform distribution (invariant measure).

The non-linear map f 7! PD;f , where

Pt;f D e
tLf ; t � 0; (2)

is the transition operator of the Markov process .Xt / (see Section 3), is injective for
any D under mild assumptions on f ([12, Theorem 1]). Given the data X0; XD; : : : ;
XND , we seek to recover the diffusivity f . This is possible by first recovering PD;f
via an explicit estimator, and then by using inverse continuity estimates for the map
f 7! PD;f , following the general paradigm of Bayesian non-linear inverse prob-
lems [10, 11] and earlier ideas from [8] in the one-dimensional case. See [12] for the
general setting as well as theoretical results and [7] where concrete MCMC algorithms
for such low frequency diffusion data are studied.

Some of the results proved in [12] rely on arguments that are closely related to
a conjecture in spectral geometry that is known as the hot-spots conjecture. Loosely
speaking the conjecture is that the first non-constant eigenfunction of the Laplacian
� D L1 with Neumann conditions on a domain O attains its critical points on the
boundary @O , see [3] for a review of some main ideas. The conjecture is still act-
ively studied and believed to be true for convex planar domains, while it is known to
be potentially false [4] in non-convex domains. A more complete list of recent refer-
ences can be found in [12], where the validity of the hot spots conjecture is employed
in various places in the proofs (including the construction of basic cylindrical domains
where it indeed holds). While this conceivably gives the ‘right’ proofs of these theor-
ems, at the time of this writing, the hot spots conjecture is still unproved in general
and we wish to show here how it can be circumvented in the derivation of the results
in [12].

2. Main results

Throughout, theLp.O/ spaces with p 2 Œ1;1/ refer to the space of p-th power integ-
rable functions on O with respect to the Lebesgue measure, while C k.O/ andH k.O/

refer to the space of k-times differentiable (resp. weakly differentiable) functions
on O whose derivatives define uniformly continuous functions (resp. L2.O/ func-
tions). The definition ofH k.O/ extends to real valued k, see [5]. When the domain is
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clear, we omit it from the notation. Given any Hilbert spaceH , we denote the operator
norm of linear maps from H to H by k � kH!H .

To construct a lower bound (in the minimax sense) for the optimal convergence
rate of estimation of PD;f , a specific domain is constructed in [12] in which the hot
spots conjecture can be verified (see [12, Proposition 1 and Theorem 8]). Moreover,
the first eigenvalue of the Laplacian on this domain is simple. A first contribution of
the present paper is to remove these restrictions and to obtain a matching lower bound
to [12, Theorem 3] for arbitrary bounded convex domains with smooth boundary.

Theorem 2.1. Let s >max.2d � 1;2C d=2/ and U > 0. Consider dataX0;XD; : : : ;
XND at a fixed observation distance D > 0, from the reflected diffusion model (1) on
a bounded convex domain O � Rd with smooth boundary, started at X0 � Unif.O/.
Then, there exists a constant c D c.s;D;U;O; fmin/ > 0 such that

lim inf
N!1

inf
zPN

sup
f Wkf kHs.O/�U;

f�fmin>0

Pf
�
k zPN � PD;f kH2!H2 > cN

�.s�1/=.2sC2Cd/
�
>
1

4
;

where the infimum extends over all estimators zPN of PD;f (i.e., measurable func-
tions of the X0; XD; : : : ; XND taking values in the space of bounded linear operators
onH 2), and where Pf denotes the probability law induced by the solution .Xt / to (1)
with diffusivity f and observation distance D > 0:

Inspection of the proof shows that the supremum in the last display can be further
restricted to f constant near @O. The main obstruction in the proof compared to that
of [12, Theorem 4] arises when the first non-zero eigenvalue of the Laplacian is not
simple, as is generically the case in ‘nice’ domains, such as on the sphere. Since
multiplicity of eigenvalues represents symmetries in the domain, one may expect that
the convergence rate of estimators of PD;f could be improved by exploiting these
symmetries in some way. Theorem 2.1 tells us that the effect of such symmetries is
not sufficient to accelerate the minimax rates of convergence. However, the constant c
is inversely proportional to the multiplicity of the first eigenvalue, so one could expect
the constant factor to decrease in the convergence rate given symmetries (but note that
the multiplicities of the eigenvalues of � in any fixed domain are necessarily finite).

While the solution theory for equation (1) is more complex for general non-convex
domains, in the cases when solutions exist, Theorem 2.1 still holds. However, the
assumption of a smooth boundary remains crucial, as it is necessary in [12, Proposi-
tion 2], which is used extensively here and recalled in Appendix A for the reader.

Another result obtained in [12] that depends on the hot-spots conjecture was
a Lipschitz stability estimate for the inverse map PD;f 7! f with respect to the
H 2.O/! H 2.O/ and the L2.O/ norms. We remove this dependence and obtain a
Lipschitz estimate as long as one is satisfied to replace the L2.O/ norm by the L1.O/
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norm (which for statistical convergence rates in this infinite-dimensional model is
only a mild concession).

Theorem 2.2. Let O be a bounded and smooth (not necessarily convex) domain
in Rd . Let f; f0 2H s.O/; s > max.d; 2C d=2/, suppose that f D f0 on O nO0 for
some compact subset O0 �O and that f;f0 � fmin > 0 on O. ForD > 0 arbitrary but
fixed, let PD;f denote the operator defined in (2). We then have the stability estimate

kf � f0kL1.O/ � xc kPD;f � PD;f0kH2!H2 ;

where the constant xc depends on s,U , O0, O, fmin, and whereU �kf kH s C kf0kH s .

We emphasise that this stability estimate holds also if O is not convex, but for the
interpretation of PD;f in (2) as the transition operator of a continuous time Markov
process .Xt /, the requirement of convexity is natural [15]. We further remark that
the hypothesis that f needs to be known near the boundary is related to the fact that
reflection – which is not informative about f – dominates the local dynamics near @O.

Our proof of Theorem 2.2 relies on the use of the L1 norm to deal with the
sign of a certain transport operator, as well as on an idea of [2]. Note that a weaker
logarithmic estimate for the L2 norm holds without assuming the hot-spots conjec-
ture, as was already shown in [12], but the stronger Lipschitz estimate is crucial for
statistical applications. Indeed, by combining this stability estimate with the proof
of [12, Theorem 10], we obtain the following contraction rate for the Bayesian pos-
terior distribution arising from a naturalK-dimensional Gaussian process model for f
described in detail in [12, (17)].

Corollary 2.3. Consider the dataX0;XD; : : : ;XND from the reflected diffusion model
on a bounded convex domain O�Rd with smooth boundary started atX0�Unif.O/.
Assume that f0 2 H s , s > max.2C d=2; 2d � 1/, satisfies infx2O f0.x/ > 1=4 and
f0 � 1=2 on O n O0, where O0 � O is compact. Let ….�jX0; XD; : : : ; XND/ be the
posterior distribution resulting from data X0; XD; : : : ; XND in model (1) and from
the prior … for f from [12, (17)] with K ' N d=.2sC2Cd/ and the given s. Then, as
N !1, we have

…
�
f W kf � f0kL1.O/ � �N jX0; XD : : : XND

�
!

Pf0 0;

where we can take �N D O.N�.s�1/=.2sC2Cd//.

To deduce this corollary, one uses Theorem 2.2 (instead of [12, Theorem 6]) in the
set-inclusion in [12, Section 3.6.2.ii]. The contraction rate �N carries over to appro-
priate posterior mean ‘point’ estimates of f0, as in [12, Section 3.6.3]. It shows that
‘fast’ algebraic convergence rates can be obtained under the standard ‘non-parametric’
assumption that f belongs to a Sobolev space only, which was previously an open
problem except for the case d D 1 considered in [8, 12, 13].
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3. Proofs

To proceed without assuming the hot spots conjecture, the proofs of the theorems
rely on the information gained by looking at multiple eigenfunctions simultaneously
(see Lemma 3.1). We recall some notation from [12]: The transition operator of the
Markov process .Xt / solving (1) is given by

Pt;f D e
tLf ; t � 0;

Pt;f .�/ D
X
k2N

e�t�k;f ek;f hek;f ; �iL2 ; � 2 L2;

where .ek;f ;��k;f /k2N are the eigenpairs of Lf � r � .f r/, that is,

Lf ek;f D ��k;f ek;f

and the ek;f are orthonormal in L2.O/ and satisfy Neumann boundary conditions.
The eigenfunctions are ordered by increasing eigenvalues 0 D �0;f < �1;f � � � �

with e0;f constant on O for all f . We omit the subscript f when there is no danger
of confusion. The usual Weyl asymptotics hold:

�k � k
2=d ; (3)

e.g., [17, p. 111], and as after [12, (26)], the inequalities in (3) can be taken to be
uniform in 0< fmin � f �kf k1 �U (for a fixed domain O). For O �Rd a bounded
domain, define

L20.O/ D

²
g 2 L2.O/ W

Z
O

g.x/ dx D 0

³
;

the L2.O/-functions orthogonal to e0;f . For s � 0, the Hilbert spaces xH s
f

are defined
by

xH s
f .O/ D

®
g 2 L20.O/ W kgk xH s

f
<1

¯
;

where
kgk2xH s

f

D

X
j�1

�sj;f hg; ej;f i
2
L2
:

Again, we omit the subscript f when there is no danger of confusion. The relation
between these xH s

f
spaces and the usual Sobolev spacesH s is recalled in Appendix A.

3.1. Lower bounds for kPD;f �PD;f0
kH 2!H 2 via eigenfunctions

Let O � Rd be a bounded convex domain with smooth boundary and let f; f0 2
H s.O/�C 2.O/, s >max.d;2C d=2/, be bounded below by fmin > 0 on O. We also
assume that kf kH s C kf0kH s � U . From a perturbation analysis of the coefficients
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of the underlying heat equation one can derive the following ‘pseudo-linearisation
identity’: Specifically, using [12, (42)] with ‘eigenblock’ Ek;f0;� there selecting (via
choice of �) a fixed eigenfunction ek;f0 of Lf0 , we have

Pt;f .ek;f0/ � Pt;f0.ek;f0/ D

1X
lD1

bl;khel;f ; GkiL2el;f ;

where

Gk D r �
�
.f � f0/rek;f0

�
;

bl;k D

Z t

0

e�s�k;f0 e�.t�s/�l;f ds:

We can then repeat the arguments leading to [12, (55)] for this selected eigenfunction,
assuming the frequency 1 � k � � does not exceed a fixed integer � (which will be
chosen later): From [12, Corollary 1] and monotonicity of eigenvalues, we know

kek;f0kH2 . ��;f0 . �2=d

with constants depending on O; U , and fmin. Setting t D D, by definition of the
operator norm, the preceding pseudo-linearisation identity, and Appendix A, we see

kPD;f � PD;f0k
2
H2!H2

& kPD;f .ek;f0/ � PD;f0.ek;f0/k
2
xH2
f

D

1X
lD1

�2l;f jbl;kj
2
jhGk; el;f iL2 j

2 (4)

with a constant depending only on � and not k. We can write

bl;k D e
�D�l;f

e�D.�k;f0��l;f / � 1

�l;f � �k;f0
D D

e�D�k;f0 � e�D�l;f

D.�l;f � �k;f0/
D De�.�k;f0 ;�l;f /

for some mean values �.�k;f0 ; �l;f / between �D�k;f0 and �D�l;f arising from
the mean value theorem applied to the exponential map. This remains true in the
degenerate case where �k;f0 D �l;f as then bk;l D De�D�k;f0 .

By the Weyl asymptotics (3), we see that for k � �, l � K and any K fixed, the
last displayed exponential is bounded below by a fixed constant depending on fmin,
U , K, and �. The second to last term in the previous display is of order ��1

l;f
for fixed

D, k � �, as l !1. Hence, for all l and some C D C.D;O; fmin; U; �/, we have

jbl;kj � C�
�1
l;f :

Combining this estimate with equation (4) and Parseval’s identity gives a preliminary
stability estimate.
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Lemma 3.1. Suppose kf kH s Ckf0kH s � U for some U > 0, s > max.d; 2C d=2/
and that f; f0 � fmin > 0 in O. We then have for any � 2 N the inequality

kPD;f � PD;f0kH2!H2 � zc max
1�k��



r � �.f � f0/rek;f0�

L2 ;
where zc D zc.D;O; fmin; s; U; �/ is a positive constant.

Note that as � grows, zc � e�c�
2=d

, so it is important to keep � fixed. A result sim-
ilar to Lemma 3.1 is obtained in [12] considering only the first eigenfunction, which
combined with the hot-spots conjecture was shown to give a lower bound proportional
to kf � f0kL2 . The fact that our bound extends to any finite set of eigenfunctions will
be essential in the proofs of Theorems 2.1 and 2.2 to be given.

3.2. Proof of Theorem 2.1

For d D 1, all open bounded convex domains in R are intervals of the form .a; b/ and
the proof of [12, Theorem 4] is easily seen to apply. We assume d � 2 for the rest of
the section. We start with the following auxiliary result.

Proposition 3.2. LetH be a separable Hilbert space. Also, let T be a bounded linear
self-adjoint operator on H with discrete spectrum �.T /, and let � be an eigenvalue
with eigenspace V , dim.V / D a. If

�.T / \ Œ� � �; � C �� D ¹�º

for some � > 0, then there exists ı > 0 such that for any self-adjoint operator S with
kT � SkH!H < ı, there is a unique subspace W such that dim.W / D a, and S jW
is diagonalizable with a (possibly repeated) eigenvalues �1;S ; : : : ; �a;S such that
j�i;S � �j < � for all i . Moreover, any eigenspace of S with eigenvalue within � of �
is contained in W . Finally, the choice of subspace is continuous in the sense that

kPW � PV kH!H ! 0 as kT � SkH!H ! 0;

where PV and PW denote the orthogonal projection onto V and W , respectively.

Proof. Proposition 3.2 is a special case of [9, Sections IV.3.4–5, Theorem 3.16],
which simplifies substantially in our setting as we are dealing only with self-adjoint
operators on a Hilbert space. In particular, they have real eigenvalues. The condition

�.T / \ Œ� � �; � C �� D ¹�º

allows us to isolate the value � from the rest of �.T / via a small ball with bound-
ary � around � in the complex plane. Noting that kT � SkH!H ! 0 is equivalent



G. S. Alberti, D. Barnes, A. Jambhale, and R. Nickl 312

to yı.S; T /! 0 in the notation of [9], we can apply [9, Theorem 3.16] to the decom-
position H D V.T /˚M.T /, where V.T / is the eigenspace of �, and where M.T /
is some complementary subspace. Thus for S sufficiently close to T , we get a corres-
ponding decomposition

H D V.S/˚M.S/

such that the spectrum of S jV.S/ is contained within � , and also

dim.V .S// D dim.V .T // D a:

Since S is self-adjoint, we get a (possibly repeated) real eigenvalues in V.S/.

Corollary 3.3. In the setting of Proposition 3.2, given e 2V a normalised eigenvector
of T , there is a choice of E 2 W such that

kEk D 1 and kE � ek ! 0 as kS � T kH!H ! 0:

Proof. Given e 2 V , consider PW e. Then, since PW ! PV as kS � T kH!H ! 0,
we see that

PW e ! PV e D e as kS � T kH!H ! 0:

Since kek D 1, this means in particular that for kPW � PV kH!H small enough,
kPW ek> 1=2, say. Hence, we see thatE´ PW e=kPW ek has the desired properties.

Now we return to the setting of Section 3.1 with f; f0 satisfying the hypotheses
introduced there. First we note that the perturbation result given in [12, Lemma 5] still
holds for general domains, not just the ‘rounded cylinder’.

Lemma 3.4. Regarding L�1
f
;L�11 as bounded linear operators on L20.O/, we have

kL�1f �L�11 kL2
0
!L2

0
. kf � 1k1;

where the constant depends only on fmin; kf k1, and O.

In our setting, upon applying Corollary 3.3 to L�11 , we obtain Ef 2 L20 such that

kEf � e1;1kL2 ! 0 as kf � 1k1 ! 0;

and such that Ef is a linear combination of a eigenfunctions (counted with multi-
plicity) of Lf , where a is the degeneracy of the first eigenvalue of L1. Using the
notation from Proposition 3.2, the eigenvalues of these eigenfunctions are within �
of ��11;1. Note that a and � depend only on O. Moreover, we observe that the largest
eigenvalue of L�1

f
is ��1

1;f
, and

j��11;f � �
�1
1;1j D

ˇ̌
kL�1f kL2

0
!L2

0
� kL�11 kL2

0
!L2

0

ˇ̌
� kL�1f �L�11 k < �; (5)
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for kf � 1k1 sufficiently small. Since the first a eigenvalues of Lf are the largest a
eigenvalues of L�1

f
, we deduce that Ef is a linear combination of the first a eigen-

functions of Lf , say

Ef D

aX
iD1

˛i;f ei;f ;

aX
iD1

j˛i;f j
2
D 1: (6)

Note that in particular we have j˛i;f j � 1 for every i .

Lemma 3.5. We have kEf � e1;1kC2.O/ ! 0 as kf � 1k1 ! 0.

Proof. We know from Corollary 3.3 and Lemma 3.4 that

kEf � e1;1kL2 ! 0 as kf � 1k1 ! 0:

By standard interpolation inequalities (see [12, (91)]), we see that for any s C 1 >
˛ > 2C d=2 there is some 0 < c.s; ˛/ < 1 such that

kEf � e1;1kH˛ � kEf � e1;1k
c.s;˛/

L2
kEf � e1;1k

1�c.s;˛/

H sC1
: (7)

By [12, Corollary 1], we obtain a constant C D C.O; d; s; U; fmin/ such that

kej;f kH sC1 � Cj
.sC1/=d :

So, by equation (6), we observe

kEf kH sC1 �

aX
jD1

j j̨;f jkej;f kH sC1

� Ca � a.sC1/=d :

Since a depends only on O, this means that the second factor in the right-hand
side of (7) is uniformly bounded, and the conclusion of the lemma follows from the
Sobolev embedding H˛ � C 2.

Proof of Theorem 2.1. We follow the argument as in [14, Theorem 10], but instead of
considering solutions for the standard elliptic Dirichlet problem, we consider eigen-
problems for the Neumann Laplacian: Let e1;f0 be the first eigenfunction of Lf0 ,
where f0 � 1 on O. Since �1;f0 > 0, e1;f0 cannot be constant. Thus, re1;f0 is not
zero on all of O. Without loss of generality, we assume the first component of re1;f0
is positive at some x0. Since re1;f0 is continuous, pick some C , " > 0, and ı > 0

such that @1e1;f0 > " and j@ie1;f0 j � C (i ¤ 1) on a ball Bı.x0/ in O of radius ı
centred at x0. Next, choose diffusivities .fm W m D 1; : : : ;M/ as

fm WD f0 C �2
�j.sCd=2/

njX
rD1

ˇr;m‰j;r ; j 2 N;



G. S. Alberti, D. Barnes, A. Jambhale, and R. Nickl 314

where nj are integers such that nj ' 2jd and the‰j;r , r D 1; : : : ; nj , are orthonormal
tensor Daubechies wavelets supported in Bı.x0/, chosen as in [14, (4.17)], so that in
particular fm� fm0 � 1 on O nBı.x0/. Specifically, the @1 derivative of‰j;r is scaled
to be a constant factor c larger than the other partial derivatives. Both � > 0 and 1=c
will be chosen small enough below. The coefficients ˇr;m; m D 1; : : : ;M , of fm will
be sufficiently separated elements of the discrete hypercube, ˇm 2 ¹�1; 1ºnj , for a
suitable sequence j D jN !1 detailed below. By standard wavelet characterisations
of Sobolev norms ([6, Chapter 4.3]), these fm’s lie in aH s-ball centred at f0 of radius
C� � U for some fixed C D C.s/ > 0 and � small enough.

Choose j large enough so that kfm � f0k1 is small enough as in (5) and so that

kEfm � e1;f0kC2.O/ < "=2; m D 1; : : : ;M; (8)

by Lemma 3.5. We see that in particular @1Efm > "=2 and j@iEfm j � C C "=2 D C
0

on Bı.x0/. From the statement of Lemma 3.1, setting f to be fm, f0 to be fm0 for
any m ¤ m0, and using (6) we see for ca > 0 the constant zc with � D a, that

ca

a



r � �.fm � fm0/rEfm0 �

L2 � ca

a

aX
kD1

j˛k;fm0 j


r � �.fm � fm0/rek;fm0 �

L2

� ca max
1�k�a



r � �.fm � fm0/rek;fm0 �

L2
� kPD;fm � PD;fm0kH2!H2 :

Next, we lower bound out

kr � Œ.fm � fm0/rEfm0 �kL2

� kr.fm � fm0/ � rEfm0kL2„ ƒ‚ …
I

�k.fm � fm0/�Efm0kL2„ ƒ‚ …
II

:

Following the arguments in [14],

I D




 dX
iD1

@i .fm � fm0/@iEfm0






L2

�


@1.fm � fm0/@1Efm0

L2 � 



 dX

iD2

@i .fm � fm0/@iEfm0






L2

�
"

2



@1.fm � fm0/

L2 � C 0



 dX
iD2

@i .fm � fm0/






L2
:

Next, we note that by construction of the fm, for i ¤ 1,

@i .fm � fm0/

L2 D 1

c



@1.fm � fm0/

L2 :
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Hence, we observe

I �
"

2



@1.fm � fm0/

L2 � C 0.d � 1/c



@1.fm � fm0/

L2
�
"

4



@1.fm � fm0/

L2
for a sufficiently large choice of c. Finally, choosing the ˇm vectors as in the display
after [14, (4.22)], we have

I & k@1.fm � fm0/kL2 & 2�j.s�1/; and M ' 2c12
jd

, c1 > 0: (9)

Next we show II is of smaller order than I. We have

II2 � kfm � fm0k2L2kEfm0k
2
C2

D �22�2j.sCd=2/
njX
rD1

jˇr;m � ˇr;m0 j
2
kEfm0k

2
C2

. sup
m0
kEfm0k

2
C2
2�2js:

Therefore, we need only to show that supm0 kEfm0k
2
C2

can be bounded by a constant
independent of j , which follows from (8). In summary, we have shown

kPD;fm � PD;fm0kH2!H2 & 2�j.s�1/; m ¤ m0: (10)

Next, let KL.f; f 0/ denote the Kullback–Leibler divergence (see Appendix B)
between the distributions of .X0;XD; : : : ;XND/ and .X 00;X

0
D; : : : ;X

0
ND/ correspond-

ing to the solutions of (1) with diffusivities f and f 0, respectively. Note that pD;f
from [12, (33)] can be regarded as the joint probability density of .X0; XD/ given
diffusivity f . For each i D 0; : : : ;N , we know XiD � Unif.O/, and .Xt W t � 0/ is a
Markov process, so the joint distribution of .X0; : : : ; XND/ has density which splits
into the product pD;f .X0; XD/ � � �pD;f .X.N�1/D; XND/. Hence,

KL.fm; f0/ D

N�1X
iD0

Ef0 log
pD;f0.XiD; X.iC1/D/

pD;fm.XiD; X.iC1/D/
:

Using standard arguments with the wavelet characterization of the H�1.Rd /-norm
(see [6, p. 370], noting that B�12;2 D H

�1) and [12, Theorem 11], we have

KL.fm; f0/ . N kfm � f0k
2
H�1
' �2N2�2j.sC1/:

Now, we choose 2j ' N 1=.2sC2Cd/, so that N2�2j.sC1/ ' 2jd . logM , where we
recall that M from (9) is the number of ‘hypotheses’ fm lying in a ball of H s for
which the distances from (10) are lower bounded by N .�sC1/=.2sC2Cd/. Choosing �
small enough we can apply Theorem B.1 from Appendix B with a sufficiently small ˛
to complete the proof.
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3.3. Proof of Theorem 2.2

3.3.1. Stability for a transport operator. Consider the transport operator

h! r � .hru/

acting on H 1.O/ functions, where u 2 C 2.O/ is fixed. In view of Lemma 3.1, we
have in mind u D ek;f0 for some k and h D f � f0, so h changes sign over O. To
deal with this, let us first consider the operator r � .jhjru/.

Lemma 3.6. For any vector field v 2 C 1.O;Rd / and h 2 H 1.O/, we haveˇ̌
r �

�
jhjv

�ˇ̌
�
ˇ̌
r � .hv/

ˇ̌
almost everywhere on O. In particular, for u 2 C 2.O/,

r � �jhjru�



L2
�


r � .hru/



L2
:

Proof. For x 2 R, define

sign.x/ D

8̂̂<̂
:̂
1 x > 0;

0 x D 0;

�1 x < 0:

By [5, Lemma 7.6], we have jhj 2H 1.O/ and the chain rule holds:rjhj D sign.h/rh
almost everywhere. Thus, by the product rule (see, e.g., [5, (7.18)]), we have

r �
�
jhjv

�
D sign.h/rh � v C jhjr � v

D sign.h/
�
rh � v C hr � v

�
D sign.h/r � .hv/:

Hence, since j sign.h/j � 1, we haveˇ̌
r �

�
jhjv

�ˇ̌
�
ˇ̌
r � .hv/

ˇ̌
almost everywhere. The last conclusion of the lemma follows by taking v D ru and
integrating the square of both sides in the last inequality.

We can now prove the following lemma.

Lemma 3.7. Suppose u1; : : : ; u� 2 C 2.O/ are such that kukkL2.O/ D 1 for every
k D 1; : : : ; � and that

�X
kD1

ˇ̌
ruk.x/

ˇ̌2
� c > 0; x 2 xO0;
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for some subset O0 of O. Then for all h 2 H 1.O/ with boundary trace hj@� D 0, we
have

khkL1.O0/ � c
�1

�X
kD1



r � .hruk/

L2.O/:
Proof. By the Cauchy–Schwarz inequality, we have the upper boundˇ̌̌̌Z

O

ukr �
�
jhjruk

�ˇ̌̌̌
� kukkL2.O/



r � �jhjruk�

L2.O/
D


r � �jhjruk�

L2.O/:

By the divergence theorem ([16, pp. 140ff]), we haveˇ̌̌̌Z
O

ukr �
�
jhjruk

�ˇ̌̌̌
D

ˇ̌̌̌Z
O

jhjruk � ruk

ˇ̌̌̌
�

Z
O0

jhj jrukj
2:

Combining these two inequalities, and summing over k, by Lemma 3.6 we obtain

ckhkL1.O0/ �

�X
kD1



r � �jhjruk�

L2.O/
�

�X
kD1



r � .hruk/

L2.O/;
as required.

3.3.2. Critical points of eigenfunctions. We now combine the results of the pre-
ceding sections and adapt an idea from Alberti [2] (see also [1]) to obtain the global
Lipschitz stability estimate in Theorem 2.2. We often suppress f0 in the notation, in
particular setting ek D ek;f0 and �k D �k;f0 for all k.

Lemma 3.8. For every compact O0 subset of O, there exist � 2N and c > 0 depend-
ing only on O, O0, s, U , and fmin such that

�X
kD1

jrek.x/j
2
� c; x 2 xO0:

Proof. All the constants left implicit in the proof depend only on O, O0, s,U and fmin.
Let O0 be a smooth domain such that O0 b O0 b O. Let � 2 C1c .O/ be a cut-off such
that �jO0 � 1. Define

�.x/ D �.x/x1 �
1

jOj

Z
O

�.z/z1 dz;

so that � 2 C1c .O/ \ L
2
0.O/. Then r�.x/ D .1; 0; : : : ; 0/ for every x 2 xO0.
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Set l D b2C d=2c > 1C d=2. For � � 1, set �� D � �
P�
kD1h�; ekiL2ek . By

the Sobolev embedding theorem and by Proposition A.1, we have

k��k
2

C1. xO0/
. k��k2H l .O/ . k��k2xH l

f0

D

X
k>�

�lkh�; eki
2
L2
:

Thus

k��k
2

C1. xO0/
. ��1�

X
k>�

�lC1
k
h�; eki

2
L2

� ��1�

C1X
kD1

�lC1
k
h�; eki

2
L2
D

k�k2
xH
lC1
f0

��
:

Now, using that
k�k xH lC1

f0

. k�kH lC1 . 1

(again by Proposition A.1, since l C 1 � s C 1) and the Weyl asymptotics (3), we
obtain

k��kC1. xO0/ � C�
�1=d

for some C > 0 depending only on O, O0, s, U , and fmin. Choose � D d.2C /de,
so that

k��kC1. xO0/ � 1=2:

As a consequence, for every x 2 xO0, we have

jr.� � ��/.x/j � jr�.x/j � jr��.x/j � 1 � 1=2 D 1=2:

On the other hand, by the Cauchy–Schwarz inequality, we have

ˇ̌
r.� � ��/.x/

ˇ̌
D

ˇ̌̌̌ �X
kD1

h�; ekiL2rek.x/

ˇ̌̌̌
�

� �X
kD1

h�; eki
2
L2

�1=2� �X
kD1

ˇ̌
rek.x/

ˇ̌2�1=2
:

Observing that
P�
kD1h�; eki

2
L2
� k�k2

L2
. 1 concludes the proof.

Just as in the proof of Lemma 3.5, we can combine the Sobolev embedding with
kekkHa <1 for all a � s C 1 (in view of [12, Corollary 1]) to give the following
result.

Lemma 3.9. We have ek 2 C 2.O/ for all k.



On low frequency inference for diffusions without the hot spots conjecture 319

3.3.3. Completion of the proof of Theorem 2.2. By Lemma 3.8, there exist � 2 N

and c > 0 depending only on O, O0, s, U , and fmin such that

�X
kD1

jrek.x/j
2
� c; x 2 xO0:

By Lemma 3.9, we have that ek is C 2 for every k. Then, by Lemma 3.7 applied with
uk D ek and h D f � f0, we obtain

kf � f0kL1.O0/ �
1

c

�X
kD1



r � �.f � f0/rek�

L2
�
�

c
max
1�k��



r � �.f � f0/rek�

L2 :
Recalling that f D f0 in O nO0, Lemma 3.1 yields the result.

A. Proposition 2 in Nickl (2024)

The following proposition gives a relationship between the usual Sobolev spaces H k

and the spectral Sobolev spaces xH k
f

defined in Section 3. The space H k
c from [12]

is the subspace of H k of functions which ‘vanish near the boundary’ in the sense
defined in Section 3.3.1. Let us also for convenience denote by H 1

� .O/ the space of
those functions in H 1 whose inward normal derivatives exist in the trace sense (e.g.,
belong to H 3=2) and vanish almost everywhere at the boundary.

Proposition A.1. Let O be a bounded convex domain in Rd with smooth boundary
and let f 2 C 1.O/ be such that infx2O f .x/ � fmin > 0. Then

xH 1
f .O/ D H

1.O/ \ L20

and

xH 2
f D H

2
\H 1

� \ L
2
0 D

®
h 2 L20 W Lf h 2 L

2
0; .@h=@�/ D 0 on @O

¯
:

If we assume in addition that for some integer k � 2, either (A) kf kCk�1 � U , or
(B) kf kH s � U for some s > d such that k � s C 1, then we have

xH k
f .O/ � H

k.O/ and k�kHk ' k�k xHk
f

for � 2 xH k
f :

We further have the embeddingH k
c \L

2
0 �
xH k
1 and also ifH k

c is replaced byH k
c =R

(modulo constants). Finally, we have xH k
f
D xH k

f 0
for any pair f; f 0 satisfying (A)

or (B), with equivalent norms. All embedding/equivalence constants depend only
on fmin, U , d , k, and O.
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B. A general mini-max lower bound

Let P and Q be probability laws on the same space. Then, KL.P;Q/ denotes the
Kullback–Leibler divergence from P to Q and is given by

KL.P;Q/ D EP

�
log

dP

dQ

�
;

where dP
dQ

is the Radon–Nikodym derivative of P with respect to Q.

Theorem B.1. Suppose that a parameter space F has a metric d and associated
probability laws ¹Pf W f 2 F º. Next, suppose F contains®

fm W m D 0; 1; : : : ;M
¯
; M � 3;

which are 2r separated, i.e., d.fi ; fj / � 2r for i ¤ j , and such that the Pfm are all
absolutely continuous with respect to Pf0 . Assume, for some ˛ > 0, that

1

M

MX
mD1

KL.Pfm ; Pf0/ � ˛ logM:

Then,

inf
zf

sup
f 2F

Pf
�
d. zf ; f / > r

�
�

p
M

1C
p
M

�
1 � 2˛ �

s
8˛

logM

�
;

where the infimum ranges over all estimators (measurable maps into F ) zf .

A proof can be found in [6, Theorem 6.3.2], see also [18].
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