
Elemente der Mathematik 80 (2025), 166–169
DOI 10.4171/EM/537

© 2024 Swiss Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Short note Generalizations of the Gandhi formula
for prime numbers
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1 Introduction

We shall need the Möbius function �.n/, which is one of the more important arithmetic
functions. The Möbius function is defined as follows: �.1/ D 1; if n is the product of r
distinct primes, then �.n/D .�1/r , and if the square of a prime divides n, then �.n/D 0.
We shall need the following well-known property of the Möbius function:X

d jn

�.d/ D

´
1 if n D 1;
0 if n > 1:

Let Pn�1 D p1p2 � � �pn�1. In 1971 [1] ([3, pages 182–183]), Gandhi proved the fol-
lowing formula for pn in terms of the former primes p1; p2; : : : ; pn�1:
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��
: (1)

Gandhi also proved that pn is the only integer such that

1 < 2pn
�
�
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X
d jPn�1

�.d/

2d � 1

�
< 2: (2)

In 1972 [4] ([3, pages 182–183]), a short and simple proof of Gandhi’s formula was given
by Vanden Eynden.

In 1974 [2] ([3, pages 184–185]), Golomb gave another short and simple proof of
Gandhi’s formula. He described it as being the sieve of Eratosthenes performed on the
binary expansion of 1, namely 1 D 0; 11111 : : : .

In this note, we generalize Gandhi’s formula replacing 2 by any positive integer k � 2.
In our main Theorem 2, we follow Vanden Eynden’s proof.

Golomb’s proof also works in this generalization if we assign to each positive integer
n the weight W.n/ D k�n. Golomb in his proof used the weight W.n/ D 2�n, since he
worked with k D 2.
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2 Main results

An almost direct consequence of Gandhi’s formula is following theorem.

Theorem 1. Let dn D pn � pn�1 and n > 2. Then dn is the even number between the two
numbers bAc and bAc C 1, where
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Proof. Gandhi’s formula (1) can be written in the form
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Therefore, pn C "1 D pn�1 C "2 CA, where 0 � "1 < 1 and 0 � "2 < 1. It is well known
that bxc C byc � bx C yc � bxc C byc C 1. Hence we have

pn�1 C bAc � pn � pn�1 C bAc C 1;

that is,
bAc � dn D pn � pn�1 � bAc C 1:

This concludes the proof of the theorem.

The following theorem is our main result. The proof follows very closely the proof of
Vanden Eynden.

Theorem 2. Let k � 2 be a positive integer. Then the following formulas hold:
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Proof. We put Q D Pn�1 D p1p2 � � �pn�1, pn D p and

S D
X
d jQ

�.d/

kd � 1
:

Therefore, we get

.kQ � 1/S D
X
d jQ
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Q�1X
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t ;

where at D
P
d jgcd.t;Q/�.d/; in particular, for t D 0, this is equal to

P
d jQ �.d/. Conse-

quently, by well-known properties of the function �, we have
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Hence
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that is,
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k
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� 2: (9)

This proves equation (4). Equation (5) is an easy consequence of equation (4). Equation (6)
is an easy consequence of equation (9), since k

k�1
! 1 as k!1. Equation (7) is an easy

consequence of equation (6). Equation (8) can be proved as in Theorem 1 and by using
equation (7).
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