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Abstract

We undertake a comprehensive study of structural properties of graph products of von
Neumann algebras equipped with faithful, normal states, as well as properties of the graph
products relative to subalgebras coming from induced subgraphs. Among the technical
contributions in this paper is a complete bimodule calculation for subalgebras arising
from subgraphs. As an application, we obtain a complete classification of when two
subalgebras coming from induced subgraphs can be amenable relative to each other. We
also give complete characterizations of when the graph product can be full, diffuse, or a
factor. Our results are obtained in a broad generality, and we emphasize that they are
new even in the tracial setting. They also allow us to deduce new results about when
graph products of groups can be amenable relative to each other.
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§0. Introduction

Graph products of operator algebras have recently emerged as a subject of intense
interest, providing an interpolation between the free product and the tensor
product. The term comes from the group setting where they were introduced by
Green [Gre90]; in the operator algebra setting they have been reintroduced and
studied under various names by Mlotkowski [Mlo04], by Speicher and Wysoczariski
[SW16], and by Caspers and Fima [CF17]. The mixture of classical and free inde-
pendence provides a powerful framework for proving results in deformation /rigidity
theory [BoCa24, CKE24, Cas20, CdSS18, CDD25a, CDD25b], the theory of oper-
ator space approximation properties of operator algebras [Atk20, CF17], and free
probability [CC21, CASH+25, Mlo04, SW16]. Graph products of groups are also of
significant current interest in group theory [Agol3, AM15, HWO08, Kob12, KK15,
KK13, MO15]. Several structural properties of graph product von Neumann alge-
bras — the Haagerup property, exactness, Connes embeddability, the rapid decay
property, absence of Cartan subalgebras, strong solidity, modular theory, and
proper proximality — have also been investigated [Atk20, BoCo24, Casl6, Cas20,
CF17, CKE24, DKE24]. Altogether, this makes graph products a natural object to
study using tools from geometric group theory, approximation properties, defor-
mation/rigidity theory, free probability, and random matrices.
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Given a finite simple graph G = (V,€) and a family of groups or of von
Neumann algebras associated to the vertices, their graph product is a group or a
von Neumann algebra generated by copies of the input objects with the pairwise
relations determined by the graph: two objects connected by an edge should be in
direct or tensor product position; two objects not connected by an edge should be
in free position. The relations of higher order must be given as well; we defer the
precise definition for von Neumann algebras to Section 1.1, and refer to Green for
the precise definition for groups [Gre90].

In this paper, we undertake a systematic study of precisely when certain
natural structural properties of graph products of von Neumann algebras hold.
Moreover, for applications to positions of subalgebras it is natural to consider
algebras corresponding to induced subgraphs and ask when these properties hold
“relative” to another. We provide a complete classification for relative amenability,
fullness, factoriality, and diffuseness (we also completely settle “relative diffuse-
ness” i.e. lack of intertwining, in the tracial setting).

Given a graph G = (V, &) and U C V, the subgraph induced by U is the graph
G|y whose vertex set is U and whose edge set is €N (U x U). When we denote
(M, ) = oXoveg(Mv,gov) and when it is not ambiguous, we will let (My, or)
denote the graph product of {(M,,y,) : v € U} with respect to the graph G|y.

We now state our results characterizing relative amenability. In the greatest
generality our results apply to von Neumann algebras equipped with faithful nor-
mal states which are not necessarily tracial (hereafter referred to as statial von
Neumann algebras). However, our results specialize slightly to the setting of both
tracial von Neumann algebras and group von Neumann algebras and therefore to
groups; in these more restrictive settings our conditions for relative amenability
become slightly nicer to state. Although we state many of our results in the statial
setting, they are still new even with an added assumption of traciality.

Main Theorem 0.1. Let G = (V, &) be a graph, let {(M,,7,) : v € V} be a family
of tracial von Neumann algebras, and let (M,7) = DXOUGQ(MU,Tv). Assume that
M, has a trace zero unitary for every v € V. For Vi,Vo CV, My, is amenable
relative to My, in M if and only if the following occur:

(1) M, is amenable for each v € Vi \ Vs.

(2) For each v € V1 \ Vo and w € Vy with v # w, either v and w are adjacent or
both the following occur:

(a) dim(M,) = dim(M,,) = 2,

(b) v and w are adjacent to all vertices in Vq \ {v,w}.
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Note that Theorem 0.1 is new even in the case where M,, = L(T',) for a family
discrete groups {I';, : v € V}. As such, we obtain a complete classification of when
subgroups corresponding to induced subgraphs can be amenable relative to each
other for graph products of groups, which follows immediately from Theorem 0.1.

Corollary 0.2. Let G = (V,&) be a graph and {T', : v € V} be a family of groups.
Let T be the graph product of {T, : v € V} with respect to G, and for U C V let
Ty be the graph product of {T, : v € U} with respect to G|y. Then for Vi,Vo CV
we have that I'y, is amenable relative to I'y, inside I' if and only if both of the
following occur:

(1) T, is amenable for each v € V; \ Va.

(2) For each v € Vi \ Vo and w € Vi with v # w, either (v,w) € € or both of the

following occur:
(a) T, =T, 2Z/2Z,

(b) v and w are adjacent to all vertices in Vy \ {v,w}.

We also have a complete result in the statial setting that generalizes Theo-
rem 0.1. This also yields a complete characterization of when the graph product
von Neumann algebra is amenable (see Proposition 6.3).

Main Theorem 0.3. Let G = (V,E) be a graph, let {(My,,¢,) : v € V} be a
family of statial von Neumann algebras, and let (M, o) = c%goveg
Mfv has a state zero unitary for every v € V. For Vi,Va CV, My, is amenable

(My, y). Assume

relative to My, inside M if and only if both of the following occur:

(1) M, is amenable for each v € V1 \ Va.

(2) For each v € Vi \ Vo and w € Vi with v # w, either v and w are adjacent or
both of the following occur:

(a) Myywy = My * My, is either amenable if w & Vo or is amenable relative
to My, if w e Vs,

(b) v and w are adjacent to all vertices in V1 \ {v,w}.

Our assumption that the centralizer subalgebra M/~ admits a state zero uni-
tary is mild (see Appendix A for a characterization in terms of minimal central
projections). Indeed, in the tracial setting this holds for any non-trivial group
von Neumann algebra, any diffuse algebra, and any finite factor but C. Moreover,
this assumption already appears in foundational works in the non-tracial setting
[Bar95, Sh197]. While this was removed in the free product setting through the
work of Ueda [Ued11], doing so in our setting is likely to involve significant effort
which we leave for future investigation.
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A significant tool for our study of relative amenability is to apply work of
[BMO20] (building upon prior work of [AD95, Haa93]), which states that there
is a (not assumed to be normal) conditional expectation (M,eg) — N when
N,Q < M are with expectation if and only if

NLA(M)n <y L*((M,eq))n-

Strictly speaking, the existence of such a conditional expectation is different from
N being amenable relative to @ inside M, but this turns out to be not a prob-
lem. Since we may view L?({M,eq)) as a relative tensor product, it thus makes
sense to address relative amenability via understanding the bimodule structure of
My, L?(M) My, for Vi, V5 subsets of the vertices, as well as the fusion rules for such
bimodules. We obtain a complete description of such bimodules and their fusion
rules in terms of the combinatorial structure of the graph, and the dimensions of
the algebras attached to the vertices.

Main Theorem 0.4. Let G = (V,E) be a graph, let {(M,,¢,) : v € V} be a

amily of statial von Neumann algebras, and let ,p) = v, Puv). For
family of jal N lgeb d let (M vea M F
V1,Vo CV one has
My, P(M0)ar, = D (aay, L (Mysy, 0v1)
UCViNVa
(0.1) © LMy, ov,)ar,, ) P00,
U

where kg(V1,Va,U) is explicitly determined in terms of the graph structure and
dimension of the vertex algebras (see Theorem 5.4 for the precise description,).
Moreover, we have the following fusion rules. For V1,Vo CV and U C V3 NVs, let

Ay (Vi,Va) =y, L (My,, 0v;) % L*(Mv,, 0v,) My, -
U
Then for Uy CViNVa and Us C Vo N Vs,
Hir,(Vi, Va) @y, H,(Va, Vo) = @D Hw (Wi, V) o202
WCU1NU3

where G is the subgraph of G induced by V5.

Theorem 0.4 is proved in two parts in the body of the paper: in Theorem 5.4
and Proposition 5.5. The utility of such a precise computation can be seen from
Theorem 5.6, which provides a very easy to check characterization of when certain
bimodules are weakly coarse.

We also give a complete characterization of fullness, factoriality, and diffuse-
ness.
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Main Theorem 0.5. Let G = (V,E) be a graph, let {(My,¢,) : v € V} be a

family of statial von Neumann algebras, and let (M, p) = c%%o (My, y). Assume

Mfv has a state zero unitary for every v € V.

(1) M is diffuse if and only if either (a) some M, is diffuse, or (b) G is not a
complete graph.

veG

(2) M is a factor if and only if both (a) whenever a vertez v is adjacent to all other
vertices of G, then M, is a factor, and (b) if v and w are not adjacent to each
other but are adjacent to all other vertices of G, then max(dim M,, dim M,,)
> 3.

(3) M s full if and only if both (a) whenever a vertez v is adjacent to all other
vertices of G, then M, is full, and (b) if v and w are not adjacent to each other
but are adjacent to all other vertices of G, then max(dim M,,dim M,,) > 3.

For tracial algebras, we also provide a complete characterization of relative
diffuseness (or lack of intertwining) of My, relative to My, analogous to The-
orem 0.5(1). We refer the reader to Proposition 4.2 for the relevant statement,
which amounts to in (a) requiring that a diffuse algebra be attached to a vertex in
V1 \ Va2, and replacing the “non-completeness” in (b) with the lack of edge between
a vertex in V; \ Vo with a vertex in Vi N V5.

§1. Preliminaries
§1.1. G-independence and graph products

Throughout, a graph is a pair (V, ) where V is a finite set of vertices and £ C
V x V is a set of edges such that (u,v) € £ if and only if (v,u) € &; we also
insist that (u,u) ¢ £ for all u € V. In other words, our graphs are finite and
simple (undirected, and without self-loops). We write v ~ w (respectively, v o w)
whenever (v,w) € & (respectively, (v,w) ¢ £); we make the dependence on the
graph implicit. For a given v € V, we denote the sphere centered at v by S(v) =
{w €V : w ~ v}, and the ball centered at v by B(v) := S(v) U {v}.

A word vy - - v, in the alphabet V is said to be G-reduced if whenever i < k
with v; = vy, there is some ¢ < j < k so that (v;,v;) ¢ €. (By repeatedly applying
this condition, we could further assume that v; # v;.)

Suppose that G = (V,€) is a graph and (M, ¢) is a statial von Neumann
algebra. For each v € V, let 1 € M, C M be a unital *-subalgebra. Then the
family {M, : v € V} is said to be G-independent if whenever vy ---v, is a G-
reduced word and z1,...,z, € M with z; € ker(p) N M,,, we have

o(xy - xp) =0.
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On the other hand, given a graph G = (V, ) and a family of statial von Neumann
algebras {(M,,p,) : v € V}, there is up to isomorphism a unique statial von
Neumann algebra (M, ¢) and state-preserving inclusions M, < M so that the
images of the M, are G-independent and generate M. We refer to this algebra
(M, ) as the graph product of the family {(M,, p,) : v € V} and write

(M7 90) = Oxoveg(Mvv @v)'

The existence and uniqueness of the graph product was shown by Mlotkowski
and also by Caspers and Fima; moreover, if each ¢, is tracial then so is the state
on the graph product [Mlo04, CF17].

§1.2. Structural properties of von Neumann algebras

We recall the definitions of the structural properties appearing in the theorems in
the introduction of the paper.

A von Neumann algebra M is said to be full if whenever a bounded net
(zi)ier C M satisfies ||¢o([zi, - ])|| — 0 for all ¢ € M, then there exists a net of
scalars (\;)ier C C such that (z; — A;) — 0 strongly. This notion was introduced
for von Neumann algebras with separable preduals by Connes [Con74], where
he showed it was equivalent to Inn(M) being closed in Aut(M) under the point
norm topology [Con74, Thm. 3.5]. [HMV19, AH14] considered this notion in the
more general o-finite case, where they showed it was equivalent to M’ N M* = C
[AH14, Prop. 4.35, Thm. 5.2], [HMV19, Cor. 3.7]. Here, M* denotes the Ocneanu
ultrapower (see Appendix B), and in this paper we will always verify fullness by
proving M’ N M% = C. We note that the proof of this implication can be found in
[AH14, Prop. 4.35], and in fact it is an exercise from [Con74, Prop. 2.8].

Let A, B < M be inclusions of von Neumann algebras with conditional expec-
tations E4, Ep. Let (M,ep) denote the basic construction associated to the
inclusion (B C M, Ep). We say that A is amenable relative to B inside M if
there exists a conditional expectation ®: (M,ep) — A such that @[y is normal
[Pop86] (see also [Pop99] and [MP03, Def. 4]).

§2. Diffuseness, factoriality, and fullness

In this section we classify when a graph product W*-algebra has various properties
(diffuseness, amenability, factoriality, fullness) based on the input algebras M, (see
[CF17, Cor. 2.29] for a partial result in this direction).

We will use the graph join operation to produce a tensor product decompo-
sition for the graph product, thereby reducing the study of various properties of
the graph product over G to the properties of the subgraphs Gi,...,G,. Given
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graphs G; = (V;,&;) for j = 1,...,n, the graph join Gi + Go + --- + G, is the
graph obtained from the disjoint union of Gy, ..., G, by adding edges from every
vertex of G; to every vertex of G; for i # j. We say that G is join-irreducible if it is
non-empty and cannot be decomposed as a graph join of two non-empty graphs.
By [Cun82, Thm. 1], every graph G has a unique (up to permutation) decomposi-
tion as Gy + - + G, where Gy, ..., G, are join-irreducible (here we allow a single
vertex to be considered as a join-irreducible graph). The next proposition follows
immediately from the definition of the graph product for statial von Neumann
algebras.

Proposition 2.1. LetG = (V,E) be a graph and let {(M,, ,) : v € V} be a family
of statial von Neumann algebras. If G = Gy + --- + G,, for graphs G; = (V;,&;),
j=1,...,n, then

o o (Mo, 00) = ® o}%veg My, ¢,).

1<j<n

Since it is known that diffuseness, factoriality, and fullness of a tensor product
can be characterized in terms of the corresponding properties for the tensor factors
(see the proof of Theorem 0.5 in Section 2.1 below), the above proposition allows
us to reduce our analysis to the join-irreducible case. The general outline of the
argument is as follows. By the foregoing argument, we reduce to the case when
G is join-irreducible, then further divide into cases based on whether the number
of vertices of G is 1, 2, or greater than 2, and decide diffuseness, amenability,
factoriality, or fullness in each case. Of course, if G consists of a single vertex
v, then this is simply the diffuseness, amenability, factoriality, or fullness of the
input algebra M,, and so we will only address the cases of |[V| = 2 and |V| > 3
below. If G has two vertices, then these two vertices must not be connected by an
edge, because otherwise G would decompose as the graph join of the two vertices.
Hence, c%go eg M,, p,) is the free product (M, p1) * (Ma, p2) of the two input
algebras. Now, if we assume that M7 and M3? each contain state zero unitaries
u1 and ueo, then by free independence the product ujus will be a Haar unitary in
(My, 1) * (M2, v2), and hence (M, p1) *x (Ma, ¢2) is diffuse. If My = My =2 CaC
with equal weight on each of the two summands, then M * M5 is amenable and not
a factor, and in all other cases (under the assumption that M}' and My? admit
state zero unitaries), it is a full factor by results of Ueda [Ued11]. The remaining
case is then when G has at least three vertices, which we will handle separately as
a general argument.

Before proceeding in this way, we first observe a combinatorial condition that
follows from a lack of graph join decomposition.
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Lemma 2.2. Let G = (V,€) be a join-irreducible graph. Then either G is discon-
nected or for every vertex vg € V, there exist v1,v2 € V \ {vo} such that

Vo ~ V1, 'UO’)CUQ, (%1 ’741}2.

Proof. We proceed by contrapositive. Suppose that G is connected and that there
exists a vertex vy such that for all v1,ve € V\ {vp}, if v1 ~ vy and vy % vy, then
v1 ~ va. Fix such a vg. Let S = S(vp). We claim that every vertex in S is adjacent
to every vertex in S¢. Let v € S and w € S¢. If w = vy, then w ~ v by definition
of S(vg). If w # vp, then because w 7 vy and v ~ vy, we have v ~ w. Since every
vertex in S is connected to every vertex in 5S¢, we can decompose G as the graph
join of the two induced subgraphs with vertex sets S and S°. O

Remark 2.3. The converse of this lemma does not hold. In fact, suppose that
we take graphs G; and G, which both satisfy that for every vy € V), there exist
v1,v2 € V\ {vo} such that vy ~ v1, vg % v2, v1 % ve. Then G; + Go also satisfies
this condition. More generally, if V is expressed as a union of subsets V;, and
the subgraphs induced by V; have this property, then the whole graph has this

property.

The following is a special case of Theorem 0.5 for join-irreducible graphs,
which will be used in the general proof in conjunction with strategy outlined after
Proposition 2.1. The proof makes use of Ocneanu ultrapowers and some related
lemmas which are detailed in Appendix B. It also uses the fact that subalgebras
My corresponding to induced subgraphs admit unique state-preserving, faithful,
normal, conditional expectations Eps, : M — My (see [CF17, Rem. 2.14]). The
uniqueness implies, in particular, that My, v,, Myv,, My,, M form a commuting
square for any subsets Vp, Vo C V.

Theorem 2.4. Let G = (V, &) be a join-irreducible graph. Let {(M,,v,) : v € V}
be a family of statial von Neumann algebras and let (M, @) = O}{oveg(Mv,gav).
Assume ME» has a state zero unitary for every v € V.
o If V| =2 with ¥V = {v,w} and dim(M,) = dim(M,,) = 2, then M is diffuse
but not a factor.
o If|V| =2, and max(dim(M,),dim(M,,)) > 3, then M is a diffuse full factor.
e If|V| >3, then M is a diffuse full factor.

Proof. First, suppose V = {v1,v2} and recall that join-irreducibility of G implies
(M, ) = (My,, ¢0,) * (My,, @u,). If one of M,, or M,, has dimension at least
3, then M is diffuse and a full factor by [Uedll, Thm. 4.1 and Rem. 4.2]. If
dim(M,,) = dim(M,,) = 2 so that M,, = C @ C for i = 1,2, then ¢,,, Qu,
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are necessarily tracial and our assumption on the existence of trace zero unitaries
forces these traces to put equal weight on each factor of C. Hence, M is diffuse
but is not a factor by [Dyk93, Thm. 1.1].

We now assume that V| > 3. Note that if a von Neumann algebra P has a
normal conditional expectation onto a diffuse subalgebra, then P is diffuse (this fol-
lows from restricting such a conditional expectation to the maximal purely atomic
direct summand of P and applying [Bla06, Thm. IV.2.2.3]). Since we already have
normal conditional expectations onto subalgebras corresponding to induced sub-
graphs, it follows from the above paragraph that M is diffuse in this case. So we
only focus on proving M is a full factor. By Lemma 2.2, it suffices to prove the
theorem under the weaker condition that either G is disconnected or for every
vg € V, there exist v1,vy € V \ {vg} such that vy ~ v1, vg # va, V1 # V.

Suppose G is disconnected and |V| > 3. Then there exist a vertex vy and two
other vertices v; and vy that are not in the same connected component as vg. Let
Vo C V be the vertices in the connected component of G containing vy. Then

M = ]\4‘/0 * MV\V@'

Let ug, u1, and ug be state zero unitaries in M,,, M,,, and M,, respectively. We
have p(uius) = @(uf)p(uz) = 0 in both cases vy ~ vg and v; % ve. Thus, the
unitaries satisfy the hypotheses of Lemma B.1 with B = C. It follows that for
every cofinal ultrafilter w on a directed set, we have M’ N M¥ C C¥ = C, so that
M is full.

Now consider the case where for every vy € V, there exist v, vy € V\{vp} such
that vo ~ v1, vo % va, v1 % va. (In this case automatically |V| > 3.) Fix a cofinal
ultrafilter w on a direct set, and a vertex vg. Note that by [CF17, Thm. 2.26],

M = MB(vg) *Ms gy M\ {vo}-

Let v1 and vy be vertices with v ~ vg, v2 % vy, v1 % va. Let ug, w1, and ug be trace
zero unitaries from My, My, and M respectively. We want to apply Lemma
B.1 to the unitaries ug, u2, and ujusu;. Note that the words vy, va, vivev1, and
v1v2v1v2 are reduced and each have some element not in S(vg); therefore, by the
alternating expectation condition defining free independence with amalgamation,

EMS<UO) [UO] = EMS(u0> [uﬂ = EMS(vO) [u1u2uﬂ = EMS(vO) [(u»{u2u1)*u2] =0.
Moreover, ujuzu; is in the centralizer of My (4,}. Therefore, by Lemma B.1,

M nM¥ C (MS(’U(]))W'
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Now the vertex vy was arbitrary, and therefore, by Lemma B.2,

Mlme g ﬂ Mg(vo) :< ﬂ MS(’UQ)) .
voeV voeV

By [CF17, Prop. 2.25],

M Mswwo) = Mn,, ., s00)-
voEV
Because vg € S(vo) by definition, we have (1, <y, S(vo) = @. Hence, M'NM* C C,
so that M is full. O

Remark 2.5. In particular, suppose that the graph G has diameter at least 3,
meaning that there exist two vertices v and w with distance at least 3 in the
graph. Then G is join-irreducible because in a graph join any two vertices have
distance at most 2. Therefore, the theorem implies that %gove g(MU, ©y) is a full
factor provided that each M#* contains a state zero unitary.

Consider a non-join-irreducible graph G and suppose G = G; + - -+ + G, is its
graph join decomposition for graphs G; = (V;,&;). Since diffuseness, factoriality,
and fullness are all automatic for graph products over G; when |V;| > 3, to under-
stand these properties for graph products over G it is not necessary to compute its
entire graph join decomposition. We merely need to be able to locate the G; that
have 1 or 2 vertices. For this purpose, we record the following observation.

Lemma 2.6. Let v be a vertex of a graph G = (V,E). Then v comprises one of
the components in the graph join decomposition of G if and only if v is adjacent
to all the other vertices of G.

Similarly, let v and w be distinct vertices of G. Then {v,w} comprises one of
the components in the graph join decomposition of G if and only if v and w are
not adjacent to each other but are adjacent to all the other vertices in G.

We remark that detecting components in the graph join decomposition of G
with one or two vertices is algorithmically much simpler than finding the full graph
join decomposition (it can be done in polynomial time in the number of vertices).

§2.1. Proof of Theorem 0.5

Let G = Gi + --- + G, be the graph join decomposition for graphs G; = (V;,&;),
j=1,...,n. Denote (N;, ;) = °§€%eg-

(M,(,O) = (Nlaw1)®® (N'mwn)

(M,,p,) for each j =1,...,n, so that

by Proposition 2.1.
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(1). M is diffuse if and only if N; is diffuse for some j. If G; has at least two
vertices, then IV; is diffuse by Theorem 2.4. Thus, the only way M can fail to be
diffuse is if all the G, are singletons (that is, G is a complete graph), and none of
the M, are diffuse.

(2). M is a factor if and only if N; is a factor for each j = 1,...,n. If G; has at
least three vertices, then N; is automatically a factor by Theorem 2.4. So for M
to be a factor it is necessary and sufficient that NN, is a factor whenever |V;| < 2.
For V; = {v}, this reduces to M, being a factor, and from the characterization
of singleton components in Lemma 2.6 this yields condition (a). For V; = {v, w},
N; is a factor if and only if max(dim(M,),dim(M,,)) > 3 by Theorem 2.4, and
from the characterization of two-element components in Lemma 2.6 this yields
condition (b).

(3). M is full if and only if N, is full for each j = 1,...,n by [Con76, Cor. 2.3],
[HMV19, Cor. B]. Noting that the characterization of fullness coincides with that
of factoriality for join-irreducible graphs in Theorem 2.4, the same argument used
in the previous part completes the proof.

Remark 2.7. Observe that under our standard assumption that M/~ admits a
state zero unitary, the graph product over G gives a non-full factor if and only if
there exists v € V adjacent to every other vertex with M, a non-full factor. Indeed,
using the notation of the above proof, M is a non-full factor if and only if each /V;
is a factor and at least one, say Nj,, is non-full. According to Theorem 2.4, this is
only possible if V;, consists of a single vertex and the algebra over that vertex is
a non-full factor.

§3. Relatively reduced words and conditional expectations

Miotkowski [Mlo04] and Caspers-Fima [CF17] used reduced words to describe how
the standard form of a graph product is analogous to a Fock space. From their
description, one can build an orthonormal basis for L? of the graph product using
an orthonormal basis of the vertex algebras. In Section 5 we will have to describe
the standard form of the graph product as a bimodule over two subalgebras coming
from subgraphs. In order to investigate relative amenability in Section 6, we will
also have to describe the fusion rules. In this bimodule situation it is natural to look
for (an analogue of) a Pimsner—Popa basis instead of an orthonormal basis. As we
will show in Section 5, this can be done by modifying the consideration of reduced
words to be reduced “relative” to a pair of subgraphs as in [BoCa24, Lem. 1.7].
This is similar to considering double-cosets relative to a pair of subgroups coming
from subgraphs in a graph product of groups. We define this notion of relatively
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reduced words in this section. In order to later show they give something akin to
a Pimsner—Popa basis and compute the fusion rules, we will also need to compute
some conditional expectations coming from relatively reduced words, which we
also do in this section. These formulas for conditional expectation will also be
used to investigate relative diffuseness (i.e. lack of intertwining) in Section 4.

§3.1. G-reduced words

Definition 3.1. We define the following kinds of operations on words in the alpha-
bet V:

e An admissible swap switches two consecutive letters w; and w;;q that are
adjacent vertices in G.

e A splitting replaces one occurrence of a letter w; by two copies of w;. (For
example, 1231 could be transformed to 12231 by splitting the second letter.)

e A merge replaces two consecutive occurrences of the same letter by one occur-
rence of the letter.

Two words are said to be equivalent if one can be transformed into the other by a
sequence of these three types of operations. We denote this by w ~ @.

It is easy to see that this is indeed an equivalence relation. It is reflexive and
transitive by construction. It is symmetric because a swap operation is reversed
by another swap, and the splitting and merge operations are inverse to each other.
Moreover, every word is equivalent to some reduced word through a sequence of
admissible swaps and merges (see [CF17, Lem. 1.3(1)]).

In the sequel, we will use the following characterization of when two reduced
words are equivalent.

Proposition 3.2. Let G = (V,€) be a graph. Let w = wy - w, and @ =
Wy - - - Wy, be two words in the alphabet V. Let w = w1y - - - w,, and W = Wy - - - W, be
two G-reduced words. Then the following are equivalent:
(i) w and W are equivalent;
(ii) w can be transformed into W by a sequence of admissible swaps;
(iil) m = n and there is a permutation o: [m] — [m] such that
o Wy = wi;
o if i <j and w; is not adjacent to w;, then o(i) < o(j).
This proposition is a strengthening of [CF17, Lem. 1.3]. For instance, [CF17,

Lem. 1.3] showed that if w and @ are equivalent, then m = n and there is some
permutation matching the letters of w and @, but did not characterize the exact
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properties this permutation should have in order to get the reverse implication.
Moreover, they expressed condition (ii) as “Type II equivalence” and stopped short
of showing it is the same as equivalence in the case of reduced words.

For the proof, (ii) = (i) is immediate and (iii) = (ii) follows by induction.
The implication (i) = (iii) or (ii) is non-trivial since it involves reasoning about
non-reduced words in intermediate stages of the sequence of transformations. We
first take care of (iii) = (ii).

Lemma 3.3. Let G = (V, &) be a graph. Let w = wy -+ wy, and W = Wy - -+ Wy,
be two words in the alphabet V', and suppose o: [m] — [m] is a permutation with
We() = w; such that if i < j and w; is not adjacent to w;, then o(i) < o(j). Then
w and W are equivalent by swaps.

Proof. We proceed by induction on m. If o(1) = 1, then o restricts to a permu-
tation of {2,...,m — 1} and we can apply our inductive hypothesis. Otherwise,
i=0"1(1) > 1, and @; must be adjacent to @, ..., ;1. Therefore, by successive
swaps, we may move wi; = w; to the left past wi,...,w;_1. Then note that o
restricts to a permutation of m — 1 elements satisfying the original hypotheses for
the words w’ = ws - - Wy, to W' = W1 - - Wy(1)—1We(1)41 * - W By the inductive
hypothesis, w’ and @’ are equivalent by a sequence of swaps, and hence w and w
are equivalent by a sequence of swaps as desired. O

For (i) = (iii), we have to produce a permutation out of the sequence of
operations. It is easy to see that an admissible swap corresponds to a transposition
permutation satisfying the monotonicity condition in (iii). However, if we perform
a split or a merge operation, then naturally two indices are mapped to one or
vice versa, so in that setting, we need to replace the permutation (i.e. bijective
function) by a relation from [m] to [n].

Recall that a relation R: A — B between two sets A and B is a subset of
R C A x B. Given relations R: A — B and S: B — C, the composition S o R is
defined by

SoR={(a,c) € Ax C : there exists b € B with (a,b) € R and (b,c) € S}.
Note that this definition extends the composition of functions.

Definition 3.4. Let G = (V, &) be a graph. Let w = wy -+ - w,,, and @ = Wy - - - Wy,
be two words in the alphabet V. A G-monotone matching from w to w is a relation
R: [m] — [n] satisfying the following conditions:

(1) For every i € [m], there is some j € [n] with (i,7) € R.

(2) For every j € [n], there is some ¢ € [m] with (i,5) € R.
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(3) If (Z,]) S R, then w; = ﬁ}j'
(4) If (i,5) € R and (¢/,5') € R and w; is not adjacent to w; in G, then ¢ <4 if
and only if j < 5.

Note in the case that the relation R is a bijective function, then (1) and (2) of
Definition 3.4 hold, while (3) and (4) reduce to the conditions on the permutation
o in Proposition 3.2(iii).

Lemma 3.5. Let G = (V,€) be a graph. Let w = wy -+ Wy, and @ = Wy -+ Wy
be two words in the alphabet V. If w and W are equivalent, then there exists a
G-monotone matching from w to .

Proof. Tt suffices to show (a) that each of the operations leads to a G-monotone
matching and (b) that a G-monotone matching from w and @ and a G-monotone
matching from w to w compose to form a G-monotone matching from w to w. For
(a), we note the following:

e If @ is obtained from w by swapping ¢ and ¢ + 1, where w; and w;;1 are
adjacent, then a G-monotone matching R: [m] — [m] is given by the relation
R={(,7):5#4 i +1}U{(i,i+1),(i+1,4)}.

e If w is obtained from w by merging ¢ and i + 1, where w; = w;y1, then
the G-monotone matching R: [m] — [m — 1] is given by the relation R =
{L,),...,@)}U{G@E+1,4),...,(m,m—1)}.

e If @ is obtained from w by splitting the index 4 into ¢ and ¢ + 1, then the G-
monotone matching is given by R = {(1,1),..., (¢,i)} U{(¢,i+1),..., (m,m+
1)}.

For (b), suppose w = wq,...,W, is another word, suppose R is a G-monotone
matching from w to @, and S is a G-monotone matching from @ to w. One can
check that So R is a G-monotone matching from w to w by verifying each condition
directly:

(1) Given ¢ € [m], there exists some j € [n] with (4,j) € R, and then there exists
some k € [o] with (j,k) € S, and hence (i, k) € S o R.

(2) The second condition is checked in a symmetrical way.

(3) If (i, k) € S o R, then there exists some j € [n] with (4,5) € R and (j,k) € S.
Hence, w; = @w; = w;, by condition (3) applied to R and S.

(4) Let (i,k),(#',k') € S o R. Suppose w; and w; are not adjacent. Pick j and
j' € [n] with (4, j), (¢',j') € Rand (j,k), (', k') € S. Recall that w; = @; = Wy,
and wy = W = Wy by (3). Hence, ¢ < ¢’ if and only if j < j” if and only if
k < k' by condition (4) applied to R and S. O
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Lemma 3.6. Let G = (V,€&) be a graph. Let w = wy -+ - wy, and W = Wy - - W, be
two reduced words in the alphabet V. If w and @ are equivalent, then m = n and
there is a permutation o: [m] — [m] with Wy ;) = w; such that if i < i and w; is
not adjacent to wy, then o(i) < o(i’).

Proof. By the previous lemma, there exists a G-monotone matching R from w to
w. We claim that R defines a bijection.

For each i € [m], we know that there exists some j € [n] with (i,7) € R. We
claim that this j is unique. Suppose that (i,7) € R and (i,5') € R with j < j'.
Since @ is reduced, there exists some £ strictly between j and j' such that w, is not
equal or adjacent to w;. Moreover, there exists some k € [m] with (k,¢) € R. Then
condition (4) of G-monotonicity tells us that j < £ < j’ implies that i < k < 1,
hence k = i. However, this contradicts that w; = W; # W = wg.

A symmetrical argument shows that for every j € [n], there is a unique i € [m]
with (7,7) € R. Thus, R defines a bijection as desired, so that m = n and R has
the form R = {(i,0(i)) : ¢ € [m]} for some permutation o. By Definition 3.4, we
see that if ¢ < 4’ and w; is not adjacent to w;, then o(i) < o(i’). O

This lemma completes the proof of (i) = (iii) in Proposition 3.2.

Remark 3.7. If w and @ are equivalent G-reduced words, note that the permu-
tation ¢ is uniquely determined by the property that for each v € V, ¢ maps
{i : w; = v} onto {j : W; = v} monotonically. In particular, the permutation in
Proposition 3.2(iii) is unique.

Remark 3.8. The method of proof more generally shows that arbitrary words w
and @ are equivalent if and only if there exists a G-monotone matching from w
to w. Indeed, Lemma 3.5 shows that equivalence of w and w implies the existence
of a G-monotone matching. On the other hand, suppose there is a G-monotone
matching from w to w. Note w and w are equivalent to some reduced words w’
and @', and hence there are G-monotone matchings from w’ to w, from w to w,
and from @ to w’. The composition yields a G-monotone matching from w’ to @',
so by Proposition 3.2, w’ and @’ are equivalent by swaps, hence also w and w are
equivalent.

§3.2. Relatively G-reduced words

In order to compute conditional expectations and study relative properties of sub-
algebras, we use a relative notion of reduced word as in [BoCa24, Lem. 1.7].

Definition 3.9. Let G = (V, &) be a graph and Vi, Vo C V. Let w be a word in
the alphabet V.
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(1) w is G-reduced relative to Vi on the left if viw is G-reduced for every letter
v € V7.

(2) w is G-reduced relative to Vo on the right if wv, is G-reduced for every vy € V5.

(3) w is G-reduced relative to (V1,Va) if both (1) and (2) hold.

Remark 3.10. In the case of @ C V, we take w being G-reduced relative to @ on
the left or right to just mean that w is G-reduced. Consequently, w is G-reduced
relative to V; on the left if and only if w is G-reduced relative to (V1, @). Similarly,
w is G-reduced relative to V5 on the right if and only if w is G-reduced relative
to (&, V). We also note that all relatively G-reduced words are, in particular,
G-reduced words.

The next three lemmas show existence and uniqueness of a certain factoriza-
tion of reduced words based on the vertex sets V; and V5. This will be useful in
Section 5 when we compute the fusion rules for bimodules arising from subgraphs.

Lemma 3.11. Let G = (V,&) be a graph and Vi, Vo C V. Suppose that w =
w® - w® . w® | where

(1) wY is a G-reduced word in the alphabet Vi,

(2) w? is G-reduced relative to (Vy,Va),

(3) w® is a word in the alphabet Vy that is G-reduced relative to (U, @), where U
is the set of vertices in Vi N Vy that are adjacent to all the letters in w(?).

Then w is G-reduced.

Proof. Denote w = wy - - - w,, and suppose that ¢ < j with w; = w;. We must find
some 4 < k < j such that wy, is not adjacent to w; = w;. We proceed in cases:

(A) If w; and w; are both from w®), the claim follows because w(!) is reduced.
Similarly for w® and w®).

(B) Suppose that w; comes from w® and w; comes from w®). Because w; € V;
and w® is G-reduced relative to (V1,V2), the word w; - w® is G-reduced, and
hence there exists some index k < j, within w(®, such that wy, is not equal
or adjacent to w; = w;.

(C) Suppose that w; comes from w(? and w; comes from w®) . Using that w; € V3
and thus w(? -wj is G-reduced, we can argue analogously to the previous case.

(D) Finally, suppose that w; is from w(® and wj is from w® . Note that w; = w;
must be in V3 NV,. Then there are two subcases: (a) w; € U and (b) w; € U.
For (a), the definition of U implies there exists some index k from w(® such
that wy, is not adjacent to w;. Since k is from w®, we have i < k < j, so
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we are done. For (b), because w® is G-reduced relative to (U, @), we know
w; - w® is G-reduced, and so there is some index k < j from w®) such that
wg, is not adjacent to w;. O

Lemma 3.12. Let G = (V, &) be a graph and Vi, Vo C V. Fvery word w is equiva-
lent to a word of the form w™ -w® .w®) satisfying the conditions in Lemma 3.11.

Proof. Since every word is equivalent to a G-reduced word, we may assume without
loss of generality that w is G-reduced. If all the letters of w are in Vi, then the
desired decomposition is w™") = w; w? and w®) are the empty word.

So without loss of generality, we may assume that {j : w; ¢ Vi} # @. Set
a(w) = min{j : w; ¢ Vi}. Let C be the set of G-reduced words equivalent to w.
Let w’ be an element in C' which maximizes a(w’):

b {a(w’)—l if{jza(w’):wg-&"/g}zz,
w =
max{j:w ¢ Va} if {j >a(w'): v, &V} # @.

Let w” be an element of C' that minimizes b(w”) subject to the constraint that
a(w”) = a(w'). Write a = a(w’) = a(w”) and b = b(w"). Write w” = w® - w® .

w®, where

"

@ — ...
w\ =wy - w,_q,

w? =w" - w),

w® = wylyq e wy,
where £ is the length of w”. In the special case where {j > a(w’) : w} ¢ Vo} = &,
meaning that all the letters starting at index a are in V5, then b = a — 1, and
so w® is the empty word. In all cases, w") is a word in the alphabet in V; and
w®) is a word in the alphabet V5. Moreover, w™, w®), and w® are all G-reduced
since they are subwords of the G-reduced word w”. We will complete the proof via
a series of claims.

Claim 1. w® - w®) is G-reduced relative to (V;, @).

Fix v € V; and let i < j be two indices in v - w® - w(® labeled with the same
vertex. We must show there is some index in between labeled by a non-adjacent
vertex. If the two indices i and j are both from w(® - w®), then it suffices to note
that w® - w® is G-reduced since it is a subword of w”, which is reduced because
it is equivalent by admissible swaps to w. Otherwise, i corresponds to the first
letter v in v - w® - w®). Suppose for contradiction that there does not exist some
index k between i and j such that wj is not adjacent to w. Then all the letters
between v and w} in v - w® - w® are adjacent to v, and hence w? can be moved
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past them to the left by repeated swaps, so that it comes to the left-hand side of
w® . w®) Thus, by grouping the letter wf with w® instead of w? - w®, we
obtain a contradiction to the assumption that a(w”) is maximal.

Claim 2. w® is G-reduced relative to (@, Va).

In the case where b = a — 1 or equivalently w® is the empty word, there is
nothing to prove. So assume w(® is non-empty. Fix v € V5 and let i < j be two
indices in w(® - v labeled by the same vertex. Note that w(?) is G-reduced, so if i
and j are both from w(® then we are done. Otherwise, j corresponds to the last
letter v in w(?) - v. If wy’ is adjacent to w!’ for all k& > i among the indices of w(®,
then arguing as in Claim 1 we would contradict minimality of b(w’).

Observe that the combination of Claims 1 and 2 gives that w(® is G-reduced
relative to (Vi, V). It remains to show that w(® is G-reduced relative to (U, @),
where U is the set of vertices in V3 N V5 that are adjacent to all the letters in w®
(of course, in the case where w® is the empty word, we have U = V4 N Va).

Claim 3. w® is G-reduced relative to (U, @).

Fix v € U and let i < j be two indices in v - w® labeled by the same
vertex. Since w(®) is G-reduced, if i and j are both from w®) then we are done. So
suppose i corresponds to v and that there is some index j in w® with w;’ = .
Since w® -w®) is G-reduced relative to (V}, @) by Claim 1 and U C Vi, there must
be some index k& < j in w® - w® with wY not adjacent to v = w. By definition
of U, v is adjacent to all the letters in w(®). Hence, the index k must have come
from w(®). Thus, wy, occurs as a letter in v - w®) between v and w, and wy! is not
adjacent to v. O

Lemma 3.13. Let G = (V,E) be a graph and Vi, Vo C V. Let w = w™ -w?) -3
and © = o) - @) - w3 satisfy the conditions in Lemma 3.11 (here, in the third
condition for w and W, we use respectively U and Tj’, where U and U are the sets
of vertices in Vi Vs that are adjacent to all letters in w® and w3 respectively).
If w~ @, then wM ~ oM, W ~ P, and WA ~ ).

Proof. First, observe that w®? -w®) and @@ - ©®) are both G-reduced relative to
(V1, @), by applying Lemma 3.11 to v - w® - w®) and @® - @®) to v € V3.

Now, since w ~ @, Proposition 3.2 shows that there is a permutation o with
w; = Wy (;), such that if i < j and w; is not adjacent to wj, then o(i) < o(j).
We claim that ¢ maps the indices of w® - w®) into the letters of @ - @), We
proceed by induction on the indices of w® -w®) from left to right. Let i be one of
these indices and suppose the claim is known for all indices to its left in w®) - w®).
There are now two cases:
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e Suppose w; € V1. Then W,(;y = w; is not in V; and hence o(i) cannot be one
of the indices in @™V, so it must be one of the indices in @ - ©(3).

e Suppose that w; € Vi. Then because w(? -w(®) is G-reduced relative to (V;, @),
we know w; - w? - w® is G-reduced, so there must exist some index j < 4 in
w® -w®) such that wj is not adjacent to w; in G. By the induction hypothesis,
o(4) is one of the indices in @?-@®). By Lemma 3.5, we must have o (i) > o(3)
and hence o(7) is one of the indices in @W® - ©®), as desired.

~1 must map the indices of @? - ©®) into the indices

By symmetrical reasoning, o
of w® . w®) Therefore, o restricts to G-monotone matchings from w™ to @™
and from w® - w® to ©® - @G, That is, w™) ~ ¥ and W@ WA ~ G . HG).

Finally, we argue o as above maps the indices of w(® into the indices of @®.
We again proceed by induction on the indices of w(?), this time from right to left.
Let ¢ be an index in w® and the claim is already known for all indices j to its

right. We again have two cases:

o If w; ¢ V3, then o(i) must be an index in @(?).

o If w; € Vs, then since w? is G-reduced relative to (V1,V2), then there is some
index j > 4 in w® such that w; is not adjacent to w;. Then o(i) < o(j),
which is by the induction hypothesis an index in @®). Thus, o(i) is an index
in 0.

Symmetrically, o~ maps the indices of @(?) into the indices of w(®. Thus, as
above, we have w® ~ ©® and w® ~ w®). O

§3.3. Computation of conditional expectation

We recall the following facts which follow from the Fock space description of L?
of the graph product in [CF17, Sect. 2.1].

Lemma 3.14 ([CF17, Rem. 2.7]). Let G = (V,&) be a graph, let {(M,,p,) :v €
V} be a family of statial von Neumann algebras, and (M, p) = o%oveg(Mv,goy),
The x-subalgebra generated by (M, ),cy is spanned by 1 and elements of the form
x1* T, where z; € My, with o(x;) =0 for some G-reduced word w = wy -+ - Wy,

Lemma 3.15 (Comments following [CF17, Rem. 2.11]). Let G=(V,&) be a graph
and (M, p) = o}goveg(Mv,gov). Let w =w; -+ w,, and w = wy -+ - W, be G-reduced
words. Let x; € M, Nker(p) and &; € Mg, Nker(p).

(i) If w and W are not equivalent, then o((x1 -+ Ty )* (&1 -+ &) = 0.
(ii) If w and W are equivalent, then

ez wm) (Tr- - Tm)) = P(@1Ta)) - LT T5(m));
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where the permutation o: [m] — [m] is the G-monotone matching from w to
w guaranteed by Lemma 3.6, which also gives m = n.

Lemma 3.16 ([CF17, Rem. 2.14]). Let G = (V, &) be a graph, let {(M,,¢,) : v €
V} be a family of statial von Neumann algebras, let (M, @) = DXOUEQ(M”’ Yy), and
let Vo C V. For a G-reduced word w = w1 + - Wy, if x; € My, foreachj=1,....,m
then Enry, [21 - @m] = 0 unless wy,...,w, € Vp.

Our goal is to prove a conditional analogue of Lemma 3.15.

Lemma 3.17. Let G = (V,€) be a graph, let {(M,,p,) : v € V} be a family
of statial von Neumann algebras, and Vi,Vo C V. Let w = wy -+ -w,, and w =
Wy -+ Wy be G-reduced words relative to (V1,Vz). Let x; € My, Nker(p) and T; €
Mgz, Nker(p), and write

T=X1 Ty, T=2T1  Tnp.

(In the case that w or @ is empty, that is, m = 0 or n = 0, we take by convention
x =1 orx =1 respectively.) Let U be the set of vertices in ViNVa that are adjacent
to all letters of w (note: if w is the empty word, then U = V1 NVa, by convention).
Then

(3.1) By, (2Tyz) = o(Z"2)Eny (y), Yy € My,

In particular, Enr,, (Z*yx) = 0 for all y € My, if w and w are not equivalent.
Proof. It suffices to show that for all y € My, and z € My,, we have

(3.2) p(Eyxz) = o(2°2)o(Eny (y)2)-

By Lemma 3.14, it further suffices to prove the claim when

(3.3) z=z12, 25 € My Nker(p),

where a = a7---ay is a G-reduced word in the alphabet V5. Additionally, by
Proposition 3.2(ii) and Lemma 3.12, we can assume without loss of generality that
a=a®.a® where a is a G-reduced word in U and a(? is G-reduced relative to
(U, @). This results in a corresponding factorization z = (M2 with () € M.
Then

(@ yzzM @) = p(F*yzVr2?).
Thus, it suffices to prove the claim with y replaced by yz(") and z replaced by z(2).

In other words, we can assume without loss of generality that z is given by
(3.3) where a is G-reduced relative to (U, @). Furthermore, again by Lemma 3.14,
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it suffices to consider the case where

Y=uy1-Yk, Yj € My, Nker(p),

where b = by - - - by is a G-reduced word in V3. By Lemma 3.11, b-w - a is G-reduced.
Moreover, by Lemma 3.13, the only way for w and b - w - a to be equivalent is if
W=~ w and & ~ b and @ ~ a (hence a and b are empty). Similarly, the only way
for w and b - w to be equivalent is if w =~ w and b = @. Thus, the claim can be
checked in several cases:

e In the case a = b= &, so then y = z = 1, we have

(T yrz) = p(T"x) = (T 2)p(Em, [1]1) = @(3"2)p( B, [y]2)-

e In the case a = @ and b # &, then since b - w is not equivalent to w, we
get p(Z*yx) = 0 by Lemma 3.15, hence the left-hand side of (3.1) is zero.
Meanwhile, ¢(y) = 0 by definition of the graph product, so the right-hand
side of (3.1) is w(Eumy [y]) = ¢(y) = 0.

e In the case a # @, then again b - w - a is not equivalent to w, and hence the
left-hand side of (3.2) is zero, by Lemma 3.15. Meanwhile, since the word a is
G-reduced relative to (U, @), the element z is orthogonal My by Lemma 3.16,
hence ¢(En, [y]z) = 0, so the right-hand side of (3.2) is zero. O

§4. Non-intertwining

Let (M, 7) be a tracial von Neumann algebra and B,N < M. We say that B
intertwines into N inside M if there exist non-zero projections pg € B, g9 € N,
and a normal unital *-homomorphism 6: pgPpy — qoQqo, together with a non-
zero partial isometry v € goMpg such that v*v = pg, vv* = qo, and 0(z)v = vz for
all € pgPpg. In this case one writes N < B.

Theorem 4.1 ([Pop06, Sect. 2]). Let (M, 7) be a tracial von Neumann algebra,
p,q € P(M) projections, and B < pMp, N < gMq. Then the following are equiv-
alent:

(i) N Am B;
(ii) there is a net (up)ner in U(N) with |Ep(zuny)|l2 — 0 for all z,y € M;
(iii) for any subgroup G < U(N) with N = W*(G) there is a net (up)ner in G
satisfying || Eg(zuny)|2 — 0 for all x,y € M;
(iv) any P-Q-subbimodule K of pL*(M)q satisfies dim(Kg) = +o0.



ON THE STRUCTURE OF GRAPH PRODUCT VON NEUMANN ALGEBRAS 735

In this section we completely characterize when two subalgebras correspond-
ing to induced subgraphs do not intertwine into each other (partial results were
previously obtained in [CF17, Lem. 2.27]). We will say “N is diffuse relative to B
in M” to mean N Aj; B. This is motivated by the case B = C, since N A, C
means precisely that NV is diffuse. This also provides intuition for our main result
in this section, since in our setting N being diffuse relative to B in M will be
equivalent to a combination of conditions which either require that a vertex alge-
bra is diffuse or a lack of edges between subgraphs (i.e. some “free independence
outside the subgraph”) in a manner analogous to Theorem 0.5(1).

Proposition 4.2. Suppose that G = (V,€) is a graph, and for each v € V let
(My, 1) be a tracial von Neumann algebra such that M, contains a trace zero uni-
tary. Let (M,T) = c%govev(Mv, Tv). For Vi, Vo CV, the following are equivalent:
(i) My, is diffuse relative to My, in M ;
(il) My, is diffuse relative to My, v, in M;
(iil) at least one of the following holds:
(a) there are v € Vi \ Vo and v’ € Vi NVa with v £ v'; or
(b) My,\v, is diffuse;
(iv) at least one of the following holds:
(a) there are v € V1 \ Va and v’ € Vi with v # v and v % v'; or
(b) there is a v € Vi \ Va for which M, is diffuse.
Proof. (i) = (ii). Using the characterization from Theorem 4.1(ii), this follows
from the identity F4 = FE4 o Ep for von Neumann subalgebras A C B C M
and the fact that the trace-preserving conditional expectation is contractive with
respect to the L? norm.
(ii) = (iii). We proceed by contrapositive and assume (iiia) and (iiib) are false. It
follows that
MV1 = MV1\V2 ® MV1ﬂVza

and My,\y, is not diffuse. Let 2 € My,\y, be a central projection such that
zMy,\v, = My(C) for some d € N. Suppose

w=(ui;)f ;=) € Ma(My,nv,) = (2 ® 1) My,

is a unitary. Observe that

d d
1 1
1= > uiglis = p > By, o, (eiiuiesi) |3

ij=1 ij=1



736 I. CHARLESWORTH ET AL.

Hence, (2®1) My, (2®1) 2e1)M(z01) Mvinvy, and consequently My, = My, qv,.

(iii) = (iv). We again proceed by contrapositive and assume (iva) and (ivb) are
false. Then every v € V; \ V5 must be adjacent to every v’ € Vi, so in particular
(iila) fails. Moreover, any two vertices in V; \ Va2 are adjacent, that is, V4 \ V;
is a complete graph. Since (ivb) fails, we know that for every v € V; \ V2 there
is a minimal projection p, in M,. In particular, p = ®U€V1\V2 Py is a minimal
projection in My, \v,, and thus My,\y, is not diffuse and hence (iiib) fails.

(iva) = (i). Let v, v’ be as in (iva). Let ug be a trace zero unitary in M, and let
uy be a trace zero unitary in M,. We claim that for x,y € M, we have

(4.1) | Eary, [#(uour) gl |2 = 0.

jin
It suffices to show this for a set of z and y that have dense linear span. Hence, by
Lemma 3.14, we may assume that © = x1- -z, with x; € M,, for a G-reduced
word w; - - - Wy, and with ¢(z;) = 0 (in the case that x = 1, we take w to be the
empty word). Similarly, assume that y = y; -y, with p(y;) = 0 and y; € Mg,
with @ a reduced word.

By Lemma 3.12, w is equivalent to w™® - w® . w3 where w™) is a G-reduced
word in V3, w(® is G-reduced word in {v,v'}, and w® is a G-reduced word relative
to (Va,{v,v'}). By swapping the z; according to the swaps to transform w into
w® - w® 1w we then obtain a factorization z = (M z@zG) where () is a
product of centered elements indexed by the word w(). Similarly, @ is equivalent
to w™ - w® - w3, where (" is a reduced word in {v,v'}, @® is a reduced word
in Vo, and @ is G-reduced relative to ({v,v'},Va). Write y = y(My2y®) in an
analogous way.

Since (") and y®) are in My,, we have

Eny, [.73(1)1‘(2)$(3) (UOU1)ky(1)y(2)y(3)] - JU(l)EMV2 [$(2)$(3) (UQU1)ky(1)y(2)]y(3).

Next, by Lemma 3.17, since w® is (Va, {v,v'})-reduced and @ is ({v,v'}, Va)-
reduced, this equals

:,j(l)EMV2 [x(2)x(3)(uOul)ky(l)y@)]y@) — @(x(Q)y(Q))x(l)EMU [x(S)(uOul)ky(l)]y(3)7

where U is the set of vertices in Vo N {v, v’} that are adjacent to all the letters in
w®). Hence, in order to prove (4.1) and hence finish (iva) = (i), it suffices to show
that

lim || Eag, [ (ugur)*yM]||2 = 0.

k—o0
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Since v’ is not in Vz, then U must equal @ or {v}. Hence, since ¢(z®) (ugui )Fy™1)) =
@ o By, [24) (ugup )Py(M], it suffices to show that

lim ||Ear, [2%) (ugur )y M2 = 0.
k— oo

However, for such ) and (") the above sequence is zero for sufficiently large k
by free independence (see also [GEPT25, Proof of Prop. 3.16]).

(ivb) = (i). Suppose that M, is diffuse for some v € Vi \ V4, and thus there exists
a Haar unitary u € M, (i.e. a unitary so that 7(u*) = 0 for any k € Z \ {0}). We
claim that for x,y € M, we have

(42) lim [ By, [uy] 2 = 0.

As in the previous case, it suffices to consider x and y which are products of
centered elements according to words w and @ respectively. And again, we take a
decomposition w ~ w™® -w® 1w as in Lemma 3.12 with respect to (Va, {v}) and
a decomposition @ ~ @) -©3 - @) with respect to ({v}, Va). Let z = Mz ()
and y = y(My@y®) be the resulting factorizations of z and y. Then

Ea, 102 @ 2@y Oy@y®) = 30 By [ 5@y 0y @)y @
— W (2 @) o () gy (1) (3

where the second equality follows from Lemma 3.17. Here, the set U is empty
since {v} N Vy, = @. Because u is a Haar unitary, we have u* — 0 weakly as
k — oo and thus op(2®)uFy™)) — 0. This completes the proof of (4.2) and hence

the proposition. O

§5. Bimodules from subgraphs and their fusion rules

Let U C W. We want to understand the basic construction of My inside Myy .
Hence we want to understand L?(My, o) as an Myy—Myy-bimodule. More gen-
erally, for V1, Vo C W, we want to understand My as an My, —My,-bimodule. We
first recall a few facts about standard forms and Connes fusion of bimodules.

Given a statial von Neumann algebra (M, ¢), recall that L?(M, ) is an M-
M-bimodule with actions

T-§y= x(']say*']ga)£7

where J,, is the modular conjugation operator. We let M 2 z +— & € L*(M, )
denote the embedding determined by (Z,79), = ¢(y*x). We will say = € M is
p-analytic if the modular automorphism group R > ¢t — o (x) has an extension
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to an entire function (such elements are dense by [Tak03, Lem. VIII.2.3]). In this
case, for z € C we write o,(z) for the image of z under this (necessarily unique)
entire extension. It follows that § - = = (yo_;/2 (x))” whenever z is @-analytic and
ye M.

We will also need to consider the Connes fusion of bimodules over o-finite von
Neumann algebras. We refer the reader to [OOT17, Sect. 2] for general details, but
for our purposes it suffices to consider the following special case. Let (M, ) and
(N,%) be statial von Neumann algebras, and let B C M be a von Neumann
subalgebra admitting a @-preserving conditional expectation Eg: M — B. If H is
a B—N-bimodule, then the M—N-bimodule

L2(M,<P)%>H

is formed by separation and completion of the algebraic tensor product MoH
with respect to

(e gen = (Ep(yz)-&n).
We will denote the equivalence class of & ® £ by & ®p . We also note that

L*(M,¢) @p L*(B,¢|p) = L*(B, ¢|p) ®p L*(M, ) = L*(M, ¢).

That is, L?(B, ¢|g) is an identity element with respect to the operation ®z.

Let us now return to the context of graph products over G = (V,€). For
Vi, Vo C V, we will build a basis over My,—My, by using orthonormal bases for
L*(M,,¢,)© C1. Since we are not assuming that our von Neumann algebras have
separable predual, we will not a priori be able to build an orthonormal basis for
LQ(MU, wy) O Ci using elements of M,. For this reason, we will need to extend
some of the results of Section 3.3 to vectors in L*(M,, ¢,) © C1.

Lemma 5.1. Let G = (V, &) be a graph, let {(M,,¢,) : v € V} be a family of
statial von Neumann algebras, and let (M, @) = OXOUGQ(MU, ©y).

(i) Let w = wy---wy be a G-reduced word. Then there is a unique continuous
multilinear map

4
m: [[(L*(M,,¢,) © CL) — L*(M,¢) © C1,
i=1

such that m(xy,...,x¢) = (v1---x¢) when x; € My, Nker(py, ). Moreover,
¢

Im(&s,- .. &)l = Hnajnw §= (&, &) € [ [(L*(Mu,, pu,) © CI).

j=1
We denote m(&1,...,&) =& -+ &
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(ii) Let w = wy -+ wy, and W = Wy - - Wy, be G-reduced words. Set &€ = & -+ &y,
and € = & ---&,, where & € LQ(Mu,j,gowj) eCl,j=1,...,m, and Ej €
ker LQ(M@,@@) eCi, j=1,...,n. Ifw, w are not equivalent, then &, é are
orthogonal. If w and w are equivalent, then

m

<£7 g>tp = H <£j7 ga(j)>80a

Jj=1

where the permutation o: [m] — [m] is the G-monotone matching from w to
w guaranteed by Lemma 3.6.

Proof. (i). The uniqueness of m follows from the density of M, N ker(y,) in
L*(My, ¢w) © Cl. By Lemma 3.15, as well as the density of M, N ker(y,) in
L?(My, ¢u) © C1, it follows that there is a unique isometry

4
Vi Q(L* (M, pu,) ©Cl) = L (M, p) & Cl

j=1

[

such that V(1 ® - - @ &) = (a1 - - - l‘g)A. Setting m(&1,...,&) =V @ ®&)
completes the proof.

(ii). Observe that if
§e m( [T, 0 ker(sawj))) and € m< [Tz, n ker(%j)))
j=1 i

then the claim follows from Lemma 3.15. The norm equality in (i) implies these
sets are dense in

m<jf[1(L2(ij, Pu;) © <ci)> and m(ﬁ(ﬁ(Mmi, ©0z,) © Ci)) ,

i=1
respectively, which completes the proof. O

Remark 5.2. Using Haagerup’s theory of non-commutative LP-spaces ([Haa79]),
one can also make sense of m(&y,...,&,) = & - &, as a product of operators
affiliated with the continuous core of M. The fact that such a product remains
in L?(M, ) is a consequence of their relations via ¢, which is determined by the
graph product structure of M.

We will first analyze cyclic submodules generated by products over relatively
G-reduced words.
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Lemma 5.3. Let G = (V, &) be a graph, let {( v,cpv) :v € V} be a family of
statial von Neumann algebras, let (M, p) c%éov g My, @), and let Vi, Vo C V.
For w =wy -+ wy, a G-reduced word relative to (V1,V2), let

§=E1&n,

where & € L*(My,, ¢uw,;) © C1 with ||&]|, = 1 for j = 1,...,n. (In the case that
w s empty, we take by convention £ = i) Let He be the My, —My,-subbimodule
of L*(M, @) generated by & and denote

U={veVinVa:iv~uw;, j=1,...,n}.

(i) There is a unique My, -My,-bimodular unitary He — L*(Mv,,¢v,) @y
L?(My,, pv,) which sends & to 1@y, 1.
(i) If @ = @y W is another G-reduced word relative to (Vi,Vs) and & =

DY m ) ) s ~ n ) -
&1+ &m 15 a corresponding vector, then He L H; unless w and w are equiva

lent and (€, &), # 0.
Proof. (i). It suffices to show that
(5.1) (a-(1@my 1) -0, 1@umy 1) = (a-& - &n b8 En)e,

for all @ € My, and all p-analytic b € My,. By Lemma 5.1 for fixed a, b, the right-
hand side is a continuous function of (&1,...,&,) € [[/2) (L*(Mu,, u;) © Cl).
Thus, by density of M,, N ker(y,) in L?*(M,, ¢,) © C1, we may reduce to the
case, where {; = x; where z; € M,,; Nker(py,) and ¢(z}z;) = 1. In this case, set
x =z ---x; so that £ = 2.

The left-hand side of (5.1) is

(@@, (0-i/2(0)) 1 @ty 1) = @(Bagy (a)—i/2(b)),

and the right-hand side of (5.1) is

(@z0_ipp(B)) s B)p = (a*a20_i/2(8)) = @(Bany, (2 a2)7_i (D).
Thus Lemma 3.17 implies (5.1).
(ii). It is enough to show that for all a € My, and gp-analytic b € My, that
(5.2) (a-£-b,6),=0,

if w, w are not equivalent, and that

(@€ 5,8 = (&) p0(En, (a)o_; (b))
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if w, w are equivalent. As in (i) we may reduce to the case that £ = Z, E= ;E:, where
T =21 Ty, T =Ty T, and x5 € My, Nker(py,;) and T; € Mg, Nker(pg,).
We then have

(a7 b3 = p((&) a20_i/2(8)) = ¢(Easy, () az)o_i/2(b)),
so that our desired conclusion follows from Lemma 3.17. O

Our main result in this section provides a classification of L?(M) as a bimodule
over two subalgebras coming from induced subgraphs. This also yields the first part
of Theorem 0.4.

Theorem 5.4. Let G = (V,€) be a graph, let {(M,,p,) : v € V} be a family of
statial von Neumann algebras, let (M, ) = oXoveg(Mv,cpv), and let V1,Vo C V.
For each U C V1 NVa, denote by Wg(V1, Va,U) the set of G-reduced words relative
to (Vi,Va) of the form wy - - - wy satisfyingU = {v e ViNnVa:v ~w;, j=1,...,¢}.

Set
¢

kg(Vi, Vo, U) = Y (dim(L*(Mu,, ou,)) — 1).
wi-weE€ g=1
Wg (V1,V2,U)

Then one has

My, L2(M7 QO)MVQ = @ (le L2(MV1750V1)
UCcvinv,

(5.3) ® Lz(Mvz,SDVQ)Mvz)@kg(Vl’Vz’U)~

My
Proof. For each v € V, fix an orthonormal basis B, for L?(M,,¢,) © C. By
Lemma 5.3, the My, —My,-bimodules

{H§:€:fl-~~fg, W= 1w Wy EWg(Vl,VQ,U), fj EBwj fOI‘j:L...,Z}

are mutually orthogonal and satisfy He & L?(My,, pv,) @y, L2 (My,, v, ), where
U={veVinV:v~w;, j=1...,0} For each U C V4 N Vs, the num-
ber of copies of ary, L*(My,, ov;) @y LP(Myy, 0v,)ay, s given by (5.3), since
dim(L?(M,, ¢,) © Cl) = dim(L?(M,, ¢,)) — 1.

The proof of the direct sum decomposition will be complete once we verify
that the bimodules H¢ span a dense subset of L?(M,¢). From Lemma 3.14, we
know that L?(M, ) is densely spanned by &; - - - & for & € By, for reduced words
wy -+ -wyp. By Lemma 3.12, an arbitrary reduced word w is equivalent to a word
of the form v - w’ - u where v is a reduced word in V7, u is a reduced word in Vs,
and w’ is reduced relative to (V4,V2). This shows that the span of the subspaces



742 I. CHARLESWORTH ET AL.

He¢ contains all & ---& for z; € Bwj for reduced words w; ---wy, and thus the
bimodules H¢ densely span L?(M, ). O

For future applications to relative amenability, we determine the fusion rules
for these bimodules in the following proposition. This also gives the rest of Theo-
rem 0.4.

Proposition 5.5. For V;,Vo CV and U C Vi N Va, denote

A (Vi, Vo) =mry, L*(Mvy, ¢v,) & L*(My,, ¢v,) My, »
U

and denote by Go the subgraph of G induced by Vo. Then we have the following
fusion rules: for Uy C Vi NV and Us C Vo N Vs,

A, (Vi Vo) @ury, M, (Va, Va) = @D Ay (Vi V) PR (U U2 W),
WCU1NU2

Proof. First, observe that

jfUl (Vla ‘/2) M® %UQ (‘/27 V3)
\%

2

- L2(M. L2(M )
(le (My,, QOV1) ]\/%1 ( V2730V2) My,

® (MVQLg(MVQNPvz))M® L?(Myy, vy ) iy,
Uz

MV2

= (MVILQ(MVUQDV&) ® Lz(MVwSDVQ)) @ L2(MV3790V3)MV3'
J\JU1 MU2

Then
My, L2(MV2a§0V2)MU2 = @ (MU1 L2(MU13Q0U1)
WCU1NU3
®kg, (U1,U2,W)
& L2(MU27<PU2)MU2) ’ :
Mw

Applying L*(Mv, )®ns,,, on the left and ®a,,, L?(My,) on the right, we get
K, (V1, V) @y, 0, (Va, Vs)

= @ (MVILQ(MV17()D) ]\39 L2<MV2a90)MV2
WCU1NU2 w

= D (4,1, =

WCUNU>

)EBng(UhUmW)
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As a sample application, we characterize weak coarseness of subalgebras cor-
responding to induced subgraphs. This characterization of coarseness is stated in
terms of amenability of certain subalgebras, which we provide a complete charac-
terization of in Proposition 6.3.

Theorem 5.6. Let G = (V, &) be a graph, let {(My,¢,) : v € V} be a fam-
ily of statial von Neumann algebras, and let (M, @) = O%OUEV(MU, ©y). Assume
dim(M,) > 2 for allv € V. For Vo CV, L*(M,¢)© L*(My,, pv,) is weakly coarse
as an My, —My;,-bimodule if and only if Mp(,)nv, is amenable for all v & Vp.

Proof. First, suppose that Mp(,)ny, is amenable for all v ¢ V5. By Theorem 5.4,
My, L?(M, ©)my, s a direct sum of bimodules of the form L?(Mvy,, ov;,) @ur,
L*(My,,¢v,), where U = {v € Vg : v ~wj, j=1,...,¢} for some word wy - - wy
that is G-reduced relative to (Vp, Vo). To obtain the orthogonal complement of
L?(My,, v, ), one sums over the non-empty words of this form with the appro-
priate multiplicity. Note that U C B(wq) N Vo, and wy € Vo since wy -+ - wy is
non-empty and G-reduced relative to (Vp, Vp). Thus Mp(y,)ny, is amenable by
assumption, and since there is a faithful normal conditional expectation from this
algebra on My, we also have that My is amenable. Thus,

o L2 (Mu, ou) vy < ay LP(My, ou) @ L (My, ou) a,

by [BMO20, Cor. A.2] (see also [Con76] for the separable predual case). Now we
apply sy, L?(My,, ov,)®ar, on the left and apply ®ar, L (My,, ©v,)ary, on the
right to obtain

My, L2 (Myy, 0v,) @nry LA (Myy, vy, =< v, L (Myy, o) @ L2 (My,, 0v,) My, »

where we have used the fact that weak containment is preserved under Connes
fusion [Pop86, Prop. 2.2.1]. Taking the direct sum over all such non-empty words

wy -+ - wy yields that L2(M, p) © L?(My,pv,) is weakly coarse over My, .
Conversely, suppose there exists some vertex v ¢ Vg such that Mp(.,)ny, is
non-amenable. For ease of notation, denote V; = B(v) N Vy. Fix z € M, with
¢u(x) = 0 and @, (z*z) = 1. Let H; be the My,—My,-subbimodule of L?(M, )
generated by #, which we note is in L2(M, ¢)©L?(My,, pv, ) since v ¢ Vy. Applying
Lemma 5.3(i) to Vo := V] and w = v (so that U = Vj), we have that the My, —
My,-bimodule generated by & is isomorphic to L*(My, , ¢v, ) @ury, L*(My,, pv, ) =
L?(My,, pv,). In particular, since My, is not amenable, this My,—My,-bimodule
is not weakly coarse. Since it is an My, —My,-subbimodule of Hy, it follows that
My, (Hz)ary, is not weakly coarse, and in turn ar, (Hz)ary, is not weakly coarse.
O
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§6. Relative amenability via bimodules

A useful implication of relative amenability is the following. By [BMO20, Sect. 2.2],
we can describe the standard form of (M, eg) via the isomorphism

L*((M,ep)) = L*(M) @5 L*(M),

as M—M-bimodules. Consequently, [BMO20, Cor. A.2] tells us that A being
amenable relative to B inside M implies that L?(M) is weakly contained in
L2?({(M,ep)) as A-A-bimodules. Note that — due to the conditional expectation
being required to be normal on M — the converse is not a priori true. However,
in our setting M will be a graph product and A, B will be subalgebras corre-
sponding to induced subgraphs. In this case, the detailed analysis of the previous
section will lead us to a complete classification of when L?(M) is weakly contained
in L2((M,ep)). From this classification, we will be able to directly argue that if
L?(M) is not weakly contained in L?((M,eg)), then A must be amenable relative
to B inside M.

As the fusion rules provided in Proposition 5.5 decompose relative tensor
products as direct sums, we highlight the fact that, in the factorial case, bimodules
weakly contained in direct sums are necessarily weakly contained in one of the
summands. Indeed, suppose that M is factor, and for a faithful normal state
@ on M let J, be the associated modular conjugation on L?(M, ). Then the
induced map 7: M ®mpax M°P — B(L%*(M, 1)) satisfying m(a ® b°P) = aJ,b*J,
has trivial commutant (7(M ®@max MP) = M' N (J,MJ,) = M N M’) and is
thus irreducible [Tak02, Prop. 1.9.20]. Hence, the state on M ®,.x M°P given by
x+— (r(x)1,1) is an extreme point of the state space [Tak02, Thm. 1.9.22], and so
a minor modification of the proof of [Fel60, Thm. 1.5] gives the following.

Lemma 6.1. Let M be a factor and ¢ a faithful normal state on M. Suppose
Hi, ..., Hy are M—M-bimodules with

L*(M,0) <H1® -+ &My

as M —M -bimodules. Then there is a 1 < i <n so that L2(M, ©) < H; as M-M -
bimodules.

It will also be helpful to prove the following general lemma, which will ulti-
mately reduce our work of checking when one subalgebra corresponding to an
induced subgraph is amenable relative to another, to the case of smaller subgraphs.

Lemma 6.2. Let G = (V, &) be a graph, let {(M,,vy) : v € V} be a family of sta-
tial von Neumann algebras, let (M, @) = o%%oveg(Mv, ¥u), and let V1, Vo CV. Sup-
pose that nr, L*(M, )y, is weakly contained in ar, L* (M, ) @ry, L (M, ©)aty, -
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(i) My, is amenable for all Vo CVy \ Va.
(ii) If My, is factor for Vo C Vq, then there exists U C Vo N Va (possibly empty)

so that My, is amenable relative to My .

Proof. We first make a preliminary observation. For Vy C V and A C Vo N Vs, we
adopt the notation from Proposition 5.5 and denote

%A(VO,%) =My, LQ(MVO7QOVO) 1\(/? Lz(MVmSDVz)MVQ'
A

By Theorem 5.4, we have

i, PO o), = @ Aa(, 1) 0D ¢ By A (Vo, V)
ACVoNVa ACTIAV)

Therefore, using Proposition 5.5 we have
2 2 @
o L2 0) @ LMoy, € @D (HalVo,Va) © Hip(Va, Vo))
My, A,BCVoNVs My,
- @ %U(VO7 ‘/0)6900

UCVpnNVa

By assumption, ar, L?(M, ©)ary, is weakly contained in leLQ(M, ®) @y,
L*(M, )y, - If Vo C Vi, then by restriction we have that ar, L*(M, ¢)ar, is
weakly contained in s, L2(M, ) @y, L*(M, ) My, and so the above shows
that

(6.1) my, LM @)ary, < @D A (Vo, Vo).
UCVonVa

Now, if Vi C Vi \ Va, then the only term in the above direct sum corresponds
to U = @, which has My = C. Thus the above gives

L2(Ma @)MVO = My, LZ(MVoa C)OV()) ® LQ(MV(N @VU)MVO
= MvoL2(MV07 QOVO) ® LQ(MVO’ QDVO)MVO ’

MVO

Note that the bimodule in the last expression is equivalent to the standard form of
B(L?*(My,, pv,)) with respect to its trace. Hence, My, is amenable by [BMO20,
Cor. A.2] (see also [Con76] in the case of separable preduals), which proves (i).

To prove (ii), suppose My, is a factor for Vy C V4. Since G is a finite graph,
the direct sum over U C V5 NV, in (6.1) only has finitely many terms, and hence
Lemma, 6.1 implies

MVOL2(M7 SO)J\/[VO = MVOL2(MV0790V0) J\(/? Lz(MVov‘pVo)Mvo7
U
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for some U C Vo N Va. By [BMO20, Sect. 2.2], the latter bimodule is isomorphic to
the standard form for (My,,epr, ). Thus [BMO20, Cor. A.2] yields a conditional
expectation ®: (My,, en,, ) — My, so that My, is amenable relative to My. O

§6.1. Proofs of Theorems 0.1 and 0.3

Let us first reduce Theorem 0.1 to Theorem 0.3. Comparing the two theorems, this
amounts to showing that if (M;, ;) is a tracial von Neumann algebra admitting a
trace zero unitary for ¢ = 1,2, then the following are equivalent:

(I) dim(M;) = dim(Msz) = 2;
(IT) M * My is amenable;
(ITII) M; * My is amenable relative to Mj.

The equivalence of the first two items is well known (see, for example, [Chi73,
Thm. 2]), and that (II) implies (III) follows from the definition. So now suppose
(I1I) holds. Applying Proposition 4.2 to the graph G = ({1,2}, @) with V4 = {1, 2}
and V5 = {1}, we see that My, = M; x M, is diffuse relative to My, = M; inside
My x M. That is, My *x My does not intertwine into M; inside M7 x M5, and thus
[Ioalb, Cor. 2.12] implies (II).

We now prove Theorem 0.3. First, assume that Theorem 0.3(1) and (2) hold.
Let Py,..., P, be the pairs of vertices {v,w}, where v € V3 \ Vo, w € V;, and
v and w are not adjacent. Denote @Q; = Vi3 \ (Vo UP, U ---UP,) and Qo =
VinVe\ (PLU---UP,). By (2b), all the vertices in each P; are connected to all
other vertices in Q1 U Q2. Moreover, each v € @; is connected to all vertices in V3
by definition of Q). Thus,

W = (@), Mr,) @ Mo, & M,
and o
MVlﬂV2 = <®j—1 MPJ-OV2> RCR® MQQ.

By assumption (2a), Mp, is amenable relative to Mp,ny, in Mp, for each j =
1,...,n. By assumption (1) and [Con76, Thm. 6], M¢, is amenable. Thus Lemma
C.3 implies that My, is amenable relative to My, vy, (inside My, ). By Lemma C.1,
this in turn implies that My, is amenable relative to My, in M.

Conversely, suppose that My, is amenable relative to My, inside M. Recall
from the discussion at the beginning of Section 6 that this implies L2(M, ) is
weakly contained in L*(M, @) @, L*(M, ¢) as My~M;-bimodules. Thus for each
v € V1 \ Vo we can apply Lemma 6.2 to Vj = {v} to obtain that M, is amenable.
This gives Theorem 0.3(1). To prove Theorem 0.3(2), let v € V3 \ V5 and w € V;



ON THE STRUCTURE OF GRAPH PRODUCT VON NEUMANN ALGEBRAS 747

with w # v and assume v and w are not adjacent. We will show that (2a) and (2b)
must occur.

For (2a), first note that if dim(M,) = dim(M,) = 2, then by [Dyk93,
Thm. 1.1] we have that My, ., = M, * M, is amenable. In particular, My, ., is
also amenable relative to M,,, proving (2a) in this case. If max(dim(M,, M,,)) > 3,
then [Ued11l, Thm. 4.1 and Rem. 4.2] implies that My, .., = M, * M, is a factor,
and thus Lemma 6.2 applied to Vy = {v, w} yields that M, ., is amenable relative
to My for some U C VyNVs. Noting that w ¢ Vs forces U = &, we see that in this
case My, 1 is amenable. If w € V3, then either U = {w} or U = @, but in both
cases one has that My, . is amenable relative to M,,. We have thus established
(2a).

For (2b), consider another vertex v € Vi \ {v,w}, and suppose towards a
contradiction that one of v or w is not adjacent to u. Note that this implies
the subgraph Gy induced by Vo = {v,w,u} is join-irreducible, and hence My,
is a factor by Theorem 2.4. Consequently, Lemma 6.2 implies My; is amenable
relative to My for some U C Vo N Va. Since U C {w,u} C Vj, it follows that My,
is amenable relative to My, 3. We will show this is a contradiction by way of
Lemma C.2 using the observation that

MVU = M{v,u} *M, M{w,u}v

where the amalgamated free product is taken with respect to the p-preserving
conditional expectations. Let ug and us be state zero unitaries in M and Mfv,
respectively, so that Fjr, [ug] = @y[ug] = 0 and similarly Epy, [us] = 0. Also let z
be a state zero unitary in M?«. If v is not adjacent to u, then u; = zugx™* satisfies

EMu [uﬂ = acEMu [’U,Q].’I?* = 0,
and by free independence,
B, [ugur] = oo (ug)zes (uo)z™ = 0.

Consequently, Lemma C.2 gives the contradiction that My, is not amenable rel-
ative to My, ). If instead w is not adjacent to u, then we define u; = zugz*
and argue as above to get Ey, [u1] = Ep, [udui] = 0, which once again gives a
contradiction via Lemma C.2. Thus we must have that both v and w are adjacent
to u, establishing (2b).

§6.2. Amenability by way of relative amenability

In this section we characterize when a graph product (M, p) = c%éoveg(Mv, ©u)
is amenable by specializing to the case where V; = V and Vo = &. The char-
acterization can be read off from Theorem 0.3, but in fact, we claim that this
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characterization holds even without the assumption that Mf> contains a state

zero unitary.

Proposition 6.3. Let G = (V, &) be a graph, let {(M,,p,) : v € V} be a fam-
ily of statial von Neumann algebras, and let (M, ) = c%%oveg(Mv,goy). Assume
dim M,, > 2. Then M is amenable if and only if the following conditions hold:

(1) For eachv €V, M, is amenable.
(2) If v and w are not adjacent in G, then dim(M,) = dim(M,,) = 2 and v and
w are adjacent to all the other vertices.

Proof. First, suppose that (1) and (2) hold. Let G = G; + --- + G,, be the graph
join decomposition of G. We claim that each G; is either a single vertex or a pair
of non-adjacent vertices. Indeed, if v is a vertex in G; that is adjacent to all other
vertices in G;, then it is adjacent to all vertices in G and hence G; = ({v}, @).
Otherwise, there exists another vertex w in G; that is not adjacent to v. But then
(2) implies G; = ({v, w}, @). Writing (N;,;) =<3

(M,<p) = (Nlawl) ®®(Nn»wn)

If G; has one vertex, then (IN;,1;) is amenable by (1). If G, has two vertices, then
(Nj, ;) = (My, o) *(My, ¢u), where dim(M,,) = dim(M,,) = 2 by (2), and hence
is amenable by [Chi73, Thm. 2] and [Ued11, Rem. 4.2]. Thus, M is amenable as a
tensor product of amenable von Neumann algebras.

(M, p,), we have

Conversely, suppose that M is amenable. Recall that for any U C V), there is a
faithful normal conditional expectation from M onto My, so that the amenability
of M implies the amenability of Mg . In particular, (1) holds since My, = M,
is amenable for each v € V. Next, consider two non-adjacent vertices v and w.
Then My, .y = M, * M, is amenable, and therefore by [Chi73, Thm. 2], [Uedl11,
Rem. 4.2] one must have dim(M,) = dim(M,,) = 2. Suppose towards a contradic-
tion that there is some vertex u € V \ {v,w} that is, without loss generality, not
adjacent to w. Then My, , ) is the free product of M,V M, and M,, with respect
to the appropriate states. Since dim(M, V M,) > 3 and dim(My,) > 2, My 4w} 18
not amenable by [Chi73, Thm. 2] and [Uedll, Rem. 4.2], a contradiction. There-
fore, (2) holds. O

Appendix A. Unitaries with state zero

For many of our results, it will be convenient to assume that the statial von Neu-
mann algebras attached to the vertices have a unitary in the centralizer algebra
with state zero. We note that a related assumption has appeared in [Bar95, Thm. 2
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and Lem. 3] which provides sufficient conditions for a free product of statial von
Neumann algebras to be a (possibly type III) factor. In this section we give a com-
plete characterization of when this occurs and then explore this characterization in
a few examples. This characterization is likely folklore, but as we are unable to find
a citation in the literature we feel that it is useful to include it for completeness.
We start with the tracial case, for which we will need the following two lemmas.

Lemma A.1. For a tracial von Neumann algebra (M, ), there exists a uw € U(M)
with 7(u) = inf |[7(U(M))].

Proof. Write M = My & M, with M; atomic and M diffuse. Set K; = 7(U(M;))
for ¢ = 1,2. Since M; is atomic and finite, we have that U(M;) is SOT-compact,
so K1 = 7(U(My)) is compact. Since My is diffuse, there is an embedding of
L*>([0,1]) into Ms which pulls back 7|a, to 7(1a,) times integration against
Lebesgue measure. This implies that Ko = 7(U(M2)) = {z € C: |2| < 7(1m)},
so K5 is also compact. Thus

TUM))={z+w:z€ Ky, we Ky}

is the image of the compact space K; x K3 under a continuous map, and so 7(U(M))
is compact. The lemma thus follows from continuity of the absolute value map. [

Lemma A.2. Suppose we have tracial von Neumann algebras (A;, )7, and we
equip A=A, ®--- P A, with the trace

T((ai)iz) = Z@m(ai),

where ag > ag > -+ > ay, > 0 and Y., a; = 1. Denote s = inf |11 (U(A1))].
Then |T(U(A))| = [(ea(1+s) —1)V0,1].

Proof. Let u € U(A) and denote u = uj + uy where u; € Ay and us € @i22 A;.
Then

()| = [r(u1)] = |7(u2)|

>a1s— (e +- - +ag) =a1s— (1 —ay).

Hence we have |7(u)| > (a1(s+1) —1) V0 and |[7(U(A))| C [(e1(s+1)—1)V0,1].

We prove the reverse inclusion by induction on n. Since U(A) = exp(ids.a.),
where Ag,. are the self-adjoint elements of A, is SOT-connected, we have that
|7(U(A))]| is connected. The case n = 1 thus follows by connectedness of |7(U(A))]
and Lemma A.1. We now assume the result true for n — 1 with n > 2. We split
into cases, where in the first case we assume o3 > 1/2 and thus 1;‘% < 1. Let
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up € U(Ay) with 7 (uq) = sV (1;1“1 ), which exists since |71 (U (A1))] is connected

and contains 1. Let u = (u1, —1,...,—1) € U(A) so that

170[1

T(u):al(s\/( ))7(170[1):(011(14*8)*1)\/0.

%
Using connectedness again, the claim follows. In the second case we assume oy <
1/2, which we note implies (a1 (1 +s) —1) V0 = 0. Equip €D,>, A; with the trace
T'(a) = 171(117'(0 @ a) and denote s’ := inf |72 (U(As2))|. Note that our inductive

hypothesis implies

T<u(@Ai>>’ - [(1 fza1(1+s’) - 1) v0,1]

i>2

Observe that

Qa9 20[2 1 < 20&1 1 a7

1+s)-1< =
1—a1( +S) —1l- e 11— 11—

<1,

with the last inequality following as ay < 1/2. Thus we can find v € U(D;>, 4i)
with 7/(v) = =%, Then 7(1 ® v) = 0. O

170(1 :

We now obtain a complete characterization of when a statial von Neumann
algebra has a state zero unitary in its centralizer.

Corollary A.3. Let (M, p) be a statial von Neumann algebra.

(i) Suppose ¢ is a trace and that there exists a mon-zero minimal projection
p € M with p(p) > 1/2. Then p is central and ¢(u) # 0 for every u € U(M).
(ii) If ¢ is a trace, then there is a v € U(M) with ¢(u) = 0 if and only if
o(p) < 1/2 for every minimal projection p € M.
(iii) There exists u € U(M¥) with p(u) = 0 if and only if p(p) < 1/2 for every
minimal projection p € M¥.

Proof. (i). Suppose that M has a minimal non-zero projection p with ¢(p) > 1/2.
Let z be the central support of p in M. By [KR97, Prop. 6.4.3 and Cor. 6.5.3], we
have that Mz is isomorphic to M (C) for some k. Since p is a minimal projection
and ¢ is a trace, it follows that ¢(2) = ke(p). Since p(p) > 1/2, this forces k = 1.
Thus p = z is central.

Since Cp is a central summand of M, using the notation of Lemma A.2 we
have ay > 1/2 and s = 1. Thus this lemma implies |p(u)| > a1 (1 4+ s) —1 > 0 for
all w e U(M).
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(ii). The forward implication follows from (i). For the reverse implication, suppose
that M does not have a unitary of trace zero. By decomposing the center into
diffuse and atomic parts, we may write

M = My @@Mi,
iel

where

e [ is a countable set (potentially empty),
e each M; is a non-zero finite factor,

e My is either 0 or has diffuse center.

For j € TU{0} let o := ¢(1y,) and 7; := |57, (note that g = 0 if My = {0}).
Since ), a; < 1 we have that either I is finite or a; — 0asi — oo (i.e. as i escapes
all finite subsets of I). Thus there is a jo € JL{0} with o, = max{c; : 4 € TL{0}}.
Denote s; = inf |7;(U(M;))] for each j € I L {0}. By Lemma A.2, our hypothesis
implies that
ajo(l + Sjo) > 1.

This inequality implies that s;, # 0. On other hand, if My # 0, then so = 0 and
for ¢ € I if M; is a factor of dimension at least 2, then s; = 0 as well. So necessarily
M;, = C1 and sj, = 1. But then the above inequality implies a;, > 1/2 and this
proves that 1, € M is a non-zero minimal projection with p(1ar, ) = aj, > 1/2.

(iii). This follows from (ii), since ¢|pre is a trace. O
We now list a few examples of algebras with state zero unitaries in the cen-

tralizer. Let us first consider the matrix algebra case. Suppose that ¢ is a state on
M, (C). Then we can write

p(x) = tr(za),

for some a € M, (C), where tr is the normalized trace on M, (C). Let

k
a = Z)\jl{AJ,}(a)
j=1

be the spectral decomposition of a with A; # A; for all i # j. Set p; = 1y, (a).
Then p; is central in M¥ and M¥p; = M,, tr(pj)((C). Suppose e € M? is a minimal
projection. Then we can find a unique j so that ep; = e. In this case,

ple) = pleny) = tra(epsa) = Atra(e) = .



752 I. CHARLESWORTH ET AL.

Hence, M¥ has a state zero unitary if and only if
A<t
-2

for every eigenvalue A of a.

For general finite-dimensional M, we may find central projections z1, ..., 2
in M with Zle zj = 1 and Mz; = M,,(C). Let 7; be the normalized trace on
Mz;. Then we can find a; € (Mz;)4 with >, ¢(2;) trj(a;) =1 and

n

p(x) =Y ol(z))7i(w25a,).

=1

In this case,
n

M — Z(sz)fj(‘aj)_
j=1
If e € M¥ is a minimal projection, choose j so that ez; = e. Then by the above,
there is a ); in the spectrum of a; with
Aj
pe) = <P(%);j~

Hence, M¥ has a state zero unitary if and only if for every j we have
Ap(z5) <

for every eigenvalue A of a; viewed as an operator on C™.

Another example is group von Neumann algebras, equipped with their trace
7: L(G) — C given by 7(\g) = dg=. In this case, any non-trivial group element
satisfies the hypotheses. Another example would be if M¥ is diffuse (e.g. ¢ is
a trace and M is diffuse). In this case, there is a state-preserving embedding of
L*>°([0,1]) into M¥ and so there is a state zero unitary.

Appendix B. Ocneanu ultrapowers

For a cofinal ultrafilter w on a directed set I and a von Neumann algebra M,
denote

L,(M) = {(x;)ics € £>°(I,M) : lim x; = 0 in the strong-* topology },
1w
MO (M) = {(x:)ier € (I, M) : (2:)il,(M) + Lo(M)(2:); € L,(M)}.
By [Ocn85, AH14] the quotient C*-algebra

© = ME(M) /1, (M)
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is a von Neumann algebra, which we call the Ocneanu ultrapower of M. For (z;); €
MY (M) we use (x;);i— for its image in M*“. Suppose that P is a subalgebra of
M and that there is a faithful normal conditional expectation EFp: M — P. In
this case, P“ is naturally a von Neumann subalgebra of M“ and there is a natural
conditional expectation Ep. given by

Epo((2i)isw) = (Ep(24))isw

(see [HI17, Sect. 2] for details). Applying this with P = C, we see that if ¢ is a
faithful normal state on M, then the ultraproduct state ¢* given by
P ((#1)imw) = lim o(z;)

remains faithful. This relates to fullness, since [AH14, Thm. 5.2] and [HMV19,
Cor. 3.7] show that if M is a o-finite von Neumann algebra, then M’ N M« = C
if and only if M is full. The following is a statial version of [loal5, Lem. 6.1].

Lemma B.1. Let (B, ) be a statial von Neumann algebra and let B C M; be an
inclusion with expectation E;: M — B fori = 1,2. Denote ¢; = poE; fori=1,2
and consider the amalgamated free product (M, Eg) = (M, E1) xg (Ma, Es). If
there exist unitary elements uy € (M1)%' and ug,ug € (M2)?? such that

Eplui] = Eglug] = Eglus] = Eplujus] = 0,
then M’ N M¥ C B* for any cofinal ultrafilter w on a directed set I.

Proof. For i = 1,2 let L3(M;) = L?>(M;,¢;) © L*(B,¢), and observe that this is
the closure of {x € M; : E;(z) =0} in L?(M;, ;). By definition,

L2<M,sooEB>:L2<B,so>ea€B( D L%(Mn)@B---@BL%(Mm)).
d=1 Niyig,...,
id—17%d

Let P; be the orthogonal projection onto
(oo}
Hi = ( D i) ep--©p L%(Mid))-
d=1 Ni=iy#is,...,
id—17id

Note that u,us, us € M¥°F5 since the modular automorphism group of ¢ o Ep
restricts to that of ¢; on M; for each i = 1,2. Thus,

lzuillz = [l
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for all x € M. So right multiplication by u extends to a bounded operator on
L?(M, poEp), and we will continue to write £u} for the image of ¢ € L*(M, 9o Eg)
under this operator. As in [Ioal5, Lem. 6.1], we have

uiHoul € Hy, ueHiuy C Hay usHiuz C Ho,
and
ugHiuy L (H1 + usHiuy).

Let P; be the orthogonal projection onto H;, i = 1,2. Note that if X C L?(M) is
a closed linear subspace, and Py is the orthogonal projection onto X, then

Puri)Cuf () = uzPK(u: : ut)u*

7

Hence we can argue as in [loal5, Lem. 6.1] to see that
1P (urgui)|l2 < [Pr(©)llz and || Py(uz€us)l3 + [[Pr(uséus) |3 < | P2()I15,

for all ¢ € L2(M, o Eg). Now let (x;);i., € M'NM%. Since o Ep is faithful, the
strong*-topology on the unit ball of M coincides with convergence with respect
to ||lzll2 + ||z*||2 (see [Tak02, Prop. II1.5.3]). We now argue exactly as in [Ioalb,
Lem. 6.1] to obtain the estimates

. . 1 .
lim || Py(;)[]2 < lim [|Py(2i) ]2 < —= lim || Pa(z:) |2,
11— W 1—rw '\/§ 1—w

so that lim;_, | Pj(z;)||l2 = 0 for j = 1,2. Since L*(M,p o Eg) = L*(B,¢) &
Hi @ Ha, we obtain that lim;,, ||z; — Ep(z;)||2 = 0. By the same argument
lim;_,, ||zf — Ep(z})||2 = 0, and hence (z;);—. € B*. O

In order for intersections to commute with ultrapowers, it is sufficient to have
commuting square inclusions of algebras, as we now show. This is a folklore result,
but we give the proof for completeness.

Lemma B.2. Suppose that (M, p) is a statial von Neumann algebra and that
My, My are von Neumann subalgebras with p-preserving normal conditional expec-
tations E;: M — M;. Suppose further that Fy o Fo = FEs o Ey so that

My ¢——M

|

MlﬂMQ(iMQ

forms a commuting square. Then (My N Ma)* = My N M.
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Proof. Since Ene = (E;)*, i = 1,2, and similarly Eg,nan)e = (Eayn,)®s it
is enough to show that En, |ap, = Eunnm,- But this follows from the fact that
EM OEM2:EM20EM1. O

1

Appendix C. Relative amenability

The following result of Monod-Popa ([MP03, Rem. 3]) allows one to restrict to
certain subalgebras when checking relative amenability. We reproduce the well-
known proof here.

Lemma C.1. Suppose that (M, p) is a statial von Neumann algebra and that M,
Ms are von Neumann subalgebras with p-preserving normal conditional expecta-
tions E;: M — M;. Suppose further that Ey o E; = FEs o B so that

My «——M

|

MlﬂMg(;Mg

forms a commuting square. If My is amenable relative to My N My (inside My ),
then My is amenable relative to My inside M.

Proof. Let F: (My,en,nn,) — My be a conditional expectation. We will first
construct a conditional expectation E: (M, e, nan) — M; that is normal on M,
so that M; is amenable relative to M7 N My inside M.

Identify L?(Ma, ¢|ar,) as a subspace of L?(M, ) so that the projection onto
it is the Jones projection ey, for the inclusion (M; C M, Ey). Similarly, the Jones
projection enr,~ar, is given by the projection onto the identification of L?(M; N
Ma, | a,nr,) as a subspace of L2(M, ). Recall that the basic construction for
this inclusion satisfies

(C.1) (M, ernynny) = (Jp (M1 0 M2)J,)' 0 B(L*(M, ).

Consequently, err, € (M, enr,nns, ) since En,nn, = F1 o s is p-preserving. Addi-
tionally, if we define Y: B(L?(M, y)) — B(L*(Mi,¢|r,)) by Y(T) == ear, Tenr,
then Y((M, err,nns,)) = (M1, enr,nn, ).t Indeed, it is a general fact that if Q <
B(H) is a von Neumann algebra and p € Q' N B(H) is a projection, then
(@Qp) N B(pH) = p(Q" N B(H))p. Applying this to Q@ = J,(M; N Ms)J, and

1Here we are abusing notation to let en, M, in the second instance also denote the Jones
projection for the inclusion M1 N Mz C M. But under the identification B(L?(M1,¢|ar,)) =
(31\/[13(112(1\47 (p)) one does have EM1NMa€M, = EM{NMsy-
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p = ep, gives

T((M, eannns)) = T(Jp (M1 N M2)Jg) 0 B(L* (M, ¢luy))

( @l (Ml ﬂMg)Jli)/ﬁB(L2(M1,(p|M1))
( Pl (Ml N MQ)JL,O\MI )/ N B(LQ(Ml’SD‘Ml))
=

M, enrnns)-

Now, let F': (M1, en,nn,) — My be a conditional expectation with F|ps, normal,
which is guaranteed by M; being amenable relative to M7 N M, inside M;. Define
E: (M,ep ) — My by E == Fo Y. For x € M we have E(z) = F(Y(z)) =
Y(z), and if x € M; then one further has F(x) = z. Thus E is a conditional
expectation onto M; with E|pr normal.

To complete the proof of the lemma, identify L?(Ma,|ns,) as a subspace
of L?>(M,¢) and let ey, be the associated Jones projection for the inclusion
(My C M, Es). Then (C.1) implies (M, en,) < (M, ennn,), and so consider-
ing the restriction of F to this subalgebra gives that M; is amenable relative to
M5 inside M. O

The next result provides a sufficient condition for preventing amalgamated
free products from being amenable relative to either of the factors; see e.g. [0za06,
DKEP23] for similar arguments.

Lemma C.2. Let (B, ) be a statial von Neumann algebra and let B C M; be an
inclusion with expectation E;: M — B fori =1,2. Denote p; = o E; fori=1,2
and consider the amalgamated free product (M, Eg) = (M, Ey) xg (M, E3). If
there exist unitary elements ug € (M7)%!, uy € My, and us € (M3)%?* such that

Eplug] = Eglu1] = Eglujui] = Eplus] = 0,
then M is not amenable relative to M; fori=1,2.

Proof. Define 1 :== ¢ o Ep. For each j = 1,2, denote H; = L*(M;,;), which
we identify as a subspace of L?(M, ). Also identify L?(B,¢) as a subspace of
L?(M, ) and denote HS = H; © L*(B, ), j = 1,2. Recall that

=D D i esesl,
dEN iy #--Fig

Denote

K = P(H} @5 Hy)®*" @p H,
deN
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so that as right M;-modules we have
L2(M7w)M1 = KM1 D (Hé) B K)Ml

In particular, we can identify K+ with HS ®p K. By assumption, ug,u; € H{
so that ugK+,u1 K+ < K, and since uu; € H} we further have that ug K+ L
uy K+, Thus if Pg, Px. € B(L?*(M,%)) denote the projections onto K and K=,
respectively, then

UOPKLU(’; + ulpKuff < Pg.

Additionally, us € HS implies uo K < K+ so that
(02) UQPKUZ S PKL.

Now, suppose, towards a contradiction, that there exists a conditional expectation
®: (M, en,) — M. Note that Py, Px1 € (M, eypr,) since K and K+ are invariant
for Jy My Jy, and so the above inequalities imply

Y(uo®(Pr 1 )uy) + Y(ur ®(Prr)uy) < ¢(P(Pk))

and
Y(u2®(Pr)uz) < P(@(Pres)).
Recall that ug € (M7)% and ug € (M2)%? so that ug,uz € MY and hence

(
< Y(2(Pk))
= P(u2®(Pr)us)
< P(®(P))

Hence, ¥(u1®(Pg1)uf) =0, and therefore ®(Pg ) = 0. Since (C.2) implies
ue®(Pr)usy < &(Pg1) =0,
we also have ®(Pg) = 0. But this leads to the contradiction
O(1) = ®(Px) + ¢(Pkr) =0.

Thus M is not amenable relative to M.
To see that M is not amenable relative to My, denote

L= EP(H; @5 H})®*" @5 Hy
deN

so that as right Ms-modules we have

LQ(M7 w)M2 = LMz @ (Hf OB L)M2
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Then uoL and ui L are orthogonal subspaces in L+ = H? ®p L, and us Lt < L.
So if one assumes there exists a conditional expectation from (M, eps,) to M, then
we can proceed as above to obtain a contradiction. O

In contrast to the previous lemma, the next result shows that tensoring rela-
tively amenable inclusions yields a relatively amenable inclusion.

Lemma C.3. Fori=1,2, let N; < M; be an inclusion of von Neumann algebras
admitting faithful normal conditional expectations E;: M; — N;. If M; is amenable
relative to N; for each i = 1,2, then M1 ® My is amenable relative to N3 @ Ns.

Proof. By Tomita’s commutation theorem [Tak02, Thm. IV.5.9], we have a canon-
ical isomorphism

(M @ Mz, en,an,) = (Mi,en,) ® (Ma, en,)

satisfying
(21 ® T2)en, N, (T2 ® Y2) > (T1en, Y1) ® (226N, Y2)-

By assumption, there are conditional expectations ®;: (M;,en,) — M; fori=1,2.
We would like to obtain a conditional expectation (M1 ® Ma, en,gn,) — M1 Q@ M,
as (¢ ®id) o (id ® ®4), but since the expectations ®; and ®o are not normal, it
is not immediately clear how to extend ®; ® id and id ® ®, from the algebraic
tensor product (My,en,) © (Ma,en,) to (M1 ® Ma,en,gn,). However, one can
accomplish something similar using the following more abstract claim.

Claim. Let B < S be von Neumann algebras and let H be any Hilbert space.
If ®: S — B is a conditional expectation, then there is a conditional expectation
®: S & B(H) = B & B(H). Moreover, if T < B(H) is a von Neumann algebra,
then <T>|S®T is a conditional expectation onto B ® T

To prove the claim, view S C B(K) and let (e;);er be an orthonormal basis
for H. Let w; ; € B(H) denote the rank-one operator w; ;(§) = (§, e;)e;. For

A€ S® B(H), we wish to write A =}, ; A; j ® w; j and then to define ®(A) as
Z B(A; ;) @ w ;.
ijel

More precisely, >, ; A; ; ® w; ; should be interpreted as

lim >, Aij ®wiy,
i,jeF
where the limit is over the directed system of finite subsets of I, which converges
in SOT to A since the projections pr = ) ,.p1 ® w;; converge to 1 in SOT.
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To show convergence of the sum for defining i)(A), observe that

Y A @wil < || Y Ay @wig| = ‘pF‘< > Ay ®“”¥j>pF
i,jEF i,jEF ijel
< Z Aij @ wi |l
i,5€1

where the first inequality follows from ® being completely bounded with || ®||c, = 1.
Thus the sum defining EI;(A) converges in the strong operator topology since the net
(2ijer ®(Aij) ®wi ;) Per converges pointwise on the dense subspace span{{®e; :
¢ € K, i € I} and is uniformly bounded in norm. Now that ®(A) is well defined,
it is easy to check that it is unital, completely positive, and B—B-bimodular from
the corresponding properties of ®.

For the second part of the claim, let y € T’. Then since 1 ® B(#) is in the
multiplicative domain of ®, we have that 1 Ry € ;I;(S ®T)'. Tomita’s commutation
theorem thus shows that

PSRT)C (1T N(BRB(H))=B&T.

This proves the claim.
Applying the claim first to ®1: (My,en,) — My and T = M> yields a condi-
tional expectation
&;12 <M176N1> ® My — My ) M.
Next, applying the claim (with the order of the tensorands flipped) to ®o: (Ms,
en,) = My and T = (M, en, ) yields a conditional expectation

&)2: <M1,6N1> ® <M236N2> — <M176N1> ®M2

Hence, &)1 o &)2 is a conditional expectation that witnesses the relative amenability
of My ® Ms to N1 ® No. O
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