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On Some Congruence Conjectures Involving
Binary Quadratic Forms

by

Guo-Shuai Mao

Abstract

In this paper, we mainly prove some congruence conjectures of Z.-H. Sun, for exanple,
(Qk

let p be a prime such that p = 1 (mod 6) and p = z* 4 3y. Then pzz;(l) (3k+k71))16’< =

4a* — 2p — % (mod p?).
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§1. Introduction

Let k be an integer not less than 3 and p be a prime = 1 (mod k). Define the integer
fbyp=kf+1 For 0 < s <r <k, Yeung [27] studied binomial coefficients of
the form (:}c) modulo p?. Some of them have been determined modulo p in terms
of representation of p by certain binary quadratic forms. Gauss proved that if
p=4f +1=a%+b*> with a =1 (mod 4), then

2
( f) =2a (mod p).
f

Later, Jacobi proved that if p = 3f + 1 and 4p = c? + 27d?, then

(if) = —c (mod p).

After Gauss and Jacobi, many congruences of this kind were proved by Dickson,
E. Lehmer, Stern and Whiteman. But the first congruence of this type modulo p?
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was obtained by Chowla, Dwork and Evans [6]: they proved that

(7)

where a and p are as above, and g,(a) = (a?~! —1)/p is the Fermat quotient. This

(1 + %qu(2)> <2a - 2%) (mod p?),

congruence was conjectured by Beukers [4], and later in 2012, Pan [15] re-proved
this congruence by an elementary method.

Three years after Chowla, Dework and Evans [6], Yeung [27] studied congru-
ences modulo p? for binomial coefficients by using the p-adic gamma function and
the Gross—Koblitz formula. He determined completely all binomial coefficients of
the form (Zf) modulo p? in the cases of k = 3,4, 6.

In 2010, Cosgrave and Dilcher [7] obtained the first congruence of this type
modulo p?,

()=o)

1pqp(2) + 11)2(2157;74, ~ Qf,(?))) (mod p?),

x(1+2 3

where a and p are as above, and {E, } are the Euler numbers defined by

2k

n 2
Ey=1 and E», = —Z ( n)EQn—Qk (n>1).
k=1

They also obtained another congruence which extends one of Yeung’s result. For
integers 7, s, prime p = 6f + 1, 4p = r%2 + 3s% with »r = 1 (mod 3) and s = 0

(mod 3),
()= (et B () o

where {B,,(x)} are the Bernoulli polynomials given by

By (z) = Z

(Z) Brz"F (n=0,1,2,...)
k=0

n

and {B,} are Bernoulli numbers given by

Bo =1, ni(Z)Bk:o (n>2).

k=0

In this paper, our first goal is to prove a conjecture of Z. H. Sun’s [23, Conj. 2.1].
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Theorem 1.1. Let p be a prime such that p =1 (mod 6) and p = x>+ 3y>. Then
p—1 (2k) p—1 (2k) pg
k= =42% —2p— d p*).
pz (3k + 1)16F ng Gh+ 16k = 40 W g (mod )

Remark 1.1. Z. H. Sun [23, Thm. 2.2] proved the above congruence modulo p?
and then he proposed this conjecture.

In 1987, Beukers [5] conjectured that

pil 3 {4x —2p (modp?) ifp=22+4y2=1 (mod 4),

o 6 0 (mod p?) if p=3 (mod 4).

This conjecture was proved by several authors including Van Hamme [26] for (p = 3
(mod 4)), Ishikawa [10] for (p = 1 (mod 4)) and Ahlgren [1]. In addition, Z. H.
Sun [24] proved the following congruence: Let p be an odd prime. Then modulo
p3, we have

2

2 p e o 9 _
1)2—:1(2:)3 e =2p— 15 ifp=a2*+y*=1 (mod4)and 21z,
64k — 2 /p=3\ 2
k=0 _IZL(P23> if p=3 (mod 4).
4

Rodriguez-Villegas [19] posed some conjectures on supercongruences modulo
p? in 2013, one of which is

zi 2k) (3k) 422 —2p (mod p?) ifp=a?+ 3y = (mod 3),
— 1088 T o (mod p?) ifp=2 (mod 3).

This conjecture has been confirmed by Mortenson [14] and Z.-W. Sun [25], and
then Z.-H. Sun [22, Conj. 4.15] generalized this conjecture to the following one.

Conjecture 1.1. Let p > 3 be a prime. Then
»?
42
= -2
T 108% 2 sp—1
=0 _r (p35) (mod p*) ifp=5 (mod 6).

422 — 2p — (mod p®) ifp=22+3y>=1 (mod 6),

p—1 Zk) <3k)

o

2\

Our last goal is to prove the above conjecture, and partially prove [22, Conjs
4.11 and 4.18].
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Theorem 1.2. Firstly, Conjecture 1.1 is true. Secondly, let p > 7 be a prime and
p#T1. If p=1a?+2y?> =1 (mod 8), then

p—1 2k)2(4k) P
1.1 ARLA2kL = g2 _9p — dp?
(1.1) 2 256+ o2y (modp
and
P’ p% ” 3
D1 o2 /ak 5 p5> (mod p~) ifp=5 (mod 8),
= 256 32 /B3N T
5 (p4 ) (mod p®) ifp=7 (mod 8).
8
Lastly, let p be an odd prime. If p= 2>+ 2y?> =1 (mod 8), then

« (2kk)3 p_1 2 p2 3
(1.3) 2 o =(-1)" (455 _2],_@) (mod p%)
and
p? (BN ,

p—1 (Qkk)S 3 (pgf)> (mod p°)  ifp=5 (mod 8),
(1.4) 2 (—64)F = s o =2

) 2 <pf7> (mod p®) ifp=7 (mod 8).

=

We are going to prove Theorem 1.1 in Section 2. Section 3 is devoted to proving
Theorem 1.2. Our proofs make use of the p-adic Gamma function, hypergeometric
functions. Throughout this paper, p denotes an odd prime and Z,, denotes the ring
of p-adic integers.

§2. Proof of Theorem 1.1
To prove Theorem 1.1, we need the following identity from [8, (3.100)]:

(21) S (") = 3;<(>)+

k=0

Here and in what follows, (a), = a(a+1)---(a+mn —1) for any positive integer n
and (a)o = 1 denotes the Pochhammer symbol.
For n,m € {1,2,3,...}, define

m) . 1 (m) _ q.
H’I(L ).: Z W’ HO — 0,
1<k<n

these numbers with m = 1 are called the classic harmonic numbers.
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Lemma 2.1 ([20, 21]). Let p > 5 be a prime. Then

1

0
Yu® =12 = L (2)B,a(L) (modp).

817 9

and modulo p?,

3 3p p/p 1
Hth = —§QP(3) + Zqi(g) B 6(5)31)_2(3)’
Hyzp) = —2p(3) + 7 p(3)+3<3)3p‘2(3)’
3 22) 4+ 223 - 2 (V)3 (L
Hig) = =2¢5(2) = 54p(3) +p4,(2) + 774, (3) 12(3>B”‘2(3>'

Lemma 2.2 (Al-Shaghay and Dilcher [2, Thms 3.4, 3.6 and 3.12]). Let p be a
prime. If p = 6f +1 = 22 + 3y? with * = —1 (mod 3), we have the following
congruences modulo p>:

<3f> = —(2x _r LQ) (1 — 2£qp(2) + ?qup(g) + @q?)@)

f 2¢  8x3 3 4 9
(22) @) - L)+ 2 (D), (L),
(4;0) = (1) (20— [ - 8%) (1+ 4§pqp(2) - %pqp(3) + %pQﬁ@)
—P%4,(2)4,(3) + 2;]2)2 q;(3)
(23) (D) (3)).
(31 =-(o- £ - Z) (1- Zu@ - Lo + L4 + L)
24) +20) + B (D) B (3)):

Lemma 2.3. Let p=06f+ 1= 22+ 3y? be a prime with x =1 (mod 3). Then
2 2

3\ p p 2p 3p 5p? p
<f) = (Qx -2 @> (1 ~ 362+ T00) + 562 - T6(2)e3)

@ 0 e (2)5(]) oo



616 G.-S. Mao

2 2

GQ_<nquP)@+@q@@%@+”¢@>ﬁ%w%®

f 2¢ 83 37 4 9
i)+ e (5)ma(5)) ot
5f p P 2p 3p 5p? »?
= (22 -2 —)(17— 2) - P 2@+
(57) = (o= £ - Z5) (1~ s - Lo+ -2 + S
21p? 43p? 1 3

z 00 5 (25, (3) o)
(2.7) +t 55 %G+ 5 (5)Br2(3)) (modp?)
Proof. By replacing x with —u, we have p = 6f + 1 = u? + 3y? is a prime with
u = —1 (mod 3), so by (2.2)—(2.4), we immediately obtain the desired results
(2.5)—(2.7). O

Lemma 2.4. Let p > 3 be a prime. For any p-adic integer t and s, we have

p—1 p—1
- +pt
( 2% ) = (p21)<1+pt(Hp21_Hpsl)_thQszalsl

3

(2.8) + P (HE — HY, + B+ HP))) (mod p?),
2p 2 2p—2
+ ps
< pgl >:<p21)(1+p8(H2p 2 — Hp- 1) p2t2H2p3—2HpT—l
p*t? (2) @) 3
(2.9) +T(H2p 2 —Hzp , +H2 b=t +H%)> (mod p?).

Proof. We will just prove (2.8) because the proof of (2.9) is similar. Set m =
(p—1)/2. Tt is easy to check that

p—1

FINEGE +pt) -+ (1 +pt)
m'(l—i—ptl‘Im—&-ﬁ(H2 — 7(3)))
() (E D1 + ptH o 4+ 22(H2, —HP))

6 6

(m —|—pt> _ (m +pt) -(1+ pt)
3 (7

(™ (1 4 pt(Hpy — Hyr) — p*P2Hy Hps
5 ¢ °

2t2
+ T(an —H? + 02, +H?, )) (mod p?).
5 5
So Lemma 2.4 is proved. O
Proof of Theorem 1.1. It is known that (% ) = mod p) and p t (3k + 1) for

each % <k<p-1,and (2:)2/16’“ = (7)( ) k¥ (mod p?) for each
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0 <k < 251, So by (2.1), we have

p=1 (22 Bt 2k 2
(k) p - (k) p
k = k
P 16% 3k +1 P 16k 3k +1
_ 2p—2 2
pTl 112;1)(1’21-'1-]@)(71)]6 (pgl (p21><5p65>
=p =1 | p—1 -1
=0 3k + 1 16 /e

Since p = 1 (mod 6), so modulo p*, we have

(3) = (500 St s Bt - 2)

and
P _ p—l),( P P @ )
(3“)%1_( g )\ gl g, —HL5)).
These, with Lemmas 2.1 and 2.4, yield that
()2
() (5 + e
b1 [ 2p—2 2p p
E(_1> 2 (pz1><pzl><l—(H2p3—2 _Hpgl)"_g(Hpgl _Hpgl)
+p2(H - H )2_‘_@(}[(2) —|—H(2) ))
18\ e g e T e

2

(1= 24,2+ 222+ 2 (2) B, () mod ).

Then, by Lemmas 2.1 and 2.4, we have

2

%) -3 et 3 15p2
= _ 2 _ 2 P /2
163%1 - (p—l) = (pgl) (1 - ?%(3) + 3 qp(3)

+ S (5)mea(g)) moast
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In view of (2.2)-(2.7), p = 6f +1 = 2% + 3y? with either z = —1 (mod 3) or z = 1
(mod 3), we have

“NCE>C¥> (102 =2 - ) (14 24,0 - L)

5\ 5

3

p—1x 2 2 2
2 _ 2 5. P 4£ 3£ Ldp® ,
(pgl) _(432 % 4x2)(1 302+ 0B + @)
3 2
~ 2%4,(2),(3) + 5-03(3)
2
p_(p 1 3
i (3)31”*2(3)) (mod p7)

and

p—1 5p—5 2 2
_ p 4p 14p
<fz><fl>:(“¥—2p‘&ﬁ)0"3%@)+9ﬁ@>

A (5)mea(g)) tmoash)

So we just need to verify that

(1 e = i)+ 5 ()5 (3)

< (1w T+ T (5)ea(p)

3
4p 3p 14p? 3"
(1= @+ F00) + —-¢@) - 270 @0®) + TT4E)

2
E2)m(l)
2 2
(- Laore e 2 (2) 5, (1)

(1= a0+ M+ 2 (B (]) =1 ),

It is easy to check that this congruence is true when we regroup the factors of
powers of p, so we immediately obtain the desired result
p—1 <2k)2 5

p
=42® —2p— vl (mod p?).
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The congruence

(2k)2 » pg
k — 2 3
16% 6k +1 o P 422 (mod p)

p—1
k=0
can be deduced in the same way as the above; it also needs to use the six congru-
ences (2.2)—(2.7) and some results which can be obtained in the same way that
Lemma 2.4 was obtained. We omit the details of the proof. Therefore, the proof
of Theorem 1.1 is complete. O

83. Proof of Theorem 1.2

For each a € Z,, define the p-adic order v,(a) == max{n € N : p" | a} and the
p-adic norm |a, = p~*»(®). Define the p-adic gamma function T',(-) by

Ty(n)=(-1" ] k n=123..,
1<k<n
(k}7p):1

I'ylo)= lim Tp(n), a€Z,.
la—n|p,—0
neN
In particular, we set I',(0) = 1. In the following, we need to use the most basic
properties of I'y, and all of them can be found in [17, 18].
For example, we know that

Ty(z+1) |-z iflz, =1,
(31) Tp(z) {1 if zf, < 1.
(32) Lp(1 = 2)lp(a) = (1)),

where ag(x) € {1,2,...,p} such that x = ag(z) (mod p). Among the properties
we need here is the fact that for any positive integer n,

(3.3) z1 =29 (mod p™) implies T',(z1) =Tp(22) (mod p").

The truncated generalized hypergeometric function is defined by

Qg - (@)k e (an)e 2K
TFS[ Br...Bs Z]n._kz_o(ﬁl)k'“(ﬂs)k k!’

where the parameters 51, 82,...,08s € {...,—3,—2,—1,0}. For the study of con-
gruences of truncated hypergeometric functions, the readers may see [11, 12, 13].
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Definition 1. Let x be a character and 1 be an additive character of F,, the
Gauss sum associated to x and 1 is defined by

GOov) ==Y x(@)(x).

z€lF?

If x and X are two characters of I, then the Jacobi sum associated to x and X is
defined by

TO6A) == D x(@)A(@).

z€lFy

The additive character ¢ would usually be fixed and so we write G(x) for G(x, ¥).
We also need the following property of the Jacobi sum [9]: If x A is nontrivial, then

GLIGO)

(3.4) J(x,\) = GOV

Suppose p = kf + 1 is an odd prime; then y is the character mod p of order
k satisfying

(3.5) x(n)=n! (modp) foralln e Z,

and suppose integers r, s satisfy r + s < k. Then

(3.6) J(X",x°) =0 (mod p).

These two congruences can be found in [27, (7), (8)].

Lemma 3.1. Let p=06f + 1 =22+ 3y? be a prime with x =1 (mod 3). Then

2
p p
JOE ) =20 — — — ] (mod p?).

Proof. In view of [3, Thm. 2.3], we have
T X)) = K(xP).
So
T X)) = K(X*) = =+ yv/=3.
By (3.6), we know
J %) =2 —yV/=3=0 (mod p).

Thus,
(r —yv/=3)> =0 (mod p?).
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Therefore, with the fact that 22 + 3y? = p, we have

(42 — 3 4x?% — 3p)(162* + 4pz? + p?
y\/jE(Q p) _ ( p)( i pa® + p?)
4x2 —p 64x

2

83

=z — (mod p?).

P
2x
So we immediately get the desired result
2 .3 _ p P’ 3
J(xX x ):w+y\/j3:2wf%f@ (mod p?).
Now the proof of Lemma 3.1 is complete. O

In view of [27, (26)], we have, for p = kf + 1 and integers r, s with r + s < k,
Lo ()T (%)

I

(3.7) J(X"X*) = ;
which was a corollary of the Gross—Koblitz formula.

This, with Lemma 3.1, implies that if p = 22 + 3y? = 1 (mod 6) with x = 1
(mod 3),

FP%FPl 2 _ ?
(Fp)(g)(?’):J(X ,X3):2x—£—% (mod p?).

Denote the symbol (z), to be the least nonnegative residue of  modulo p,

ie., (z), €{0,1,...,p—1} and z = (z), (mod p), and o := %.

(3.8)

Lemma 3.2 ([16, Thm. 6.1]). Let p be an odd prime and let o € Zy,. If (—a),, is
even, then

al—ai Fp(l)Z 3
(3.9) 3F2[ 2 1} = 2 (mod p°).
L1 ], Tp(l—3a)’Ty(3 + 30)?
If (—a), is odd, then modulo p* we have
1 2a* af —1 T 1\2
(3.10) 3F2[a1 @2 1} =7 o= 1) T ;2) T 1 32

Proof of Conjecture 1.1. Case p = 1 (mod 6) with p = 2®> + 3y* and z = 1
(mod 3). Here we set x as a character (mod p) of order 6. It is easy to see that
by (3.9) with o = %, (3.2) and (3.8), we have

_ 2
S
11

k
£ 108
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For p = 22+ 3y? = 1 (mod 6) with z = —1 (mod 3), we can get the desired result
by replacing = with —z.

Case p = 5 (mod 6). It is easy to check that by (3.10) with o = 3, (3.2) and
(3.3), we have the following modulo p?:

p—l 2 3k 1
Z ()G )3F2|:§é§1:| Efﬁ Lp(5)’
= 108 1], 18 Fp(g)QF (%)
_ -2
R R I M T ()
18 FP(%)Q 18 Fp(%ly 2 176;5

Lemma 3.3. Letp=2%+2y?> =1 (mod 8) withx = —1 (mod 4) be a prime and
let x be a character (modp) of order 8. Then

2
Joox) =22 — 2~ 8% (mod p®).

Proof. In view of [3, Thm. 3.12], we have
TOex") = K(x) == +yv-2.

y (3.6) we have
J(x) =z —y/~2=0 (modp).
So
(x —yv/=2)> =0 (mod p?).
This, with p = 22 + 2y2, yields that

— 2% —6xy? 4£C —3px_ P p
4 _32—2y 422 —p =TT T e

So we immediately get the desired result

4\ _ p p 3
J(X,X):x+y\/72:2xf%f@ (mod p?).
Now we have finished the proof of Lemma 3.3. O
Proof of (1.1). Firstly, if p = 22 +2y% = 1 (mod 8) with x = —1 (mod 4), then
by (3.9) with & = 1, (3.2), (3.7) and Lemma 3.3, we have

p—l (4k>

113
=a[p|2414
Z% 256k 2{ 11

1] =T
pfl_rp(%

=J0,x")? =42" —2p—
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For the case p = 22 + 2y? = 1 (mod 8) with z = 1 (mod 4), we can obtain the
desired result by replacing = with —z.

Proof of (1.2). Case p="5 (mod 8). It is easy to see that by (3.10) with o = ,
(3.2) and (3.3), we have

SNt 343
_ 2141
kZ:O 256+ 3F2[ 11

8
P TR(R)R(R)? 3P T, (B p?
64  T,(3)?2 64 T, ()2 oo3\es
p—5 p—5 — 72
(A 2 2t pP R e
=T 9T 52 T 9 .12 q\p-s> (mo p)
e e YR
p=5 a\p=5

Case p = 7 (mod 8). It is easy to check that by (3.10) with o = 1, (3.2) and

(3.3), we have

-1 (2% (2

PZ ) ( )7 F2|:§411§1 1:| 5_37}72 FP(%)Z
256k 117, T 6 T, ()T, (2)2

LAPTLGR LRI g (e
64 Ty(3)? 64 T (B2)2 3\t
(-t p 2t ap R\ 3
== == =——1 2 (mod p°)
3 T 3 4 2 2 pT
(o2r) 36 (n27)

p—1 (Qkk)?’ 111 - 113
=3F2|:2 22 —1:| E(—1)23F2|:2 44 1:|
— (—64)k 11 o1 11 ],
p—1 (2k\2 (4k
p—1
_ (_1) 5 (k2)56(k2k) (mod p3).
k=0

So we immediately get the desired results with the help of (1.1) and (1.2).
Now the proof of Theorem 1.2 is complete. O

Remark 3.1. Similarly, we could prove the following congruences by Lemma 3.2
and [3, Thms 3.9 and 3.19]: If p = 1 (mod 12) with p = 22 + %2 and 2 { z, then

p—1 (Sk) (Gk)

123k

2 P’ 3
=4z - 20— — d
> 22— 2p— 15 (mod p?),

o
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and if p =3 (mod 4), then

;D—l (3k) (6k) 5 p_3 -2 (
=3P < ) (mod p?).
k=0 123 1)
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