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Patterson–Sullivan densities in convex projective geometry

Pierre-Louis Blayac

Abstract. For any rank-one convex projective manifold with a compact convex core, we prove
that there exists a unique probability measure of maximal entropy on the set of unit tangent
vectors whose geodesic is contained in the convex core, and that it is mixing. We use this to
establish asymptotics for the number of closed geodesics. In order to construct the measure
of maximal entropy, we develop a theory of Patterson–Sullivan densities for general rank-one
convex projective manifolds. In particular, we establish a Hopf–Tsuji–Sullivan–Roblin dicho-
tomy, and prove that, when it is finite, the measure on the unit tangent bundle induced by a
Patterson–Sullivan density is mixing under the action of the geodesic flow.
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1. Introduction

Compact real hyperbolic manifolds are fundamental objects in geometry and dynam-
ical systems; their geodesic flows are among the prime examples of chaotic systems
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which led to standard notions such as ergodicity or entropy. One classical way to
deform the geometry of a compact hyperbolic manifoldM0 is to deform its Riemann-
ian metric to allow variable negative curvature. It was one breakthrough of the theory
of Anosov flows to establish that many dynamical features of the induced geodesic
flow remain after such deformations (e.g. existence and uniqueness of the measure of
maximal entropy, proved independently by Bowen [19] and Margulis [50]).

There is another interesting way to deform the geometry of M0. Consider the
holonomy representation of the fundamental group �0W�1.M0/! PO.d; 1/, where d
is the dimension of M0. Under certain conditions, one can deform it continuously
(using e.g. bending, see [42]) to get a representation � valued in PGLdC1.R/ which is
not conjugate to a representation into PO.d;1/. A theorem of Koszul [47, Cor. p. 103],
combined with a theorem of Benoist [9, Thm. 1.1] (due to Choi–Goldman [25] for
d D 2), ensures that the representation remains faithful and discrete, and �.�1.M0//

preserves and acts cocompactly on a properly convex open subset � of the real pro-
jective space P.V /, where V D RdC1. The quotient �=�.�1.M0// is a compact
convex projective manifold which, like Riemannian manifolds, admits a geodesic flow,
as we now recall.

In general, a convex projective manifold is a quotient M D �=� of a properly
convex open set � � P.V / by a discrete group � � PGL.V / of projective trans-
formations preserving �. If M is compact, then we say that � divides � and that �
is a divisible convex set. The set � admits a Finsler metric, called the Hilbert met-
ric, which is proper and �-invariant (hence � acts properly discontinuously on �).
Moreover, the intersection of any projective line with � is a geodesic for the Hil-
bert metric, which we call a straight line of �. Thus, there is a natural geodesic flow
.�t /t2R on the unit tangent bundle T 1M WD T 1�=� , which parametrises straight
lines. Benoist [8] initiated the study of .�t /t2R in the divisible case. He proved that
ifM is obtained by deforming a compact hyperbolic manifold, then� is strictly con-
vex, i.e. its boundary @� � P.V / does not contain any non-trivial projective segment.
He also proved that if M is compact, then � is strictly convex if and only if the
geodesic flow .�t /t2R is Anosov.

In this paper, we are particularly interested in divisible convex sets that are not
strictly convex. Classical examples are the higher-rank symmetric divisible convex
sets, namely the projective models of the symmetric spaces of PGLn.K/, where n � 3
and K is R or C or the classical quaternionic (or octonionic for nD 3) division algebra
(for more details see [11, §2.4]). Other interesting, irreducible examples were con-
structed by Benoist [10], followed by Marquis [51], Ballas–Danciger–Lee [4] and
Choi–Lee–Marquis [26], in dimensions 3 to 7.

Bray [21,22] studied the geodesic flow of 3-dimensional irreducible compact con-
vex projective manifolds M D �=� for which � is not necessarily strictly convex.
Although the theory of Anosov flows does not apply in this setting, he managed to
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construct, on the unit tangent bundle, a flow-invariant ergodic measure with maximal
entropy [21, Thm. 1.1]. For this he used Benoist’s precise and beautiful geometric
description of such 3-manifolds [10, Thm. 1.1]. He also adopted methods that had
been elaborated for non-positively curved Riemannian manifolds, whose geodesic
flows are not Anosov in general. More precisely, he drew on the work of Knieper [45]
and Roblin [56], whose main tool are Patterson–Sullivan densities.

In the present article we study the dynamics of the geodesic flow of convex pro-
jective manifolds that have arbitrary dimension and are not necessarily compact. Like
Bray, we use methods from the non-positively curved Riemannian world, in particular
inspired by Knieper and Roblin. We generalise and improve Bray’s results [21], and
develop more systematically the theory of Patterson–Sullivan densities in this setting.

1.1. Rank-one convex projective manifolds

Knieper [45] considered non-positively curved compact Riemannian manifolds which
satisfy a property called rank-one. These generalise negatively curved compact mani-
folds, whose geodesic flow is uniformly hyperbolic, in only requiring that the geodesic
flow have a hyperbolic behaviour along at least one geodesic, which is said to be
rank-one (see [46, Def. 5.1.1]). Similarly, we will consider rank-one convex project-
ive manifolds, which generalise convex projective manifolds M D �=� where � is
strictly convex and @� is smooth (by which we mean C1, see Section 2.2). We will
use the following definition, recently introduced by M. Islam [40].

We say that a point of the boundary @� is strongly extremal if it does not belong to
any non-trivial segment contained in @�. If� is strictly convex, then all points of @�
are strongly extremal. We say that a point is smooth if it admits a unique supporting
hyperplane; such points are also commonly called C1. We denote by @sse� the set
of smooth, strongly extremal points of @�. Given any vector v 2 T 1�, we denote
by �v 2 � its footpoint and by �˙1v D limt!˙1 ��tv the intersection points of
the projective line generated by v with @�. We denote by Aut.�/ the subgroup of
PGL.V / consisting of elements that preserve �, called automorphisms of �.

Definition 1.1 ([40, Def. 6.2 and Prop. 6.3]). Let � � P.V / be a properly convex
open set. A vector v 2 T 1�, and the geodesic of� spanned by v, are called rank-one
if �1v and ��1v belong to @sse�. An infinite-order automorphism of� is said to be
rank-one if it preserves a rank-one geodesic of �.

Let � � Aut.�/ be a discrete subgroup, and M WD �=� . A vector v of T 1M ,
and the geodesic ofM spanned by v, are said to be rank-one if any lift of v to T 1� is
rank-one. The convex projective manifold (or orbifold) M is rank-one if it contains a
rank-one periodic vector, i.e. if � contains a rank-one element.
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We will see (Fact 2.11) that a rank-one automorphism g of� is a proximal element
of PGL.V /, i.e. it has an attracting fixed point in P.V /; its inverse being also rank-
one and hence proximal, g is said to be biproximal. We will also see that a rank-one
automorphism preserves a unique rank-one geodesic in �.

If� is strictly convex and @� is smooth, then @sse� is the whole projective bound-
ary @�, all geodesics of � are rank-one and any biproximal automorphism of � is
rank-one. In fact, if � is strictly convex or if @� is smooth, then M D �=� is rank-
one as soon as � contains a biproximal element, by Facts 2.13 and 2.14 below.

When � is not strictly convex, an example of a geodesic in � that is not rank-
one is a geodesic that is contained in a properly embedded simplex (PES), i.e. a
projective simplex S of dimension k � 2 whose relative interior (see Section 2.2)
is equal to S \ �. Such a simplex S can be interpreted as a flat of � since it is
isometric to Rk endowed with some norm. In many examples of convex projective
manifolds M D �=� , for instance when M is 3-dimensional, compact and irredu-
cible, the maximal (for inclusion) PES’s of � satisfy good properties (such as being
isolated, see [10, 18, 41]) which imply that M is rank-one. More precisely, Islam
used [41] to establish [40, Prop. A.2] that if � � Aut.�/ is a non-virtually abelian,
discrete subgroup which is relatively hyperbolic with respect to a collection of virtu-
ally abelian subgroups of rank at least two, and which acts convex cocompactly on �
in the sense of Danciger–Guéritaud–Kassel [35] (this notion is introduced in the next
Section 1.2), then �=� is rank-one. Islam’s argument is explained in the particular
case of 3-dimensional compact convex projective manifolds in Example 2.17.

Rank-one manifolds are interesting because they include a diversity of examples,
and are in some sense generic: in both the Riemannian and the convex projective set-
tings, there exist higher-rank rigidity theorems which classify compact higher-rank
(i.e. not rank-one) manifolds. See the work of Ballmann [5, Cor. 1] and Burns–
Spatzier [24, Thm. 5.1] in the Riemannian case and the recent work of A. Zimmer [64,
Thm. 1.4] in the convex projective case.

1.2. The Bowen–Margulis measure on quotients of convex cocompact actions

The generalisation of Bray’s results [21] that we are about to state is analogous to [45,
Thm. 1.1.i], which says that any non-positively curved rank-one compact Riemannian
manifold has a unique measure of maximal entropy. However, our result does not
restrict to compact manifolds: it concerns the more general class of manifolds that are
quotients of convex cocompact actions.

LetM D �=� be a convex projective manifold. Following Danciger–Guéritaud–
Kassel, the action of � on � is said to be naively convex cocompact if there exists a
non-empty �-invariant convex subset of � on which � acts cocompactly; when � is
not strictly convex, this notion is not quite satisfactory, because a small deformation
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of � in PGL.V / may not preserve any properly convex open set (see [35, §4.1]).
Therefore, we will consider another stronger definition, introduced by Danciger–
Guéritaud–Kassel.

The full orbital limit set of � is the union over all x 2� of the set of accumulation
points of the orbit � � x, and is denoted by ƒorb

� .�/, or simply ƒorb when the context
is clear. When � is not strictly convex, the set of accumulation of points of an orbit
� � x may depend on the choice of x 2 � (e.g. if � is a triangle in P.R3/, and � is
generated by an infinite-order non-proximal element). The convex hull in � of the
full orbital limit set is denoted by C cor

� .�/; it is �-invariant.

Definition 1.2 ([35, Def. 1.11]). Let � � P.V / be a properly convex open set, and
� � Aut.�/ a discrete subgroup. The action of � on � is said to be convex cocom-
pact if C cor

� .�/ is non-empty and has compact quotient by �; the projection in M
of C cor

� .�/ is called the convex core of M .

We refer to [35, §§1.4–1.7, 4.1–10.7] and [36] for more details and examples on
convex cocompactness. Note that if � divides a properly convex open set �, then the
convex hull of any �-orbit in � is equal to � (this is due to Vey [61, Prop. 3]), hence
C cor
� .�/ D � and � acts convex cocompactly on �.

Danciger–Guéritaud–Kassel [35, Cor. 4.8] proved that if the action of � on � is
convex cocompact, then ƒorb is closed. We denote by T 1Mcor � T

1M the .�t /t2R-
invariant (and compact if � is convex cocompact) subset consisting of those vectors
whose orbit under the geodesic flow is contained in the convex core, i.e. the endpoints
of any lift to � of the geodesic are in ƒorb.

A rank-one convex projective manifold is said to be non-elementary if its funda-
mental group does not contain Z as a finite-index subgroup.

Theorem 1.3. Let � � P.V / be a properly convex open set, and � � Aut.�/ a dis-
crete subgroup. Assume that � acts convex cocompactly on � and that M D �=�
is rank-one and non-elementary. Then there exists a unique .�t /t2R-invariant prob-
ability measure m on T 1Mcor with maximal entropy (Bowen–Margulis measure).
Moreover, m is mixing.

Recall that if .X; m/ is a measured space with m finite and invariant under a
measurable flow .�t /t2R, then m is said to be mixing if

lim
t!1

m.�t .A/ \ B/m.X/ D m.A/m.B/

for all measurable subsets A; B � X . Reminders on the notion of entropy are given
in Sections 2.13 and 2.14.

Remark 1.4. In a first version of this paper, we had proved Theorem 1.3 under the
stronger assumption that � acts strongly irreducibly on P.V /.
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Replacing this assumption by non-elementary was made possible by Facts 2.18
and 6.13 below, which are proved in the paper [17, Prop. 2.4 and Lem. 2.8] in collab-
oration with Feng Zhu.

Note that some results in the present paper (in particular, Theorem 1.6) are used
in [17]. However, there is no circular reasoning between the two papers, since Sec-
tion 2 of [17], where is proved what we need here, does not use the present paper.

Moreover, Facts 2.18 and 6.13 can also be seen as consequences of more gen-
eral results established in the author’s PhD thesis [15, Lem. 3.1.3.2, Prop. 3.2.2,
Lem. 3.2.4, Cor. 5.2.7, Prop. 5.3.1].

Following Knieper [45], we will use Theorem 1.3 to establish asymptotic estim-
ates on the number of closed geodesics on M , and equidistribution results on the
Lebesgue measures on closed geodesics. (Note that some counting results for the
Riemannian case were already present in another earlier work of Knieper [44].)

Recall that in our convex projective setting, the critical exponent of � is defined as

ı� WD lim sup
r!1

1

r
log
�
#¹
 2 � W d�.o; 
o/ � rº

�
;

where o is any point of �, and d� is the Hilbert metric on �; it does not depend
on the �-invariant properly convex open set �, see Section 2.5. For any element
g 2 PGL.V /, we set

`.g/ WD
1

2
log
�
�1.zg/

�dC1.zg/

�
; (1.1)

where zg 2GL.V / is any lift of g, the integer d C 1 is the dimension of V , and �1.zg/�
� � � � �dC1.zg/ are the moduli of the (complex) eigenvalues of zg. Given a convex
projective manifold M D �=� and a positive number T > 0, we denote by Œ��T
(resp. Œ��sing

T , resp. Œ��r1T ) the set of conjugacy classes of elements (resp. of non-rank-
one elements, resp. of rank-one elements) 
 2 � such that `.
/ � T . When 
 2 � is
rank-one, we denote by LŒ
� the Lebesgue measure on the rank-one closed geodesic
associated to 
 , normalised to be a probability measure. The link between closed
geodesics on M and conjugacy classes of � is recalled in Section 2.7.

Proposition 1.5. In the setting of Theorem 1.3, one can find constants 0 < ı < ı�

and C > 0 such that for any T > C ,

(1) .1=CT /eı�T � #Œ��T � .C=T /eı�T ;

(2) #Œ��sing
T � eıT ;

(3) .1=#Œ��r1T /
P
Œ
�2Œ��r1

T
LŒ
� ����!

T!1
m for the weak* topology.

In the case that M is compact, Proposition 1.5 (1) was previously established
by Islam [40, Thm. 1.12] using different techniques. One may compare Proposi-
tion 1.5 (2) with another result of Islam [40, Thm. 1.11] concerning random walks
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on � . We prove a slightly more general version of Proposition 1.5 (3) in Proposi-
tion 9.5 below.

1.3. The machinery of Patterson–Sullivan densities

The main idea to prove Theorem 1.3 is to use conformal densities (Definition 2.20),
also called Patterson–Sullivan densities. They are, for an arbitrary proper metric space
.X; d/ acted on by a discrete subgroup � � Isom.X; d/, families of finite measures
(Patterson-Sullivan measures) on the horoboundary @hX of .X; d/. More precisely,
Patterson–Sullivan measures are quasi-invariant under the action of � , and there is
an explicit formula for the Radon–Nikodym cocycle (see Definition 2.21). They were
originally introduced by Patterson [53] and Sullivan [58] for discrete groups of iso-
metries of real hyperbolic spaces, whose horoboundary is the boundary at infinity.
They were later used in much more general geometric settings, such as non-positively
curved Riemannian manifolds by Knieper [45], CAT(�1)-spaces by Roblin [56], and
even CAT(0)-spaces by Picaud–Link [48] and Ricks [55]. In all these settings, the
horoboundary is equal to the visual boundary.

Conformal densities were also brought to convex projective geometry, in the strict-
ly convex and smooth case by Crampon in his PhD thesis [32] and more recently
by F. Zhu [63], and in the non-strictly convex case in dimension 3 by Bray [21].
While Zhu does not adapt Knieper’s work (hence does not prove the existence and
uniqueness of the measure of maximal entropy), his adaptation of Roblin’s results
goes further than in the present paper, enabling him for instance to obtain more pre-
cise estimates for various counting problems. In the paper [17], the author and Zhu
generalise the results of [63] to the non-strictly convex case.

Let M D �=� be a convex projective manifold. If @� is smooth, then the horo-
boundary @h� is the projective boundary @� (see Fact 2.26). When @� is not smooth,
the situation is more delicate since @h� is different from @�. To handle this diffi-
culty, Bray’s strategy was to weaken the definition of conformal densities so that it
has a meaning on @�. We will do something slightly different: we will use a result
of Walsh [62, Thm. 1.3], who proved in general that the horoboundary @h� domin-
ates @�, in the sense that the identity on � extends to a continuous map @h�! @�,
which is onto by density of�. We will define conformal densities on @� simply as the
push-forwards of conformal densities on @h� by the natural projection @h�! @�.

Let us detail the steps that we will follow below, adapted from the general theory
of conformal densities. Recall that conformal densities depend on a parameter ı � 0.
Fix o 2 �.

(1) Construct a ı� -conformal density (this is actually very general, see Fact 2.22).
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(2) Given ı � 0 and a ı-conformal density .�x/x2� on @h�, construct a measure
on @h�

2 � R which is invariant under the actions of � and R, and equivalent to
�o � �o times the Lebesgue measure. Derive from it a .�t /t2R-invariant measure
on T 1M , called the induced Sullivan measure.

(3) Given ı � 0 and a ı-conformal density .�x/x2� on @h�, prove a Hopf–Tsuji–
Sullivan–Roblin (HTSR) dichotomy. It states in particular that the sumX


2�

e�ıd�.o;
o/

is infinite if and only if the induced Sullivan measure is ergodic under the geodesic
flow; in this case ı D ı� , the ı� -conformal density is unique and its induced Sullivan
measure is called the Bowen–Margulis measure. Recall that ergodic means that any
.�t /t2R-invariant measurable set has null or full measure. (A set has full measure if
its complement has null measure.)

(4) Assuming that X

2�

e�ı�d�.o;
o/

is infinite, prove that if the Bowen–Margulis measure is finite, then it is mixing under
the geodesic flow.

(5) Use mixing to solve counting problems. There are many counting problems,
such as estimating, as R tends to infinity, the number of points in a fixed orbit � � o
that lie in the ball of radius R centred at o, or the number of closed geodesics with
length less than R.

As we are particularly interested in the compact case, we decided to follow, instead
of Roblin’s, Knieper’s approach. It gives estimates for the number of closed geodesics
with length less than R as R grows, but also establishes that the Bowen–Margulis
measure is the unique measure with maximal entropy.

Recall that if X

2�

e�ı�d�.o;
o/ D1;

then � is said to be divergent; this notion does not depend on the �-invariant properly
convex open set � � P.V /, see Section 2.5.

One strength of the theory of conformal densities in the various geometric settings
we have mentioned is that many properties of compact manifolds still hold under
the following much weaker assumptions: asking � to be divergent and the Bowen–
Margulis measure to be finite. For example, these assumptions hold if � acts convex
cocompactly on � and M D �=� is rank-one (see Proposition 1.7).

Another broad class of manifolds which are generally well understood are the
geometrically finite manifolds. In some settings, such as Riemannian geometry with
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variable negative curvature, there is no implication between geometric finiteness and
finiteness of the Bowen–Margulis measure (see [56, §1.F]). Crampon–Marquis [33,
Def. 1.4] defined geometrically finite convex projective manifolds M D �=� in the
case where � is strictly convex and @� is smooth. They carefully investigated the
dynamics of the geodesic flow on these manifolds, without using conformal densities.
In particular, they extended Benoist’s result that the flow is uniformly hyperbolic [34,
Thm. 1.2] (under an additional assumption of asymptotically hyperbolic cusps). Zhu
and the author [17, Thm. C] proved (generalising earlier results by Zhu [63, Thm. 10
and Prop. 14]) that for these manifolds � is divergent and the Bowen–Margulis meas-
ure is finite.

1.4. The Hopf–Tsuji–Sullivan–Roblin dichotomy

Let us explain more precisely Steps (1), (2) and (3) of the previous section. Let
M D �=� be a non-elementary rank-one convex projective manifold. On the one
hand, Steps (1) and (2), i.e. constructing a ı� -conformal density on @h� and the
induced Sullivan measure on T 1M , do not require major changes compared to the
case where M is a real hyperbolic manifold; these steps are done in Sections 2.9
and 3.3. On the other hand, Step (3), namely the HTSR dichotomy, is more delicate;
let us state it formally. For this, we need to recall the definition of two limit sets, both
contained in the full orbital limit set.

The conical limit set of the action of � on � is denoted by ƒcon
� .�/ (or simply

ƒcon when the context is clear), and defined as follows. Fix o 2 �, then � 2 @�
belongs to ƒcon if there exists a sequence .
n/n2N 2 �

N going to infinity such that
the sequence .d�.
no; Œo;�///n2N is bounded; this does not depend on the choice of o.
The proximal limit set of � , denoted byƒprox.�/, or simplyƒprox when the context is
clear, is the closure of the set of attracting fixed points of proximal elements of � .

In general, ƒcon � ƒorb and ƒprox � ƒorb. Furthermore, Danciger–Guéritaud–
Kassel [35, Cor. 4.8 and Lem. 4.18] established that � acts convex cocompactly on�
if and only if C cor

� .�/ is non-empty and ƒcon
� .�/ and ƒorb

� .�/ are equal and closed.
In [14, Def. 1.1] we introduced a .�t /t2R-invariant closed subset of T 1M , called

the biproximal unit tangent bundle and denoted by T 1Mbip; it consists of those vectors
v 2 T 1M such that �˙1zv 2 ƒprox for any lift zv 2 T 1�. When M is rank-one and �
is divergent, the following result gives a new interpretation of T 1Mbip, as the support
of the Bowen–Margulis measure on T 1M .

Theorem 1.6. Let o 2 � � P.V / be a pointed properly convex open set, and � �
Aut.�/ a discrete subgroup withM D�=� rank-one and non-elementary. Let ı � 0,
let .�x/x2� be a ı-conformal density on @� and let m be the induced Sullivan meas-
ure. Then there are two possibilities:
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(1) either
P

 e
�ıd�.o;
o/ <1, and then �o.ƒcon/ D 0 and the dynamical sys-

tems .T 1M;�t ;m/, .Geod1.�/;�; �2o/ and .T 1�;� �R; zm/ are dissipative
and non-ergodic;

(2) or
P

 e
�ıd�.o;
o/ D1, in which case ı D ı� (and � is divergent), and

• .�x/x2� is the only ı� -conformal density (up to a scalar multiple), andm
is called the Bowen–Margulis measure on T 1M ;

• �o.@sse� \ ƒ
prox \ ƒcon/ D �o.@�/ and �o is non-atomic, in particular

supp.m/ D T 1Mbip;

• .T 1M; �t ; m/, .@�2; �; �2o/ and .T 1�; � � R; zm/ are conservative and
ergodic;

• if m is finite then it is mixing.

In (1) we denote by Geod1.�/ the space of straight geodesics of �, which
consists of pairs .�; �/ 2 @�2 such that Œ�; �� \ � is non-empty. Reminders on the
dynamical notions of dissipativity and conservativity are given in Section 2.11.

To establish the mixing property in Theorem 1.6 (2) when m is finite, we use
Babillot’s strategy of proof [3], and also some general results of Coudène [30] in
ergodic theory that are inspired by [3]. In particular, cross-ratios of quadruples of
points on the boundary of a properly convex open set are a crucial component of the
proof of the mixing property. Zhu proved the mixing property [63, Thm. 18] in the
case where � is strictly convex with C1 boundary by using the same strategy.

As we explained in Section 1.3, in order to prove Theorem 1.3 we will use The-
orem 1.6 (2); hence we need to check that the latter can be applied to the case where �
acts convex cocompactly on� andM D�=� is rank-one. This is the goal of the next
proposition.

Proposition 1.7. Let � � P.V / be a properly convex open set and � � Aut.�/
a convex cocompact discrete subgroup. Suppose M D �=� is rank-one and non-
elementary. Then � is divergent, and the Bowen–Margulis measure is finite.

In another article [16], we prove that for any non-elementary rank-one compact
convex projective manifold M D �=� , we have ƒprox D @�. This implies that

T 1Mbip D T
1M;

and from Theorem 1.6 and Proposition 1.7 we derive the following.

Corollary 1.8. The measure of maximal entropy of any non-elementary rank-one
compact convex projective manifold has full support.

Benoist [8, Prop. 6.7] proved that, in the setting of Corollary 1.8, ifM is not hyper-
bolic, then the measure of maximal entropy is singular with respect to the Lebesgue
measure.
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Organisation of the paper. In Section 2 we collect definitions and basic properties
in convex projective geometry, on conformal densities and on entropy.

Sections 3 to 6 are based on Roblin’s work [56]. In Section 3 we define the Hopf
coordinates and the Gromov product in the setting of convex projective geometry,
in order to make sense of Sullivan’s formula [58, Prop. 11], which defines Sulli-
van measures. In Section 4 we state and prove a convex projective version of the
Shadow lemma, a fundamental result in the study of conformal densities. In Section 5
we establish the convergent case of the HTSR dichotomy. In Section 6 we assume
that � is divergent, and follow closely Roblin’s proof of HTSR dichotomy in order to
establish the convex projective version of Theorem 1.6 (2). The proof is divided into
several steps: proving that the conical limit set has full measure (Section 6.1); proving
that @sse� has full measure (Section 6.3); proving that the Bowen–Margulis measure
is ergodic, and moreover mixing when finite (Section 6.6); and finally proving that
ƒprox has full measure (Section 6.7).

Sections 7 to 9 are based on Knieper’s work [45]. In Section 7 we collect some
properties of convex cocompact projective actions; in particular we prove Proposi-
tion 1.7, and give two refined versions of the Shadow lemma (Lemma 4.2) which will
be used in Section 8. In Section 8 we prove Theorem 1.3. The main three steps are:
estimating the measure of small dynamical balls (Section 8.1); bounding from below
the entropy of the Bowen–Margulis measure (Section 8.2); proving the uniqueness
of the measure of maximal entropy (Section 8.4). In Section 9 we establish Proposi-
tion 1.5. The main steps are: bounding the number of rank-one closed geodesics from
below (Section 9.1) and from above (Section 9.2); bounding from above the number of
non-rank-one closed geodesics (Section 9.3); and finally proving the equidistribution
of closed geodesics (Section 9.4).

2. Reminders

2.1. Properly convex open subsets of P.RdC1/ and their geodesic flow

In the whole paper we fix a real vector space V DRdC1, where d � 1. Let�� P.V /
be a properly convex open set. Recall that� admits an Aut.�/-invariant proper metric
called the Hilbert metric and defined by the following formula: for .a; x; y; b/ 2
@� �� �� � @� aligned in this order (see Figure 1),

d�.x; y/ D
1

2
log
�
Œa; x; y; b�

�
; (2.1)

where Œa;x;y;b� is the cross-ratio of the four points, normalised so that Œ0; 1; t;1�D t.
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�a �
x �

y
�b

�

�

�
� � �

�

�

v �tv

Figure 1. The Hilbert metric and the geodesic flow (t D d�.x; y/).

Recall that if � is an ellipsoid, then .�; d�/ is the Klein model of the real hyper-
bolic space of dimension d ; if � is a d -simplex, then .�; d�/ is isometric to Rd

endowed with a hexagonal norm.
Any discrete subgroup � � PGL.V / of automorphisms of� preserves d�, hence

must act properly discontinuously on�; therefore the quotientM D �=� is an orbi-
fold. Furthermore, M is a manifold if the action is free (i.e. if � is torsion-free, by
Brouwer’s fixed point theorem, applied to the convex hull of a finite orbit of a torsion
element). Note that by Selberg’s lemma [57], if � is finitely generated, then it has
a torsion-free finite-index subgroup. We will work in general with � not necessarily
torsion-free, so we set the notation T 1M D T 1�=� .

The straight lines of � can be parametrised to be geodesics, which are said to
be straight. However, an interesting feature in the non-strictly convex case is that
when there are two coplanar non-trivial segments in @�, one can construct geodesics
which are not straight, see the broken green segment in Figure 1. In order to define the
geodesic flow we only take into account straight geodesics: for v in T 1�, let t 7! c.t/

be the parametrisation of the projective line tangent to v such that c is an isometric
embedding from R to � and c0.0/ D v. For t 2 R we set �t .v/ D c0.t/ 2 T 1�. See
Figure 1.

The geodesic flow on T 1�=� is well defined because the two actions of Aut.�/
and .�t /t2R on T 1� commute. We denote by � W T 1M ! M and � W T 1�! � the
projections, we define the following metrics:

8x; y 2M; dM .x; y/ D min¹d�.zx; zy/ W zx; zy 2 � lifts of x; yº;

8v;w 2 T 1�; dT 1�.v; w/ D max
0�t�1

d�.��tv; ��tw/;

8v;w 2 T 1M; dT 1M .v; w/ D max
0�t�1

dM .��tv; ��tw/

� min¹dT 1�.zv; zw/ W zv; zw 2 T
1� lifts of v;wº:
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A very useful inequality is provided by the following lemma.

Lemma 2.1 ([31, Lem. 8.3]). Let � be a properly convex open subset of P.V /. Let
c1 and c2 be two straight geodesics parametrised with constant speed, but not neces-
sarily with the same speed. Then for all 0 � t � T ,

d�
�
c1.t/; c2.t/

�
� d�

�
c1.0/; c2.0/

�
C d�

�
c1.T /; c2.T /

�
:

See [14, §A] for a proof of the above lemma that fill in a missing detail in the
original proof.

2.2. Terminology on convex sets and duality

We recall here some terminology on convex sets.

Notation 1. For any subsetX of the projective space P.V /, the closure (resp. interior,
resp. boundary) of X , denoted by xX (resp. int.X/, resp. @X ), will always be con-
sidered with respect to P.V /.

Let K � P.V / be properly convex.

• The relative interior (resp. relative boundary) of K, denoted by intrel.K/ (resp.
@relK) is its topological interior (resp. boundary) with respect to the projective
subspace it spans.

• For x 2 xK, the open face of x in xK, denoted by FK.x/, consists of the points
y 2 xK such that Œx; y� is contained in the relative interior of a segment contained
in xK. The closed face of x is xFK.x/ D FK.x/.

• A point x 2 @relK is said to be extremal (resp. strongly extremal) if FK.x/ D ¹xº
(resp. x 62 xFK.y/ for y 2 @relK X ¹xº); one says thatK is strictly convex if all the
points in the relative boundary are extremal (and hence strongly extremal).

• Assume thatK spans P.V / and let � 2 @K. A supporting hyperplane ofK at � is a
hyperplane which contains � but does not intersect int.K/. Note that there always
exists such a hyperplane. The point � is said to be a smooth point of @K if there is
only one supporting hyperplane of K at � , denoted by T�@K.

Let us recall the notion of duality for properly convex open sets. We identify the
dual projective space P.V �/ with the set of projective hyperplanes of P.V /. Let � be
a properly convex open subset of P.V /. The dual of�, denoted by��, is the properly
convex open subset of P.V �/ defined as the set of projective hyperplanes which do
not intersect x�. We naturally identify PGL.V / and PGL.V �/, then Aut.�/ identifies
with Aut.��/, and the attracting (resp. repelling) fixed point of the action on P.V �/
of any biproximal element g 2 PGL.V / is xCg ˚ x

0
g (resp. x�g ˚ x

0
g ).



P.-L. Blayac 676

Observe that a hyperplane H is a smooth point of @�� if and only if its intersec-
tion with x� is reduced to a singleton.

2.3. More metrics and upper semi-continuity of balls

In this section we define two metrics, one on the usual boundary @� of any properly
convex open set � � P.V /, and one on the closure x�. These notions are used in the
proofs of Lemma 4.4 and Proposition 6.2.

Definition 2.2. Let x 2 � � P.V / be a pointed properly convex open set, and t > 0
be a positive parameter.

• Let �; � 2 @�. The simplicial distance between � and � is defined as follows (and
it is possibly infinite):

dspl.�; �/ WD inf¹k W 9a0; : : : ; ak 2 @� W a0 D �; ak D �;

80 � i < k; Œai ; aiC1� � @�º:

• Let �; � 2 x�. When � and � are on the same open face F of x�, we set dx�.�; �/ WD
dF .�; �/, and otherwise we set dx�.�; �/ to be infinite.

The open balls of radius R and centred at � are respectively denoted by Bspl.�;R/

and Bx�.�; R/.
Observe that dspl and dx� are lower semi-continuous. In particular, closed balls for

the metric dx� are upper semi-continuous with respect to the Hausdorff topology (in
the sense of Fact 2.3 below). Given a metrisable locally compact topological spaceX ,
recall that the Hausdorff topology on the set of compact subsets of X is a metrisable
topology such that a sequence of compact subsets .Kn/n converges toK �X compact
if and only if any converging sequence .xn/n 2

Q
nKn has its limit inK, and any point

of K is the limit of a sequence .xn/n 2
Q
nKn.

Fact 2.3. Let � � P.V / be a properly convex open set. For any R > 0, the map

xBx�.�; R/W
x�! ¹compact subsets of x�º;

� 7! xBx�.�; R/

is upper semi-continuous in the following sense: all accumulation points of xBx�.�;R/
when �! � must be contained in xBx�.�; R/.

2.4. Benzécri’s compactness theorem and proper densities

In this section we recall Benzécri’s famous compactness theorem, and we see a first
consequence for PGL.V /-equivariant volume form on properly convex open sets. We
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denote by EV (resp. E�V ) the set of (resp. pointed) properly convex open set of P.V /
(resp. endowed with the pointed Hausdorff topology).

Fact 2.4 ([12, Ch. 5, §2, Thm. 2]). The action of PGL.V / on E�V is continuous, proper
and cocompact.

We recall the notion of a proper density on the set of properly convex open sets.
They prescribe the way to choose a volume form on each properly convex open set in
a PGL.V /-equivariant manner. For the whole paper we fix a density VolP.V / on P.V /,
seen as a measure.

Definition 2.5. A proper density on EV is a map of the form � 7! Vol�, where
� � P.V / is a properly convex open set and Vol� is a density on � with Radon–
Nikodym derivative f .x; �/ > 0 with respect to VolP.V /, satisfying the following
three conditions.

Continuity. The function f WE�V ! R>0 is continuous.

Monotone decreasing. Let .x;�/ and .y;�0/ 2 EV . If x D y 2 � � �0, then

f .x;�0/ � f .x;�/:

PGL.V /-equivariance. For any T 2 PGL.V /,

T�Vol� D VolT.�/ :

See [60] for more details and examples. We fix for the whole paper a proper density
� 7! Vol� on EV . One of the key observations that we will need on proper densities
is that for any R > 0, the following quantities are positive and finite (this is a direct
consequence of Fact 2.4):

0 < ��.R/ WD min
.x;�/2E�

V

Vol�
�
xB�.x;R/

�
� �C.R/

WD max
.x;�/2E�

V

Vol�
�
xB�.x;R/

�
<1: (2.2)

2.5. The critical exponent

Let � � PGL.V / be a discrete subgroup which preserves a properly convex open set
� � P.V /. We defined in the introduction (Sections 2.5 and 1.3) the critical exponent
of � and when � is divergent. In this section we explain why these definitions do not
depend on �.

Recall that V DRdC1 has a canonical Euclidean structure. For any g 2 GL.V /D
GLdC1.R/, we denote by �1.g/ � � � � � �dC1.g/ the singular values of g. For any
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g 2 PGL.V /, we set

�.g/ WD
1

2
log
�
�1.zg/

�dC1.zg/

�
;

where zg 2 GL.V / is any lift of g.

Fact 2.6 ([35, Prop. 10.1]). Let � � P.V / be a properly convex open subset and let
x 2 �. Then there exists a constant C > 0 such that for any g 2 Aut.�/, one has

jd�.x; gx/ � �.g/j � C:

As a consequence, if � � PGL.V / is a discrete subgroup which preserves a prop-
erly convex open set � � P.V /, then

ı� D lim sup
r!1

1

r
log
�
#¹
 2 � W �.
/ � rº

�
; (2.3)

and
� is divergent if and only if

X

2�

e�ı��.
/ D1: (2.4)

If � does not preserve any properly convex open set, then we take (2.3) and (2.4) as
definitions.

We end this section with the following classical fact, which is a consequence
for instance of the Tits alternative and of the sub-additivity of �. It applies to all
strongly irreducible discrete subgroups of PGL.V /, and non-elementary rank-one dis-
crete groups of properly convex open sets.

Fact 2.7. Let � � PGL.V / be a discrete subgroup that is not virtually solvable. Then
ı� > 0.

2.6. Proximal linear transformations

In this section we recall the notion of a proximal linear transformation, which was
used in the definition of the proximal limit set ƒprox and the biproximal unit tangent
bundle T 1Mbip.

Notation 2. If W1 and W2 are two subspaces of V such that W1 \ W2 D ¹0º, we
write W1 ˚W2 � V for their direct sum and P.W1/˚ P.W2/ D P.W1 ˚W2/ for its
projectivisation. In particular, if x; y 2 P.V / are two distinct points, we write x ˚ y
for the projective line through x and y.

Definition 2.8. A linear transformation g 2 End.V / is proximal if it has exactly one
complex eigenvalue with maximal modulus among all eigenvalues, and if this eigen-
value has multiplicity 1. The associated eigenline in P.V / is the attracting fixed point
of g and is denoted by xCg .
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An invertible linear transformation g2GL.V / is said to be biproximal if g and g�1

are proximal. The attracting fixed point of g�1 is the repelling fixed point of g and
is denoted by x�g . The projective line xCg ˚ x

�
g (see Notation 2) is the axis of g and

is denoted by Axis.g/. The g-invariant complementary subspace to the axis of g is
denoted by x0g . Note that the notions of biproximality, attracting/repelling fixed point,
and axis, are well defined for the image of g in PGL.V /.

More generally for any projective transformation g 2 PGL.V /, one can define the
attracting subspace xCg of g as the span of all generalised eigenspaces associated to
eigenvalues with maximal norm, and x0g and x�g can be defined similarly.

Remark 2.9. The set of proximal linear transformations is open in End.V /, and the
map sending a proximal linear transformation to the pair (attracting fixed point, max-
imal eigenvalue) is continuous.

Remark 2.10. As observed by Guivarc’h [39, Thm. 1] (see also [6, Lem. 3.6.ii]),
for any irreducible subgroup � � PGL.V / which contains a proximal element, the
proximal limit set is the smallest closed �-invariant non-empty subset of P.V /; in
particular, the action of � onƒprox is minimal (i.e. any orbit is dense). Indeed, consider
any proximal element 
 2 � , and let P.W /� P.V / be the 
 -invariant complementary
subspace to xC
 . By irreducibility, any closed �-invariant non-empty subsetX � P.V /
contains a point x outside P.W /, and then xC
 , which is the limit of the sequence
.
nx/n2N , belongs to X .

2.7. Periodic straight geodesics and elements of �

In this section we recall the link between periodic geodesics in T 1�=� and conjugacy
classes of � . Let � � P.V / be a properly convex open set. Let g 2 Aut.�/. Then

`.g/ D inf¹d�.x; g � x/ W x 2 �º � 0; (2.5)

where `.g/ was defined in (1.1). The right-hand side of (2.5) is called the translation
length of g. See [27, Prop. 2.1] for a proof.

Combined with an elementary computation, (2.5) yields:

Fact 2.11. Let � � P.V / be a properly convex open set and � � Aut.�/ a discrete
subgroup; denote�=� byM . Then for any lift in� of any periodic straight geodesic
of M , there is an automorphism 
 2 � which preserves it and acts by positive trans-
lation on it. Let z
 2 GL.V / be a lift of 
 . The endpoints in @� of the geodesic are
fixed by 
 , the associated eigenvalues of z
 are �1.z
/ and �dC1.z
/, and the length of
the geodesic in M is the translation length of 
 . If furthermore these endpoints are
extremal (for example if 
 is rank-one, see Definition 1.1), then 
 is biproximal.
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Definition 2.12. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup. Let 
 2 � be a biproximal element whose axis meets �. Then the
periodic geodesic associated to 
 is said to be biproximal, and the vectors along this
geodesic are said to be biproximal periodic.

There are cases where 
 2 � is biproximal but its axis does not intersect �
(e.g. when � is a triangle, or is higher-rank symmetric). Then we cannot make sense
of a straight periodic geodesic associated to 
 .

2.8. Biproximal vs rank-one periodic geodesics

In this section we explain when a biproximal periodic geodesic is rank-one. We saw in
Fact 2.11 that a rank-one periodic geodesic is always biproximal. Conversely, the end-
points of a biproximal periodic geodesic are smooth, but not always strongly extremal.

Fact 2.13 ([14, Lem. 3.1]). Let � � P.V / be a properly convex open set. Let g be a
biproximal automorphism of �. Then Axis.g/ \� is non-empty if and only if xCg is
smooth; in this case T

x
C
g
@� D xCg ˚ x

0
g .

The following result is later completed by Corollary 6.9.

Fact 2.14 ([14, Lem. 3.2], [40, Prop. 6.3]). Let� � P.V / be a properly convex open
set. Let g 2 PGL.V / be a biproximal automorphism of �. Then the following are
equivalent:

(a) g is rank-one;

(b) xCg ; x
�
g 2 @� are smooth and strongly extremal points;

(c) xCg is strongly extremal;

(d) the element g seen as an automorphism of �� is rank-one;

(e) the axis of g in P.V / intersects �, and the axis of g in P.V �/ intersects ��;

(f) dspl.x
C
g ; x

�
g / � 3.

Proof. In [14], the point (g) was missing, so we briefly check that it is equivalent to
the other points.

• (c) implies (g) because it implies that dspl.x
C
g ; x

�
g / D1.

• If dspl.x
C
g ; x

�
g / � 3, then the axis of g in P.V / intersects � so xCg is smooth.

Furthermore, x0g does intersect @�, because otherwise dspl.x
C
g ; x

�
g / � 2, since

xCg ˚ x
0
g and x�g ˚ x

0
g are supporting hyperplanes of �.

These characterisations of rank-one automorphisms yield a characterisation of
rank-one manifolds. To see this we need the following fact.
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Fact 2.15 ([7, Prop. 1.1] and [6, Lem. 3.6.iv]). Let � � PGL.V / be a strongly irre-
ducible subgroup.

(1) If � preserves a properly convex open set � � P.V /, then it contains a prox-
imal element.

(2) If � contains a proximal element, then ¹.xC
 ; x
�

 / W 
 2 � biproximalº is dense

in ƒprox �ƒprox.

Corollary 2.16. Let � � P.V / be a properly convex open set and � � Aut.�/
a strongly irreducible discrete subgroup. Then M D �=� is rank-one if and only
if ƒprox contains two points at simplicial distance at least 3.

Proof. If M is rank-one, then ƒprox contains two strongly extremal points by defini-
tion. Conversely, if there exists �; � 2 ƒprox at simplicial distance at least 3. By lower
semi-continuity of dspl and by Fact 2.15 (2), there exists 
 2 � such that

dspl.x
C

 ; x

�

 / � 3:

By Fact 2.14 (f), 
 is rank-one and M as well.

Example 2.17 below is an elementary application of the previous result. It can also
be seen as a consequence of Zimmer’s higher-rank rigidity [64, Thm. 1.4].

Example 2.17. Any 3-dimensional irreducible compact convex projective manifold
is rank-one.

Proof. Let M D �=� be an irreducible compact convex projective manifold of dim-
ension 3. By [10, Prop. 3.10.a], ƒprox D @�, and by [10, Thm. 1.1.d and Prop. 3.8],
@� X @sse� is contained in the union of countably many properly embedded triangles
(PET) (namely PES’s of dimension 2) of �. These cannot cover the whole bound-
ary @� (for instance, because they have Lebesgue measure zero), hence there is a
point in @sse� D @sse� \ ƒ

prox. By irreducibility, there is another one, and we can
conclude using Corollary 2.16.

Remark 2.10 and Fact 2.15 are useful results, and we will need them to hold for
certain discrete groups � � PGL.V / that are not necessarily irreducible. The fol-
lowing fact is exactly what will be needed. Its proof is quite similar to the proof of
Fact 2.15, yet somehow easier, because rank-one elements are easier to manipulate
than general biproximal elements (for instance for rank-one groups the existence of
an invariant convex set make things easier to visualise, while Fact 2.15 holds for
groups that do not necessarily preserve a convex set).
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Fact 2.18 ([17, Prop. 2.4]). Let � � P.V / be a properly convex open set and � �
Aut.�/ a non-elementary rank-one discrete subgroup. Thenƒprox � x� is the smallest
�-invariant closed subset, and it has no isolated point. Furthermore,®

.xC
 ; x
�

 / 2 ƒ

prox
�ƒprox

W 
 2 � rank-one
¯

is dense in ƒprox �ƒprox.

Fact 2.18 can also be seen as a consequence of [15, Lem. 3.1.3.2, Prop. 3.2.2,
Lem. 3.2.4, Prop. 5.3.1].

2.9. Horoboundaries and Patterson–Sullivan densities

In this section we recall the classical definitions of horofunctions and horoboundary,
and how they can be used to define Patterson–Sullivan densities.

Definition 2.19. Let .X; d/ be a proper metric space. The horofunction at points
x; y; z 2 X is defined as follows:

bz.x; y/ D d.x; z/ � d.y; z/:

We now recall the definition of the horocompactification. By a compactification
of a topological space X we mean a compact topological space Y together with an
embedding X ,! Y with open and dense image; then the subset Y X X D @YX is
called the boundary of the compactification. Another compactificationZ dominates Y
if there is a continuous map from Z to Y which is compatible with the embeddings
of X . Using the Arzelà–Ascoli theorem, one can show that the following is well
defined.

Definition 2.20 ([38, §3]). Let .X; d/ be a proper metric space. The horocompacti-
fication of .X; d/ is the smallest compactification xXh of X such that z 7! bz.x; y/

extends continuously to xXh for every x; y 2 X . The horoboundary @hX of .X; d/ is
the boundary of xXh.

Note that xXh is metrisable and the function .�; x; y/ 2 xXh �X �X 7! b�.x;y/ is
continuous. Any isometry of X extends continuously to a bi-Lipschitz homeomorph-
ism of xXh.

We now recall the definition of Patterson–Sullivan measures on the horoboundary
of a proper metric space.

Definition 2.21. Let .X; d/ be a proper metric space. Let � < Isom.X; d/ be a dis-
crete subgroup. Given ı 2R, a (�-equivariant) ı-conformal density on @hX is a family
of finite measures .�x/x2X on @hX such that
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• �y is absolutely continuous with respect to �x for all x; y 2 X , and the Radon–
Nikodym derivative is:

d�y
d�x

.�/ D e�ı b� .y;x/I

(This implies that the family is entirely determined by �o for any o 2 X .)

• for every 
 2 � and x 2 X , the push-forward by 
 of �x is:


��x D �
x :

Let us recall the classical example of a conformal density, which we will need in
this paper. For any measured metric space .X; d; �/ with infinite mass, the volume
entropy is, for any o 2 X ,

ı� WD lim sup
r!1

log�.BX .o; r//
r

2 R�0 [ ¹1º:

Fact 2.22 ([53, §3]). Let .X; d/ be a proper metric space, let o 2 X be a basepoint,
let � be a non-compact closed subgroup of Isom.X; d/ and let Vol be a �-invariant
Radon measure on X . We assume that the volume entropy ıVol is finite. Then there
exists a continuous non-decreasing function hWRC ! R>0 such that

•
R
x2X

h.d.o; x//e�ıVold.o;x/ dVol.x/ D1;

• for every " > 0, there exists R > 0 such that h.r C t / � e"th.r/ for any r � R
and t � 0.

Furthermore, if we define, for s > ıVol, the probability measure �o;s on X such that

�o;s.A/ D

R
x2A

h.d.o; x//e�sd.o;x/ dVol.x/R
x2X

h.d.o; x//e�sd.o;x/ dVol.x/
;

for any Borel subset A � X , then any accumulation point of .�o;s/s!ıVol in the space
P . xXh/ of probability measures on xXh is supported on @h� and is a ıVol-conformal
density.

A typical example of �-invariant Radon measure on X is the push-forward by an
orbital map of the Haar measure on � .

Let�� P.V / be a properly convex open set. One can check that the critical expo-
nent ı� of any discrete group � � Aut.�/ is equal to the volume entropy of the push-
forward by any orbital map of the counting measure on � , and also that ı� � ıVol� .

Fact 2.23 ([59, Thm. 2]). Let�� P.V / be a properly convex open set. Then ıVol� �

dim.V / � 2. In particular, for any discrete subgroup � � Aut.�/, the numbers ı�
and ıVol� are finite.

This will allow us to apply Fact 2.22 to our convex projective setting.
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2.10. The horoboundary of a properly convex open set

In this section we recall results on the horoboundary of a properly convex open set that
were mentioned in the introduction. A direct and elementary proof of the following
result may be found in [15, Fact 6.1.2].

Fact 2.24 ([62, Thm. 1.3]). Let � � P.V / be a properly convex open set. Then the
horocompactification x�h dominates the projective compactification x�.

Notation 3. Given a properly convex open set � � P.V /, we denote by �h the map
@h�! @�.

Definition 2.25. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup. For ı � 0, a ı-conformal density on @� is the push-forward by �h

of a ı-conformal density on @h�. Note that such a family is made of �-quasi-invariant
measures.

If it was not true that @h� dominates @�, we could have considered a common
refinement of @h� and @�, where the conformal densities are also well defined.

Thanks to the following fact, we will from now on abusively identify any smooth
point on the projective boundary with its preimage in the horoboundary.

Fact 2.26 ([21, Lem. 3.2]). Let � � P.V / be a properly convex open set. Let � be a
smooth point of @�. Then it has only one preimage by �hW @h�! @�.

2.11. The Hopf decomposition and quotients of measures

Let us fix for the whole section a locally compact, second countable and unimodu-
lar group G acting measurably on a standard Borel space X , and a G-invariant and
� -finite measure zm on X ; fix a Haar measure on G, denoted by dg, and an integ-
rable positive function � on X . For any non-negative measurable function f on X ,
we denote by

R
G
f the G-invariant measurable function defined byZ

G

f .x/ D

Z
G

f .gx/ dgI

this also denotes the induced function on GnX .
A measurable subset A � X is said to wandering under the action of G if for

zm-almost any x 2 A, the transporter T .x; A/ WD ¹g 2 G W gx 2 Aº is relatively
compact. The following fact is classical, and serves as a definition of the Hopf decom-
position.

Fact 2.27. Let C WD ¹
R
G
� D 1º and D WD ¹

R
G
� <1º � X . The decomposition

X D C tD is a Hopf decomposition, in the sense that every wandering subset of C
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has zm-measure zero, and D is a countable union of wandering subsets of X . Any
two Hopf decompositions agree on some zm-full subset of X . The dynamical system
.X;G; zm/ is said to be conservative (resp. dissipative) if zm.D/D 0 (resp. zm.C/D 0).

Proof. Let A � C be a measurable subset, and let us prove that
R
G
1A is infinite on

zm-almost every point of A. On the one hand, if for R > 0, we denote

AR WD

²Z
G

1A � R

³
\ A;

then Z
X�G

�.gx/1AR.x/ dg d zm.x/ D1 � zm.AR/;

while on the other hand, since G is unimodular and zm is G-invariant,Z
X�G

�.gx/1AR.x/ dg d zm.x/ D
Z
X�G

�.x/1AR.gx/ dg d zm.x/

D

Z
X

�

�Z
G

1AR

�
d zm � R

Z
X

� d zm <1:

Therefore, zm.AR/D 0 for any R > 0, hence zm.[RAR/D 0. For any compact subset
K � G, we consider

BK WD

²Z
K

� >
1

2

Z
G

�

³
� D ;

and observe that it is wandering. Indeed if x 2 BK and g 2 G are such that gx 2 BK ,
then Z

K

�.x/C

Z
Kg

�.x/ >

Z
G

�.x/;

thus K \Kg ¤ ; and g 2 K�1 �K, which is compact. Furthermore, D D
S
n BKn

if G D
S
nKn.

Note that if the action of G on X is smooth (namely GnX is a standard Borel
space) and has compact stabilisers, then .X; G; zm/ is dissipative. In particular, this
observation applies when X is a locally compact second countable topological space
and the action of G is continuous and proper.

Definition 2.28. If .X;G; zm/ is dissipative, the quotient of zm on GnX is defined as

m WD

�Z
G

�

��1
��.� zm/;

where � denotes the projectionX!GnX . For any non-negative (or integrable) func-
tion f on X , Z

X

f d zm D
Z
GnX

�Z
G

f

�
dm;

and m is independent of the choice of � (but it depends on the choice of dg).
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Fact 2.29. Suppose G contains a unimodular, normal and closed subgroup H whose
action on X is dissipative and smooth; fix a Haar measure on H . Set � WX ! HnX

and m to be the quotient of zm on HnX ; this measure is G=H -invariant. Then the
Hopf decomposition of X projects under � onto the Hopf decomposition ofHnX . In
particular, .X;G; zm/ is conservative (resp. dissipative) if and only if .HnX;G=H;m/
is conservative (resp. dissipative).

Proof. Observe that the Haar measure on G=H is the quotient of the Haar measure
on G by the action of H . Therefore, if � is a positive integrable function on X ,
then

R
H
� is a positive integrable function on HnX , andZ

G

� D

Z
G=H

Z
H

�:

Moreover, for anyG-invariant measurable subset zA�X whose projectionA inHnX
is measurable,

zm. zA/ D

Z
HnX

�Z
H

1 zA

�
dm D

Z
HnX

kHaarH k1A dm

is zero if and only if m.A/ D 0 (with the convention1 � 0 D 0).

Recall that if the action of G is continuous, then a point x 2 X is said to be
recurrent if for any neighbourhood U of x, the set ¹g 2 G W gx 2 U º is not relatively
compact; if G D R, then x is call forward recurrent (resp. backward recurrent) if
¹t > 0 W �ty 2 U º � R (resp. ¹t < 0 W �ty 2 U º � R) is unbounded. The following
fact is classical and will be used in Section 6.3.

Fact 2.30. Assume that X is a locally compact topological space with countable
basis, and that the action of G is continuous.

(1) If zm is conservative, then zm-almost all points are recurrent.

(2) If zm is conservative and G D R, then m-almost all points are forward and
backward recurrent.

(3) If zm is ergodic, then zm-almost all points have a dense G-orbit in supp. zm/.

(4) If zm is ergodic and conservative, and G D R, then zm-almost all points have a
dense forward orbit and a dense backward orbit in supp. zm/.

2.12. Criteria for ergodicity and for mixing

Inspired by Babillot’s proof of mixing [3], Coudène stated and proved a criterion
for the ergodicity property, and another for the mixing property, both based on the
following definition.
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Definition 2.31. Consider a Borel flow .�t /t2R on a metric space .X; d/. For each
point x 2 X , we define the strong stable manifold

W ss.x/ D
®
y 2 X W d.�tx; �ty/ ���!

t!1
0
¯
:

We define the strong unstable manifold W us.x/ to be the strong stable manifold of
the time-reversed flow. Consider a .�t /t2R-invariant � -finite measure on X . A meas-
urable function f WX !R is said to beW ss-invariant when there exists a measurable
subset E � X with full measure such that for all x and y in E, if they are on the same
strong stable manifold then f .x/ D f .y/. The notion of W su-invariance is similarly
defined.

Coudène’s criteria are the following.

Fact 2.32 ([29]). Let .X; d/ be a metric space, .�t /t a measurable flow on it, m a
conservative .�t /t -invariant measure, and assume that some m-full subset of X is
covered by a countable family of open sets with finite m-measure. If every W ss ,
W su and .�t /t -invariant measurable function is essentially constant then the flow is
ergodic.

Fact 2.33 ([28]). Consider a Borel flow preserving a finite measure on a metric space.
If every W ss- and W su-invariant Borel function is essentially constant then the flow
is mixing.

2.13. Topological entropy

In this section we recall the definition of topological entropy.

Definition 2.34. Let � D .�t /t2R be a continuous flow on a compact metric space
.X; d/.

• Let " > 0. A subset S � X is .d; "/-separated if d.s; s0/ � " for all s ¤ s0 in S .
We denote by N.d; "/ the maximal cardinality of such a set S .

• Let " > 0. A subset S � X is .d; "/-spanning if for any x 2 X , there exists s 2 S
with d.x; s/ < ". We denote by S.d; "/ the minimal cardinality of such a set S .

• We take the classical notation d .t/.x; y/ WD max0�s�t d.�sx; �sy/ for t � 0 and
x; y 2 X ; this defines a family of metrics on X .

• The topological entropy of � on X is:

htop.�/ WD lim
"!0

lim sup
t!1

logN.d .t/; "/
t

D lim
"!0

lim sup
t!1

logS.d .t/; "/
t

:

One defines similarly the topological entropy of a homeomorphism by replacing
t 2 R�0 by n 2 Z�0 in Definition 2.34. Note that if � D .�t /t2R is a continuous
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flow on a compact metric space .X; d/, then the topological entropies of the flow and
of the underlying time-one map are the same. Also note that the reparametrised flow
.�kt /t2R, where k 2 R¤0, has topological entropy equal to jkj times the topological
entropy of .�t /t2R.

Remark 2.35. Let � � P.V / be a properly convex open set and � � Aut.�/ a dis-
crete subgroup; setM D�=� . Then by definition, for any t � 0, for all v;w 2 T 1M
and all possible lifts zv; zw 2 T 1�,

d
.t/

T 1M
.v; w/ D max

0�s�tC1
dM .��sv; ��sw/

� d
.t/

T 1�
.zv; zw/ D max

0�s�tC1
d�.��szv; ��s zw/:

Yet, we will sometimes prefer to work with dynamical balls in the universal cover,
and this is why we introduce another notation (which is a bit sloppy unfortunately).
For t � 0 and v;w 2 T 1M ,

zd
.t/

T 1M
.v; w/ WD min

®
d
.t/

T 1�
.zv; zw/ W zv; zw 2 T 1� lifts of v;w

¯
;

and we denote by zB.t/
T 1M

.v;R/ the open ball of radius R � 0 and centred at v 2 T 1M
for the metric zd .t/

T 1M
. Observe that zd .t/

T 1M
� d

.t/

T 1M
and that we do not have equality

in general; however, we have equality on°
d
.t/

T 1M
<

inj.M/

2

±
;

where inj.M/ is the injectivity radius of M , namely

inj.M/ WD inf
®
d�.x; 
x/ W x 2 �; 
 2 � X ¹idº

¯
;

To conclude this section, we give a relation between the critical exponent, the
volume entropy and the topological entropy, which is originally due to Manning [49].
Our setting is not exactly the same as his, but the proof works perfectly thanks to
Fact 2.1 and Selberg’s lemma.

Fact 2.36. Let � � P.V / be a properly convex open set and � � Aut.�/ a con-
vex cocompact, strongly irreducible and discrete subgroup. Let Vol be a �-invariant
Radon measure on C cor

� .�/. Then

ı� D ıVol � htop
�
T 1Mcor; .�t /t2R

�
� htop

�
T 1Mbip; .�t /t2R

�
:

Proof. The fact that htop.T
1Mcor; .�t /t2R/ � htop.T

1Mbip; .�t /t2R/ is immediate
from the definition of topological entropy.
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Let us prove that ı� D ıVol. Consider o 2 C cor and R > 0 large enough such that
� � B�.o; R/ contains C cor (which is acted on cocompactly by �). Then, on the one
hand,

Vol
�
B�.o; r/

�
�

X

 Wd�.o;
o/�rCR

Vol
�
B�.
o;R/

�
� Vol

�
B�.o; R/

�
#¹
 W d�.o; 
o/ � r CRº

for any r > 0, hence ıVol � ı� , and Vol.B�.o; R// > 0.
On the other hand, consider

C D #
®

 W d�.o; 
o/ � 2R

¯
;

so that for any r > 0, one can find a subset A of ¹
 W d�.o; 
o/ � rº with size greater
than C�1#¹
 W d�.o; 
o/ � rº � 1 and whose image by the orbital map 
 7! 
o is
.2R; d�/-separated; then

C�1#
®

 W d�.o; 
o/ � r

¯
� 1 � Vol

�
B�.o; R/

��1X

2A

Vol
�
B�.
o;R/

�
� Vol

�
B�.o; R/

��1 Vol
�
B�.o; r CR/

�
;

therefore ı� � ıVol.
Let us prove that ı� � htop.T

1Mcor; .�t /t2R/. Fix " > 0, and fix a maximal
."=4; d�/-spanning set A of B�.o; R/. Let Br be the set of vectors based at a point
of A and pointing at a point of®


a W a 2 A; d�.o; 
o/ � r C 2R
¯
I

for each zv 2 Br choose v0 2 T 1Mcor at distance less than "=2 from the projection
in T 1M of zv (when such a vector exists), and denote by B 0r the collection of v0. By
Fact 2.1, B 0r is a ."; d .r/

T 1M
/-spanning set of T 1Mcor for any r > 0. Furthermore,

#B 0r � #Br � #A2 � #
®

 W d�.o; 
o/ � r C 2R

¯
;

hence ı� � htop.T
1Mcor; .�t /t2R/.

We will see in Proposition 8.4 that htop.T
1Mcor; .�t /t2R/ D ı� .

2.14. Measure-theoretic entropy

Definition 2.37. Let f be an invertible measurable map of a measurable space X ,
which preserves a probability measure �. Let P be a finite measurable partition ofX .
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• The entropy of P is

H�.P / WD �
X
P2P

�.P / log�.P /:

• For each integer n � 1, we set

P .n/
WD
®
P0 \ f

�1P1 \ � � � \ f
�nC1Pn�1 W Pk 2 P ; 0 � k � n � 1

¯
:

• The entropy of f with respect to � and P is

H�.f;P / WD lim
n!1

H�.P
.n//

n
:

• The entropy of f with respect to � is

h�.f / WD sup
®
H�.f;Q/ W Q measurable partition

¯
:

Let us now consider a measurable flow .�t /t2R on a measurable space X preserving
a probability measure �. The entropy of the flow is defined to be the entropy of the
time-one map �1.

Remark 2.38. The reparametrised flow .�kt /t2R has measure-theoretic entropy equal
to jkj times the measure-theoretic entropy of .�t /t2R.

The relation between topological and measure-theoretic entropies is given by the
following famous principle; for more details, see [43, Thm. 4.5.3].

Fact 2.39 (Variational principle). Let � D .�t /t2R a continuous flow on a compact
metric space .X; d/. Denote by P �.X/ the set of �-invariant probability measures
on X . Then

htop.�/ D sup
�2P�.X/

h�.�/:

We recall the definition of entropy-expansive maps from Bowen [20].

Definition 2.40. Consider a homeomorphism f of a metric space .X; d/ and " > 0.
The map f is said to be .d; "/-entropy-expansive if for each x 2 X , the action of f
on the Bowen ball

Z".x/ WD
®
y 2 X W 8n 2 Z; d.f nx; f ny/ � "

¯
has zero entropy.

Remark 2.41. We note that if f is .d; "/-entropy-expansive, then f n is .d .n/; "/-
entropy-expansive.

The following is one of the main properties of entropy-expansive maps.
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Fact 2.42 ([20, Thm. 3.5]). Let " be a positive number; let f be a "-entropy-expansive
homeomorphism of a metric space .X; d/; let � be a f -invariant probability measure
on X ; let P be a finite measurable partition all of whose elements have diameter less
than ". Then

h�.f / D H�.f;P /:

Remark 2.43. Let " > 0; let f be an "-entropy-expansive homeomorphism of a met-
ric space .X; d/. Fact 2.42 tells us that the measure-theoretic entropy depends upper
semi-continuously on the measure (with respect to the weak* topology), and that there
exists a measure of maximal entropy if X is compact.

The geodesic flow on a convex projective manifold is entropy-expansive if the
injectivity radius is non-zero.

Fact 2.44 ([22, Thm. 6.2]). Let � � P.V / be a properly convex open set and � �
Aut.�/ a discrete subgroup. Let us assume that the injectivity radius "0 ofM D�=�
is non-zero. Then the time-one map of the geodesic flow on T 1M is .dT 1M ; "0=3/-
entropy-expansive.

It applies in particular if � acts convex cocompactly on� and if � is torsion-free.
However, we will consider cases where � is not torsion-free, and the geodesic flow
on T 1M is not entropy-expansive: for instance if � is the Poincaré disk and � is a
cocompact triangle group. To overcome this issue, we will use Selberg’s lemma (if �
acts convex cocompactly on �, then it is finitely generated; see [23, Thm. 8.10]) and
the following elementary observation.

Observation 2.45. Let .�t /t be a measurable flow on a measurable space X that
preserves a probability measure �, and G a finite group that acts measurably on X
and commutes with .�t /t . We denote by � WX ! X=G the natural projection, and
.�t /t the induced flow on the quotient. Then h�.X; .�t /t / D h���.X=G; .�t /t /. In
particular, if X is a compact topological space and the actions of .�t /t and G are
continuous, then htop.X; .�t /t / D htop.X=G; .�t /t /.

3. Construction of the Sullivan measures

3.1. The Gromov product

Let us define the Gromov product. It will be used to define the Sullivan measures.
Recall that given a properly convex open set � � P.V / with three points x; �; � 2 �,
the Gromov product is defined by

2h�; �ix WD d�.x; �/C d�.x; �/ � d�.�; �/ � 0:
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The following are three immediate properties of the Gromov product. Let y 2 �:

x 2 Œ�; ��) h�; �ix D 0I (3.1)

2h�; �ix D 2h�; �iy C b�.x; y/C b�.x; y/I (3.2)

jh�; �ix � h�; �iy j � d�.x; y/: (3.3)

We denote by Geodh.�/ (resp. Geod1h .�/) the set of pairs .�;�/ in .x�h/2 (resp. @h�
2)

such that Œ�; �� \� ¤ ;, where Œ�; �� WD Œ�h.�/; �h.�/�.

Proposition 3.1. Let � � P.V / be a properly convex open set. The map

.�; �; x/ 7! h�; �ix

defined on �3 extends continuously to Geodh.�/ � �, as well as to (3.1), (3.2)
and (3.3).

Proof. Let A WD ¹.�; �; x; y/ 2 Geodh.�/ ��
2 W y 2 Œ�; ��º. The projection

.�; �; x; y/ 7! .�; �; x/

from A to Geodh.�/ �� is continuous, surjective and open. Therefore, it is enough
to prove that the function .�; �; x; y/ 7! h�; �ix defined on A \�4 extends continu-
ously to A. This is a consequence of (3.1) and (3.2) combined, which yield, for any
.�; �; x; y/ 2 A \�4,

h�; �ix D b�.x; y/C b�.x; y/:

Note that (3.1) extends to .�;�/2Geodh.�/ because the set ¹.�;�;x/2�3 W x 2 Œ�;��º
is dense ¹.�; �; x/ 2 Geodh.�/ �� W x 2 Œ�; ��º.

3.2. The Hopf coordinates

Let us define the Hopf parametrisation of the unit tangent bundle T 1� of a properly
convex open set �, which depends on the choice of a fixed basepoint o 2 �.

Definition 3.2. Let � � P.V / be a properly convex open set and fix a basepoint
o 2 �. The Hopf parametrisation based at o is the .�t /t -equivariant continuous sur-
jective map

HopfoWGeod1h .�/ �R! T 1�;

that sends .�; �; t/ 2 Geod1h .�/ � R to the vector Hopfo.�; �; t/ which is tangent to
the projective line �h� ˚ �h� and such that b�.o; �Hopfo.�; �; t// D t .
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When the context is clear, we will simply write Hopf instead of Hopfo. Note that
if x 2 � then for any .�; �; t/ 2 Geod1h .�/ �R,

Hopfx.�; �; t/ D Hopfo
�
�; �; t C b�.o; x/

�
:

Therefore, if we consider the following action of Aut.�/:

g � .�; �; t/ D
�
g�; g�; t C b�.g

�1o; o/
�

for g 2 Aut.�/ and .�; �; t/ 2 Geod1h .�/, then Hopfo is Aut.�/-equivariant. Note
also that for any .�; �; t/ 2 Geod1h .�/,

�Hopfo.�; �; t/ D Hopfo
�
�; �; h�; �io � t

�
; (3.4)

where for any v 2 T 1�, the vector�v satisfies �˙1.�v/D ��1v and �.�v/D �v.

3.3. The Sullivan measures

In this section, given a conformal density, we construct the associated .�t /t2R-invar-
iant Sullivan measures on T 1� and on the quotient T 1M D T 1�=� .

Definition 3.3. Let � � P.V / be a properly convex open set and � � Aut.�/ a
strongly irreducible discrete subgroup; denote M D �=� . Let ı � 0 and let .�x/x
be a ı-conformal density on @h�. The Sullivan measure zmh on @h�

2 �R induced by
.�x/x is defined by the following:

d zmh.�; �; t/ D e
2ıh�;�io1Geod1h .�/.�; �/ d�o.�/ d�o.�/ dt;

where o 2 �; the measure zmh does not depend on o and is .�t /t -invariant. Then we
push it forward via the Hopf coordinates to get the induced Sullivan measure on T 1�:

zm WD .Hopfo/� zmh:

It does not depend on o, and it is � and .�t /t -invariant. Hence, it yields an induced
.�t /t -invariant Sullivan measure on T 1M , denoted by m.

Observe that the formula e2ıh�;�io1Geod1h .�/.�; �/d�o.�/d�o.�/ yields a �-invar-
iant measure on Geod1h .�/, which is in fact the quotient of the Sullivan measure
under the action of R.

Proposition 3.4. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup. Let ı � 0 and let .�x/x be a ı-conformal density on @h�. Then
the Sullivan measures on Geodh.�/ �R, T 1� and T 1M are Radon. If � is strongly
irreducible and T 1Mbip ¤ ;, or if M is rank-one and non-elementary, then these
measures are non-zero.
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Proof. The fact that the Sullivan measures are Radon is a direct consequence of the
continuity of the Gromov product (Proposition 3.1).

Suppose that � is strongly irreducible and T 1Mbip ¤ ;, or thatM is rank-one and
non-elementary. Then there exists .�; �/ 2 Geod1.�/ \ .ƒprox/2. Let U and V be
neighbourhoods of � and � in @� such that

U � V � Geod1.�/:

Since �o D �hor��o is �-quasi-invariant, its support is �-invariant, and hence con-
tains ƒprox (see Remark 2.10 and Fact 2.18). Therefore, �2o.U � V / > 0, and

zmh.�
�1
h .U / � ��1h .V / �R/ > 0:

4. The Shadow lemma

In this section we establish the Shadow lemma (Lemma 4.2) which consists of estim-
ates on the measures of shadows. The measure is a conformal density on @�, and
shadows are subsets of the projective boundary, defined as follows. Recall that the
Shadow lemma is a classical result in the theory of conformal densities, and we adapt
here its classical proof to the convex projective setting.

Definition 4.1. Let � � P.V / be a properly convex open set. Take x; y 2 � and
r > 0. Set

Or.x; y/ WD
®
� 2 @� W Œx; �� \ B�.y; r/ ¤ ;

¯
I

OCr .x; y/ WD
®
� 2 @� W 9z 2 B�.x; r/ such that Œz; �� \ B�.y; r/ ¤ ;

¯
I

O�r .x; y/ WD
®
� 2 @� W 8z 2 B�.x; r/; Œz; �� \ B�.y; r/ ¤ ;

¯
:

See in Figure 2 an example of a shadow.

Lemma 4.2. Let o 2 � � P.V / be a pointed properly convex open set and � �
Aut.�/ a discrete subgroup; set M D �=� . Suppose that � is strongly irreducible
and T 1Mbip is non-empty, or thatM is rank-one and non-elementary. Consider ı � 0
and a ı-conformal density .�x/x2� on @�. Then there exists R0 > 0 such that for any
R � R0, one can find C D C.R/ > 0 such that for each 
 2 � ,

C�1e�ıd�.o;
o/ � �o
�
OR.o; 
o/

�
� �o

�
OCR .o; 
o/

�
� Ce�ıd�.o;
o/:

We will actually need two more Shadow lemmas: Lemma 4.6 and Corollary 7.3.
They both make stronger assumptions on the convex projective manifoldM D �=� ,
and either are consequences of Lemma 4.2, or have a very similar proof.



Patterson–Sullivan densities in convex projective geometry 695

4.1. Preliminaries

In this section we prove two classical intermediate lemmas, used in the proof of the
Shadow lemma.

Lemma 4.3. Let� � P.V / be a properly convex open set. Let � 2 x�h and x; y 2 �.
If y 2 Œx; ��, then b�.x; y/ D d�.x; y/. Let r > 0. If �h.�/ 2 OCr .x; y/ (see Defini-
tion 4.1), then

d�.x; y/ � 4r � b�.x; y/ � d�.x; y/:

Proof. One easily sees that b�.x;y/� d�.x;y/D�2h�;xiy if � 2�, and this extends
to � 2 x�h by continuity. This, by (3.1), implies that b�.x; y/D d�.x; y/ if y 2 Œx; ��.
Assume that � 2 OCr .x; y/. The triangular inequality gives b�.x; y/ � d�.x; y/;
let us establish b�.x; y/ � d�.x; y/ � 4r . By definition of OCr .x; y/, we can find
x0 2 B�.x; r/ and y0 2 B�.y; r/ \ Œx0; ��. Then

b�.x; y/ D b�.x; x
0/C b�.x

0; y0/C b�.y
0; y/

� �d�.x; x
0/C d�.x

0; y0/ � d�.y
0; y/

� d�.x; y/ � 2d�.x; x
0/ � 2d�.y; y

0/

� d�.x; y/ � 4r:

Lemma 4.4. Let�� P.V / be a properly convex open set and � �Aut.�/ a discrete
subgroup; set M D �=� . Suppose that � is strongly irreducible and T 1Mbip is non-
empty, or thatM is rank-one and non-elementary. Consider a �-quasi-invariant finite
Borel measure � on @�. Then there is " > 0 and R > 0 such that for all x 2 �,

�
�
OR.x; o/

�
� ":

Proof. By contradiction suppose that there are sequences .Rn/n 2RN
>0 and .xn/n 2�

such that
Rn ����!

n!1
1 and �

�
ORn.xn; o/

�
����!
n!1

0:

We can assume that .xn/n converges to some � 2 x�. If � 2 � then for n such that
Rn � d�.o; �/C 1 and d�.xn; �/ < 1, we have ORn.xn; o/ D @� which is absurd;
hence, � 2 @�. We claim that �. xBspl.�; 1// D 1. It is enough to prove that

@�n xBspl.�; 1/ �
[
n

\
k�n

ORk .xk; o/:

See Figure 2. Let � 2 @�n xBspl.�; 1/. Fixing an affine chart containing x�, we can
consider for each n the following points of �:

y WD
1

2
.� � �/C � and yn WD

1

2
.xn � �/C �;
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�
�

�

�

�

�

�o

�xn

ORn.xn; o/

Figure 2. The sequence of increasing shadows in the proof of Lemma 4.4.

where the map x 7! .x � �/=2 C � is defined on the affine chart as the homothety
centred at � and with ratio one half. We can then find n large enough so thatB�.o;Rn/
contains a neighbourhood U of y, and so that yn is contained in U . This implies that
� 2 ORn.xn; o/, which concludes the proof of the claim that �. xBspl.�; 1// D 1.

Since ƒprox is the smallest �-invariant closed subset of x� (Remark 2.10 and
Fact 2.18), and � is �-quasi-invariant, we deduce that ƒprox is contained in the sup-
port of �. In order to get a contradiction, let us prove that ƒprox is not contained
in xBspl.�; 1/. By assumption we can find �; �0 2 ƒprox such that .�˚ �0/ \ � ¤ ;.
Using again that ƒprox � x� is minimal for the action of � , we deduce the existence
of a sequence .
n/n 2 �N such that .
n�/n converges to �. But then . xBspl.
n�; 1//n

sub-converges to xBspl.�; 1/ (i.e. any accumulation point for the Hausdorff topology is
contained in xBspl.�;1/); hence, xBspl.
n�; 1/ does not contain �0 for n large enough.

We will need exactly twice a refined version of the previous lemma, which bounds
from below the measure of scarce shadows. It will be used to prove the refined version
of the Shadow lemma for scarce shadows (Lemma 4.6), and to prove Proposition 6.2.
This version needs M to be rank-one, and the statement is a bit more technical. The
proof is almost the same.

Lemma 4.5. Let�� P.V / be a properly convex open set and � �Aut.�/ a discrete
subgroup. Suppose M D �=� is rank-one and non-elementary. Consider a �-quasi-
invariant Borel finite measure � on @�. Then there exist " > 0 and R0 > 0 such that
�.O�R.x; o// � " for all R � R0 and x 2 � X B�.o; 2R/.

Proof. By contradiction we suppose the existence of sequences .Rn/n 2 RN
>0 and

.xn/n 2 �
N such that for all n 2 N,

Rn ����!
n!1

1;

while
d�.xn; o/ �Rn ����!

n!1
1 and �

�
O�Rn.xn; o/

�
����!
n!1

0:
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We can assume, up to extracting, that .xn/n converges to some point � 2 @�. We
claim that �. xBspl.�; 2// D 1 (see Definition 2.2). It is enough to prove that

@�n xBspl.�; 2/ �
[
n

\
k�n

O�Rk .xk; o/:

Let � 2 @�n xBspl.�; 2/. Fixing an affine chart containing x�, we can consider for each n
the following compact subsets of �:

K WD
1

2

�
xBspl.�; 1/ � �

�
C � and Kn WD

1

2

�
xB�.xn; Rn/ � �

�
C �;

where the map x 7! .x � �/=2 C � is defined on the affine chart as the homothety
centred at � and with ratio one half. We observe that all accumulation points of the
sequence .Kn/n are contained inK. Indeed, any accumulation point of . xB�.xn;Rn//n
is convex, contains � and is moreover contained in @� since xn goes faster to infinity
than Rn; hence, it is contained in xBspl.�; 1/. Therefore we can find n large enough so
that B�.o; Rn/ contains a neighbourhood U of K, and so that Kn is contained in U .

Since ƒprox is the smallest �-invariant closed subset of x� (Fact 2.18), and � is �-
quasi-invariant, we deduce that ƒprox is contained in the support of �. In order to get
a contradiction, let us prove that ƒprox is not contained in xBspl.�; 2/. By assumption
we can find two distinct points �; �0 in ƒprox \ @sse�. Using again that ƒprox � x� is
minimal for the action of � , we deduce the existence of a sequence .
n/n 2 �N such
that .
n�/n converges to �. But then . xBspl.
n�;2//n sub-converges to xBspl.�;2/D ¹�º;
hence, xBspl.
n�; 2/ does not contain �0 for n large enough.

4.2. Proof of Lemma 4.2 and another Shadow lemma

Proof of Lemma 4.2. We compute for ˛ 2 ¹;;C;�º:

�o
�
O˛
R.o; 
o/

�
D �o

�
��1h

�
O˛
R.o; 
o/

��
D �
�1o

�
��1h

�
O˛
R.


�1o; o/
��

D

Z
��1h .O˛

R
.
�1o;o//

e
�ıbz� .


�1o;o/ d�o.z�/:

Hence, on one hand bz�.

�1o; o/ � d�.o; 


�1o/ � 4R because of Lemma 4.3, so

�o
�
OCR .o; 
o/

�
�

Z
��1h .O

C

R
.
�1o;o//

e�ıd�.o;
o/C4ıR d�o.z�/

� e4ıRe�ıd�.o;
o/�o
�
OCR .


�1o; o/
�

� e4ıRe�ıd�.o;
o/�o.@�/:
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On the other hand, we can use Lemma 4.4, to obtain " > 0 and R0 such that for
R � R0 and for 
 2 � such that d�.o; 
o/ � R0,

�o
�
OR.o; 
o/

�
�

Z
��1h .OR.
�1o;o//

e�ıd�.o;
o/ d�o.z�/

� �o
�
OR.


�1o; o/
�
e�ıd�.o;
o/

� "e�ıd�.o;
o/:

As for Lemma 4.4, there exists a refined version of the Shadow lemma (Lem-
ma 4.2) for scarce shadows. We will only need it once, for the proof of Proposi-
tion 6.2. Its proof is exactly the same as that of Lemma 4.2, except that we use instead
Lemma 4.4.

Lemma 4.6. Let o 2 � � P.V / be a pointed properly convex open set and � �
Aut.�/ a discrete subgroup. Suppose M D �=� is rank-one and non-elementary.
Consider ı � 0 and a ı-conformal density .�x/x2� on @�. Then there exists R0 > 0
such that for any R � R0, one can find C D C.R/ > 0 such that for each 
 2 �
satisfying d�.o; 
o/ � 2R,

C�1e�ıd�.o;
o/ � �o
�
O�R.o; 
o/

�
:

Proof. We make the same computation as in the proof of Lemma 4.2:

�o
�
O�R.o; 
o/

�
D

Z
��1h .O�

R
.
�1o;o//

e
�ıbz� .


�1o;o/ d�o.z�/:

We can use Lemma 4.5, to obtain " > 0 and R0 such that for R � R0 and for 
 2 �
such that d�.o; 
o/ � 2R,

�o
�
O�R.o; 
o/

�
�

Z
��1h .O�

R
.
�1o;o//

e�ıd�.o;
o/ d�o.z�/

� �o
�
O�R.


�1o; o/
�
e�ıd�.o;
o/

� "e�ıd�.o;
o/:

4.3. First consequences

In this section we deduce from the Shadow lemma that there is no conformal density
with parameter 0 � ı < ı� . We also prove that open faces of the conical limit set are
neglected by conformal densities.

Proposition 4.7. Let o 2 � � P.V / be a pointed properly convex open set and � �
Aut.�/ a discrete subgroup; denote M D �=� . Suppose that � is strongly irredu-
cible and T 1Mbip is non-empty, or that M is rank-one and non-elementary. Consider
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ı � 0 such that there exists a ı-conformal density on @�. Then ı � ı� , and there is
some constant C > 0 such that

#¹
 2 � W d�.o; 
o/ � rº � Ceı�r :

Proof. Let .�x/x2� be a ı-conformal density on @�. We consider R and C > 0 from
the Shadow lemma (Lemma 4.2), such that for each automorphism 
 2 � ,

�o
�
OR.o; 
o/

�
� C�1e�ıd�.o;
o/:

For each r > 0, we give ourselves a maximal .1C 4R/-separated subset Fr of

� � o \ B�.o; r C 1/ X B�.o; r/:

One can easily see that the shadows .OR.o; x//x2Fr are pairwise disjoint, therefore

1 �
X
x2Fr

�o.OR.o; x//

� C�1
X
x2Fr

e�ıd�.o;x/

� C�1e�ıe�ır#Fr

� C�1e�ı#¹
 W d�.o; 
o/ � 1C 4Rº�1

� e�ır#¹
 W 
o 2 B�.o; r C 1/ X B�.o; r/º:

This implies that #¹
 W d�.o; 
o/ � rº � C 0eır for any r > 0, for some C 0 > 0

independent of r . By definition, this implies that ı � ı� , and since by Fact 2.22 there
exists a ı� -conformal density, #¹
 W d�.o; 
o/� rº � C 00eı�r for any r > 0, for some
C 00 > 0 independent of r .

Proposition 4.8. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup; setM D�=� . Suppose that � is strongly irreducible and T 1Mbip

is non-empty, or that M is rank-one and non-elementary. Consider ı � 0 and a ı-
conformal density .�x/x2� on @�. Then �x.F�.�// D 0 for all x 2 � and � 2 ƒcon.

Proof. Let o 2 �. Observe that the open face F�.�/ is contained in ƒcon by [35,
Cor. 4.10]. It is enough to prove that �o.Bx�.�; R// D 0 for any R > 0. By defini-
tion, there are sequences .
n/n 2 �N and .xn/n 2 Œo; �/N going to infinity such that
.d�.
no; xn/n is bounded; denote R0 D supn d�.
no; xn/. Using the Shadow lemma
(Lemma 4.2), we can find C > 0 such that for any n,

�o
�
Bx�.�; R/

�
� �o

�
OR.o; xn/

�
� �o

�
ORCR0.o; 
no/

�
� Ce�ıd�.o;
no/:

This last term goes to zero as n tends to infinity since ı � ı� > 0 (Fact 2.7 and
Proposition 4.7).



P.-L. Blayac 700

5. The convergent case of the HTSR dichotomy

Next we establish the convergent case of the HTSR dichotomy (Theorem 1.6 (1)).

5.1. The conical limit set has zero measure

We prove that, in the convergent case of the HTSR dichotomy, any ı-conformal dens-
ity gives zero measure to the conical limit set.

Proposition 5.1. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup. Suppose that � is strongly irreducible and T 1Mbip is non-empty,
or that M is rank-one and non-elementary. Let ı � ı� with

P

2� e

�ıd�.o;
o/ finite,
and consider a ı-conformal density .�x/x2� on @�. Then �x.ƒcon/D 0 for any x 2�.

Proof. We consider R > 0 and prove that �o.ƒcon
R / D 0. By definition, for any r > 0,

the set ƒcon
R is contained in the union, over all 
 2 � such that d�.o; 
o/ � r , of the

shadows OR.o; 
o/. As a consequence, by the Shadow lemma (Lemma 4.2), we can
find a constant C > 0 such that

�o.ƒ
con
R / � C

X

 Wd�.o;
o/�r

e�ıd�.o;
o/

for any r > 0, and this last quantity converges to zero as r goes to infinity.

5.2. Proof of Theorem 1.6 (1)

Let �o be a ı� -conformal density on @h� such that .�h/��o D �o, and let zm be
the Sullivan measure on T 1� induced by �o. According to Proposition 4.7, we have
ı � ı� . Let us assume that

P

 e
�ıd�.o;
o/ is convergent.

By Fact 2.29, in order to prove that .T 1M; �t ; m/ and .Geod1.�/; �; �2o/ are
dissipative, it is enough to prove that .T 1�; � � R; zm/ is dissipative. If by contra-
diction it is not the case, then the conservative part contains a compact subset K of
positive measure. This means that for almost any vector v 2 K, using notations from
Section 2.11,

1D

Z
��R

1K.v/ D
X

2�

Z 1
�1

1K.
�tv/ dt;

and hence there exist diverging sequences .
n/n 2 �N and .tn/n 2 RN such that

n�tnv 2 K; if .tn/n tends to1 (resp.�1), then �1v (resp. ��1v) is inƒcon, which
contradicts Proposition 5.1 and the definition of zm since for almost every vector v
in T 1�, the endpoints �˙1v are not in ƒcon.

Suppose by contradiction that .T 1M;�t ; m/ is ergodic. Let K � T 1� be a com-
pact neighbourhood of a vector v in T 1�bip WD �

�1
� T 1Mbip. By Fact 2.30 (3), almost
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any .�t /t orbit is dense in the support of m, which contains T 1Mbip (this was basic-
ally proved in Proposition 3.4). By dissipativity (and becausem is Radon), almost any
orbit spends a finite time in ��K. Hence, there exists a vector w 2 T 1� and a time
T > 0 such that

��.K/ \ T
1Mbip � �Œ�T;T ���wI

in other words, as the action of � on T 1� is properly discontinuous, we may find a
finite subset A � � such that

K \ T 1�bip � A�Œ�T;T �w:

Thus, �1.K \ T 1�bip/, which is a neighbourhood in ƒprox of �1v, is contained in
�1A�Œ�T;T �w, which is equal to A�1w and hence is finite. This contradicts the fact
that ƒprox has no isolated point (Remark 2.10 and Fact 2.18).

6. The divergent case of the HTSR dichotomy

In this section, we adapt some proofs of Roblin [56, pp. 19–23] to our convex pro-
jective setting, in order to establish Theorem 1.6. We will fix a Patterson–Sullivan
density, and need several time to prove that some �-invariant subset A of @� is given
full measure by the Patterson–Sullivan density. Thanks to the following elementary
observation, it is often enough to show that A has non-zero measure.

Observation 6.1. Let�� P.V / be a properly convex open set, � � Aut.�/ a closed
subgroup, A � @� a �-invariant measurable subset, and ı � 0. Then for any ı-
conformal density .�x/x2� on @�, the restrictions .�x jA/x2� also form a ı-conformal
density. This implies the following. Suppose that for any non-zero ı-conformal dens-
ity .�x/x2�, we have �x.A/ > 0 (for any x 2 �). Then for any ı-conformal density
.�x/x2�, we have �x.@� X A/ D 0 (for any x 2 �).

Proof. That restrictions to A of ı-conformal densities are still ı-conformal densities
follows easily from the definition. Let us prove the second statement.

We make a proof by contrapositive: let B D @� X A suppose that there exists
a ı-conformal density .�x/x such that �x.B/ > 0 for some (hence for any) x 2 �.
Then by the first part of the observation .�xjB/x is a non-zero ı-conformal density
that gives zero measure to A, concluding the proof.

6.1. The conical limit set has full measure

Let o 2 � � P.V / be a pointed properly convex open set and � � Aut.�/ a dis-
crete subgroup. Recall that the conical limit set, denoted by ƒcon, is the union, over
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R > 0, of the sets ƒcon
R .�;�; o/ D ƒcon

R , consisting of points � 2 @� for which there
exists a sequence .
n/n2N 2 �

N going to infinity such that d�.Œo; �/; 
no/ < R for
each n 2 N.

Thanks to Observation 6.1, we only need to prove that the conical limit set has
non-zero measure. Roblin’s proof of this [56, item (f), p. 19] in CAT(�1) geometry
actually works verbatim in the present context; we rewrite it here for the convenience
of the (non-French-speaking) reader.

Proposition 6.2. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup. Suppose � is divergent, and M D �=� is rank-one and non-ele-
mentary. Consider a ı� -conformal density .�x/x2� on @�. Then �x.@� Xƒcon/ D 0

for any x 2 �.

The idea of the proof of Proposition 6.2 is to find a compact subset K � T 1M
such that the set of vectors v 2K whose geodesic come back infinitely often toK has
positive m-measure where m is a Sullivan measure induced by .�x/x2�. There are
two main ingredients. The first one is a generalisation of the Borel–Cantelli lemma,
due to Rényi. One can find a proof of it in [1, Lem. 2]; it is the consequence of the
following estimate: for any non-negative square-integrable function g on a probability
space, for any 0 < a < E.g/, where E.g/ is the expectation of g, one has

P.g > a/ �
E.g/2

E.g2/

�
1C

a

E.g/ � a

��2
:

Fact 6.3 ([54, p. 391]). Let .X; �/ be a measurable space equipped with a finite
positive measure. Let .At /t�0 be a family of subsets of X such that the function
.x; t/ 2 X � R�0 7! 1At .x/ is measurable. Let us assume that

R1
0
�.At / dt D 1,

and that, for some constant C > 0,Z T

0

Z T

0

�.At \ As/ dt ds � C
�Z T

0

�.At / dt
�2
; (6.1)

for T large enough. Then the set of x 2 X such thatZ 1
0

1At .x/ dt D1

has �-measure greater than or equal to 1=C .

This lemma will be applied to At D K \ ��tK. The second ingredient consists
of estimates that will allow us to check that the assumptions of Fact 6.3 are satisfied.

Lemma 6.4. Let o2��P.V / be a pointed properly convex open set and ��Aut.�/
a discrete subgroup. Suppose M D �=� is rank-one and non-elementary. Consider
a ı� -conformal density .�x/x2� on @�, with induced Sullivan measure m on T 1M .
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Let vo 2 T 1o�. For R > 0 large enough, if we denote by K the projection in T 1M
of xBT 1�.vo; R/, then there exist constants C > 0 and T0 such that for any T > T0,
we have the estimatesZ T

0

m.K \ ��tK/ dt � C�1
X
g2�

d�.o;go/�T

e�ı�d�.o;go/; (6.2)

Z T

0

Z T

0

m.K \ ��tK \ ��t�sK/ ds; dt � C
� X

g2�
d�.o;go/�T

e�ı�d�.o;go/
�2
: (6.3)

Proof. We assume that �o is a probability measure. Let .�x/x2� be a ı� -conformal
density on @h� that induces .�x/x2� and m; we denote by zm the induced Sullivan
measure on T 1�. We fixR > 0 large enough so that we can apply the Shadow lemma
(Lemmas 4.2 and 4.6) and Lemmas 4.4 and 4.5 to it and to R0 WD .R � 2/=6. One can
find a constant C1 > 0 such that

m.K \ ��tK/ � C
�1
1

X
g2�

zm. zK \ ��tg zK/;

m.K \ ��tK \ ��t�sK/ �
X
g;h2�

zm. zK \ ��tg zK \ ��t�sh zK/

for all t; s � 0. Indeed, we just have to recall the definition ofm, which is the quotient
of zm under the action of � (Definition 2.28), thenX

g2�

zm. zK \ ��tg zK/ D

Z
T 1�

X
g2�

1 zK1g��t zK d zm

D

Z
T 1M

X
h2�

X
g2�

.1 zK ı h/ � .1g��t zK ı h/ dm

D

Z
T 1M

�X
h2�

1h zK

�
„ ƒ‚ …
�C11K

�

�X
g2�

1g��t zK

�
„ ƒ‚ …
�C11��tK

dm;

where C1 > 0 is a constant which is independent of t . Similarly,X
g;h2�

zm. zK \ ��tg zK \ ��t�sh zK/

D

Z
T 1M

X
k2�

X
g;h2�

.1 zK ı k/ � .1g��t zK ı k/ � .1h��t�s zK ı k/ dm

D

Z
T 1M

�X
k2�

1k zK

�
„ ƒ‚ …

�1K

�

�X
g2�

1g��t zK

�
„ ƒ‚ …

�1��tK

�

�X
h2�

1h��t�s zK

�
„ ƒ‚ …
�1��t�sK

dm:
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Therefore, in order to prove Lemma 6.4, it is enough to find a constant C2 > 0

such that

a WD

Z T

0

X
g2�

zm. zK \ ��tg zK/ dt � C�12
X

gWd�.o;go/�T

e�ı�d�.o;go/;

b WD

Z T

0

Z T

0

X
g;h2�

zm. zK \ ��tg zK \ ��t�sh zK/ ds dt

� C2

� X
gWd�.o;go/�T

e�ı�d�.o;go/
�2
:

We first establish the estimate of b. For all 0 � t; s � T and g; h 2 � , for any triple
.�; �; �/ in Hopf�1. zK \ ��t�sh zK/, one observes that � 2 ��1h OCR .o; ho/ and

d�
�
o; �Hopf.�; �; �/

�
� RI

this last inequality implies that j� j � R and h�; �io � R; then by the Shadow lemma
(Lemma 4.2), and by definition of zm,

zm. zK \ ��tg zK \ ��t�sh zK/ � 2Re
2ı�R�0

�
OCR .o; ho/

�
� 2Re2ı�RCe�ı�d�.o;ho/:

Furthermore, by triangular inequality, if zK \ ��tg zK \ ��t�sh zK is non-empty, then

jd�.o; go/ � t j; jd�.go; ho/ � sj; jd�.o; ho/ � t � sj � 2R

and
d�.o; go/C d�.go; ho/ � d�.o; ho/C 6R:

Combining these estimates, we obtain

b �

Z T

0

Z T

0

X
g;h2�

2Re2ı�RCe�ı�d�.o;ho/1® jd�.o;go/�t j;jd�.go;ho/�sj�2R
d�.o;go/Cd�.go;ho/�d�.o;ho/C6R

¯ ds dt

� 2R2R2Re2ı�RC
X

d�.o;go/�TC2R

d�.o;g
�1ho/�TC2R

e�ı� .d�.o;go/Cd�.o;g
�1ho/�6R/

� 8R3Ce8ı�R
� X
d�.o;go/�TC2R

e�ı�d�.o;go/
�2
:
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We end the estimation of b by noting that for all T � 0 and A � 0, using again the
Shadow lemma (Lemma 4.2),X

T�d�.o;go/�TCA

e�ı�d�.o;go/ � C
X

T�d�.o;go/�TCA

�o
�
OR.o; go/

�
� C

Z
@�

X
T�d�.o;go/�TCA

1OR.o;go/.�/ d�o.�/

� C#¹g W d�.o; go/ � 4RC 2Aº:

We now proceed to the minoration of a. Take g 2 � , take t � 0 at distance less
than R0 from d�.o; go/; let us prove that

Hopf
�
��1h

�
O�R0.go; o/

�
� ��1h

�
O�R0.o; go/

�
� Œ0; R0�

�
� zK \ ��tg zK:

Take .�; �; �/ 2 ��1h .O�R0.go; o// � �
�1
h .O�R0.o; go// � Œ0; R

0�. According to Obser-
vation 6.5 below, there exists s1 < s2 such that

d�
�
�Hopf.�; �; s1/; o

�
� R0 and d�

�
�Hopf.�; �; s2/; go

�
� R0:

This implies that js1j D jb�.�Hopf.�; �; s1/; o/j � R0, hence

d�
�
�Hopf.�; �; �/; o

�
� j� j C js1j C d�

�
�Hopf.�; �; s1/; o

�
� 3R0:

Finally, dT 1�.Hopf.�; �; �/; vo/� 3R0C 2�R, which means that Hopf.�; �; �/ 2 zK.
In order to prove the inclusion in ��tg zK, we note that since s2 � s1 is the dis-

tance between �Hopf.�; �; s2/ and �Hopf.�; �; s1/, then by triangular inequality
js2 � d�.o; go/j � 3R

0; therefore,

d�
�
�Hopf.�; �; t C �/; go

�
� j� j C jt � d�.o; go/j

C jd�.o; go/ � s2j C d�
�
�Hopf.�; �; s2/; go

�
� 6R0:

Finally,
dT 1�

�
Hopf.�; �; t C �/; gvo

�
� 6R0 C 2 D R;

which means that Hopf.�; �; �/ 2 ��tg zK.
As a consequence, if d�.o; go/ � 2R0, then by the Shadow lemma (Lemma 4.6)

and Lemma 4.5,

zm. zK \ ��tg zK/ � �o
�
O�R0.o; go/

�
�o
�
O�R0.go; o/

�
R0

� R0C�2e�ı�d�.o;go/:
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We conclude that for T � R0,Z T

0

X
g2�

zm. zK \ ��tg zK/ dt

� R02C�2
� X
gWd�.o;go/�T

e�ı�d�.o;go/ �
X

gWd�.o;go/�2R0

e�ı�d�.o;go/
�
:

Observation 6.5. Let n � 1 be an integer, A and B be two non-empty disjoint com-
pact subsets of Rn, and �; � 2 Rn be two points. If for all a 2 A and b 2 B , the
intersections Œa; �� \ B and Œb; �� \ A are non-empty, then one can find a 2 A and
b 2 B such that �; a; b; � are aligned in this order.

Proof of Proposition 6.2. Letm be a Sullivan measure associated to .�x/x2� on T 1M .
By definition of m and of the conical limit set, it is enough to find a compact set
K � T 1M large enough so that the set of vectors v 2 K such thatZ 1

0

1K.�tv/ dt D1

has non-zero m-measure.
Let R > 0 be large enough so that we can apply Lemma 6.4, and let K be the

projection in T 1M of xBT 1�.vo; R/, where vo 2 T 1o� and o 2 �. We want to apply
Fact 6.3 for .X;�/D .T 1M;mjK/ andAt WDK \ ��tK for all t � 0. The measure �
is finite becausem is Radon andK is compact. Since � is divergent (this is important
since it is the only place where we need this assumption), and by the estimate (6.2) of
Lemma 6.4, the integral

R1
0
�.At / dt diverges. It remains to check that (6.1) is sat-

isfied, but this is a direct consequence of the estimates (6.2) and (6.3) of Lemma 6.4,
and of the fact thatZ T

0

Z T

0

�.At \ As/ dt ds � 2
Z T

0

Z T

0

�.At \ AtCs/ dt ds:

6.2. The geodesic flow is conservative

In this section, we prove that in the setting of Theorem 1.6 (2) the geodesic flow is
conservative.

Proposition 6.6. Let � � P.V / be a properly convex open set and � � Aut.�/ a
divergent discrete subgroup. Suppose M D �=� is rank-one and non-elementary.
Let .�x/x2� be a ı� -conformal density on @� and m an induced Sullivan measure
on T 1M . Then m is conservative under the action of .�t /t .
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Proof. Let .�x/x2� be a ı� -conformal density on @h� such that .�h/��x D �x for
any x 2 �, and let zm be the induced Sullivan measure on T 1�.

According to Fact 2.29, it is enough to prove that .T 1�;� �R; zm/ is conservative.
Let � be an integrable, positive and continuous function on T 1�, and let us prove
that

R
��R � D 1 almost surely (recall the notation from Section 2.11). For almost

any vector v 2 T 1�, we have �1v 2ƒcon by Proposition 6.2, and by definition of zm;
let v be such a vector. Then we can find R > 0 such that �1v 2 ƒcon

R ; in other words,
there exist .
n/n 2 �N and .tn/n 2 RN such that 
n ¤ 
k and d�.��tn
nv; o/ � R
for n ¤ k. Let " WD min¹�.w/ W d�.�w; o/ � RC 1º > 0. ThenZ

��R
�.v/ �

X
n�0

Z tnC1

tDtn�1

�.�t
v/ dt �
X
n�0

2" D1:

6.3. The smooth and strongly extremal points have full measure

In this section we combine the conservativity of Sullivan’s measures with a result
of Benzécri to establish that in the divergent case, the smooth and strongly extremal
points have full measure. The following result is a particular case of a more general
result of Benzécri. Recall that E�V is the space of pointed properly convex open sub-
sets of P.V /, endowed with the Hausdorff topology, on which PGL.V / acts properly
cocompactly (Fact 2.4).

Fact 6.7 ([12, Prop. 5.3.9]). Suppose that dim.V /D 3. Let .x;�/2E�V and �2@sing�.
Let T 2 EV be a triangle and o 2 T . Then we have the following convergence in
E�V =PGL.V /:

Œy;�� �����!
y!�
y2Œx;�/

Œo; T �:

Proof. We briefly recall the proof of this fact, which is very easy in this particular
case. Consider a projective line P.W / that does not intersect Œx; ��, and for each y 2
Œx; �/, denote by gy 2 PGL.V / the unique element that fixes � and P.W /, and such
that gyy D x. Let pWP.V / X ¹�º ! P.W / be the stereographic projection. Since � is
a singular point of @�, the image p.�/ is a properly convex open subset of P.W /,
i.e. the interior of a segment. As y tends to � , the properly convex open set gy�
converges to the convex hull of p.�/ and � , which is a triangle containing x.

Lemma 6.8. Let�� P.V / be a properly convex open set and � �Aut.�/ a discrete
subgroup; setM D�=� . Let v 2 T 1� with a forward recurrent projection in T 1M .
If �1v 62 @sse�, then

dspl.��1v; �1v/ D 2:
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A similar statement holds for backward recurrent vectors.
In particular, the above lemma implies that within set of vectors v 2 T 1� with

forward and backward recurrent projection, the subset made of non-rank-one vectors
is closed.

Proof. Observe that the inequality dspl.��1w; �1w/ � 2 holds for any vector w.
Since the projection of v in T 1M is forward recurrent, there exist diverging sequences
.tn/n 2 Œ0;1/

N and .
n/n 2 �N such that .
n�tnv/n tends to v.
Suppose that �1v is singular. Then there exists a projective plane P.W / � P.V /

which contains v and such that � is a singular point of @� \ P.W /. Up to extrac-
tion, we can assume that .
nP.W //n converges to some P.W 0/. By construction,
.
n��tnv;� \ 
nP.W //n converges to .�v;� \ P.W 0/. Since �1v is singular, we
can apply Fact 6.7, and we obtain that � \ P.W 0/ is a triangle that contains �˙1v,
hence

dspl.��1v; �1v/ � 2:

Suppose there exists � 2 @� X ¹�1vº such that Œ�; �1v� � @�. We can take �
extremal. Up to extraction, we can assume that .
n�/n converges to some � 0 2 @�.
Observe that

Œ�1v; �
0� � @�;

since it is the limit of the sequence of segments .Œ
n�1v; 
n��/n that are contained
in the boundary (see Figure 3). Since � is extremal, the Hilbert distance of ��tnv
to Œ��1v; �� \� tends to infinity with n, and hence the Hilbert distance of 
n��tnv
to Œ
n��1v; 
n�� tends to infinity. This last segment tends to the segment Œ��1v; � 0�,
while 
n��tnv! �v. This implies that Œ��1v; � 0�� @�, since otherwise the Hilbert
distance from 
n��tnv to Œ
n��1v; 
n�� would converge to the (finite) Hilbert dis-
tance from �v to Œ��1v; � 0�. Thus, dspl.��1v; �1v/ � 2.

Observe that the following corollary of Lemma 6.8 generalises with a shorter
proof a result of Islam [40, Prop. 6.3]. It can also be deduced from Lemma 7.7 (6).

Corollary 6.9. Let � � P.V / be a properly convex open set and g 2 Aut.�/ with
`.g/ > 0 and such that g fixes two points �; � 2 @� with dspl.�; �/ > 2. Then g is
rank-one and ¹�; �º D ¹xCg ; x

�
g º.

Proof. We apply Lemma 6.8 to any vector tangent to Œ�; ��, whose projection in the
quotient of T 1� by the group generated by g is periodic, and hence it is forward
recurrent.

We now combine Lemma 6.8 with Poincaré’s recurrence theorem (Fact 2.30 (2))
to establish the following.
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�
�1v

�

n�1v

�

n�

�
�

�
��1v

�

n��1v

�� 0 v

�tnv


n�tnv

Figure 3. Illustration of the second part of the proof of Lemma 6.8.

Proposition 6.10. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
divergent discrete subgroup withM D �=� rank-one and non-elementary. Then any
ı� -conformal density on @� gives full measure to @sse�.

Proof. Let o 2 � and .�x/x2� a ı� -conformal density on @�. Observe that @sse� is
�-invariant and measurable, hence, by Observation 6.1, in order to show that @sse�

has full �o-measure, it is enough to prove that �o.@sse�/ > 0. Let us assume by con-
tradiction that

�o.@sse�/ D 0:

Letm be an induced Sullivan measure on T 1M . By assumption,m gives zero measure
to the set of vectors in T 1M who have a lift v 2 T 1� such that �1v is smooth
and strongly extremal. By Proposition 6.6 and Fact 2.30 (2), m gives full measure to
the set of forward recurrent vectors. Let K � T 1� denote the closed set of vectors
v 2 T 1� such that dspl.��1v; �1v/ D 2. By Lemma 6.8, zm gives full measure to
the set of vectors v 2 K with a forward recurrent projection in T 1M . Let v 2 T 1�
be a periodic rank-one vector; it is in the support of zm and in the open set T 1� XK,
so zm.T 1� XK/ > 0. This is a contradiction.

6.4. Smooth points and strong stable manifolds

Let � � P.V / be a properly convex open set. The following fact describes the strong
stable manifolds (Definition 2.31) of the action of the geodesic flow on T 1�.

Fact 6.11 ([14, Cor. 4.5]). Let � � P.V / be a properly convex open set. Let v; w 2
T 1� be such that �1v D �1w is a smooth point of @� and b�1v.�v;�w/D 0 (see
Figure 4). Then .dT 1�.�tv; �tw//t converges non-increasingly to zero as t goes to
infinity, i.e. w 2 W ss.v/.
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T�@�
��

�

�
v �

w

�
��1v

�
��1w

Figure 4. v and w in the same strong stable manifold.

Let us examine how Fact 6.11 can be rephrased using the Hopf parametrisation
(Definition 3.2). Fix o 2�. Let .�; �; t/ 2 Geod1h .�/�R. If �h.�/ is a smooth point
of @�, then by Fact 6.11,

Hopfo.�
0; �; t/ 2 W ss

�
Hopfo.�; �; t/

�
(6.4)

for any � 0 2 @h� such that .� 0; �/ 2 Geod1h .�/. The parametrisation of the unstable
manifolds is more subtle. Using (3.4) and the fact that the unstable manifolds are the
stable manifolds of the reversed flow, one can see that if �h� is smooth, then

Hopfo
�
�; �0; t C �o�;�.�

0/
�
2 W su

�
Hopfo.�; �; t/

�
(6.5)

for any �0 2 @h� such that .�; �0/ 2 Geodh.�/, where

�o�;�.�
0/ WD 2h�; �0io � 2h�; �io:

6.5. A cross-ratio on the boundary

Following the article [52], whose setting is that of negatively curved manifolds, let
us define a cross-ratio, denoted by B , for four points on the boundary of a properly
convex open set � � P.V /. It should not be confused with the cross-ratio of four
aligned points of the projective space, denoted with brackets, and used to defined the
Hilbert metric d� (see (2.1)).

Recall that the cross-ratio of four points �; � 0; �; �0 2 � is defined as

B.�; � 0; �; �0/ WD d�.�; �/C d�.�
0; �0/ � d�.�; �

0/ � d�.�
0; �/: (6.6)

Fix o 2 �. One can check that

B.�; � 0; �; �0/ D �o�;�.�
0/C �o�0;�0.�/; (6.7)
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and this implies that B extends continuously to the set of quadruples .�; � 0; �; �0/ 2
.x�h/4 such that .�; �/, .� 0; �/, .�; �0/ and .� 0; �0/ belong to Geodh�. See Figure 5 for
a geometric interpretation using horospheres (which also works with spheres when
�; � 0; �; �0 belong to �).

The next lemma is classical and relates special values of B , called periods, with
equation (2.5).

Lemma 6.12. Let � � P.V / be a properly convex open set. Let g 2 Aut.�/ be a
biproximal automorphism whose axis intersect �. Let � 2 x�h be such that .�; xCg /
and .�; x�g / are in Geodh� (recall that x˙g is a smooth point of @� by Fact 2.13, so
it identifies with its preimage in @h�). Then B.xCg ; x

�
g ; �; g�/ D 2`.g/.

Proof. By continuity of the cross-ratio, we can assume that � 2 �. Then using (6.6)
or (6.7), one can show that

B.xCg ; x
�
g ; �; g�/ D bxCg

.�; g�/C bx�g .g�; �/:

Now consider x 2 � on the axis of g. We compute

b
x
C
g
.�; g�/ D b

x
C
g
.�; x/C b

x
C
g
.x; gx/C b

x
C
g
.gx; g�/

D d�.x; gx/C bxCg
.�; x/C b

g�1x
C
g
.x; �/ (by Lemma 4.3)

D `.g/:

By taking the inverse, we get

bx�g .g�; �/ D bxC
g�1

.g�; g�1g�/ D `.g�1/ D `.g/:

6.6. W ss and W su-invariant functions are essentially constant

In this section we prove that the W ss and W su-invariant functions on T 1M are
essentially constant, and we derive as a corollary that the flow is ergodic and mix-
ing. We will need the following result, about the local non-arithmeticity of the length
spectrum; it is similar to [14, Prop. 4.1] but does not need the assumption of strong
irreducibility.

Fact 6.13 ([17, Lem. 2.8]). Let � � P.V / be a properly convex open set and � �
Aut.�/ a discrete subgroup with M D �=� rank-one and non-elementary. Then the
set of translation lengths `.
/ of rank-one elements 
 2 � generates a dense subgroup
of R.

The previous fact can also be seen as a consequence of the more general result [15,
Cor. 5.2.7].
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�
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�
�

�
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�

�

�

�
y

Figure 5. Illustration of computations (6.8), where d�.x; y/ D B.�; � 0; �; �0/.

Proposition 6.14. Let � � P.V / be a properly convex open set and � � Aut.�/ a
discrete subgroup with M D �=� divergent rank-one and non-elementary. Let m be
the Sullivan measure on T 1M induced by a ı� -conformal density .�x/x2�. Then any
W ss and W su-invariant function on T 1M is essentially constant with respect to m.

Proof. We fix o 2 �, and may assume that �o.@�/ D 1. Let f be a W ss and W su-
invariant function on T 1M . By Proposition 6.10, the measurem gives full measure to
the (measurable) set T 1Msse � T

1M of vectors v with �1v; ��1v 2 @sse�, hence it
suffices to show that the restriction fjT 1Msse

is essentially constant. We lift fjT 1Msse
,

via the Hopf parametrisation, to a function zf on ¹.�; �/ 2 @sse� W � ¤ �º � R that
we extend to @sse�

2 � R by setting zf .�; �/ D 0 for any � (recall that we abusively
identify @sse� with its preimage in @h�). Let us show that zf is �2o times Lebesgue-
essentially constant. Recall that �o is non-atomic by Propositions 4.8 and 6.2, thus for
�o-almost all �; � 2 @sse� we have � ¤ �.

The function f is W ss and W su-invariant, so by (6.4) and (6.5), for �o-almost
�; � 0; �; �0 2 @sse� and Lebesgue-almost any t 2 R, the quantity ��;�.�0// is well
defined and

zf .�; �; t/ D zf .� 0; �; t/ D zf
�
�; �0; t C ��;�.�

0/
�
:

This implies in particular that there exist �0 ¤ �0 2 @sse� such that, if we denote
g.t/ WD zf .�0; �0; t / for any t 2 R, then for �o-almost all �; � 2 @sse� and Lebesgue-
almost any t 2 R, the quantity ��0;�0.�/ is well defined and

zf
�
�; �; t C ��0;�0.�/

�
D g.t/:

It is enough to establish that the measurable function g is essentially constant
with respect to the Lebesgue measure. We denote by H the additive real subgroup
consisting of numbers � such that g.t C �/ D g.t/ for Lebesgue-almost every t 2 R.
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A classical result says that H is a closed subgroup of R. (To see this first reduce to
the case where g is bounded and then note that H is the stabiliser of g.t/dt for the
continuous action of R on the space of Radon measures on R.) To finish the proof
of Proposition 6.14 it is enough, according to Fact 6.13, to prove that 2`.
/ 2 H for
any rank-one element 
 2 � . To this end we observe that many cross-ratios belong
to H : for �o-almost all �; �; � 0; �0 2 @sse� and Lebesgue-almost every t 2 R, the
quantities ��0;�0.�/, ��;�.�

0/, ��0;�0.�/ and B.�; � 0; �; �0/ are well defined and we have
the following series of equalities (see Figure 5 for a geometric interpretation):

g.t/ D zf
�
�; �; t C ��0;�0.�/

�
D zf

�
�; �0; t C ��0;�0.�/C ��;�.�

0/
�

D zf
�
� 0; �0; t C ��0;�0.�/C ��;�.�

0/
�

D zf
�
� 0; �; t C ��0;�0.�/C ��;�.�

0/C ��0;�0.�/
�

D zf
�
�; �; t C ��0;�0.�/C B.�; �

0; �; �0/
�

D g
�
t C B.�; � 0; �; �0/

�
: (6.8)

Consider a rank-one element 
 2 � and a point � 2 @sse� \ supp.�o/ X ¹x�g ; x
C
g º.

Then 2`.
/ is equal to B.xC
 ; x
�

 ; �; 
�/ by Lemma 6.12, and furthermore this quant-

ity belongs to H because H is closed, B is continuous and xC
 ; x
�

 ; �; 
� are in

supp.�o/.

Corollary 6.15. In the setting of Proposition 6.14, if � is divergent, thenm is ergodic
under the action of the geodesic flow. Furthermore, the �-quasi-invariant measures
�2o and �o on @�2 and @� are ergodic under the action of � . In particular, the
ı� -conformal density is unique up to a scalar multiple. If moreover m is finite, then it
is mixing.

Proof. The ergodicity of m is a direct consequence of Fact 2.32, Proposition 6.6 and
Proposition 6.14, which can be applied since m is Radon.

The ergodicity of �2o is a direct consequence of that of m, since there is cor-
respondence between �-invariant measurable subsets of Geod1� (which has full
�2o -measure) and .�t /t -invariant measurable subsets of T 1M , sending sets with full
(resp. null) measure to sets with full (resp. null) measure. For similar reasons, the
ergodicity of �o is a direct consequence of that of �2o .

Let .�0x/x2� be another ı� -conformal density such that �0o.@�/ D �o.@�/. Then
the family .�x C �0x/x2� is also a conformal density. The measures �o and �0o are
absolutely continuous with respect �o C �0o; the Radon–Nikodym derivatives are �-
invariant, by definition of conformal densities, and hence constant .�o C �0o/-almost
surely by ergodicity. Thus �o D �0o.

If m is finite, then it is mixing by Fact 2.33 and Proposition 6.14.
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6.7. The support of conformal densities

Let us establish that the support of the ı� -conformal density, for � divergent and
M D �=� rank-one, is exactly the proximal limit set. This is a consequence of con-
servativity and ergodicity of the Bowen–Margulis measure, Fact 2.30 (4), and the fact
that T 1Mbip is maximal among the flow-invariant closed subsets of T 1M on which
the geodesic flow is forward topologically transitive (i.e. has a dense forward orbit);
this last result was proved in [14].

Proposition 6.16. Let � � P.V / be a properly convex open set and � � Aut.�/
a divergent discrete subgroup with M D �=� rank-one and non-elementary. Then
ƒprox is the support of any ı� -conformal density and T 1Mbip is the support of any
Bowen–Margulis measure.

Proof. Let .�x/x2� be the ı� -conformal density on @�, and o 2�. Sinceƒprox is the
smallest �-invariant closed subset of x� (Fact 2.18) and �o is �-quasi-invariant, we
have

ƒprox
� supp.�o/ and T 1Mbip � supp.m/:

Since m is conservative and ergodic by Proposition 6.6 and Corollary 6.15, it is imp-
lied by Fact 2.30 (4) that the geodesic flow is forward topologically transitive on
supp.m/ (i.e. has a dense forward orbit). According to [14, Thm. 1.2], this implies
that

supp.m/ D T 1Mbip:

Suppose by contradiction there is a point � 2 supp.�o/ Xƒprox. Since M is rank-
one, we can find a strongly extremal point � 2 ƒprox. Then we can find a neigh-
bourhood U � V � Geod1.�/ of .�; �/ such that U \ ƒprox is empty. Note that
�o.U /�o.V / > 0 since �; � 2 supp.�o/. Hence, m gives non-zero measure to the set
of vectors v with lifts zv 2 T 1� such that .��1v; �1v/ 2 U � V ; but this set is not
contained in T 1Mbip: this is a contradiction.

6.8. Proof of Theorem 1.6 (2)

Theorem 1.6 (2) is a direct consequence of Propositions 4.7, 4.8, 6.6, 6.10 and 6.16,
Corollary 6.15 and Fact 2.29. Observe that .@�2; �2o ; �/ being conservative and erg-
odic is due to the fact that Geod1.�/ � @�2 has full �2o -measure, since �o is non-
atomic and gives full measure to the set of strongly extremal points.
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7. Preparatory results on convex cocompact projective manifolds

In real hyperbolic geometry, many properties of compact manifolds are actually also
true for a broader class of manifolds: the convex cocompact ones, and the proofs of
these properties generally work verbatim. This observation remains valid in convex
projective geometry, thanks to the recent notion of convex cocompactness developed
by Danciger, Guéritaud and Kassel in this setting (see Definition 1.2). Note that most
of the results of the remainder of the paper concern convex cocompact actions. The
present section gathers results on convex cocompact actions, and in particular more
precise Shadow lemmas. An important result of Danciger–Guéritaud–Kassel that we
will need is the following.

Fact 7.1 ([35, Prop. 5.10]). Let � 2 P.V / be a properly convex open set and � �
PGL.V / a discrete subgroup. Suppose that � acts convex cocompactly on � and ��.
Then x�Xƒorb

� .�/ has bisaturated boundary, in the sense that Œ�; ��\� is non-empty
for all � 2 ƒorb and � 2 x� Xƒorb.

Observe that, given a strongly irreducible discrete subgroup � � PGL.V / that acts
convex cocompactly on a properly convex open � � P.V /, if we want to understand
the dynamics of the geodesic flow on .T 1�=�/cor, then we can assume that � also
acts convex cocompactly on ��, since otherwise we may take another �-invariant
properly convex open set �0 such that � acts convex cocompactly on both �0 and
.�0/�, and we have .T 1�=�/cor D .T

1�0=�/cor (see [35, Prop. 5.10 and Cor. 4.17]).

7.1. Proof of Proposition 1.7

Consider o 2 C cor
� .�/. We set Vol WD

P

2� D
o, where Dx denotes the Dirac mass at

x 2�; this defines a �-invariant Radon measure on�, which is supported on C cor
� .�/.

We apply Fact 2.22 to Vol, in order to obtain a ı� -conformal density �o on @�which is
supported onƒorb. Recall thatƒorb Dƒcon (see Section 1.2), hence �o.ƒcon/D 1 and
therefore � is divergent by Theorem 1.6. By the same theorem, the Bowen–Margulis
measurem is supported on T 1Mcor. Sincem is Radon and T 1Mcor is compact,mmust
be finite.

7.2. A Shadow lemma for convex cocompact actions

In this section we prove a Shadow lemma for when � satisfies the stronger assumption
that it acts convex cocompactly on �. The main interest of the new Shadow lemma is
that it estimates the measure of small shadows.

We denote rayx.A/ D
S
�2AŒx; �/ for x 2 � and A � @�.
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Lemma 7.2. Let�� P.V / be a properly convex open set and � �Aut.�/ a discrete
subgroup. Suppose that � is strongly irreducible and T 1Mbip is non-empty, or thatM
is rank-one and non-elementary. Consider ı � 0 and a ı-conformal density .�x/x2�
on @�. LetK �� be a compact subset and C D � �K. Then there existsR0 > 0 such
that for any R > 0, we can find a constant C D C.R/ > 0 such that for all x; y 2 C ,

C�1e�ıd�.x;y/ � �x
�
OR0CR.x; y/

�
� �x

�
OCR0CR.x; y/

�
� Ce�ıd�.x;y/;

and if furthermore y 2 rayx.supp.�o//, then

�y
�
OR.x; y/

�
� C�1 and �x

�
OR.x; y/

�
� C�1e�ıd�.x;y/:

Proof. Let R > 0. By definition of the conformal density, �x � eıd�.x;y/�y for any
x; y 2 �. Using the triangular inequality and Fact 2.1, it is elementary to see that for
all x; y; x0; y0 2 �,

O˛
R.x; y/ � O˛

RCd�.x;x0/Cd�.y;y0/
.x0; y0/ for ˛ D ; or C :

By �-equivariance it is enough to prove the lemma for x 2 K. Let D be the diameter
of K for the Hilbert metric, and fix o 2 K. For any y 2 C , there exists 
 2 � such
that d�.y; 
o/ � D, and then for any x 2 K,

e�ı�D�o
�
OR.o; 
o/

�
� �x

�
ORC2D.x; y/

�
� �x

�
OCRC2D.x; y/

�
� eı�D�o

�
OCRC4D.o; 
o/

�
:

Now we can use the Shadow lemma (Lemma 4.2) to bound the right-most and left-
most terms when R is greater than some R0, and we obtain the first estimate.

Let us show the second estimate. We set

" WD inf
®
�x
�
OR.y; x

0/
�
W x 2 K; y 2 �; x0 2 K \ rayy.supp �o/

¯
> 0:

We then make the same computations as in the Shadow lemma (Lemma 4.2). We take
a ı-conformal density .�x/x2� on @h� such that .�hor/��x D �x for any x 2 �. Let
x 2 K and y 2 rayx.supp.�o// \ C ; by definition of K there exists 
 2 � such that

�1y 2 K. Then

�x
�
OR.x; y/

�
D �x

�
��1hor

�
OR.x; y/

��
D �
�1x

�
��1hor

�
OR.


�1x; 
�1y/
��

D

Z
��1hor

�
OR.
�1x;
�1y//

e
�ıbz� .


�1x;
�1y/ d�x.z�/

�

Z
��1hor .OR.


�1x;
�1y//

e�ıd�.x;y/ d�x.z�/

� �x
�
OR.


�1x; 
�1y/
�
e�ıd�.x;y/

� "e�ıd�.x;y/:
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As an immediate corollary, we obtain the following.

Corollary 7.3. Let � � P.V / be a properly convex open set and � � Aut.�/ a
convex cocompact and discrete subgroup. Suppose that � is strongly irreducible and
T 1Mbip is non-empty, or thatM is rank-one and non-elementary. Consider ı � 0 and
a ı-conformal density .�x/x2� on @�. Then there exists R0 > 0 such that for any
R > 0, we can find a constant C D C.R/ > 0 such that for all x; y 2 C cor,

C�1e�ıd�.x;y/ � �x
�
OR0CR.x; y/

�
� Ce�ıd�.x;y/;

and if furthermore y 2 rayx.supp.�o//, then

�y
�
OR.x; y/

�
� C�1 and �x

�
OR.x; y/

�
� C�1e�ıd�.x;y/:

7.3. Non-straight closed geodesics

In this section we investigate non-rank-one automorphisms of properly convex open
sets which realise their translation length.

7.3.1. Some standard facts. The following fact says that the only case where a non-
straight geodesic can appear is the one shown in Figure 1.

Fact 7.4. Let�� P.V / be a properly convex open set. For x;y 2� distinct, consider
.axy ; bxy/ in @�2 such that axy ; x; y; bxy are aligned in this order. Let x; y; z 2� be
pairwise distinct. Then d�.x;z/D d�.x;y/C d�.y;z/ if and only if axz 2 Œaxy ;ayz�
and bxz 2 Œbxy ; byz�.

This property can be used to prove the following.

Fact 7.5 ([37]). Let � � P.V / be a properly convex open set, I � R a non-trivial
interval and cW I ! � an isometric embedding. For all t < s 2 I , consider .ats; bts/
in @�2 such that ats , c.t/, c.s/, bts are aligned in this order. Let FC (resp. F�) be the
smallest closed face of� that contains ¹bts W t < s 2 I º (resp. ¹ats W t < s 2 I º). Then
FC and F� are proper faces of �, whose dimension is the dimension of the convex
hull of c.I / minus 1.

Moreover, if sup I D 1 (resp. inf I D �1), then .c.t//t converges to a point
of FC (resp. F�) when t goes toC1 (resp. �1).

The following generalises the fact that xCg 2 @� and xCg ˚ x
0
g \� D ; for any

biproximal automorphism g of a properly convex open set �.

Fact 7.6. Let � � P.V / be a properly convex open set. Let g 2 P.End.V // be in the
closure of Aut.�/, then its kernel and its image intersect x� but not �.
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7.3.2. Analysis of an automorphism that attains its translation length.

Lemma 7.7. Let� be a properly convex open set. Let g 2 Aut.�/ with `.g/ > 0 and
suppose there exists x 2� such that d�.x;gx/D `.g/. Consider a; b 2 @� such that
a, x, gx, b are aligned in this order. Then

(1) the path cWR!�, defined by c.t/ 2 Œgnx;gnC1x� and d�.c.t/;gnx/D t � n
for all n 2 Z and t 2 Œn; nC 1�, is a geodesic;

(2) the restriction of g to xCg ˚ x
�
g is diagonalisable over C;

(3) the restriction of g to the span P.W / of ¹gnxºn is biproximal;

(4) xCg ˚ x
0
g \ P.W / \ x� (resp. x�g ˚ x

0
g \ P.W / \ x�) is the smallest g-invar-

iant closed face of � that contains b (resp. a);

(5) if x; gx; g2x are not aligned, then x0g \ x� is non-empty;

(6) if g is not rank-one, then dspl.a; b/ D 2.

Proof. Let us check that (1) holds. Consider three real numbers r � s � t , pick three
integers k � n � m such that k � r � k C 1 and n � s � nC 1 andm � t � mC 1.
By (2.5), we have

d�
�
c.r/; c.t/

�
� d�.g

kx; gmC1x/ � d�
�
gkx; c.r/

�
� d�

�
c.t/; gmC1x

�
� `.gmC1�k/ � d�

�
gkx; c.r/

�
� d�

�
c.t/; gmC1x

�
D

mX
iDk

d�.g
ix; giC1x/ � d�

�
gkx; c.r/

�
� d�

�
c.t/; gmC1x

�
D d�

�
c.r/; gkC1x

�
C

m�1X
iDkC1

d�.g
ix; giC1x/C d�

�
gmx; c.t/

�
� d�

�
c.r/; c.s/

�
C d�

�
c.s/; c.t/

�
:

For all distinct pair of points .y; z/ 2 x�2, let us denote by szy 2 @� the point such
that y; z; szy are aligned in this order. Let P.W / � P.V / be the span of ¹gnxºn2Z,
with dimension k � 1; we set �0 D � \ P.W /. By Fact 7.5, the smallest closed
face of � that contains ¹gnbºn2Z (resp. ¹gnaºn2Z), denoted by FC (resp. F�), is
proper, and therefore its span P.WC/ (resp. P.W�/) has dimension k � 1. Moreover,
s
gmx
gnx 2 FC (resp. F�) for all m > n (resp. m < n), and .gnx/n converges to some

point �C 2 FC \ xCg (resp. �� 2 F� \ x�g ), which is fixed by g, when n goes toC1
(resp. �1).

Consider a lift zg 2 GL.V / of g that preserves one connected component C �
V X ¹0º of the preimage of �, and such that �1.zg/ D 1. Let us examine the Jordan
normal form of zg: there exists ` � 0 and a decomposition

zg D u1 C � � � C u˛ � .u
0
1 C � � � C u

0
˛0/C r

�1
1 v1 C � � � C r

�ˇ
ˇ
vˇ C h; (7.1)
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which satisfies the following. The product of any two matrices in this sum is zero.
The integers ˛;ˇ � 0 are not both zero. The sequence ..1=n`/hn/n tends to zero. The
matrices u1; : : : ; u˛; u01; : : : ; u

0
˛0 are all conjugate to the matrix with zeros everywhere

except on the upper-left block of size `C 1, which is the exponential of the upper-
triangular matrix whose .i; j /-entry is 1 if j D i C 1 and zero otherwise. For � 2 R

and 1 � i � ˇ, the matrices r�i and vi are simultaneously conjugate to the matrices
with zeros everywhere except on the upper-left block of size 2`C 2, where they are
respectively of the form

0B@rot�

: : :

rot�

1CA and exp

0BBBB@
0 I2

: : :
: : :

: : : I2

0

1CCCCA ;
with

rot� D

 
cos � sin �
� sin � cos �

!
and I2 D rot0:

Finally, �1; : : : ; �ˇ 2 R X �Z. Let

xui D lim
n!1

`Š

n`
uni ; xu0i D lim

n!1

`Š

n`
u0ni for 1 � i � ˛;

xvi D lim
n!1

`Š

n`
vni for 1 � i � ˇI

the set of accumulation points of .rn�ii /n is ¹r�i W � 2 �iZC 2�Zº for 1 � i � ˇ. Let
zx 2 C be a lift of x 2 �. The accumulation points of ..`Š=n`/zgnzx/n are²X

i

xui zx C .�1/
m
X
i

xu0i zx C
X
i

r
� 0
i

i xvi zx W m 2 ¹0; 1º; �
0
i 2 �i .2ZCm/C 2�Z

³
;

which are non-zero by Fact 7.6. Since .gnx/n converges to �C, these accumulation
points are all in �C \ C , and this implies that xu0i zx D 0 for 1 � i � ˛0 and xvi zx D 0
for 1 � i � ˇ. Up to considering another basis, we can assume that xui zx D 0 for
any 2 � i � ˛.

The element zg commutes with every matrix of its decomposition (7.1), and hence
also with ¹xuiº1�i�˛ , ¹xu0iº1�i�˛0 , ¹r

�
i º1�i�ˇ;�2R, and ¹xviº1�i�ˇ . Thus ¹xui zgnzxº2�i�˛ ,

¹xu0i zg
nzxº1�i�˛0 , and ¹xvi zgnzxº1�i�ˇ are zero for any n � 0. By construction of W , all

elements ¹xuiº2�i�˛ , ¹xu0iº1�i�˛0 , and ¹xviº1�i�ˇ are zero on W .
Suppose by contradiction that the restriction of g to xCg is not diagonalisable

over C, i.e. that ` > 0. Then xu1z�C D 0 for any lift z�C 2 W of �C. This, and the
fact that xu1zx ¤ 0, imply that xu1 zy ¤ 0 for any lift zy 2 C of y WD sx

�C
2 F�. As
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a consequence, .gny/n converges to �C. Since F� is closed, it contains �C, as well
as x: a contradiction. For the same reasons, the restriction of g to x�g is diagonalisable
over C, and this concludes the proof of (2).

The sequence of restrictions .zgn
jW
/n converges to xu1jW which is proximal because

it is a projector with rank 1. Therefore, zgn
jW

is proximal for n large enough, and so
is zgjW . For the same reasons, zg�1

jW
is proximal, and this concludes the proof of (3).

In order to establish (4), it is enough to prove that FC (resp. F�) is contained in
xCg ˚ x

0
g (resp. x�g ˚ x

0
g ), since its dimension is k � 1. Pick � 2 FC; the sequence

.gn�/n�0 cannot converge to �� since this point does not belong to FC. That gjP.W /
is biproximal implies that � 2 xCg ˚ x

0
g . The proof of F� � x�g ˚ x

0
g is similar.

Suppose that x, gx, g2x are not aligned. Then b 2 FC X ¹�Cº � xCg ˚ x
0
g X x

C
g ,

hence .g�nb/n accumulates in x0g . This proves (5).
Suppose that g is not rank-one. Since x 2 Œa; b� \ �, the simplicial distance

between a and b is at least 2. If x, gx, g2x are aligned, then a D �� and b D �C

are fixed by g, and dspl.a; b/ � 2 by Corollary 6.9. Otherwise, there is � 2 x0g \ @�
0,

and dspl.a; b/ � dspl.a; �/C dspl.�; b/ � 2 since � 2 FC \ F�. This proves (6).

7.4. Non-straight closed geodesics on convex cocompact manifolds

Let � � PGL.V / be a discrete subgroup that preserves a properly convex open set
� � P.V /; set M WD �=� . In Section 2.7, we have associated to each periodic
geodesic of M a conjugacy class of � . When � acts convex cocompactly on �, one
can produce a weak converse of this; to each automorphism of 
 2 � , we are able
to associate a geodesic segment of length `.
/, which is closed on M and is freely
homotopic to 
 , but which is not necessarily closed in T 1M .

Fact 7.8 ([35, Prop. 10.4]). Consider a discrete subgroup � � PGL.V / that acts con-
vex cocompactly on a properly convex open sets�� P.V /. Then for any 
 2 � , there
exists x 2 C cor

� .�/ such that d�.x; 
x/ D `.
/.

The following corollary ensures the closed curve can be taken in T 1Mcor.

Corollary 7.9. Let � � PGL.V / be a convex cocompact discrete subgroup. Consider
a �-invariant properly convex open set � � P.V / such that � acts convex cocom-
pactly on � and ��; set M D �=� . Let 
 2 � and v 2 T 1� be such that `.
/ > 0
and 
�v D ��`.
/v. Then �˙1v 2 ƒorb and ��v 2 T 1Mcor.

Proof. According to Fact 7.1, the properly convex set x�Xƒorb has bisaturated bound-
ary (i.e. Œ�; �� \� ¤ ; for all � 2 ƒorb and � 2 x� Xƒorb). By Lemma 7.7, �˙1v 2
x˙
 ˚ x

0

 \ @�, hence the segment between �˙1v and the limit of .
˙n�v/n is con-

tained in @�. This implies that �˙1v 2ƒorb since x�Xƒorb has bisaturated boundary
and since limn!1 


n�v 2 ƒorb. Thus v belongs to T 1Mcor.
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The next corollary ensures that when � is convex cocompact, if .T 1�max=�/bip is
non-empty then we can find���max such that�=� is rank-one. This corollary gen-
eralises results of Islam [40, Lem. 6.4] and Zimmer [64, Thm. 7.1] for compact convex
projective manifolds; one may also compare it to a remark of Islam [40, Rem. A.1.C]
which concerns not necessarily compact convex projective manifolds with a compact
convex core.

Corollary 7.10. Let � � PGL.V / be a discrete subgroup that acts convex cocom-
pactly on a properly convex open set � � P.V /.

• Any biproximal element of � whose dual axis in P.V �/ intersects�� is rank-one;
in particular, if T 1.��=�/bip ¤ ;, then �=� is rank-one.

• Suppose that � acts convex cocompactly on��, then any biproximal element of �
whose axis intersects� is rank-one; in particular, if .T 1�=�/bip ¤ ;, then�=�
is rank-one.

Proof. The first point is an immediate consequence of Lemma 7.7 (5) and Fact 7.8.
Let us establish the second point. Let 
 2 � be biproximal with Axis.
/ \ � ¤ ;.
Since � acts convex cocompactly on��, the first point implies that 
 , seen as a rank-
one automorphism of ��, is rank-one. Thus, 
 is a rank-one automorphism of � by
Fact 2.14.

7.5. A closing lemma

In this section we state a closing lemma, generalising [22, Thm. 4.4] and weaker than
the classical one from Anosov [2, Lem. 13.1]. We briefly recall the idea: whenever a
geodesic segment comes back sufficiently close to its starting point (no matter how
long it is), we can find closed geodesic which tracks it. The following version a more
geometrical formulation of the closing lemma. We state the dynamical version below.

Lemma 7.11. Let�� P.V / be a properly convex open set, x2� and .��; �C/2@�2.
Assume that dspl.�C; xF�.��// � 2 and dspl.��; xF�.�C// � 2. Then there exists R > 0
such that for any neighbourhood W of xBx�.��; R/ � xBx�.�C; R/ in x�2, there exists a
neighbourhood U of .��; �C/ such that for any g 2 Aut.�/, if .g�1x; gx/ 2 U , then
g is biproximal and .x�g ; x

C
g / 2 W .

To prove the previous result, we need the following generalisation of the fact that
projective transformations with an attracting fixed point are proximal.

Fact 7.12 ([13]). Let g 2 PGL.V / contract a properly convex open set, in the sense
that there exists a properly convex open set � � P.V / such that g.x�/ � �. Then g
is proximal.
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Proof of Lemma 7.11. The case where dim.V / D 2 is trivial, and we assume that
dim.V / � 3.

(1) By assumption, we can find R > 0 large enough so that OR.�˙; x/ contains
xF�.��/.

(2) By lower semi-continuity of dx�, we may find a neighbourhood

U˙ � x� X xB�.x;R/

of �˙ such that OR.�; x/ contains xOR.x; y/ for all � 2 U˙ and y 2 � \ U�.

(3) Our assumption ensures that dspl.�; xF�.��// � 2 for any � 2 xBx�.�˙; R/, so
we can find R0 � R large enough so that OR0.�; x/ contains xF�.��/ for any
� 2 xBx�.�˙; R/.

(4) By lower semi-continuity of dx�, we may find a neighbourhood

W˙ � x� X xB�.x;R
0/

of xBx�.�˙; R/ such that OR0.�; x/ contains xOR0.�; y/ for all � 2 W˙ and y 2
� \W�, and such that W� �WC � W .

(5) Take a neighbourhood U 0
˙
� U˙ of �˙ such that xOR.x;y/ is contained inW˙

for any y 2 � \ U 0
˙

.

Consider g 2 Aut.�/ such that g˙1x 2 U 0
˙

, and let us show that g is biproximal
with .x�g ; x

C
g / in W . By (2) and since gx 2 UC and g�1x 2 U�, we have

g xOR.g
�1x; x/ D xOR.x; gx/ � OR.g

�1x; x/:

Hence, g fixes some point �C 2 xOR.x; gx/ by the Brouwer fixed point theorem.
Symmetrically, g fixes some point �� 2 xOR.x; g�1x/.

By (5), the point �C lies in WC, and �� lies in W�. By (4), this implies that

g xOR0.��; x/ D xOR0.��; gx/ � OR0.��; x/:

Therefore, according to Fact 7.12, the projection g0 2 PGL.V=��/ of g is proximal,
and its attracting fixed point corresponds in P.V / to a line of the form ��˚ �C, where
�C 2 xOR0.��; gx/ is fixed by g.

By Fact 7.6, since `.g/ � `.g0/ > 0 and since �� ˚ �C intersects �, we either
have .��; �C/ 2 x�g � x

C
g or .��; �C/ 2 xCg � x

�
g . The latter case contradicts the fact

that dim.V / � 3 and g0 is proximal. Hence �� 2 x�g and �C 2 xCg , and g is proximal
with �C D xCg . Symmetrically, g�1 is also proximal and �C 2 xCg . We have proved
that g is biproximal with .x�g ; x

C
g / D .��; �C/ 2 W .
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Corollary 7.13. Let � � P.V / be a properly convex open set. Let x 2 �, .��; �C/ 2
@�2 andW be a neighbourhood of .��; �C/. Then there exists a neighbourhood U of
.��; �C/ such that for any g 2 Aut.�/ with .g�1x; gx/ 2 U ,

• if dspl.��; �C/ � 3, then g is rank-one;

• if �� and �C are extremal and dspl.��; �C/ � 2, then g is biproximal and
.x�g ; x

C
g / 2 W ;

• if �� and �C are distinct and strongly extremal, then g is rank-one and
.x�g ; x

C
g / 2 W .

Given a convex projective orbifold M , we use zB.t/
T 1M

to denote the open balls for
the metric zd .t/

T 1�
(see Section 2.13).

Lemma 7.14. Let � � P.V / be a properly convex open set and � � Aut.�/ a dis-
crete subgroup; denote M D �=� . Consider ˛ > 0 and v0 2 T 1M such that the
endpoints ��1zv0 and �1zv0 of any lift zv0 are extremal (resp. strongly extremal).
Then there exists " > 0 satisfying the following. For any v 2 BT 1M .v0; "/, and for
any time t > ˛, if �tv 2 BT 1M .v0; "/, then one can find a biproximal (resp. rank-one)
periodic vector w 2 zB.t/

T 1M
.v; ˛/ with period in Œt � ˛; t C ˛�.

Proof. Let W be a neighbourhood of .��1zv0; �1v0/ such that

Œ��; �C� \ BT 1�

�
�t zv0;

˛

8

�
¤ ;

for any 0� t � 1. By Corollary 7.13, we can find a neighbourhoodU DU� �UC�W
of �˙1zv0 such that for any 
 2 � , if .
�1�zv0; 
�zv0/ 2 U then 
 is biproximal (resp.
rank-one) and .x�
 ; x

C

 / 2 W . Let t0 > 0 and "1 < ˛=8 be such that

xB�.��˙t zv; "1/ � U˙

for any zv 2 xBT 1�.zv0; "1/ and t � t0.
Now consider t � t0 and v 2 BT 1M .v0; "1/ such that �tv 2 BT 1M .v0; "1/. We

can find a lift zv 2BT 1�.zv0; "1/ and an element 
 2 � such that �t zv 2BT 1�.
zv0; "1/.
Then .
�1�zv0;
�zv0/2U , hence 
 is biproximal (resp. rank-one) and .x�
 ;x

C

 /2W .

Be definition of W , we can find zw 2 BT 1�.zv0; ˛=8/ tangent to the axis of 
 . Then

dT 1�. zw; zv/ �
˛

4
and dT 1�.
 zw; �t zv/ �

˛

4
I

since 
 zw D �`.
/ zw, by the triangular inequality we have

j`.
/ � t j �
˛

2
;

and d .t/
T 1�

. zw; zv/ � ˛.
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To finish the proof, it remains to find " < "1 such that for all ˛ � t � t0 and v 2
BT 1M .v0; "/, if �tv 2 BT 1M .v0; "/, then one can find a biproximal (resp. rank-one)
periodic vector w 2 zB.t/

T 1M
.v; ˛/ with period in Œt � ˛; t C ˛�. If v0 is not periodic,

then we take " < "1 small enough so that BT 1M .v0; "/ � B
.t0/

T 1M
.v0; "2=2/, where

"2 WD min
˛�t�t0

dT 1M .�tv0; v0/:

If v0 is periodic, then it is biproximal (resp. rank-one) since �˙1zv0 are extremal
(resp. strongly extremal). We then take " < "1 small enough so that BT 1M .v0; "/ �
B
.t0/

T 1M
.v0; "2=2/, where

"2 WD min
t2T

dT 1M .�tv0; v0/

and T is the set of times ˛ � t � t0 such that �sv0 ¤ v0 for any t � ˛ < s < t C ˛,
concluding the proof.

8. The measure of maximal entropy

In this section we prove that on a non-elementary rank-one convex projective manifold
M D�=� , if � acts convex cocompactly on�, then the Bowen–Margulis probability
measure (i.e. the unique Bowen–Margulis measure with total mass 1) is the unique
measure with maximal entropy.

8.1. The measure of dynamical balls

In this section we derive from the Shadow lemma (Corollary 7.3) an estimate for the
measure of dynamical balls (namely balls for the metrics .d .t//t�0 defined in Defini-
tion 2.34). The idea is very similar to the computations in the proof of Proposition 6.2,
which are actually Roblin’s computations; the difference here is that our shadows are
a priori small, and this is why we need the stronger Shadow lemma (Corollary 7.3),
which works for small shadows. However, Corollary 7.3 only works for usual shad-
ows OR.x; y/, and not for the scarce shadows of the form O�R.x; y/; to overcome this
issue we use the following lemma, which is a consequence of Benzécri’s compactness
theorem (Fact 2.4).

Lemma 8.1. For any " > 0, there exists "0 > 0 such that for any properly convex open
set � � P.V /, for any x; y 2 � at distance at least 1, if we have two points on the
boundary � 2 O"0.y; x/ and � 2 O"0.x; y/, then the line � ˚ � intersects both balls
B�.x; "/ and B�.y; "/.
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Proof. By symmetry it is enough to prove that � ˚ � meets B�.x; "/. We assume by
contradiction that there exist sequence ."0n/n2N 2RN

>0 converging to 0 and a sequence
.�n/n2N 2 EN

V such that for each n 2N, we can find xn;yn 2�n at distance at least 1
and �n 2 O"0n.yn; xn/ and �n 2 O"0n.xn; yn/ such that

.�n ˚ �n/ \ B�.xn; "/ D ;:

By Benzécri’s compactness theorem (Fact 2.4), we can assume, up to extraction,
that ..�n; xn//n converges to some pointed properly convex open set .�; x/ 2 E�V ,
bounded in some affine chart that we fix. Up to extraction we assume that �n is
also bounded in the affine chart for any n 2 N, and that .yn/n2N (resp. .�n/n2N and
.�n/n2N) converges to y 2 x� X B�.x; 1/ (resp. � and � 2 @�) such that

.� ˚ �/ \ B�.x; "/ D ;:

By definition of the Hilbert metric one checks that

B�n.xn; "
0
n/ � .1 � e

�2"0n/.�n � xn/C xn;

hence .B�n.xn; "
0
n//n2N converges to the singleton ¹xº for the Hausdorff topology,

and similarly .B�n.yn; "
0
n//n2N converges to the singleton ¹yº. This implies that

x 2 Œ�; ��, which contradicts .� ˚ �/ \ B�.x; "/ D ;.

Lemma 8.2. Let�� P.V / be a properly convex open set, and � �Aut.�/ a discrete
subgroup; set M D �=� . Suppose that � is strongly irreducible and T 1Mbip ¤ ;,
or that M is rank-one and non-elementary. Let m be a Sullivan measure on T 1M
induced by a ı� -conformal density. Then for any compact subset K � T 1M , for any
r > 0, there exists a constant C > 0 such that given any time t > 0, for any v 2 � �K
such that �tv 2 � �K,

m
�
zB
.t/

T 1M
.v; r/

�
� Ce�ı� t ;

and if v 2 T 1Mbip, then

C�1e�ı� t � m
�
zB
.t/

T 1M
.v; r/

�
:

Proof. Let .�x/x2� be a ı� -conformal density on @h�which induces a ı� -conformal
density .�x/x2� on @� and the Sullivan measures zm on T 1� and m on T 1M . Let
zv 2 T 1� be a lift of v. We have

C�10 zm
�
B
.t/

T 1�
.zv; r/

�
� m

�
zB
.t/

T 1M
.v; r/

�
� zm

�
B
.t/

T 1�
.zv; r/

�
for any t � 0, where

C0 D max
zw2��1K

#¹
 W d�.� zw; 
� zw/ � 4rº:
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Let us prove the upper bound in the lemma. Consider zw 2 B.t/
T 1�

.zv; r/. We make the
following observations.

• The Lebesgue measure of the set of times s 2 R such that �s zw 2 B
.t/

T 1�
.zv; r/ is

less than 2r .

• �1 zw 2 OCr .�zv; ��t zv/.

• h�; �i�zv � r for all � 2 ��1h .��1 zw/ and � 2 ��1h .�1 zw/.

Combined with the definition of zm (see Section 3.3), they yield:

zm
�
B
.t/

T 1�
.zv; r/

�
� e2ı�r � ��zv.@�/ � ��zv

�
OCr .�zv; ��t zv/

�
� 2r:

We deduce from this and the Shadow lemma (Lemma 7.2) the desired upper bound.
Let us prove the lower bound. We apply Lemma 8.1 to " WD r=16 to obtain "0 > 0.

Then for all � 2 O"0.�zv; ��tC1zv/ and � 2 O"0.��tC1zv; �zv/, we are able to find
zw 2 B

.t/

T 1�
.zv; r=2/ tangent to � ˚ �. Observe that the Lebesgue measure of the set of

times s 2 R such that �s zw 2 B
.t/

T 1�
.zv; r/ is greater than r . This means (remembering

that the Gromov product is always non-negative) that

zm
�
B
.t/

T 1�
.zv; r/

�
� ��v

�
O"0.�zv; ��tC1zv/

�
� ��v

�
O"0.��tC1zv; �zv/

�
� r:

We conclude the proof thanks to the Shadow lemma (Lemma 7.2), and the fact that
ƒprox � supp.�o/.

In the convex cocompact case, this yields the following.

Corollary 8.3. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup; setM D �=� . Suppose that � is strongly irre-
ducible and T 1Mbip ¤ ;, or that M is rank-one and non-elementary. Let m be a
Sullivan measure on T 1M induced by a ı� -conformal density. Then for any r > 0,
there exists a constant C > 0 such that given any time t > 0, for any v 2 T 1Mcor,

m
�
zB
.t/

T 1M
.v; r/

�
� Ce�ı� t ;

and if v 2 T 1Mbip, then

C�1e�ı� t � m
�
zB
.t/

T 1M
.v; r/

�
:

8.2. The Bowen–Margulis measure has maximal entropy

In this section we prove that any Sullivan measure induced by a ı� -conformal density
has maximal entropy, which is equal to ı� . For this we do not need Theorem 1.6.
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Proposition 8.4. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Let m be the Bowen–Margulis probability measure on T 1M . Then m has maximal
entropy on T 1Mcor; in other words,

hm
�
T 1Mbip; .�t /t

�
D htop

�
T 1Mbip; .�t /t

�
D htop

�
T 1Mcor; .�t /t

�
D ı� :

Proof. We can assume without loss of generality that � is torsion-free by Obser-
vation 2.45 and since for any finite-index subgroup � 0 of � , the measure m is the
push-forward of the Bowen–Margulis probability measure on T 1�=� 0. Let "0 be
the injectivity radius of M . Let P be a finite measurable partition of T 1Mcor whose
elements have diameter less than "0=3. According to the definition of the measure-
theoretic entropy, to the variational principle (Fact 2.39), and to Fact 2.36, it is enough
to prove that

Hm.�1;P / � ı� :

For n � 1, we observe that by definition (and by Lemma 2.1), any element of
P .n/ has diameter less than "0=3 with respect to the metric d .n/

T 1M
. Therefore, by

Corollary 8.3, there exists a constant C > 0 such that for any n � 1, any element
of P .n/ has an m-measure less than Ce�ı�n. We now conclude the proof by the
following computation:

Hm.P
.n// D �

X
P2P .n/

m.P / log.m.P //

� �

X
P2P .n/

m.P / log.Ce�ı�n/

� ı�n � log.C /:

The inequality Hm.�1;P / � ı� then follows immediately from Definition 2.37:

Hm.�1;P / WD lim
n!1

Hm.P
.n//

n
:

8.3. Separated sets in dynamical balls

In this section we prove a technical lemma which bound from above the size a separ-
ated set in a dynamical ball. To perform this estimate we will use the notion of proper
densities (Definition 2.5).

Corollary 8.5. Consider 0 < r < R. Let � 2 EV , let � � Aut.�/ be a discrete sub-
group, let M D �=� and let t � 0.
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(1) For any vector v 2 T 1M , the cardinality of any . zd .t/
T 1M

; r/-separated set of
zB
.t/

T 1M
.v; R/ is less than

�C

�
RC

r

4

�2
� ��

�r
4

��2
(see (2.2)).

(2) Consider a . zd .t/
T 1M

; r/-separated subset ¹v1; : : : ; vkº of T 1M (and of size k),
take a vector wi 2 zB

.t/

T 1M
.vi ; R/ for each i D 1; : : : ; k. Then one can find a

subset I of ¹1; : : : ; kº of size greater than

k � �C

�
2RC

r

2

��2
� ��

�r
4

�2
such that ¹wi W i 2 I º is . zd .t/

T 1M
; r/-separated.

Proof. Let us first prove (1) when � is trivial. Let A � B.t/
T 1�

.v; R/ be a .d .t/
T 1�

; r/-
separated set. We set

B WD ¹.�w; ��tw/ W w 2 Aº � B�.�v;R/ � B�.��tv;R/:

By Lemma 2.1, and sinceA is .d .t/
T 1�

; r/-separated, we see thatB is .d;r=2/-separated
for the metric d on �2, defined by

d
�
.x; y/; .x0; y0/

�
D max

�
d�.x; x

0/; d�.y; y
0/
�

for .x; y/; .x0; y0/ 2 �2; this exactly means that for all .x; y/ ¤ .x0; y0/ 2 B ,�
B�

�
x;
r

4

�
� B�

�
y;
r

4

��
\

�
B�

�
x0;

r

4

�
� B�

�
y0;

r

4

��
D ;:

As a consequence,

#A D #B � ��
�r
4

��2 X
.x;y/2B

Vol�
�
B�

�
x;
r

4

��
Vol�

�
B�

�
y;
r

4

��
� ��

�r
4

��2
Vol2�

� G
.x;y/2B

B�

�
x;
r

4

�
� B�

�
y;
r

4

��
� ��

�r
4

��2
Vol2�

�
B�

�
�v;RC

r

4

�
� B�

�
��tv;RC

r

4

��
� �C

�
RC

r

4

�2
��

�r
4

��2
:

Next, let us prove (1) when � is not necessarily trivial. Let A � zB.t/
T 1M

.v; R/ be
a . zd .t/

T 1M
; r/-separated set. Consider a lift zv 2 T 1� of v, and a lift zA � B.t/

T 1�
.zv;R/
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of A. Then zA is .d .t/
T 1�

; r/-separated, and therefore it has cardinality less than

�C

�
RC

r

4

�2
��

�r
4

��2
;

and so does A.
Let us establish (2). We construct I by induction. We set

i0 D 0 and I0 WD ¹1; : : : ; kº:

For j � 1, if .I0; : : : ; Ij�1/ and .i0; : : : ; ij�1/ have been constructed, we set

ij WD min Ij�1 > ij�1 and Ij WD ¹i 2 Ij�1 W zd
.t/

T 1M
.wij ; wi / � rº   Ij�1:

This process eventually stops, at the n-th step for some n2 ¹1; : : : ;kº such that InD;.
The set ¹wij W 1 � j � nº is . zd .t/

T 1M
; r/-separated by construction. In order to prove

that k is bounded above by n � �C.2R C r=2/2 � ��.r=4/�2, it is enough to see that
for each 0 � j � n � 1,

#IjC1 � #Ij � �C
�
2RC

r

2

�2
� ��

�r
4

��2
:

This is a consequence of (1) and of the fact that Ij X IjC1 is contained in the set of
indices i such that vi 2 zB

.t/

T 1�
.vjC1; r C 2R/.

8.4. The measure of maximal entropy is unique

In order to prove the uniqueness of the measure of maximal entropy, we will use our
estimates on the size of the dynamical balls Corollary 8.3. However, one of these
estimates only holds for balls centred at vectors in T 1Mbip, whereas we would like
the uniqueness of the measure of maximal entropy on T 1Mcor. This is why we will
need Corollary 8.5 and the following lemma.

For the rest of this section, given a convex projective manifold M D �=� , we
denote by T 1�cor (resp. T 1�bip) the set (depending on �) of vectors v 2 T 1� such
that �˙1v 2 ƒorb

� .�/ (resp. ƒprox.�/).

Lemma 8.6. Let�� P.V / be a properly convex open set, and � � Aut.�/ a convex
cocompact discrete subgroup. Suppose M D �=� is rank-one and non-elementary.
Then there exists R > 0 such that for every point � 2 ƒorb we can find � 2 ƒprox such
that dx�.�; �/ � R.= In particular, according to Lemma 2.1, for any v 2 T 1�cor, we
can find a vector w 2 T 1�bip such that dT 1�.�tv; �tw/ � 2R for any t 2 R.

Proof. Consider o in the convex hull of ƒorb in � and the ı� -conformal density �o
on @�. Let R > 0 be given by the Shadow lemma (Corollary 7.3). According to
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Fact 2.3, it is enough to show that for any x 2 Œo; �/, the shadow OR.o; x/ inter-
sectƒprox; this is implied by the fact that �o.ƒprox/D 1 (by Theorem 1.6 and Propos-
ition 1.7) and �o.OR.o; x// > 0.

In the case where M is compact, the proof of Theorem 1.3 below can be shorten
by using the following result; for instance, we do not need Section 8.3 and Lemma 8.6
in this case.

Fact 8.7 ([16, Thm. 1.3]). Let � � P.V / be a properly convex open set and � �
Aut.�/ a non-elementary rank-one discrete subgroup that acts cocompactly on �.
Then ƒprox D @�.

Proof of Theorem 1.3. It is enough to prove that the Bowen–Margulis probability
measure m on T 1M is the unique measure of maximal entropy, since m is mixing
by Theorem 1.6.

We can assume that � is torsion-free by Observation 2.45 and since for any finite-
index subgroup � 0 of � , the measure m is the push-forward of the Bowen–Margulis
probability measure on T 1�=� 0; let "0 be the injectivity radius of �=� . Consider
a .�t /t2R-invariant probability measure m0 on T 1Mcor which is different from m.
Since m is ergodic (Theorem 1.6 and Proposition 1.7), m0 cannot be absolutely con-
tinuous with respect tom. By Radon–Nikodym Theorem we can decomposem0 into a
sum tm00 C .1� t /m, where 0 < t � 1 andm00 is .�t /t2R-invariant and singular with
respect to m. Then

hm0.�/ D thm00.�/C .1 � t /ı�

(see [43, Cor. 4.3.17]), and we only need to prove that hm00.�/ < ı� . Note that since
ƒorb X ƒprox does not intersect @sse�. Without loss of generality, we assume that
m00 D m0 is singular with respect to m. Let A � T 1Msse be a flow-invariant meas-
urable subset such that m.A/ D 1, while m0.A/ D 0.

Fix " > 0 and let K1 � A \ T 1Mcor and K2 � T 1Mcor X A be compact subsets
such that m.K1/ � 1 � " and m0.K2/ � 1 � ". Observe that

min
®
zd
.2t/

T 1M
.��tv; ��tw/ W v 2 K1; w 2 K2

¯
���!
t!1

1: (8.1)

Indeed,otherwise there would exist v 2 K1 and w 2 K2 such that

sup
t>0

zd
.2t/

T 1M
.��tv; ��tw/ <1:

Then we could find lifts zv; zw 2 T 1� such that

sup
t>0

d
.2t/

T 1�
.��t zv; ��t zw/ <1;
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which implies, since �1zv and ��1zv are extremal, that �˙1zv D �˙1 zw, and hence
w 2 �Rv � A, which is a contradiction.

Let n � 1 and consider a maximal .d .2n/
T 1M

; "0=8/-separated set

¹v1; : : : ; vkº � T
1Mcor;

which is ordered so that for any i D 1; : : : ; k, the ball B.2n/
T 1Mcor

.vi ; "0=8/ intersects
��nK2 if and only if i � l , where 1 � l � k is some integer.

Construct by induction the finite measurable partition PD¹P1; : : : ;Pkº of T 1Mcor

so that

B
.2n/

T 1Mcor

�
viC1;

"0

16

�
� PiC1 WD B

.2n/

T 1Mcor

�
viC1;

"0

8

�
X .P1 [ � � � [ Pi /

� B
.2n/

T 1Mcor

�
viC1;

"0

8

�
:

Note that Pi has diameter less than "0=3 with respect to d .2n/
T 1M

for each 1 � i � k,
therefore we can combine Remarks 2.38 and 2.41 with Facts 2.44 and 2.42 to obtain

hm0.�1/ D
1

2n
hm0.�2n/ D

1

2n
Hm0.�2n;P / �

1

2n
Hm0.P /:

Now we use the classical fact that for all q 2 N>0 and a1; : : : ; aq > 0, if s WD a1 C
� � � C aq � 1 then

�

X
i

ai log.ai / � �s log s C s log q � s log.q/C
1

e
;

and we compute

Hm0.P / D �

kX
iD1

m0.Pi / log
�
m0.Pi /

�
� m0

� l[
iD1

Pi

�
log.l/Cm0

� k[
iDlC1

Pi

�
log.k/C

2

e
:

Note that on one hand, ��nK2 is contained in
Sl
iD1 Pi , hence

m0
� l[
iD1

Pi

�
� 1 � ":

On the other hand ��nK1 does not intersect
Sl
iD1 Pi for n large enough. Indeed if

there exist i 2 ¹1; : : : ; lº and v 2 ��nK1 \ Pi , then we take a vector

w 2 ��nK2 \ B
.2n/

T 1M

�
vi ;

"0

8

�
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and use the triangular inequality to obtain that zd .2n/
T 1M

.��n�nv; ��n�nw/ � "0=4,
which is not compatible with (8.1) for n large. As a consequence,

m

� l[
iD1

Pi

�
� ":

We now need to bound from above k and l . If M is compact then it is easier to
conclude the proof: we can use Fact 8.7, which implies that

T 1M D T 1Mcor D T
1Mbip;

and apply directly Corollary 8.3 to get

l �
m.
Sl
iD1 Pi /

min¹m.Pi / W 1 � i � lº
� "Ce2nı� ;

and similarly k � Ce2nı� , where C only depends on "0. Thus, we obtain

2nhm0.�1/ � .1 � "/ log."/C log.C /C 2nı� C
2

e
;

which is strictly less than 2nı� for " small enough.
In the general case, we need to take into account that T 1Mcor and T 1Mbip might

be different and that Corollary 8.3 only holds on T 1Mbip; this is where we need Corol-
lary 8.5 and Lemma 8.6. Thanks to the latter, there exists R > 0, which only depends
on � and �, and such that for each 1 � i � k, we can find

wi 2 zB
.2n/

T 1M
.vi ; R/ \ T

1Mbip:

Then we can use Corollary 8.5 (2) to find I � ¹1; : : : ; kº such that ¹wi W i 2 I º is
.d
.2n/

T 1M
; "0=8/-separated and

k � #I � �C
�
2RC

"0

16

�2
��

� "0
32

��2
�

m.
S
i2I B

.2n/

T 1M
.wi ; "0=16//

min¹m.B.2n/
T 1M

.wi ; "0=16// W i 2 I º
�C

�
2RC

"0

16

�2
��

� "0
32

��2
� C 0e2nı� ;

where C 0 only depends on � and �. Similarly, we can find

w0i 2 ��nK2 \ B
.2n/

T 1M

�
vi ;

"0

8

�
and w00i 2

zB
.2n/

T 1M
.w0i ; R/ \ T

1Mbip
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for each i D 1; : : : ; l . Corollary 8.5 (2) gives us I 0 � ¹1; : : : ; lº such that ¹w00i W i 2 I
0º

is .d .2n/
T 1M

; "0=8/-separated and

l � #I 0 � �C
�
2RC

"0

8

�2
��

� "0
32

��2
�

m.
S
i2I 0 B

.2n/

T 1M
.w00i ; "0=16//

min¹m.B.2n/
T 1M

.w00i ; "0=16// W i 2 I
0º

�C

�
2RC

"0

8

�2
��

� "0
32

��2
� "C 00e2nı� ;

where C 00 only depends on � and�, and we have used the fact thatB.2n/
T 1M

.w00i ; "0=16/

does not intersect ��nK1 for any i D 1; : : : ; l and for n large enough (again because
of (8.1)). As we explained in the compact case, this implies that

2nhm0.�1/ � .1 � "/ log."/C log max.C 0; C 00/C 2nı� C
2

e
;

which is strictly less that 2nı� for " small enough.

9. Counting closed geodesics

In this section we keep on adapting Knieper’s article [45] in order to prove Propos-
ition 1.5, which gives asymptotic estimates for the number of closed geodesics of
length less than t , when t goes to infinity.

These estimates do not all need the results of the previous sections. More precisely,
to prove the upper bound on the number of rank-one close geodesics in (1) we do not
need Theorem 1.6. To prove the lower bound in (1) we need the mixing property of the
Bowen–Margulis measure, but not the uniqueness of the measure of maximal entropy.
To establish the upper bound on the number of non-rank-one closed geodesics in (2)
and the equidistribution of closed geodesics we need uniqueness of the measure of
maximal entropy.

Recall that Œ�� is the set of conjugacy classes of � , and Œ��r1 � Œ�� (resp. Œ��sing)
consists of conjugacy classes of rank-one (resp. non-rank-one) elements of � . For
each subset A � Œ�� and interval I � R, we set AI D ¹c 2 A W `.c/ 2 I º, and we
write AT D AŒ0;T � for any T � 0.

9.1. The lower bound

In this section we use the mixing of the Bowen–Margulis measure to obtain a lower
bound on the number of closed geodesics.
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Proposition 9.1. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Then there exists a constant C > 0 such that for any T > C ,

#Œ��r1T �
C

T
eı�T :

Proof. Without loss of generality, we may assume that � is torsion-free, since for any
finite-index subgroup � 0 � � , for any element 
 2 � 0, there at most Œ� W � 0� con-
jugacy classes of � 0 inside the conjugacy class of 
 in � . Let "0 > 0 be the injectivity
radius of M and m the Bowen–Margulis probability measure. Fix a compact subset
K � T 1Msse whose measure m.K/ is positive. Using Lemma 7.14, we can find

0 < " <
"0

3

such that for any vector v 2 K, for any time t � 1, if dT 1M .v; �tv/ � " then there
exists a rank-one periodic vector w 2 B.t/

T 1M
.v; "0=6/ with period in Œt � 1; t C 1�.

Let us denote by Rt � K the subset of vectors v 2 K such that dT 1M .v; �tv/ � ";
we are going to bound from below its measure. To that end take P a finite measurable
partition of T 1Mbip with diameter less than ", and compute the limit, using the mixing
property, established in Theorem 1.6:

m.Rt / �
X
P2P

m
�
P \K \ �t .P \K/

�
���!
t!1

X
P2P

m.P \K/2 �
m.K/2

#P
> 0:

On the other hand we can bound from above this measure thanks to the closing lemma
and Corollary 8.3. For any conjugacy class c 2 Œ��r1, fix a vector vc 2 T 1M tangent
to the projection in T 1M of the axis of any element of c:

m.Rt / �
X

c2Œ��r1
tC1

b6.tC1/="0cX
kD0

m
�
B
.t/

T 1M

�
�k."0=6/vc ;

"0

3

��
� Ce�ı� t

�
6.t C 1/

"0
C 1

�
#Œ��tC1:

This ends the proof.

9.2. The upper bound on the number of rank-one closed geodesics

To bound from above the number of rank-one closed geodesics, we do not need The-
orem 1.6.
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Proposition 9.2. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Then there exists a constant C > 0 such that for any T > 0,

#Œ��r1T �
C

T
eı�T :

Proof. Let � 0 � � be a finite-index torsion-free subgroup; we set M 0 D �=� 0 and
take "0 < 1 smaller than the injectivity radius of M 0. For each rank-one conjugacy
class c of � , choose 
c 2 c and vc 2 Axis.
c/. Consider an integer n � 1. One easily
checks using the triangular inequality that any vector of T 1� belongs to at most

C1 WD max
x2�

#
°

 2 � W d�.x; 
x/ � 1C

2"0

3

±
balls of the family°

B
.nC1/

T 1�

�
�kvc ;

"0

6

�
W c 2 Œ��r1Œn;nC1�; 0 � k < n

±
:

By Corollary 8.3, we can bound from below the m0-measure of the projection in
T 1M 0 of these balls by C�1e�ı�n for some constant C > 0, wherem0 is the Bowen–
Margulis probability measure on T 1M 0. Sincem0 is a probability measure, we obtain

n#Œ��r1Œn;nC1� � C1Ce
ı�n"0=3:

9.3. The upper bound on the number of non-rank-one closed geodesics

Let us bound from of above the number of non-rank-one conjugacy classes of � . The
idea is that to each non-rank-one conjugacy class we can associate a closed geodesic
which is contained in a flow-invariant closed subset of T 1Mcor to which the Bowen–
Margulis measure gives zero measure; this implies that the topological entropy of the
geodesic flow on this subset is smaller than ı� .

Proposition 9.3. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Let K � T 1Mcor be the .�t /t -invariant closed subset that consists of the vectors
whose lifts v 2 T 1� are such that dspl.��1v;�1v/� 2. Then the topological entropy
of .�t /t on K is strictly smaller than ı� .

Proof. According to Remark 2.43 and Observation 2.45, there exists a probability
measure m0 on K whose entropy is the topological entropy on K. Observe that K is
disjoint from the set T 1Msse of vectors whose lifts v 2 T 1� satisfy ��1v; �1v 2
@sse�, while the Bowen–Margulis probability measurem� is concentrated on T 1Msse

by Theorem 1.6. Thus, m0 and m� are different. By Theorem 1.3, the entropy of m0

must be strictly smaller than ı� .
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Corollary 9.4. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Then the exponential growth rate of the number of non-rank-one conjugacy classes of
translation length shorter than t , when t grows, is strictly less than ı� .

Proof. Let � 0 � � be a finite-index torsion-free subgroup; we setM 0 D�=� 0 and "0
to be the injectivity radius of M 0; we denote by "0 the injectivity radius of M 0. It
is easy to show that there are only finitely many conjugacy class c of � such that
`.c/ � "0. Using Corollary 7.9, for each conjugacy class c with `.c/ > 0 we can find
an element 
c 2 c and a vector vc 2 T 1� such that �˙1vc 2 ƒorb and 
c�vc D
��`.c/vc . Consider t > 0. Using the triangular inequality, one can check that any
vector of T 1� belongs to at most

C1 WD max
x2Ccor

�
.�/

#
°

 2 � W d�.x; 
x/ � 1C

2"0

3

±
balls of the family °

B
.tC1/

T 1�

�
vc ;

"0

6

�
W c 2 Œ��

sing
Œt;tC1�

±
:

Therefore, we can extract from ¹vc W c 2 Œ��
sing
Œt;tC1�

º a .d .tC1/
T 1�

; "0=6/-separated family
of size at least C�11 #Œ��sing

Œt;tC1�
. The projection in T 1M 0 of this family belongs to the

set K in Proposition 9.3 by Lemma 7.7 (6). By definition of the topological entropy,
the exponential growth rate of the size of such a family, when t goes to infinity, is
bounded above by the topological entropy on K, which is strictly less than ı� by
Proposition 9.3 above.

9.4. Sums of uniform measures on closed geodesics

Let � � P.V / be a properly convex open set and � � Aut.�/ a discrete subgroup;
denote M D �=� . We introduce a few notations. For any conjugacy class c 2 Œ��r1,
we denote by Lc the unique .�t /t2R-invariant probability measure supported on the
projection in T 1M of the axis of any element of c. For each finite subset A � Œ��r1,
we consider

LA D
1

#A

X
c2A

Lc:

Proposition 9.5. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Let A � Œ��r1 be such that log.#AT /=T converges to ı� when T tends to infinity.
Then LAT converges to the Bowen–Margulis probability measure when T goes to
infinity.
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Proof. Let � 0 � � be a torsion-free finite-index subgroup; let "0 be the injectivity
radius of M 0 D �=� 0. For each conjugacy class c 2 Œ��r1, we choose a represent-
ative 
c 2 � , and we call L0c the unique .�t /t -invariant probability measure on the
projection in T 1M 0 of the axis of 
c . For any finite subset B � Œ��r1, we set

L0B D .#B/�1
X
c2B

L0c:

By Theorem 1.3, it is enough to show that any accumulation point m0 limk!1L0AT

on T 1M 0 has entropy bounded below by ı� .
Let us give ourselves a finite measurable partition P of T 1M 0 of diameter less

than "0=3 and such that for any element P 2 P , we have m0.@P / D 0. Then

hm0.�/ � Hm0.�;P / D lim
n!1

1

n
Hm0.P

.n//:

Fix n � 1 and note that for each P 2 P .n/, we have m0.@P / D 0. As a consequence

Hm0.P
.n// D lim

k!1
HL0ATk

.P .n//

� lim inf
T!1

HL0AT .P
.n//:

Consider ˛ > 0 and let us show that

lim inf
T!1

HL0AT .P
.n// � n.ı� � ˛/:

Let T0 > 0 be large enough so that #AT � e.ı��˛/T for any T � T0. Take T > T0

and decompose Œ0; T � into disjoint intervals:

Œ0; T � D Œ0; T0� t
G
I2	T

I;

such that each I 2 	T has diameter less than 1, and #	T D dT � T0e. Then by [43,
Prop. 4.3.3.6], we have

lim inf
T!1

HL0AT .P
.n// � lim inf

T!1

#AT0
#AT

HL0AT0
.P .n//C

X
I2	T

#AI
#AT

HL0AI .P
.n//

� lim inf
T!1

X
I2	T

#AI
#A�T0;T �

HL0AI .P
.n//

� lim inf
T!1

n

T

X
I2	T

#AI
#A�T0;T �

HL0AI .P
.dT e//;
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where we have used the Euclidean division dT e D qT nC rT with the following clas-
sical inequality (see e.g. [43, Prop. 4.3.3.1–4]):

H�I .P
.n// �

1

qT
H�I .P

.dT e// �
1

qT
H�I .P

.rT //

�
n

T C 1
H�I .P

.dT e// �
n

T � n
log.#P n/:

Using the triangular inequality, one checks that for any P 2 P .dT e/ and any
I 2 	T , there are at most C1 Dmaxx2Ccor

�
.�/ #¹
 2 � W d�.x; 
x/� 1C 2"0=3º con-

jugacy classes c 2 AI such that L0c.P / > 0; this implies that L0AI .P / � C1#A�1I .
Hence,

HL0AI .P
.dT e// � log.#AI / � log.C1/;

and we resume our computation using the concavity of the logarithm and Cauchy–
Schwarz inequality:

n

T

X
I2	T

#AI
#A�T0;T �

HL0AI .P
.dT e// �

n

T

X
I2	T

#AI
#A�T0;T �

log.#AI / �
n

T
log.C1/

�
n

T
log

�
1

#A�T0;T �

X
I2	T

#A2I

�
�
n

T
log.C1/

�
n

T
log

�
#A�T0;T �

#	T

�
�
n

T
log.C1/

�
n

T
log

�
#AT � #AT0
dT � T0e

�
�
n

T
log.C1/

�
n

T
log

�
e.ı��˛/T � #AT0
dT � T0e

�
�
n

T
log.C1/:

This last term converges to n.ı� � ˛/ as T goes to infinity, concluding the proof.

We can now end the proof of Proposition 1.5.

Proof of Proposition 1.5. It is the immediate combination of Facts 2.22 and 2.23,
Theorem 1.3, Propositions 8.4, 9.1, 9.2, 9.5, and Corollary 9.4.

9.5. Periodic geodesics and conjugacy classes

In this section, we estimate, in some cases, the asymptotic of the ratio of the number
of rank-one closed geodesics by the number of rank-one conjugacy classes. The same
discussion is carried in more details in [17, §6.1]; here the discussion is kept at its
strict minimum: we only give the necessary definitions and observations.
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Definition 9.6. LetM D�=� be a non-elementary rank-one convex projective orbi-
fold. The core-fixing subgroup of � is the kernel of the restriction of � to the span
of ƒ� .

Observation 9.7 ([17, Obs. 6.14]). Let M D �=� be a rank-one non-elementary
convex projective orbifold, and let F � � be the core-fixing subgroup. If T 1�bip is
the preimage by �� W T 1�! T 1M of T 1Mbip, then the set of vectors v 2 T 1�bip

with Stab�.v/ D F is open and dense in T 1�bip, and �-invariant.

Proposition 9.8. Let � � P.V / be a properly convex open set, and � � Aut.�/ a
convex cocompact discrete subgroup with M D �=� rank-one and non-elementary.
Let F � � be the core-fixing subgroup. Let K � T 1Mbip be the set vectors of whose
lifts v 2 T 1� satisfy Stab�.v/¤ F . Then the topological entropy of the geodesic flow
on K is strictly smaller than ı� , as well as the exponential growth rate of the number
of rank-one conjugacy classes of � with axis in K.

Proof. The subset K � T 1Mbip is closed and .�t /t -invariant, and has empty-interior
by Observation 9.7; thus, it is given zero measure by the Bozen–Margulis measure,
by Theorem 1.6. By Remark 2.43 and Observation 2.45, we can find a probability
measure on K whose entropy ı is the topological entropy of .�t /t ; this measure is
different from the Bowen–Margulis probability measure since the latter gives zero
measure to K. Hence, ı < ı� by Theorem 1.3.

Let � 0 � � be a finite-index torsion-free subgroup; we set M 0 D �=� 0 and "0 to
be the injectivity radius of M 0; we denote by "0 the injectivity radius of M 0. Recall
that there are only finitely many conjugacy class c of � such that `.c/ � "0. For each
rank-one conjugacy class c 2 Œ��r1 with `.c/ > 0 we can find an element 
c 2 c and a
vector vc 2 T 1�bip WD �

�1
� T 1Mbip such that 
c�vc D ��`.c/vc . LetA� Œ��r1 be the

subset made of conjugacy classes c such that Stab�.vc/ ¤ F . Consider t > 0. Using
the triangular inequality, one can check that any vector of T 1� belongs to at most

C1 WD max
x2Ccor

�
.�/

#
°

 2 � W d�.x; 
x/ � 1C

2"0

3

±
balls of the family °

B
.tC1/

T 1�

�
vc ;

"0

6

�
W c 2 AŒt;tC1�

±
:

Therefore, we can extract from ¹vc W c 2 AŒt;tC1�º a .d .tC1/
T 1�

; "0=6/-separated family
of size at least C�11 #AŒt;tC1�. The projection in T 1M 0 of this family is .d .tC1/

T 1M 0
; "0=6/-

separated, and belongs to the preimage by T 1M 0 ! T 1M of K. By definition of the
topological entropy, the exponential growth rate of the size of such a family, when t
goes to infinity, is bounded above by ı, which is strictly less than ı� .
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Remark 9.9. Let M D �=� be a non-elementary rank-one convex projective orbi-
fold with compact convex core. As in [17, Obs. 6.15 and Prop. 6.16], one may use
the notion of strongly primitive rank-one elements (i.e. rank-one elements 
 2 � such
that `.
/ � `.
 0/ for any rank-one element 
 0 2 � with the same axis as 
 ) to prove
that, if the core-fixing subgroup F � � is the centraliser, then

#Œ��r1T �
T!1

#Œ��pr1
T �

T!1
#F � #G r1

T ;

where Œ��pr1 is the set of strongly primitive rank-one conjugacy classes in � and G r1
T

is the set of rank-one periodic orbits in T 1M with period at most T .
The proof in [17] uses equidistribution results which may be replaced for the

present purpose by Proposition 1.5 (one would also need Proposition 9.8). This way,
one actually obtains that #Œ��pr1

T =#G r1
T goes exponentially fast to #F , while in [17] no

rate of convergence is given.
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