On Some Congruence Conjectures Involving Binary Quadratic Forms

by

Guo-Shuai Mao

Abstract

In this paper, we mainly prove some congruence conjectures of Z.-H. Sun, for example, let p be a prime such that $p \equiv 1 \pmod 6$ and $p = x^2 + 3y^2$. Then $p \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{(3k+1)16^k} \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod {p^3}$.

Mathematics Subject Classification 2020: 11A07 (primary); 11B68, 11B83, 11E16, 33C20 (secondary).

Keywords: congruences, binomial coefficients, harmonic numbers, p-adic Gamma function, hypergeometric function, binary quadratic forms.

§1. Introduction

Let k be an integer not less than 3 and p be a prime $\equiv 1 \pmod{k}$. Define the integer f by p = kf + 1. For 0 < s < r < k, Yeung [27] studied binomial coefficients of the form $\binom{rf}{sf}$ modulo p^2 . Some of them have been determined modulo p in terms of representation of p by certain binary quadratic forms. Gauss proved that if $p = 4f + 1 = a^2 + b^2$ with $a \equiv 1 \pmod{4}$, then

$$\binom{2f}{f} \equiv 2a \pmod{p}.$$

Later, Jacobi proved that if p = 3f + 1 and $4p = c^2 + 27d^2$, then

$$\binom{2f}{f} \equiv -c \pmod{p}.$$

After Gauss and Jacobi, many congruences of this kind were proved by Dickson, E. Lehmer, Stern and Whiteman. But the first congruence of this type modulo p^2

Communicated by S. Mochizuki. Received July 28, 2022. Revised December 11, 2023; August 29, 2024.

G.-S. Mao: Department of Mathematics, Nanjing University of Information Science and Technology, Ningliu Road 219, 210044 Nanjing, P. R. China; e-mail: maogsmath@163.com

 $^{\ \}odot$ 2025 Research Institute for Mathematical Sciences, Kyoto University. This work is licensed under a CC BY 4.0 license.

was obtained by Chowla, Dwork and Evans [6]: they proved that

$$\binom{2f}{f} \equiv \left(1 + \frac{1}{2}pq_p(2)\right) \left(2a - \frac{p}{2a}\right) \pmod{p^2},$$

where a and p are as above, and $q_p(a) = (a^{p-1} - 1)/p$ is the Fermat quotient. This congruence was conjectured by Beukers [4], and later in 2012, Pan [15] re-proved this congruence by an elementary method.

Three years after Chowla, Dework and Evans [6], Yeung [27] studied congruences modulo p^2 for binomial coefficients by using the p-adic gamma function and the Gross–Koblitz formula. He determined completely all binomial coefficients of the form $\binom{rf}{sf}$ modulo p^2 in the cases of k=3,4,6.

In 2010, Cosgrave and Dilcher [7] obtained the first congruence of this type modulo p^3 ,

$${2f \choose f} \equiv \left(2a - \frac{p}{2a} - \frac{p^2}{8a^3}\right) \times \left(1 + \frac{1}{2}pq_p(2) + \frac{1}{8}p^2(2E_{p-3} - q_p^2(2))\right) \pmod{p^3},$$

where a and p are as above, and $\{E_n\}$ are the Euler numbers defined by

$$E_0 = 1$$
 and $E_{2n} = -\sum_{k=1}^{n} {2n \choose 2k} E_{2n-2k}$ $(n \ge 1)$.

They also obtained another congruence which extends one of Yeung's result. For integers r, s, prime p = 6f + 1, $4p = r^2 + 3s^2$ with $r \equiv 1 \pmod{3}$ and $s \equiv 0 \pmod{3}$,

$$\binom{4f}{2f} \equiv \left(-r + \frac{p}{r} + \frac{p^2}{r^3}\right) \left(1 + \frac{1}{6}p^2 B_{p-2}\left(\frac{1}{3}\right)\right) \pmod{p^3},$$

where $\{B_n(x)\}\$ are the Bernoulli polynomials given by

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k} \quad (n = 0, 1, 2, ...)$$

and $\{B_n\}$ are Bernoulli numbers given by

$$B_0 = 1$$
, $\sum_{k=0}^{n-1} \binom{n}{k} B_k = 0 \quad (n \ge 2)$.

In this paper, our first goal is to prove a conjecture of Z. H. Sun's [23, Conj. 2.1].

Theorem 1.1. Let p be a prime such that $p \equiv 1 \pmod{6}$ and $p = x^2 + 3y^2$. Then

$$p\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{(3k+1)16^k} \equiv p\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{(6k+1)16^k} \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3}.$$

Remark 1.1. Z. H. Sun [23, Thm. 2.2] proved the above congruence modulo p^2 and then he proposed this conjecture.

In 1987, Beukers [5] conjectured that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{64^k} \equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p = x^2 + 4y^2 \equiv 1 \pmod{4}, \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

This conjecture was proved by several authors including Van Hamme [26] for $(p \equiv 3 \pmod{4})$, Ishikawa [10] for $(p \equiv 1 \pmod{4})$ and Ahlgren [1]. In addition, Z. H. Sun [24] proved the following congruence: Let p be an odd prime. Then modulo p^3 , we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{64^k} \equiv \begin{cases} 4x^2 - 2p - \frac{p^2}{4x^2} & \text{if } p = x^2 + y^2 \equiv 1 \pmod{4} \text{ and } 2 \nmid x, \\ -\frac{p^2}{4} \binom{\frac{p-3}{2}}{\frac{p-3}{2}} \end{pmatrix}^{-2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Rodriguez-Villegas [19] posed some conjectures on supercongruences modulo p^2 in 2013, one of which is

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k} \equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p = x^2 + 3y^2 \equiv 1 \pmod{3}, \\ 0 \pmod{p^2} & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$

This conjecture has been confirmed by Mortenson [14] and Z.-W. Sun [25], and then Z.-H. Sun [22, Conj. 4.15] generalized this conjecture to the following one.

Conjecture 1.1. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k} \equiv \begin{cases} 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3} & \text{if } p = x^2 + 3y^2 \equiv 1 \pmod{6}, \\ -\frac{p^2}{2} \binom{\frac{p-1}{2}}{\frac{p-5}{6}} - 2 \pmod{p^3} & \text{if } p \equiv 5 \pmod{6}. \end{cases}$$

Our last goal is to prove the above conjecture, and partially prove [22, Conjs 4.11 and 4.18].

Theorem 1.2. Firstly, Conjecture 1.1 is true. Secondly, let p > 7 be a prime and $p \neq 71$. If $p = x^2 + 2y^2 \equiv 1 \pmod{8}$, then

(1.1)
$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3}$$

and

$$(1.2) \qquad \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \equiv \begin{cases} \frac{p^2}{3} \binom{\frac{p-1}{4}}{\frac{p-5}{8}}^{-2} \pmod{p^3} & \text{if } p \equiv 5 \pmod{8}, \\ -\frac{3p^2}{2} \binom{\frac{p-3}{4}}{\frac{p-7}{8}}^{-2} \pmod{p^3} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

Lastly, let p be an odd prime. If $p = x^2 + 2y^2 \equiv 1 \pmod{8}$, then

(1.3)
$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-64)^k} \equiv (-1)^{\frac{p-1}{2}} \left(4x^2 - 2p - \frac{p^2}{4x^2} \right) \pmod{p^3}$$

and

$$(1.4) \qquad \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-64)^k} \equiv \begin{cases} \frac{p^2}{3} \binom{\frac{p-1}{4}}{\frac{p-5}{8}}^{-2} \pmod{p^3} & \text{if } p \equiv 5 \pmod{8}, \\ \frac{3p^2}{2} \binom{\frac{p-3}{4}}{\frac{p-7}{8}}^{-2} & \pmod{p^3} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

We are going to prove Theorem 1.1 in Section 2. Section 3 is devoted to proving Theorem 1.2. Our proofs make use of the p-adic Gamma function, hypergeometric functions. Throughout this paper, p denotes an odd prime and \mathbb{Z}_p denotes the ring of p-adic integers.

§2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following identity from [8, (3.100)]:

(2.1)
$$\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} \frac{(-1)^k}{3k+1} = \frac{1}{3} \frac{\left(\frac{2}{3}\right)_n}{\left(\frac{1}{3}\right)_{n+1}}.$$

Here and in what follows, $(a)_n = a(a+1)\cdots(a+n-1)$ for any positive integer n and $(a)_0 = 1$ denotes the Pochhammer symbol.

For $n, m \in \{1, 2, 3, ...\}$, define

$$H_n^{(m)} := \sum_{1 \le k \le n} \frac{1}{k^m}, \quad H_0^{(m)} := 0;$$

these numbers with m=1 are called the classic harmonic numbers.

Lemma 2.1 ([20, 21]). Let p > 5 be a prime. Then

$$H_{p-1}^{(2)} \equiv 0 \pmod{p}, \quad H_{\frac{p-1}{2}}^{(2)} \equiv 0 \pmod{p},$$

$$\frac{1}{5} H_{\lfloor \frac{p}{6} \rfloor}^{(2)} \equiv H_{\lfloor \frac{p}{3} \rfloor}^{(2)} \equiv \frac{1}{2} \binom{p}{3} B_{p-2} \binom{1}{3} \pmod{p},$$

and modulo p^2 ,

$$\begin{split} &H_{\frac{p-1}{2}} \equiv -2q_p(2) + pq_p^2(2), \quad H_{p-1} \equiv 0, \\ &H_{\lfloor \frac{p}{3} \rfloor} \equiv -\frac{3}{2}q_p(3) + \frac{3p}{4}q_p^2(3) - \frac{p}{6}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right), \\ &H_{\lfloor \frac{2p}{3} \rfloor} \equiv -\frac{3}{2}q_p(3) + \frac{3p}{4}q_p^2(3) + \frac{p}{3}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right), \\ &H_{\lfloor \frac{p}{6} \rfloor} \equiv -2q_p(2) - \frac{3}{2}q_p(3) + pq_p^2(2) + \frac{3p}{4}q_p^2(3) - \frac{5p}{12}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right). \end{split}$$

Lemma 2.2 (Al-Shaghay and Dilcher [2, Thms 3.4, 3.6 and 3.12]). Let p be a prime. If $p = 6f + 1 = x^2 + 3y^2$ with $x \equiv -1 \pmod{3}$, we have the following congruences modulo p^3 :

Lemma 2.3. Let $p = 6f + 1 = x^2 + 3y^2$ be a prime with $x \equiv 1 \pmod{3}$. Then

$$\begin{pmatrix} 4f \\ f \end{pmatrix} \equiv (-1)^f \left(2x - \frac{p}{2x} - \frac{p^2}{8x^3}\right) \left(1 + \frac{4p}{3}q_p(2) - \frac{3p}{4}q_p(3) + \frac{2p^2}{9}q_p^2(2) - p^2q_p(2)q_p(3) \right)$$

$$(2.6) \qquad \qquad + \frac{21p^2}{32}q_p^2(3) + \frac{7p^2}{48}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right) \pmod{p^3},$$

$$\begin{pmatrix} 5f \\ 2f \end{pmatrix} \equiv \left(2x - \frac{p}{2x} - \frac{p^2}{8x^3}\right) \left(1 - \frac{2p}{3}q_p(2) - \frac{3p}{4}q_p(3) + \frac{5p^2}{9}q_p^2(2) + \frac{p^2}{2}q_p(2)q_p(3) \right)$$

$$\qquad \qquad + \frac{21p^2}{32}q_p^2(3) + \frac{43p^2}{48}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right) \pmod{p^3}.$$

$$(2.7) \qquad \qquad + \frac{21p^2}{32}q_p^2(3) + \frac{43p^2}{48}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right) \pmod{p^3}.$$

Proof. By replacing x with -u, we have $p = 6f + 1 = u^2 + 3y^2$ is a prime with $u \equiv -1 \pmod{3}$, so by (2.2)-(2.4), we immediately obtain the desired results (2.5)-(2.7).

Lemma 2.4. Let p > 3 be a prime. For any p-adic integer t and s, we have

$$\binom{\frac{p-1}{2} + pt}{\frac{p-1}{3}} \equiv \binom{\frac{p-1}{2}}{\frac{p-1}{3}} \left(1 + pt(H_{\frac{p-1}{2}} - H_{\frac{p-1}{6}}) - p^2 t^2 H_{\frac{p-1}{2}} H_{\frac{p-1}{6}} \right)$$

$$+ \frac{p^2 t^2}{2} \left(H_{\frac{p-1}{2}}^2 - H_{\frac{p-1}{2}}^{(2)} + H_{\frac{p-1}{6}}^2 + H_{\frac{p-1}{6}}^{(2)} \right) \pmod{p^3},$$

$$\binom{\frac{2p-2}{3} + ps}{\frac{p-1}{2}} \equiv \binom{\frac{2p-2}{3}}{\frac{p-1}{2}} \left(1 + ps(H_{\frac{2p-2}{3}} - H_{\frac{p-1}{6}}) - p^2 t^2 H_{\frac{2p-2}{3}} H_{\frac{p-1}{6}} \right)$$

$$+ \frac{p^2 t^2}{2} \left(H_{\frac{2p-2}{3}}^2 - H_{\frac{p-1}{6}}^{(2)} + H_{\frac{p-1}{6}}^2 + H_{\frac{p-1}{6}}^{(2)} \right) \pmod{p^3}.$$

$$(2.9)$$

Proof. We will just prove (2.8) because the proof of (2.9) is similar. Set m = (p-1)/2. It is easy to check that

So Lemma 2.4 is proved.

Proof of Theorem 1.1. It is known that $\binom{2k}{k} \equiv 0 \pmod{p}$ and $p \nmid (3k+1)$ for each $\frac{p+1}{2} \leq k \leq p-1$, and $\binom{2k}{k}^2/16^k \equiv \binom{\frac{p-1}{2}}{k}\binom{\frac{p-1}{2}+k}{k}(-1)^k \pmod{p^2}$ for each

 $0 \le k \le \frac{p-1}{2}$. So by (2.1), we have

$$\begin{split} \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{16^k} \frac{p}{3k+1} &\equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2k}{k}^2}{16^k} \frac{p}{3k+1} \\ &\equiv p \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{\frac{p-1}{2}}{k} \binom{\frac{p-1}{2}+k}{k} (-1)^k}{3k+1} + \frac{\binom{\frac{2p-2}{3}}{\frac{p-1}{3}}^2}{16^{\frac{p-1}{3}}} - \binom{\frac{p-1}{2}}{\frac{p-1}{3}} \binom{\frac{5p-5}{6}}{\frac{p-1}{3}} \\ &= \frac{\binom{2}{3} \frac{p-1}{2}}{\binom{1}{3} \frac{p-1}{2}} + \frac{\binom{\frac{2p-2}{3}}{\frac{p-1}{3}}^2}{16^{\frac{p-1}{3}}} - \binom{\frac{p-1}{2}}{\frac{p-1}{3}} \binom{\frac{5p-5}{6}}{\frac{p-1}{3}} \pmod{p^3}. \end{split}$$

Since $p \equiv 1 \pmod{6}$, so modulo p^3 , we have

$$\Big(\frac{1}{3}\Big)_{\frac{p-1}{3}} \equiv \Big(\frac{p-1}{3}\Big)! \Big(1 - \frac{p}{3}H_{\frac{p-1}{3}} + \frac{p^2}{18} \big(H_{\frac{p-1}{3}}^2 - H_{\frac{p-1}{3}}^{(2)}\big)\Big)$$

and

$$\Big(\frac{p}{3}+1\Big)_{\frac{p-1}{6}} \equiv \Big(\frac{p-1}{6}\Big)! \Big(1+\frac{p}{3}H_{\frac{p-1}{6}}+\frac{p^2}{18}\big(H_{\frac{p-1}{6}}^2-H_{\frac{p-1}{6}}^{(2)}\big)\Big).$$

These, with Lemmas 2.1 and 2.4, yield that

$$\begin{split} &\frac{\left(\frac{2}{3}\right)_{\frac{p-1}{2}}}{\left(\frac{1}{3}\right)_{\frac{p-1}{3}}\left(\frac{p}{3}+1\right)_{\frac{p-1}{6}}} \\ &\equiv (-1)^{\frac{p-1}{2}}\binom{\frac{p-1}{2}}{\frac{p-1}{3}}\binom{\frac{2p-2}{3}}{\frac{p-1}{2}}\left(1-\frac{2p}{3}(H_{\frac{2p-2}{3}}-H_{\frac{p-1}{6}})+\frac{p}{3}(H_{\frac{p-1}{3}}-H_{\frac{p-1}{6}})\right) \\ &\qquad \qquad +\frac{p^2}{18}(H_{\frac{p-1}{3}}-H_{\frac{p-1}{6}})^2+\frac{5p^2}{18}(H_{\frac{p-1}{6}}^{(2)}+H_{\frac{p-1}{3}}^{(2)})\right) \\ &\equiv (-1)^f\binom{\frac{p-1}{2}}{\frac{p-1}{3}}\binom{\frac{2p-2}{3}}{\frac{p-1}{2}}\right) \\ &\qquad \times\left(1-\frac{2p}{3}q_p(2)+\frac{5p^2}{9}q_p^2(2)+\frac{5p^2}{12}\binom{\frac{p}{3}}{3}B_{p-2}\left(\frac{1}{3}\right)\right) \pmod{p^3}. \end{split}$$

Then, by Lemmas 2.1 and 2.4, we have

$$\frac{\left(\frac{2p-2}{p-1}\right)^2}{16^{\frac{p-1}{3}}} = \left(\frac{-\frac{1}{2}}{\frac{p-1}{3}}\right)^2 \equiv \left(\frac{p-1}{2}\right)^2 \left(1 - \frac{3p}{2}q_p(3) + \frac{15p^2}{8}q_p^2(3) + \frac{5p^2}{24}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right) \pmod{p^3}.$$

In view of (2.2)–(2.7), $p = 6f + 1 = x^2 + 3y^2$ with either $x \equiv -1 \pmod{3}$ or $x \equiv 1 \pmod{3}$, we have

$$(-1)^{f} \binom{\frac{p-1}{2}}{\frac{p-1}{3}} \binom{\frac{2p-2}{3}}{\frac{p-1}{2}} \equiv \left(4x^{2} - 2p - \frac{p^{2}}{4x^{2}}\right) \left(1 + \frac{2p}{3}q_{p}(2) - \frac{p^{2}}{9}q_{p}^{2}(2) + \frac{5p^{2}}{24} \left(\frac{p}{3}\right) B_{p-2} \left(\frac{1}{3}\right)\right) \pmod{p^{3}},$$

$$\binom{\frac{p-1}{2}}{\frac{p-1}{3}}^{2} \equiv \left(4x^{2} - 2p - \frac{p^{2}}{4x^{2}}\right) \left(1 - \frac{4p}{3}q_{p}(2) + \frac{3p}{2}q_{p}(3) + \frac{14p^{2}}{9}q_{p}^{2}(2) - 2p^{2}q_{p}(2)q_{p}(3) + \frac{3p^{2}}{8}q_{p}^{2}(3) + \frac{p^{2}}{8} \left(\frac{p}{3}\right) B_{p-2} \left(\frac{1}{3}\right)\right) \pmod{p^{3}}$$

and

$$\begin{pmatrix} \frac{p-1}{2} \\ \frac{p-1}{3} \end{pmatrix} \begin{pmatrix} \frac{5p-5}{6} \\ \frac{p-1}{3} \end{pmatrix} \equiv \left(4x^2 - 2p - \frac{p^2}{4x^2} \right) \left(1 - \frac{4p}{3} q_p(2) + \frac{14p^2}{9} q_p^2(2) + \frac{23p^2}{24} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \right) \pmod{p^3}.$$

So we just need to verify that

$$\begin{split} &\left(1+\frac{2p}{3}q_p(2)-\frac{p^2}{9}q_p^2(2)+\frac{5p^2}{24}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right)\\ &\times\left(1-\frac{2p}{3}q_p(2)+\frac{5p^2}{9}q_p^2(2)+\frac{5p^2}{12}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right)\\ &+\left(1-\frac{4p}{3}q_p(2)+\frac{3p}{2}q_p(3)+\frac{14p^2}{9}q_p^2(2)-2p^2q_p(2)q_p(3)+\frac{3p^2}{8}q_p^2(3)\right)\\ &+\frac{p^2}{8}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right)\\ &\times\left(1-\frac{3p}{2}q_p(3)+\frac{15p^2}{8}q_p^2(3)+\frac{5p^2}{24}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right)\\ &-\left(1-\frac{4p}{3}q_p(2)+\frac{14p^2}{9}q_p^2(2)+\frac{23p^2}{24}\left(\frac{p}{3}\right)B_{p-2}\left(\frac{1}{3}\right)\right)\equiv 1\pmod{p^3}. \end{split}$$

It is easy to check that this congruence is true when we regroup the factors of powers of p, so we immediately obtain the desired result

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{16^k} \frac{p}{3k+1} \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3}.$$

The congruence

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{16^k} \frac{p}{6k+1} \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3}$$

can be deduced in the same way as the above; it also needs to use the six congruences (2.2)–(2.7) and some results which can be obtained in the same way that Lemma 2.4 was obtained. We omit the details of the proof. Therefore, the proof of Theorem 1.1 is complete.

§3. Proof of Theorem 1.2

For each $\alpha \in \mathbb{Z}_p$, define the *p*-adic order $\nu_p(\alpha) := \max\{n \in \mathbb{N} : p^n \mid \alpha\}$ and the *p*-adic norm $|\alpha|_p := p^{-\nu_p(\alpha)}$. Define the *p*-adic gamma function $\Gamma_p(\cdot)$ by

$$\Gamma_p(n) = (-1)^n \prod_{\substack{1 \le k < n \\ (k,p)=1}} k, \quad n = 1, 2, 3, \dots,$$
$$\Gamma_p(\alpha) = \lim_{\substack{|\alpha - n|_p \to 0 \\ p \in \mathbb{N}}} \Gamma_p(n), \quad \alpha \in \mathbb{Z}_p.$$

In particular, we set $\Gamma_p(0) = 1$. In the following, we need to use the most basic properties of Γ_p , and all of them can be found in [17, 18].

For example, we know that

(3.1)
$$\frac{\Gamma_p(x+1)}{\Gamma_p(x)} = \begin{cases} -x & \text{if } |x|_p = 1, \\ -1 & \text{if } |x|_p < 1. \end{cases}$$

(3.2)
$$\Gamma_p(1-x)\Gamma_p(x) = (-1)^{a_0(x)},$$

where $a_0(x) \in \{1, 2, ..., p\}$ such that $x \equiv a_0(x) \pmod{p}$. Among the properties we need here is the fact that for any positive integer n,

(3.3)
$$z_1 \equiv z_2 \pmod{p^n}$$
 implies $\Gamma_p(z_1) \equiv \Gamma_p(z_2) \pmod{p^n}$.

The truncated generalized hypergeometric function is defined by

$$_rF_s\left[\begin{array}{cc|c} \alpha_1 & \alpha_2 & \dots & \alpha_r \\ \beta_1 & \dots & \beta_s \end{array} \middle| z\right]_n \coloneqq \sum_{k=0}^n \frac{(\alpha_1)_k & \dots & (\alpha_r)_k}{(\beta_1)_k & \dots & (\beta_s)_k} \cdot \frac{z^k}{k!},$$

where the parameters $\beta_1, \beta_2, \dots, \beta_s \notin \{\dots, -3, -2, -1, 0\}$. For the study of congruences of truncated hypergeometric functions, the readers may see [11, 12, 13].

Definition 1. Let χ be a character and ψ be an additive character of \mathbb{F}_q , the Gauss sum associated to χ and ψ is defined by

$$G(\chi, \psi) = -\sum_{x \in \mathbb{F}_q^*} \chi(x)\psi(x).$$

If χ and λ are two characters of \mathbb{F}_q , then the Jacobi sum associated to χ and λ is defined by

$$J(\chi,\lambda) = -\sum_{x \in \mathbb{F}_{a}^{*}} \chi(x)\lambda(x).$$

The additive character ψ would usually be fixed and so we write $G(\chi)$ for $G(\chi, \psi)$. We also need the following property of the Jacobi sum [9]: If $\chi\lambda$ is nontrivial, then

(3.4)
$$J(\chi,\lambda) = \frac{G(\chi)G(\lambda)}{G(\chi\lambda)}.$$

Suppose p=kf+1 is an odd prime; then χ is the character mod p of order k satisfying

(3.5)
$$\bar{\chi}(n) \equiv n^f \pmod{p} \text{ for all } n \in \mathbb{Z},$$

and suppose integers r, s satisfy r + s < k. Then

(3.6)
$$J(\bar{\chi}^r, \bar{\chi}^s) \equiv 0 \pmod{p}.$$

These two congruences can be found in [27, (7), (8)].

Lemma 3.1. Let $p = 6f + 1 = x^2 + 3y^2$ be a prime with $x \equiv 1 \pmod{3}$. Then

$$J(\chi^2, \chi^3) \equiv 2x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

Proof. In view of [3, Thm. 2.3], we have

$$J(\chi^2, \chi^3) = K(\chi^2).$$

So

$$J(\chi^2, \chi^3) = K(\chi^2) = x + y\sqrt{-3}.$$

By (3.6), we know

$$J(\bar{\chi}^2, \bar{\chi}^3) = x - y\sqrt{-3} \equiv 0 \pmod{p}.$$

Thus,

$$(x - y\sqrt{-3})^3 \equiv 0 \pmod{p^3}.$$

Therefore, with the fact that $x^2 + 3y^2 = p$, we have

$$y\sqrt{-3} \equiv \frac{x(4x^2 - 3p)}{4x^2 - p} \equiv \frac{(4x^2 - 3p)(16x^4 + 4px^2 + p^2)}{64x^5}$$
$$\equiv x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

So we immediately get the desired result

$$J(\chi^2, \chi^3) = x + y\sqrt{-3} \equiv 2x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

Now the proof of Lemma 3.1 is complete.

In view of [27, (26)], we have, for p = kf + 1 and integers r, s with r + s < k,

(3.7)
$$J(\chi^r, \chi^s) = \frac{\Gamma_p(\frac{r}{k})\Gamma_p(\frac{s}{k})}{\Gamma_p(\frac{(r+s)}{k})},$$

which was a corollary of the Gross-Koblitz formula.

This, with Lemma 3.1, implies that if $p = x^2 + 3y^2 \equiv 1 \pmod{6}$ with $x \equiv 1 \pmod{3}$,

(3.8)
$$\frac{\Gamma_p(\frac{1}{2})\Gamma_p(\frac{1}{3})}{\Gamma_p(\frac{5}{6})} = J(\chi^2, \chi^3) \equiv 2x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

Denote the symbol $\langle x \rangle_p$ to be the least nonnegative residue of x modulo p, i.e., $\langle x \rangle_p \in \{0,1,\ldots,p-1\}$ and $x \equiv \langle x \rangle_p \pmod p$, and $\alpha_p^* \coloneqq \frac{\alpha + \langle -\alpha \rangle_p}{p}$.

Lemma 3.2 ([16, Thm. 6.1]). Let p be an odd prime and let $\alpha \in \mathbb{Z}_p$. If $\langle -\alpha \rangle_p$ is even, then

$$(3.9) _3F_2 \begin{bmatrix} \alpha \ 1 - \alpha \ \frac{1}{2} \\ 1 \ 1 \end{bmatrix} 1 \Big]_{n-1} \equiv \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(1 - \frac{1}{2}\alpha)^2 \Gamma_p(\frac{1}{2} + \frac{1}{2}\alpha)^2} \pmod{p^3}.$$

If $\langle -\alpha \rangle_p$ is odd, then modulo p^3 we have

$$(3.10) _3F_2 \begin{bmatrix} \alpha \ 1 - \alpha \ \frac{1}{2} \\ 1 \ 1 \end{bmatrix}_{p-1} \equiv \frac{p^2 \alpha_p^* (\alpha_p^* - 1)}{4} \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(1 - \frac{1}{2}\alpha)^2 \Gamma_p(\frac{1}{2} + \frac{1}{2}\alpha)^2}.$$

Proof of Conjecture 1.1. Case $p \equiv 1 \pmod{6}$ with $p = x^2 + 3y^2$ and $x \equiv 1 \pmod{3}$. Here we set χ as a character (mod p) of order 6. It is easy to see that by (3.9) with $\alpha = \frac{1}{3}$, (3.2) and (3.8), we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k} = {}_3F_2 \begin{bmatrix} \frac{1}{2} \frac{1}{3} \frac{2}{3} \\ 1 & 1 \end{bmatrix} 1_{p-1} \equiv \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(\frac{5}{6})^2 \Gamma_p(\frac{2}{3})^2} = \frac{\Gamma_p(\frac{1}{2})^2 \Gamma_p(\frac{1}{3})^2}{\Gamma_p(\frac{5}{6})^2}$$
$$= J(\chi^2, \chi^3)^2 \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3}.$$

For $p = x^2 + 3y^2 \equiv 1 \pmod{6}$ with $x \equiv -1 \pmod{3}$, we can get the desired result by replacing x with -x.

Case $p \equiv 5 \pmod{6}$. It is easy to check that by (3.10) with $\alpha = \frac{1}{3}$, (3.2) and (3.3), we have the following modulo p^3 :

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k} = {}_3F_2 \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{2}{3} \\ 1 & 1 \end{bmatrix} 1 \Big]_{p-1} \equiv -\frac{p^2}{18} \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(\frac{5}{6})^2 \Gamma_p(\frac{2}{3})^2}$$

$$= -\frac{p^2}{18} \frac{\Gamma_p(\frac{1}{6})^2 \Gamma_p(\frac{1}{3})^2}{\Gamma_p(\frac{1}{2})^2} \equiv -\frac{p^2}{18} \frac{\Gamma_p(\frac{p+1}{6})^2 \Gamma_p(\frac{p+1}{3})^2}{\Gamma_p(\frac{p+1}{2})^2} \equiv -\frac{p^2}{2} \binom{\frac{p-1}{2}}{\frac{p-5}{6}}^{-2}.$$

Lemma 3.3. Let $p = x^2 + 2y^2 \equiv 1 \pmod{8}$ with $x \equiv -1 \pmod{4}$ be a prime and let χ be a character (mod p) of order 8. Then

$$J(\chi, \chi^4) \equiv 2x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

Proof. In view of [3, Thm. 3.12], we have

$$J(\chi, \chi^4) = K(\chi) = x + y\sqrt{-2}.$$

By (3.6) we have

$$J(\bar{\chi}, \bar{\chi}^4) = x - y\sqrt{-2} \equiv 0 \pmod{p}.$$

So

$$(x - y\sqrt{-2})^3 \equiv 0 \pmod{p^3}.$$

This, with $p = x^2 + 2y^2$, yields that

$$y\sqrt{-2} \equiv \frac{x^3 - 6xy^2}{3x^2 - 2y^2} = \frac{4x^3 - 3px}{4x^2 - p} \equiv x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

So we immediately get the desired result

$$J(\chi, \chi^4) \equiv x + y\sqrt{-2} \equiv 2x - \frac{p}{2x} - \frac{p^2}{8x^3} \pmod{p^3}.$$

Now we have finished the proof of Lemma 3.3.

Proof of (1.1). Firstly, if $p = x^2 + 2y^2 \equiv 1 \pmod{8}$ with $x \equiv -1 \pmod{4}$, then by (3.9) with $\alpha = \frac{1}{4}$, (3.2), (3.7) and Lemma 3.3, we have

$$\begin{split} \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} &= {}_3F_2 {\begin{bmatrix} \frac{1}{2} \ \frac{1}{4} \ \frac{3}{4} \\ 1 \ 1 \end{bmatrix}} 1 \\ \Big]_{p-1} &\equiv \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(\frac{7}{8})^2 \Gamma_p(\frac{5}{8})^2} = \frac{\Gamma_p(\frac{1}{2})^2 \Gamma_p(\frac{1}{8})^2}{\Gamma_p(\frac{5}{8})^2} \\ &= J(\chi, \chi^4)^2 \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3}. \end{split}$$

For the case $p = x^2 + 2y^2 \equiv 1 \pmod{8}$ with $x \equiv 1 \pmod{4}$, we can obtain the desired result by replacing x with -x.

Proof of (1.2). Case $p \equiv 5 \pmod{8}$. It is easy to see that by (3.10) with $\alpha = \frac{1}{4}$, (3.2) and (3.3), we have

$$\begin{split} &\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} = {}_3F_2 \left[\frac{1}{2} \frac{1}{4} \frac{3}{4} \right] 1 \right]_{p-1} \equiv -\frac{3p^2}{64} \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(\frac{7}{8})^2 \Gamma_p(\frac{5}{8})^2} \\ &= -\frac{3p^2}{64} \frac{\Gamma_p(\frac{1}{8})^2 \Gamma_p(\frac{3}{8})^2}{\Gamma_p(\frac{1}{2})^2} \equiv -\frac{3p^2}{64} \frac{\Gamma_p(\frac{3p+1}{8})^2 \Gamma_p(\frac{p+3}{8})^2}{\Gamma_p(\frac{p+3}{2})^2} \equiv -\frac{p^2}{3} \binom{\frac{p-1}{2}}{\frac{p-5}{8}} \right)^{-2} \\ &\equiv -\frac{p^2}{3} \frac{(-4)^{\frac{p-5}{4}}}{\binom{\frac{p-5}{4}}{\frac{p-5}{2}}} \equiv -\frac{p^2}{3} \frac{2^{\frac{p-5}{2}}}{\frac{1}{4} \binom{\frac{p-1}{4}}{\frac{p-5}{2}}^2} = \frac{p^2}{3} \binom{\frac{p-1}{4}}{\frac{p-5}{8}} \right)^{-2} \pmod{p^3}. \end{split}$$

Case $p \equiv 7 \pmod{8}$. It is easy to check that by (3.10) with $\alpha = \frac{1}{4}$, (3.2) and (3.3), we have

$$\begin{split} \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} &= {}_3F_2 \left[\frac{1}{2} \frac{1}{4} \frac{3}{4} \right| 1 \right]_{p-1} \equiv -\frac{3p^2}{64} \frac{\Gamma_p(\frac{1}{2})^2}{\Gamma_p(\frac{7}{8})^2 \Gamma_p(\frac{5}{8})^2} \\ &= -\frac{3p^2}{64} \frac{\Gamma_p(\frac{1}{8})^2 \Gamma_p(\frac{3}{8})^2}{\Gamma_p(\frac{1}{2})^2} \equiv -\frac{3p^2}{64} \frac{\Gamma_p(\frac{p+1}{8})^2 \Gamma_p(\frac{3p+3}{8})^2}{\Gamma_p(\frac{p+1}{2})^2} \equiv -\frac{p^2}{3} \binom{\frac{p-1}{2}}{\frac{p-7}{8}} \right]^{-2} \\ &\equiv -\frac{p^2}{3} \frac{(-4)^{\frac{p-7}{4}}}{\binom{\frac{p-7}{4}}{\frac{p-7}{2}}} \equiv -\frac{p^2}{3} \frac{2^{\frac{p-7}{2}}}{\frac{1}{36} \binom{\frac{p-3}{2}}{\frac{p-7}{2}}}^2 = -\frac{3p^2}{2} \binom{\frac{p-3}{4}}{\frac{p-7}{8}} \right]^{-2} \pmod{p^3}. \end{split}$$

Proof of (1.3) and (1.4). In view of [16, (8.2)], we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-64)^k} = {}_{3}F_{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 \end{bmatrix} - 1 \Big]_{p-1} \equiv (-1)^{\frac{p-1}{2}} {}_{3}F_{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{3}{4} \\ 1 & 1 \end{bmatrix} 1 \Big]_{p-1}$$
$$= (-1)^{\frac{p-1}{2}} \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \pmod{p^3}.$$

So we immediately get the desired results with the help of (1.1) and (1.2). Now the proof of Theorem 1.2 is complete.

Remark 3.1. Similarly, we could prove the following congruences by Lemma 3.2 and [3, Thms 3.9 and 3.19]: If $p \equiv 1 \pmod{12}$ with $p = x^2 + y^2$ and $2 \nmid x$, then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} \binom{3k}{k} \binom{6k}{k}}{12^{3k}} \equiv 4x^2 - 2p - \frac{p^2}{4x^2} \pmod{p^3},$$

and if $p \equiv 3 \pmod{4}$, then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} \binom{3k}{k} \binom{6k}{k}}{12^{3k}} \equiv -\frac{5}{36} p^2 \binom{\frac{p-3}{2}}{\lfloor \frac{p}{12} \rfloor}^{-2} \pmod{p^3}.$$

Acknowledgements

The author would like to thank the anonymous referees for helpful comments. This work was funded by the National Natural Science Foundation (Grant No. 12001288, 12071208) of China.

References

- S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), Developments in Mathematics 4, Kluwer Academic Publishers, Dordrecht, 2001, 1– 12. Zbl 1037.33016 MR 1880076
- [2] A. Al-Shaghay and K. Dilcher, Analogues of the binomial coefficient theorems of Gauss and Jacobi, Int. J. Number Theory 12 (2016), 2125–2145. Zbl 1423.11041 MR 3562017
- [3] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349–398. Zbl 0412.10027 MR 0544263
- [4] F. Beukers, Arithmetical properties of Picard-Fuchs equations, in Seminar on number theory, Paris 1982-83 (Paris, 1982/1983), Progress in Mathematics 51, Birkhäuser Boston, Boston, MA, 1984, 33-38. Zbl 0549.10003 MR 0791582
- [5] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), 201–210. Zbl 0614.10011 MR 0873877
- [6] S. Chowla, B. Dwork, and R. Evans, On the mod p^2 determination of $\binom{(p-1)/2}{(p-1)/4}$, J. Number Theory **24** (1986), 188–196. Zbl 0596.10003 MR 0863654
- [7] J. B. Cosgrave and K. Dilcher, Mod p^3 analogues of theorems of Gauss and Jacobi on binomial coefficients, Acta Arith. **142** (2010), 103–118. Zbl 1209.11024 MR 2601053
- [8] H. W. Gould, Combinatorial identities, Henry W. Gould, Morgantown, WV, 1972. Zbl 0241.05011 MR 0354401
- [9] K. F. Ireland and M. I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics 84, Springer, New York-Berlin, 1982. Zbl 0482.10001 MR 0661047
- [10] T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J. 118 (1990), 195–202. Zbl 0703.11001 MR 1060710
- [11] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011), 405–418. Zbl 1215.33002 MR 2782677
- [12] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math. 290 (2016), 773–808. Zbl 1336.33018 MR 3451938
- [13] L. Long, F.-T. Tu, N. Yui and W. Zudilin, Supercongruences for rigid hypergeometric Calabi-Yau threefolds, Adv. Math. 393 (2021), article no. 108058. Zbl 1479.14047 MR 4330088
- [14] E. Mortenson, Supercongruences for truncated $_{n+1}F_n$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. **133** (2005), 321–330. Zbl 1152.11327 MR 2093051

- [15] H. Pan, An elementary approach to $\binom{(p-1)/2}{(p-1)/4}$ modulo p^2 , Taiwanese J. Math. **16** (2012), 2197–2202. Zbl 1275.11005 MR 3001843
- [16] H. Pan, R. Tauraso and C. Wang, A local-global theorem for p-adic supercongruences, J. Reine Angew. Math. 790 (2022), 53–83. Zbl 1501.11057 MR 4472865
- [17] M. Ram Murty, Introduction to p-adic analytic number theory, AMS/IP Studies in Advanced Mathematics 27, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. Zbl 1031.11067 MR 1913413
- [18] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics 198, Springer, New York, 2000. Zbl 0947.11035 MR 1760253
- [19] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), Fields Institute Communications 38, American Mathematical Society, Providence, RI, 2003, 223–231. Zbl 1062.11038 MR 2019156
- [20] Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000), 193–223. Zbl 0990.11008 MR 1780472
- [21] Z.-H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128 (2008), 280–312. Zbl 1154.11010 MR 2380322
- [22] Z.-H. Sun, Congruences involving binomial coefficients and Apéry-like numbers, Publ. Math. Debrecen 96 (2020), 315–346. Zbl 1474.11002 MR 4108043
- [23] Z.-H. Sun, Supercongruences and binary quadratic forms, Acta Arith. 199 (2021), 1–32. Zbl 1472.11026 MR 4262886
- [24] Z.-H. Sun, Supercongruences involving Apéry-like numbers and binomial coefficients, AIMS Math. 7 (2022), 2729–2781. MR 4347785
- [25] Z.-W. Sun, On sums involving products of three binomial coefficients, Acta Arith. 156 (2012), 123–141. Zbl 1269.11019 MR 2997562
- [26] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, in Proceedings of the conference on p-adic analysis (Houthalen, 1987), Vrije Universiteit Brussel, Brussels, 1986, 189–195. Zbl 0634.10004 MR 0921871
- [27] K. M. Yeung, On congruences for binomial coefficients, J. Number Theory 33 (1989), 1–17. Zbl 0682.10007 MR 1014384