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Generalized triple product p-adic L-functions and
rational points on elliptic curves

Luca Marannino

Abstract. We generalize and simplify the constructions of Darmon—Rotger (2014) and Hsieh (2021)
of an unbalanced triple product p-adic L-function attached to a triple (f, g, h) of p-adic families
of modular forms, allowing more flexibility for the choice of g and h.

Assuming that g and & are families of theta series of infinite p-slope, we prove a factorization
of (an improvement of) such p-adic L-function in terms of two anticyclotomic p-adic L-functions.
As a corollary, when f specializes in weight 2 to the newform attached to an elliptic curve E over
Q with multiplicative reduction at p, we relate certain Heegner points on E to certain p-adic partial
derivatives of the triple product p-adic L-function evaluated at the critical triple of weights (2, 1, 1).

1. Introduction and statement of the main results

1.1. The generalized unbalanced triple product p-adic L-function

Let p > 3 be a rational prime. We fix an algebraic closure Q of Q, an algebraic closure
Q, of Q, together with an embedding ,: Q <> Q,, extending the canonical inclusion
Q — Q. All algebraic extensions of Q (resp. Q) are viewed inside the corresponding
fixed algebraic closures. We extend the p-adic absolute value | - |, on Q, (normalized
so that |p|, = 1/p) to @p in the unique possible way. We denote by C,, the completion
of Q p with respect to this absolute value. It is well known that C,, is itself algebraically
closed. We also fix an embedding too: Q <> C extending the canonical inclusion Q < C
and we often omit the embeddings ¢, and t, from the notation.

Let L/Q, be a finite extension and let A := Or[1 + pZ,] be the corresponding
Iwasawa algebra (@1, being the ring of integers of L). Consider a new, L-rational Hida
family

+00
= an(f)q" € S™ Ny xs. A)

n=1
of tame level Ny (p 4 Ny ) and tame character y s of conductor dividing N¢.
Let also

+o00 oo
g=) an(g)q" €Sa,(M, yg.Rg) and h =) an(h)q" € Say(M. xn, Rn)
n=1 n=1
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be two generalized normalized A-adic eigenforms with y s - xg - xa = ?® for some
integer a, where @ denotes the Teichmiiller character modulo p and Ny | M.

Our notion of generalized A-adic forms takes inspiration from [15, Definition 2.16].
For a precise definition and for the explanation of the notation, we refer to Section 2.
Here, we just mention that we are not imposing any condition on p-slopes and that we
are allowing the rings of coefficients R, and Rj to be complete local noetherian flat A-
algebras (not necessarily finite as A-algebras), having the same residue field as O .

If g and A are Hida families, the works of Darmon—Rotger [15] and Hsieh [25] attach
to the triple (f, g, h) a so-called f -unbalanced square-root triple product p-adic L-
function. It arises as an element

LI(f.g.h) € Rygn := A ®o, Ry ®0, Ru.

whose square interpolates the central values of the triple product L-functions attached to
the specializations of (f', g, h) at f -unbalanced triples of weights.

More precisely, given two primitive Hida families g* and h* of respective tame level
Ng and Np, Hsieh associates to the triple (f, g¥, h") a preferred choice of test vectors
(f*, g* h™) of tame level Nfgp =lcm(N g, Ng, Ni) and then performs the construction
of the p-adic L-function for this choice of test vectors, which grants some control on the
non-vanishing of the local zeta-integrals at primes dividing Nygp appearing in Ichino’s
formula (cf. [27, Theorem 1.1]). In our applications, finding the correct test vector will
not be a problem, so the reader is invited to think of our generalized families g and A
fixed above as test vectors for families of tame level dividing M .

We show in Section 3 that the construction of £ 1’: (f, g, h) can be extended to our
more general setting.

Proposition 1.1 (cf. Definition 3.2, Propositions 3.6 and 3.11). Assume that the residual
Galois representation @f of the big Galois representation Vy attached to f is absolutely
irreducible and p-distinguished. Then there is an element LI{ (f.g.h) € Rygp such that
for every f -unbalanced triple of meaningful weights w = (x, y, z), the following formula
holds:
2 L*(fyxg,xh,, HEm=2
&/ (f i)y = 2L fQr @ . (IT7..).

(M

where:
(1) L™ denotes the completed L-function (including the archimedean local factor);
(ii) Qp, is a suitable period attached to f , essentially given by its Petersson norm;

(>iii) J‘&j‘}’p (resp. J:)’ ¢) 1s a suitable normalized local zeta integral at p (resp. at €).

Remark 1.2. Here we group some observations elucidating the relations between our
construction of £ 1{ (f, g, h) and the existing literature on the subject.

(i)  As already pointed out, we adapt Hsieh’s construction to our setting, following
a method that essentially already appears in [23, Chapters 7 and 8]. The theory
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of generalized A-adic forms developed in Section 2 allows us to simplify the
construction. In particular, we show that the theory of ordinary parts carries
over in this generalized setting (cf. Proposition 2.19) and thus we do not need
to prove the equivalent of [25, Lemma 3.4].

(i)  The (only) novelty of our p-adic L-function consists in allowing g and & to be
generalized families in the sense described above. It should be noted that this is
not so surprising, since the so-called Panchishkin condition continues to hold in
Sfamilies in the f -unbalanced range when f is a Hida family and the families g
and h are more general. We refer to [33] for a more detailed explanation of why
one should expect the existence of such p-adic L-functions. The f -unbalanced
triple product setting fits in this picture, as discussed briefly in [33, Section 5.3].

(iii)) In [17] the author provides a similar generalization of Hsieh’s work to the case
in which g and A are not necessarily Hida families. Yet, Fukunaga’s notion
of general p-adic families of modular forms does not allow our generality for
the rings of coefficients. Moreover, in the framework of [17] one cannot view
the Fourier coefficients of such families as continuous/analytic functions on a
suitable weight space in general.

(iv) It would be interesting to find a way to extend our results to the case where f
is a Coleman family (i.e., to the finite p-slope case), adapting the techniques
of [1] (cf. also the recent preprint [19]). We refer to [33, Section 5.5] for a brief
discussion on this point.

(v)  As already observed, we do not perform a general and careful level adjustment
as in [25]. It is clear that one could mimic Hsieh’s recipe to achieve more gen-
erality in the construction.

(vi) Thanks to the results of the preprint [34] (which affords a canonical choice and
an explicit interpolation formula for the so-called congruence number attached
to a Hida family), the period £2¢_becomes more explicit. We refer to Remark 3.13
for more details.

1.2. Factorization of triple product p-adic L-functions

In the second part of the paper, we discuss some arithmetic applications in the setting that
we now describe.

Assume that p > 5 and let f be a Hida family of tame level Ny with trivial tame
character. Fix K/Q a quadratic imaginary field of odd discriminant —dg and two ray
class characters 7 and 7, of K, that we can view as valued in L.

The following assumptions are in force:

(A) pisinertin K;

(B) Ny is squarefree, coprime to the discriminant of K and with an even number of

prime divisors which are inert in K (Heegner hypothesis);

(C) n; has conductor cp”" Ok, withr > 1 and ¢ € Z>;, (¢, p-dx - Nf) = 1, ¢ not
divisible by primes inert in K.
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(D) n1 and 1, are not induced by Dirichlet characters and the central characters of 7;
and 7, are inverse to each other, so that ¢ = 117, and ¥ = 171§ are ring class
characters of K (here (o) = Gal(K/Q)).

A classical theorem of Hecke and Shimura attaches to the character 1, (resp. 172) a
cuspidal newform g (resp. /) of weight 1, namely the theta series attached to 1y (resp.
n2). In Section 4 we describe how to realize g (resp. &) as the weight 1 specialization
of a p-adic family g (resp. h) of theta series of tame level dx. Note that our notion of
generalized A-adic form is tailored to include families such as g and k& as non-trivial
examples and that the specializations of g (resp. k) will always be supercuspidal at p
(hence of infinite p-slope).

After fixing a choice of test vectors g* (resp. &™) of tame level N 5 -dk - c?, in
Section 5 we define an improved version 11{ (f.g. h) of LIJ; (f,g* h"), satisfying a
simplified interpolation property. This relies on Hsieh’s computations of local zeta inte-
grals (and on Fukunaga’s generalizations of Hsieh’s results in [17]).

Let H, denote the ring class field of K of conductor cp” for every n € Z>¢ and let
Ho be the union of all the H,,’s. Let S := Gal(Hx/K). We can identify the maximal
Zp-free quotient I'™ of G, with the Galois group of the anticyclotomic Z,-extension of
K and there is an exact sequence 0 — A, — Goo — '™ — 0 of abelian groups with A,
a finite group and I'™ = Z,. We fix a non-canonical isomorphism G, = A, x I'” once
and for all.

Then ¢ (resp. ) factors through Goo and we write it as (¢;, @) (resp. (¥, 7))
according to the fixed isomorphism Goo = A, x '™,

Fork € Z>, N2Z, let %CH‘ denote the set of continuous characters V: '™ — (CX such
that the associated algebraic Hecke character v: Ag /K> — C* has infinity type ( ji—=J)
with |j| < k/2.

The main result of Section 5 is the following factorization theorem for the anticyclo-
tomic projection ef{:ac(f ,g,h)of éﬁl{ (f, g, h) (cf. Definition 5.24). This factorization is
a counterpart of [25, Proposition 8.1] (which assumes that p splits in K) and an upgrade
of [8, Theorem 3.1] to the case of Hecke characters with non-trivial p-part.

Theorem 1.3 (cf. Theorem 5.25). In the above setting, it holds:

L] (g 1) = £Azen - (97 (ORE(S . 00) ® Y (OLE(S, ¥)))-

This equality takes place in the ring
= (Rr- ®a Rr-)[1/p]. where Rp- := A ®0L OL[r7]

and the notation is as follows.

@) @Egeg(f, ©:) € Rp- (resp. @‘JSEg(f, Y¥¢) € Rp-) is (a slight generalizations of)
the so-called big theta element constructed by Castella—Longo in [11], building
up on works by Bertolini—-Darmon (cf. [3-5]) and Chida—Hsieh (cf. [12]). These
p-adic L-functions interpolate (the square root of the algebraic part of) the spe-
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cial values L(f /K, ¢:v,k/2) (resp. L(f1/K, ¥:v,k/2)) for k € Z>, even
and D € %;r"}c.

(1)) @~ (7) (resp. ¥ (7)) for T € Rr- denotes the image of the element t via the
O -linear automorphism of Rr- uniquely determined by the identity on A and
the assignment [y] — ¢~ (y)[y] (resp. [y] = ¥~ (y)[y]) on group-like elements
on O [T].

(iii) The element Afgp € R is defined in Proposition 5.23 and satisfies the crucial

property that, for all D, i € ?Xi;rg, Afen(2,0,0) # 0.

The proof of Theorem 1.3 follows from the decomposition arising in our setting at the
level of Galois representations (cf. Lemma 5.7) and from a careful comparison of the Euler
factors at p (or p-adic multipliers) appearing in the interpolation formulas for the various
p-adic L-functions. In particular, this requires an explicit computation of the normalized
local zeta integral at p (denoted above by J‘l‘;}’p), carried out in Proposition 5.14.

1.3. p-adic formulas for Heegner points

In Section 6 we apply Theorem 1.3 to the study and the construction of Heegner points
on elliptic curves. In what follows, we keep the notation as above and we let £/Q be an
elliptic curve with multiplicative reduction at p. Let fg € S>(I'o(Ng)) be the cuspidal
newform of level Ng attached to E via modularity. Note that this implies that Ng =
p - Nz with p } Np. Assume now that f denotes the unique primitive Hida family in
So4(NS, 1, A) of tame level N » and trivial tame character, such that f, = fg.

We also impose an extra condition on the characters 7y, n, (cf. Assumption 6.1):

(E) ¢ = 1112 has conductor prime to p and ¥ = 1,73 has non-trivial anticyclotomic
part (i.e., ¥~ is non-trivial).

In particular, it follows that ¢~ is trivial and that we can identify ¢ = @, as a character
of the finite group A.. Let H, denote the abelian extension of K cut out by ¢ and observe
that p splits completely in H,,.

Upon fixing a primitive Heegner point P € E(H,) ® Q and setting o := a,(E) €
{%1}, one can define:

Poi= Y 9(0) ' P’ e (E(H,) ®Q)°
o€Gal(Hy/K)
PE, =P, ta P, ¢ E(H,) ® Q.

One can show that P;,‘fa does not depend on the choice of prime p of H, above p. In what
follows, we fix the choice induced by our fixed embedding t,: Q — Q, and we view the
points P, and P(jfa as elements of £(Q,2) ® Q under such an embedding.

As E has multiplicative reduction at p, we can take advantage of Tate’s parametriza-
tion of E to define a logarithm logg: E(Qp2) ® Q — Q2 at the level of Q,2-rational
points.
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Relying on Theorem 1.3 and on previous results by Bertolini—-Darmon (cf. [4,5]), we
deduce the results summarized in the following statement.

Proposition 1.4 (cf. Corollaries 6.4, 6.8 and 6.9). In the above setting, assume moreover
that L(E/K, ¥, 1) # 0. Then the restriction éC;;(f, g, h) of éﬁlj,r(f, g, h) to the line
(k,1,1) vanishes at k = 2 and

d CE
L (g D= = T logg(P,)

for some explicit constant cg € @;

Similarly, the restriction iI{,aC(fE,gh) oféﬁlj,{,ac(f, g.h) to the line (2,7, D) vanishes
atV = 1 (the trivial character) and

d _
55 aJ5 gMp=1 = ci logg (Pyy)
for the same constant cg.
In particular, if ¢ is a quadratic (or genus) character; the following are equivalent:

®
d d
(S5 e bica, S5l fe -1 ) # ©.0)
(i1)  The point P, is of infinite order.

Remark 1.5. In [8] (cf. also [16]) the authors study a setting similar to ours, but require
the characters 17 and 71, to have conductor coprime to p. As a consequence, the order of
vanishing of the restriction éﬁ{; (f, g, h) to the line (k, 1, 1) of the corresponding triple
product p-adic L-function is at least 2. From a factorization in the style of Theorem 1.3,
they deduce a formula for the second derivative of :Elj,r (f,g,h)atk = 2 in terms of the
product of logarithms of two Heegner points (respectively related to the characters that
we denoted ¢ and ). Our construction allows instead to pin down a single Heegner point
from the study of cfl{ (f, g, h) around the triple of weights (2, 1, 1).

Notation and conventions

If F is any field, we denote by G the absolute Galois group of F (defined after fixing a
suitable separable closure) and we denote F' ab the maximal abelian extension of F (inside
such a separable closure).

If T is a profinite group and R is a topological ring, we denote by R[] the completed
group algebra with coefficients in R (with the profinite topology) and we write [y] for
y € T to denote the corresponding group element in the ring R[T'].

We denote by A the ring of ad¢les of Q and if B is a finite separable Q-algebra we let
Ap := A ®qg B denote the corresponding ring of adeles of B.

For every number field E, we let the Artin reciprocity map

recg: A% /E* — Gal(E®/E)
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to be arithmetically normalized, i.e., if v is a finite place of E the compatible local Artin
reciprocity map
recg,: EX — Dy, = Gal(E®®/E,)

is the unique map such that for every uniformizer = of E, it holds that recg, (;r) acts as
the Frobenius morphism on the maximal unramified extension of E, (inside Egb ). We
write Frob,, to denote an arithmetic Frobenius element at the place v in Gg.

If K is a quadratic imaginary field and n: Gk — R* (here R can be any ring) is a
character, we let n° denote the conjugate of 7, i.e., n° (y) = n(oyo~!) for y € Gk, where
0 € Gk is any element such that o|x generates Gal(K/Q) (one possible explicit choice
for o is the complex conjugation induced by the fixed embedding ¢).

If y: A% /K> — C* is an algebraic Hecke character of K, we say that y has co-type
(a,b)ifforall z € C*itholds y(z ® 1) = z79z72,

Given a smooth function f on the upper-half plane # := {r € C | Im(r) > 0} and
w= (‘C’ Z) € GL,(R)™ (invertible 2 x 2 matrices with positive determinant) and k € Z,
we set

Flew(®) := det(@)*'? - (ct + d)7* - f(w), TeH.
ct+d

If I' € SL,(Z) is a congruence subgroup and k € Zs1, we let My (") (resp. Sk (I"))
be the C-vector space of (holomorphic) modular forms (resp. cusp forms) of weight k
and level I'. For I' = I';(N) for some N > 1 and y a Dirichlet character modulo N, we
let My (N, y) (resp. Sk (N, x)) denote the spaces of modular forms (resp. cusp forms) of
weight k, level I'; (V) and nebentypus y. Unless otherwise specified, we refer to [35] for
all the basic facts concerning the analytic theory of modular forms which are mentioned
freely without proof.

2. Generalized A -adic modular forms and ordinary projection

In this section, we define a generalized notion of A-adic forms and we extend Hida’s
theory of the ordinary projector to this setting.

2.1. First definition and examples

Let L be (as in the introduction) a finite extension of Q,, with ring of integers @, uni-
formizer wy , and residue field Fy, := O /@ OL.

Recall that A := Or[1 + pZ,] is the completed group algebra for the profinite group
1 4+ pZp. It is a complete local @ algebra of Krull dimension 2, with maximal ideal
mp = (wr, T) and residue field Fz . We fix once and for all the isomorphism

A = (DL[[T]]

uniquely determined by sending [1 4+ p] +— 1 + T and sometimes we write A to denote
directly O, [T] via this identification.
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In this section, we will denote by (R, ¢) a complete local noetherian A-algebra (here
we also mean that ¢: A — R is a continuous local homomorphism of (7 -algebras) with
maximal ideal m (also denoted mt when it is clear from the context) and residue field
R/mpg isomorphic to Fr. We let €4 to be the category of such A-algebras, with arrows
given by (continuous) homomorphisms of A-algebras. Similarly, we have a category @@ L
and, viewing A as (@ -algebra in the obvious way, we get a functor ‘éA — ‘é@L by pull-
back.

Sometimes we just write R instead of (R, ¢) to simplify the notation, although the
structure morphisms are going to play an important role in what follows.

Definition 2.1. For R € ‘éA and any complete subring O € A C C,, we write

Wgr(A) = Hom%’zt_alg(R, A),

endowed with the topology of uniform convergence on compact sets (which is essentially
the p-adic topology). The elements of ‘Wg(A) will be called (A-valued) R-weights (or
R-specializations).

Remark 2.2. Let L' be a finite extension of L inside C, with ring of integers Oz-. Then

for every w € Hom%’i“_alg(R, L") it holds Oy € w(R) € L', but w(R) cannot be a field.
This forces w(R) € Oy, so that we can identify Wg(L') = Wg(Or/) = Homém (R,0Or)
L

in our setting.

We fix an embedding Z, — W (L), given by sending k € Z, to the unique Or-
algebra homomorphism mapping 7 +— (1 + p)*¥ — 1.

Definition 2.3. An element w € Wy (C)) is an arithmetic weight if it is uniquely deter-
mined by the assignment T+ (1 4+ p)- (1 + p)¥ — 1, where k € Z-; and e: 1 + pZL,—
Hpee(C,) is a finite order character. In this case, we write w = (k, &) and we denote the
set of arithmetic weights by 'W{".

We say that w = (k, ¢) is classical if k > 2 and we denote the set of classical weights
by W4. Clearly, Z, N WY = Z5, C WY via the embedding Z, < Wy (L).

Definition 2.4. Let (R, ¢) € @A. We define the set of classical R-weights as
"erl = {w € Wr(Cp) |wog e "Wj\l}
and the set of integral classical R-weights as
Wiz = {we Wr(Cp) |wogp € Zss}.

For every w € "WICQI we define (ky,ey) ;== wogand,if wog € 'W;g 7> We simply write
w o ¢ = ky,. For any subset VV C Wg(Cp) weset p*(V) ={wog|we V}.

Definition 2.5. We say that a subset Q2 C 'WICQI 7 18 (A, R)-admissible if the following
conditions are satisfied:
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(i)  theclosure of ¢*(£2) inside Z, € Wx(L) contains a non-empty open subset of Z,;
(i) Nyeq Ker(w) = {0}.
We will need the following result later.

Lemma 2.6. Let R € @A and let § C 'W;g be a countable infinite set. Let B denote the
set of ideals in R that can be written as a finite intersection of pairwise different primes of
R of the form ¢ = Ker(w) for w € S. For every J € B, consider R/J with the quotient
topology. Let I = (), cs Ker(w) and consider R/I with the quotient topology. Then the
natural map R/I — l(iLnJGJ? R/J induces an isomorphism of topological rings R/ =
lim R/J.

<—JeB

Proof. For every J € 8, R/J is a complete noetherian local ring with maximal ideal
mpg/I. Note that the quotient topology and the mz/J-adic topology on R/J coincide
and that the natural projection R — R/J is open and continuous (the same applies to
R/I).

We claim that such topology on R/J is the same as the @y -adic topology. It is clear
that for every n > 1 it holds that (w] R+ J)/J € (m'y + J)/J. We are left to show that,
foreveryn > 1, R/(J, w}) is a quotient of R/m’} for m >> 1 (in particular, it is a finite
ring). Indeed, writing J = q; N --- N g one checks that

s s s
JUap) = |(Neiop) =)@ o) =) V(e @) = wg.
i=1 i=1 i=1

The first equality follows from (")}, (¢i. @}))* € (J. w}) (i (qi. @}). The second
and the third equalities are obvious. The last one follows from the fact that \/(q;, @) =
mpg foralli =1,...,s,since R/q; is (algebraically isomorphic to) a finite extension of
Oy inside Q_p and R /mg =IFy by assumption. In particular, it follows that m'g < (J, @})
for some m > 1 large enough, proving our claim. Hence we have natural topological
isomorphisms for all J € 8

~ i n
R/J =1limR/(J, @}).

n

Arguing as above, it also follows that a fundamental system of open neighborhoods of
0in R/I is given by the open ideals {(w] + J)/I }u>1,7¢8-

This shows that we can realize the natural map R/ — LiLnJeﬂ R/J as a chain of
topological isomorphisms

FURET PN
R/I = lim R/(J.w})= lim R/J,
JEB,n JeB

concluding the proof. ]

We are ready to give the key definition of this section.
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Definition 2.7. Let N € Z>; be an integer with p } N, let y be a Dirichlet character
modulo Np’ for some ¢ € Z>; with values in O}. We say that a generalized A-adic form
of tame level N and branch character y is a couple ((R, ¢), §) where:

(i)  (R,p)isanobject of ‘éA, which is also flat as A-algebra and an integral domain,
(ii)) & € R[q] is a formal g-expansion,

such that the set of integral weights
Qg7 = {we Wq | bw € My, (Np', x> ™*» . Cp)}

is (A, R)-admissible in the sense of Definition 2.5, where &, denotes the g-expansion
obtained by applying w to the coefficients of §. We say that ((R, ¢), §) is cuspidal if,
moreover, £, is cuspidal for all w € Q¢ 7.

Given a generalized A-adic form ((R, ¢),£) and a (A, R)-admissible set of integral
classical weights Q C Qg 7, we say that ((R, ¢), §) is Q-compatible. Often we shorten
the notation and we simply write § to denote the A-adic form ((R, ¢), §).

Definition 2.8. Given a generalized A-adic form of tame level N and character y with
coefficients in (R, ¢), we set

Qg = {w e WE | &y € My, (Np™, y**ve,, Cp))
where the exponent e, > 1 depends on the p-part of y and on w.

Definition 2.9. We let Mo (N, y, (R, ¢)) (respectively Sq (N, x, (R, ¢))) denote the R-
modules of generalized A-adic forms (resp. cuspidal generalized A-adic forms) of level
N and character y, with coefficients in (R, ¢) and Q2-compatible (where 2 is a (A, R)-
admissible set of classical integral R-weights). When all the inputs are clear from the
context (or when it is not necessary to specify them) we simply write Ml and S to denote
such R-modules, which we view as submodules of R[g¢] in the obvious way. We endow
all such R-modules with the m-adic topology.

Remark 2.10. The noetherianity of R implies that R[[¢] is m-adically separated and com-
plete.

Remark 2.11. On Ml = Miq(N, x, (R,¢)) and S = Sq (N, x, (R, ¢)) there is an action
of Hecke operators Ty for £  Np prime, U, for £ | N prime and U,. Those operators
can be defined directly on the g-expansions in such a way that the specialization maps are
Hecke-equivariant morphisms. More precisely, there is a character (-)o:Z; — A* given
by (s) = [s - @~ 1(s)]. For (R, ¢) € € we then let ()R:Z, — R* to be the composition
of (-)o with . Then, for every § = Y, _,a,(§)q" € M and for every prime £ # p the
Hecke operator 7} acts as follows

400
Ty(§) = Zan(Tz(é))qn, where a, (T¢(§)) = Z (d)r - x(d)d anga2(§),

n=0 d|(n,0)

with the convention that y(£) =0if £ | N.If £ | N, we write Uy to denote the T, operator.
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We are particularly interested in the U, operator, whose action on g-expansions is the

familiar one:
+o0 +o00
U ( > a”qn) =D _anpq".
n=0 n=0

We end this remark recalling the action of the V), operator on g-expansions, given by

+o00 +o0
Vp ( > anq") =D apq".
n=0 n=0

This operator will appear later in the paper. Recall that U, o V), is the identity on g-
expansions, while 1 — V), o U, defines the so-called p-depletion operator.

Definition 2.12. Let N, y, (R, ¢) and Q2 be as above. The notation Tq (N, y, (R, ¢)) will
denote the R-subalgebra of Endgr(Sq (N, yx, (R, ¢))) generated by the Hecke operators
Ty for £ + Np prime, U, for £ | N prime and U,. When all the inputs are clear from the
context we simply write T or Tg to denote such Hecke algebra.

Definition 2.13. An element § € M is called a generalized A-adic eigenform (of given
tame level N, character, branch, coefficients) if it is a simultaneous eigenvector for the
Hecke operators 7; (£ + Np prime) and for the Hecke operator U,.

Example 2.14. Let§; Mg, (N, x1, R1) and §2 € Mg, (N, x2, R2). Set R:= R, ®¢, R>.
If m; C R; denotes the respective maximal ideal for i = 1, 2, then recall that by definition

. R, R
m,n
R is then identified with the m-adic completion of R; ®, R, where
m=m; ®o, R2 + R; ®9, Mz C R ®o, R

is a maximal ideal of R; ®, R» such that (R; ®, R,)/m = [y (thanks to our strict
conditions on the residue fields of R; and R»).

Foreverya € Ry,b € Ry weleta & b denote the image of a®b € R; ®p, R inside
R via the natural map. We endow R with the following canonical A-algebra structure
¢: A — R uniquely determined by @ -linearity and the assignment

o(T):=1(T)® 1+ 18 ¢a(T) + ¢1(T) ® ¢2(T)

where ¢; are the structure morphisms for R;, i = 1, 2 (notice that this is well defined).
We refer to [20, Section 0.7.7] for the needed properties of completed tensor products.

In particular, it follows that R € ‘@A and R is an integral domain. Note that R is a flat

A-algebra via ¢. This can be seen easily factoring ¢ as composition of flat morphisms as

A—)A@)@L A (¢1,02) R.

where the firstarrow sends T — T & 1 + 1 QT+ T R T.
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By the universal property of completed tensor product, it follows that, for every com-
plete subring A of C, containing 07, Wgr(A) = Wg, (4) x Wg,(A) (also as topological
spaces) and, by our definition of ¢, it also follows that under this identification we get an
inclusion

1 1 1
Wriz X W,z C Wrz

such that
k(wl,wz) = (wlv wz) o (p = (wl ° (pl) + (w2 © (pz) = kwl + kw2'

Let Q = Q1 x Q5, viewed as a subset of W;'QIZ as above. It is easy to see that €2 is
(A, R)-admissible.
It follows that 1 x £, € M (N, y1x202, R), where, as usual, if

+o00 +o0
Elzzanqnv §'1=anq"
n=0 n=0

we let N
E1x§ = Z (Zaj @’bn—j)qn € R[q].
n=0 \j=0

Indeed it is clear that, for all (w, w;) € 21 X 25, it holds
(&1 x £2)(w1,w2) =&E1w XE2w, € Mk(wl,wZ) (Npt, X1X2- w4_k(w1’w2), Or).

2.2. The ordinary projector

We want to check that also in our generalized setting one can attach to the operator U, an

idempotent operator ¢°™ obtained as

. !
e = lim U™
n—+oo 7

where the limit is taken in the m-adic topology.

Lemma 2.15. The R-modules M and S are w-adically complete and separated for the
w-adic topology.

Proof. We only give the proof for Ml = Mg (the proof for S is identical). It is clear that
M is w-adically separated, being a submodule of R[q] (which is m-adically complete
and separated by Remark 2.10). An element (?,,),,21 € l(ﬂln M/m*M defines (by left
exactness of Liﬂln) a unique element

§ € Rlq] = lim R[4]/m" R]q].

If we fix a lift§, € M of ,, for every n > 1, we know that for every w € S it holds &, €
My, (Np*, xw?> kv 1), and by the continuity of the specializations and the fact that the
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Or.-modules My (N, P, )(a)szw, 1) is finite and free (thus complete), we deduce that

£o = lim &,, € My, (Np', yo?™ v 0p),

n—+o00

so that indeed § € M and the lemma follows. ]

Proposition 2.16. There exists a unique ordinary projector e € Endg(M) attached to
the Hecke operator U, such that
i) () = limy— 400 U;!({-') (limit taken in the w-adic topology)
(i) e and U, commute and the module M carries a Up,-stable decomposition
M = M @ (1 — )M where U, is bijective on e® M and topologically
nilpotent on (1 — e° ) M.
(iii) e° commutes with Ty for all £ } Np and is compatible with every meaningful
arithmetic specialization.

ord

(iv) the formation of e°™® is compatible with inclusions Mg C Mg/ induced by inclu-

sions Q' C Q of (A, R)-admissible sets of classical integral weights.

The analogue assertions for S hold.

Proof. The proof of the proposition follows well-known ideas, so we just sketch the argu-
ment. We only give the proof for Ml = Mg, (the proof for S is identical).
Condition (ii) of Definition 2.5 implies that the specialization maps give rise to an
inclusion
Mg < [] M, (Np'. x> ™**.0p). 2.1)
weR
Note that, since for each w € Q we have Ker(w) + wy R = m, the above inclusion is an
embedding for the m-adic topology on the LHS and the w7 -adic topology on the RHS.
It is well known (cf. [23, Section 7.2]) that on the RHS there exists an ordinary projector
associated with the operator U, (where the limit lim,_ 4 UI;” is taken in the =y -adic
topology). Since the action of U, commutes with specializations and Mg is m-adically
separated and complete, by restriction along (2.1) we obtain an idempotent ¢® on Mg
which visibly satisfies all the required properties. ]

We are then led to the following definition.

Definition 2.17. We say that a generalized eigenform § € Mg (N, x, R) (respectively
£ € Sq(N, x, R)) is a generalized Hida family (resp. a cuspidal generalized Hida family)
if e (§) = £.

We define the R-modules Mgd (N, x. R) := e°4(Mq(N, y. R)) (resp. in the cuspidal
case Sgd(N, 1. R) := e°(Sq(N, x, R))) to be the submodules of Mg (N, x. R) (resp.
Sq(N, x, R)) of ordinary generalized A-adic forms. When the inputs are clear from the
context we simply write M° or M‘S’{d (resp. S° or S‘s’zrd).

We let TGU(N, x, R) to denote the R-subalgebra of Endg(S3(N, x. R)) generated by
the Hecke operators 7 for £ } Np prime, Uy for £ | N prime and U,. When all the inputs
are clear from the context, we simply write T° or ng to denote such Hecke algebra.
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Remark 2.18. Equivalently, one could define generalized Hida families asking that every
meaningful classical specialization is a p-ordinary eigenform in the usual sense.

The following proposition shows that generalized Hida families are actually essen-
tially the same as classical Hida families.

Proposition 2.19. For any R € ‘@A which is A-flat and an integral domain and any
(A, R)-admissible set of classical integral weights 2, M‘S’{d(N, X, R) (resp. Sgd (N, x,R))
is a free R-module of finite rank. Moreover (assuming that y takes values in OF ), there
are canonical isomorphisms

M(N, y, A) ®4 R = MZY(N, z.R). S™(N, x,A) @4 R = SN, 1. R).

Proof. We will omit the proof of the cuspidal case because the proof does not change.
In this proof, we write M‘Xd = M°9(N, x, A) and M%d = M°9(N, x. R) to simplify the
notation. In order to prove that M%d is R-free of finite rank we adapt Wiles’s proof for
classical Hida theory (cf. [23, Section 7.3]). We recall the main ideas for the convenience
of the reader. Let M be a finite free R-submodule of M%d, with R-basis {€1,...,&,}.

Write
+o00
§i = Zan@i)qn
n=0

fori = 1,...,r. Then there is a sequence of integers 0 < ny < np < --- < n, such that
the r x r matrix (ay; (§:))i,j=1,...,r has non-zero determinant d € R.

Since by assumption [),,cq Ker(w) = (0), we deduce that there exists w € Q such
that d # 0 mod Ker(w), so that the specializations {£1 .y, . . ., &7, } would still be O [w]-
linearly independent in M,g;d(N Pt yw? kv @p[w]). It is well known (and established
by Hida) that the rank of M,S;d(Npt, yw* % @ [w]) is independent on w if ky, > 3.
Hence there exists r* € Zx>¢ such that M‘I’{d admits finite free R-submodules of rank r*,
but not of rank r*+ 1. Assume now that M is such a finite free R-submodule of M‘I’gd
of rank r*. One checks easily that, with the notation as above, d - M‘;gd C M. Hence,
by the noetherianity of R, it follows that M‘I’gd is finitely generated as R-module. In par-
ticular, it is a compact R-module (equivalently a profinite R-module). The topological
Nakayama’s lemma (cf. [24, Lemma 3.2.6] for instance) implies that M‘;{d is generated by
r:= dimg, (M%?/mgM%?) elements (a lift of an Fz -basis of M%4/m g M%9).

Now note that (using the flatness of R over A) M‘Xd ®A R can be naturally seen as an
R-free submodule of M‘}{d of R-rank r. We define the quotient

0o M

’ Mg\rd ®A R

and we claim that O = 0. This would conclude the proof of the proposition, since it is
well known that M(I’{d is a free A-module of rank r*.

Picking w € @ with ky, > 3, one has Q ® g R/ Ker(w) = 0, since both M‘j{d QA R
and M‘I’gd project onto M,S;d(Np’, w2 *v O [w]) via w (to see this one uses the trick
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of twisting with a suitable family of Eisenstein series, cf. [23, p. 199]). Hence a fortiori
0 ®r R/m = 0 and, since also Q is a profinite R-module, it follows again from the
topological Nakayama’s lemma that Q = 0. ]

Remark 2.20. Proposition 2.19 shows that the R-module M‘g{d(N, X, R) (respectively
S‘S’{d (N, x, R)) actually does not depend on €2, hence in the ordinary setting we will omit
the (A, R)-admissible set of weights from the notation from now on.

3. The unbalanced triple product p-adic L-function

In this section we carry out the construction of a generalized unbalanced triple product p-
adic L-function, closely following the method appearing in [25]. Having defined the ordi-
nary projector ¢°™ in wider generality and having proved Proposition 2.19, the construc-
tion simplifies slightly. For instance, we do not need the equivalent of [25, Lemma 3.4].

3.1. Remarks on the Atkin—Lehner involution

Recall that given £ € Sx(M, x), one has an Atkin—Lehner involution ws: Sx (M, x) —
Sk (M, x=1) given by wyy (§) = €l (S o). For our constructions we will need a A-adic
version of the Atkin—Lehner involution. This entails considering more general Atkin—
Lehner operators.

Let N be a positive integer coprime to p and ¢ € Zx;. If d is an integer coprime to
Np, we write {(d) = {(a; b) for the diamond operator corresponding to d € (Z/Np'Z)*,
where the convention is that d = ¢ mod N and d = b mod p’.

For £ € Sx(Np', y) we define the Atkin—Lehner operator wy on & as

wn () = (1L N)Elkon). oy = oy = (N];',c ;,;), 3.1

where we require that det(wy) = N. Write y = y,r v in aunique way for y,r a character
modulo p’ and yn a character modulo N.

Then (cf. [2, Section 1], where they define an operator which is the inverse of ours)
wp 1S an operator

wn: Sk(Np', x) = Sk(Np', TN Xpt)

such that for all primes £ } N it holds that wy o Ty = yn (£)(T; o wy) and (when ¢ > 1)
that wy o Up, = yn(p)(Up o wy). One can also check that if s > r > 0, the action of wy
on Si (' (Np")) is the restriction of the action of wy on Si ("1 (Np®)), by our choice of
the matrices wy, pr, so that it makes sense to drop p’ from the notation.

In particular, if £ € Si(Np’, x) is a normalized newform, then wy (§) = An (£) - §
where Ay (§) is an algebraic number of complex absolute value 1 (a so-called pseudo-
eigenvalue) and § is a normalized newform such that if

+o00 . +o00
§= ang" =) bug"
n=1 n=1
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then
b IN(Oag if Lt N,
( =
xpt(Dag if L] N.
Moreover, if £ € Si (N, y) is a p-ordinary newform with k > 2 and &, € Sk (Np, y) is
its ordinary p-stabilization, then the form Ay (§)™! - wy (&2) coincides with the ordinary
p-stabilization of the newform £, so we will write

o 1= ANE) T wy (Ea).

Note that in this case it is well known that § is the modular form obtained applying com-
plex conjugation to the Fourier coefficients of .

Now let
+o0

£=> anE)q" € S™(Ng. 1. Ag)

n=1

be a classical new Hida family of tame level Ng with character yg¢ of conductor dividing
Ng - p, i.e., the classical specializations at integral weights of & are either newforms of
level Ng - p or ordinary p-stabilizations of newforms of level Ng. Here Ag is a finite flat
A-algebrain ‘éA and we assume that L contains a primitive Ng-th root of unity. We require
that £ is normalized (i.e., a1 (§) = 1). Note that we can omit the admissible set of integral
classical weights in the notation here, since classical Hida theory shows that for classical
Hida families it always happens Q¢ 7 = WE\IE,Z

Following [25, Section 3.3], there is a unique new Hida family £ € SO (N, XS_I’ Ag)
which is characterized by the fact that, for all x € 'Wj\ls

E)x = E) =InE) ™" wn &),
3.2. Construction of the p-adic L-function

We fix a Hida family f

+00
f =) an(f)q" €S™(Nyp.xs.Ay)

n=1
primitive of tame level Ny, tame character y s of conductor dividing Nz - p.
We also let

+o00 +00
g=> an(g)q" €Sq,(M.)g.R) and h =Y a,(h)g" € Sq,(M. xn.Rn)
n=1 n=1

be two generalized normalized A-adic eigenforms with y 5 - yg - xp = ©*¢ for some
integer a, where as usual @ denotes the Teichmiiller character. Assume that Ny | M. In
the language of [25], we are implicitly thinking about g and & as fest vectors for families
of tame level dividing M. We also assume that L contains a primitive M -th root of unity
from now on.
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Fors € Z, and R € Ca we always write (s)}g/ 2= (5)r where § is the unique root

of the polynomial X2 — s - w™1(s) lying in 1 + pZ,. We also write (s)l_el/2 = (s_l)}e/2
(note that this does not create ambiguity).
Let Rygn := Ay ®0, Ry ®o, Ry and set

Ofgn = O LS — Ripp. O(s) = 0™ (s) - (s)}(j & ()% ® ()5 32
View Rygp as A-algebra via [s] = (s)a, RI1&1forsel+ DZp.

We define a ®-twist operator on g-expansions given by

+o00
lo: Rrgnla] > Regnlal, Z =) ang" = Zlo =Y _ Om)ang".  (33)
n=0 pin

Now let E := g x (h|g) and define
Qbpn ={w=(x.9.2) € Qs x Qe x Qp | kx = ky + k2. k; > 2}.
One checks that for w = (x, y,z) € Q;g , it holds
(hlo)w = hz ® Y € Sk, (Mp*. yne® 29 Cp),
where (for (1, p) = 1) we set
V() =0 % () - ey (na)_l(n))l/2 -&y (na)_l(n))_l/2 & (na)_l(n))

It follows that

—1/2

Ev = 8y X (h: ® Yuw) € Skx(MP?, X;lwz_kxgxs Cp).

Notice that by our definition of A-algebra structure on Rygp, forw = (x,y,2) € Qf X
Qg x Qp it holds ky, = k. It follows easily that Q}gh is a (A, Rygn)-admissible set of
classical integral weights.

Looking at integral classical weights specializations w € Qj‘l on (Rf,zxQgz %
Q2p,7) it is easy to deduce that, according to our definitions, it holds

E € S(Ms X}lﬁ ngh)
Thanks to Proposition 2.16, we can thus consider the ordinary projection
B = ¢(B) € S™(M, )(;1, Rfen) = S4(M, X;l, Af)®n, Rygn,

where the last equality follows easily from Proposition 2.19 and we emphasize (again)
that the structure of A y-algebra on Rygp is given by a — a R1&®1forae Ay.

We can proceed as in [25] to define the triple product p-adic L-function. We will need
an assumption on our f .

Assumption 3.1 (CR). The residual Galois representation V r of the big Galois represen-
tation V¢ attached to f is absolutely irreducible and p-distinguished.
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Let TrM/Nf : S"rd(M, X;l, Ayr)— S"rd(Nf , )(;,1 , A r) be the usual trace map.

By the primitiveness of f and Assumption 3.1, it follows that the so-called congruence
ideal C(f) C Ay of f is principal, generated by a non-zero element 7 s, called the
congruence number for f (it is unique up to units). One can prove that f is primitive as
well and that f and f have the same congruence number.

Since f is primitive, we also get an idempotent operator ey lying in Tr‘z{‘} Q@A
Frac(A f), where m s the maximal ideal of T*¢ := T4 N, ys, A s) corresponding
to f and T&“} is the localization of T at such maximal ideal. Morally, e s plays the
role of a projection to the f -Hecke eigenspace. A similar discussion applies to f .

Then we can let ey acton S*4(Ng, )(;1, Ay) ®n, Frac(A ) and, by definition of
congruence number, one has that

ny-ey€) €SNy, x7' Ay) forallg € S™(Nyg, x5 Ay).

We refer to [25, Section 3.3] and to [14, Section 3.5] for a more detailed discussion
concerning congruence numbers and idempotents attached to primitive Hida families.

Definition 3.2. With the above notation, the generalized f -unbalanced triple product p-
adic L-function LI{ (f, g, h) attached to the triple (f', g, h) is defined as

Ly(f.g.h) :=ai(ns ey (Trayn, (E™))) € Rygn-

Remark 3.3. We view L}; (f,g,h)asafunctionon Wy ,(Cp) x Wg, (Cp) x Wg, (Cp).
In particular, for w = (x,y,z) € Qfgp one gets that the evaluation of L{; (f,g,h)atw
is given by
LI(f g mw) =y, -ai(e f(Tragn, (YY)

Recall that (%|@)y is in the image of the m = (kx — ky — k;)/2-th power of Serre’s
derivative operator d = qj—q acting on p-adic modular forms of weight k,, where if m is
negative one defines the m-th power of d as a p-adic limit. We can conclude that (k|g)y
is the g-expansion of a p-adic modular form of weight kx — k,, and tame level M. Hence,
by Hida’s classicality theorem for ordinary forms, we deduce that

E‘;fd = e(gy xd™(h, ® ww)) c S,‘c’;d(Mpt,)(;la)z_k"sx,Cp)

—a—1— 1/2 —1/2 —1
almgx/gy/‘9 /

where Yy, = @ z Zand 7 > 1 depends on w, yg and yp (and it is

always chosen to be large enough).
3.3. Evaluation of the p-adic L-function in terms of Petersson products

Definition 3.4. We set our conventions for the Petersson inner product on the spaces
S% (N, ) of complex modular forms of level N and character y to be

1 —— rdudv
ST o 8 OB

for &1,& € Sk (N, y) where we write T = u + iv € J¢ (the upper half-plane) and Dy (N)
is a fundamental domain for the action of I'y(N) on J.

(61.62)pet :=
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Remark 3.5. Note that by the above definition our Petersson inner product is linear in
the first variable and conjugate linear in the second variable. Moreover, it is normalized so
that it does not depend on the level N considered.

Proposition 3.6. Pick w = (x,y,z) € Qfgn and set

M 1
C = Cnym = [To(Ny) : To(M)] = N, I1 (1 + Z) € Zs1.
o,

Write [ = f,, f = (}")x, E=E%¢ S"rd(Mp X7 lp2kxg,  C Cp) to simplify the
notation, so that f =An(f)! wN(f) as before Assume that t > 1 is large enough
(in particular, larger than the p-order of the exact level of f). Then the evaluation of
L 1{ (f, g, h)at w can be described as follows, depending on two mutually exclusive cases.

(A) Assume f is a newform in Sg(Nyp®, x5 w?>k¢g, L). Then:

R A
ap(f)s I 17t

(B) Assume that f is the ordinary p-stabilization of a newform f° € Sg(Ny, )("f ,L)

LI(f.g. h)(w) =

3.4)

(where X°f is the N g-part of yz). Set f*:= wap(fp), where f” is obtained

from f applying complex conjugation to the Fourier coefficients. Then
ny - C- R BV D
ap(f)! (f f)pe

Proof. This follows directly from [22, Proposition 4.5] (note that our conventions for
the Petersson inner product differ from those of Hida, so we have to adjust the result
accordingly). ]

LI(f.g.h)(w) = (3.5

Remark 3.7. In case (B) of the above proposition (with the notation as above), assume
that # = 1 and that we can write

e (Tmpi /vy p (B)) = & = Brx7 (P) ™" - Vp(©)

for some £ € S (N, ()(‘})_1). Then one can check that

(B e _ (6. Ve _ (B fra
(e (S0 (S dred

In particular, assume that g and h are classical Hida families of tame level Ny satisfying
XrXxgxn =1 and that w = (k, [, m) € Qygyp is a triple of classical integral weights
such that g; and hy, are ordinary p-stabilizations of forms g° € S;(Ny, xg) and h° €
Sm(N g, xy) respectively. Then the hypothesis made on & is verified (cf. [7, Section 4.4])
and we recover the p-adic periods which are denoted by 1, (f°, h°, g°) in [7, Section 1.1]
and by LI{ (fa» ha» ga) in [9, Section 3.1]. Note that we have switched the role of g and
h in our construction, compared to what happens in [7,9].
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3.4. Comparison with the complex L-values

In this section, we compare the values of our square-root triple product L-function with
the central values of the Garret—Rankin triple product L-function associated with a triple
of modular forms. Most of the material contained in this section is derived from [25,
Section 3].

We fix positive integers N, M coprime to p such that N | M and we consider a triple
of cuspidal modular forms

+00 +o00 +00
f=Y"an(f)q". &= an(@q". h=)_ anh)q"

n=1 n=1 n=1

with
f € Sk(Np®', yro**er), geSi(Mp®, yg0*er), h e Su(Mp®, xo* ™es),

where e; > 1 and ¢; are Dirichlet characters of p-power order for i = 1,2, 3, while y,
(resp. xg for & € {g, h}) is a Dirichlet character defined modulo Np (resp. M p).

Assumption 3.8. The triple of forms ( f, g, 1) satisfies the following assumption.

(1)  f.g,h are normalized eigenforms, i.e., for £ € { f, g, h}itholdsa;(§) = 1and &
is an eigenform for all the Hecke operators Ty for all primes £ N (resp. £ + M
it £ € {g, h}). We also assume that f, g, h are eigenforms for the U,, operator.

(ii) Thetriple (£, g, h) is tamely self-dual, i.e., xr - x¢ - xn =®>* for some integer a.

(iii) The triple of weights (k, [, m) is arithmetic and f-unbalanced, i.e., v > 1 for
velk,l,my,k+I1+misevenand k > [ + m.

(iv) The form f is a p-stabilized ordinary newform, i.e., it is either the ordinary
p-stabilization of a p-ordinary newform f° of level N or an ordinary newform
of level Np®'.

(v)  The tame level N is a squarefree integer.

When f is the ordinary p-stabilization of a newform f° of level N, we write ay, By
for the roots of the Hecke polynomial at p for f° and we always assume that ||, = 1.
Letr = (k +1 4+ m)/2 and let y5 be the adélization of the Dirichlet character

X =0 (e16283) 2

Let 7y = 7y ® YA, W2 = 7wg, w3 = my, where for § € {f, g. h} we denote by m¢ the
irreducible automorphic representation of GL,(A) associated with £ as in [10, Chapter 3].

It is well known that there is a decomposition 7z = @), 7¢,¢ into local representa-
tions. -

Finally, let IT := m; x mp X 3 denote the corresponding automorphic representation
of GLy(AEg) where E = Q x Q x Q is the split cubic étale algebra over Q. Thanks to our
choices, one can verify that the central character of IT is trivial, so that IT is isomorphic
to its contragradient.
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We let L(I1, s) denote the triple product complex L-function attached to IT (cf. for
instance [37]). It is known (cf. for instance the summary in [28, pp. 225-228] and the refer-
ences therein) that L (I1, s) is given by a suitable Euler product converging for Re(s) > 0
and that it admits analytic continuation to an entire function with a functional equation of
the form

L*(T1,s) = e(I1,s) - L*(T1,1 — )

Here L*(I1,s) = L(I1, s) - L(I1, s)so wWith

L(I1, ) o
=Tc(s+r—3/2) - Te(s—r+k+1/2) - Tc(s+r—1—-1/2)-Tc(s+r—m—1/2)

and I'c (s) = 2(27) T (s) (I'(-) being Euler’s gamma function). This explicit description
of the archimedean L-factor is proven in [29].

Moreover,

e(I1,s) = l_[ ge(I1, 5)
{<oc0

is an invertible function satisfying the property that ¢ (I1,1/2) € {£1} and g,(I1,1/2) =1
for almost all £. In particular, it is known that:

(1)  ec0(I1,1/2) =1 in our case (this depends on the fact that the triple of weights

(k, 1, m) is unbalanced);

() eu(I1,1/2) = 1if £ } pM.

We are then led to the following further assumption.
Assumption 3.9. In what follows, we assume that g,(IT) = 1 forall £ | M.

Definition 3.10. If 7 is an irreducible smooth representation of GL,(Qy) for a rational
prime £ and V; is a realization of 7, we let ¢ (;r) denote the smallest integer (which exists,

(.
vvjzil ¢

)
by smoothness) such that ) # 0, where for all m € Zx¢ we set

U, (07) .= { (? 2) € GLy(Zyg) | ordg(c) = m, ordg(d — 1) > m}

Now we connect this discussion to the triple product p-adic L-function, assuming that
S = fx-& = gy, h = h are suitable specializations of families of the types considered
in Section 3.2 with w = (x, y,z) € Qpgp sothatky =k, ky =1k, =m (withk > [ +m
as we have assumed before). Write IT,, for the corresponding automorphic representation
of GL,(AE).

Following Harris—Kudla [21] and Ichino [27], Hsieh proved in [25] the following fact.

Proposition 3.11. Under Assumptions 3.8 and 3.9, the following formula holds:

S 2 _ 1) . (— k+1‘L*(Hw’1/2) _qunb *
(&7 (f 8. @))" = 27p (1) - (<D o L (};[lanwj) (3.6)
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where
D Q=2 (2V=D | O NR - Ep (£ Ad) -0 - [SLa(Z) : To(Nyg ptrn))]
with

Fom f in case (A) of Prop. 3.6,
") the newform of level N ¢ associated with f  in case (B) of Prop. 3.6

and &, (f, Ad) = ap(f)_c(”ﬁl’) . perp)k/2=1) ey p, 1/2) - oy, where

1 in case (A) of Prop. 3.6,

or = (1 — ﬁ—f)(l — ﬁ—f) in case (B) of Prop. 3.6, equiv. if c(7f,) = 0;
oy ey . 3.6, . f.p ;

(i) ij‘?Z, » is the normalized local zeta integral defined as [25, equation 3.28];
(iii) J"li[w ¢ s the normalized local zeta integral defined as in [25, equation 3.29];

(v) Co(-) = w71L() where £ (-) is the usual Riemann zeta function, so that {g(2) =
/6;
(V) xy.p denotes the p-part of the character x .

Proof. This is essentially a restatement of [25, Proposition 3.10 and Corollary 3.13]. Note
that our normalization for the Petersson inner product is different from Hsieh’s. This
explains the appearance of the factor {gp(2)? in our formula and the slight changes in
the definition of the period 2. m

Remark 3.12. One can compute directly that, if we are in case (B) of Proposition 3.6, it
holds that iy o (o)1
o2 Ay g
”f ”Pet cOf - AN(f) ) pk/2 - (1 n l/p) = (fv f )Pet.

We refer [14, Proposition 5.4.1] for a very similar computation, where the form denoted
h% there should be viewed as a constant multiple of our f*#. This explains the appearance
of the factor oy and allows an even more direct comparison (in the f -unbalanced region)
between the formula given by equation (3.6) and the formulas appearing in the statement
of Proposition 3.6.

Remark 3.13. In the recent preprint [34], Maksoud has defined a canonical congruence
number attached to a Hida family f (satisfying Assumption 3.1) with precise interpolation
properties. Such congruence number is interpreted as a weight variable adjoint p-adic L-
function of f and denoted L,(Ad f). Fix x € Qf and write f = f,. Assume that
the exact level of f is Ny p” and that x lies over (k, ) € Wy. Write Ny p™ for the
exact level of the newform f° attached to f as in the statement of Proposition 3.11 (i.e.,
ro = ¢(7y,p)). Then [34, theorem 2.3.7] claims that:

Lp(Ad f)(x)

_2i)k I
=pr_1 'ap(f)r 'Aprro (fo) 5_f . ( 21) +1§Q(2) ”f ”l%et

+ _
Qfo . Qfo

-[SL2(Z) : To(Np™)],
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where
(1)
1 in case (A) of Prop. 3.6,

ar-(p—1)- (1 - %)(1 - ijf) in case (B) of Prop. 3.6;

(i) the periods Q}:o € C* are the usual complex periods attached to eigenforms,

whose definition is recalled in [34, Section 2.1].
In what follows, we fix the choice ny = L,(Ad f) € Ay for the congruence number
of f. We leave to the interested reader the task of applying the interpolation formula for
L,(Ad f) in order to make the formulas involving 1 5 more explicit.

4. Families of theta series of infinite p-slope

4.1. Setup for the interpolation

We fix an odd prime p and we let K be an imaginary quadratic field where p is inert.
Denote by Nk,q the norm morphism on fractional ideals in K. Let —dk be the dis-
criminant of K (so that p } dg) and let ex denote the central character of K, i.e., more
explicitly
—d
sk (n) = (—K) if (n,dg) =1
n

where (°) denotes the Jacobi symbol.

Definition 4.1. For a C Ok an integral ideal in Ok, we let Ix(a) denote the group of
fractional ideals of K prime to a and we set

Pg(a) := {() € Ix(a) |« = 1 mod* a}, Clg(a) := Ix(a)/Pg(a).
The group Clk (a) is the so-called ray class group modulo a.
Remark 4.2. It is well known that Clg (a) is a finite group.

We fix a finite order character n: Gx — Q* with conductor ¢ (a non-trivial proper
integral ideal in Q). Via class field theory we will freely view n as a ray class character
n: Clg (¢) — QX or a finite order character 7: Ay /K* — Q* (note the slight abuse of
notation here). Moreover, we assume that 7 is not the restriction of a character of Gg.

Denote by 7|q the Dirichlet character defined modulo Nk g (c) and given by

ne(n) = 77((”)) for (H,NK/Q(C)) =1.

It is then a classical theorem of Hecke and Shimura (cf. [35, Theorem 4.8.2]) that the
g-expansion (where as usual ¢ = exp(2rwit) for T € #)

g(r):=0,(r):= > n(a)g"xe® 4.1

(a,0)=1
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defines a cuspidal modular form of weight 1 (the theta series attached to the character 7).
Here the sum runs over the integral ideals in Ok prime to c.

More precisely, g € S1(dk - Nk/(c), ek - nj@) and since we assume that 7 is of
exact conductor ¢, g is also a newform of level dg - Nk/o (c). From now on, we set
Ng =dg - NK/Q(C) and Xg ‘= €K " 1|Q-

The Fourier coefficients of g generate a finite extension of Q. We can thus view g as a
modular form whose g-expansion at oo has coefficients in a finite extension L of Q,, (via
the embedding ¢y,), i.e., g € S1(Ng. xg. L). As in the previous sections, we assume that L
is large enough. In particular, here we assume that L contains the completion of K inside
Cp (which we will denote by K, with ring of integers O, ).

We would like to find a p-adic family of modular forms-all with complex multipli-
cation by K-of varying weights (in the sense of Hida—Coleman) having g (or a slight
modification of g) as a specialization in weight 1. We will see that this can actually be
done explicitly.

Remark 4.3. Since the fixed prime p is inertin K, p" Ok | c if and only if p*" | Ng,q(c).
Hence we should distinguish two cases:

(@) (pOk,c) =1, orequivalently p + N,.
(b) ord,(Ng) = 2r forsome r € Z>;.

In both cases it holds that a,(g) = 0, or equivalently that 7,,(g) = 0 in case (a) (resp.
Up(g) = 0in case (b)). This is usually described as g having infinite p-slope.

Remark 4.4. While case (a) can be reinterpreted in the realm of Hida theory (as in this
case g admits one or two ordinary p-stabilizations), case (b) is instead more genuinely a
problem in infinite slope. This dichotomy is also reflected in the fact that the local compo-
nent at p of the automorphic representation associated with g is a principal series in case
(a) and a supercuspidal representation in case (b).

Assumption 4.5. From now on in this section we will always assume that pOg | ¢ and
we will write ¢ = ¢o - p" Ok with ¢o coprime to pOg and r > 1.

Remark 4.6. When p splits in K one can explicitly write down families of theta series,
specializing to (p-stabilizations) of modular forms of the shape described in (4.1). See,
for instance, [0, Section 4.2] for a discussion about this construction, which — again — is
well understood within Hida theory.

In what follows, we try to adapt such construction to our setting. Notice that K, /Q, is
the unique degree two unramified extension of Q, inside our fixed algebraic closure Q D>
so we will identify K, = Q2 (with ring of integers Z,2). Moreover, we have a decom-
position

;2 = Up2—1 X 1+ prz)

induced by the Teichmiiller lift. Note that 1 + pZ,> does not contain p-power roots of
unity.
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Let G, be the subgroup of the idelic class group Cx := Ak /K™ over K defined by
Gp = K*- (CX | (9IX>/KX.
[#pOk

Set moreover Ik oo := K- (C* - [ Op)/K™ and let Pic(Ok) denote the classical ideal
class group of K.
The snake lemma applied to the following diagram with exact rows

0 y Gp > Cg > Cx/Gp — 0
0 > Ik o > Cg > Pic(Og) —— 0O

identifies 1 + pZ,>» = Ker(Cg/Gp) — Pic(Ok). We can thus consider the diagram

| —— 1+ pZy: — Ckx/Gp — Pic(Og) —— 1
= K
Q,

where the horizontal row is an exact sequence of abelian groups, ¢ is given by ¢ (u) = u™!

and the dashed arrow is any (continuous) extension of ¢ to the quotient A% /G, obtained
using the divisibility of Q. Finally, we let A1) to be the following composition:

AP:AX KX —— A%/Gp ----> Q.

We associate to A(?) an algebraic Hecke character of K of co-type (1,0) as follows:

AV AR /KX — C%, x = [(x)] = (too © L;I()L(I’)(x) “Xp)) X

oo

Finally, writing 1(° = ®U)Lf,°°) one gets a character at the level of fractional ideals

A IK(pOK) — @X7 ab— HA%OO)(WI)ord[(a)’
lla

where oy is a uniformizer at [. One can verify that A ((«)) = whenever @ =1 mod™ pOk.

Definition 4.7. In the above setting, we will say that A(?) is the p-adic avatar of A and
that A(%) is the complex avatar of A.

Remark 4.8. We will also look at A(?) as a p-adic Galois character A(?: Gx — @; via
global class field theory.

Up to enlarging L, we can assume that A(a) € L forall a € Ix(pOk) and n(a) € L
forall a € I (c).
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Definition 4.9. We let (-): O — Of to be the projection onto the free units (note that
now 9/ might contain p-power roots of unity). By slight abuse of notation we will write
(A(a)) to denote L;l ({tp(A(a)))) (notice that this makes sense).

Definition 4.10. Fork € Z>1,let ng: Ix(c) — Q* be the character a — 7(a) - (A(a))¥~!
so that
gei= Y m@q¥e® e Sp(Ng. 1)
(a,c)=1

where Ny = Ng and yx = yg - @' ¥ = 4 - ©*>7% where w is the Teichmiiller character

and clearly yg = yg - @~". We will also write Ng := Ng/p>" in the sequel.

Remark 4.11. Note that, since p is inertin K, the p-part of the conductor of yj is at most
p” forall k > 1, so that y will never be p-primitive as a Dirichlet character modulo Ng.
This is a typical feature for newforms of infinite p-slope and level divisible by p. It is
well known, on the other hand, that if the p-order of N and of cond()y) of a normalized
newform f € Sk (N, x) coincide, then a,, (f') must have Euclidean absolute value pk—D/2
(cf. [35, Theorem 4.6.17]).

Remark 4.12. Recall the (unique) continuous Zp-actionon Uy :={z € C, | |z — 1|, < 1}
extending the natural structure of U; as a multiplicative abelian group, namely

oo

z5 = Z(Z)(z— D" zeU,selZ,.
n=0

We thus view Uj as a topological Z,-module. One can show that jt,0 (Cp) (i.e., the sub-

group of roots of unity of p-power order) is dense inside U;. It follows that the natural

action of Gg, on U; given by the p-adic cyclotomic character s£§’2 Go, > ZX is com-

patible with the action of Z, in the sense that o (z) = ZsCyc ') forz e Uj,o0 € GQ

Definition 4.13. We define W to be the smallest closed Zj,-submodule of Uy containing
(A(a)) forall a € Ix(pOk).

Remark 4.14. Note that the notation Wx makes sense, since different choices for A (i.e.,
different choices for the dashed arrow in the diagram above) differ by a finite order char-
acter, so that Wx only depends on K and not on A.

Lemma 4.15. Wy is a free Z,-module of rank 2. If a € Z ¢ is such that
p* = #(Clg(pOk) ® Zy),

then w?* € 1 + PZy> for all w € Wk. In particular, if p t #(Pic(Ok)), we have Wk =
1+ pZ,.

Proof. Letm = #Clg(pOk). Since A((«)) = « for all @« = 1 mod™ pOg we deduce that
(A(@™)) €1+ pZ,> foralla € Ix(pOk),

whence ngm) ={w" |we Wk} C1+ pZy.
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Raising to the m/ p®-th power is an automorphism of Wx as Z,-module, hence
W) = (P |w e Wi} € 1+ pZ,y.

Finally, it is also clear that 1 + pZ,. C Wk, which proves the statement concerning the
rank of Wg. [

Remark 4.16. Denote by (A): Gg —»> Wk the corresponding Galois character (given by
the composition (-) o (7)) and let K, denote the (unique) le,-extension of K. It follows
from the construction that (A) factors through 'y, := Gal(K/K), inducing an isomor-
phism I'oo = Wk. We will consider Wk as a Gg-module via this isomorphism (and the
Gg-action on [, by conjugation). In particular, we have I'oo = 't x '™ where

(i) 't is the Galois group of the cyclotomic Z,-extension of K, denoted by K,
where complex conjugation acts as the identity;

(i) I'” is the Galois group of the anticyclotomic Z,-extension of K, denoted by
K, where complex conjugation acts as taking the inverse.

We will write Wx = WI;" x Wy for the corresponding decomposition of Wk.

4.2. Families of theta series as generalized A -adic eigenforms

It is possible to realize p-adic families of theta series of infinite p-slope considered above
in the following way, as suggested in Hida’s blue book [23, pp. 236-237].

Definition 4.17. We define the A-algebras A, := Or[Wk] and Oiga := Amnigall/ p)s
with A-algebra structure induced by the natural inclusion 1 + pZ, C Wk.

Definition 4.18. We define

. n(@) Nejo@ ¢ A
8 Hida ‘= Z(a,c):l (A(a)) [(A(a))] q € Anidallg],
where recall that [-] denotes group elements in Wk .
Let w: Apiga — Cp be a continuous @p -algebra homomorphism. Assume that there
exists integers ay > 1 and ky > 1 such that w sends group elements in [u] € 1 4 p9» Z > C
Wk to ukv € C,,. Then

Mot Ig(©) > CX ar> % w(((A@)])

is a primitive Hecke character of infinity type (ky, — 1,0) with conductor p¢®@-"¢ for a
suitable integer e(w, ) > 0 (depending on a,, and the p-part of 1), so that

griaa) =Y (@) g € S, (Nu. gu. OL[w]).  (42)

where

(1) Ny = dK . NK/Q(C) . p2e(w,n).
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(i) xw =€k MO col kg, = Xg -w?** . g, where g, is an explicit character
valued in ppe (Cp), depending on w.
(iii) Op[w] is the finite extension of (91 generated by the values of w (one can
assume that it is a cyclotomic extension of (97 generated by a p-power root
of unity).

When w acts on group elements [u] € Wx as w([u]) = u* for some k > 1, we recover
the specializations g yq,(W) = gk-
One clearly has a big Hecke character

Mida: Ik (¢) > Ofiqas A > % . [()L(a))] 4.3)

with associated Galois character fpiga: Gk — O}q,- Note that, by construction, f)yida fac-
tors through the Galois group of the ray class field modulo c¢o p*> over K.

Definition 4.19. We set Vg = Ind% Nmida and we call it the big Galois representation

associated with the family g py;4,-

Remark 4.20. By construction, it follows that for any w as above, the 2-dimensional
(over L{w] = Frac(Or[w])) Gg-representation obtained as

Venia W) 1= Ve, @000 L[]
is the dual of the Deligne representation attached to the specialization g ;4. (w).

Now we are ready to prove that the families of the form g4, fit in the framework of
generalized A-adic modular forms, as defined in Section 2.

Lemma 4.21. The family g4, constructed as in equation (4.18) satisfies (with the nota-
tion introduced in Section 2 and above)

Ehida € SQuiaa (Ng - Xg+ Atida),

where Quiga 1= Q
kernel of Up,.

g1, Z- Moreover, gy, is a generalized A-adic eigenform, lying in the

Proof. It is enough to check that Qg 7 is (A, Anida)-admissible. Condition (i) of Def-
inition 2.5 is clearly satisfied. For condition (ii), for every k > 2 let wg: Apiga = Cp
denote the weight uniquely determined by the assignment wy ([u]) = u¥ — 1 on group
elements. We know that wx € Qg,., 7z and we claim that [ := ()., Ker(wg) = (0).
Since wy, ¢ Ker(wy) for every k > 2, one can prove the assertion worlzing in Agiga[1/ p],
where it is easy to show that (");—, Ker(wg)[1/p] = [ 1=, Ker(wi)[1/ p] for all m > 2.
Using that Amiga[1/p] is @ UFD (since Apiga is such), one concludes that indeed it must
be I = (0). [

Remark 4.22. The families of the form g4, are examples of A-adic forms admitting
classical specializations also for arithmetic weights w with k,, = 1.
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5. Factorization of triple product p-adic L-functions

5.1. Remarks on the relevant complex L-functions

In this section we recollect some facts concerning Hecke L-functions and Rankin—Selberg
convolution that will be needed in the sequel.

Fix K/Q a quadratic imaginary field and let yc: A /K> — C* be an algebraic Hecke
character of oo-type (a, b). Let | - |4, denote the adelic norm. Then yc = yo - |- |Xlljb)/ 2
is a unitary Hecke character (i.e., taking values in {z € C* | |z| = 1}) and the completed L-
function L*(xo, s) attached to y¢ has meromorphic continuation and functional equation
with center s = 1/2 (cf. Tate’s thesis). Note that L*(yo, s) is actually an entire function
if xo is not of the form yo = v o Nk for some Dirichlet character v.

As explained in [31, Theorem 11.3 and Proposition 12.1], one can attach to yc an
automorphic representation 7 (y) of GL2(Agq) such that L*(w(x),s) = L*(xo, s). Note
that if » = 0 and @ > 0, then 7 () is the automorphic representation attached to the theta
series 0, and L*(0,,5) = L*(w(x),s + a/2).

Given two automorphic representations w7 and 7, of GL,(A) with central characters
w1 and w,, one can construct - via the so-called Rankin—Selberg method - an L-function
L*(mry X 1o, 8), prove its meromorphic continuation and functional equation of the form

L*(my X mp,8) = e(mmy X 7p,8) - L* (71 x 72,1 =)

where 77 denotes the contragradient representation of 7. The poles of L* (1 X 72, s) are
those of L(wjw2,2s — 1). Moreover, the e-factor (11 X 75, §) is an invertible function.

We refer to the standard reference [30] for this construction and for the definition
of the local L-factors and e-factors of such L-functions. The local theory is also nicely
summarized in [18, Section 1]. For the definition of the local e-factors we always use the
standard additive character of the corresponding local field and the self-dual Haar measure
with respect to the standard character.

Starting from two cuspidal eigenforms f € Si(Ny, xr) and g € S;(Ng, xg), one can
also define the L-function L(f x g, s) more classically via an Euler product expansion
(cf. [32, Section 7]). If f and g are newforms and k > [, it holds

2

Finally, if f € Sx(Nyr, xr) and ¥: Ax/K* — C* is an algebraic Hecke character of
oo-type (a, b), we set

-2
L(fxg,s)-T'c(s) Tels—14+1) = L*(nf xng,s—L).

L*(f/K.5) 1= L*(ﬂf (). - w)

2

One can write L*(f/K, ¥, s) = Loo(f/K, ¥, s) - L(f/K, V¥, s) with archimedean L-
factor given by

Loo(f/K.¥.s) = Tc(s —min{a,b}) - Tc(s — min{k — 1, |a — b|} — min{a, b}).
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Assume now that we are given f € Si (N, xr) a Hecke eigenform and two Hecke
characters vy, ¥, of K of co-type (I —1,0) and (m — 1, 0) respectively (here [ > 1, m > 1),
which are not induced by Dirichlet characters. Then g = 6y, and & = 8y, are cuspidal
newforms, say g € S;(N;. xg) and i € Sy, (Np, xp). Assume that x5 - xg - x» = 1 and
consider the Garret—Rankin triple product L-function

LI(f xgxhs) = L*(”f x w(Y1) X w(Y2), s — M)

2

If one looks at the corresponding £-adic Galois representations for £ any rational
prime, one easily deduces the following decomposition

Ve(f) ® Vilg) @ Ve(h) = Ve(f) ® (Ind2 y19> @ IndZ v y9)
= (Ve(f) ® IndZ v192) @ (Ve(f) @ IndZ v1yg).  (5.1)

For the sake of precision, here V;(§) denotes the dual of the Deligne representation
attached to & and we look at ¥; and v, as Galois characters attached to the £-adic avatars
of Y1 and v, via class field theory.

The decomposition (5.1) corresponds to the following factorization of L-functions

L*(f xgxh,s)=L*(f/KY1¥2.8) - L*(f/ K, Y193 5). (52)

5.2. Study of the big Galois representations

As usual, we let L denote a (large enough) finite extension of QQ,, containing all the
needed coefficients.

Setting 5.1. We work in the following setting (cf. Section 1.2).

i Wefix f e Serd(N 7,1, A y) aprimitive Hida family with trivial tame character,
squarefree tame level Ny and coefficients in Ay (a ring in €5, which is also
finite flat over A = OL[1 + pZ,]), satisfying Assumption 3.1.

(i) We let K/Q denote a quadratic imaginary field of odd discriminant —dg (i.e.,
we have dx = 3 mod 4) coprime to pN s such that the fixed odd prime p is inert
in K and does not divide the class number of K. Writing Ny = N}L . Nf_ where
N}' is the product of prime factors of Ny which are split in K, we assume that
Nf_ is the product of an odd number of prime factors (Heegner hypothesis).

(iii)) We fix two ray class characters 17 and 7, of Gk, both of conductor cp” Qg
with ¢ a positive integer with (¢, pNg) = 1 and r > 1. We then let g and
(respectively) h denote the generalized A-adic eigenforms attached to 1 and
(respectively) 1, via the construction explained in Section 4.2.

(iv) We assume that the central characters of n; and 7, are inverse to each other
(self-duality condition).

(v)  We assume that the prime divisors of the integer ¢ are all split in K.
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Remark 5.2. Let (scyc): Go — 1 + pZ, be the character g > &¢yc(g) - @(6cye(g)) 7,
where g¢yc: Go — Z; is p-adic cyclotomic character. We then get automatically a univer-
sal weight character (cf. Remark 2.11 for the notation):

<8cyc>A: Go — A%, g [(Scyc(g))] =()ao Scyc(g)

and, for (R, ¢) € \éA» we set <gcyc)R =¢@o <gcyc)A =()ro Ecyc- GQ — R*.
Since we assume that p does not divide the class number of K, we have Wx = 1 +
PZp> (cf. Lemma 4.15) and moreover (with the notation of Remark 4.16)

(eeyedlogx = (A) - (A)°. (5.3)

By the work of Hida and Wiles, it is known that one can attach to f* a big Galois rep-
resentation Vy, which can be realized as a free module of rank 2 over A ¢ [1/ p] equipped
with a continuous action of Gg, specializing for all x € Wﬂf to the dual V,( f,) of the
p-adic Deligne representation attached to f, (or, in case f, is the p-stabilization of a
newform of level Ny, to the dual of the representation attached to such newform). In par-
ticular, it holds that det(Vy) = weyc + (6cyc)a ;- We refer to [9, Section 5] for a detailed
discussion concerning such Galois modules.

We defined a big Galois representation Vg (resp. Vj) attached to g (resp. k) as

Vg = Indg N1 (resp.V = Indg 72),

where n; (resp. 12) is the big Galois character valued in Agiqg,[1/p] constructed as in
Section 4.2.

Notation 5.3. We will write Rx := Ayjqg, in what follows, to simplify the notation. We
will also write (1) g, : Gg — Ry for the big Galois character given by g — [(A(g))].

Lemma 5.4. We have
det(Vg) = €K nclen . (Ecyc> . (gcyc)RKa det(Vh) =EK n;en . (Ecyc) . <Scyc)RK-
Proof. 1t follows easily from equation (5.3). |

Consider the Galois representation V:=Vy ®; V, ®1, V. Itis a free R := Rygn[1/p]-
module of rank 2 and it follows immediately from the above discussion and our assump-
tions that

det(V) = a)fyc : 8;/?; : ((Scyc)Af ® (‘%yc)Rk ® <8cyc)Rk)‘

Since p is odd, there exists a character Y sgn = x: Go — R such that gy - x> = det(V),
i.e., We can write

_ ~ ~ 1/2
X = Weyc - <€cyc) z. ((gcyc>Af ® <€cyc)RK ® (‘%yc)RK) / .

If we define
Vii=Ves R(x™).
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then one checks easily that this representation is Kummer self-dual, i.e.,
(VHY(1) = Homg (VT, R)(1) = VT.
We want to study the specializations VT (w) for a suitable w € fgh-

Definition 5.5. We define the following big Galois characters
Q= UIUZ()‘)O(A)_l Age and Y= ming - Ay, 5.4

where
N —-1/2
A'ac: GK —> RK Aac = <A>}2/K2 : ((A)%K) / .

Remark 5.6. Note that Wg, (Cp) = Homgfgt(WK, C,) has a natural group structure, so

it makes sense to multiply or invert weights.

Lemma 5.7. Let w = (x,y,z) € Qfgn with k = kx even and let f° be the newform
associated with f . (as in Proposition 3.6). Then there is a decomposition

~ ~ k
Viw) = ((Vp(f°) ®rpw) IndR ¢y.2) @ (Vo(f°) ®1pw) IndR ¥y:2)) ( - 5)»
where f" = f°Q® a)k/z_ls;l/Z.
Moreover, setting | =k, and m = k, the Hecke character of K attached to @, (resp.
I—m

to ¥/ is anticyclotomic and has oo-type (W”T_Z HT_'”) (resp. (5, mT_Z)).

Proof. This is an easy computation, which follows easily noting that for a Gg-character
n and a Gg-character y it holds (Ind% m) () = Indg M- xlGg)- ]

5.3. Improvement of the triple product p-adic L-function in our setting

Welet M := c? .- dg - Ny in what follows.
Inspired by the level adjustment performed by Hsieh in [25, Section 3.4], we are led
to consider the following test vectors associated with our families g and /&, namely we set

g* =gq™") € Sauu(M. xg.Rx). h*:=h(g"") € Sq,, (M. xn. Rk). (5.5)

One can check that our adjustment matches Hsieh’s more general version, in view of
the following facts concerning the local automorphic types for the specializations of the
families f', g and h.

Proposition 5.8. Let £ be a prime different from p. Let w = (X, y,z) € Qygn and write
(f.g.h) = (fx, &y, hz). Denote by gy the local component at £ of the automorphic
representation g attached to § € { f, g, h}. Then the following facts hold.
(i)  The automorphic type of g ¢ does not depend on the chosen specialization for
& € {f, g, h} (rigidity of automorphic types).
(ii) If€ { M, then mg ¢ is an unramified principal series for & € { f, g, h}.
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(iii) If€| Ny, then myy is special, while wtg ¢ and 1y, ¢ are unramified principal series.

(iv) If€ | c?dk, then msy is an unramified principal series, while mtg ¢ and 7y ¢ are
ramified principal series.

Proof. All the assertions regarding 7y are well known for Hida families and for the
choice of squarefree tame level Ny and trivial character in our setting. The assertions
regarding mg ¢ and 7y, ¢ follow from the explicit description of the Weil-Deligne repre-
sentations which correspond to them via the local Langlands correspondence. Here we use
the assumption that dg is odd and that the prime divisors of ¢ split in K to grant that the
restriction of V,(g) and V), (h) to a decomposition group at £ is reducible when £ | dg. =

Along the lines of [25, Proposition 6.12], we can thus define the so-called fudge factors
at the primes dividing M .

Proposition 5.9. For each { | M, there exists a unique element frgp ¢ € R;gh such that
forall w € Qyggy it holds

(Frenow =I11, ¢

with J}‘Iw ¢ as in Proposition 3.6.

Proof. This is proven (adapting Hsieh’s methods) in the same way as in [17, Section 5.1].
[

Definition 5.10. We define the element

—-1/2
Lf(f g )= L] (f g™ ") - T] T g0 € Rren
UM

and call it the square-root f-unbalanced p-adic triple product L-function attached to our
triple (f, g, h).

Corollary 5.11. With the above notation, for all w € Qfgp lying in the f-unbalanced

region, it holds
L*(T1,1/2)
£/ ,g.h 2oz Y qunb 5.6
(L7 (f.g. H)(w)) O (5.6)

Proof. Obvious from the formula (3.6) and the definition of éﬁ,{ (f.g.h). ]

We are left to find a more explicit description of the local integral jlﬁlz, »- We will fix
a triple of weights w = (x, y,z) € Qrgp whichis f-unbalanced. Write k = ky, ! = ky,
m = k. as usual, so that k > | + m. Assume furthermore that k is even.

Let (f,g,h) = (fx, &, h:) as above and, only for this section, set

T =Thp Q X1, T2 = Tgp, T3 I= Thp,

where
— Cl)(k+l+m_6)/2 . (8x8y82)_1/2.

=1

1
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Let y1 =ay,p - X1, where a, , denotes the unramified character of Q; such that ey, , (p) =

1-k)/2
ap(f)p .
Then 7; is an irreducible smooth representations of GL,(Q,) fori = 1,2, 3 and, by
our assumptions, we know the following.

Lemma 5.12. The representations w, and w3 are always supercuspidal. The representa-
tion 1y satisfies one of the following:

(a) my is the principal series Ty = y1 B vy with vy = a)f,p)(l_l where wy,, is the
p-component of the central character of g, p;

(b) 7y is the special representation T, = x1| - |~"/2St.
The latter case happens if and only if x = 2 and [ = f, is p-new.
Proof. All the assertions concerning 77 are well known for Hida families. The fact that
7, and 73 are always supercuspidal follows from the fact that g and % are theta series

attached to a Hecke character of K ramified at p (recall that the prime p is inert in K by
assumption). |

Proposition 5.13. In the above setting, we have that

junb _ L(7T2 ® 13 &® X1, 1/2)
Mo-p ™ o(m, @ 3 ® 21, 1/2) - L(ma ® 13 ® 11, 1/2) - Ly ® 12 ® 73, 1/2)

Proof. This follows adapting [25, Proposition 5.4] in the same way as it is suggested

in [17, Remark 3.4.7]. With the notation of [25, Section 5.3.2], this means that for the

junb

o we choose as test vector
wsP

calculation of

br = (/)" @ Wo ® 05 Ws,

where, for i = 2,3, W; is the local Whittaker newform for 7;, as defined in [25, Sec-
tion 2.4.5] (instead of the normalized ordinary Whittaker function chosen for the compu-
tation in [25, Proposition 5.4]). Since for i = 2, 3 it still holds that

a 0
W,-((O 1))=]12[>)<(Cl) forevery a € Q,

the same calculation of [25, p. 488] for the local Rankin—Selberg integral (denoted W (W5,
9}5 W3, p(tn) fl"rd) in [25]) yields the desired formula. |

We can give an even more explicit description of J‘l‘-}‘z P Write ¢ (resp. ¥) to denote —

again only in this section — the p-component of ¢,., (resp. ¥,,) seen as Hecke character
of K. Letalso w1 and u, denote the characters of Q2 given by

_ —1/2 _ —1 —1/2
11 = (asp -0 ,") o Ny, 2= (a7, . ,7) o No,/q,

r_ —1/2
and set 1y = 75, ® W 17
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Proposition 5.14. With the above notation, it holds .'JLI‘-‘[‘:” » = Jo.w * Jy,w, where for n €

{p, ¥} we set
. LGe(npn). 1/2) 5
T (), 1/2) - L (), 1/2) - Lz @ 7(n), 1/2)” '

Moreover, one can compute Jy y, as follows.

(1) Assume that we are in case (a) of Lemma 5.12 and that the character npy is

unramified, then
k=2 \2
J,,,wz(l— P 2) .
ap (f)

(2) Assume that we are in case (b) of Lemma 5.12 and that the character njy of Q;z
is unramified, then

k—2
p
Tpw = 1—
" ap(f)?

(3) Assume that the character ni1 of Q;z is ramified of level n, then

. _ P n pn(k—2)
e (ap(f)2) G

where 7] is the unitary character of Q2 given by nuy on Z;Z and such that (p) =
1 and W (7)) denotes the root number of 1, defined as

W) = e@,1/2),

which is an algebraic integer of complex absolute value 1.

=1-a,(f)7

Proof. The factorization f]‘l’-'[‘z » = Jo.w + Jy,w follows directly from the corresponding
factorization at the level of Galois representations given in Lemma 5.7 and the local Lang-

lands correspondence for GL,(Q,). Hence we know that

L(nu1,1/2)
e(np1.1/2) - L2, 1/2) - L7 @ (1), 1/2)°

Now note that for n € {¢, ¥} we have that nu is a unitary character Q;z — C*, since
¢y.z and ¥/, are anticyclotomic and u; is unitary for i = 1, 2. The fact that ¢,., and
¥,/ are anticyclotomic also implies that n(p) = 1.

We can proceed depending on the three cases, applying the known facts from Tate’s
thesis for the definition local L-factors and e-factors attached to Hecke characters.

jn,w =

(1) If npy is unramified, then e(npey, 1/2) = 1. Moreover, if 7 is the unramified prin-

cipal series 7] = ay,, -a);,llj/z 2! ozf_’ll7 -a);,ll,/z, then L (7] x (n).s) = L(np1.s) -

L(nua,s). Hence

. 2 pk=2 2
Tpw = L(Ni2, 1/2)7% = (1 —nu2(p)p ) = (1 T a (f)2) :
P
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) Ifny =ay)p -wf;/2| -|~1/28t, then L(n} x w(n),s) = L(np1,s). Hence

Tpw = L2, 1/2)7 = 1=npa(p)p~! = 1= ap(f)72,
where we used that this situation can only occur with x = k = 2.

(3) If nu; is ramified of level n (so that necessarily also nu, is ramified), all the L-
factors involved are equal to 1, so that J, ,, = (1, 1/ 2)~! and by Tate’s thesis
we know e(nu1, 1/2) = nui(p)"” - e(1, 1/2). Hence

P )n ‘ pn(k—z) .

ap(f)? W@
Remark 5.15. We observe that the results of the above computation match perfectly the
shape of the modification of the Euler factor at p (for the Galois theoretic side) described
in [13, pp. 162-163], also in the cases of bad reduction at p.

Ipw = e(nu1.1/2)7 = nui(p)™ - Wi~ = (

We have some control on the root numbers appearing in Proposition 5.14 (case (3)).

Lemma 5.16. With the notation introduced above, if x = k = 2 mod (p — 1) and the
character n € {@, ¥} is ramified, then W(7) = W(n) € {£1}. Moreover, the sign W(¢)
(resp. W(¥)) depends only on the parity of j1 = (I + m —2)/2 (resp. j» = (I —m)/2).

Proof. Note that under our assumptions the character denoted (1 above is unramified and
n = 7 is of finite order and trivial on Q. We can thus apply [36, Proposition 3.7] to a
suitable twist of 1 to deduce that W(n) = n~! (), where & € Q;z is a primitive 2(p — 1)-th
root of unit, so that 1 = n(—1) = n(a)~2. In particular, this shows that W(n) € {%1}.
Recall that Z;z = pp2—1 X (1 + pZ,2). Thus the only way one can affect the sign
W(n) is changing the weights /, m. More precisely, one can check (cf. Remark 5.2) that

(p=1)(+m=2)
2

<.0|ul,z_1 = ’ll’72|u,,z_1 (=) , I/f|u1,2_1 = ﬂlrlghtpz_l (=)

(p=1)(I=m)
2 .

Writing = ¢@+1/2 for ¢ a primitive (p2 — 1)-th root of 1, we see that the sign W(p)
(resp. W (1)) depends only on the parity of j; = (I +m —2)/2 (resp. jo=({ —m)/2). =

5.4. Anticyclotomic p-adic L-functions

As in the introduction, let H,, denote the ring class field of K of conductor cp” and let Hqo
be the union of all the H,,’s. It follows that the big characters ¢ and ¥ (defined in equa-
tion (5.4)) factor through G, := Gal(Hoo/ K). With the same notation as in Remark 4.16,
we can identify I'™ = Gal(K /K (the Galois group of the anticyclotomic Z ,-extension
of K) with the maximal Z,-free quotient of G, i.e., there is an exact sequence

0> At > G0c—>T" =0

of abelian groups with A, a finite group and I'”™ = Z,. We fix a non-canonical isomor-
phism Goo = A, x ' once and for all. Notice that A,. will factor through ',
As in Lemma 5.16, set j; := l+’;’_2 and j, := Z_Tm If we assume moreover that the

triple of weights w = (k, y, z) is f -unbalanced (i.e., k > [ 4+ m), then | j;| < % fori =1,2.
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Building up on previous work of Bertolini-Darmon [3, 4] and Chida-Hsieh [12],
Castella and Longo in [11] have constructed so-called big theta elements, denoted

Ofee(f)ye Ry r- 1= Ay ®o, OL[] (5.8)

attached to the Hida family f and the quadratic imaginary field K (satisfying a suitable
Heegner hypothesis relative to the tame level of f). The two variables are given by the
weight specializations for f and by continuous characters V: '~ — C ;j such that the
associated algebraic Hecke character v: Ax /K> — C* has infinity type (j, —j) with
|j| < k/2. We let %;‘j}c to denote the set of characters v satisfying such requirement for a
fixed k. The specializations of the square of @ﬁ.ﬂ?%( f) at (k,V) with k > 2 even integer
and D € %;‘j}c interpolate the (algebraic part of the) special values L(f7/K, v, k/2).

Following the strategy of Castella and Longo applied to the more general construction
of Hung [26], one can construct a big theta element @‘jgeg( [ xt) € Ry - associated
with the Hida family f and a branch character y; of conductor ¢ (i.e., a character of the
finite group A.).

Remark 5.17. The construction of @ﬁ.‘?g( f, xt) depends on the following choices that
we fix from now on:

(a) a factorization N;@K =Nt -W, where recall that N;r is the product of the
prime divisors of Ny that splitin K;
(b) a family of quaternionic modular forms ® associated with f', with the property
that there exists an open neighborhood Uy of 2 in 'Wj (01 ) such that for all
k € Ur N Zx, it holds
Qi = Ak - k.
where A g x € L and ¢ corresponds to f via a version of the Jacquet-Langlands
correspondence.
We can (and will) choose the following normalizations for ®:
i Ap2=1
(i) ngeN- = lfork e Ur NZ2.
The period 1 fiN- (appearing in the following proposition) is defined as a suitable Peters-
son norm of ¢, which we can normalize to be 1 (this will determine ¢ up to sign).

We refer to [5, Theorem 2.5] for the existence of @ and its properties and to [12, equa-
tions (3.9) and (4.3)] for the description of 7 fo.N- s Petersson norm (Chida—Hsieh’s

notation is { fr7. fu')R)-

Proposition 5.18. Fix an even integer k € Uy N Zs, and a character V € %;ri]‘c of con-
ductor p". Write [ = f and f° = f} (with the usual conventions). Then:

(©Xe(f /K, x1))* (k. D)
L(f°/K. xv.k/2)

= (k) - Cp(fs xtv) - ep(f2 xev) - 9 (5.9)
f°,N~
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where
. . #O%
(i)  settingug = =X and 5k := /dk, one has

242j—k

Co(fiyv) =(=1)" 2 -T(k/2+j)-T(k/2—j)-c-8&" uk
ce(mfp, 1/2) - xev(NF);

(ii)  the p-adic multiplier e, (f, x;Vv) is given by

( D )n . pn(k—Z) lf}’l >0,

ap(f)?
k=2 \2 . .
ep(fixrv) = (1—&W) ifn =0and f is p-old,
— aﬁ—};z ifn =0and f is p-new;

(iii) Qpo n- is Gross’s period, that we can write as

_ (47)% - || /01l - S0 (2) - [SL2(Z) : To(Ny)]
Nfo,N—

Proof. This follows from the work of Chida—Hsieh [12], Hung [26] and Castella—Longo

[11]. We refer to [11, Section 4.2] and to [26, Theorem 5.6] for the interpolation formula.

Gross’s period is defined as in [26, equation (5.2)] (translated into our notation). ]

Qo n-

(5.10)

Remark 5.19. We keep the notation of Proposition 5.18. The Heegner hypothesis (iii) on
Ny in Assumption 5.1 implies that the sign of the functional equation for L(f°/K, yx,s)
is +1 for every anticyclotomic Hecke character y of K of conductor coprime to Ny -
dk (unless k = 2, f, is p-new and y is unramified at p), i.e., we are in the so-called
definite setting. One of the main results of [26] (namely theorem C in the introduction),
generalizing work of Vatsal [38] and Chida—Hsieh [12], implies that in our setting it holds
L(f°/K, yxsv,k/2) # 0 for all but finitely many vV € SEZ“}C

5.5. Factorization of the triple product p-adic L-function

We consider the automorphism s of Rx ®e , Rk in @@ , given by the assignment
V1 ® (6] '8 @ [y1/2571/2

on group-like elements (note that again it is important that p # 2 for this to be a well-
defined automorphism).

Let again K, denote the (unique) le,-extension of K. Recall (Remark 4.16) that the
character (A) induces an isomorphism ['s, = Wg. The natural projection I'sc —> I'~ can
be described as y — y1/2(y?)~1/2. Accordingly, we get a morphism

T:Rg — O[] 5.11)

Notation 5.20. We set ¢; := n112]a, and ¥; := n1nJ|a,. With respect to the chosen
isomorphism G, = A, x I'", we also define the characters of I' ™ given by ¢~ := 1112 |r-
and ¥~ 1= mng|r-.
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Note that the assignments [y] — ¢~ (y)[y] (resp. [y] = ¥~ (y)[y]) define O -linear
automorphisms

@ :OL[TT] = OL[T7] (resp. v :OL[T 7] = OL[TT]),

since [¢~ (y) — 1]p < 1 (resp. [~ (y) — 1|, < 1) for y € I'". By slight abuse of denote by
@~ (resp. ¥ 7) the automorphism of Ry r- given by the identity on A and ¢~ (resp. ¥ ™)
on O [T].

Lemma 5.21. Consider the composition

1® 19t® A~ 1A _
> Rpgh —— Ay ®o, OL[T 7] &0, OLIT].

PTyc: ngh

>~

Given a specialization (k,V, i) € 'Wf\'f 7 X f{;ri}c X %;ri;c (with k > 2 even integer), then
the specializations in Qggp which lift (k,V, ) are f-unbalanced triples w = (k, y, z)
with the property that

V= (2)lr-- M) A= /2 (5.12)

Moreover, we can always find such 'y € Qg and z € Qp, for given V and [i such that
w = (k,y,z) is f-unbalanced.

Proof. This is an easy exercise. u

Notation 5.22. Now let o+ € Goo denote the projection to G, of the element of Gg
corresponding to N by class field theory. We write (o, )/,ii) =oqp+ € Ae xT'™ = Goo
to denote the components of og+ according to the fixed isomorphism A, x I'” = G
(note that such yp+ € '™ is well defined). We also choose an element o, € @ such that
a2 = ¢i(0c) - ¥ (0¢). We will also write

R = (Ay R0, OL[T 7] ®o, oL/ p]
in what follows.

Proposition 5.23. There exists an element Afgp € R~ such that

(@)  forinfinitelymanyk € Us N Zx» and forallV,[i € %;ﬁ}c, it holds (with f = f
as usual)

~ A nr —A — A~ (o7
A k,v,u = 72N . U c—_—
fen ) Ag(k)-&Ep(f. Ad) - 5",{1 (o) VA lye) c-u%

Gi) forall D, fi € XSS, Apgn(2.9, 1) # 0.

Proof. It follows from [8, Lemma 3.3] that there exists an element Ay € A r[1/p] such
that for infinitely many k € Uy N Z, it holds

_ ng
Ap(k) - E,(f, Ad) - &1

‘Afk
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and such that A ¢ (2) # 0. We now set

ac -9 (ym+) - ¥ (ym+)
= 5 e L.
C - MK

Then the element
Afgn :=u-(As ® [yp+] ® [yp+]) € R~
visibly satisfies the required interpolation property (cf. Notation 5.22). ]

Definition 5.24. In Setting 5.1, the image of Ig (f. g, h)under the map pr,. of Lemma 5.21
is denoted by é‘il{,ac(f, g, h) and called the anticyclotomic projection of éC}: (f, g h).

Theorem 5.25. Under the natural identification
R~ = (Ay ®o, OL[TT] ®o, OLITT])[1/p] = (Ry,r- ®a, Ry r-)[1/p],
we have that

L) f g h) = £Asen - (07 (OKE(Sf.00)) @Y (OKSE(Sf . ¥))  (5.13)
as elements of R~.

Proof. 1t is enough to check that the squares of both sides of equation (5.13) agree, when
specialized to (k, V, fi) for infinitely many k € Uy N Z-2 and for every ¥ and [ finite
order characters of I'™ (so that ¢~ and ¥~ i lie in %;“}{ for every such k).

We have

L] (f g W) (k.D. Q) =] (f.g.h)(k.y.2)

for any y, z satisfying condition (5.12).
On the other hand we have that

¢ (O (f . 9)) (k. D) = OLE(f ) (k. 97 D)

and
V(O ) (k, [1) = O (f o) (k, ¥~ o).
The result follows putting together the following ingredients:

(i)  the factorization of the corresponding complex L-functions (cf. equation (5.2)
and Lemma 5.7);

(i)  the comparison formulas (5.6) and (5.9);

(iii) our explicit computations for the local factor jlll_l;s;, p (cf. Proposition 5.14 and
Lemma 5.16);

(iv) the control on the factor Afgp, as described in Proposition 5.23. m
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6. Derivatives of triple product p-adic L-functions and Heegner
points

In this section, we describe some applications of Theorem 5.25. We keep the notation as
in the previous section (cf. Setting 5.1).

6.1. Heegner points and Tate’s parametrization

Let p > 3 denote our fixed prime and let £/Q be an elliptic curve with multiplicative
reduction at p. This means that the conductor of E is of the form Ng = N - p with
pt Np. Welet fg € S,(I'g(NEg)) to denote the cuspidal newform associated with E via

modularity, whose g-expansion at co will be denoted

+o00
JE = Zan(E)qn-

n=1

In particular, we have a,(E) € Z foralln > 1 and a,(E) = 1 (resp. ap(E) = —1)if E
has split (resp. non-split) multiplicative reduction at p. We write « := a,(E) € {£1} in
the sequel.

Hida theory shows that there exists a unique primitive Hida family

f eS™(Nyg,1,Ay)

of tame level Ny := N and trivial tame character, such that f, = fg.

This family will play the role of the Hida family f of the previous section. As for
the rest, we keep working in the Setting 5.1 and, possibly, add further restrictions. In
particular, the conductor Ng of our elliptic curve E is squarefree and satisfies a suitable
Heegner hypothesis with respect to the fixed quadratic imaginary field K.

For our applications, we are led to impose one further condition throughout this sec-
tion.

Assumption 6.1. ¢ = 1,1 has conductor prime to p and ¥ = 1719 has non-trivial anti-
cyclotomic part ™.

With the notation of Section 5, it follows that ¢~ is trivial and that we can identify

¢t = @.
Following the discussion in [5, Section 4.3], one can define a Heegner point

P, < {E(Hw ifg #1, 6.

EK)®Q ifp=1
associated with ¢, essentially coming from a (minimal) parametrization of E in terms of

the Jacobian of a suitable Shimura curve. Here H,, is the field cut out by ¢. Note that,
since p is inert in K and H,, is contained in the Hilbert class field of K, it follows that p
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splits completely in H, so that we can fix an embedding H, C Q,2 and view the point
Py as a point in £(Q,2) ® Q. Under this identification, the Galois actions on P, of the
Frobenius (as generator of Gal(Q,2/Q,)) and of any Frobenius element for the abelian
extension H,/Q coincide. It follows that the points

PE, = Pyta- P, € E(H,) ® Q.
do not depend on the choice of prime p of H, above p. In what follows, we fix the choice
induced by our fixed embedding ¢: Q—0Q p and we view the points P, and P(;'fa as
elements of £(Q,2) ® Q under such an embedding.
Since E has multiplicative reduction at p, it admits a Tate parametrization, i.e., there
is an isomorphism of rigid analytic varieties

Dryge: G;;%sz /g% = Egi - (6.2)
One can define the branch log, . : C; — C,, of the p-adic logarithm, uniquely deter-

mined by the condition log,, (¢£) = 0, where g € pZp is Tate’s p-adic period associated
with E. This yields a logarithm

logg = long oCD;a{e: E(sz) — sz (6.3)

at the level of Q,2-rational points.

6.2. Restriction to the line (k, 1, 1)

We now restrict our attention to the line (k, 1, 1). Recall that y = 1 (or z = 1) means
that we consider the specializations given by y([u]) = z([u]) = u on group-like ele-
ments u € Wg. For the first variable, we let k vary in Uy N Z>, (same notation as in
Remark 5.17). The corresponding characters of I'™ via equation (5.12) are clearly both
the trivial character 1p-.

An easy check shows that, with this choice of specializations, the square of the element

ip(f/Kv 90) = ®]:§eg(fs ‘Pt)(', 1F_) € A

interpolates the algebraic part of the special values L(f./K,¢,k/2), atleast when k > 2.
For k = 2 the p-adic multiplier e, ( f£, ¢) (cf. Proposition 5.18) vanishes, as a manifesta-
tion of a so-called exceptional zero for our p-adic L-function.

Moreover, we see that the element £, (f /K, ¢) coincides with the square-root Hida—
Rankin p-adic L-function attached to f and ¢ in [5]. This follows comparing the above
stated interpolation formula (5.9) and the one of [5, Theorem 3.8].

‘We can now state one of the main results of [5] (extended to the case of not necessarily
quadratic characters ¢ = 1172).

Theorem 6.2 ([5, Theorem 4.9]). In the setting described above, it holds

d logE(P(;,_a)
Eip(f/K, ‘P)|k=2 =75
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Definition 6.3. We set £,(f /K. V) := ¥~ (O (f.¥:))(- Ir-) € A s and we define
the restriction to the line (k, 1, 1) of f,{(f, g,h)as
Ly (f.gh) =2 (f.g. W1, 1) =2) (f.g.h)( I, 1r-) € Ay

Corollary 6.4. In the above setting (in particular, under Assumption 6.1), assume that
L(fe/K. 9. 1) # 0. Then £ (f .g.1)(2) = 0 and

d CE
ﬁii[{(f,g,h)m:z =5 logg (Pf,).

where cg = £ Afen(2,01,1. A1,1) - Lp(f /K. ¥)(2) € Q.
In particular, f—kéﬁljj (f. 8 h)jx=2 = 0ifand only if the point Pq;fa is of infinite order.

Proof. This follows immediately from the above Theorem 6.2, the running hypothesis,
Lemma 5.23 and the factorization proven in Theorem 5.25. Note that

Lo(f /K. A)Q2) = OLFE(f . ¥)(2.97) #0.

Indeed, by Assumption 6.1, we have that ¢/~ is non-trivial, so that the p-adic multiplier
ep(fr. ¥ ™) of the interpolation formula (5.9) never vanishes fork € U N Z>». ]

Remark 6.5. Note that (cf. Remark 5.19) the condition L( f£ /K, ¥, 1) # 0is generically
expected to be satisfied.

6.3. Restriction to the line (2, v, v)

In this section we fix the weight k = 2 and we let the anticyclotomic twists vary along the
diagonal of .%;“5 X %;ﬁé. In this situation, %;“5 is given by finite order characters of I'~.

Definition 6.6. We define the restriction of éﬁ,{ (f,g,h) tothe line (2,v,v) as

£ (fe.gh) =2 . (f. 8. Wj—25—p € OL[T7].
We also set
Ooo(E/K. @) := OLE(f @) k=2 € OL[T7]
and

Ooo(E/ K, ) 1= Y (O (f V1)) = € OL[T]-

One can check that, under our assumptions, the element 6o, (E /K, ¢) coincides with
the theta-element defined by Bertolini-Darmon (cf. [3, Section 2.7]) in the case of trivial
tame character and in more generality by Chida—Hsieh [12] and Hung [26]. Similarly, the
element O (E /K, V) is essentially a shift a such a theta-element.

Any choice of topological generator yy € '™ gives rise to a topological isomorphism

OLIT "] = OL[T] 6.4)

sending yo to 1 4+ 7'. One of the main results of [4] can be stated as follows.
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Theorem 6.7 (cf. [4, Theorem B]). The element O (E /K, @) lies in the augmentation
ideal of O[T ™). Equivalently, viewing 05 (E/K, ¢) as an element of Or[T] via the
above identification (6.4), we have

Ooo(E/K.9) € T - OL[T].

Moreover, taking the first derivative, we obtain
d _
ﬁQOO(E/K» (p)\T=0 = 1OgE (Pgo,a)’

This formula does not depend on the choice of a topological generator of T'™.
This leads to the following result concerning our triple product p-adic L-function.

Corollary 6.8. In the above setting (in particular, under Assumption 6.1), assume that
L(fe/K, ¥, 1) # 0. View éﬁ;ac(fE, gh) as an element of O [T] via (6.4).
Then £}, o (fE. gh)ir=0 = 0 and

d —
d_$1{ac(fE»gh)|T=0 =cg -logg (P, ).

where cg € @; is the same explicit constant as in Corollary 6.4.

Proof. This follows essentially from the above Theorem 6.7, the factorization of Theo-
rem 5.25 and the running hypothesis, in the same way as Corollary 6.4. ]

6.4. A corollary

Keeping the same setting as in the previous sections (in particular, Assumption 6.1), we
impose moreover that ¢ = ¢; is a quadratic (or genus) character of K.

As explained in [5, Section 3.1], if the quadratic character ¢ is non-trivial, it cuts out
a biquadratic extension H, = Q(+/d;, /d>) where d; is a fundamental discriminant for
i = 1,2 and dydy = —dg. If we define ¢; to be the Dirichlet character attached to the
quadratic extension Q(+/d;) fori = 1,2, one sees that 919, = ex. In particular, we get

©1(=Ng)@2(—NEg) = ex(—Ng) = —1

where the last equality follows from our Heegner assumption.

When ¢ is trivial, one sets H, = K (this situation corresponds to the case {d;,d>} =
{1, —dk}).

If Ag € {£1} denotes the eigenvalue relative to fg for the Atkin—Lehner involution
W, we can always assume (up to reordering) that

¢1(=Ng) = Ang, ¢2(=Ng) = —An;.

Moreover, it follows from [5, Corollary 4.8] that

Froby

Py " = ¢1(p) Py. (6.5)

Here is a corollary combining the discussion of the previous sections.
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Corollary 6.9. In the setting described by Assumptions 5.1 and 6.1, assume that ¢ = ¢;
is quadratic and that L(fg /K, ¥, 1) # 0. Then the following facts are equivalent:
®
(Sr b ebms. S 2 fe o0 # ©0)
arp 8 MWik=2: T dpac E,8M)|T=0 »Y).
(ii)  The point P, is of infinite order.

Proof. Equation (6.5) shows that, under our assumptions,

+ _ 2-P, ifei(p)a= =1,
o 0 if o1(p)a = F1.

Then the result follows immediately from Corollaries 6.4 and 6.8 and the fact that the
kernel of log, is given by finite order points in E(Q2). |
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