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1 Introduction

Consider cevians AD, BE, and CF of a triangle ABC (see Figure 1). Denote
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BD| _,  [CE| _

|AF|_
pc| — " EA] T

A,. and =
2 A% pp

As.

Die geometrischen Ungleichungen und die neue Geometrie des Dreiecks sind Fort-
setzungen der klassischen euklidischen Geometrie bis in unsere heutige Zeit. Diese
beiden Zweige der Geometrie treffen manchmal aufeinander, haben aber grosstenteils
unterschiedliche Ansitze entwickelt. Die geometrischen Ungleichungen konzentrieren
sich vermehrt auf Extremalprobleme, bei denen die Verwendung von algebraischen
Ungleichungen und Differentialrechnung im Vordergrund steht. Die neue Geometrie
des Dreiecks befasst sich vorwiegend mit Fragen der Kollinearitdt und Kopunktalitt,
insbesondere mit bemerkenswerten Dreieckszentren. In der vorliegenden Arbeit wird
eine Verbindung zwischen diesen beiden Zweigen der Geometrie gezeigt, indem eine
Verallgemeinerung der Theoreme von Schlomilch und Zetel iiber kopunktale Geraden
im Dreieck mithilfe einer scharfen geometrischen Ungleichung tiber das Verhéltnis
der Dreiecksflichen bewiesen wird. Die Ungleichung selbst wird mithilfe der diskre-
ten Version der Holderschen Ungleichung und des Steiner-Routh-Theorems bewiesen.
Ausserdem wird eine neue scharfe Verfeinerung der Ungleichung von J. F. Rigby be-
wiesen, welche ihrerseits das Mobius-Theorem iiber die Flachen von Dreiecken ver-
allgemeinert, die durch Cevane des Dreiecks gebildet werden.
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Figure 1. Steiner—Routh’s theorem.

Denote also BE NCF = Gy, AD NCF = G,,and AD N BE = G3. There is a result in
geometry known as Steiner—Routh’s theorem which says that
Area(AG1G2G3) _ (111213 — 1)2
Area(AABC) o (AMAz+ A1+ D)(A2A3 + Ay + D)(A3A + A5 + 1)‘

(D

Steiner—Routh’s theorem which is sometimes called just Routh’s theorem was dis-
cussed in many papers and books. See [1, 2], [7, p.276], [8], [10, pp.211, 212], [I1,
pp-41-42], [13, p. 33], [15, p. 382], [16,20,23], [29, p. 89], [30-32], [33, p. 166], [36,37],
and their references. Steiner—Routh’s formula was generalized in many different direc-
tions [6,9, 18,19, 35,40]. There is a peculiar special case called One seventh area triangle
or Feynman’s triangle which corresponds to case A; = A, = A3 = 2 and attracted much
attention because it can also be proved using dissections (see e.g. [17,20], [34, p. 9]). Some
of these sources also mention the following formula:

Area(ADEF) A1AzAs + 1
Area(AABC) (A1 + D(ha+ DAz + 1)

Formulas (1) and (2) generalize Ceva’s (A;A2A3 = 1) and Menelaus’ (114,43 = —1) the-
orems, respectively. In these cases, the areas of AG;G,G3 and ADEF are equal to zero,
which is equivalent to say that cevians AD, BE, and CF are concurrent, and points D, E,
and F are collinear, respectively. In general, the vertices of a triangle do not necessarily
coincide if its area is zero. It is possible that the vertices of the triangle are just collinear.
But this is not possible for AGG,G3, because otherwise points A, B, and C would also
be collinear. In the paper, we will apply this idea to find a new proof for the following
theorem and its generalization.
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Schlomilch’s theorem. The lines connecting the midpoints of the sides of a triangle and
the midpoints of the corresponding altitudes are concurrent.

O. Schlomilch’s theorem was discussed in many papers and books. See for example [3,
pp- 256, 3041, [12, p. 133], [24], [26, pp. 34, 37], [38,41]. In [14, p. 215 (Corollary)], [27,
Problem 5.135], it was mentioned that the point of concurrency in Schlomilch’s theorem
is the Lemoine (symmedian) point of the triangle. In [39], S. 1. Zetel generalized the result
by Schlomilch as follows (see Figure 2).

B

Figure 2. Zetel’s generalization of Schlémilch’s theorem.

Zetel’s theorem. Let the trio of cevians AD, BE, and CF of a triangle ABC be con-
current at point G. Let another trio of cevians AK, BL, and CM of triangle ABC be
concurrent at point H. Denote AK N EF = N, BLN DF = Q,and CM N DE = P.
Then lines DN, EQ, and FP are concurrent.

From the point of view of projective geometry, this generalization is equivalent to
Schlomilch’s theorem. Indeed, by Desarques’ theorem, the intersection points EF N BC,
DF N AC,and DE N AB are on a line. Let us apply a projective transformation sending
this line to infinity. We will continue to use the original notation for their images under
these transformations. This transformation forces EF || BC, DF || AC, DE || AB, and
therefore points D, E, F' are the midpoints of sides BC, AC, AB, respectively. Then apply
affine transformations changing AK and BL to the corresponding altitudes of AABC.
Then CM is also the altitude of A ABC, and therefore we return to Schlomilch’s theorem.
In the current paper, we will obtain Zetel’s generalization of Schlomilch’s theorem and
other similar theorems as corollaries of inequalities about triangular areas in the corres-
ponding configurations. We will prove some of these inequalities using a discrete version
of Holder’s inequality [5, p. 20].
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Holder’s inequality (Discrete case). If x;; (i =1,...,n; j =1,...,m) are non-negative

numbers, p; > 1, and 37, % =1, then
J

S [T = n(zx:;f) : .

i=1j=1 j=1\i=1

Holder’s inequality made it possible to prove the inequalities in the current paper
without any use of calculus.
We also considered the following result by J. F. Rigby [28] (see also [21, p. 340]).

Rigby’s inequality. Let p, q, r, x, and y denote the areas of NAEF, ABFD, ACDE,
ADEF, and AG1G,G3 (Figure 1). Then
x>+ (p+q+r)x*—dpgr >0, 4)

with equality if and only if cevians AD, BE, and CF are concurrent.
The equality case is known as Mobius’ theorem [22, p. 198] (see also [4, p. 95]).

Mobius’ theorem. If cevians AD, BE, and CF are concurrent, then
X3+ (p+q+r)x>—4pgr =0.
In the current paper, we will prove the following refinement of inequality (4):
X34 (p+q+r)x* —4dpqr > x*y. 3)

Interesting inequalities involving the areas in these configurations also appeared in [25].

2 Main results

First, a general sharp inequality about the areas of triangles formed by cevians of a triangle
will be proved. After the proof, its special cases corresponding to concurrent cevians will
be discussed.

Theorem 2.1. Let D and K, E and L, F and M be arbitrary points on sides BC, AC,
and AB, respectively, of a triangle ABC. Denote AK N EF = N, BLN DF = Q,
CMNDE=P,DNNEQ =R, FPNEQ =S,and FP N DN = T. Denote also

|BD| |CE| |AF| | BK | |CL| |[AM |
—_— 1, —_— 2, —_— 3, —_— =M, —_— =U, —_— =W
|DC| |EA| |FB| |[KC| |LA| |MB|

Then
Area(ARST) < (klkzkgﬂlvw - 1)2

< . 6)
Area(ADEF) ™ (3/(hAdsuvw)? + YA dahsuvw + 1)°
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Figure 3. Inequality about the ratio of areas of ARST and ADEF.

Proof. Let O be intersection point of lines AK and CF (see Figure 3). By Menelaus’

theorem,
|BK| |CO| |FA|_

=1.
|[KC| |OF| |AB|
Then
|ICO| 1+ 23
|OF| A3 u’
Similarly, by Menelaus’ theorem,
|[CO| |FN| |EA| _q
|OF| |NE| |AC|
Then
|FN| ulz(1+ 1,)
—_— =
|NE| 1+ 213
Similarly,
|DQ| _ ,3 — vkl(l + 13) |EP| —y = wkz(l +/\1)
|QF| ' 1+ |PD] ' 1+ 2,

By applying formula (1) to ADEF and points N, Q, P on its sides, and noting that ori-
entation has changed, we obtain

Area(ARST) (aBy — 1)?

Area(ADEF)  (ay +a+DBa+B+ DB +y+1)

(7
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By Holder’s inequality (3),

(@y +o+DBa+B+ DB +y+1) = (VeBy? + Japy +1)°, @)
with equality only when ¢ = § = y. From (7) and (8), it follows that
Area(ARST) - (afy — 1)?
Area(ADEF) — (W+ Vapy + 1)3'
Since afy = A1A2Azuvw, (6) follows from (9). The equality case in (6) holds true when

urz(1 4+ Ay) . vA1(1 + A3) . wAz(1 + Aq)
14+ A3 N 1+ A4 B 1+,
In particular, if AjAAsuvw = 1 in (6), then Area(ARST) = 0 and therefore lines

DN, EQ, and FP are concurrent. This generalizes Schlomilch’s theorem even further
(Figure 4).

(€))

Figure 4. Generalization of Zetel’s theorem.

Corollary 2.2. Let D and K, E and L, F and M be points on sides BC, AC, and AB,
respectively, of a triangle ABC. Set AKNEF =N, BLNDF =Q,CMNDE = P.

If
|BD| |CE| |AF| |BK| |CL| |AM| _

|DC| |EA| |FB| |KC| |LA| |MB|
then DN, EQ, and FP are concurrent.

1,

The special case uvw = 1 of Theorem 2.1 is also of interest (Figure 5).



Inequalities about the area bounded by three cevian lines of a triangle 143

C

Figure 5. A new proof of Zetel’s generalization of Schlomilch’s theorem.

Corollary 2.3. Let D, E, and F be arbitrary points on sides BC, AC, and AB, respect-
ively, of a triangle ABC. Let cevians AK, BL, and CM of triangle ABC be concurrent
at point H. Denote AK N EF =N, BLNDF =Q,CMNDE =P, DNNEQ =R,
FPNEQ =S,and FP N DN = T. Denote also

BD E
BD| _,  |CE| _

_ _ 1AF] _
Ipc| ~ "V |EA|

As.  and -
2 A Ep|

As3.
Then
Area(ARST) - (A1AzA3 —1)2
Area(ADEF) = (Onaatan)? + STdads +1)°
Proof. Denote as before

|BK| |CL| and |[AM |
— =u, — =0, — =W
|KC| |LA| |MB)|

Since uvw = 1 (Ceva’s theorem), ¢y = A1A,A43, and therefore the inequality follows
from (6). The equality case holds true when

u—1+A33AIA2 U—1+A13AZA3 w_1+123)tlk3 .
T /\g’ T A3 T A3

Note that if A1A,A3 = 1, then Corollary 2.3 implies Zetel’s generalization of Schlo-
milch’s theorem. Denote BE N CF = G1, AD NCF = G,,and AD N BE = G3. We
can also observe that if H € AG1G,G3, then ARST C AG1G,G3, and therefore

Area(ARST) < Area(AG1G,G3). (10)
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In general, (10) is not always true. For example, if A; = 1, A, = 0.001, A3 = 1, u = %,
v = 2, w = 40, then by (1), (2), and (7),
Area(ARST) A1AzAs + 1
Area(AG1G,G3) (A1 + Do+ DAz + 1)
y (A2 + A1+ DAz + Ao + D(A3d1 + A3 + 1)
(@y+a+DBa+p+DYB+y+1)
~ 1.079 > 1. an

By considering the limiting cases A} = &, Ay = e, A3 =2, u =5, v =&, W = Elz where
& — 0% and ¢ — 400, we can see that the ratio of areas in (11) can be arbitrarily small
and arbitrarily large positive numbers, respectively.

Figure 6. Comparison of areas of ARST and AH1 Hy H3.

Let us now consider the special case A{A,A3 = 1 of the configuration in Theorem 2.1
(G = G = G, = G3, Figure 6). From (7), we obtain
Area(ARST) (uvw — 1)2
Area(ADEF)  (ay+a+DBa+B+Dyf+y+ 1)’

Denote BLNCM = H;, AK N CM = H,, and AK N BL = H3. By equality (1) for
AHyH,Hs3,

12)

Area(AABC)  (wv+u+ Dw+v+ D(wu +w + 1)
Area(AH H>H3) (uvw — 1)2 '

13)
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By multiplying equalities (2), (12), and (13), we obtain

Area(ARST)  (wv+u+ DHvw+v+ D(wu +w+1)

Area(AH H>Hs)  (ay +a+ DBa+B+ DB +y+1)
2

X . 14
M +DA2+DH(A5+1) (14)

We observe that if G € AH{H, H;,then ARST C AHy{H,H3, and therefore
Area(ARST) < Area(AH, H, H3). (15)

In general, (15) is not always true. For example, if Ay = 1, A, = 1, A3 = 1, u = 0.01,
v = 1, w = 20, then by (14),

Area(ARST)
Area(AHl H2H3)

~ 1.19> 1. (16)

By considering the limiting cases Ay = A, = Az =lL,u=¢,v=1,w = giz, where
& — 0% and ¢ — +o00, we can see that the ratio of areas in (16) can be arbitrarily large
and arbitrarily small positive numbers, respectively.

We will now return to the configuration in Figure 1. A.F. Mobius considered areas in
the special case where AD, BE, and CF are concurrent [22, p. 198]. J. F. Rigby’s inequal-
ity (4) generalized this result [28] (see also [21, p. 340]). The following theorem is a further
generalization of these two results.

Theorem 2.4. Let D, E, and F be arbitrary points on sides BC, AC, and AB, respect-
ively, of a triangle ABC. Set BE N CF = G, AD N CF = G3, and AD N BE = G3.
Let areas of NANAEF, ABFD, ACDE, ADEF, and AG1G,G3 be p, q, 1, x, and y
(Figure 1). Then

X2+ (p+qg+r)x%—4pgr > x2y.

Proof. Denote

|BD| |ICE|

|AF|_
Ipc| — " EA]

Ao, d =
2 an |FB|

As.

Then the left side of the inequality can be written as (see [28, p. 115])

(A1A243 — 1)?
(A1 + D22 + 1)2(A3 + 1)2

By (1) and (2), this can also be written as

P+ (p+q+r)n —dpgr = - (Area(AABC))*.

X3+ (p+q+r)x*—dpgr
2, Aids + A1+ D(A2As + A2 + D(A3A + A3+ 1)
Y (A1A243 + 1)2 '

The values of the last fraction change in the interval (1, +00) (consider the limiting case
A1, A2 = 0,0 < A3 < +00), and therefore inequality (5) holds true. [ ]
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Furthermore, from this proof;, it follows that A = 1 is the best constant for the inequality

X2+ (p+q+r)x%—4pgr > Ax?y.

As a problem for further exploration, it would be interesting to prove that, in case uvw = 1
(Corollary 2.3, Figure 5), the vertices of the triangle formed by lines G1 S, G,T, and G3R
are on lines AK, BL,CM.
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