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Short note On the equation x=y C y=z C z=x D 4m

Nguyen Xuan Tho

Abstract. We provide an elementary proof that the equation in the title has no solu-
tions in the positive integers. This extends recent work of the author [Elem. Math. 78
(2023), 168–170] from m D 1 to arbitrary positive integers m.

1 Introduction

Spierpiński [2, page 80] remarked that it was not known if the equation
x

y
C

y

z
C

z

x
D 4 (1)

has solutions in the positive integers. Erik [1] showed that the equation

a3
C b3

C c3
D nabc (2)

has no solutions in the integers except a D b D c D 0 for several values of n, including 4.
By the substitution x D a2b, y D b2c, z D c2a, equation (1) transforms into equation (2).
Then it follows from Erik’s work that equation (1) has no solutions in the integers. How-
ever, Erik used a fair amount of algebraic number theory, and an elementary argument to
Spierpiński’s remark is desirable. This was done by the author [3]. The modern approach
to the equation
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D n (3)

is to transform it into an elliptic curve. By cyclic permutations of .x; y; z/, we can assume
that x � z. From (3), we have�x
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Multiplying both sides of (4) with 16x2=z2 gives�4x.xz � y2/

yz2
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:

Note that x � z, so �4x=z � �4. Therefore, a solution .x; y; z/ of (3) in the positive
integers with x � z gives a rational point

.X; Y / D
�
�4x

z
;

4x.xz � y2/

yz2

�
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on the elliptic curve
Y 2
D X3

C .nX C 4/2 (5)

with X � �4.
Conversely, assume that .X; Y / is a rational point on (5) with X � �4. Let8̂̂̂̂

<̂̂
ˆ̂̂̂:

A D �
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(6)

Then

ABC D �
1

X

��
nC

4

X

�2

�
Y 2

X2

�
D �

.nX C 4/2 � Y 2

X3

D 1 .since Y 2
D X3

C .nX C 4/2/:

Since X ��4, it is clear from (6) that 0 < A� 1. Since ABC D 1, it follows that BC > 0.
In addition, since X � �4 and n � 1, we have

B C C D nC
4

X
� 0:

So B; C are positive. Thus, A; B; C are positive rational numbers satisfying

ABC D 1: (7)

From (6), we have
AC B C C D n: (8)

By writing A D z=x, B D x=y, where x; y; z are positive integers, then (7) forces
C D y=z. By (8), .x; y; z/ is a solution of (3) in the positive integers. Since A � 1, we
have x � z. So a rational point .X; Y / on (5) with X � �4 gives a solution .x; y; z/ of (3)
in the positive integers with x � z.

The goal of this note is to extend the argument in [3] for the equation in the title from
m D 1 to arbitrary positive integers m � 1, thus providing an elementary argument that
the family of elliptic curves

Y 2
D X3

C .4mX C 4/2; m D 1; 2; 3; : : : ;

has no rational points with X � �4. The main result is the following.

Theorem 1. Let m be a positive integer. Then the equation

x

y
C

y

z
C

z

x
D 4m (9)

has no solutions in the positive integers.
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2 A proof of Theorem 1

The case m D 1 was done in [3], so it suffices to consider m > 1. Assume that there exist
positive integers x; y; z satisfying (9). If xy � z2 D 0, yz � x2 D 0, and zx � y2 D 0,
then xyz D x3 D y3 D z3 so that x D y D z, which does not satisfy (9). So at least one
of xy � z2, yz � x2, and zx � y2 is non-zero. Assume that xz � y2 ¤ 0. From (9), we
have x=y C y=z D 4m � z=x. Hence, 4mx � z > 0. We also have�x
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y
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z.4mx � z/2 � 4x3

x2z
:

Thus, .z.4mx � z/2 � 4x3/=z is a non-zero rational square. Therefore, it follows that
z.z.4mx � z/2 � 4x3/ is a non-zero perfect square. Let d D gcd.x; z/. Let x D da and
z D db, where a; b 2 ZC with gcd.a; b/ D 1. Then d 4b.b.4ma � b/2 � 4a3/ is a non-
zero perfect square. Hence, b.b.4ma � b/2 � 4a3/ is a non-zero perfect square. Note that
4ma � b D .4mx � z/=d > 0. Let

b.b.4ma � b/2
� 4a3/ D f 2; f 2 ZC:

Let k D gcd.b; b.4ma� b/2 � 4a3/. As gcd.a; b/D 1, we have k j 4. Hence, k 2 ¹1; 2; 4º.
Case 1: k D 1. Then

b D r2; b.4ma � b/2
� 4a3

D s2; f D rs; r; s 2 ZC; gcd.r; s/D 1; 2 − s: (10)

Since 4ma � b D 4ma � r2 � 3 .mod 4/ and 4ma � b > 0, there exists a prime divisor p

of 4ma � b such that p � 3 .mod 4/. From (10), we have �4a3 � s2 .mod p/. Therefore,

�4r6
� �4.4ma/3

� �43mC1a3
� 43ms2 .mod p/: (11)

Since p j 4ma � b and gcd.a; b/ D 1, we have p − a, p − r , and p − s. So (11) implies
that �1 is a square mod p, which is impossible since p � 3 .mod 4/.
Case 2: k D 2. Then

b D 2r2; b.4ma � b/2
� 4a3

D 2s2; f D 2rs; r; s 2 ZC; gcd.r; s/ D 1:

Since 2 j b, we have 2 − a. Now

s2
D 4r2.22m�1a � r2/2

� 2a3:

Therefore, 2 j s. So 4 j s2. Thus, 4 j 2a3, which is impossible since 2 − a.
Case 3: k D 4. Then

b D 4r2; b.4ma � b/2
� 4a4

D 4s2; f D 4rs; r; s 2 ZC; gcd.r; s/ D 1:

Then
16r2.4m�1a � r2/2

� a3
D s2: (12)
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Since 2 j b, we have 2 − a. From (12), we have 2 − s. Taking (12) mod 8 gives a � �1

.mod 8/.
Assume the following claim is correct:

there exists a prime divisor p of 4m�1a � r2 such that p � 3 .mod 4/: (�)

Let p be a prime in (�). Since gcd.a; b/D 1, we have p − a, p − r , and p − s. Taking (12)
mod p gives �a3 � s2 .mod p/. Therefore,

�r6
� .�4m�1a/3

� 43.m�1/s2 .mod p/:

Since p − r; s, we have that�1 is a square mod p, which is impossible since p� 3 .mod 4/.
Now we will prove (�).

Case 3.1: 2 − r . Then 4m�1a � r2 � 3 .mod 4/. Since 4m�1a � r2 D .4ma � b/=4 > 0,
there exists a prime divisor p of 4m�1a � r2 such that p � 3 .mod 4/.
Case 3.2: 2 j r . Let r D 2hr1, where h; r1 2 ZC and 2 − r1. Then

4m�1a � r2
D 22.m�1/a � 22hr2

1 : (13)

• h D m � 1. From (13), we have

4m�1a � r2
D 22h.a � r2

1 /:

Since a � �r2
1 � �1 .mod 8/, we have a � r2

1 � �2 .mod 8/. Thus, a � r2
1 D 2t ,

with t � 3 .mod 4/. Since 4m�1a � r2 > 0, we have a � r2
1 > 0. So t > 0. Therefore,

there exists a prime divisor p of t such that p � 3 .mod 4/. Of course, p j 4m�1a� r2.
• h < m � 1. From (13), we have

4m�1a � r2
D 22h.22m�2h�2a � r2

1 /:

Then 22m�2h�2a � r2
1 > 0 and 22m�2h�2a � r2

1 � �1 .mod 4/. Therefore, there
exists a prime divisor p of 22m�2h�2a � r2

1 such that p � 3 .mod 4/. Of course,
p j 4m�1a � r2.

• h > m � 1. From (13), we have

4m�1a � r2
D 22m�2.a � 22h�2mC2r2

1 /:

Then a � 22h�2mC2r2
1 > 0 and a � 22h�2mC2r2

1 � �1 .mod 4/. Therefore, there
exists a prime divisor p of a � 22h�2mC2r2

1 such that p � 3 .mod 4/. Of course,
p j 4m�1a � r2.
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