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The Hilbert symbol in the Hodge standard conjecture

Giuseppe Ancona and Adriano Marmora

Abstract. We study the Hodge standard conjecture for varieties over finite fields admitting a
CM lifting, such as abelian varieties or products of K3 surfaces. For those varieties we show that
the signature predicted by the conjecture holds true modulo 4. This amounts to determining the
discriminant and the Hilbert symbol of the intersection product. The first is obtained by `-adic
arguments whereas the second needs a careful computation in p-adic Hodge theory.

To the memory of Jean-Pierre Wintenberger

1. Introduction

The standard conjecture of Hodge type predicts the signature of the intersection prod-
uct of algebraic classes on a smooth projective variety. In this paper we study the
discriminant and the Hilbert symbol of the intersection product and we show that they
coincide with those predicted by the conjecture for varieties over finite fields which
admit a CM lifting, in particular for abelian varieties and for products of K3 surfaces.
This can be reformulated by saying that the expected signature holds true modulo 4.

This conjecture was formulated by Grothendieck in the sixties [23]. It is modelled
on positivity results such as the Hodge index theorem, the Hodge–Riemann bilinear
relations and the positivity of the Rosati involution. For a panorama on the history,
the original motivation and potential applications of this conjecture, see [2, 4, 26].
This conjecture did not progress until the 21st century. Then, Milne showed that the
classical Hodge conjecture for complex abelian varieties would imply the Hodge stan-
dard conjecture for abelian varieties in positive characteristic [36] and Ito studied the
behaviour of this conjecture under blow-ups [27].

Very recently, some progress has been made. The first author proved the con-
jecture for motives of rank two using p-adic Hodge theory [2, Theorem 8.1]. This
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result implies the conjecture for abelian fourfolds [2, Theorem 1.3] and for some other
abelian varieties [1,33]. On the other hand, Ito–Ito–Koshikawa proved the conjecture
for the square of a K3 surface, using the Kuga–Satake construction and ultimately
relying on the positivity of the Rosati involution [26].

The purpose of this article is to push the p-adic methods initiated in [2] to CM
motives of higher rank and to describe completely the Hilbert symbol of the inter-
section product. To be more precise, let us recall the formulation of the standard
conjecture of Hodge type.

Definition 1.1. Let X be a smooth, projective and geometrically connected variety
of dimension d and let L be a hyperplane section of X . We denote by Znnum.X/Q the
finite-dimensional Q-vector space of Q-algebraic cycles onX of codimension nmod-
ulo numerical equivalence. For n � d=2, we define the space of primitive cycles as

Zn;prim
num .X;L/Q WD

®
˛ 2 Znnum.X/Q; ˛ � L

d�2nC1
D 0 in Zd�nC1num .X/Q

¯
and we define the pairing qX;L;nWZ

n;prim
num .X;L/Q �Z

n;prim
num .X;L/Q!Q via the inter-

section product
˛; ˇ 7! .�1/n˛ � ˇ � Ld�2n:

Conjecture 1.2 (Hodge standard conjecture, [23, Conjecture 2]). Let X be a smooth,
projective and geometrically connected variety of dimension d and let L be a hyper-
plane section ofX . Then for all n� d=2, the quadratic form qX;L;n is positive definite.

Remark 1.3. The original formulation of [23] is with cycles modulo homological
equivalence. As another standard conjecture predicts that homological and numerical
equivalence should coincide, the two formulations should be equivalent. See also [2,
Proposition 3.11 and Corollary 3.12].

Our main result is the following.

Theorem 1.4. The following statements hold.

(1) Let .X;L/ be an abelian variety over a finite field together with a hyperplane
section induced by a CM lifting. Let n� dim.X/=2 be any integer and .sC; s�/
be the signature of qX;L;n. Then s� is divisible by 4.

(2) Let X D S1 � � � � � Sm be the product of K3 surfaces over a finite field, Li
be a hyperplane section induced by a CM lifting of Si (cf. [25]), and let L DL
i p
�
i Li be the induced hyperplane section on X . Let n � dim.X/=2 D m

be any integer and .sC; s�/ be the signature of qX;L;n. Then s� is divisible
by 4.

The above theorem follows from a general result on motives endowed with quad-
ratic forms (see Theorem 3.2 for the precise definitions).
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Theorem 1.5. Let M be a CM motive in mixed characteristic with coefficients in Q.
Suppose that its special fiber Mp is supersingular and that M is endowed with a CM
quadratic form q whose Betti realization is a polarisation of the underlying Hodge
structure. Let qZ be the restriction of q to all algebraic classes of Mp . Write .sC; s�/
for the signature of qZ , then s� is divisible by 4.

Let us give a sketch of the proof of Theorem 1.5. For a quadratic form over Q,
the condition 4js� is equivalent to the fact that the discriminant is positive and that
the Hilbert symbol at infinity is C1. Both conditions can be checked by studying
the quadratic form in the non-archimedean places, thanks to the classical product
formula on Hilbert symbols. In particular, Theorem 1.5 boils down to the study of the
quadratic form qZ after its `-adic and crystalline realization. The `-adic computation
is obtained from general results on `-adic cohomology, and it is sufficient to prove
that the discriminant is positive, as in [2]. Instead, to compute the Hilbert symbol,
we need to control the crystalline contribution. Our arguments rely heavily on p-adic
Hodge theory. Let us give the mainlines below.

We begin by extending the coefficients of the motive M from Q to Qp . Precisely,
let F be the CM number field acting onM , the motiveM ˝Q Qp is endowed with an
action ofF ˝Q Qp . Such an action decomposes the motive into a sum of direct factors
and we study them separately. Thus, we reduce to the situation where the motive M
has an action of a finite extension of Qp , which we will denote again by F , endowed
with a non-trivial involution �WF ! F . The crystalline and p-adic étale realisations
of M are endowed by hypothesis with a non-degenerate quadratic form. Faltings’s
crystalline comparison theorem [17] allows to compare these realisations via a matrix
of periods laying in Fontaine’s ring Bcris of p-adic periods. By using the CM action
we characterize this matrix by a single invertible period � 2 B�cris;F , where Bcris;F is
the smallest subring of BdR containing Bcris and F . This period is unique up to a scalar
in F � and it controls completely the arithmetic of our problem. Namely it produces a
“re-normalisation factor” ��� belonging to F �0 , where F0 denotes the subfield of F of
elements fixed by �. Thanks to a theorem of Milnor on CM quadratic forms on p-adic
fields [37], we show that our problem is equivalent to control precisely whether the
re-normalisation factor is a norm of an element of F �. We verify that this problem
is multiplicative with respect to the tensor product of motives: hence, we are reduced
to treat the case of small Hodge weights. For those motives we need to prove that the
re-normalisation factor ��� is not a norm.

This is the crucial point of the article. Even if the definition of the period �,
based on the crystalline comparison theorem, is not explicit, this period satisfies a
strong uniqueness property with respect to the behaviour under the Frobenius and the
de Rham filtration. Such a uniqueness follows from the fundamental exact sequences
in p-adic Hodge theory. Therefore, we can describe � through any other periods with
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similar behaviour. For this purpose, we use Lubin–Tate periods of Colmez [13] to
get some control of �. It turns out that such a control is precisely what we need to
apply a theorem of Dwork [15] in order to compute the image of the re-normalisation
factor ��� through the local reciprocity map F �0 ! Gal.F=F0/. As the kernel of the
reciprocity map is the group of norms NF=F0.F

�/, we obtain that ��� is not a norm.

Remark 1.6. The main result of [2] is an instance of Theorem 1.5, namely the case
where the motive M has rank two. In that particular case the field F is a quadratic
extension of Qp . As there are finitely many such extensions, it was possible in [2,
Section 12] to compute the period � case by case. Moreover, those periods could be
described in terms of Lubin–Tate periods and elements algebraic over F .

In higher rank, F is a quadratic extension of F0, whose degree over Qp is equal
to the half of the rank of the motive, with a priori no restriction on the ramification
of F0=Qp nor of F=F0. Hence an analysis case by case is impossible. Moreover,
the period � is computed in terms of Lubin–Tate periods and a non-explicit element
in yF nr, the completion of the maximal unramified extension of F . In general such an
element is transcendental over F ; see Remark 9.6.

Organisation of the paper

We begin by setting up notation and conventions in Section 2. In Section 3 we give
the precise statement of Theorem 1.5 and explain how to deduce Theorem 1.4 from
it. In Section 4 we recall classical results on quadratic forms and use them, combined
with general theorems on `-adic cohomology, to translate Theorem 1.5 into a p-adic
question. Section 5 presents the first reduction step. We extend the coefficients of the
motive from Q to Qp and decomposes it into a sum of direct factors. The goal of the
section is to show that it is enough to study each factor separately.

In the rest of the paper we fix one of these factors. It is endowed with the action of
a finite extension F of Qp . Section 6 recalls classical results on CM quadratic forms
over the p-adic numbers. At the end of the section we define the re-normalisation fac-
tor. This is used in Section 7 where we study the behaviour of the problem under tensor
product. This allows to reduce the problem to motives whose crystalline realization
has small Hodge weights. Section 8 gives a characterization of the p-adic periods of
those motives. This allows in Section 9 to describe them explicitly by using Lubin–
Tate periods and to apply Dwork’s theorem computing the local reciprocity.

In Section 10 we put all the ingredients together and give the proof of the main
result. This section can also be read first in order to have a global picture of the
strategy.

We finish with an appendix concerning the filtered '-modules attached to a Lubin–
Tate character of a p-adic field. We added it to keep the paper as self-contained as
possible, by giving an alternative construction of Lubin–Tate periods of [13].
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2. Conventions

Throughout the paper we will work with the following notation and conventions.

2.1. Involutions

We usually denote by � an involution acting on a set. By abuse of notation we will
still write � for an endomorphism of a ring B extending an involution of a subfield
F � B . We will denote by F0 the subfield of F where � acts as the identity.

We will often write z� for the image �.z/ of an element z through �.

2.2. p-adic fields

Let p be a prime number. In this text, by p-adic field we mean a finite extension
of the field of p-adic numbers Qp . For such a field L, we denote by OL its ring of
integers and by kL the residue field. The degree of kL over Fp is called the residual
degree of L=Qp and it will be denoted by fL. We denote1 by La the maximal sub-
field of L unramified over Qp . It is equal to the field of fractions of the ring of Witt
vectors W.kL/. The degree eL WD ŒL W La� is called the ramification index of L=Qp ,
or the absolute ramification index of L. When there is no risk of confusion, we may
drop the subscript L in the notation.

We choose an algebraic closure xQp of Qp and we denote by xFp its residue field.
We put yQnr

p WD FracW.xFp/. It is a completion of the maximal unramified extension
Qnr
p of Qp in xQp . The fields yQnr

p and Qnr
p are endowed with an automorphism ',

called the absolute Frobenius, which is the unique map lifting the p-power map on
the residue field xFp . For any subextension L of xQp=Qp we put GL WD Gal.xQp=L/.

2.3. Motives

We will work with the category Mot.S/Q of homological motives over a base S with
coefficients in Q. This category is defined as the quotient (in the sense of [5, §2.3]) of
the category of Chow motives over S (cf. [39, §5.1]) with respect to the homological
equivalence.

In our article the base S will be C, a finite field or the ring of integers of a p-adic
field. For generalities on Mot.S/Q when S is a field, we refer to [4, §4]. When S is

1In the literature,La is often denoted with subscript 0 instead of a, but the former is already
used in the context of involutions, as Convention 2.1. The subscript “a” stands for “absolute
unramified” as La is also called the absolute unramified subextension of L.
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the ring of integers of a p-adic field, see also the conventions in [3]. In general these
categories depend on the chosen Weil cohomology, but we will use only cohomologies
for which the classical comparison theorems will ensure that those are independent of
the choice.

We will also use the quotient category of motives with respect to numerical equiv-
alence and denote it by NUM.S/Q. We will use it only with S being a finite field.

2.4. Realisations

We will make use of the classical realization functors, namely the de Rham real-
ization RdR, the Betti realization RB , the `-adic realization R` and the crystalline
realization Rcris. We consider them with their enriched structures, as in [4, §7.1]. In
particular, the functorRdR will land in the category of filtered vector spaces,RB in the
category of Hodge structures, R` in the category of Galois representations and Rcris

in the category of modules endowed with an action of an absolute Frobenius.
For a motive M , we will denote by dimM the dimension of any classical realiza-

tion of M and we call it the dimension of the motive.

2.5. Unit object

The unit object in any tensor category we will consider will be denoted by 1.

2.6. Filtered Modules

Let M be a module over some ring and .FiliM/i2Z a decreasing, exhaustive and
separated filtration by submodules. We will use the following conventions: for any
subset S �M , we put

vdR.S/ WD sup¹i 2 Z j S � FiliM º:

For m in M , we write vdR.m/ WD vdR.¹mº/. (The subscript dR comes from the fact
that the filtrations in this article will be the de Rham filtration on some cohomology
group or on some ring of periods.)

2.7. p-adic Hodge theory

We denote Fontaine’s rings of periods (associated with xQp=Qp) by BdR and Bcris.
They were introduced in [18,19]. We gather below some properties of these rings that
we will use in this article. For a detailed account on these rings and on p-adic Hodge
theory we refer for example to [21, 45].
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(1) BdR is a complete discrete valuation field, its ring of integer is denoted by BCdR
and the residual field identifies to the p-adic completion Cp of xQp .

(2) BdR is filtered by the (fractional) powers of the maximal ideal of BCdR, and we
denote this filtration by .FiliBdR/i2Z. The map vdR defined in Section 2.6 on BdR is
its discrete valuation.

(3) BdR is endowed with an action of GQp . We have canonical inclusions xQp �

BdR and yQnr
p � BdR compatible with the action of GQp .

(4) Bcris � BdR is a sub- yQnr
p -algebra stable under the GQp -action.

(5) We have an endomorphism

'crisWBcris ! Bcris;

semi-linear with respect to the absolute Frobenius ' of yQnr
p . We call it the Frobenius

of Bcris and denote it simply by '.

(6) There exists an element t 2Bcris such that '.t/D pt and t 2 Fil1BdR (actually,
Fil1BdR D tBCdR). For any g in GQp , we have g.t/ D �.g/t , where �WGQp ! Z�p
denotes the cyclotomic character. We set Qp.1/ WD Qp � t � Bcris.

Let L � xQp be a finite extension over Qp . Keep the notation of Section 2.2.

(7) We will denote by Bcris;L the smallest subring of BdR containing Bcris and L.
We recall that the natural map

Bcris ˝La L
'
��! Bcris;L � BdR

is an isomorphism.

(8) The Frobenius of Bcris does not extend to Bcris;L in general, nevertheless its
power 'fLcris is La-linear, hence we can extend it to Bcris;L by 'fLcris ˝ IdL. We will
denote it still by 'fLcris or 'fL . Again, we may drop the subscript L in the notation if
there is no risk of confusion.

3. Main statements

In this section we state our main result (Theorem 3.2) and then give some geometric
consequences. To put the result into perspective, we formulate a conjecture (Conjec-
ture 3.1) and discuss the role of the different hypothesis (Remark 3.3).

Conjecture 3.1. Let K be a p-adic field, OK its ring of integers and k its residue
field. Let .M; q/ be a motive in mixed characteristic M 2Mot.OK/Q together with
a map qWSym2M ! 1. Write �=k for the restriction functor to the category Mot.k/Q
and RB for the Betti realization induced by a fixed embedding � WK ,! C.
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Define two Q-quadratic spaces .VB ; qB/ and .VZ ; qZ/ as follows:

.VB ; qB/ WD RB.M; q/; VZ WD HomNUM.k/Q.1;M=k /;

and
qZ WVZ ! End.1/ D Q defined by z 7! q=k ı Sym2.z/:

We conjecture that if qB is a polarization of Hodge structures then qZ is positive
definite.

Theorem 3.2. Let M; q; qB and qZ be as in Conjecture 3.1. Let F be a number field
which acts on M and which is endowed with a non-trivial involution �. Assume the
following:

(1) The equality dimQ VZ D dimM holds.

(2) The equality ŒF W Q� D dimM holds.

(3) For every z in F the adjoint of z with respect to q is z�.

(4) The pairing qB on VB is a polarization of Hodge structures.

Then the signature .sC; s�/ of the quadratic form qZ satisfies 4js�.

The proof of Theorem 3.2 is given in Section 10.

Remark 3.3. Hypothesis (4) is crucial and absolutely necessary. Indeed, in order
to conclude a positivity statement one has to assume some positivity property. The
action of F makes hypothesis (1) essentially automatic. Indeed if dimVZ ¤ dimM ,
then VZ D 0 and the statement is trivial. See [2, proof of Proposition 6.8] for details.

The statement should be true without hypotheses (2) and (3); see Conjecture 3.1.
On the other hand, the standard conjecture of Hodge type can be reduced to the case
of varieties over finite fields [2, Proposition 3.16] and for such a variety the Tate con-
jecture predicts that its motive should be a motive of abelian type [35]. In particular,
the hypothesis of Theorem 3.2 should not be restrictive in the study of the standard
conjecture of Hodge type.

Finally, homological and numerical equivalence should always coincide hence one
would like to replace VZ with the space of cycles modulo homological equivalence.
The following proposition is the crucial reason for which one needs to work with
numerical equivalence.

Lemma 3.4. Keep notation from Theorem 3.2. Then hypothesis (1) is equivalent to
the existence of an isomorphism M=k Š 1

L
dimM of homological motives. In partic-

ular, VB and all classical realizations of M have weight zero and if E is the field of
coefficients of a given realization R, then

R.M=k / D VZ ˝Q E and R.q=k / D qZ ˝Q E:
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Proof. As numerical motives form a semi-simple category (cf. [28]), hypothesis (1) is
equivalent to the existence of an isomorphismM=k Š 1

L
dimM of numerical motives.

Let us fix such an isomorphism

f WM=k ! 1
L

dimM

and let g be its inverse. Consider a map zf WM=k ! 1
L

dimM at the level of homo-
logical motives whose reduction modulo numerical equivalence is f , and similarly
consider zg a lifting of g.

The ring of endomorphisms of the unit object 1 is Q, both under numerical or
homological equivalence. In particular, passing from homological to numerical equiv-
alence in such an endomorphisms ring does not kill any non-zero map. Hence, the
composition zf ı zg is the identity, as so is f ı g. This implies that the map zg ı zf is a
projector inducing a decomposition of the form

M=k Š 1
L

dimM
˚N

for some homological motiveN . For dimensional reasons, the realization ofN is zero,
and so is N by the very definition of homological motives. Conversely, the existence
of a homological isomorphism M=k Š 1

L
dimM clearly implies hypothesis (1).

Let us now conclude the section with some applications of Theorem 3.2.

Corollary 3.5. Let A be an abelian variety over a finite field, zA be a CM-lifting,
zL be a hyperplane section of zA and L be the restriction of zL to A. For a positive
integer n � dim.A/=2, let .sC; s�/ be the signature of the quadratic form qA;L;n from
Definition 1.1, then s� is divisible by 4.

Proof. We argue as in [2, §8] and use the complex multiplication to decompose the
motive of A in an orthogonal sum of smaller motives. Among these factors, the ones
we need to study are the so-called exotic. We can conclude as they all fit in the
hypotheses of Theorem 3.2.

Remark 3.6. A priori Corollary 3.5 does not apply to a hyperplane sections L which
does not lift to characteristic zero. Nevertheless, it is possible sometimes to extend it to
all hyperplane sections, as for example in [2, Proposition 3.15] and [33, Lemma 2.2].

Corollary 3.7. LetX DS1 � � � � �Sm be the product of K3 surfaces over a finite field,
Li be a hyperplane section induced, as in Corollary 3.5, by a CM lifting of Si , and
let L D

L
i p
�
i Li be the induced hyperplane section on X . Let n � dim.X/=2 D m

be any integer and .sC; s�/ be the signature of the quadratic form qX;L;n from Defi-
nition 1.1, then s� is divisible by 4.
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Proof. The argument follows the same lines as in [2, §8], namely we use the com-
plex multiplication to decompose the motive into summands to which we can apply
Theorem 3.2.

First, each Si has a CM lifting zSi by [25]. By [29], the motive h. zSi / of zSi admits
a decomposition

h. zSi / D 1˚ 1.�2/˚ 1.�1/˚�i ˚ ht . zSi /;

where �i is the Picard number of zSi and ht . zSi / is the motive whose realization is the
transcendental part H 2;t . zSi / of the Hodge structure H 2. zSi /.

Now by [10, Corollary 1.3], there is a CM field Li acting on ht . zSi / with the prop-
erty that the Q-dimensions of Li and H 2;t . zSi / are the same. Hence, after extending
the scalars to xQ, the motive ht . zSi / decomposes into a sum of motives of rank one;
see [2, Proposition 6.6]. By the Künneth formula, such a decomposition in motives
of rank one holds true for the whole motive of X , see [2, Proposition 6.7 (1)]. By
taking the orbits under the Galois action on the coefficients, we can descend such a
decomposition into a decomposition with Q-coefficients, see [2, Proposition 6.7 (2)].
Notice that the factors are not anymore of rank one in general but the decomposition
is orthogonal, hence it is enough to work with a single factor M .

Assume that M=k contains an algebraic class which is non-zero modulo numer-
ical equivalence (otherwise the factor has no interest for the quadratic form qX;L;n).
ThenM satisfies the hypothesis (1) of Theorem 3.2; see [2, Proposition 6.8]. By con-
struction the hypotheses (2) and (3) are verified for the motives ht . zSi / and one can
check that they are stable under the tensor operations above. Finally, the hypothesis (4)
comes from the Hodge–Riemann bilinear relations. We can then apply Theorem 3.2
and deduce the desired conclusion for the factor M .

Remark 3.8. There are probably other varieties to which Theorem 3.2 can be applied.
As already mentioned in Remark 3.3, all motives over a finite field should be of
abelian type, hence they should have a CM lifting [35]. Some other examples for
which this is known are cubic Fermat hypersurfaces [44]. In order to apply Theo-
rem 3.2 to them one has to check that the decomposition induced by the CM action is
orthogonal with respect to the quadratic form qX;L;n. Similarly, one might try to study
Kummer varieties or the Hilbert scheme of points on a K3.

4. From archimedian to p-adic

We recall here some classical facts on quadratic forms. They will allow us to reduce
Theorem 3.2 to a p-adic statement. In what follows Q� denotes the completion of Q

at the place �. Recall that at every place one defines "�.q/ 2 ¹˙1º, the Hilbert symbol
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(or Hasse symbol) of a non-degenerate Q-quadratic form q at �; cf. [42, Ch. IV, §§2.1
and 2.4].

Proposition 4.1 ([42, Ch. IV, §2.4]). Let q be a non-degenerate Q-quadratic form
and let .sC; s�/ be its signature. Then the discriminant is positive if and only if 2js�.
In this case, 4js� if and only if "R.q/ D C1.

Proposition 4.2 ([42, Ch. IV, §2.3, Theorem 7]). Two non-degenerate Qp-quadratic
forms q1 and q2 of same rank are isomorphic if and only if the discriminants of q1
and q2 coincide and "p.q1/ D "p.q2/.

Theorem 4.3 ([42, Ch. IV, §3.1]). Let q be non-degenerate Q-quadratic form. Then
for all but a finite number of places � the equality "�.q/ D C1 holds. Moreover, the
following product formula running on all places holds:Y

�

"�.q/ D C1:

Corollary 4.4. Let q1 and q2 be two non-degenerate Q-quadratic forms and let p be
a prime number. Suppose that, for all primes ` different from p, we have

q1 ˝Q` Š q2 ˝Q`:

Then the two quadratic forms q1 and q2 have the same discriminant. Moreover, if this
discriminant is positive, then 4js�.q1/ if and only if the following equality holds:

"p.q1/ D "R.q2/"p.q2/:

Proof. The `-adic hypothesis implies in particular that the discriminants of q1 and q2
coincide in Q�

`
=.Q�

`
/2 for all ` ¤ p. This implies that they coincide in Q�=.Q�/2

by [24, §5.2, Theorem 3]. Suppose from now on that the discriminant is positive. By
Proposition 4.1, 4js�.q1/ if and only if "R.q1/ D C1.

Now, Theorem 4.3 implies thatY
�

"�.q1/ D 1 D
Y
�

"�.q2/:

Combining this with the `-adic isomorphisms, we deduce

"R.q1/"p.q1/ D "R.q2/"p.q2/:

This means that "R.q1/ D C1 if and only if "p.q1/ D "R.q2/"p.q2/.
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Proposition 4.5. Let us keep notation from Theorem 3.2. Let p be the characteristic
of k and hi be the dimension of the .i;�i/-part of the Hodge structure VB . Define the
positive integer

sM WD
X

i�1; odd

hi :

Then the quadratic forms qB and qZ have the same discriminant, which is positive.
Moreover, Theorem 3.2 holds true if and only if the following equality holds true:

"p.qZ/="p.qB/ D .�1/
sM :

Proof. We want to apply Corollary 4.4 to q1 D qZ and q2 D qB .
First of all, by Lemma 3.4, we have that qZ ˝Q` D R`.q=k /. By Artin compari-

son theorem, we have qB ˝Q` D R`.q=C
/. Combining these equalities with smooth

proper base change in `-adic cohomology, we deduce that

qB ˝Q` D qZ ˝Q`:

Now, by hypothesis qB is a polarization for the Hodge structure VB and recall that VB
has weight zero (Lemma 3.4). In particular, the Hodge–Riemann relations compute
the signature .sB;C; sB;�/ of qB as

sB;C D
X
i even

hi and sB;� D
X
i odd

hi :

Note that sB;� is even because of the Hodge symmetry. This implies through Propo-
sition 4.1 that the discriminant is positive and that the Hilbert symbol of qB ˝R

is .�1/
P
i�1;odd hi . We can now conclude by applying Corollary 4.4 to q1 D qZ and

q2 D qB .

Remark 4.6. We have X
i�1; odd

hi �
X
i�0

ihi .mod 2/;

in particular the integer sM has the same parity as the minimum of the Hodge polygon.

The role of the above proposition is to translate a positivity problem (Theorem 3.2)
into a p-adic problem. The advantage is that the latter has a cohomological interpre-
tation, as the following proposition shows.

Proposition 4.7. Let us keep the notation from Theorem 3.2 and Section 2.4. Then
the following hold:

(1) The quadratic space .VB ; qB/˝Q Qp is isomorphic to .Rp.M/;Rp.q//.



The Hilbert symbol in the Hodge standard conjecture 631

(2) The Galois representation Rp.M/ is crystalline and the admissible filtered-
'-module which corresponds to it is Rcris.M/.

(3) The Qp-subspace of Frobenius invariant vectors in Rcris.M/ identifies with
VZ ˝Q Qp and generates Rcris.M/.

(4) The quadratic form qZ ˝Q Qp identifies with the restriction of Rcris.q/ to
VZ ˝Q Qp .

Proof. Point (1) comes from Artin’s comparison theorem. Point (2) comes from Falt-
ing’s comparison theorem in p-adic Hodge theory [17]; see also [2, Theorem 10.2].
For point (3), notice that in general algebraic classes are included in the Frobenius
invariant ones, but for dimensional reasons (hypothesis (1) in Theorem 3.2) this inclu-
sion is an equality. Point (4) follows from Lemma 3.4.

5. Reduction to CM-simple objects

In this section we study quadratic forms in the context of p-adic Hodge theory. The
setting we choose is inspired by the previous section and in particular by Proposi-
tions 4.5 and 4.7.

Definition 5.1. A supersingular pair .VB;p; VZ;p/ is the collection of the following
objects:

(1) A Qp-vector space VB;p endowed with the action of the absolute Galois group
of a p-adic field K which makes the representation crystalline.

(2) A Qp-vector space VZ;p which generates the (admissible) filtered '-module
corresponding to VB;p and on which the Frobenius acts trivially.

An orthogonal supersingular datum .VB;p;VZ;p; qB;p; qZ;p/, or simply an orthog-
onal supersingular pair .qB;p; qZ;p/ is the collection of the following objects:

(1) A supersingular pair .VB;p; VZ;p/.

(2) A non-degenerate Qp-quadratic form qB;p on VB;p for which the Galois ac-
tion is isometric.

(3) The non-degenerate Qp-quadratic form qZ;p on VZ;p corresponding to qB;p .

Lemma 5.2. Let .qB;p; qZ;p/ be an orthogonal supersingular pair. Then the discrim-
inants of qB;p and qZ;p coincide.

Proof. The quadratic form on VZ;p induces a quadratic form on the one-dimensional
vector space detVZ;p . This form is characterized by an element of Q�p =.Q

�
p /
2, which

is the discriminant of qZ . (The same holds for VB;p .) As the Frobenius acts trivially
on detVZ;p , admissibility implies that the filtration is trivial as well. This means that
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the comparison isomorphism sends the Qp-structure det VZ;p on the Qp-structure
detVB;p . As the comparison isomorphism respects the underlined quadratic forms the
discriminants coincide.

Lemma 5.3. Let .VB;p; VZ;p; qB;p; qZ;p/ be an orthogonal supersingular datum,
let F be a number field and let � be a non-trivial field involution on F . Then the
following hold true:

(1) The ring F ˝Q Qp is a product of p-adic fields

F ˝Q Qp D

nY
iD1

Fi :

(2) The involution � acts on this product as a composition of disjoint transposi-
tions, i.e. there is an integer s such that, after changing the numbering, one has

�.Fi / D FiCs for i � s;

�.Fi / D Fi�s for s < i � 2s;

�.Fi / D Fi for i > 2s:

Moreover, the induced involution on Fi for i > 2s is non-trivial.

(3) Suppose that F acts on VB;p and that this action commutes with the Galois
action. Then F acts on VZ;p as well and the two actions are compatible with respect
to the comparison theorem. In particular, the decomposition of point (1) induces two
decompositions

VB;p D

nM
iD1

V iB;p and VZ;p D

nM
iD1

V iZ;p;

and for all i , the pair .V iB;p; V
i
Z;p/ is a supersingular pair.

(4) Suppose moreover that for all z 2 F the adjoint of z with respect to qB;p is z�.
Then the same holds true for qZ;p . Moreover, the following decompositions in .n� s/
factors are orthogonal:

VB;p D

?M
s<i�2s

�
V iB;p ˚ V

i�s
B;p

�
˚
?

?M
i>2s

�
V iB;p

�
;

VZ;p D

?M
s<i�2s

�
V iZ;p ˚ V

i�s
Z;p

�
˚
?

?M
i>2s

�
V iZ;p

�
:

(5) Keep the notation and hypothesis from point (4). For all i > s, denote by qiB;p
the restriction of qB;p to each orthogonal factor of the above decomposition, and
similarly for qiZ;p . Then the pair .qiB;p; q

i
Z;p/ is an orthogonal supersingular pair.
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(6) For s < i � 2s, consider the orthogonal supersingular pair .qiB;p; q
i
Z;p/ def-

ined in point (5). Then the two Qp-quadratic forms qiB;p and qiZ;p are isomorphic.
More precisely, the two subspaces V iB;p and V i�sB;p of V iB;p ˚ V

i�s
B;p are maximal iso-

tropic for the quadratic form qiB;p (and similarly for qiZ;p). Moreover, qiB;p realizes
the Galois representations V iB;p and V i�sB;p as one the dual of the other.

Proof. Point (1) comes from the fact that F=Q is a separable extension.
For point (2), consider F ˝Q Qp D F1 � � � � �Fn. Its spectrum is a disjoint union

of n closed points and � acts on it as a permutation of order two. Consider now i > 2s

as in the statement and the inclusion F ,! Fi induced from point (1). By construction
the involution on Fi extends the one on F , hence it is non-trivial.

For point (3), by the comparison theorem, as F acts on VB;p seen as crystalline
Galois representation of GK , then F must act also on its corresponding filtered '-
module. This means that the action of F must commute with the Frobenius hence F
stabilizes the Frobenius invariant part, i.e. VZ;p .

Let us now study point (4), let q be one of the quadratic forms we want to study
and b be its corresponding bilinear form. Let pi be the i -th projector in the decompo-
sition F ˝Q Qp D F1 � � � � � Fn. By hypothesis, we have

b
�
pi .�/; pj .�/

�
D b

�
.�/; p�i pj .�/

�
:

But p�i pj D 0 except if pj D p�i .
Point (5) is automatic from the construction. For point (6) we have to study

the quadratic forms on the space V iB;p ˚ V
i�s
B;p for s < i � 2s (and similarly for

V iZ;p ˚ V
i�s
Z;p ). Notice that the proof of point (4) we gave, shows in particular that

the two subspaces V iB;p and V i�sB;p are maximal isotropic. Thus the quadratic forms
qB;p and qZ;p are both isomorphic to a sum of hyperbolic planes. The duality state-
ment comes from the fact that qB;p is non-degenerate by hypothesis.

Definition 5.4. LetMD.qB;p;qZ;p/ be an orthogonal supersingular pair, let "p.qB;p/
and "p.qZ;p/ be the Hilbert symbols of the quadratic forms and define sM to be
the minimum of the Hodge polygon of the filtered '-module underlying M . We say
that M is good if the following equality holds

"p.qZ;p/="p.qB;p/ D .�1/
sM : (5.4.1)

Lemma 5.5. A supersingular pairM D .qB;p; qZ;p/ is good if and only if one of the
following situation happens:

(1) The quadratic forms qB;p and qZ;p are isomorphic and sM is even.

(2) The quadratic forms qB;p and qZ;p are not isomorphic and sM is odd.
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Proof. The two quadratic spaces have the same rank by definition of supersingular
pair and the same discriminant by Lemma 5.2. Hence they are isomorphic if and only
if they have the same Hilbert symbol (Proposition 4.2). This translates the definition
of good to the conditions (1) or (2) of the statement.

Proposition 5.6. Keep the notation as in Lemma 5.3. If for each i > 2s the pair
.qiB;p; q

i
Z;p/ is good then the pair .qB;p; qZ;p/ is good as well.

Proof. First of all, let us show that the pair .qiB;p; q
i
Z;p/ is good also for s < i � 2s.

In this case the two quadratic forms are isomorphic by Lemma 5.3 (6), hence

"p.q
i
Z;p/="p.q

i
B;p/ D 1:

We need to show that the height of the corresponding Hodge polygon is even.
Let Di

Z;p be the admissible filtered '-module associated with the factor V iZ;p .
The height of the Newton polygon of each one of those modules is zero by construc-
tion as they have a Frobenius invariant basis. In particular, since they are admissible,
the height of the Hodge polygon is also zero. Moreover, by Lemma 5.3 (6), Di

Z;p

and Di�s
Z;p are dual to each other. This duality together with height zero implies that

the two Hodge polygons are symmetric to each other. In particular, they have the same
minimum, hence the minimum of the Hodge polygon of Di

Z;p ˚D
i�s
Z;p is even.

Now, as the right hand side of the equation (5.4.1) is additive on direct sums,
let us show that the left hand side is additive as well, this will imply the statement.
Consider two orthogonal supersingular pairs M1 and M2 which are both partial sums
of the factors in the decomposition of Lemma 5.3 (4). Let ıB;1; "B;1; ıZ;1; "Z;1 be the
discriminants and the Hilbert symbols of the two quadratic forms associated with M1

and similarly let ıB;2; "B;2; ıZ;2; "Z;2 be the invariants for M2. By the definition of
the Hilbert symbol of a quadratic form [42, Ch. IV, §2.1], it follows that the Hilbert
symbols of the sum M1 ˚M2 are respectively

"B.M1 ˚M2/ D "B;1 � "B;2 � .ıB;1; ıB;2/;

"Z.M1 ˚M2/ D "Z;1 � "Z;2 � .ıZ;1; ıZ;2/;

where .ı1; ı2/ denotes the Hilbert symbol of a couple of elements ı1, ı2 2Q�p =.Q
�
p /
2;

cf. [42, Ch. III, §1.1, Theorem 2].
If we write the quotient of the two equalities above the contribution of the dis-

criminants simplifies as ıB;1 D ıZ;1 and ıB;2 D ıZ;2 by Lemma 5.2.

6. CM-quadratic forms over p-adic fields

From now on (except for Section 10), let F be a finite extension of Qp . We assume
that F is endowed with a non-trivial involution �WF ! F , ˛ 7! ˛�. We collect here
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some basic results on some quadratic forms endowed with an action of F which we
call CM (Definition 6.1).

Throughout the section we fix a Galois closure zF � F of F , and denote by � the
set of Qp-embeddings of F in zF . We recall that F0 denote the subfield of F , where �
acts as the identity; cf. Section 2.1. We denote still by � the action of � on � by
pre-composition. Denote respectively by trF0=Qp WF0! Qp and NF=F0 WF ! F0 the
trace of the extension F0=Qp and the norm of F=F0; the extension F=F0 has degree
two and we have NF=F0.x/ D x

�x for every x 2 F .

Definition 6.1. (1) A CM-space (with respect toF ) is the data of a Qp-vector space V
and an action of F on V such that V as an F -vector space has dimension one.

(2) A CM-quadratic space (with respect to F ) is the data of a CM-space V and a
non-degenerate quadratic form qW V ! Qp on the Qp-vector space V , such that for
all ˛ in F , the adjoint with respect to q of the multiplication by ˛ is the multiplication
by ˛�.

For simplicity, we may say that q (or V ) is a CM -quadratic form without men-
tioning explicitly the other structures.

Proposition 6.2. Let V be a CM-quadratic space. Fix a non-zero vector v in V and
consider the induced identification V Š F as F -vector spaces. Under this identifica-
tion, there exists a unique a 2 F �0 such that for every x 2 F , we have

q.x/ D trF0=Qp
�
aNF=F0.x/

�
:

If one changes the choice of the vector v, the element a 2 F �0 is multiplied by some
norm in NF=F0.F

�/. In particular, the class of a in F �0 =NF=F0.F
�/ is well defined

and depends only on V .

Proof. Let bWF � F ! Qp the symmetric form associated with q. Since q is a CM-
quadratic form, for every x 2 F , we have

q.x/ D b.x; x/ D b.1; x�x/ D b
�
1;NF=F0.x/

�
:

The restriction of b.1;�/ toF0 gives a Qp-linear form onF0. As .u;v/ 7!trF0=Qp .uv/
is a non-degenerate bilinear form on F0, we can conclude that there exists such an
element a 2 F0. It must be non-zero otherwise q would be zero.

Let w be a new non-zero vector in V and q0.x/ be the induced quadratic form
on F under this new identification. There is a unique non-zero element z 2 F such
that zv D w. This gives the relation q0.x/ D q.zx/. Hence, one deduces

q0.x/ D trF0=Qp
�
aNF=F0.zx/

�
D trF0=Qp

�
.az�z/ �NF=F0.x/

�
:

Definition 6.3. Let q be a CM-quadratic form. We define the gauge of q as the ele-
ment of F �=NF=F0.F

�/ associated with q through the above proposition.
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Theorem 6.4 (Milnor). The following statements hold.

(1) The group F �=NF=F0.F
�/ has cardinality two.

(2) All CM-quadratic forms (with respect to the same F ) have the same discrim-
inant.

(3) Two CM-quadratic forms are isomorphic if and only if they have the same
gauge in F �=NF=F0.F

�/.

(4) Up to isomorphism there are exactly two CM-quadratic spaces.

Proof. The extension F=F0 has degree 2. The reciprocity isomorphism

F �=NF=F0.F
�/ Š Gal.F=F0/

of local class field theory proves (1).
Consider F as an F0-vector space of dimension 2 and consider on it the non-

degenerate F0-quadratic forms zqa.x/D aNF=F0.x/ for a 2 F �0 . By definition a CM-
quadratic form q of gauge a is isometric to trF0=Qp ı zqa. Now, notice that all quadratic
forms zqa have the same discriminant in F �0 =.F

�
0 /
2, independent of a, as zqa.x/ D

azq1.x/ and the quadratic space has dimension 2. (Actually this discriminant is the
class of the opposite of the discriminant of the extension F=F0.) By [37, Lemma 2.2]
this implies (2).

For (3) we argue as above and consider the quadratic forms zqa. We claim that
zqa Š zqb if and only if a and b are in the same class of F �=NF=F0.F

�/. This will
give (3) thanks to [37, Theorem 2.3]. The claim is elementary: if a and b are in the
same class, we can write a=b D NF=F0.z/ and the change of variable x 7! z � x

gives the isometry. Conversely, if the quadratic forms are isomorphic then the images
of F � by them must be the same, but those images are precisely a � NF=F0.F

�/ and
b �NF=F0.F

�/. Point (4) is the combination of (1) and (3).

Proposition 6.5. Let V be a CM-space and consider V ˝Qp F . It is endowed with
two different actions of F , one on the left, induced by the action of F on V , and one
on the right. To distinguish them we will write, for allw 2 V ˝Qp F and z 2 F , z.w/
for the left multiplication and w � z for the right multiplication. The inclusion F � zF
gives a fixed inclusion V ˝Qp F � V ˝Qp

zF and, for all � 2 � , let us denote again
by � the induced embedding V ˝Qp F � V ˝Qp

zF . Then the following hold.

(1) There exists a non-zero (eigen)vector v 2 V ˝Qp F such that z.v/ D v � z.
Such a v is unique up to (left or right) multiplication by an element of F �.

(2) The (eigen)vectors ¹�.v/º�2� form a basis of V ˝Qp
zF over zF . We set

L� WD �.v/ � zF , which is an eigenline with respect to the embedding � , i.e.
z.�.v// D �.v/ � �.z/.
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Proof. Follows immediately from the classical description F ˝Qp
zF D zF � and the

fact that the dimension of V over F is one.

Proposition 6.6. Let .V; q/ be a CM-quadratic space and let v 2 V ˝Qp F be
the eigenvector constructed in Proposition 6.5 above. Let b be the bilinear pairing
induced by q. Then the following hold.

(1) One has b.�.v/; �.v// D 0 except if � D ��.

(2) The number 2b.v; v�/ 2 F �0 is the gauge of q.

Proof. For all z 2 F , we have

b
�
�.z.v//; �.v/

�
D b

�
�.v/; �.z�.v//

�
by definition of CM-quadratic forms. On the other hand, we have the relations

b
�
�.z.v//; �.v/

�
D b

�
�.v/; �.v/

�
� �.z/;

b
�
�.v/; �.z�.v//

�
D b

�
�.v/; �.v/

�
� ��.z/;

by construction of v. These relations together give (1).
For the second point, choose ¹�.v/º�2� as basis. A vector w 2 V ˝Qp

zF is actu-
ally in V if and only if there exists a scalar z 2 F such that the coordinates of w with
respect to this basis are ¹�.z/º�2� . Let us now compute the quadratic form on such a
vector w 2 V :

q.w/ D
X
�;�2�

b
�
�.zv/; �.zv/

�
D

X
�2�

b
�
�.zv/; ��.zv/

�
D

X
�2�0

2�.zz�/�
�
b.v; v�/

�
;

where the second equality comes from part (1) and �0 denotes the set of Qp-embedd-
ings of F0 in zF . In conclusion, we have

q.w/ D trF0=Qp
�
2b.v; v�/ �NF=F0.z/

�
;

which computes the gauge.

Proposition 6.7. Let V1 and V2 be two CM-spaces and let B be an F -algebra. Sup-
pose that it is given an identification of B-modules

V1 ˝Qp B D V2 ˝Qp B;

which is compatible with the F -actions. Let v1 and v2 be the vectors constructed in
Proposition 6.5 associated respectively with V1 and V2. Then, there exists a unique
invertible element � 2 B� such that v1 D �v2.
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Let now zB be an zF -algebra and suppose that each � 2 � extends to a homomor-
phism z� WB ! zB . Then, for all � , we have

�.v1/ D z�.�/�.v2/:

Proof. Consider the B-module V1 ˝Qp B D V2 ˝Qp B and consider on it the left
action of F . By construction, v1 and v2 generate the same eigenline with respect to
this action, this gives the existence of �.

For the second part, one applies z� to the equality v1 D �v2. As the vi live in
Vi ˝Qp F � Vi ˝Qp B , the action on them coincides with � .

Proposition 6.8. Let .V1; q1/ and .V2; q2/ be two CM-quadratic forms and let B be
an F -algebra. Suppose that it is given an identification of B-modules

V1 ˝Qp B D V2 ˝Qp B;

which is compatible with the F -actions and with the quadratic forms.
Let � 2 B� be the scalar constructed in Proposition 6.7 and suppose that the

involution � of F extends to an endomorphism � of B as Qp-algebra. Then � � �.�/
belongs to F �0 and the two quadratic forms q1 and q2 are isomorphic if and only if

� � �.�/ 2 NF=F0.F
�/: (6.8.1)

Remark 6.9. Notice that � is well determined up to a constant in F � since so are v1
and v2; cf. Proposition 6.5. Nevertheless, the condition (6.8.1) is independent of such
a choice.

Proof. Let vi be the vectors from Proposition 6.7. By Theorem 6.4, the two quadratic
forms are isomorphic if and only if they have the same gauge in F �0 =NF=F0.F

�/.
By Proposition 6.6 (2), this means that they are isomorphic if and only if the ratio
2b.v1; v

�
1 /=2b.v2; v

�
2 /, which belongs to F �0 , is a norm of an element in F . On the

other hand, by Proposition 6.7, this ratio is equal to � � �.�/.

7. Reduction to tensor generators

We keep the same notation as in the previous section, in particular, F is a finite exten-
sion of Qp endowed with a non-trivial involution �WF ! F and an embedding � in
a fixed Galois closure zF � F . Moreover, F0 � F is the subfield fixed by � and � is
the set of Qp-embeddings of F in zF . The maximal subfield of zF which is unramified
over Qp will be denoted by zFa; see Section 2.2.
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Definition 7.1. A filtered-CM-space (with respect toF ) is the datum of a CM-space V
(Definition 6.1) together with an integer n� associated with each eigenline L� �
V ˝Qp

zF of Proposition 6.5 (2). Such a module is called symmetric if n� D �n�� .

Lemma 7.2. The datum of a filtered-CM-space V is equivalent to the datum of a
filtered '-module D over zF such that:

(1) dim zFa.D/ D ŒF W Qp�;

(2) D is endowed with an action of F ;

(3) D has a basis of vectors fixed by the Frobenius '.

The equivalence goes as follows. To V one associates the module D WD V ˝Qp
zFa

endowed with the Frobenius which is the identity on V and extends semi-linearly. The
filtration Fili on D zF WD V ˝Qp

zF is the sum of the eigenlines L� such that n� � i .
Conversely to D, one associates V D D'DId and n� D vdR.L� /; see Section 2.6 for
the notation vdR.

Proof. By definition of filtered-'-module each Fili is stable under the action of F ,
hence it is the sum of eigenlines. The equivalence follows.

Lemma 7.3. We define the tensor product of two filtered-CM-spaces .V; n� / and
.V 0; n0� / as

.V ˝F V
0; n� C n

0
� /:

Under the equivalence of Lemma 7.2 this corresponds to taking the two corresponding
filtered-'-modulesD andD0 and to considering inside the filtered-'-moduleD˝D0

the sub-filtered-'-module where the two F -actions coincide.

Proof. Let ¹L�º�2� and ¹L0�º�2� be the eigenlines associated with the actions of F
on D and D0. Then the action of F ˝Qp F on D ˝ D0 has ¹L� ˝ L0�º�;�2� as
eigenlines. By definition of the filtration on a tensor product, one has

vdR.L� ˝ L
0
� / D n� C n

0
� :

On the other hand, the submodule of D ˝D0 where the two F -actions coincide has
L� ˝ L

0
� as eigenline corresponding to � 2 � , hence we do have that n� C n0� is its

de Rham valuation.

Definition 7.4. The fundamental filtered-CM-space (with respect to .F; �/) is the
(symmetric) filtered-CM-space F.�/whose underling CM-space is F and whose asso-
ciated integers are

n� D 1; n�� D �1; n� D 0 8� ¤ �; �
�:
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Remark 7.5. By construction, the set of fundamental filtered-CM-spaces ¹F.�/º�2�
is a family of tensor generators of the category of symmetric filtered-CM-spaces.

Proposition 7.6. If a filtered-CM-space is symmetric (Definition 7.1), then its corre-
sponding filtered-'-module is admissible.

Proof. Admissibility is stable under tensor product and direct factor, and hence it is
enough to study the set ¹F.�/º�2� of tensor generators of the symmetric filtered-
'-modules; cf. Remark 7.5. Hence, it is enough to show admissibility for the funda-
mental filtered-CM-space F.�/ (for all pairs .F; �/).

LetD be the filtered-'-module corresponding to F.�/ by Lemma 7.2. By [14] it is
enough to check the condition of weakly-admissibility forD. The Newton polygon is
constantly zero by construction. Hence, the only sub-filtered-'-modules which might
contradict the condition of weakly-admissibility are those containing the eigenline L
of de Rham valuation one.

Let N be such a module and let us show that N D D, which will give the admis-
sibility. It is not restrictive to assume that N is stable through the action of F , by [9,
Proposition 3.1.1.5] (or by a short direct argument). Then the inclusion

N 'DId
� D'DId

is F -equivariant, hence N 'DId D 0 or N 'DId D D'DId . On the other hand, as D is
generated by its '-invariant part, the Newton slopes of N are also zero; cf. [31, §(1.3)
and Lemma 1.3.4]. Now, it is well known that for any '-module Q, we have

dimQp .Q
'DId/ � dim zFa.Q/:

By construction, dimQp .D
'DId/ D dim zFa.D/ and N is not zero (it contains L); thus

by arguing on the dimension over Qp in the exact sequence

0! N 'DId
! D'DId

! .D=N/'DId ;

we get N 'DId D D'DId . Therefore, N D D.

Definition 7.7. Let V be a symmetric filtered-CM-space, D be the corresponding
admissible filtered '-module (cf. Lemma 7.2 and Proposition 7.6). LetW be the crys-
talline representation of G zF corresponding to D via Fontaine’s p-adic comparison
theorem. Consider the identification

W ˝Qp Bcris D D ˝ zFa Bcris D V ˝Qp Bcris;

and the induced one by tensoring it with F over Fa,

V ˝Qp Bcris;F D W ˝Qp Bcris;F ;
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where Bcris;F is defined in Section 2.7 (7). Then we define the period associated
with V as the invertible element �V 2 B�cris;F deduced from Proposition 6.7 applied
to V1 D V , V2 D W and B D Bcris;F . We recall that �V is well determined up to a
constant in F � since it is defined as the period such that

v1 D �V v2

for a given choice of a basis v1 (resp. v2) of the F -line in V ˝Qp F (resp.W ˝Qp F ),
where the two F -actions coincide; see Proposition 6.5.

We define the fundamental period (with respect to .F; �/) as the period

� D �F.�/; (7.7.1)

associated with the fundamental filtered-CM-space F.�/ of Definition 7.4.

The goal of the next two sections is to establish the following theorem, whose
proof is finally given in Section 9.8.

Theorem 7.8. Let � 2 Bcris;F be the fundamental period defined in Definition 7.7
above. For every endomorphism �WBcris;F ! Bcris;F extending the involution � of F ,
we have

� � �.�/ … NF=F0.F
�/: (7.8.1)

Remark 7.9. (1) Notice that we have � � �.�/ 2 F �0 by applying Proposition 6.8,
with B equal to Bcris;F .

(2) It is enough to prove (7.8.1) for one extension �WBcris;F ! Bcris;F , since by
Proposition 6.8, the condition (7.8.1) is equivalent to a statement not involving the
choice of the extension.

(3) In Section 8.2 we will construct such an extension � D �cris and we will work
with it through the next two sections.

Corollary 7.10. Let V be a symmetric filtered-CM-space, �V be the corresponding
period (Definition 7.7) and � as in Theorem 7.8. Then �V � �.�V / 2 F �0 belongs to
NF=F0.F

�/ if and only if the non-negative integerX
�;n��0

n�

is even, where the sum is taken over all � 2 � such that n� � 0.

Proof. Recall that the group F �0 =NF=F0.F
�/ has cardinality two (Theorem 6.4). By

construction the map V 7! �V from symmetric filtered-CM-spaces to B�cris;F is multi-
plicative on tensor products. In particular, the statement is stable under tensor product,
hence it is enough to check it on tensor generators. By Remark 7.5 it is enough to



G. Ancona and A. Marmora 642

show the statement for the fundamental filtered-CM-spaceF.�/, which is Theorem 7.8
above.

Remark 7.11. By construction, the integer �
P
�;n��0

n� is the minimum of the
Hodge polygon of the filtered '-module associated with the symmetric filtered-CM-
space V of Corollary 7.10 above.

8. Characterization of p-adic periods

In (7.7.1) we defined a period � in Bcris;F , which we called the fundamental period.
The goal of this section is to give some properties of � as element of Bcris;F which are
enough to characterize it up to a constant in F �, see Propositions 8.7 and 8.8.

We keep the same notation as in Sections 6 and 7, in particular F is a finite exten-
sion of Qp with ramification index e and residual degree f . Recall that F is endowed
with an involution �WF ! F , whose subfield of fixed points is denoted by F0, which
has not to be confused with the maximal unramified subfield of F , denoted by Fa.
The degree of F over F0 is 2, so ef D 2ŒF0 W Qp�.

We start this section with some preliminary constructions and lemmas, certainly
known to experts, that we recall here for the convenience of the reader. For the nota-
tion on the rings of p-adic periods we refer to Section 2.7.

8.1. Embeddings of p-adic fields

In Sections 6 and 7, we have fixed a Galois closure zF of F and an embedding
�WF ,! zF ; we have then denoted by � the set of Qp-embeddings of F in zF and
by � the embedding � ı � 2 � . From now on, let us consider zF as a subfield of BdR

by choosing an embedding of zF in BdR. We can then identify � to the set of Qp-
embeddings of F in BdR. We will also identify F to its image �.F /� zF � BdR. Since
Fa=Qp is a cyclic unramified extension, every � in � stabilizes Fa and its restric-
tion to Fa is a power of the absolute Frobenius ' of Fa: we will set �jFa D '�.�/

for a unique integer 0 � �.�/ � f � 1. By construction, we have �.�/ D 0. We put
� WD �.�/, it is either 0 or f=2 whether F=F0 is ramified or unramified.

8.2. Some endomorphisms of period rings

We keep the notation of Section 8.1. We denote by Bcris;F the smallest subring of BdR

containing Bcris and F ; cf. Section 2.7 (7); the ring Bcris;F is identified to the image of
the natural map

Bcris ˝Fa F ! BdR:
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Similarly, we will use Bcris; zF , which is isomorphic to Bcris ˝ zFa
zF , where zFa is the

absolute unramified subfield of zF .
We recall that the ring Bcris;F is endowed with an F -linear endomorphism

'f WBcris;F ! Bcris;F ;

defined as 'fcris ˝IdFa IdF , where 'cris is the Frobenius of Bcris; cf. Section 2.7 (8).
Furthermore, every � in � extends to a homomorphism �crisWBcris;F !Bcris; zF , defined
as

�crisWBcris;F D Bcris ˝Fa F
'
�.�/
cris ˝�
������! Bcris ˝ zFa

zF D Bcris; zF ; (8.2.1)

where the product '�.�/cris ˝ � is taken over the inclusion Fa ,! zFa; cf. [7, A.II, §3,
no3, p. 53]. Note that �cris coincides with the inclusion Bcris;F � Bcris; zF as subrings
of BdR. Moreover, although we will not need it in following, it is not difficult to
show that �cris is injective by using the fact that the natural maps Bcris ˝Fa F ! BdR,
Bcris ˝ zFa

zF ! BdR and the Frobenius 'cris are injective.
Finally, the involution � of F also extends to an endomorphism

�crisWBcris;F ! Bcris;F

by putting �cris WD '
�
cris˝'� �. Beware that in general it is not an involution of Bcris;F :

precisely, as follows from Lemma 8.3 below, if F=F0 is unramified, then �2cris D '
f
cris;

if F=F0 is ramified, then �2cris D IdBcris;F .

Lemma 8.3. We keep the notation of Sections 8.1 and 8.2.

(1) For all � in � , we have �cris ı �cris D .� ı �/cris except if F=F0 is unramified
and �.�/ � f=2, as in that case �cris ı �cris D .� ı �/cris ı '

f
cris.

(2) �cris ı '
f
cris D '

f
cris ı �cris.

Proof. Property (2) follows directly by definition:

�cris ı '
f
cris D .'

�
cris ˝ �/ ı .'

f
cris ˝ IdF / D '

�Cf
cris ˝ �

D .'
f
cris ˝ IdF / ı .'�cris ˝ �/ D '

f
cris ı �cris:

Let us prove (1). We have

�cris ı �cris D
�
'
�.�/
cris ˝'�.�/ �

�
ı .'�cris ˝'� �/

D '
�.�/C�
cris ˝'�.�/C� .� ı �/:

IfF=F0 is ramified, then �D 0 and �.� ı �/D �.�/ (cf. Section 8.1) and the statement
is clear. If F=F0 is unramified, then � D f=2: if �.�/ < f=2, the statement is also
clear. Finally, if F=F0 is unramified and �.�/ � f=2, we have

�.�/C f=2 D f C �.� ı �/;
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and so

'
�.�/Cf=2
cris ˝'�.�/Cf=2 .� ı �/ D '

�.�ı�/Cf
cris ˝'�.�ı�/Cf .� ı �/

D .� ı �/cris ı '
f
cris:

Convention 8.4. When there is no risk of confusion we will write abusively � (resp. �,
resp. ') instead of �cris (resp. �cris, resp. 'cris); also, for any � 2 Bcris;F , we will some-
times write �� (resp. ��cris) instead of �.�/ (resp. �cris.�/).

Lemma 8.5 (Colmez). We keep the notation of Sections 8.1 and 8.2, and Conven-
tion 8.4. Let � 2 Bcris;F be an element such that:

(1) for all � 2 � , vdR.�.�// D 0;

(2) 'f .�/ D �.

Then � belongs to F � � Bcris;F .

Proof. This follows from the fundamental exact sequence [13, Lemma 9.25 (SEF3E)].
We briefly recall the argument. By construction Bcris is the localization AcrisŒt

�1� of
Fontaine’s ring Acris, where t is the period of Qp.1/; see Section 2.7 (6). Thus there
exists some integer n � 0, such that

�tn 2 BCcris;F WD Acris ˝W.kF / F:

By evaluating the sequence of [13, Lemma 9.16] in Cp and by multiplying with tn�1,
we get a short exact sequence of Qp-vector spaces

0! F � tn ! .BF /
'fDpnf ‚F

���!

M
�

Cp ! 0;

where BF � BCdR is some ring of periods containing BCcris;F (cf. [13, §8.5]2); and the
map ‚F is given by

‚F W x 7!
�
�.�.xt�nC1//

�
�2�

;

where � WBCdR ! Cp denotes the reduction map and � WBF ! BCdR extends the homo-
morphism �cris of (8.2.1). By hypothesis (2) of the statement, the element x D �tn

belongs to .BCcris;F /
'fDpnf ; we get

‚F .x/ D
�
�.�.�t//

�
�2�

:

By hypothesis (1) of the statement, we have vdR.�.�// D 0 and since

� cris.t/ D '
�.�/
cris .t/ D p

�.�/t;

2The ring BF is the ring BCmax;F in the notation of loc. cit.
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we get ‚F .x/ D 0. Hence, � 2 F ; moreover, � is non-zero otherwise hypothesis (1)
above would fail.

Definition 8.6. An element ˇ in Bcris;F is called a fundamental period if it satisfies
the following properties:

(a) vdR.ˇ/ D 1;

(b) vdR.ˇ
�/ D �1;

(c) for all � 2 �n¹�;�º, vdR.�.ˇ// D 0;

(d) 'f .ˇ/ D ˇ,

where �.ˇ/, 'f , and ˇ� 2 Bcris; zF � BdR are defined in Section 8.2 and Conven-
tion 8.4.

We denote by P � Bcris;F the set of fundamental periods.

Proposition 8.7. The fundamental period � 2 B�cris;F defined in (7.7.1) is a funda-
mental period according to Definition 8.6.

Proof. In this proof let us write V for the fundamental filtered-CM-space F.�/; cf.
Definition 7.7. Let D WD V ˝Qp

zFa be the admissible filtered-'-module correspond-
ing to F.�/ by Lemma 7.2 and Proposition 7.6. Let W be the Galois representation
associated with D, which comes with an identification of Bcris; zF -modules

V ˝Qp Bcris; zF D W ˝Qp Bcris; zF :

In this context, Proposition 6.7 gives vectors v1 2 VF WD V ˝Qp F and v2 2 WF WD
W ˝Qp F and the relation v1 D �v2. By applying � 2 � , we get �.v1/D �.�/�.v2/.
Now, by construction we know that

• for all � 2 � , vdR.�.v2// D 0;

• vdR.v1/ D 1 and vdR.v
�
1 / D �1;

• for all � 2 �n¹�;�º, vdR.�.v1// D 0.

Therefore, we get

• for � D �, v1 D �v2, so vdR.�/ D 1;

• for � D �, v�1 D �
�v�2 , so vdR.�

�/ D �1;

• for � 2 �n¹�;�º, �.v1/ D �.�/�.v2/, so vdR.�.�// D 0.

Finally, by applying 'f to v1 D �v2, since by construction both v1 and v2 are fixed
by 'f , we get

v1 D '
f
D.v1/ D '

f .�/'f .v2/ D '
f .�/v2;

hence 'f .�/ D �.
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Proposition 8.8 (Uniqueness of fundamental periods). Let � 2B�cris;F be as in Propo-
sition 8.7 and P the set of fundamental periods of Definition 8.6, then

P D F � � �:

In particular, all fundamental periods are invertible.

Proof. Since � is invertible in Bcris;F , we can consider the subset ��1P of Bcris;F .
We have to prove ��1P D F �, which is exactly the statement of Lemma 8.5.

Proposition 8.9. Let � 2 Bcris;F be a fundamental period. Then ��� 2 F �0 .

Remark 8.10. For the fundamental period � defined in (7.7.1), the statement of
Proposition 8.9 follows directly from Proposition 6.8. Thanks to Proposition 8.8 the
same is true for any fundamental period. We give below an alternative proof based on
the p-adic properties of the period which does not use quadratic forms.

Proof. In this proof in order to avoid any possible confusion we will write ��cris

instead of ��. First, let us show that the period ���cris 2 Bcris;F satisfies the hypothesis
of Lemma 8.5. For any � in � , we have

�cris.��
�cris/ D �cris.�/ � .�cris ı �cris/.�/;

and by Lemma 8.3 (1), .�cris ı �cris/.�/ is equal to .� ı �/cris.�/ or .� ı �/cris.'
f
cris.�//.

Since 'fcris.�/ D � by property (d) of Definition 8.6, we get

�cris.��
�cris/ D �cris.�/ � .� ı �/cris.�/:

Applying vdR and considering the properties (a), (b) and (c) of Definition 8.6 for �,
we get that ���cris satisfies the property (1) of Lemma 8.5. Let us check property (2)
of Lemma 8.5:

'
f
cris.��

�cris/ D '
f
cris.�/'

f
cris.�

�cris/

D ���cris ;

because 'fcris and �cris commute, cf. Lemma 8.3 (2), and 'fcris.�/ D �. Therefore, by
Lemma 8.5, the period ���cris 2 Bcris;F belongs to F � � Bcris;F . Applying �, we get

.���cris/� D ��cris��
2
cris

D ��cris'2�cris.�/ D �
�cris�;

where � D 0 or f=2 (cf. Sections 8.1 and 8.2); and we again used 'fcris.�/D �. Being
stable under �, the element ���cris 2 F � actually belongs to F �0 .
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9. Lubin–Tate periods and local reciprocity

The goal of this section is the proof of Theorem 7.8, which is given in 9.8. Before
that, we need to relate the fundamental period � of (7.7.1) to the Lubin–Tate periods;
cf. Proposition 9.5 and Corollary 9.7.

We keep the notation of Section 8 and specifically we refer to Sections 8.1 and 8.2,
and Convention 8.4. In particular, recall that F is a p-adic field endowed with non-
trivial involution � and we denoted by F0 the subfield of F of points fixed by �,
whereas we denoted by Fa the absolute unramified subfield of F .

Definition 9.1. Let � be a uniformizer of F . We say that ˛ in Bcris;F is a Lubin–Tate
period (relative to � 2 F ) if

(1) vdR.˛/ D 1;

(2) for all � 2 �n¹�º, vdR.�.˛// D 0;

(3) 'f .˛/ D �˛;

(4) ˛ is invertible in Bcris;F .

Theorem 9.2 (Colmez). There exist Lubin–Tate periods relative to any choice of a
uniformizer � of F .

Remark 9.3. (1) Lubin–Tate periods are constructed in [13, §§9.3–9.5]3, via a direct
computation in periods rings using Lubin–Tate formal groups [34]; see also [12, §2]
and [22, §3.6]. Therefore the action of GF on ˛ 2 Bcris;F is given precisely by multi-
plication with the Lubin–Tate character. We will not need this property, so we did not
mention it in Definition 9.1 above.

(2) To keep this article more self-contained, we recall in Appendix A another
construction of Lubin–Tate periods, relying on the theorem “weakly admissible )
admissible” (cf. [14]) applied to a well-chosen filtered '-module over F , see Defini-
tion A.5.

9.4. Arithmetic Frobenius

Let us denote by yF nr (resp. yF nr
a ) the completion of maximal unramified extension of F

(resp. Fa) and by Gal. yF nr=F / the group of continuous F -automorphisms of yF nr. We
have

yF nr
D yF nr

a ˝Fa F;

3Precisely, cf. [13, Proposition 9.10 and Lemma 9.18]. Note that these periods are con-
structed in Bmax;F , but actually they belong to Bcris;F , since, by Definition 9.1 (3) above, they
belong to 'f .Bmax;F / � Bcris;F .
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which we embed canonically in Bcris;F . By definition, the endomorphism '
f
cris of

Bcris;F , restricted to yF nr, is the arithmetic Frobenius 'f in Gal. yF nr=F /, i.e. the unique
isomorphism of yF nr lifting the map x 7! xq , q D pf , on the residue field.

Proposition 9.5 (Explicit construction of the fundamental period). We assume that
˛ 2 Bcris;F is a Lubin–Tate period, for some uniformizer � 2 F . Then there exists
c 2 . yF nr/� such that c.˛=˛�/ is a fundamental period; see Definition 8.6. Moreover,
c can be chosen as follows:

• if F=F0 is unramified, and � belongs to F0, then c D 1;

• if F=F0 is (totally) ramified, then c satisfies

'f .c/ D
��

�
c; (9.5.1)

where 'f 2 Gal. yF nr=F / is the arithmetic Frobenius; see Section 9.4 above.

Proof. The Lubin–Tate period ˛ is invertible in Bcris;F , so is �cris.˛/. Consider the
period

˛

˛�
WD ˛ � �cris.˛/

�1
2 Bcris;F :

First let us show that ˛=˛� satisfies properties (a), (b) and (c) of Definition 8.6; then,
we will multiply it by a well-chosen constant c in yF nr in order to get property (d) of
Definition 8.6. Since, for every � in � ,

�cris. yF
nr/ D yF nr

� Bcris; zF \ BCdR;

normalizing the period by a non-zero constant in yF nr will not change the first three
properties.

As ˛ is a Lubin–Tate period, by using Definition 9.1, we get the following:
(a) vdR.˛=˛

�/ D vdR.˛/ � vdR.�cris.˛// D 1 � 0 D 1.
(b) vdR.�cris.˛=˛

�//D vdR.�cris.˛//� vdR.�
2
cris.˛//D �vdR.�

2
cris.˛//. Since �2cris

is either IdBcris;F or 'fcris (cf. Section 8.2) and 'fcris.˛/ D �˛, we get

�vdR.�
2
cris.˛// D �1:

(c) For every � in �n¹�;�º, we have

vdR

�
�cris

� ˛
˛�

��
D vdR.�cris.˛// � vdR

�
�cris.�cris.˛//

�
D �vdR

�
�cris.�cris.˛//

�
;

as � 6D �. By using Lemma 8.3 (1), the period �cris.�cris.˛// is either

.� ı �/cris.˛/ or .� ı �/cris.'
f
cris.˛// D .� ı �/cris.�˛/ D �.�

�/.� ı �/cris.˛/:
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As �.��/ 2 zF � Bcris; zF \ BCdR and � ı � 6D �, we have, in both cases,

vdR
�
�cris.�cris.˛//

�
D 0

by Definition 9.1 (3).
Finally, we need to check property (d) of Definition 8.6. As �� and � have the

same valuation (one), we have ����1 2 O�F . In particular, the equation

'f .c/

c
D
��

�

has a solution c 2 . yF nr/�; see for example [38, Ch. V, §2, Lemma (2.1)]. Note that
if F=F0 is unramified and � is in F0, we can take c D 1. We finish by computing

'
f
cris

�
c
˛

˛�cris

�
D 'f .c/

'
f
cris.˛/

'
f
cris.�cris.˛//

D c
��

�

'
f
cris.˛/

�cris.'
f
cris.˛//

D c
��

�

�˛

.�˛/�cris
D c

˛

˛�cris
;

where we used 'fcris.˛/ D �˛ and Lemma 8.3 (2).

Remark 9.6. If F=F0 is tamely ramified, we can choose a uniformizer � 2 F , such
that �� D �� and the constant c can be chosen in a quadratic unramified extension
of F , such that 'f .c/ D �c. In general, the constant c is algebraic over F if and
only if its orbit under Gal. yF nr=F / is finite. Since 'f is a topological generator, the
relation (9.5.1) implies that c is algebraic if and only if ����1 is a root of unity. When
the break of the ramification filtration of Gal.F=F0/ is large, it may happen that for
any choice of a uniformizer � in F , ����1 is never a root of unity (e.g. F D Q2.�8/

and F0 D Q2.�4/, where �8 is a primitive 8th-root of unity and �28 D �4).

Corollary 9.7. Let � be a fundamental period in Bcris;F , then

� 2 F � � c
˛

˛�
;

with c and ˛ as in Proposition 9.5.

Proof. This is an immediate consequence of Propositions 8.8 and 9.5.

9.8. Proof of Theorem 7.8

Let � 2 B�cris;F be the fundamental period defined in (7.7.1). By Proposition 8.7, it
is a fundamental period in the sense of Definition 8.6. By Proposition 8.9 (or by
Proposition 6.8), the period ��� belongs to F �0 . By Remark 7.9 (2), it is enough to
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prove that ��� does not belong to NF=F0.F
�/, for � D �cris, the endomorphism of

Bcris;F defined in Section 8.2.
By Corollary 9.7, we have � D bc.˛=˛�/, for some b 2 F �, a Lubin–Tate period

˛ 2 B�cris;F and c 2 yF nr as in Proposition 9.5. Considering that bb� DNF=F0.b/ 2 F
�
0

is a norm we can suppose bD 1. Following Proposition 9.5, we need to treat separately
two cases, depending on whether the extension F=F0 is unramified or ramified.

(1) Assume that the extension F=F0 is unramified. We have �2cris D '
f ; cf. Sec-

tion 8.2. Choose � in F0 so that we can have c D 1; cf. Proposition 9.5. We get

��� D
˛

.˛�/

˛�

.˛�/�
D

˛

.˛�/�
D

˛

'f .˛/
D

˛

�˛
D
1

�
:

Since F=F0 is unramified every norm has even valuation in F0, hence ��� cannot be
a norm.

(2) Assume that the extension F=F0 is (totally) ramified. In particular, the endo-
morphism �cris of Bcris;F is an involution; cf. Section 8.2. We get

��� D c
˛

.˛�/
c�

˛�

.˛�/�
D cc� D N yF nr= yF nr

0
.c/;

where the last equality follows given that the restriction of �cris to

yF nr
D yF nr

a ˝Fa F � Bcris;F

is the unique non-trivial element in Gal. yF nr= yF nr
0 /. Let

.�; F=F0/WF
�
0 ! Gal.F=F0/

be the local reciprocity map. The equation 'f .c/c�1 D ����1 from (9.5.1) fits
exactly the hypothesis of a theorem of Dwork (cf. [41, Ch. XIII, §5, Corollary of
Theorem 2]); whence we get�

N yF nr= yF nr
0
.c/; F=F0

�
D �

�1
D �:

Since � 6D IdF , that exactly means that N yF nr= yF nr
0
.c/ 2 F �0 is not a norm, i.e. it does

not belong to NF=F0.F
�/, and that finishes the proof.

Remark 9.9. For � D �cris, the proof above, as all the statements of this section, does
not use that � is coming from a CM-quadratic space (cf. Definition 6.1), but only the
properties of Definition 8.6; see also Remark 8.10.

10. Proof of the main theorem

We now put all the ingredients together to prove Theorem 3.2.
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Proof of Theorem 3.2

By Proposition 4.5, the result is reduced to a p-adic statement. In particular, following
Proposition 4.7, it is enough to study the p-adic étale realization and the Frobenius
invariant part of the crystalline realization of the motiveM . By this same proposition,
this pair of quadratic spaces is an orthogonal supersingular pair, in the language of
Definition 5.1. We can reformulate Proposition 4.5 using Definition 5.4: we have to
show that our orthogonal supersingular pair is good (see also Remark 4.6).

These two quadratic spaces are endowed with the action of F ˝Q Qp , where F
is the number field given by hypothesis. By Proposition 5.6 we can use the action of
F ˝Q Qp to decompose the two quadratic spaces and study them separately. More
precisely it is enough to study the case where the two quadratic spaces are endowed
with an action of a p-adic field (which is a factor of F ˝Q Qp) and is stable by the
involution � induced by F . By abuse of notation we will denote such a p-adic field
again by F .

We have now an orthogonal supersingular pair endowed with an action of a p-
adic field. Both quadratic space are now CM-quadratic spaces with respect to F in
the sense of Definition 6.1. We can now apply Proposition 6.7 to our two quadratic
spaces and to the ring B D Bcris;F . This constructs a period � 2 B�, well defined up
to multiplication by an element of F �.

By Proposition 6.8 applied to the endomorphism � D �cris defined in Section 8.2,
the two orthogonal spaces are isomorphic if and only if � � �.�/ lies in the group of
norms NF=F0.F

�/. By Corollary 7.10, this norm condition is equivalent to the fact
that the minimum of the Hodge polygon of the underlying filtered '-module is an
even number (see also Remark 7.11). Altogether we have that the two orthogonal
spaces are isomorphic if and only if the minimum of the Hodge polygon is even. By
Lemma 5.5 this means precisely that the pair is good.

Remark 10.1. Note that Corollary 7.10 is a consequence of Theorem 7.8 whose proof
is the object of Sections 8 and 9.

A. Lubin–Tate filtered '-modules

Lubin–Tate periods were constructed by Colmez in [13], via a direct construction
based on Lubin–Tate’s formal group law [34]. The goal of this appendix is to present
to the reader an alternative construction of these periods as self-contained as possible.
Beyond [13], there is a vast literature for the p-adic representations associated with
Lubin–Tate groups and their periods; cf., for example, [6, 12, 22, 32].
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Let � be a uniformizer of a p-adic field F . The plan is the following:

(1) Describe concretely a filtered '-moduleDD .D;'� ;Fil�.DF // over F using
only semi-linear algebra data, see Definitions A.1 and A.5.

(2) Show thatD is weakly-admissible, see Proposition A.6; and hence admissible
by [14].

(3) Show that a Lubin–Tate period as in Definition 9.1 appears as period ˛ D ˛�
of D; see (A.9.1) and Proposition A.12.

(4) Relate ˛ to Colmez’ original construction, hence D to the Galois representa-
tion given by the Lubin–Tate character; see Proposition A.14.

In this appendix we do not assume anymore that F is endowed with a non-trivial
involution. Keep the notation of Sections 2.2 and 2.7. In particular, recall that we
denoted by Fa the absolute unramified subfield of F , which has degree f over Qp .
Let E�.x/ 2 FaŒx� be the minimal (monic) polynomial of � over Fa, which is an
Eisenstein polynomial of degree e.

Definition A.1 (The '-module). Let us define a filtered '-module: we set

D WD .Fa/
ef ;

as Fa-vector space and we endow it with the semi-linear Frobenius '� WD!D given,
in the canonical basis C WD .e1; : : : ; eef /, by the block matrix

A WD

 
0 C

Ie.f �1/ 0

!
2 Mef .Fa/; (A.1.1)

where Ie.f �1/ 2 Me.f �1/.Fa/ is the identity matrix, 0 stands for the zero (rectan-
gular) blocks, and C 2 Me.Fa/ is the companion matrix of the minimal polynomial
E�.x/ of � .

Lemma A.2. The following statements hold.

(1) The '-module .D; '�/ is endowed with an F -action, i.e. a linear action of F
on the Fa-vector space D which commutes with '� .

(2) The action of � 2 F is equal to the action of 'f� on D.

Proof. Let us define an F -action on the '-module D. For any square matrix M 2
Me.Fa/, we denote by 'Fa.M/ the matrix on which the Frobenius 'Fa is applied to
all entries. We then define the diagonal block matrix

zM WD Diag
�
M;'Fa.M/; : : : ; '

f �1
Fa

.M/
�
2 Mef .Fa/; (A.2.1)

where the diagonal blocks are the matrices 'iFa.M/, for i going from 0 to f � 1. The
Fa-linear map D! D given by zM in the canonical basis C of D commutes with the
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(semi-linear) Frobenius '� if and only if

zMA D A'Fa.
zM/;

by Definition A.1. It is elementary to check that this holds exactly whenM commutes
with the matrix C from (A.1.1). Since C is cyclic, its commutator in Me.Fa/ is pre-
cisely FaŒC � Š F . This gives an Fa-linear F -action on the '-module D and proves
the statement (1) above.

We can now prove (2). First, note that by construction the action � 2 F is given
by the matrix zC from (A.2.1), since C is the companion matrix of the minimal poly-
nomial of � .

Now, since '� is semi-linear, its f power 'f� is Fa-linear and it is given in the
canonical basis by the (twisted) product

A � 'Fa.A/ � � �'
f �1
Fa

.A/: (A.2.2)

An elementary computation shows that the product (A.2.2) is equal to the diagonal
block matrix

Diag.C; 'Fa.C /; : : : ; '
f �1
Fa

.C // 2 Mef .Fa/; (A.2.3)

which is the matrix zC from (A.2.1). As remarked above this shows exactly that 'f�
acts as � .

Remark A.3. By construction we have two field actions on D: the (left) F -action
defined in Lemma A.2 (1), which does commute with the Frobenius; and another one
of Fa via its original structure of Fa-vector space, which does not commute in general
with the Frobenius. To distinguish them, we denote the latter as a right action as we
did in Proposition 6.5. Those actions clearly coincide on Qp � F , hence D is an
F ˝Qp Fa-module.

Lemma A.4. The following statements hold.

(1) The F ˝Qp Fa-module D is free of rank one.

(2) SetDF WDD˝Fa F . It is a free F ˝Qp F -module of rank one. In particular,
there is a uniqueF -lineW �DF , where the rightF -structure ofDF coincide
with the left one.

Proof. Statement (2) follows directly from (1). (In particular, the uniqueness of the
line W comes from the fact that DF has rank one).

Let us show thatD is free of rank one. Indeed the ringR WDF ˝Qp Fa is a product
of fields, so the moduleD splits as a product of vector spaces on those fields. We claim
that those vector spaces have all the same dimension, thus D is free as R-module
by [8, AC.II, §5.3, Proposition 5, p. 113]; furthermore, since ŒF W Qp� D dimFa.D/,
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the rank of D must be one. Let us prove the claim. It follows from the fact that D is
endowed with a Frobenius: if we twist the action ofFa onD by the absolute Frobenius
of Fa, then the Frobenius '� of D induces an R-linear isomorphism

ˆ� W'
�D WD D ˝' Fa ! D;

mapping m˝ a to '�.m/ � a. Since F � Fa and Fa=Qp is a Galois extension with
Galois group generated by ', we see that the ring R splits exactly as a product of f
fields (all abstractly isomorphic to F ); thus the Frobenius IdF ˝ ' acts transitively
on Spec.R/ as an f -cycle. Therefore, the claim follows from the existence of the
isomorphism ˆ� .

Definition A.5 (The filtered '-module). Let us define a filtration onDF DD˝Fa F .
We set

Fili .DF / WD

8̂̂<̂
:̂
DF if i � 0;

W if i D 1;

0 if i � 2;

where the F -line W is constructed in Lemma A.4 (2). The datum

D� WD .D; '� ;Fil�.DF //

altogether with the F -action, defined in Lemmas A.2–A.4, form a filtered '-mod-
ule D� over F with F -coefficients (cf. [9]4) that we call the Lubin–Tate filtered '-
module associated with � 2 F . We may denote it D for brevity.

Proposition A.6. The Lubin–Tate filtered '-module D is admissible. Its Newton and
Hodge polygons are given as in Figure 1.

���������

�
�
�r r

r
0

1

ef � 1 ef

?

Newton

� Hodge

Figure 1. Newton and Hodge polygons of the Lubin–Tate filtered '-module.

Proof. By the definition of the filtration, the Hodge–Tate slopes are: the slope zero
with multiplicity ef � 1 and the slope one with multiplicity one. Let us compute the
Newton slopes. The slope of the Frobenius '� are equal to the slopes of 'f� divided

4In their definition, set N WD 0 as monodromy operator.
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by f ; cf. [30, §2.1.3]. Since 'f� is an Fa-linear endomorphism of D, its slopes are
given by the p-adic valuation of the eigenvalues of 'f� , where the p-adic valuation v
is normalized by v.F �a / D Z; cf. loc. cit. The eigenvalues of the matrix (A.2.3) are
the eigenvalues of the diagonal block matrices 'iFa.C /. The matrix 'iFa.C / is the
companion matrix of the polynomial 'iFa.E�.x// 2 FaŒx� and its eigenvalues are the
roots of it. For any i , this is an Eisenstein polynomial of degree e; whence, by using
the theory of the Newton polygon (for polynomials with coefficients on local fields,
cf. [16, Ch. I, §6, Theorem 6.1]), we get that all the roots of 'iFa.E�.x// have the
same valuation 1=e. Therefore, the Frobenius '� has only one slope, equal to 1=ef ,
with multiplicity ef , and the '-module D must be absolutely irreducible: indeed
its Newton polygon does not meet points with integral coordinates, except for the
vertexes .0; 0/ and .ef; 1/, see the picture above. Finally, the Newton polygon of D
has the same height as the Hodge polygon and lies above it; by irreducibility there
are no non-trivial submodules; thus D satisfies the condition of weakly admissibility.
Therefore, it is admissible by [14].

Remark A.7. The '-module D is actually an Fa-form of the irreducible '-module
of slope 1=ef over yF nr, in the Dieudonné–Manin classification; cf., for example, [30,
Theorem 2]. Here yF nr denotes the completion of maximal unramified extension of F .
Its endomorphisms as a '-module form the central division algebra over Qp with
invariant 1=ef (cf. [40, Chapitre VI, §3, Lemma 3.3.2.2]); whereas its endomor-
phisms as a filtered '-module gives the maximal abelian subfield F of this algebra.

A.8. Contravariant Fontaine formalism

Before attaching a period to D, let us recall the contravariant Fontaine formalism;
see [20, §5.3.7]. Set

V _cris.D/ WD Homfil-'-mod.D;Bcris/;

where the morphisms are taken in the category of filtered '-modules over F ; cf. [20,
§4.3.3] The Qp-vector space V _cris.D/ is a crystalline representation of GF which is
of dimension ef over Qp , since D is admissible. Moreover, it is endowed with an
action of F , thus it is an F -vector space necessarily of dimension one.

A.9. Definition of the period

Keep previous notation; moreover, we use the notation of Sections 8.1 and 8.2, except
that we are not assuming anymore that F is endowed with a non-trivial involution.

Let us attach a period ˛� toD DD� . Any morphism x 2 V _cris.D/ can be seen as
the element

xF WD x ˝ � 2 D
_
dR WD HomF .DF ;BdR/;
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where �WF ,! BdR is the embedding fixed in Section 8.1. It is clear by construction
that for every x 2 V _cris.D/, we have xF .DF /� Bcris;F \BCdR. Let us choose a basisw
of the lineW D Fil1.DF / over F and a basis x 2 V _cris.D/ over F . We define a period

˛� WD xF .w/ 2 Bcris;F \ Fil1BdR: (A.9.1)

It does not depend on the choices of w and x up to a constant in F � and we call it
the period associated with the filtered '-module D� . We will see in Proposition A.12
that it is a Lubin–Tate period.

A.10. A basis of eigenvectors

Recall from Section 8.1 that we have denoted by zF � BdR the Galois closure of F
and by � the set of Qp-embeddings of F in zF . For any � 2 � , consider the map

'�.�/� ˝ � WD ˝Fa F ! D ˝Fa
zF ;

and setw� WD .'
�.�/
� ˝ �/.w/ 2D zF WDDF ˝F

zF , wherew is the basis of Fil1.DF /
chosen in (A.9.1). We have w� 6D 0 since w 6D 0 and '�.�/� ˝ � is injective. By defi-
nition of �, we get w� D w ˝ 1.

Lemma A.11. For any z 2 F and d 2 D zF D D ˝Fa zF , denote by z.d/ the action
induced by the action of F on D and by d � z the action by multiplication by the
scalar z 2 zF on the right. Let w� 2 D zF be the element defined in Section A.10. The
following are true.

(1) For every � 2 � , we have 'f� .w� / D �.�/w� .

(2) For every � 2 � and for every z 2 F , we have z.w� / D w� � �.z/.

(3) The family .w� /�2� forms a basis of D zF as vector space over zF .

Proof. The proof of (1) is a formal argument:

'f� .w� / D
�
'fC�.�/� ˝ �

�
.w/ D

�
'�.�/� ˝ �

��
'f� .w/

�
D
�
'�.�/� ˝ �

�
.�w/ D �.�/w� :

Let us prove (2):

z.w� / D z
�
.'�.�/� ˝ �/.w/

�
D
�
z'�.�/� ˝ �

�
.w/

D
�
'�.�/� z ˝ �

�
.w/ D

�
'�.�/� ˝ �

�
.z.w//;

since the F -action on D commutes with '� by construction. Now by definition of w,
we have z.w/ D w � z, hence we finish by�

'�.�/� ˝ �
�
.z.w// D

�
'�.�/� ˝ �

�
.w � z/ D w� � �.z/:
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Point (3) follows from (2): the w� are eigenvectors of multiplicity one diagonalizing
the left action of F on D zF .

Proposition A.12. Let � 2 F be a uniformizer and D the associated Lubin–Tate
filtered '-module from Definition A.5. Then the element ˛ WD ˛� 2 Bcris;F \ Fil1BdR

associated with it in (A.9.1) is a Lubin–Tate period relative to � 2 F in the sense of
Definition 9.1.

Proof. We compute

'
f
cris.˛/ D

�
.'
f
cris ˝ IdF / ı .x ˝ �/

�
.w/

D
�
.x ˝ �/ ı .'f� ˝ IdF /

�
.w/

D .x ˝ �/.w � �/ D �˛;

so condition (3) of Definition 9.1 holds.
Let us check the other properties of Definition 9.1. By construction vdR.˛/ � 1

and, for all � 2 �n¹�º, we compute

�cris.˛/ D
�
.'
�.�/
cris ˝ �/ ı .x ˝ �/

�
.w/

D
�
.x ˝ Id zF / ı .'

�.�/
� ˝ �/

�
.w/ D .x ˝ Id zF /.w� /; (A.12.1)

and in particular vdR.�cris.˛// � 0, since .x ˝ Id zF /.D zF / � Bcris; zF \ BCdR.
Let us define

P WD
Y
�2�

�cris.˛/ 2 Bcris; zF : (A.12.2)

We claim the following:

(1) P belongs to Bcris;F ;

(2) P is invertible in Bcris;F ;

(3) vdR.P / D 1.

These claims conclude the proof. Indeed the equalityX
�2�

vdR.�cris.˛// D vdR.P / D 1

implies that the inequalities we have shown above on the vdR.�cris.˛// must be equal-
ities. Moreover, ˛ is invertible in Bcris;F , since it divides P which is invertible.

Let us first prove claim (1). Consider the Galois group G WD Gal. zF=F 0/, where
F 0 WD zFaF . Let G act on Bcris; zF D Bcris ˝ zFa

zF as the identity on Bcris and via its
natural action on the right. By its very construction P is stable under G, hence it
belongs to

.Bcris; zF /
G
D Bcris;F 0 D Bcris ˝ zFa

zFaF D Bcris ˝Fa F D Bcris;F :
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In order to show claims (2) and (3), consider the determinant � of the filtered
'-module D:

� WD detFa.D/ D
ef^
D:

It is admissible of slope one (both Newton and Hodge), hence V _cris.�/ is a rank one
crystalline representation of Hodge–Tate weight one. To conclude, it is enough to
show that, up to a constant in F �, P is the period ı 2 B�cris of �.

The left F -action on V zF WD V
_

cris.D/˝Qp
zF decomposes the element x ˝ Id zF as

a sum of eigenvectors
x ˝ Id zF D

X
�2�

x� :

By Lemma A.11 (3), .w� /�2� is a basis of D zF , and similarly .x� /�2� is a basis
of V zF . We have x� .w� /D 0 whenever � 6D � , because x� and w� live in eigenlines of
different eigenvalues. Hence, up to a constant u in zF �, we can compute the period ı
by using these bases, as

uı D
Y
�2�

.x� ˝ Id zF /.w� / D
Y
�2�

.x ˝ Id zF /.w� /;

which is equal to P by (A.12.1). Finally, by claim (1) the constant u must belong
to F �.

Remark A.13. The period ı of� can be computed directly by taking the determinant
of the matrix A of (A.1.1). This leads to a finer expression of P as

P D uc�t 2 B�cris;F ;

where u 2 F �, t is the period of Qp.1/ (cf. Section 2.7 (6)), and c� 2 W.xFp/� is
the period of an unramified character �WGF ! Z�p . Notice that such a period c� lies
in W.xFp/� � B�cris since the cohomology group H 1.GkF ; W.

xFp/�/ is trivial by [43,
III-33 Lemma].

More precisely, the period c� can be chosen in W.xFp/�, up to an invertible in Zp ,
as the solution of the equation

'.c�/

c�
D

detA
p

;

which exists by [38, Ch. V, §2, Lemma (2.1)] since detA is a uniformizer of W.kF /.
Furthermore, notice that the action of the Frobenius 'f of Bcris;F on P is easy to

compute as
'f .P / D NF=Qp .�/P:
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Proposition A.14. Let � 2 F be a uniformizer and D the associated Lubin–Tate
filtered '-module, from Definition A.5. Then the crystalline representation V _cris.D/ is
given by the Lubin–Tate character associated with � 2 F .

Proof. Let F be a Lubin–Tate group over OF associated with � . Let T be its Tate
module, given by the Lubin–Tate character  WGF ! O�F ; set V WD T Œ1=p�. We want
to show that V _cris.D/ D V . Colmez constructs an element tF 2 Bcris;F , satisfying
Definition 9.1 and such that for every g 2 G, we have

g.tF/ D  .g/tF I

see, for example, [22, §3.6].
Let ˛D ˛�2B�cris;F be the Lubin–Tate period in Proposition A.12. By Lemma 8.5,

the period tF˛�1 belongs to F �, whence for every g 2 GF , we also have

g.˛/ D  .g/˛:

The map
V _cris.D/! Bcris;F ;

defined by x 7! .x ˝ �/.w/, is GF -equivariant by definition of the action of GF
on V _cris.D/ and it is F -linear by definition of w; cf. (A.9.1). Therefore, this map
identifies V _cris.D/ to F � ˛ � Bcris;F and that completes the proof.

Remark A.15. The representation V _cris.D/ is an example of F -crystalline represen-
tation; cf. [32, Introduction]. For a more general construction relating F -crystalline
representations to their filtered '-modules, see [32, §(3.3)] and [11, §4.1].
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