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Abstract

We undertake a comprehensive study of structural properties of graph products of von
Neumann algebras equipped with faithful, normal states, as well as properties of the graph
products relative to subalgebras coming from induced subgraphs. Among the technical
contributions in this paper is a complete bimodule calculation for subalgebras arising
from subgraphs. As an application, we obtain a complete classification of when two
subalgebras coming from induced subgraphs can be amenable relative to each other. We
also give complete characterizations of when the graph product can be full, diffuse, or a
factor. Our results are obtained in a broad generality, and we emphasize that they are
new even in the tracial setting. They also allow us to deduce new results about when
graph products of groups can be amenable relative to each other.
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§0. Introduction

Graph products of operator algebras have recently emerged as a subject of intense

interest, providing an interpolation between the free product and the tensor

product. The term comes from the group setting where they were introduced by

Green [Gre90]; in the operator algebra setting they have been reintroduced and

studied under various names by M lotkowski [M lo04], by Speicher and Wysoczański

[SW16], and by Caspers and Fima [CF17]. The mixture of classical and free inde-

pendence provides a powerful framework for proving results in deformation/rigidity

theory [BoCa24, CKE24, Cas20, CdSS18, CDD25a, CDD25b], the theory of oper-

ator space approximation properties of operator algebras [Atk20, CF17], and free

probability [CC21, CdSH+25, M lo04, SW16]. Graph products of groups are also of

significant current interest in group theory [Ago13, AM15, HW08, Kob12, KK15,

KK13, MO15]. Several structural properties of graph product von Neumann alge-

bras – the Haagerup property, exactness, Connes embeddability, the rapid decay

property, absence of Cartan subalgebras, strong solidity, modular theory, and

proper proximality – have also been investigated [Atk20, BoCo24, Cas16, Cas20,

CF17, CKE24, DKE24]. Altogether, this makes graph products a natural object to

study using tools from geometric group theory, approximation properties, defor-

mation/rigidity theory, free probability, and random matrices.
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Given a finite simple graph G = (V, E) and a family of groups or of von

Neumann algebras associated to the vertices, their graph product is a group or a

von Neumann algebra generated by copies of the input objects with the pairwise

relations determined by the graph: two objects connected by an edge should be in

direct or tensor product position; two objects not connected by an edge should be

in free position. The relations of higher order must be given as well; we defer the

precise definition for von Neumann algebras to Section 1.1, and refer to Green for

the precise definition for groups [Gre90].

In this paper, we undertake a systematic study of precisely when certain

natural structural properties of graph products of von Neumann algebras hold.

Moreover, for applications to positions of subalgebras it is natural to consider

algebras corresponding to induced subgraphs and ask when these properties hold

“relative” to another. We provide a complete classification for relative amenability,

fullness, factoriality, and diffuseness (we also completely settle “relative diffuse-

ness” i.e. lack of intertwining, in the tracial setting).

Given a graph G = (V, E) and U ⊆ V, the subgraph induced by U is the graph

G|U whose vertex set is U and whose edge set is E ∩ (U × U). When we denote

(M,φ) :=
v∈G

(Mv, φv) and when it is not ambiguous, we will let (MU , φU )

denote the graph product of {(Mv, φv) : v ∈ U} with respect to the graph G|U .

We now state our results characterizing relative amenability. In the greatest

generality our results apply to von Neumann algebras equipped with faithful nor-

mal states which are not necessarily tracial (hereafter referred to as statial von

Neumann algebras). However, our results specialize slightly to the setting of both

tracial von Neumann algebras and group von Neumann algebras and therefore to

groups; in these more restrictive settings our conditions for relative amenability

become slightly nicer to state. Although we state many of our results in the statial

setting, they are still new even with an added assumption of traciality.

Main Theorem 0.1. Let G = (V, E) be a graph, let {(Mv, τv) : v ∈ V} be a family

of tracial von Neumann algebras, and let (M, τ) =
v∈G

(Mv, τv). Assume that

Mv has a trace zero unitary for every v ∈ V. For V1, V2 ⊆ V, MV1
is amenable

relative to MV2
in M if and only if the following occur:

(1) Mv is amenable for each v ∈ V1 \ V2.
(2) For each v ∈ V1 \ V2 and w ∈ V1 with v ̸= w, either v and w are adjacent or

both the following occur:

(a) dim(Mv) = dim(Mw) = 2,

(b) v and w are adjacent to all vertices in V1 \ {v, w}.
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Note that Theorem 0.1 is new even in the case where Mv = L(Γv) for a family

discrete groups {Γv : v ∈ V}. As such, we obtain a complete classification of when

subgroups corresponding to induced subgraphs can be amenable relative to each

other for graph products of groups, which follows immediately from Theorem 0.1.

Corollary 0.2. Let G = (V, E) be a graph and {Γv : v ∈ V} be a family of groups.

Let Γ be the graph product of {Γv : v ∈ V} with respect to G, and for U ⊆ V let

ΓU be the graph product of {Γv : v ∈ U} with respect to G|U . Then for V1, V2 ⊆ V

we have that ΓV1
is amenable relative to ΓV2

inside Γ if and only if both of the

following occur:

(1) Γv is amenable for each v ∈ V1 \ V2.
(2) For each v ∈ V1 \ V2 and w ∈ V1 with v ̸= w, either (v, w) ∈ E or both of the

following occur:

(a) Γv ∼= Γw ∼= Z/2Z,
(b) v and w are adjacent to all vertices in V1 \ {v, w}.

We also have a complete result in the statial setting that generalizes Theo-

rem 0.1. This also yields a complete characterization of when the graph product

von Neumann algebra is amenable (see Proposition 6.3).

Main Theorem 0.3. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a

family of statial von Neumann algebras, and let (M,φ) =
v∈G

(Mv, φv). Assume

Mφv
v has a state zero unitary for every v ∈ V. For V1, V2 ⊆ V, MV1 is amenable

relative to MV2
inside M if and only if both of the following occur:

(1) Mv is amenable for each v ∈ V1 \ V2.
(2) For each v ∈ V1 \ V2 and w ∈ V1 with v ̸= w, either v and w are adjacent or

both of the following occur:

(a) M{v,w} = Mv ∗Mw is either amenable if w ̸∈ V2 or is amenable relative

to Mw if w ∈ V2,

(b) v and w are adjacent to all vertices in V1 \ {v, w}.

Our assumption that the centralizer subalgebra Mφv
v admits a state zero uni-

tary is mild (see Appendix A for a characterization in terms of minimal central

projections). Indeed, in the tracial setting this holds for any non-trivial group

von Neumann algebra, any diffuse algebra, and any finite factor but C. Moreover,

this assumption already appears in foundational works in the non-tracial setting

[Bar95, Shl97]. While this was removed in the free product setting through the

work of Ueda [Ued11], doing so in our setting is likely to involve significant effort

which we leave for future investigation.
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A significant tool for our study of relative amenability is to apply work of

[BMO20] (building upon prior work of [AD95, Haa93]), which states that there

is a (not assumed to be normal) conditional expectation ⟨M, eQ⟩ → N when

N,Q ≤M are with expectation if and only if

NL
2(M)N ≺N L2(⟨M, eQ⟩)N .

Strictly speaking, the existence of such a conditional expectation is different from

N being amenable relative to Q inside M , but this turns out to be not a prob-

lem. Since we may view L2(⟨M, eQ⟩) as a relative tensor product, it thus makes

sense to address relative amenability via understanding the bimodule structure of

MV1
L2(M)MV2

for V1, V2 subsets of the vertices, as well as the fusion rules for such

bimodules. We obtain a complete description of such bimodules and their fusion

rules in terms of the combinatorial structure of the graph, and the dimensions of

the algebras attached to the vertices.

Main Theorem 0.4. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a

family of statial von Neumann algebras, and let (M,φ) =
v∈G

(Mv, φv). For

V1, V2 ⊆ V one has

MV1
L2(M,φ)MV2

∼=
⊕

U⊆V1∩V2

(MV1
L2(MV1

, φV1
)

⊗
MU

L2(MV2 , φV2)MV2
)⊕kG(V1,V2,U),(0.1)

where kG(V1, V2, U) is explicitly determined in terms of the graph structure and

dimension of the vertex algebras (see Theorem 5.4 for the precise description).

Moreover, we have the following fusion rules. For V1, V2 ⊆ V and U ⊆ V1 ∩ V2, let

HU (V1, V2) =MV1
L2(MV1

, φV1
) ⊗
MU

L2(MV2
, φV2

)MV2
.

Then for U1 ⊆ V1 ∩ V2 and U2 ⊆ V2 ∩ V3,

HU1(V1, V2) ⊗MV2
HU2(V2, V3) ∼=

⊕
W⊆U1∩U2

HW (V1, V3)⊕kG2
(U1,U2,W ),

where G2 is the subgraph of G induced by V2.

Theorem 0.4 is proved in two parts in the body of the paper: in Theorem 5.4

and Proposition 5.5. The utility of such a precise computation can be seen from

Theorem 5.6, which provides a very easy to check characterization of when certain

bimodules are weakly coarse.

We also give a complete characterization of fullness, factoriality, and diffuse-

ness.
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Main Theorem 0.5. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a

family of statial von Neumann algebras, and let (M,φ) =
v∈G

(Mv, φv). Assume

Mφv
v has a state zero unitary for every v ∈ V.

(1) M is diffuse if and only if either (a) some Mv is diffuse, or (b) G is not a

complete graph.

(2) M is a factor if and only if both (a) whenever a vertex v is adjacent to all other

vertices of G, then Mv is a factor, and (b) if v and w are not adjacent to each

other but are adjacent to all other vertices of G, then max(dimMv,dimMw)

≥ 3.

(3) M is full if and only if both (a) whenever a vertex v is adjacent to all other

vertices of G, then Mv is full, and (b) if v and w are not adjacent to each other

but are adjacent to all other vertices of G, then max(dimMv,dimMw) ≥ 3.

For tracial algebras, we also provide a complete characterization of relative

diffuseness (or lack of intertwining) of MV1 relative to MV2 analogous to The-

orem 0.5(1). We refer the reader to Proposition 4.2 for the relevant statement,

which amounts to in (a) requiring that a diffuse algebra be attached to a vertex in

V1 \V2, and replacing the “non-completeness” in (b) with the lack of edge between

a vertex in V1 \ V2 with a vertex in V1 ∩ V2.

§1. Preliminaries

§1.1. G-independence and graph products

Throughout, a graph is a pair (V, E) where V is a finite set of vertices and E ⊆
V × V is a set of edges such that (u, v) ∈ E if and only if (v, u) ∈ E ; we also

insist that (u, u) /∈ E for all u ∈ V. In other words, our graphs are finite and

simple (undirected, and without self-loops). We write v ∼ w (respectively, v ̸∼ w)

whenever (v, w) ∈ E (respectively, (v, w) ̸∈ E); we make the dependence on the

graph implicit. For a given v ∈ V, we denote the sphere centered at v by S(v) =

{w ∈ V : w ∼ v}, and the ball centered at v by B(v) := S(v) ∪ {v}.

A word v1 · · · vn in the alphabet V is said to be G-reduced if whenever i < k

with vi = vk, there is some i < j < k so that (vi, vj) /∈ E . (By repeatedly applying

this condition, we could further assume that vi ̸= vj .)

Suppose that G = (V, E) is a graph and (M,φ) is a statial von Neumann

algebra. For each v ∈ V, let 1 ∈ Mv ⊆ M be a unital ∗-subalgebra. Then the

family {Mv : v ∈ V} is said to be G-independent if whenever v1 · · · vn is a G-

reduced word and x1, . . . , xn ∈M with xi ∈ ker(φ) ∩Mvi , we have

φ(x1 · · ·xn) = 0.
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On the other hand, given a graph G = (V, E) and a family of statial von Neumann

algebras {(Mv, φv) : v ∈ V}, there is up to isomorphism a unique statial von

Neumann algebra (M,φ) and state-preserving inclusions Mv ↪→ M so that the

images of the Mv are G-independent and generate M . We refer to this algebra

(M,φ) as the graph product of the family {(Mv, φv) : v ∈ V} and write

(M,φ) =
v∈G

(Mv, φv).

The existence and uniqueness of the graph product was shown by M lotkowski

and also by Caspers and Fima; moreover, if each φv is tracial then so is the state

on the graph product [M lo04, CF17].

§1.2. Structural properties of von Neumann algebras

We recall the definitions of the structural properties appearing in the theorems in

the introduction of the paper.

A von Neumann algebra M is said to be full if whenever a bounded net

(xi)i∈I ⊂ M satisfies ∥φ([xi, · ])∥ → 0 for all φ ∈ M∗ then there exists a net of

scalars (λi)i∈I ⊂ C such that (xi − λi) → 0 strongly. This notion was introduced

for von Neumann algebras with separable preduals by Connes [Con74], where

he showed it was equivalent to Inn(M) being closed in Aut(M) under the point

norm topology [Con74, Thm. 3.5]. [HMV19, AH14] considered this notion in the

more general σ-finite case, where they showed it was equivalent to M ′ ∩Mω = C
[AH14, Prop. 4.35, Thm. 5.2], [HMV19, Cor. 3.7]. Here, Mω denotes the Ocneanu

ultrapower (see Appendix B), and in this paper we will always verify fullness by

proving M ′ ∩Mω = C. We note that the proof of this implication can be found in

[AH14, Prop. 4.35], and in fact it is an exercise from [Con74, Prop. 2.8].

Let A,B ≤M be inclusions of von Neumann algebras with conditional expec-

tations EA, EB . Let ⟨M, eB⟩ denote the basic construction associated to the

inclusion (B ⊂ M,EB). We say that A is amenable relative to B inside M if

there exists a conditional expectation Φ: ⟨M, eB⟩ → A such that Φ|M is normal

[Pop86] (see also [Pop99] and [MP03, Def. 4]).

§2. Diffuseness, factoriality, and fullness

In this section we classify when a graph product W∗-algebra has various properties

(diffuseness, amenability, factoriality, fullness) based on the input algebras Mv (see

[CF17, Cor. 2.29] for a partial result in this direction).

We will use the graph join operation to produce a tensor product decompo-

sition for the graph product, thereby reducing the study of various properties of

the graph product over G to the properties of the subgraphs G1, . . . ,Gn. Given
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graphs Gj = (Vj , Ej) for j = 1, . . . , n, the graph join G1 + G2 + · · · + Gn is the

graph obtained from the disjoint union of G1, . . . ,Gn by adding edges from every

vertex of Gi to every vertex of Gj for i ̸= j. We say that G is join-irreducible if it is

non-empty and cannot be decomposed as a graph join of two non-empty graphs.

By [Cun82, Thm. 1], every graph G has a unique (up to permutation) decomposi-

tion as G1 + · · · + Gn, where G1, . . . ,Gn are join-irreducible (here we allow a single

vertex to be considered as a join-irreducible graph). The next proposition follows

immediately from the definition of the graph product for statial von Neumann

algebras.

Proposition 2.1. Let G = (V, E) be a graph and let {(Mv, φv) : v ∈ V} be a family

of statial von Neumann algebras. If G = G1 + · · · + Gn for graphs Gj = (Vj , Ej),
j = 1, . . . , n, then

v∈G
(Mv, φv) =

⊗
1≤j≤n

v∈Gj
(Mv, φv).

Since it is known that diffuseness, factoriality, and fullness of a tensor product

can be characterized in terms of the corresponding properties for the tensor factors

(see the proof of Theorem 0.5 in Section 2.1 below), the above proposition allows

us to reduce our analysis to the join-irreducible case. The general outline of the

argument is as follows. By the foregoing argument, we reduce to the case when

G is join-irreducible, then further divide into cases based on whether the number

of vertices of G is 1, 2, or greater than 2, and decide diffuseness, amenability,

factoriality, or fullness in each case. Of course, if G consists of a single vertex

v, then this is simply the diffuseness, amenability, factoriality, or fullness of the

input algebra Mv, and so we will only address the cases of |V| = 2 and |V| ≥ 3

below. If G has two vertices, then these two vertices must not be connected by an

edge, because otherwise G would decompose as the graph join of the two vertices.

Hence,
v∈G

(Mv, φv) is the free product (M1, φ1) ∗ (M2, φ2) of the two input

algebras. Now, if we assume that Mφ1

1 and Mφ2

2 each contain state zero unitaries

u1 and u2, then by free independence the product u1u2 will be a Haar unitary in

(M1, φ1) ∗ (M2, φ2), and hence (M1, φ1) ∗ (M2, φ2) is diffuse. If M1
∼= M2

∼= C⊕C
with equal weight on each of the two summands, then M1∗M2 is amenable and not

a factor, and in all other cases (under the assumption that Mφ1

1 and Mφ2

2 admit

state zero unitaries), it is a full factor by results of Ueda [Ued11]. The remaining

case is then when G has at least three vertices, which we will handle separately as

a general argument.

Before proceeding in this way, we first observe a combinatorial condition that

follows from a lack of graph join decomposition.
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Lemma 2.2. Let G = (V, E) be a join-irreducible graph. Then either G is discon-

nected or for every vertex v0 ∈ V, there exist v1, v2 ∈ V \ {v0} such that

v0 ∼ v1, v0 ̸∼ v2, v1 ̸∼ v2.

Proof. We proceed by contrapositive. Suppose that G is connected and that there

exists a vertex v0 such that for all v1, v2 ∈ V \ {v0}, if v1 ∼ v0 and v2 ̸∼ v0, then

v1 ∼ v2. Fix such a v0. Let S = S(v0). We claim that every vertex in S is adjacent

to every vertex in Sc. Let v ∈ S and w ∈ Sc. If w = v0, then w ∼ v by definition

of S(v0). If w ̸= v0, then because w ̸∼ v0 and v ∼ v0, we have v ∼ w. Since every

vertex in S is connected to every vertex in Sc, we can decompose G as the graph

join of the two induced subgraphs with vertex sets S and Sc.

Remark 2.3. The converse of this lemma does not hold. In fact, suppose that

we take graphs G1 and G2 which both satisfy that for every v0 ∈ V, there exist

v1, v2 ∈ V \ {v0} such that v0 ∼ v1, v0 ̸∼ v2, v1 ̸∼ v2. Then G1 + G2 also satisfies

this condition. More generally, if V is expressed as a union of subsets Vj , and

the subgraphs induced by Vj have this property, then the whole graph has this

property.

The following is a special case of Theorem 0.5 for join-irreducible graphs,

which will be used in the general proof in conjunction with strategy outlined after

Proposition 2.1. The proof makes use of Ocneanu ultrapowers and some related

lemmas which are detailed in Appendix B. It also uses the fact that subalgebras

MU corresponding to induced subgraphs admit unique state-preserving, faithful,

normal, conditional expectations EMU
: M → MU (see [CF17, Rem. 2.14]). The

uniqueness implies, in particular, that MV1∩V2
, MV1

, MV2
, M form a commuting

square for any subsets V1, V2 ⊂ V.

Theorem 2.4. Let G = (V, E) be a join-irreducible graph. Let {(Mv, φv) : v ∈ V}
be a family of statial von Neumann algebras and let (M,φ) =

v∈G
(Mv, φv).

Assume Mφv
v has a state zero unitary for every v ∈ V.

� If |V| = 2 with V = {v, w} and dim(Mv) = dim(Mw) = 2, then M is diffuse

but not a factor.

� If |V| = 2, and max(dim(Mv),dim(Mw)) ≥ 3, then M is a diffuse full factor.

� If |V| ≥ 3, then M is a diffuse full factor.

Proof. First, suppose V = {v1, v2} and recall that join-irreducibility of G implies

(M,φ) = (Mv1 , φv1) ∗ (Mv2 , φv2). If one of Mv1 or Mv2 has dimension at least

3, then M is diffuse and a full factor by [Ued11, Thm. 4.1 and Rem. 4.2]. If

dim(Mv1) = dim(Mv2) = 2 so that Mvi
∼= C ⊕ C for i = 1, 2, then φv1 , φv2
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are necessarily tracial and our assumption on the existence of trace zero unitaries

forces these traces to put equal weight on each factor of C. Hence, M is diffuse

but is not a factor by [Dyk93, Thm. 1.1].

We now assume that |V| ≥ 3. Note that if a von Neumann algebra P has a

normal conditional expectation onto a diffuse subalgebra, then P is diffuse (this fol-

lows from restricting such a conditional expectation to the maximal purely atomic

direct summand of P and applying [Bla06, Thm. IV.2.2.3]). Since we already have

normal conditional expectations onto subalgebras corresponding to induced sub-

graphs, it follows from the above paragraph that M is diffuse in this case. So we

only focus on proving M is a full factor. By Lemma 2.2, it suffices to prove the

theorem under the weaker condition that either G is disconnected or for every

v0 ∈ V, there exist v1, v2 ∈ V \ {v0} such that v0 ∼ v1, v0 ̸∼ v2, v1 ̸∼ v2.

Suppose G is disconnected and |V| ≥ 3. Then there exist a vertex v0 and two

other vertices v1 and v2 that are not in the same connected component as v0. Let

V0 ⊂ V be the vertices in the connected component of G containing v0. Then

M = MV0
∗MV\V0

.

Let u0, u1, and u2 be state zero unitaries in Mv0 , Mv1 , and Mv2 respectively. We

have φ(u∗1u2) = φ(u∗1)φ(u2) = 0 in both cases v1 ∼ v2 and v1 ̸∼ v2. Thus, the

unitaries satisfy the hypotheses of Lemma B.1 with B = C. It follows that for

every cofinal ultrafilter ω on a directed set, we have M ′ ∩Mω ⊆ Cω = C, so that

M is full.

Now consider the case where for every v0 ∈ V, there exist v1, v2 ∈ V\{v0} such

that v0 ∼ v1, v0 ̸∼ v2, v1 ̸∼ v2. (In this case automatically |V| ≥ 3.) Fix a cofinal

ultrafilter ω on a direct set, and a vertex v0. Note that by [CF17, Thm. 2.26],

M = MB(v0) ∗MS(v0)
MV\{v0}.

Let v1 and v2 be vertices with v1 ∼ v0, v2 ̸∼ v0, v1 ̸∼ v2. Let u0, u1, and u2 be trace

zero unitaries from M
φv0
v0 , M

φv1
v1 , and M

φv2
v2 respectively. We want to apply Lemma

B.1 to the unitaries u0, u2, and u∗1u2u1. Note that the words v0, v2, v1v2v1, and

v1v2v1v2 are reduced and each have some element not in S(v0); therefore, by the

alternating expectation condition defining free independence with amalgamation,

EMS(v0)
[u0] = EMS(v0)

[u2] = EMS(v0)
[u1u2u

∗
1] = EMS(v0)

[(u∗1u2u1)∗u2] = 0.

Moreover, u1u
∗
2u1 is in the centralizer of MV\{v0}. Therefore, by Lemma B.1,

M ′ ∩Mω ⊆ (MS(v0))
ω.
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Now the vertex v0 was arbitrary, and therefore, by Lemma B.2,

M ′ ∩Mω ⊆
⋂
v0∈V

Mω
S(v0)

=

( ⋂
v0∈V

MS(v0)

)ω
.

By [CF17, Prop. 2.25], ⋂
v0∈V

MS(v0) = M⋂
v0∈V S(v0).

Because v0 ̸∈ S(v0) by definition, we have
⋂
v0∈V S(v0) = ∅. Hence, M ′∩Mω ⊆ C,

so that M is full.

Remark 2.5. In particular, suppose that the graph G has diameter at least 3,

meaning that there exist two vertices v and w with distance at least 3 in the

graph. Then G is join-irreducible because in a graph join any two vertices have

distance at most 2. Therefore, the theorem implies that
v∈G

(Mv, φv) is a full

factor provided that each Mφv
v contains a state zero unitary.

Consider a non-join-irreducible graph G and suppose G = G1 + · · · + Gn is its

graph join decomposition for graphs Gj = (Vj , Ej). Since diffuseness, factoriality,

and fullness are all automatic for graph products over Gj when |Vj | ≥ 3, to under-

stand these properties for graph products over G it is not necessary to compute its

entire graph join decomposition. We merely need to be able to locate the Gj that

have 1 or 2 vertices. For this purpose, we record the following observation.

Lemma 2.6. Let v be a vertex of a graph G = (V, E). Then v comprises one of

the components in the graph join decomposition of G if and only if v is adjacent

to all the other vertices of G.
Similarly, let v and w be distinct vertices of G. Then {v, w} comprises one of

the components in the graph join decomposition of G if and only if v and w are

not adjacent to each other but are adjacent to all the other vertices in G.

We remark that detecting components in the graph join decomposition of G
with one or two vertices is algorithmically much simpler than finding the full graph

join decomposition (it can be done in polynomial time in the number of vertices).

§2.1. Proof of Theorem 0.5

Let G = G1 + · · · + Gn be the graph join decomposition for graphs Gj = (Vj , Ej),
j = 1, . . . , n. Denote (Nj , ψj) :=

v∈Gj
(Mv, φv) for each j = 1, . . . , n, so that

(M,φ) ∼= (N1, ψ1) ⊗̄ · · · ⊗̄ (Nn, ψn)

by Proposition 2.1.



724 I. Charlesworth et al.

(1). M is diffuse if and only if Nj is diffuse for some j. If Gj has at least two

vertices, then Nj is diffuse by Theorem 2.4. Thus, the only way M can fail to be

diffuse is if all the Gj are singletons (that is, G is a complete graph), and none of

the Mv are diffuse.

(2). M is a factor if and only if Nj is a factor for each j = 1, . . . , n. If Gj has at

least three vertices, then Nj is automatically a factor by Theorem 2.4. So for M

to be a factor it is necessary and sufficient that Nj is a factor whenever |Vj | ≤ 2.

For Vj = {v}, this reduces to Mv being a factor, and from the characterization

of singleton components in Lemma 2.6 this yields condition (a). For Vj = {v, w},

Nj is a factor if and only if max(dim(Mv),dim(Mw)) ≥ 3 by Theorem 2.4, and

from the characterization of two-element components in Lemma 2.6 this yields

condition (b).

(3). M is full if and only if Nj is full for each j = 1, . . . , n by [Con76, Cor. 2.3],

[HMV19, Cor. B]. Noting that the characterization of fullness coincides with that

of factoriality for join-irreducible graphs in Theorem 2.4, the same argument used

in the previous part completes the proof.

Remark 2.7. Observe that under our standard assumption that Mφv
v admits a

state zero unitary, the graph product over G gives a non-full factor if and only if

there exists v ∈ V adjacent to every other vertex with Mv a non-full factor. Indeed,

using the notation of the above proof, M is a non-full factor if and only if each Nj
is a factor and at least one, say Nj0 , is non-full. According to Theorem 2.4, this is

only possible if Vj0 consists of a single vertex and the algebra over that vertex is

a non-full factor.

§3. Relatively reduced words and conditional expectations

M lotkowski [M lo04] and Caspers–Fima [CF17] used reduced words to describe how

the standard form of a graph product is analogous to a Fock space. From their

description, one can build an orthonormal basis for L2 of the graph product using

an orthonormal basis of the vertex algebras. In Section 5 we will have to describe

the standard form of the graph product as a bimodule over two subalgebras coming

from subgraphs. In order to investigate relative amenability in Section 6, we will

also have to describe the fusion rules. In this bimodule situation it is natural to look

for (an analogue of) a Pimsner–Popa basis instead of an orthonormal basis. As we

will show in Section 5, this can be done by modifying the consideration of reduced

words to be reduced “relative” to a pair of subgraphs as in [BoCa24, Lem. 1.7].

This is similar to considering double-cosets relative to a pair of subgroups coming

from subgraphs in a graph product of groups. We define this notion of relatively
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reduced words in this section. In order to later show they give something akin to

a Pimsner–Popa basis and compute the fusion rules, we will also need to compute

some conditional expectations coming from relatively reduced words, which we

also do in this section. These formulas for conditional expectation will also be

used to investigate relative diffuseness (i.e. lack of intertwining) in Section 4.

§3.1. G-reduced words

Definition 3.1. We define the following kinds of operations on words in the alpha-

bet V:

� An admissible swap switches two consecutive letters wi and wi+1 that are

adjacent vertices in G.

� A splitting replaces one occurrence of a letter wi by two copies of wi. (For

example, 1231 could be transformed to 12231 by splitting the second letter.)

� A merge replaces two consecutive occurrences of the same letter by one occur-

rence of the letter.

Two words are said to be equivalent if one can be transformed into the other by a

sequence of these three types of operations. We denote this by w ≈ ŵ.

It is easy to see that this is indeed an equivalence relation. It is reflexive and

transitive by construction. It is symmetric because a swap operation is reversed

by another swap, and the splitting and merge operations are inverse to each other.

Moreover, every word is equivalent to some reduced word through a sequence of

admissible swaps and merges (see [CF17, Lem. 1.3(1)]).

In the sequel, we will use the following characterization of when two reduced

words are equivalent.

Proposition 3.2. Let G = (V, E) be a graph. Let w = w1 · · ·wm and ŵ =

ŵ1 · · · ŵn be two words in the alphabet V. Let w = w1 · · ·wm and ŵ = ŵ1 · · · ŵn be

two G-reduced words. Then the following are equivalent:

(i) w and ŵ are equivalent;

(ii) w can be transformed into ŵ by a sequence of admissible swaps;

(iii) m = n and there is a permutation σ : [m] → [m] such that

� ŵσ(i) = wi;

� if i < j and wi is not adjacent to wj, then σ(i) < σ(j).

This proposition is a strengthening of [CF17, Lem. 1.3]. For instance, [CF17,

Lem. 1.3] showed that if w and ŵ are equivalent, then m = n and there is some

permutation matching the letters of w and ŵ, but did not characterize the exact



726 I. Charlesworth et al.

properties this permutation should have in order to get the reverse implication.

Moreover, they expressed condition (ii) as “Type II equivalence” and stopped short

of showing it is the same as equivalence in the case of reduced words.

For the proof, (ii) ⇒ (i) is immediate and (iii) ⇒ (ii) follows by induction.

The implication (i) ⇒ (iii) or (ii) is non-trivial since it involves reasoning about

non-reduced words in intermediate stages of the sequence of transformations. We

first take care of (iii) ⇒ (ii).

Lemma 3.3. Let G = (V, E) be a graph. Let w = w1 · · ·wm and ŵ = ŵ1 · · · ŵn
be two words in the alphabet V , and suppose σ : [m] → [m] is a permutation with

ŵσ(i) = wi such that if i < j and wi is not adjacent to wj, then σ(i) < σ(j). Then

w and ŵ are equivalent by swaps.

Proof. We proceed by induction on m. If σ(1) = 1, then σ restricts to a permu-

tation of {2, . . . ,m − 1} and we can apply our inductive hypothesis. Otherwise,

i = σ−1(1) > 1, and ŵi must be adjacent to ŵ1, . . . , ŵi−1. Therefore, by successive

swaps, we may move w1 = ŵi to the left past ŵ1, . . . , ŵi−1. Then note that σ

restricts to a permutation of m− 1 elements satisfying the original hypotheses for

the words w′ = w2 · · ·wm to ŵ′ = ŵ1 · · · ŵσ(1)−1ŵσ(1)+1 · · · ŵm. By the inductive

hypothesis, w′ and ŵ′ are equivalent by a sequence of swaps, and hence w and ŵ

are equivalent by a sequence of swaps as desired.

For (i) ⇒ (iii), we have to produce a permutation out of the sequence of

operations. It is easy to see that an admissible swap corresponds to a transposition

permutation satisfying the monotonicity condition in (iii). However, if we perform

a split or a merge operation, then naturally two indices are mapped to one or

vice versa, so in that setting, we need to replace the permutation (i.e. bijective

function) by a relation from [m] to [n].

Recall that a relation R : A → B between two sets A and B is a subset of

R ⊆ A × B. Given relations R : A → B and S : B → C, the composition S ◦ R is

defined by

S ◦R =
{

(a, c) ∈ A× C : there exists b ∈ B with (a, b) ∈ R and (b, c) ∈ S
}
.

Note that this definition extends the composition of functions.

Definition 3.4. Let G = (V, E) be a graph. Let w = w1 · · ·wm and ŵ = ŵ1 · · · ŵn
be two words in the alphabet V . A G-monotone matching from w to ŵ is a relation

R : [m] → [n] satisfying the following conditions:

(1) For every i ∈ [m], there is some j ∈ [n] with (i, j) ∈ R.

(2) For every j ∈ [n], there is some i ∈ [m] with (i, j) ∈ R.
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(3) If (i, j) ∈ R, then wi = ŵj .

(4) If (i, j) ∈ R and (i′, j′) ∈ R and wi is not adjacent to wi′ in G, then i ≤ i′ if

and only if j ≤ j′.

Note in the case that the relation R is a bijective function, then (1) and (2) of

Definition 3.4 hold, while (3) and (4) reduce to the conditions on the permutation

σ in Proposition 3.2(iii).

Lemma 3.5. Let G = (V, E) be a graph. Let w = w1 · · ·wm and ŵ = ŵ1 · · · ŵn
be two words in the alphabet V . If w and ŵ are equivalent, then there exists a

G-monotone matching from w to ŵ.

Proof. It suffices to show (a) that each of the operations leads to a G-monotone

matching and (b) that a G-monotone matching from w and ŵ and a G-monotone

matching from ŵ to w̃ compose to form a G-monotone matching from w to w̃. For

(a), we note the following:

� If ŵ is obtained from w by swapping i and i + 1, where wi and wi+1 are

adjacent, then a G-monotone matching R : [m] → [m] is given by the relation

R = {(j, j) : j ̸= i, i+ 1} ∪ {(i, i+ 1), (i+ 1, i)}.

� If ŵ is obtained from w by merging i and i + 1, where wi = wi+1, then

the G-monotone matching R : [m] → [m − 1] is given by the relation R =

{(1, 1), . . . , (i, i)} ∪ {(i+ 1, i), . . . , (m,m− 1)}.

� If ŵ is obtained from w by splitting the index i into i and i + 1, then the G-

monotone matching is given by R = {(1, 1), . . . , (i, i)}∪{(i, i+1), . . . , (m,m+

1)}.

For (b), suppose w̃ = w̃1, . . . , w̃o is another word, suppose R is a G-monotone

matching from w to ŵ, and S is a G-monotone matching from ŵ to w̃. One can

check that S◦R is a G-monotone matching from w to w̃ by verifying each condition

directly:

(1) Given i ∈ [m], there exists some j ∈ [n] with (i, j) ∈ R, and then there exists

some k ∈ [o] with (j, k) ∈ S, and hence (i, k) ∈ S ◦R.

(2) The second condition is checked in a symmetrical way.

(3) If (i, k) ∈ S ◦ R, then there exists some j ∈ [n] with (i, j) ∈ R and (j, k) ∈ S.

Hence, wi = ŵj = w̃k by condition (3) applied to R and S.

(4) Let (i, k), (i′, k′) ∈ S ◦ R. Suppose wi and wi′ are not adjacent. Pick j and

j′ ∈ [n] with (i, j), (i′, j′) ∈ R and (j, k), (j′, k′) ∈ S. Recall that wi = ŵj = w̃k
and wi′ = ŵj′ = w̃k′ by (3). Hence, i ≤ i′ if and only if j ≤ j′ if and only if

k ≤ k′ by condition (4) applied to R and S.
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Lemma 3.6. Let G = (V, E) be a graph. Let w = w1 · · ·wm and ŵ = ŵ1 · · · ŵn be

two reduced words in the alphabet V. If w and ŵ are equivalent, then m = n and

there is a permutation σ : [m] → [m] with ŵσ(i) = wi such that if i < i′ and wi is

not adjacent to wi′ , then σ(i) < σ(i′).

Proof. By the previous lemma, there exists a G-monotone matching R from w to

ŵ. We claim that R defines a bijection.

For each i ∈ [m], we know that there exists some j ∈ [n] with (i, j) ∈ R. We

claim that this j is unique. Suppose that (i, j) ∈ R and (i, j′) ∈ R with j < j′.

Since ŵ is reduced, there exists some ℓ strictly between j and j′ such that ŵℓ is not

equal or adjacent to ŵj . Moreover, there exists some k ∈ [m] with (k, ℓ) ∈ R. Then

condition (4) of G-monotonicity tells us that j ≤ ℓ ≤ j′ implies that i ≤ k ≤ i,

hence k = i. However, this contradicts that wi = ŵj ̸= ŵℓ = wk.

A symmetrical argument shows that for every j ∈ [n], there is a unique i ∈ [m]

with (i, j) ∈ R. Thus, R defines a bijection as desired, so that m = n and R has

the form R = {(i, σ(i)) : i ∈ [m]} for some permutation σ. By Definition 3.4, we

see that if i < i′ and wi is not adjacent to wi′ , then σ(i) < σ(i′).

This lemma completes the proof of (i) ⇒ (iii) in Proposition 3.2.

Remark 3.7. If w and ŵ are equivalent G-reduced words, note that the permu-

tation σ is uniquely determined by the property that for each v ∈ V , σ maps

{i : wi = v} onto {j : ŵj = v} monotonically. In particular, the permutation in

Proposition 3.2(iii) is unique.

Remark 3.8. The method of proof more generally shows that arbitrary words w

and ŵ are equivalent if and only if there exists a G-monotone matching from w

to ŵ. Indeed, Lemma 3.5 shows that equivalence of w and ŵ implies the existence

of a G-monotone matching. On the other hand, suppose there is a G-monotone

matching from w to ŵ. Note w and ŵ are equivalent to some reduced words w′

and ŵ′, and hence there are G-monotone matchings from w′ to w, from w to ŵ,

and from ŵ to ŵ′. The composition yields a G-monotone matching from w′ to ŵ′,

so by Proposition 3.2, w′ and ŵ′ are equivalent by swaps, hence also w and ŵ are

equivalent.

§3.2. Relatively G-reduced words

In order to compute conditional expectations and study relative properties of sub-

algebras, we use a relative notion of reduced word as in [BoCa24, Lem. 1.7].

Definition 3.9. Let G = (V, E) be a graph and V1, V2 ⊆ V. Let w be a word in

the alphabet V.
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(1) w is G-reduced relative to V1 on the left if v1w is G-reduced for every letter

v1 ∈ V1.

(2) w is G-reduced relative to V2 on the right if wv2 is G-reduced for every v2 ∈ V2.

(3) w is G-reduced relative to (V1, V2) if both (1) and (2) hold.

Remark 3.10. In the case of ∅ ⊂ V, we take w being G-reduced relative to ∅ on

the left or right to just mean that w is G-reduced. Consequently, w is G-reduced

relative to V1 on the left if and only if w is G-reduced relative to (V1,∅). Similarly,

w is G-reduced relative to V2 on the right if and only if w is G-reduced relative

to (∅, V2). We also note that all relatively G-reduced words are, in particular,

G-reduced words.

The next three lemmas show existence and uniqueness of a certain factoriza-

tion of reduced words based on the vertex sets V1 and V2. This will be useful in

Section 5 when we compute the fusion rules for bimodules arising from subgraphs.

Lemma 3.11. Let G = (V, E) be a graph and V1, V2 ⊆ V. Suppose that w =

w(1) · w(2) · w(3), where

(1) w(1) is a G-reduced word in the alphabet V1,

(2) w(2) is G-reduced relative to (V1, V2),

(3) w(3) is a word in the alphabet V2 that is G-reduced relative to (U,∅), where U

is the set of vertices in V1 ∩ V2 that are adjacent to all the letters in w(2).

Then w is G-reduced.

Proof. Denote w = w1 · · ·wn and suppose that i < j with wi = wj . We must find

some i < k < j such that wk is not adjacent to wi = wj . We proceed in cases:

(A) If wi and wj are both from w(1), the claim follows because w(1) is reduced.

Similarly for w(2) and w(3).

(B) Suppose that wi comes from w(1) and wj comes from w(2). Because wi ∈ V1
and w(2) is G-reduced relative to (V1, V2), the word wi ·w(2) is G-reduced, and

hence there exists some index k < j, within w(2), such that wk is not equal

or adjacent to wi = wj .

(C) Suppose that wi comes from w(2) and wj comes from w(3). Using that wj ∈ V2
and thus w(2) ·wj is G-reduced, we can argue analogously to the previous case.

(D) Finally, suppose that wi is from w(1) and wj is from w(3). Note that wi = wj
must be in V1 ∩ V2. Then there are two subcases: (a) wi ̸∈ U and (b) wi ∈ U .

For (a), the definition of U implies there exists some index k from w(2) such

that wk is not adjacent to wi. Since k is from w(2), we have i < k < j, so
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we are done. For (b), because w(3) is G-reduced relative to (U,∅), we know

wi · w(3) is G-reduced, and so there is some index k < j from w(3) such that

wk is not adjacent to wi.

Lemma 3.12. Let G = (V, E) be a graph and V1, V2 ⊆ V. Every word w is equiva-

lent to a word of the form w(1) ·w(2) ·w(3) satisfying the conditions in Lemma 3.11.

Proof. Since every word is equivalent to a G-reduced word, we may assume without

loss of generality that w is G-reduced. If all the letters of w are in V1, then the

desired decomposition is w(1) = w; w(2) and w(3) are the empty word.

So without loss of generality, we may assume that {j : wj /∈ V1} ̸= ∅. Set

a(w) = min{j : wj /∈ V1}. Let C be the set of G-reduced words equivalent to w.

Let w′ be an element in C which maximizes a(w′):

b(w′) =

{
a(w′) − 1 if

{
j ≥ a(w′) : w′

j ̸∈ V2
}

= ∅,

max
{
j : w′

j ̸∈ V2
}

if
{
j ≥ a(w′) : w′

j ̸∈ V2
}
̸= ∅.

Let w′′ be an element of C that minimizes b(w′′) subject to the constraint that

a(w′′) = a(w′). Write a = a(w′) = a(w′′) and b = b(w′′). Write w′′ = w(1) · w(2) ·
w(3), where

w(1) = w′′
1 · · ·w′′

a−1,

w(2) = w′′
a · · ·w′′

b ,

w(3) = w′′
b+1 · · ·w′′

ℓ ,

where ℓ is the length of w′′. In the special case where {j ≥ a(w′) : w′
j ̸∈ V2} = ∅,

meaning that all the letters starting at index a are in V2, then b = a − 1, and

so w(2) is the empty word. In all cases, w(1) is a word in the alphabet in V1 and

w(3) is a word in the alphabet V2. Moreover, w(1), w(2), and w(3) are all G-reduced

since they are subwords of the G-reduced word w′′. We will complete the proof via

a series of claims.

Claim 1. w(2) · w(3) is G-reduced relative to (V1,∅).

Fix v ∈ V1 and let i < j be two indices in v ·w(2) ·w(3) labeled with the same

vertex. We must show there is some index in between labeled by a non-adjacent

vertex. If the two indices i and j are both from w(2) ·w(3), then it suffices to note

that w(2) ·w(3) is G-reduced since it is a subword of w′′, which is reduced because

it is equivalent by admissible swaps to w. Otherwise, i corresponds to the first

letter v in v ·w(2) ·w(3). Suppose for contradiction that there does not exist some

index k between i and j such that w′′
k is not adjacent to w′′

j . Then all the letters

between v and w′′
j in v ·w(2) ·w(3) are adjacent to v, and hence w′′

j can be moved
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past them to the left by repeated swaps, so that it comes to the left-hand side of

w(2) · w(3). Thus, by grouping the letter w′′
j with w(1) instead of w(2) · w(3), we

obtain a contradiction to the assumption that a(w′′) is maximal.

Claim 2. w(2) is G-reduced relative to (∅, V2).

In the case where b = a − 1 or equivalently w(2) is the empty word, there is

nothing to prove. So assume w(2) is non-empty. Fix v ∈ V2 and let i < j be two

indices in w(2) · v labeled by the same vertex. Note that w(2) is G-reduced, so if i

and j are both from w(2) then we are done. Otherwise, j corresponds to the last

letter v in w(2) · v. If w′′
k is adjacent to w′′

i for all k > i among the indices of w(2),

then arguing as in Claim 1 we would contradict minimality of b(w′′).

Observe that the combination of Claims 1 and 2 gives that w(2) is G-reduced

relative to (V1, V2). It remains to show that w(3) is G-reduced relative to (U,∅),

where U is the set of vertices in V1 ∩ V2 that are adjacent to all the letters in w(2)

(of course, in the case where w(2) is the empty word, we have U = V1 ∩ V2).

Claim 3. w(3) is G-reduced relative to (U,∅).

Fix v ∈ U and let i < j be two indices in v · w(3) labeled by the same

vertex. Since w(3) is G-reduced, if i and j are both from w(3) then we are done. So

suppose i corresponds to v and that there is some index j in w(3) with w′′
j = v.

Since w(2) ·w(3) is G-reduced relative to (V1,∅) by Claim 1 and U ⊆ V1, there must

be some index k < j in w(2) · w(3) with w′′
k not adjacent to v = w′′

j . By definition

of U , v is adjacent to all the letters in w(2). Hence, the index k must have come

from w(3). Thus, wk occurs as a letter in v ·w(3) between v and w′′
j , and w′′

k is not

adjacent to v.

Lemma 3.13. Let G = (V, E) be a graph and V1, V2 ⊆ V. Let w = w(1) ·w(2) ·w(3)

and ŵ = ŵ(1) · ŵ(2) · ŵ(3) satisfy the conditions in Lemma 3.11 (here, in the third

condition for w and ŵ, we use respectively U and Û , where U and Û are the sets

of vertices in V1 ∩V2 that are adjacent to all letters in w(2) and ŵ(2) respectively).

If w ≈ ŵ, then w(1) ≈ ŵ(1), w(2) ≈ ŵ(2), and w(3) ≈ ŵ(3).

Proof. First, observe that w(2) ·w(3) and ŵ(2) · ŵ(3) are both G-reduced relative to

(V1,∅), by applying Lemma 3.11 to v · w(2) · w(3) and ŵ(2) · ŵ(3) to v ∈ V1.

Now, since w ≈ ŵ, Proposition 3.2 shows that there is a permutation σ with

wi = ŵσ(i), such that if i < j and wi is not adjacent to wj , then σ(i) < σ(j).

We claim that σ maps the indices of w(2) · w(3) into the letters of ŵ(2) · ŵ(3). We

proceed by induction on the indices of w(2) ·w(3), from left to right. Let i be one of

these indices and suppose the claim is known for all indices to its left in w(2) ·w(3).

There are now two cases:
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� Suppose wi ̸∈ V1. Then ŵσ(i) = wi is not in V1 and hence σ(i) cannot be one

of the indices in ŵ(1), so it must be one of the indices in ŵ(2) · ŵ(3).

� Suppose that wi ∈ V1. Then because w(2) ·w(3) is G-reduced relative to (V1,∅),

we know wi · w(2) · w(3) is G-reduced, so there must exist some index j < i in

w(2) ·w(3) such that wj is not adjacent to wi in G. By the induction hypothesis,

σ(j) is one of the indices in ŵ(2)·ŵ(3). By Lemma 3.5, we must have σ(i) > σ(j)

and hence σ(i) is one of the indices in ŵ(2) · ŵ(3), as desired.

By symmetrical reasoning, σ−1 must map the indices of ŵ(2) · ŵ(3) into the indices

of w(2) · w(3). Therefore, σ restricts to G-monotone matchings from w(1) to ŵ(1)

and from w(2) ·w(3) to ŵ(2) · ŵ(3). That is, w(1) ≈ ŵ(1) and w(2) ·w(3) ≈ ŵ(2) · ŵ(3).

Finally, we argue σ as above maps the indices of w(2) into the indices of ŵ(2).

We again proceed by induction on the indices of w(2), this time from right to left.

Let i be an index in w(2) and the claim is already known for all indices j to its

right. We again have two cases:

� If wi ̸∈ V2, then σ(i) must be an index in ŵ(2).

� If wi ∈ V2, then since w(2) is G-reduced relative to (V1, V2), then there is some

index j > i in w(2) such that wj is not adjacent to wi. Then σ(i) < σ(j),

which is by the induction hypothesis an index in ŵ(2). Thus, σ(i) is an index

in ŵ(2).

Symmetrically, σ−1 maps the indices of ŵ(2) into the indices of w(2). Thus, as

above, we have w(2) ≈ ŵ(2) and w(3) ≈ ŵ(3).

§3.3. Computation of conditional expectation

We recall the following facts which follow from the Fock space description of L2

of the graph product in [CF17, Sect. 2.1].

Lemma 3.14 ([CF17, Rem. 2.7]). Let G = (V, E) be a graph, let {(Mv, φv) : v ∈
V} be a family of statial von Neumann algebras, and (M,φ) =

v∈G
(Mv, φv).

The ∗-subalgebra generated by (Mv)v∈V is spanned by 1 and elements of the form

x1 · · ·xm, where xj ∈Mwj with φ(xj) = 0 for some G-reduced word w = w1 · · ·wm.

Lemma 3.15 (Comments following [CF17, Rem. 2.11]). Let G=(V, E) be a graph

and (M,φ) =
v∈G

(Mv, φv). Let w = w1 · · ·wm and w̃ = w̃1 · · · w̃n be G-reduced
words. Let xj ∈Mwj ∩ ker(φ) and x̃j ∈Mw̃j

∩ ker(φ).

(i) If w and w̃ are not equivalent, then φ((x1 · · ·xm)∗(x̃1 · · · x̃n)) = 0.

(ii) If w and w̃ are equivalent, then

φ((x1 · · ·xm)∗(x̃1 · · · x̃m)) = φ(x∗1x̃σ(1)) · · ·φ(x∗mx̃
∗
σ(m)),
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where the permutation σ : [m] → [m] is the G-monotone matching from w to

w̃ guaranteed by Lemma 3.6, which also gives m = n.

Lemma 3.16 ([CF17, Rem. 2.14]). Let G = (V, E) be a graph, let {(Mv, φv) : v ∈
V} be a family of statial von Neumann algebras, let (M,φ) =

v∈G
(Mv, φv), and

let V0 ⊆ V. For a G-reduced word w = w1 · · ·wm, if xj ∈Mwj
for each j = 1, . . . ,m

then EMV0
[x1 · · ·xm] = 0 unless w1, . . . , wn ∈ V0.

Our goal is to prove a conditional analogue of Lemma 3.15.

Lemma 3.17. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a family

of statial von Neumann algebras, and V1, V2 ⊆ V. Let w = w1 · · ·wm and w̃ =

w̃1 · · · w̃n be G-reduced words relative to (V1, V2). Let xj ∈Mwj
∩ ker(φ) and x̃j ∈

Mw̃j
∩ ker(φ), and write

x = x1 · · ·xm, x̃ = x̃1 · · · x̃n.

(In the case that w or w̃ is empty, that is, m = 0 or n = 0, we take by convention

x = 1 or x̃ = 1 respectively.) Let U be the set of vertices in V1∩V2 that are adjacent

to all letters of w (note: if w is the empty word, then U = V1∩V2, by convention).

Then

(3.1) EMV2
(x̃∗yx) = φ(x̃∗x)EMU

(y), ∀y ∈MV1
.

In particular, EMV2
(x̃∗yx) = 0 for all y ∈MV1

if w and w̃ are not equivalent.

Proof. It suffices to show that for all y ∈MV1 and z ∈MV2 , we have

(3.2) φ(x̃∗yxz) = φ(x̃∗x)φ(EMU
(y)z).

By Lemma 3.14, it further suffices to prove the claim when

(3.3) z = z1 · · · zℓ, zj ∈Maj ∩ ker(φ),

where a = a1 · · · aℓ is a G-reduced word in the alphabet V2. Additionally, by

Proposition 3.2(ii) and Lemma 3.12, we can assume without loss of generality that

a = a(1) ·a(2), where a(1) is a G-reduced word in U and a(2) is G-reduced relative to

(U,∅). This results in a corresponding factorization z = z(1)z(2) with z(1) ∈ MU .

Then

φ(x̃∗yxz(1)z(2)) = φ(x̃∗yz(1)xz(2)).

Thus, it suffices to prove the claim with y replaced by yz(1) and z replaced by z(2).

In other words, we can assume without loss of generality that z is given by

(3.3) where a is G-reduced relative to (U,∅). Furthermore, again by Lemma 3.14,
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it suffices to consider the case where

y = y1 · · · yk, yj ∈Mbj ∩ ker(φ),

where b = b1 · · · bk is a G-reduced word in V1. By Lemma 3.11, b ·w ·a is G-reduced.

Moreover, by Lemma 3.13, the only way for w̃ and b · w · a to be equivalent is if

w̃ ≈ w and ∅ ≈ b and ∅ ≈ a (hence a and b are empty). Similarly, the only way

for w̃ and b · w to be equivalent is if w ≈ w̃ and b = ∅. Thus, the claim can be

checked in several cases:

� In the case a = b = ∅, so then y = z = 1, we have

φ(x̃∗yxz) = φ(x̃∗x) = φ(x̃∗x)φ(EMU
[1]1) = φ(x̃∗x)φ(EMU

[y]z).

� In the case a = ∅ and b ̸= ∅, then since b · w is not equivalent to w̃, we

get φ(x̃∗yx) = 0 by Lemma 3.15, hence the left-hand side of (3.1) is zero.

Meanwhile, φ(y) = 0 by definition of the graph product, so the right-hand

side of (3.1) is φ(EMU
[y]) = φ(y) = 0.

� In the case a ̸= ∅, then again b · w · a is not equivalent to w̃, and hence the

left-hand side of (3.2) is zero, by Lemma 3.15. Meanwhile, since the word a is

G-reduced relative to (U,∅), the element z is orthogonal MU by Lemma 3.16,

hence φ(EMU
[y]z) = 0, so the right-hand side of (3.2) is zero.

§4. Non-intertwining

Let (M, τ) be a tracial von Neumann algebra and B,N ≤ M . We say that B

intertwines into N inside M if there exist non-zero projections p0 ∈ B, q0 ∈ N ,

and a normal unital ∗-homomorphism θ : p0Pp0 → q0Qq0, together with a non-

zero partial isometry v ∈ q0Mp0 such that v∗v = p0, vv∗ = q0, and θ(x)v = vx for

all x ∈ p0Pp0. In this case one writes N ⪯M B.

Theorem 4.1 ([Pop06, Sect. 2]). Let (M, τ) be a tracial von Neumann algebra,

p, q ∈ P(M) projections, and B ≤ pMp, N ≤ qMq. Then the following are equiv-

alent:

(i) N ̸⪯M B;

(ii) there is a net (un)n∈I in U(N) with ∥EB(xuny)∥2 → 0 for all x, y ∈M ;

(iii) for any subgroup G ≤ U(N) with N = W ∗(G) there is a net (un)n∈I in G

satisfying ∥EB(xuny)∥2 → 0 for all x, y ∈M ;

(iv) any P–Q-subbimodule K of pL2(M)q satisfies dim(KQ) = +∞.
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In this section we completely characterize when two subalgebras correspond-

ing to induced subgraphs do not intertwine into each other (partial results were

previously obtained in [CF17, Lem. 2.27]). We will say “N is diffuse relative to B

in M” to mean N ̸⪯M B. This is motivated by the case B = C, since N ̸⪯M C
means precisely that N is diffuse. This also provides intuition for our main result

in this section, since in our setting N being diffuse relative to B in M will be

equivalent to a combination of conditions which either require that a vertex alge-

bra is diffuse or a lack of edges between subgraphs (i.e. some “free independence

outside the subgraph”) in a manner analogous to Theorem 0.5(1).

Proposition 4.2. Suppose that G = (V, E) is a graph, and for each v ∈ V let

(Mv, τv) be a tracial von Neumann algebra such that Mv contains a trace zero uni-

tary. Let (M, τ) =
v∈V

(Mv, τv). For V1, V2 ⊆ V, the following are equivalent:

(i) MV1
is diffuse relative to MV2

in M ;

(ii) MV1
is diffuse relative to MV1∩V2

in M ;

(iii) at least one of the following holds:

(a) there are v ∈ V1 \ V2 and v′ ∈ V1 ∩ V2 with v ̸∼ v′; or

(b) MV1\V2
is diffuse;

(iv) at least one of the following holds:

(a) there are v ∈ V1 \ V2 and v′ ∈ V1 with v ̸= v′ and v ̸∼ v′; or

(b) there is a v ∈ V1 \ V2 for which Mv is diffuse.

Proof. (i) ⇒ (ii). Using the characterization from Theorem 4.1(ii), this follows

from the identity EA = EA ◦ EB for von Neumann subalgebras A ⊂ B ⊂ M

and the fact that the trace-preserving conditional expectation is contractive with

respect to the L2 norm.

(ii) ⇒ (iii). We proceed by contrapositive and assume (iiia) and (iiib) are false. It

follows that

MV1
= MV1\V2

⊗̄MV1∩V2
,

and MV1\V2
is not diffuse. Let z ∈ MV1\V2

be a central projection such that

zMV1\V2
∼= Md(C) for some d ∈ N. Suppose

u = (ui,j)
d
i,j=1 ∈Md(MV1∩V2) ∼= (z ⊗ 1)MV1

is a unitary. Observe that

1 =
1

d

d∑
i,j=1

∥ui,j∥22 =
1

d

d∑
i,j=1

∥EMV1∩V2
(eiiueji)∥22.
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Hence, (z⊗1)MV1
(z⊗1) ⪯(z⊗1)M(z⊗1) MV1∩V2

, and consequentlyMV1
⪯M MV1∩V2

.

(iii) ⇒ (iv). We again proceed by contrapositive and assume (iva) and (ivb) are

false. Then every v ∈ V1 \ V2 must be adjacent to every v′ ∈ V1, so in particular

(iiia) fails. Moreover, any two vertices in V1 \ V2 are adjacent, that is, V1 \ V2
is a complete graph. Since (ivb) fails, we know that for every v ∈ V1 \ V2 there

is a minimal projection pv in Mv. In particular, p =
⊗

v∈V1\V2
pv is a minimal

projection in MV1\V2
, and thus MV1\V2

is not diffuse and hence (iiib) fails.

(iva) ⇒ (i). Let v, v′ be as in (iva). Let u0 be a trace zero unitary in Mv′ and let

u1 be a trace zero unitary in Mv. We claim that for x, y ∈M , we have

(4.1) lim
k→∞

∥EMV2
[x(u0u1)ky]∥2 = 0.

It suffices to show this for a set of x and y that have dense linear span. Hence, by

Lemma 3.14, we may assume that x = x1 · · ·xm with xj ∈ Mvj for a G-reduced

word w1 · · ·wm and with φ(xj) = 0 (in the case that x = 1, we take w to be the

empty word). Similarly, assume that y = y1 · · · yn with φ(yj) = 0 and yj ∈ Mŵj

with ŵ a reduced word.

By Lemma 3.12, w is equivalent to w(1) ·w(2) ·w(3), where w(1) is a G-reduced

word in V2, w(3) is G-reduced word in {v, v′}, and w(2) is a G-reduced word relative

to (V2, {v, v′}). By swapping the xj according to the swaps to transform w into

w(1) · w(2) · w(3), we then obtain a factorization x = x(1)x(2)x(3), where x(j) is a

product of centered elements indexed by the word w(j). Similarly, ŵ is equivalent

to ŵ(1) · ŵ(2) · ŵ(3), where ŵ(1) is a reduced word in {v, v′}, ŵ(3) is a reduced word

in V2, and ŵ(2) is G-reduced relative to ({v, v′}, V2). Write y = y(1)y(2)y(3) in an

analogous way.

Since x(1) and y(3) are in MV2
, we have

EMV2
[x(1)x(2)x(3)(u0u1)ky(1)y(2)y(3)] = x(1)EMV2

[x(2)x(3)(u0u1)ky(1)y(2)]y(3).

Next, by Lemma 3.17, since w(2) is (V2, {v, v′})-reduced and ŵ(2) is ({v, v′}, V2)-

reduced, this equals

x(1)EMV2
[x(2)x(3)(u0u1)ky(1)y(2)]y(3) = φ(x(2)y(2))x(1)EMU

[x(3)(u0u1)ky(1)]y(3),

where U is the set of vertices in V2 ∩ {v, v′} that are adjacent to all the letters in

w(2). Hence, in order to prove (4.1) and hence finish (iva) ⇒ (i), it suffices to show

that

lim
k→∞

∥EMU
[x(3)(u0u1)ky(1)]∥2 = 0.
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Since v′ is not in V2, then U must equal ∅ or {v}. Hence, since φ(x(3)(u0u1)ky(1)) =

φ ◦ EMv [x(3)(u0u1)ky(1)], it suffices to show that

lim
k→∞

∥EMv [x(3)(u0u1)ky(1)]∥2 = 0.

However, for such x(3) and y(1) the above sequence is zero for sufficiently large k

by free independence (see also [GEPT25, Proof of Prop. 3.16]).

(ivb) ⇒ (i). Suppose that Mv is diffuse for some v ∈ V1 \V2, and thus there exists

a Haar unitary u ∈Mv (i.e. a unitary so that τ(uk) = 0 for any k ∈ Z \ {0}). We

claim that for x, y ∈M , we have

(4.2) lim
k→∞

∥EMV2
[xuky]∥2 = 0.

As in the previous case, it suffices to consider x and y which are products of

centered elements according to words w and ŵ respectively. And again, we take a

decomposition w ≈ w(1) ·w(2) ·w(3) as in Lemma 3.12 with respect to (V2, {v}) and

a decomposition ŵ ≈ ŵ(1) ·ŵ(2) ·ŵ(3) with respect to ({v}, V2). Let x = x(1)x(2)x(3)

and y = y(1)y(2)y(3) be the resulting factorizations of x and y. Then

EMV2
[x(1)x(2)x(3)uky(1)y(2)y(3)] = x(1)EMV2

[x(2)x(3)uky(1)y(2)]y(3)

= x(1)φ(x(2)y(2))φ(x(3)uky(1))y(3),

where the second equality follows from Lemma 3.17. Here, the set U is empty

since {v} ∩ V2 = ∅. Because u is a Haar unitary, we have uk → 0 weakly as

k → ∞ and thus φ(x(3)uky(1)) → 0. This completes the proof of (4.2) and hence

the proposition.

§5. Bimodules from subgraphs and their fusion rules

Let U ⊆ W . We want to understand the basic construction of MU inside MW .

Hence we want to understand L2(MU , φU ) as an MW –MW -bimodule. More gen-

erally, for V1, V2 ⊆W , we want to understand MW as an MV1–MV2 -bimodule. We

first recall a few facts about standard forms and Connes fusion of bimodules.

Given a statial von Neumann algebra (M,φ), recall that L2(M,φ) is an M–

M -bimodule with actions

x · ξ · y = x(Jφy
∗Jφ)ξ,

where Jφ is the modular conjugation operator. We let M ∋ x 7→ x̂ ∈ L2(M,φ)

denote the embedding determined by ⟨x̂, ŷ⟩φ = φ(y∗x). We will say x ∈ M is

φ-analytic if the modular automorphism group R ∋ t 7→ σφt (x) has an extension
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to an entire function (such elements are dense by [Tak03, Lem. VIII.2.3]). In this

case, for z ∈ C we write σz(x) for the image of z under this (necessarily unique)

entire extension. It follows that ŷ · x = (yσ−i/2(x))̂ whenever x is φ-analytic and

y ∈M .

We will also need to consider the Connes fusion of bimodules over σ-finite von

Neumann algebras. We refer the reader to [OOT17, Sect. 2] for general details, but

for our purposes it suffices to consider the following special case. Let (M,φ) and

(N,ψ) be statial von Neumann algebras, and let B ⊂ M be a von Neumann

subalgebra admitting a φ-preserving conditional expectation EB : M → B. If H is

a B–N -bimodule, then the M–N -bimodule

L2(M,φ) ⊗
B
H

is formed by separation and completion of the algebraic tensor product M̂ ⊙ H
with respect to

⟨x̂⊗ ξ, ŷ ⊗ η⟩ := ⟨EB(y∗x) · ξ, η⟩.
We will denote the equivalence class of x̂⊗ ξ by x̂⊗B ξ. We also note that

L2(M,φ) ⊗B L2(B,φ|B) ∼= L2(B,φ|B) ⊗B L2(M,φ) ∼= L2(M,φ).

That is, L2(B,φ|B) is an identity element with respect to the operation ⊗B .

Let us now return to the context of graph products over G = (V, E). For

V1, V2 ⊂ V, we will build a basis over MV1–MV2 by using orthonormal bases for

L2(Mv, φv)⊖C1̂. Since we are not assuming that our von Neumann algebras have

separable predual, we will not a priori be able to build an orthonormal basis for

L2(Mv, φv) ⊖ C1̂ using elements of Mv. For this reason, we will need to extend

some of the results of Section 3.3 to vectors in L2(Mv, φv) ⊖ C1̂.

Lemma 5.1. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a family of

statial von Neumann algebras, and let (M,φ) =
v∈G

(Mv, φv).

(i) Let w = w1 · · ·wℓ be a G-reduced word. Then there is a unique continuous

multilinear map

m :

ℓ∏
i=1

(L2(Mv, φv) ⊖ C1̂) → L2(M,φ) ⊖ C1̂,

such that m(x1, . . . , xℓ) = (x1 · · ·xℓ)̂ when xi ∈Mwi
∩ ker(φwi

). Moreover,

∥m(ξ1, . . . , ξℓ)∥φ =

ℓ∏
i=1

∥ξj∥φ, ξ = (ξ1, . . . , ξℓ) ∈
ℓ∏
j=1

(L2(Mwj
, φwj

) ⊖ C1̂).

We denote m(ξ1, . . . , ξℓ) = ξ1 · · · ξℓ.
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(ii) Let w = w1 · · ·wm and w̃ = w̃1 · · · w̃n be G-reduced words. Set ξ = ξ1 · · · ξm
and ξ̃ = ξ̃1 · · · ξ̃n, where ξj ∈ L2(Mwj

, φwj
) ⊖ C1̂, j = 1, . . . ,m, and ξ̃j ∈

kerL2(Mw̃j
, φw̃j

)⊖C1̂, j = 1, . . . , n. If w, w̃ are not equivalent, then ξ, ξ̃ are

orthogonal. If w and w̃ are equivalent, then

⟨ξ, ξ̃⟩φ =

m∏
j=1

⟨ξj , ξ̃σ(j)⟩φ,

where the permutation σ : [m] → [m] is the G-monotone matching from w to

w̃ guaranteed by Lemma 3.6.

Proof. (i). The uniqueness of m follows from the density of Mw ∩ ker(φw) in

L2(Mw, φw) ⊖ C1̂. By Lemma 3.15, as well as the density of Mw ∩ ker(φw) in

L2(Mw, φw) ⊖ C1̂, it follows that there is a unique isometry

V :

ℓ⊗
j=1

(L2(Mwj
, φwj

) ⊖ C1̂) → L2(M,φ) ⊖ C1̂

such that V (x̂1 ⊗ · · · ⊗ x̂ℓ) = (x1 · · ·xℓ)̂ . Setting m(ξ1, . . . , ξℓ) = V (ξ1 ⊗ · · · ⊗ ξℓ)

completes the proof.

(ii). Observe that if

ξ ∈ m

( m∏
j=1

(Mwj
∩ ker(φwj

))

)
and ξ̃ ∈ m

( n∏
j=1

(Mw̃j
∩ ker(φw̃j

))

)
then the claim follows from Lemma 3.15. The norm equality in (i) implies these

sets are dense in

m

( n∏
j=1

(L2(Mwj
, φwj

) ⊖ C1̂)

)
and m

( n∏
i=1

(L2(Mw̃i
, φw̃i

) ⊖ C1̂)

)
,

respectively, which completes the proof.

Remark 5.2. Using Haagerup’s theory of non-commutative Lp-spaces ([Haa79]),

one can also make sense of m(ξ1, . . . , ξn) = ξ1 · · · ξn as a product of operators

affiliated with the continuous core of M . The fact that such a product remains

in L2(M,φ) is a consequence of their relations via φ, which is determined by the

graph product structure of M .

We will first analyze cyclic submodules generated by products over relatively

G-reduced words.
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Lemma 5.3. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a family of

statial von Neumann algebras, let (M,φ) =
v∈G

(Mv, φv), and let V1, V2 ⊆ V.
For w = w1 · · ·wn a G-reduced word relative to (V1, V2), let

ξ = ξ1 · · · ξn,

where ξj ∈ L2(Mwj
, φwj

) ⊖ C1̂ with ∥ξj∥φ = 1 for j = 1, . . . , n. (In the case that

w is empty, we take by convention ξ = 1̂.) Let Hξ be the MV1–MV2-subbimodule

of L2(M,φ) generated by ξ and denote

U :=
{
v ∈ V1 ∩ V2 : v ∼ wj , j = 1, . . . , n

}
.

(i) There is a unique MV1
–MV2

-bimodular unitary Hξ → L2(MV1
, φV1

) ⊗MU

L2(MV2 , φV2) which sends ξ to 1 ⊗MU
1.

(ii) If w̃ = w̃1 · · · w̃m is another G-reduced word relative to (V1, V2) and ξ̃ =

ξ̃1 · · · ξ̃m is a corresponding vector, then Hξ ⊥ Hξ̃ unless w and w̃ are equiva-

lent and ⟨ξ, ξ̃⟩φ ̸= 0.

Proof. (i). It suffices to show that

(5.1) ⟨a · (1 ⊗MU
1) · b, 1 ⊗MU

1⟩ = ⟨a · ξ1 · · · ξn · b, ξ1 · · · ξn⟩φ,

for all a ∈MV1 and all φ-analytic b ∈MV2 . By Lemma 5.1 for fixed a, b, the right-

hand side is a continuous function of (ξ1, . . . , ξn) ∈
∏n
j=1(L2(Mwj

, φwj
) ⊖ C1̂).

Thus, by density of Mw ∩ ker(φw) in L2(Mw, φw) ⊖ C1̂, we may reduce to the

case, where ξj = xj where xj ∈Mwj
∩ ker(φwj

) and φ(x∗jxj) = 1. In this case, set

x = x1 · · ·xj so that ξ = x̂.

The left-hand side of (5.1) is

⟨â⊗MU
(σ−i/2(b))̂ , 1 ⊗MU

1⟩ = φ(EMU
(a)σ−i/2(b)),

and the right-hand side of (5.1) is

⟨(axσ−i/2(b))̂ , x̂⟩φ = φ(x∗axσ−i/2(b)) = φ(EMV2
(x∗ax)σ−i/2(b)).

Thus Lemma 3.17 implies (5.1).

(ii). It is enough to show that for all a ∈MV1
and φ-analytic b ∈MV2

that

(5.2) ⟨a · ξ · b, ξ̃⟩φ = 0,

if w, w̃ are not equivalent, and that

⟨a · ξ · b, ξ̃⟩φ = ⟨ξ, ξ̃⟩φφ(EMU
(a)σ−i/2(b))
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if w, w̃ are equivalent. As in (i) we may reduce to the case that ξ = x̂, ξ̃ = ̂̃x, where

x = x1 · · ·xn, x̃ = x̃1 · · · x̃m, and xj ∈ Mwj ∩ ker(φwj ) and x̃i ∈ Mw̃i
∩ ker(φw̃i

).

We then have

⟨a · x̂ · b, ̂̃x⟩φ = φ((x̃)∗axσ−i/2(b)) = φ(EMV2
((x̃)∗ax)σ−i/2(b)),

so that our desired conclusion follows from Lemma 3.17.

Our main result in this section provides a classification of L2(M) as a bimodule

over two subalgebras coming from induced subgraphs. This also yields the first part

of Theorem 0.4.

Theorem 5.4. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a family of

statial von Neumann algebras, let (M,φ) =
v∈G

(Mv, φv), and let V1, V2 ⊆ V.
For each U ⊂ V1 ∩V2, denote by WG(V1, V2, U) the set of G-reduced words relative

to (V1, V2) of the form w1 · · ·wℓ satisfying U = {v ∈ V1∩V2 : v ∼ wj , j = 1, . . . , ℓ}.
Set

kG(V1, V2, U) :=
∑

w1···wℓ∈
WG(V1,V2,U)

ℓ∏
j=1

(
dim(L2(Mwj , φwj )) − 1

)
.

Then one has

MV1
L2(M,φ)MV2

∼=
⊕

U⊆V1∩V2

(MV1
L2(MV1 , φV1)

⊗
MU

L2(MV2
, φV2

)MV2
)⊕kG(V1,V2,U).(5.3)

Proof. For each v ∈ V, fix an orthonormal basis Bv for L2(Mv, φv) ⊖ C. By

Lemma 5.3, the MV1
–MV2

-bimodules{
Hξ : ξ = ξ1 · · · ξℓ, w = w1 · · ·wℓ ∈ WG(V1, V2, U), ξj ∈ Bwj

for j = 1, . . . , ℓ
}

are mutually orthogonal and satisfy Hξ
∼= L2(MV1

, φV1
)⊗MU

L2(MV2
, φV2

), where

U = {v ∈ V1 ∩ V2 : v ∼ wj , j = 1, . . . , ℓ}. For each U ⊆ V1 ∩ V2, the num-

ber of copies of MV1
L2(MV1

, φV1
) ⊗MU

L2(MV2
, φV2

)MV2
is given by (5.3), since

dim(L2(Mv, φv) ⊖ C1̂) = dim(L2(Mv, φv)) − 1.

The proof of the direct sum decomposition will be complete once we verify

that the bimodules Hξ span a dense subset of L2(M,φ). From Lemma 3.14, we

know that L2(M,φ) is densely spanned by ξ1 · · · ξℓ for ξj ∈ Bwj for reduced words

w1 · · ·wℓ. By Lemma 3.12, an arbitrary reduced word w is equivalent to a word

of the form v · w′ · u where v is a reduced word in V1, u is a reduced word in V2,

and w′ is reduced relative to (V1, V2). This shows that the span of the subspaces
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Hξ contains all ξ1 · · · ξℓ for xj ∈ Bwj
for reduced words w1 · · ·wℓ, and thus the

bimodules Hξ densely span L2(M,φ).

For future applications to relative amenability, we determine the fusion rules

for these bimodules in the following proposition. This also gives the rest of Theo-

rem 0.4.

Proposition 5.5. For V1, V2 ⊆ V and U ⊆ V1 ∩ V2, denote

HU (V1, V2) :=MV1
L2(MV1

, φV1
) ⊗
MU

L2(MV2
, φV2

)MV2
,

and denote by G2 the subgraph of G induced by V2. Then we have the following

fusion rules: for U1 ⊆ V1 ∩ V2 and U2 ⊆ V2 ∩ V3,

HU1
(V1, V2) ⊗MV2

HU2
(V2, V3) ∼=

⊕
W⊆U1∩U2

HW (V1, V3)⊕kG2
(U1,U2,W ).

Proof. First, observe that

HU1
(V1, V2) ⊗

MV2

HU2
(V2, V3)

=
(
MV1

L2(MV1
, φV1

) ⊗
MU1

L2(MV2
, φV2

)
)
MV2

⊗
MV2

(MV2
L2(MV2

, φV2
)) ⊗
MU2

L2(MV3
, φV3

)MV3

∼=
(
MV1

L2(MV1
, φV1

) ⊗
MU1

L2(MV2
, φV2

)
)

⊗
MU2

L2(MV3
, φV3

)MV3
.

Then

MU1
L2(MV2 , φV2)MU2

∼=
⊕

W⊆U1∩U2

(
MU1

L2(MU1 , φU1)

⊗
MW

L2(MU2
, φU2

)MU2

)⊕kG2
(U1,U2,W )

.

Applying L2(MV1
)⊗MU1

on the left and ⊗MU2
L2(MV2

) on the right, we get

HU1(V1, V2) ⊗MV2
HU2(V2, V3)

∼=
⊕

W⊆U1∩U2

(
MV1

L2(MV1
, φ) ⊗

MW

L2(MV2
, φ)MV2

)⊕kG2
(U1,U2,W )

=
⊕

W⊆U1∩U2

HW (V1, V2)⊕kG2
(U1,U2,W ).
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As a sample application, we characterize weak coarseness of subalgebras cor-

responding to induced subgraphs. This characterization of coarseness is stated in

terms of amenability of certain subalgebras, which we provide a complete charac-

terization of in Proposition 6.3.

Theorem 5.6. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a fam-

ily of statial von Neumann algebras, and let (M,φ) =
v∈V

(Mv, φv). Assume

dim(Mv) ≥ 2 for all v ∈ V. For V0 ⊆ V, L2(M,φ)⊖L2(MV0 , φV0) is weakly coarse

as an MV0
–MV0

-bimodule if and only if MB(v)∩V0
is amenable for all v ̸∈ V0.

Proof. First, suppose that MB(v)∩V0
is amenable for all v ̸∈ V0. By Theorem 5.4,

MV0
L2(M,φ)MV0

is a direct sum of bimodules of the form L2(MV0 , φV0) ⊗MU

L2(MV0
, φV0

), where U = {v ∈ V0 : v ∼ wj , j = 1, . . . , ℓ} for some word w1 · · ·wℓ
that is G-reduced relative to (V0, V0). To obtain the orthogonal complement of

L2(MV0
, φV0

), one sums over the non-empty words of this form with the appro-

priate multiplicity. Note that U ⊆ B(w1) ∩ V0, and w1 ̸∈ V0 since w1 · · ·wℓ is

non-empty and G-reduced relative to (V0, V0). Thus MB(w1)∩V0
is amenable by

assumption, and since there is a faithful normal conditional expectation from this

algebra on MU , we also have that MU is amenable. Thus,

MU
L2(MU , φU )MU

≺ MU
L2(MU , φU ) ⊗ L2(MU , φU )MU

by [BMO20, Cor. A.2] (see also [Con76] for the separable predual case). Now we

apply MV0
L2(MV0

, φV0
)⊗MU

on the left and apply ⊗MU
L2(MV0

, φV0
)MV0

on the

right to obtain

MV0
L2(MV0 , φV0) ⊗MU

L2(MV0 , φV0)MV0
≺ MV0

L2(MV0 , φU ) ⊗ L2(MV0 , φV0)MV0
,

where we have used the fact that weak containment is preserved under Connes

fusion [Pop86, Prop. 2.2.1]. Taking the direct sum over all such non-empty words

w1 · · ·wℓ yields that L2(M,φ) ⊖ L2(MV0φV0) is weakly coarse over MV0 .

Conversely, suppose there exists some vertex v ̸∈ V0 such that MB(v)∩V0
is

non-amenable. For ease of notation, denote V1 := B(v) ∩ V0. Fix x ∈ Mv with

φv(x) = 0 and φv(x
∗x) = 1. Let Hx̂ be the MV0–MV0 -subbimodule of L2(M,φ)

generated by x̂, which we note is in L2(M,φ)⊖L2(MV0
, φV0

) since v ̸∈ V0. Applying

Lemma 5.3(i) to V2 := V1 and w = v (so that U = V1), we have that the MV1–

MV1
-bimodule generated by x̂ is isomorphic to L2(MV1

, φV1
)⊗MV1

L2(MV1
, φV1

) ∼=
L2(MV1

, φV1
). In particular, since MV1

is not amenable, this MV1
–MV1

-bimodule

is not weakly coarse. Since it is an MV1–MV1-subbimodule of Hx̂, it follows that

MV1
(Hx̂)MV1

is not weakly coarse, and in turn MV0
(Hx̂)MV0

is not weakly coarse.
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§6. Relative amenability via bimodules

A useful implication of relative amenability is the following. By [BMO20, Sect. 2.2],

we can describe the standard form of ⟨M, eB⟩ via the isomorphism

L2(⟨M, eB⟩) ∼= L2(M) ⊗B L2(M),

as M–M -bimodules. Consequently, [BMO20, Cor. A.2] tells us that A being

amenable relative to B inside M implies that L2(M) is weakly contained in

L2(⟨M, eB⟩) as A–A-bimodules. Note that – due to the conditional expectation

being required to be normal on M – the converse is not a priori true. However,

in our setting M will be a graph product and A, B will be subalgebras corre-

sponding to induced subgraphs. In this case, the detailed analysis of the previous

section will lead us to a complete classification of when L2(M) is weakly contained

in L2(⟨M, eB⟩). From this classification, we will be able to directly argue that if

L2(M) is not weakly contained in L2(⟨M, eB⟩), then A must be amenable relative

to B inside M .

As the fusion rules provided in Proposition 5.5 decompose relative tensor

products as direct sums, we highlight the fact that, in the factorial case, bimodules

weakly contained in direct sums are necessarily weakly contained in one of the

summands. Indeed, suppose that M is factor, and for a faithful normal state

φ on M let Jφ be the associated modular conjugation on L2(M,φ). Then the

induced map π : M ⊗max M
op → B(L2(M,ψ)) satisfying π(a ⊗ bop) = aJφb

∗Jφ
has trivial commutant (π(M ⊗max M

op)′ = M ′ ∩ (JφMJφ)′ = M ∩M ′) and is

thus irreducible [Tak02, Prop. I.9.20]. Hence, the state on M ⊗max M
op given by

x 7→ ⟨π(x)1̂, 1̂⟩ is an extreme point of the state space [Tak02, Thm. I.9.22], and so

a minor modification of the proof of [Fel60, Thm. 1.5] gives the following.

Lemma 6.1. Let M be a factor and φ a faithful normal state on M . Suppose

H1, . . . ,Hn are M–M -bimodules with

L2(M,φ) ≺ H1 ⊕ · · · ⊕ Hn

as M–M -bimodules. Then there is a 1 ≤ i ≤ n so that L2(M,φ) ≺ Hi as M–M -

bimodules.

It will also be helpful to prove the following general lemma, which will ulti-

mately reduce our work of checking when one subalgebra corresponding to an

induced subgraph is amenable relative to another, to the case of smaller subgraphs.

Lemma 6.2. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a family of sta-

tial von Neumann algebras, let (M,φ) =
v∈G

(Mv, φv), and let V1, V2 ⊆ V. Sup-
pose that MV1

L2(M,φ)MV1
is weakly contained in MV1

L2(M,φ)⊗MV2
L2(M,φ)MV1

.
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(i) MV0
is amenable for all V0 ⊆ V1 \ V2.

(ii) If MV0
is factor for V0 ⊂ V1, then there exists U ⊆ V0 ∩ V2 (possibly empty)

so that MV0 is amenable relative to MU .

Proof. We first make a preliminary observation. For V0 ⊂ V and A ⊂ V0 ∩ V2, we

adopt the notation from Proposition 5.5 and denote

HA(V0, V2) :=MV0
L2(MV0 , φV0) ⊗

MA

L2(MV2 , φV2)MV2
.

By Theorem 5.4, we have

MV0
L2(M,φ)MV2

∼=
⊕

A⊆V0∩V2

HA(V0, V2)⊕kG(V0,V2,A) ⊆
⊕

A⊆V0∩V2

HA(V0, V2)⊕∞.

Therefore, using Proposition 5.5 we have

MV0
L2(M,φ) ⊗

MV2

L2(M,φ)MV0
⊆

⊕
A,B⊆V0∩V2

(
HA(V0, V2) ⊗

MV2

HB(V2, V0)
)⊕∞

⊆
⊕

U⊆V0∩V2

HU (V0, V0)⊕∞.

By assumption, MV1
L2(M,φ)MV1

is weakly contained in MV1
L2(M,φ) ⊗MV2

L2(M,φ)MV1
. If V0 ⊂ V1, then by restriction we have that MV0

L2(M,φ)MV0
is

weakly contained in MV0
L2(M,φ) ⊗MV2

L2(M,φ)MV0
, and so the above shows

that

(6.1) MV0
L2(M,φ)MV0

≺
⊕

U⊆V0∩V2

HU (V0, V0)⊕∞.

Now, if V0 ⊂ V1 \ V2, then the only term in the above direct sum corresponds

to U = ∅, which has MU = C. Thus the above gives

MV0
L2(M,φ)MV0

≺ MV0
L2(MV0

, φV0
) ⊗ L2(MV0

, φV0
)MV0

∼= MV0
L2(MV0

, φV0
) ⊗ L2(MV0

, φV0
)MV0

.

Note that the bimodule in the last expression is equivalent to the standard form of

B(L2(MV0
, φV0

)) with respect to its trace. Hence, MV0
is amenable by [BMO20,

Cor. A.2] (see also [Con76] in the case of separable preduals), which proves (i).

To prove (ii), suppose MV0
is a factor for V0 ⊂ V1. Since G is a finite graph,

the direct sum over U ⊂ V0 ∩ V2 in (6.1) only has finitely many terms, and hence

Lemma 6.1 implies

MV0
L2(M,φ)MV0

≺ MV0
L2(MV0 , φV0) ⊗

MU

L2(MV0 , φV0)MV0
,
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for some U ⊂ V0∩V2. By [BMO20, Sect. 2.2], the latter bimodule is isomorphic to

the standard form for ⟨MV0
, eMU

⟩. Thus [BMO20, Cor. A.2] yields a conditional

expectation Φ: ⟨MV0
, eMU

⟩ →MV0
so that MV0

is amenable relative to MU .

§6.1. Proofs of Theorems 0.1 and 0.3

Let us first reduce Theorem 0.1 to Theorem 0.3. Comparing the two theorems, this

amounts to showing that if (Mi, τi) is a tracial von Neumann algebra admitting a

trace zero unitary for i = 1, 2, then the following are equivalent:

(I) dim(M1) = dim(M2) = 2;

(II) M1 ∗M2 is amenable;

(III) M1 ∗M2 is amenable relative to M1.

The equivalence of the first two items is well known (see, for example, [Chi73,

Thm. 2]), and that (II) implies (III) follows from the definition. So now suppose

(III) holds. Applying Proposition 4.2 to the graph G = ({1, 2},∅) with V1 = {1, 2}
and V2 = {1}, we see that MV1

= M1 ∗M2 is diffuse relative to MV2
= M1 inside

M1 ∗M2. That is, M1 ∗M2 does not intertwine into M1 inside M1 ∗M2, and thus

[Ioa15, Cor. 2.12] implies (II).

We now prove Theorem 0.3. First, assume that Theorem 0.3(1) and (2) hold.

Let P1, . . . , Pn be the pairs of vertices {v, w}, where v ∈ V1 \ V2, w ∈ V1, and

v and w are not adjacent. Denote Q1 := V1 \ (V2 ∪ P1 ∪ · · · ∪ Pn) and Q2 :=

V1 ∩ V2 \ (P1 ∪ · · · ∪ Pn). By (2b), all the vertices in each Pj are connected to all

other vertices in Q1 ∪Q2. Moreover, each v ∈ Q1 is connected to all vertices in V1
by definition of Q1. Thus,

MV1
=

(⊗n

j=1
MPj

)
⊗̄MQ1

⊗̄MQ2

and

MV1∩V2 =

(⊗n

j=1
MPj∩V2

)
⊗̄ C ⊗̄MQ2 .

By assumption (2a), MPj is amenable relative to MPj∩V2 in MPj for each j =

1, . . . , n. By assumption (1) and [Con76, Thm. 6], MQ1
is amenable. Thus Lemma

C.3 implies that MV1 is amenable relative to MV1∩V2 (inside MV1). By Lemma C.1,

this in turn implies that MV1
is amenable relative to MV2

in M .

Conversely, suppose that MV1
is amenable relative to MV2

inside M . Recall

from the discussion at the beginning of Section 6 that this implies L2(M,φ) is

weakly contained in L2(M,φ)⊗MV2
L2(M,φ) as M1–M1-bimodules. Thus for each

v ∈ V1 \ V2 we can apply Lemma 6.2 to V0 = {v} to obtain that Mv is amenable.

This gives Theorem 0.3(1). To prove Theorem 0.3(2), let v ∈ V1 \ V2 and w ∈ V1
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with w ̸= v and assume v and w are not adjacent. We will show that (2a) and (2b)

must occur.

For (2a), first note that if dim(Mv) = dim(Mw) = 2, then by [Dyk93,

Thm. 1.1] we have that M{v,w} = Mv ∗Mw is amenable. In particular, M{v,w} is

also amenable relative to Mw, proving (2a) in this case. If max(dim(Mv,Mw)) ≥ 3,

then [Ued11, Thm. 4.1 and Rem. 4.2] implies that M{v,w} = Mv ∗Mw is a factor,

and thus Lemma 6.2 applied to V0 = {v, w} yields that M{v,w} is amenable relative

to MU for some U ⊆ V0∩V2. Noting that w ̸∈ V2 forces U = ∅, we see that in this

case M{v,w} is amenable. If w ∈ V2, then either U = {w} or U = ∅, but in both

cases one has that M{v,w} is amenable relative to Mw. We have thus established

(2a).

For (2b), consider another vertex u ∈ V1 \ {v, w}, and suppose towards a

contradiction that one of v or w is not adjacent to u. Note that this implies

the subgraph G0 induced by V0 := {v, w, u} is join-irreducible, and hence MV0

is a factor by Theorem 2.4. Consequently, Lemma 6.2 implies MV0
is amenable

relative to MU for some U ⊆ V0 ∩ V2. Since U ⊂ {w, u} ⊂ V0, it follows that MV0

is amenable relative to M{w,u}. We will show this is a contradiction by way of

Lemma C.2 using the observation that

MV0
∼= M{v,u} ∗Mu

M{w,u},

where the amalgamated free product is taken with respect to the φ-preserving

conditional expectations. Let u0 and u2 be state zero unitaries in Mφv
v and Mφw

w ,

respectively, so that EMu
[u0] = φv[u0] = 0 and similarly EMu

[u2] = 0. Also let x

be a state zero unitary in Mφu
u . If v is not adjacent to u, then u1 := xu0x

∗ satisfies

EMu [u1] = xEMu [u0]x∗ = 0,

and by free independence,

EMu
[u∗0u1] = φv(u

∗
0)xφv(u0)x∗ = 0.

Consequently, Lemma C.2 gives the contradiction that MV0
is not amenable rel-

ative to M{w,u}. If instead w is not adjacent to u, then we define u1 := xu2x
∗

and argue as above to get EMu
[u1] = EMu

[u∗2u1] = 0, which once again gives a

contradiction via Lemma C.2. Thus we must have that both v and w are adjacent

to u, establishing (2b).

§6.2. Amenability by way of relative amenability

In this section we characterize when a graph product (M,φ) =
v∈G

(Mv, φv)

is amenable by specializing to the case where V1 = V and V2 = ∅. The char-

acterization can be read off from Theorem 0.3, but in fact, we claim that this
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characterization holds even without the assumption that Mφv
v contains a state

zero unitary.

Proposition 6.3. Let G = (V, E) be a graph, let {(Mv, φv) : v ∈ V} be a fam-

ily of statial von Neumann algebras, and let (M,φ) =
v∈G

(Mv, φv). Assume

dimMv ≥ 2. Then M is amenable if and only if the following conditions hold:

(1) For each v ∈ V, Mv is amenable.

(2) If v and w are not adjacent in G, then dim(Mv) = dim(Mw) = 2 and v and

w are adjacent to all the other vertices.

Proof. First, suppose that (1) and (2) hold. Let G = G1 + · · · + Gn be the graph

join decomposition of G. We claim that each Gj is either a single vertex or a pair

of non-adjacent vertices. Indeed, if v is a vertex in Gj that is adjacent to all other

vertices in Gj , then it is adjacent to all vertices in G and hence Gj = ({v},∅).

Otherwise, there exists another vertex w in Gj that is not adjacent to v. But then

(2) implies Gj = ({v, w},∅). Writing (Nj , ψj) =
v∈Gj

(Mv, φv), we have

(M,φ) ∼= (N1, ψ1) ⊗̄ · · · ⊗̄ (Nn, ψn).

If Gj has one vertex, then (Nj , ψj) is amenable by (1). If Gj has two vertices, then

(Nj , ψj) = (Mv, φv)∗(Mw, φw), where dim(Mv) = dim(Mw) = 2 by (2), and hence

is amenable by [Chi73, Thm. 2] and [Ued11, Rem. 4.2]. Thus, M is amenable as a

tensor product of amenable von Neumann algebras.

Conversely, suppose that M is amenable. Recall that for any U ⊆ V, there is a

faithful normal conditional expectation from M onto MU , so that the amenability

of M implies the amenability of MU . In particular, (1) holds since M{v} = Mv

is amenable for each v ∈ V . Next, consider two non-adjacent vertices v and w.

Then M{v,w} = Mv ∗Mw is amenable, and therefore by [Chi73, Thm. 2], [Ued11,

Rem. 4.2] one must have dim(Mv) = dim(Mw) = 2. Suppose towards a contradic-

tion that there is some vertex u ∈ V \ {v, w} that is, without loss generality, not

adjacent to w. Then M{u,v,w} is the free product of Mu∨Mv and Mw with respect

to the appropriate states. Since dim(Mu ∨Mv) ≥ 3 and dim(Mw) ≥ 2, M{u,v,w} is

not amenable by [Chi73, Thm. 2] and [Ued11, Rem. 4.2], a contradiction. There-

fore, (2) holds.

Appendix A. Unitaries with state zero

For many of our results, it will be convenient to assume that the statial von Neu-

mann algebras attached to the vertices have a unitary in the centralizer algebra

with state zero. We note that a related assumption has appeared in [Bar95, Thm. 2
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and Lem. 3] which provides sufficient conditions for a free product of statial von

Neumann algebras to be a (possibly type III) factor. In this section we give a com-

plete characterization of when this occurs and then explore this characterization in

a few examples. This characterization is likely folklore, but as we are unable to find

a citation in the literature we feel that it is useful to include it for completeness.

We start with the tracial case, for which we will need the following two lemmas.

Lemma A.1. For a tracial von Neumann algebra (M, τ), there exists a u ∈ U(M)

with τ(u) = inf |τ(U(M))|.

Proof. Write M = M1 ⊕M2 with M1 atomic and M2 diffuse. Set Ki = τ(U(Mi))

for i = 1, 2. Since M1 is atomic and finite, we have that U(M1) is SOT-compact,

so K1 = τ(U(M1)) is compact. Since M2 is diffuse, there is an embedding of

L∞([0, 1]) into M2 which pulls back τ |M2
to τ(1M2

) times integration against

Lebesgue measure. This implies that K2 = τ(U(M2)) = {z ∈ C : |z| ≤ τ(1M2
)},

so K2 is also compact. Thus

τ(U(M)) =
{
z + w : z ∈ K1, w ∈ K2

}
is the image of the compact spaceK1×K2 under a continuous map, and so τ(U(M))

is compact. The lemma thus follows from continuity of the absolute value map.

Lemma A.2. Suppose we have tracial von Neumann algebras (Ai, τi)
n
i=1 and we

equip A = A1 ⊕ · · · ⊕An with the trace

τ((ai)
n
i=1) =

n∑
i=1

αiτi(ai),

where α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 and
∑n
i=1 αi = 1. Denote s := inf |τ1(U(A1))|.

Then |τ(U(A))| = [(α1(1 + s) − 1) ∨ 0, 1].

Proof. Let u ∈ U(A) and denote u = u1 + u2 where u1 ∈ A1 and u2 ∈
⊕

i≥2Ai.

Then

|τ(u)| ≥ |τ(u1)| − |τ(u2)|
≥ α1s− (α2 + · · · + αk) = α1s− (1 − α1).

Hence we have |τ(u)| ≥ (α1(s+ 1)− 1)∨ 0 and |τ(U(A))| ⊂ [(α1(s+ 1)− 1)∨ 0, 1].

We prove the reverse inclusion by induction on n. Since U(A) = exp(iAs.a.),

where As.a. are the self-adjoint elements of A, is SOT-connected, we have that

|τ(U(A))| is connected. The case n = 1 thus follows by connectedness of |τ(U(A))|
and Lemma A.1. We now assume the result true for n − 1 with n ≥ 2. We split

into cases, where in the first case we assume α1 ≥ 1/2 and thus 1−α1

α1
≤ 1. Let
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u1 ∈ U(A1) with τ1(u1) = s ∨ ( 1−α1

α1
), which exists since |τ1(U(A1))| is connected

and contains 1. Let u = (u1,−1, . . . ,−1) ∈ U(A) so that

τ(u) = α1

(
s ∨

(1 − α1

α1

))
− (1 − α1) = (α1(1 + s) − 1) ∨ 0.

Using connectedness again, the claim follows. In the second case we assume α1 <

1/2, which we note implies (α1(1 + s) − 1) ∨ 0 = 0. Equip
⊕

i≥2Ai with the trace

τ ′(a) = 1
1−α1

τ(0 ⊕ a) and denote s′ := inf |τ2(U(A2))|. Note that our inductive

hypothesis implies∣∣∣∣τ(U(⊕
i≥2

Ai

))∣∣∣∣ =
[( α2

1 − α1
(1 + s′) − 1

)
∨ 0, 1

]
.

Observe that

α2

1 − α1
(1 + s′) − 1 ≤ 2α2

1 − α1
− 1 ≤ 2α1

1 − α1
− 1 <

1

1 − α1
− 1 =

α1

1 − α1
< 1,

with the last inequality following as α1 < 1/2. Thus we can find v ∈ U(
⊕

i≥2Ai)

with τ ′(v) = −α1

1−α1
. Then τ(1 ⊕ v) = 0.

We now obtain a complete characterization of when a statial von Neumann

algebra has a state zero unitary in its centralizer.

Corollary A.3. Let (M,φ) be a statial von Neumann algebra.

(i) Suppose φ is a trace and that there exists a non-zero minimal projection

p ∈M with φ(p) > 1/2. Then p is central and φ(u) ̸= 0 for every u ∈ U(M).

(ii) If φ is a trace, then there is a u ∈ U(M) with φ(u) = 0 if and only if

φ(p) ≤ 1/2 for every minimal projection p ∈M .

(iii) There exists u ∈ U(Mφ) with φ(u) = 0 if and only if φ(p) ≤ 1/2 for every

minimal projection p ∈Mφ.

Proof. (i). Suppose that M has a minimal non-zero projection p with φ(p) > 1/2.

Let z be the central support of p in M . By [KR97, Prop. 6.4.3 and Cor. 6.5.3], we

have that Mz is isomorphic to Mk(C) for some k. Since p is a minimal projection

and φ is a trace, it follows that φ(z) = kφ(p). Since φ(p) > 1/2, this forces k = 1.

Thus p = z is central.

Since Cp is a central summand of M , using the notation of Lemma A.2 we

have α1 > 1/2 and s = 1. Thus this lemma implies |φ(u)| ≥ α1(1 + s) − 1 > 0 for

all u ∈ U(M).
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(ii). The forward implication follows from (i). For the reverse implication, suppose

that M does not have a unitary of trace zero. By decomposing the center into

diffuse and atomic parts, we may write

M = M0 ⊕
⊕
i∈I

Mi,

where

� I is a countable set (potentially empty),

� each Mi is a non-zero finite factor,

� M0 is either 0 or has diffuse center.

For j ∈ I ⊔{0} let αj := φ(1Mj ) and τj := 1
αj
φ|Mj (note that α0 = 0 if M0 = {0}).

Since
∑
i αi ≤ 1 we have that either I is finite or αi → 0 as i→ ∞ (i.e. as i escapes

all finite subsets of I). Thus there is a j0 ∈ I⊔{0} with αj0 = max{αi : i ∈ I⊔{0}}.

Denote sj := inf |τj(U(Mj))| for each j ∈ I ⊔ {0}. By Lemma A.2, our hypothesis

implies that

αj0(1 + sj0) > 1.

This inequality implies that sj0 ̸= 0. On other hand, if M0 ̸= 0, then s0 = 0 and

for i ∈ I if Mi is a factor of dimension at least 2, then si = 0 as well. So necessarily

Mj0
∼= C1 and sj0 = 1. But then the above inequality implies αj0 > 1/2 and this

proves that 1Mj0
∈M is a non-zero minimal projection with φ(1Mj0

) = αj0 > 1/2.

(iii). This follows from (ii), since φ|Mφ is a trace.

We now list a few examples of algebras with state zero unitaries in the cen-

tralizer. Let us first consider the matrix algebra case. Suppose that φ is a state on

Mn(C). Then we can write

φ(x) = tr(xa),

for some a ∈Mn(C)+, where tr is the normalized trace on Mn(C). Let

a =

k∑
j=1

λj1{λj}(a)

be the spectral decomposition of a with λi ̸= λj for all i ̸= j. Set pj = 1λj (a).

Then pj is central in Mφ and Mφpj ∼= Mn tr(pj)(C). Suppose e ∈Mφ is a minimal

projection. Then we can find a unique j so that epj = e. In this case,

φ(e) = φ(epj) = trn(epja) = λ trn(e) =
λ

n
.
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Hence, Mφ has a state zero unitary if and only if

λ ≤ n

2

for every eigenvalue λ of a.

For general finite-dimensional M , we may find central projections z1, . . . , zk
in M with

∑k
j=1 zj = 1 and Mzj ∼= Mnj

(C). Let τj be the normalized trace on

Mzj . Then we can find aj ∈ (Mzj)+ with
∑
j φ(zj) trj(aj) = 1 and

φ(x) =

n∑
j=1

φ(zj)τj(xzjaj).

In this case,

Mφ =

n∑
j=1

(Mzj)
τj(·aj).

If e ∈ Mφ is a minimal projection, choose j so that ezj = e. Then by the above,

there is a λj in the spectrum of aj with

φ(e) = φ(zj)
λj
nj
.

Hence, Mφ has a state zero unitary if and only if for every j we have

λφ(zj) ≤
nj
2

for every eigenvalue λ of aj viewed as an operator on Cnj .

Another example is group von Neumann algebras, equipped with their trace

τ : L(G) → C given by τ(λg) = δg=e. In this case, any non-trivial group element

satisfies the hypotheses. Another example would be if Mφ is diffuse (e.g. φ is

a trace and M is diffuse). In this case, there is a state-preserving embedding of

L∞([0, 1]) into Mφ and so there is a state zero unitary.

Appendix B. Ocneanu ultrapowers

For a cofinal ultrafilter ω on a directed set I and a von Neumann algebra M ,

denote

Iω(M) :=
{

(xi)i∈I ∈ ℓ∞(I,M) : lim
i→ω

xi = 0 in the strong-∗ topology
}
,

Mω(M) :=
{

(xi)i∈I ∈ ℓ∞(I,M) : (xi)iIω(M) + Iω(M)(xi)i ⊆ Iω(M)
}
.

By [Ocn85, AH14] the quotient C∗-algebra

Mω := Mω(M)/Iω(M)
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is a von Neumann algebra, which we call the Ocneanu ultrapower of M . For (xi)i ∈
Mω(M) we use (xi)i→ω for its image in Mω. Suppose that P is a subalgebra of

M and that there is a faithful normal conditional expectation EP : M → P . In

this case, Pω is naturally a von Neumann subalgebra of Mω and there is a natural

conditional expectation EPω given by

EPω ((xi)i→ω) = (EP (xi))i→ω

(see [HI17, Sect. 2] for details). Applying this with P = C, we see that if φ is a

faithful normal state on M , then the ultraproduct state φω given by

φω((xi)i→ω) = lim
i→ω

φ(xi)

remains faithful. This relates to fullness, since [AH14, Thm. 5.2] and [HMV19,

Cor. 3.7] show that if M is a σ-finite von Neumann algebra, then M ′ ∩Mω = C
if and only if M is full. The following is a statial version of [Ioa15, Lem. 6.1].

Lemma B.1. Let (B,φ) be a statial von Neumann algebra and let B ⊂Mi be an

inclusion with expectation Ei : M → B for i = 1, 2. Denote φi := φ◦Ei for i = 1, 2

and consider the amalgamated free product (M,EB) := (M1, E1) ∗B (M2, E2). If

there exist unitary elements u1 ∈ (M1)φ1 and u2, u3 ∈ (M2)φ2 such that

EB [u1] = EB [u2] = EB [u3] = EB [u∗2u3] = 0,

then M ′ ∩Mω ⊆ Bω for any cofinal ultrafilter ω on a directed set I.

Proof. For i = 1, 2 let L2
0(Mi) := L2(Mi, φi) ⊖ L2(B,φ), and observe that this is

the closure of {x ∈Mi : Ei(x) = 0} in L2(Mi, φi). By definition,

L2(M,φ ◦ EB) = L2(B,φ) ⊕
∞⊕
d=1

( ⊕
i1 ̸=i2,...,
id−1 ̸=id

L2
0(Mi1) ⊗B · · · ⊗B L2

0(Mid)

)
.

Let Pi be the orthogonal projection onto

Hi :=

∞⊕
d=1

( ⊕
i=i1 ̸=i2,...,
id−1 ̸=id

L2
0(Mi1) ⊗B · · · ⊗B L2

0(Mid)

)
.

Note that u1, u2, u3 ∈ Mφ◦EB since the modular automorphism group of φ ◦ EB
restricts to that of φi on Mi for each i = 1, 2. Thus,

∥xu∗i ∥2 = ∥x∥2
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for all x ∈ M . So right multiplication by u∗i extends to a bounded operator on

L2(M,φ◦EB), and we will continue to write ξu∗i for the image of ξ ∈ L2(M,φ◦EB)

under this operator. As in [Ioa15, Lem. 6.1], we have

u1H2u
∗
1 ⊆ H1, u2H1u

∗
2 ⊆ H2, u3H1u

∗
3 ⊆ H2,

and

u2H1u
∗
2 ⊥ (H1 + u3H1u

∗
3).

Let Pi be the orthogonal projection onto Hi, i = 1, 2. Note that if K ⊆ L2(M) is

a closed linear subspace, and PK is the orthogonal projection onto K, then

PuiKu∗
i
(·) = uiPK(u∗i · ui)u∗i .

Hence we can argue as in [Ioa15, Lem. 6.1] to see that

∥P2(u1ξu
∗
1)∥2 ≤ ∥P1(ξ)∥2 and ∥P1(u2ξu

∗
2)∥22 + ∥P1(u3ξu

∗
3)∥22 ≤ ∥P2(ξ)∥22,

for all ξ ∈ L2(M,φ◦EB). Now let (xi)i→ω ∈M ′∩Mω. Since φ◦EB is faithful, the

strong∗-topology on the unit ball of M coincides with convergence with respect

to ∥x∥2 + ∥x∗∥2 (see [Tak02, Prop. III.5.3]). We now argue exactly as in [Ioa15,

Lem. 6.1] to obtain the estimates

lim
i→ω

∥P2(xi)∥2 ≤ lim
i→ω

∥P1(xi)∥2 ≤ 1√
2

lim
i→ω

∥P2(xi)∥2,

so that limi→ω ∥Pj(xi)∥2 = 0 for j = 1, 2. Since L2(M,φ ◦ EB) = L2(B,φ) ⊕
H1 ⊕ H2, we obtain that limi→ω ∥xi − EB(xi)∥2 = 0. By the same argument

limi→ω ∥x∗i − EB(x∗i )∥2 = 0, and hence (xi)i→ω ∈ Bω.

In order for intersections to commute with ultrapowers, it is sufficient to have

commuting square inclusions of algebras, as we now show. This is a folklore result,

but we give the proof for completeness.

Lemma B.2. Suppose that (M,φ) is a statial von Neumann algebra and that

M1,M2 are von Neumann subalgebras with φ-preserving normal conditional expec-

tations Ei : M →Mi. Suppose further that E1 ◦ E2 = E2 ◦ E1 so that

M1

��

Moo

��

M1 ∩M2 M2
oo

forms a commuting square. Then (M1 ∩M2)ω = Mω
1 ∩Mω

2 .
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Proof. Since EMω
i

= (Ei)
ω, i = 1, 2, and similarly E(M1∩M2)ω = (EM1∩M2

)ω, it

is enough to show that EM1 |M2 = EM1∩M2 . But this follows from the fact that

EM1
◦ EM2

= EM2
◦ EM1

.

Appendix C. Relative amenability

The following result of Monod–Popa ([MP03, Rem. 3]) allows one to restrict to

certain subalgebras when checking relative amenability. We reproduce the well-

known proof here.

Lemma C.1. Suppose that (M,φ) is a statial von Neumann algebra and that M1,

M2 are von Neumann subalgebras with φ-preserving normal conditional expecta-

tions Ei : M →Mi. Suppose further that E1 ◦ E2 = E2 ◦ E1 so that

M1

��

Moo

��

M1 ∩M2 M2
oo

forms a commuting square. If M1 is amenable relative to M1 ∩M2 (inside M1),

then M1 is amenable relative to M2 inside M .

Proof. Let F : ⟨M1, eM1∩M2⟩ → M1 be a conditional expectation. We will first

construct a conditional expectation E : ⟨M, eM1∩M2
⟩ →M1 that is normal on M ,

so that M1 is amenable relative to M1 ∩M2 inside M .

Identify L2(M1, φ|M1
) as a subspace of L2(M,φ) so that the projection onto

it is the Jones projection eM1
for the inclusion (M1 ⊂M,E1). Similarly, the Jones

projection eM1∩M2 is given by the projection onto the identification of L2(M1 ∩
M2, φ|M1∩M2

) as a subspace of L2(M,φ). Recall that the basic construction for

this inclusion satisfies

(C.1) ⟨M, eM1∩M2⟩ = (Jφ(M1 ∩M2)Jφ)′ ∩B(L2(M,φ)).

Consequently, eM1 ∈ ⟨M, eM1∩M2⟩ since EM1∩M2 = E1 ◦E2 is φ-preserving. Addi-

tionally, if we define Υ: B(L2(M,φ)) → B(L2(M1, φ|M1
)) by Υ(T ) := eM1

TeM1
,

then Υ(⟨M, eM1∩M2⟩) = ⟨M1, eM1∩M2⟩.1 Indeed, it is a general fact that if Q ≤
B(H) is a von Neumann algebra and p ∈ Q′ ∩ B(H) is a projection, then

(Qp)′ ∩ B(pH) = p(Q′ ∩ B(H))p. Applying this to Q = Jφ(M1 ∩ M2)Jφ and

1Here we are abusing notation to let eM1∩M2
in the second instance also denote the Jones

projection for the inclusion M1 ∩ M2 ⊂ M1. But under the identification B(L2(M1, φ|M1 )) =
eM1

B(L2(M,φ)) one does have eM1∩M2
eM1

= eM1∩M2
.
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p = eM1
gives

Υ(⟨M, eM1∩M2
⟩) = Υ(Jφ(M1 ∩M2)Jφ)′ ∩B(L2(M1, φ|M1

))

= (Jφ|M1
Υ(M1 ∩M2)Jφ|M1

)′ ∩B(L2(M1, φ|M1
))

= (Jφ|M1
(M1 ∩M2)Jφ|M1

)′ ∩B(L2(M1, φ|M1
))

= ⟨M1, eM1∩M2⟩.

Now, let F : ⟨M1, eM1∩M2
⟩ →M1 be a conditional expectation with F |M1

normal,

which is guaranteed by M1 being amenable relative to M1 ∩M2 inside M1. Define

E : ⟨M, eM1∩M2
⟩ → M1 by E := F ◦ Υ. For x ∈ M we have E(x) = F (Υ(x)) =

Υ(x), and if x ∈ M1 then one further has E(x) = x. Thus E is a conditional

expectation onto M1 with E|M normal.

To complete the proof of the lemma, identify L2(M2, φ|M2
) as a subspace

of L2(M,φ) and let eM2 be the associated Jones projection for the inclusion

(M2 ⊂ M,E2). Then (C.1) implies ⟨M, eM2
⟩ ≤ ⟨M, eM1∩M2

⟩, and so consider-

ing the restriction of E to this subalgebra gives that M1 is amenable relative to

M2 inside M .

The next result provides a sufficient condition for preventing amalgamated

free products from being amenable relative to either of the factors; see e.g. [Oza06,

DKEP23] for similar arguments.

Lemma C.2. Let (B,φ) be a statial von Neumann algebra and let B ⊂Mi be an

inclusion with expectation Ei : M → B for i = 1, 2. Denote φi := φ◦Ei for i = 1, 2

and consider the amalgamated free product (M,EB) := (M1, E1) ∗B (M2, E2). If

there exist unitary elements u0 ∈ (M1)φ1 , u1 ∈M1, and u2 ∈ (M2)φ2 such that

EB [u0] = EB [u1] = EB [u∗0u1] = EB [u2] = 0,

then M is not amenable relative to Mi for i = 1, 2.

Proof. Define ψ := φ ◦ EB . For each j = 1, 2, denote Hj := L2(Mj , φj), which

we identify as a subspace of L2(M,ψ). Also identify L2(B,φ) as a subspace of

L2(M,ψ) and denote H◦
j := Hj ⊖ L2(B,φ), j = 1, 2. Recall that

L2(M,ψ) =
⊕
d∈N

⊕
i1 ̸=···̸=id

H◦
i1 ⊗B · · · ⊗B H◦

id
.

Denote

K :=
⊕
d∈N

(H◦
1 ⊗B H◦

2 )⊗Bd ⊗B H1,
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so that as right M1-modules we have

L2(M,ψ)M1
∼= KM1 ⊕ (H◦

2 ⊗B K)M1 .

In particular, we can identify K⊥ with H◦
2 ⊗B K. By assumption, u0, u1 ∈ H◦

1

so that u0K
⊥, u1K

⊥ ≤ K, and since u∗0u1 ∈ H◦
1 we further have that u0K

⊥ ⊥
u1K

⊥. Thus if PK , PK⊥ ∈ B(L2(M,ψ)) denote the projections onto K and K⊥,

respectively, then

u0PK⊥u∗0 + u1PK⊥u∗1 ≤ PK .

Additionally, u2 ∈ H◦
2 implies u2K ≤ K⊥ so that

(C.2) u2PKu
∗
2 ≤ PK⊥ .

Now, suppose, towards a contradiction, that there exists a conditional expectation

Φ: ⟨M, eM1
⟩ →M . Note that PK , PK⊥ ∈ ⟨M, eM1

⟩ since K and K⊥ are invariant

for JψM1Jψ, and so the above inequalities imply

ψ(u0Φ(PK⊥)u∗0) + ψ(u1Φ(PK⊥)u∗1) ≤ ψ(Φ(PK))

and

ψ(u2Φ(PK)u∗2) ≤ ψ(Φ(PK⊥)).

Recall that u0 ∈ (M1)φ1 and u2 ∈ (M2)φ2 so that u0, u2 ∈Mψ and hence

ψ(Φ(PK⊥)) + ψ(u1Φ(PK⊥)u∗1) = ψ(u0Φ(PK⊥)u∗0) + ψ(u1Φ(PK⊥)u∗1)

≤ ψ(Φ(PK))

= ψ(u2Φ(Pk)u∗2)

≤ ψ(Φ(PK⊥)).

Hence, ψ(u1Φ(PK⊥)u∗1) = 0, and therefore Φ(PK⊥) = 0. Since (C.2) implies

u2Φ(PK)u∗2 ≤ Φ(PK⊥) = 0,

we also have Φ(PK) = 0. But this leads to the contradiction

Φ(1) = Φ(PK) + Φ(PK⊥) = 0.

Thus M is not amenable relative to M1.

To see that M is not amenable relative to M2, denote

L :=
⊕
d∈N

(H◦
2 ⊗B H◦

1 )⊗Bd ⊗B H2

so that as right M2-modules we have

L2(M,ψ)M2
∼= LM2

⊕ (H◦
1 ⊗B L)M2

.
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Then u0L and u1L are orthogonal subspaces in L⊥ = H◦
1 ⊗B L, and u2L

⊥ ≤ L.

So if one assumes there exists a conditional expectation from ⟨M, eM2⟩ to M , then

we can proceed as above to obtain a contradiction.

In contrast to the previous lemma, the next result shows that tensoring rela-

tively amenable inclusions yields a relatively amenable inclusion.

Lemma C.3. For i = 1, 2, let Ni ≤Mi be an inclusion of von Neumann algebras

admitting faithful normal conditional expectations Ei : Mi → Ni. IfMi is amenable

relative to Ni for each i = 1, 2, then M1 ⊗̄M2 is amenable relative to N1 ⊗̄N2.

Proof. By Tomita’s commutation theorem [Tak02, Thm. IV.5.9], we have a canon-

ical isomorphism

⟨M1 ⊗̄M2, eN1⊗̄N2
⟩ ∼= ⟨M1, eN1

⟩ ⊗̄ ⟨M2, eN2
⟩

satisfying

(x1 ⊗ x2)eN1⊗̄N2
(x2 ⊗ y2) 7→ (x1eN1

y1) ⊗ (x2eN2
y2).

By assumption, there are conditional expectations Φi : ⟨Mi, eNi
⟩ →Mi for i = 1, 2.

We would like to obtain a conditional expectation ⟨M1 ⊗̄M2, eN1⊗̄N2
⟩ →M1 ⊗̄M2

as (Φ1 ⊗ id) ◦ (id ⊗ Φ2), but since the expectations Φ1 and Φ2 are not normal, it

is not immediately clear how to extend Φ1 ⊗ id and id ⊗ Φ2 from the algebraic

tensor product ⟨M1, eN1⟩ ⊙ ⟨M2, eN2⟩ to ⟨M1 ⊗̄M2, eN1⊗̄N2
⟩. However, one can

accomplish something similar using the following more abstract claim.

Claim. Let B ≤ S be von Neumann algebras and let H be any Hilbert space.

If Φ: S → B is a conditional expectation, then there is a conditional expectation

Φ̃ : S ⊗̄ B(H) → B ⊗̄ B(H). Moreover, if T ≤ B(H) is a von Neumann algebra,

then Φ̃|S⊗̄T is a conditional expectation onto B ⊗̄ T .

To prove the claim, view S ⊆ B(K) and let (ei)i∈I be an orthonormal basis

for H. Let ωi,j ∈ B(H) denote the rank-one operator ωi,j(ξ) := ⟨ξ, ej⟩ei. For

A ∈ S ⊗̄B(H), we wish to write A =
∑
i,j Ai,j ⊗ ωi,j and then to define Φ̃(A) as∑

i,j∈I
Φ(Ai,j) ⊗ ωi,j .

More precisely,
∑
i,j Ai,j ⊗ ωi,j should be interpreted as

lim
F⋐I

∑
i,j∈F

Ai,j ⊗ ωi,j ,

where the limit is over the directed system of finite subsets of I, which converges

in SOT to A since the projections pF :=
∑
i∈F 1 ⊗ ωi,i converge to 1 in SOT.
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To show convergence of the sum for defining Φ̃(A), observe that∥∥∥∥ ∑
i,j∈F

Φ(Aij) ⊗ ωi,j

∥∥∥∥ ≤
∥∥∥∥ ∑
i,j∈F

Aij ⊗ ωi,j

∥∥∥∥ =

∥∥∥∥pF( ∑
i,j∈I

Aij ⊗ ωi,j

)
pF

∥∥∥∥
≤

∥∥∥∥ ∑
i,j∈I

Aij ⊗ ωi,j

∥∥∥∥,
where the first inequality follows from Φ being completely bounded with ∥Φ∥cb = 1.

Thus the sum defining Φ̃(A) converges in the strong operator topology since the net

(
∑
i,j∈F Φ(Aij)⊗ωi,j)F⋐I converges pointwise on the dense subspace span{ξ⊗ei :

ξ ∈ K, i ∈ I} and is uniformly bounded in norm. Now that Φ̃(A) is well defined,

it is easy to check that it is unital, completely positive, and B–B-bimodular from

the corresponding properties of Φ.

For the second part of the claim, let y ∈ T ′. Then since 1 ⊗̄ B(H) is in the

multiplicative domain of Φ̃, we have that 1⊗y ∈ Φ̃(S ⊗̄T )′. Tomita’s commutation

theorem thus shows that

Φ̃(S ⊗̄ T ) ⊆ (1 ⊗ T ′)′ ∩ (B ⊗̄B(H)) = B ⊗̄ T.

This proves the claim.

Applying the claim first to Φ1 : ⟨M1, eN1
⟩ → M1 and T = M2 yields a condi-

tional expectation

Φ̃1 : ⟨M1, eN1
⟩ ⊗̄M2 →M1 ⊗̄M2.

Next, applying the claim (with the order of the tensorands flipped) to Φ2 : ⟨M2,

eN2⟩ →M2 and T = ⟨M1, eN1⟩ yields a conditional expectation

Φ̃2 : ⟨M1, eN1⟩ ⊗̄ ⟨M2, eN2⟩ → ⟨M1, eN1⟩ ⊗̄M2.

Hence, Φ̃1 ◦ Φ̃2 is a conditional expectation that witnesses the relative amenability

of M1 ⊗̄M2 to N1 ⊗̄N2.
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loq., Marseille, 1977), Colloq. Internat. CNRS 274, CNRS, Paris, 1979, 175–184.
Zbl 0426.46045 MR 0560633

[Haa93] U. Haagerup, Selfpolar forms, conditional expectations and the weak expectation
property for C∗-algebras, Preprint (1993).

[HW08] F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008),
1551–1620. Zbl 1155.53025 MR 2377497

[HI17] C. Houdayer and Y. Isono, Unique prime factorization and bicentralizer problem
for a class of type III factors, Adv. Math. 305 (2017), 402–455. Zbl 1371.46050
MR 3570140

[HMV19] C. Houdayer, A. Marrakchi, and P. Verraedt, Fullness and Connes’ τ invariant of
type III tensor product factors, J. Math. Pures Appl. (9) 121 (2019), 113–134.
Zbl 1417.46042 MR 3906167

[Ioa15] A. Ioana, Cartan subalgebras of amalgamated free product II1 factors, Ann. Sci. Éc.
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