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Abstract

For C a smooth affine complex curve, there is a unique minimal unital subalgebra AC

of the algebra Ohol(C̃) of holomorphic functions on its universal cover C̃, which is stable
under all the operations f 7→

∫
fω, for ω in the space Ω(C) of regular differentials on

C. We identify AC with the image of the iterated integration map Ix0 : Sh(Ω(C)) →
Ohol(C̃) based at any point x0 of C̃ (here Sh(−) denotes the shuffle algebra of a vector

space), as well as with the unipotent part, with respect to the action of Aut(C̃/C), of a

subalgebra of Ohol(C̃) of moderate growth functions. We show that any regular Maurer–
Cartan (MC) element J on C with values in the topologically free Lie algebra over
H1

dR(C)∗ gives rise to an isomorphism of AC with O(C)⊗Sh(H1
dR(C)), where O(C) is the

algebra of regular functions on C, leading to the assignment of a subalgebra HC(J) of AC

(isomorphic to Sh(H1
dR(C))) to any MC element. We also associate an MC element Jσ

to each section σ of the projection Ω(C) → H1
dR(C); when C has genus zero, we exhibit

a particular section σ0 for which HC(Jσ0) is the algebra of hyperlogarithm functions
(Poincaré, Lappo-Danilevsky).
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§1. Introduction

§1.1. The context

To an inclusion O ⊂ Õ of unital complex commutative algebras and a derivation ∂

of Õ which is both surjective and with ker(∂) = C, one may associate the smallest

subalgebra of Õ which contains O and is stable under the antiderivation operation

Õ ∋ f 7→ ∂−1(f) ⊂ Õ. Two instances of this construction were studied in detail

in the literature:

� Õ = Ohol(H) is the algebra of holomorphic functions on the complex upper

half-plane H = {τ ∈ C | ℑ(τ) > 0}, O = QM∗ is the algebra of quasi-modular

forms for SL2(Z), and ∂ = d/dτ (see [Ma]);

� O = C[z, 1/(z − s), s ∈ S∞] =: O(P1
C ∖ S), where S ⊂ P1

C is a finite subset

with S ∋ ∞, S∞ denotes S ∖ {∞}, Õ is the algebra of holomorphic functions

on a universal cover of P1
C ∖ S, and ∂ = d/dz (see [Br]).

In both cases, precise results were obtained on the structure of the said small-

est subalgebra. Let us describe the results of the second case in more detail. In

that case, the conditions on the looked-for algebra are equivalent to requiring it

to be both unital and stable under all the operations f 7→
∫
z0
fω := (z 7→

∫ z

z0
fω),

where ω runs over all the regular differentials on P1
C ∖ S; indeed, the latter con-

dition implies that the algebra contains the functions
∫
z0
df , where f runs over

O(P1
C ∖ S).

Such an algebra necessarily contains all the iterated integrals of the differ-

entials d log(z − s), s ∈ S∞, which are the hyperlogarithm (HL) functions Lw
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indexed by w ∈ Ŝ∗
∞ (where Ŝ∗

∞ :=
⊔

n≥0 Ŝ
n
∞ is the set of words in Ŝ∞, which

is S∞ viewed as an abstract set). The generating series L :=
∑

w Lw · w is a

multivalued holomorphic function on P1
C ∖ S with values in the group of group-

like elements of the algebra of noncommutative formal series C⟨⟨Ŝ∞⟩⟩, such that

dL(z) = L(z) ·
∑

s(ŝ · d log(z − s)). It was proven in [Br, Cor. 5.6] that

� the algebra AP1
C∖S := O(P1

C ∖ S)[Lw, w ∈ Ŝ∗
∞] is stable under antiderivation,

so that AP1
C∖S is the smallest (for the inclusion) extension of O(P1

C ∖ S) with

this property;

� the map O(P1
C ∖ S) ⊗ Sh(CŜ∞) → AP1

C∖S , f ⊗ w 7→ f · Lw is an algebra

isomorphism, where Sh(V ) is the shuffle algebra associated with a vector space

V ; in particular, the family (Lw)w is linearly independent over O(P1
C∖S) (this

was also proved in [DDMS]).

The HL functions, and hence all the functions of AP1
C∖S , have unipotent mono-

dromies along the paths encircling the points of S, and one can show that AP1
C∖S

is a union of unipotent modules (i.e. iterated extensions of the trivial module) over

π1(P1
C ∖ S).

The HL functions were introduced in [Po], motivated by monodromy com-

putations. They were later applied in [LD] to the Riemann–Hilbert problem, and

subsequently in [Br] to the identification of a set of periods arising from the mod-

uli space of marked stable genus-zero curves with the set of multiple zeta values

(Goncharov–Manin conjecture). The HL techniques of [Br] led in [Pa] to an algo-

rithm which can be used to express, in physics, a large class of Feynman integrals1

in terms of HLs; this was implemented in the software program HyperInt.

Similar questions were studied replacing P1
C by a curve of genus one. To an

elliptic curve E , one attaches an algebra A3 containing the function field of E (see

[BDDT1], three lines before (3.35)) using iterated integration. In [BDDT1, §6],

it is proved that A3 is stable under f 7→
∫
z0
fω0, where ω0 is a fixed nonzero

regular differential over E and z0 is any point in E . One can derive from this the

construction, for any finite subset S of E , of an algebra containing the algebra

of regular functions on E ∖ S, which is stable under f 7→
∫
z0
fω0; this algebra is

therefore stable under the operations f 7→
∫
z0
fω, where ω runs over all the regular

differentials on E∖S. Similarly to the genus-zero case, the functions from A3 arise

naturally in the computation of Feynman integrals (see [BDDT2]).

It is a natural question to construct analogues of the HL functions associated

to an arbitrary affine curve C. Such functions are likely to find an application in

1Feynman integrals are a useful tool to obtain approximations of scattering amplitudes, which
predict in quantum field theory the probability of interactions of elementary particles.
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physics also when the genus of the curve is higher than one, such as for instance

to compute hyperelliptic Feynman integrals (see [MMPPW]), or the genus-two

contribution to string theory amplitudes (see [DGP]).

In order to treat this problem, we fix a universal cover p : C̃ → C and introduce

the notion of a minimal stable subalgebra (MSSA) of the algebra of holomorphic

functions Ohol(C̃) of C̃ as follows: we call a stable subalgebra (SSA) of Ohol(C̃)

a unital subalgebra A of the algebra Ohol(C̃) such that for any f ∈ A, regular

differential ω on C, and z0 ∈ C̃, the function
∫
z0
fω belongs to A. The intersection

AC of all SSA of Ohol(C̃) is again an SSA which is minimal for the inclusion, and

which we call the MSSA of Ohol(C̃).

The present paper is devoted to the study of AC . We introduce the notion of

a Maurer–Cartan element associated with the curve C, and show each such ele-

ment gives rise via iterated integration to an algebra isomorphism AC ≃ O(C)⊗
Sh(H1

dR(C)). We also show that AC is a union of unipotent π1(C)-modules, con-

tained in an algebra of moderate growth functions over C̃, and is maximal with

respect to this property. All this shows that the properties of AC are generaliza-

tions of those of AP1
C∖S ; the isomorphism AC ≃ O(C) ⊗ Sh(H1

dR(C)) is also an

analogue of the main result of [Ma]. In the companion paper [EZ], we make AC

explicit when C = E∖S, with S a finite subset of an elliptic curve E , and we explic-

itly relate AC with the algebra A3 from [BDDT1]. The recent work [DHS], which

introduces nonholomorphic variants of HL functions over one-punctured curves C

of arbitrary genus, could hopefully be related to the present work.

§1.2. The main results

1.2.1. Conventions. The following conventions will be adopted throughout the

paper. The base field of all the algebraic structures (vector spaces, Lie, Hopf, or

associative algebras, etc.) is C. We denote2 by C a smooth complex affine algebraic

curve, as well as the underlying Riemann surface, by p : C̃ → C a universal cover,

and by O(C) the algebra of regular functions on C. Then p∗ : O(C)→ Ohol(C̃) is

an injective algebra morphism. We denote by Ω(C) the space of regular differentials

on C, and we set HC := Ω(C)/dO(C) (= H1
dR(C) as C is affine).

1.2.2. Maurer–Cartan elements and the associated isomorphisms. Denote

by g := L(H∗
C) the free Lie algebra generated by H∗

C ; it is graded by the condition

that H∗
C has degree 1, and we denote by ĝ its degree completion.

2Except in Remark 1.4(a), in Section 2.4, and in the second half of Section 5.5, where C takes
a particular value.
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Definition 1.1. Consider the following definitions:

(a) A Maurer–Cartan (MC) element for C is an element J ∈ Ω(C) ⊗̂ ĝ.

(b) J is nondegenerate if and only if im(J ∈ Ω(C) ⊗̂ ĝ→ HC ⊗H∗
C) = id, the map

being given by the tensor product of the canonical projections.

(c) MC(C) is the set of all MC elements for C, and MCnd(C) is the subset of all

nondegenerate elements.

Let (J, x0) ∈ MCnd(C) × C̃. One proves that there is a unique smooth func-

tion LJ,x0 : C̃ → exp(ĝ) := G((Ug)∧) (where G stands for the group of group-like

elements of a topological Hopf algebra, and (Ug)∧ is the degree completion of the

universal enveloping algebra of g) such that dLJ,x0 = LJ,x0 · J and LJ,x0(x0) = 1,

which turns out to be holomorphic (see Proposition 2.14).

Define then f̃J,x0 : Sh(HC)→ Ohol(C̃) to be the map taking a to the function

(1.1) f̃J,x0
(a) := (C̃ ∋ x 7→ ⟨a,LJ,x0

(x)⟩ ∈ C),

where ⟨, ⟩ is the pairing Sh(HC)×(Ug)∧ → C induced by the composition Sh(HC)=⊕
n≥0(Ug)[n]∗ → (

∏
n≥0 Ug[n])∗ = ((Ug)∧)∗.

Similarly to the case of classical hyperlogarithms, LJ,x0
may be viewed as

an element of Ohol(C̃) ⊗̂ (Ug)∧. Hence LJ,x0 is a generating series of the image

by f̃J,x0
of a basis of Sh(HC), which are multivalued functions on C defined by

iterated integrals. By Lemma-Definition 2.1, if x ∈ C̃ and ω1, . . . , ωk ∈ Ω(C),

then the iterated integral
∫
γ
ω1 · · ·ωk :=

∫
0≤t1≤···≤tk≤1

γ∗ω1(t1)∧ · · · ∧ γ∗ωk(tk) is

independent of a path γ from x0 to x, and denoted by
∫ x

x0
ω1 · · ·ωk.

Definition 1.2. Consider the following definitions:

(a) ΣC denotes the set of sections σ : HC → Ω(C) of the canonical projection.

(b) σ 7→ Jσ is the map ΣC → MCnd(C) such that σ 7→ Jσ :=
∑

i σ(hi)⊗hi, where
(hi)i is a basis of HC and (hi)i is the dual basis of H∗

C .

Lemma 1.3 (See Lemma 2.13). Let (J, x0) ∈ MCnd(C)× C̃.

(a) The map f̃J,x0
: Sh(HC)→ Ohol(C̃) is a morphism of algebras.

(b) If σ ∈ ΣC , f̃Jσ,x0
([h1| · · · |hk]) = (x 7→

∫ x

x0
σ(h1) · · ·σ(hk)), where [h1| · · · |hk]

∈ Sh(HC) is the element corresponding to h1 ⊗ · · · ⊗ hk ∈ H⊗k
C .

Theorem A (See Section 5.4). The following statements hold true:

(a) For any J ∈ MCnd(C), the image im(f̃J,x0 : Sh(HC) → Ohol(C̃)) is indepen-

dent of x0 ∈ C̃; it will be denoted HC(J).
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(b) Let (J, x0) ∈ MCnd(C) × C̃. The map fJ,x0
: Sh(HC) ⊗ O(C) → Ohol(C̃),

a ⊗ f 7→ p∗(f) · f̃J,x0(a) induces an algebra isomorphism fJ,x0 : Sh(HC) ⊗
O(C)→ AC .

In particular, any C-basis of HC(J) (for example, the family (f̃J,x0
(w))w,

where w runs over a basis of Sh(HC)) is linearly independent over O(C) and forms

a basis of AC as an O(C)-module.

Remark 1.4. Note the following facts:

(a) If C = P1
C ∖ S, then HC ≃ CŜ∞. A particular element of ΣC is σ0 given

by CŜ∞ ∋ ŝ 7→ d log(z − s) ∈ Ω(P1
C ∖ S). Then HP1

C∖S(Jσ0) is equal to

C[Lw, w ∈ Ŝ∗
∞] (see Section 2.4). It follows that the algebras HC(J), where

J ∈ MCnd(C), are generalizations of the algebra of HL functions.

(b) WhileHC(J) varies with J , Theorem A(b) says that the product O(C)·HC(J)

does not and is equal to AC .

1.2.3. Group aspects of the isomorphisms associated with the MC ele-

ments. Let ΓC := Aut(C̃/C) be the automorphism group of the cover p : C̃ → C;

it is equal to the fundamental group of C, therefore is free with 2h + |S| − 1

generators.

Definition 1.5. For Γ a group, define (CΓ)′ to be the subset of (CΓ)∗ of all linear

forms which vanish on the union
⋃

n≥0(CΓ)
n+1
+ , where (CΓ)+ is the augmentation

ideal of the group algebra CΓ.

If Γ is finitely generated, it follows from Lemma A.6 that (CΓ)′ is a com-

mutative Hopf algebra, which may be identified with the function algebra of the

prounipotent completion Γun (see Appendix D.2). This is in particular the case if

Γ = ΓC . The algebra Sh(HC) is also equipped with a commutative Hopf algebra

structure, the coproduct ∆Sh(HC) being given by deconcatenation.

Lemma 1.6 (See Lemma 4.6 and Proposition 4.11). For any (J, x0) ∈ MCnd(C)

× C̃, the map

pJ,x0
: CΓC × Sh(HC)→ C, γ ⊗ a 7→ ⟨a,LJ,x0

(γx0)⟩

is a Hopf algebra pairing. It gives rise to an isomorphism of commutative Hopf

algebras

ν(pJ,x0
) : Sh(HC)→ (CΓC)

′.

The relation of this result with Chen’s “π1 de Rham theorem” is discussed in

Remark 4.12.



Analogues of Hyperlogarithm Functions on Affine Complex Curves 633

The group of C-points of the spectrum of a commutative Hopf algebra O is

Spec(O)(C) := Hom(O,C). Then3 Spec(Sh(HC))(C) = G((Ug)∧) = exp(ĝ), and

Spec((CΓC)
′)(C) = G((CΓC)

∧) = Γun
C (C) (see [BGF, Thm. 3.224] and Appendix

D.2). The group isomorphism corresponding to ν(pJ,x0) is

(1.2) Γun
C (C)→ exp(ĝ), γ → LJ,x0(γx0).

Definition 1.7 (See Definition B.1). A Hopf algebra with a comodule-algebra

(HACA) is a pair (O,A), with O a Hopf algebra and A an associative algebra,

equipped with an algebra morphism ∆A : A → O ⊗ A, which turns A into a

comodule over the coalgebra O.

The action of an algebraic group G on a variety V gives rise to a HACA

(O(G),O(V )). For any pair (O,a) of a commutative Hopf algebra O and a com-

mutative algebra a, the pair (O,O ⊗ a) is a HACA, with ∆O⊗a := ∆O ⊗ ida;

it corresponds to the action of G := Spec(O) on V := Spec(O) × Spec(a). In

particular, the pair (Sh(HC),Sh(HC)⊗O(C)) is a HACA.

Lemma 1.8 (See Lemma 2.6, Lemma-Definition 5.8, and Lemma B.104). The

right action (f, γ) 7→ f|γ := (x 7→ f(γx)) of ΓC on Ohol(C̃) induces a HACA struc-

ture on ((CΓC)
′, AC).

Theorem B (See Section 5.4). Let (J, x0) ∈ MC(C)× C̃. The pair

(ν(pJ,x0), fJ,x0) : (Sh(HC),Sh(HC)⊗O(C))→ ((CΓC)
′, AC)

is a HACA isomorphism.

To the HACA structure (Sh(HC),Sh(HC)⊗O(C)) (resp. ((CΓC)
′, AC)), one

associates an action of the group exp(ĝ) (resp. Γun(C)) on Sh(HC)⊗O(C) (resp.
on AC). Theorem B can then be translated into an equivariance statement: the

algebra isomorphism fJ,x0
is compatible with the group isomorphism (1.2) and

with the action of its source and target on the target and source of fJ,x0
.

One can also introduce the notion of a connection over a HACA, which gen-

eralizes the notion of connection over a principal bundle in the case of the HACA

(O(G),O(V )), with V a principal G-bundle (see Section 6). We construct a connec-

tion ∇ on the HACA ((CΓC)
′, AC) and compute its pull-back by (ν(pJ,x0

), fJ,x0
),

which is independent of x0, for any (J, x0) ∈ MCnd(C)× C̃.

3One checks that the bijection HomC-vec(Sh(HC),C) ≃ T̂ (H∗
C) = (Ug)∧ induces a bijection

HomC-alg(Sh(HC),C) ≃ G((Ug)∧).
4The combination of Lemma 2.6 and Lemma-Definition 5.8 implies that AC is a ΓC -

stable subalgebra of F∞Ohol(C̃) (the notation F∞ being as in Lemma B.10), and therefore
that (CΓC , AC) is an object in HAMAfd (see Definition B.9); Lemma 1.8 then follows from
Lemma B.10.
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1.2.4. Isomorphisms of filtrations. Let C be the smooth compactification of

C, and S := C ∖C be the complement of C in C, which is a finite set; then C̃ is a

universal cover of C̃ ∖ p−1(S). A function of Ohol(C̃) is called moderate growth if

its growth at the neighborhood of p−1(S) is moderate in the sense of [Ph, §IX.1]

(see Definition 3.9).

Lemma 1.9 (See Proposition 3.10). The subset Omod(C̃) ⊂ Ohol(C̃) of moderate

growth functions is a subalgebra, which is stable under the action of ΓC .

One attaches a filtration of Omod(C̃) to the action of ΓC on Omod(C̃) as

follows.

Definition 1.10. For n ≥ 0, we set FnOmod(C̃) := {f ∈ Omod(C̃) | f|(CΓC)n+1
+

=

0}.

Lemma 1.11 (See Proposition 3.12 and Lemma 4.16).The collection of subspaces

F•Omod(C̃) is an increasing algebra filtration of Omod(C̃) with F0Omod(C̃) =

O(C), stable under the action of ΓC .

Inspired by [Ch], we also define two “differential” filtrations of Ohol(C̃).

Definition 1.12. Consider the following definitions:

(a) F δ
0Ohol(C̃) := C.

(b) For n ≥ 0, F δ
n+1Ohol(C̃) := {f ∈ Ohol(C̃) | d(f) ∈ Ω(C) · F δ

nOhol(C̃)}.
(c) For n ≥ 0, Fµ

nOhol(C̃) := O(C) · F δ
nOhol(C̃).

Lemma 1.13 (See Proposition 5.5). Set F
δ/µ
• := F

δ/µ
• Ohol(C̃).

(a) F δ
• and Fµ

• are increasing algebra filtrations of Ohol(C̃).

(b) F δ
0 ⊂ F

µ
0 ⊂ F δ

1 ⊂ F
µ
1 ⊂ · · · .

Moreover, let us set Fn Sh(V ) :=
⊕

k≤n Shn(V ) for n ≥ 0 and V any vector

space, and let us remark that, for x0 ∈ C̃, the map Ix0
: Sh(Ω(C))→ Ohol(C̃) given

by [ω1| · · · |ωn] 7→ (x 7→
∫ x

x0
ω1 · · ·ωn) is an algebra morphism (see Lemma 2.2).

Then one has the following.

Lemma 1.14 (See Proposition 5.4). The collection of subspaces F• Sh(Ω(C)) is

an algebra filtration of Sh(Ω(C)) and Ix0
(F• Sh(Ω(C))) is an algebra filtration of

Ohol(C̃), which is independent of x0.

These various algebra filtrations can be compared as follows.

Theorem C (See Section 5.4). Let (J, x0) ∈ MCnd(C)× C̃.
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(a) One has the following equalities of algebra filtrations of Ohol(C̃):

F•Omod(C̃) = fJ,x0
(F• Sh(HC)⊗O(C)) = Fµ

• Ohol(C̃),(1.3)

Ix0

(
F• Sh(Ω(C))

)
= F δ

•Ohol(C̃)

= fJ,x0
(F• Sh(HC)⊗ C+ F•−1 Sh(HC)⊗O(C)).(1.4)

(b) One has the equalities

AC = Ix0

(
Sh(Ω(C))

)
= F δ

∞Ohol(C̃) = Fµ
∞Ohol(C̃)

= fJ,x0(Sh(HC)⊗O(C)) = F∞Omod(C̃)(1.5)

of subalgebras of Ohol(C̃), where F∞X :=
⋃

n≥0 FnX for F•X a filtration on

a vector space X.

1.2.5. Filtered formality for HACA structures. Theorem B leads to the

following extension of the notion of filtered formality ([SW1]) to the setting of

HACAs. Any Hopf algebra O is equipped with a Hopf algebra filtration F•O,

given when O = (CΓ)′ by FnO = ((CΓ)n+1
+ )⊥ for n ≥ 0 (see Lemma A.2, [BGF,

§3.3.2], and [Fr, §7.2]), which gives rise to a graded Hopf algebra gr(O). We say

that O is filtered formal if there exists an isomorphism of filtered Hopf algebras

O → gr(O), compatible with the filtrations and whose associated graded is the

identity (see Definition C.2); we show that if a finitely generated group Γ is fil-

tered formal in the sense of [SW1], then the Hopf algebra (CΓ)′ is filtered formal

(see Proposition D.18). These notions extend to HACAs as follows. Any HACA

(O,A) is equipped with a HACA filtration (F•O,F•A), whose first term is the

above filtration of O (see Lemma B.3), and therefore gives rise to a graded HACA

(gr(O), gr(A)) (see Lemma C.3). We say that the HACA (O,A) is filtered for-

mal if there is an isomorphism of filtered HACAs (O,A)→ (gr(O), gr(A)), whose

associated graded is the identity (see Def. C.4).

Proposition 1.15 (See Proposition 4.18). The HACA ((CΓ)′, F∞Omod(C̃)) is

filtered formal; the associated graded HACA is (gr((CΓ)′), gr(Omod(C̃))), where

the components are the graded spaces associated to the filtrations of (CΓ)′ and

F∞Omod(C̃).

§1.3. Organization of the paper

In Part I we prove the results announced in Section 1.2. In Section 2 (resp. Sec-

tion 3), we introduce the necessary material on iterated integrals, Maurer–Cartan

elements, and hyperlogarithm functions (resp. on moderate growth functions). In

Section 4 we prove that fJ,x0
is an isomorphism of filtered algebras; the argument
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relies on techniques of HACAs, which are explained in the appendices. In Section 5

we prove results on the filtrations on Ohol(C̃) and their relation with the minimal

stable subalgebra AC , which lead to the proofs of Theorems A, B, and C.

Part II is devoted to complementary results. In Section 6 we introduce and

study the notion of connections on HACAs. In Section 7 we provide more infor-

mation on the local behavior of elements of AC , which may be viewed, since

AC ⊂ Omod(C̃), as functions on a universal cover of C̃ ∖ p−1(S) with mod-

erate growth near each element of p−1(S) (see Proposition 7.2); in particular,

the germs of the functions of AC near each such an element are Nilsson-class

functions (in the sense of [Ph, p. 154]) of a particular kind. In Section 8 we

relate AC to the minimal acyclic extension of the differential graded algebra (dga)

Ω•(C) := (O(C)⊕Ω(C), d) (see Proposition 8.5). In Section 9 we identify ker(Ix0
)

with the image of an explicit map (see Theorem 9.7(a)), in the spirit of bar-complex

theory (see [H]), and we associate to each section σ : HC → Ω(C) a complement

Subσ of ker(Ix0) in Sh(Ω(C)) (Theorem 9.7(b)).

Part III is divided into four appendices, dealing with Hopf algebras and mod-

ule or comodule algebras (HAMAs/HACAs).

Part I. Theorems A, B, C and their proofs

§2. Iterated integrals, Maurer–Cartan elements,

and hyperlogarithm functions

In Section 2.1 we introduce the iterated integral morphism Ix0 attached to a point

x0 ∈ C̃ and review its standard properties. In Section 2.2 we attach to each

J ∈ MC(C) an algebra morphism J∗ : Sh(HC) → Sh(Ω(C)). In Section 2.3 (see

Proposition 2.15), we show that it gives rise to the morphism f̃J,x0
: Sh(HC) →

Ohol(C̃) from Section 1.2. We show that the image of f̃J,x0
is independent of x0, and

denote by HC(J) its image. When σ ∈ ΣC (see Definition 1.2), we set HC(σ) :=

HC(Jσ). In Section 2.4 we consider the case where C = P1
C ∖ S, and we exhibit

a section σ0 such that HP1
C∖S(σ0) coincides with the algebra of hyperlogarithm

functions (Proposition 2.19).

§2.1. Iterated integrals

Recall that the shuffle algebra (Sh(V ),�) associated with a vector space V is

isomorphic to the tensor algebra
⊕

d≥0 V
⊗d as a vector space and that � is com-

mutative. It has the decomposition Sh(V ) =
⊕

d≥0 Shd(V ), where Shd(V ) is the

degree d component V ⊗d, which is an algebra grading; an element v1 ⊗ · · · ⊗ vd ∈
V ⊗d will be denoted [v1| · · · |vd] ∈ Shd(V ).
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Lemma-Definition 2.1. Let x0 ∈ C̃.

(a) For x ∈ C̃ and ω1, . . . , ωk ∈ Ω(C), the iterated integral∫
γ

ω1 · · ·ωk :=

∫
0≤t1≤···≤tk≤1

γ∗ω1(t1) ∧ · · · ∧ γ∗ωk(tk)

is independent of a path γ from x0 to x; it will be denoted
∫ x

x0
ω1 · · ·ωk.

(b) For any n ≥ 0, there exists a unique linear map I
(n)
x0 : Shn(Ω(C)) → Ohol(C̃)

such that I
(0)
x0 (1) = 1, and for any ω1, . . . , ωn ∈ Ω(C), one has

I(n)x0
([ω1| · · · |ωn]) =

(
x 7→

∫ x

x0

ω1 · · ·ωn

)
.

(c) The linear map Ix0 : Sh(Ω(C))→ Ohol(C̃) is the direct sum
⊕

n≥0 I
(n)
x0 .

Proof. Let Ωhol(C̃) be the space of holomorphic differentials on C̃ and let

intx0 : Ωhol(C̃) → Ohol(C̃) be the linear map ω 7→ (x 7→
∫ x

x0
ω), which is well

defined since C̃ is simply connected and since the elements of Ωhol(C̃) are closed.

Statement (a) follows from the equality
∫
γ
ω1 · · ·ωk = intx0(ωk · intx0(ωk−1 · · ·ω2 ·

intx0
(ω1)))(x). Statements (b) and (c) are obvious.

One has therefore, for n ≥ 1 and ω1, . . . , ωn ∈ Ω(C), the equality (in Ohol(C̃))

(2.1) Ix0
([ω1| · · · |ωn]) = intx0

(Ix0
([ω1| · · · |ωn−1]) · p∗ωn).

Lemma 2.2. For any x0 ∈ C̃, Ix0
: Sh(Ω(C))→ Ohol(C̃) is an algebra morphism.

Proof. See for example [BGF, Thm. 3.19, (3.22)].

Lemma 2.3. For any x0, x1 ∈ C̃, γ ∈ ΓC , and a ∈ Sh(Ω(C)), Ix0
(a)(x1) =

Iγx0
(a)(γx1).

Proof. It suffices to prove this for a homogeneous. One argues by induction on

deg(a). The identity is obvious for deg(a) = 0, and the identity for degree n

follows from the identity for degree n − 1, (2.1), and the invariance of p∗ω for

ω ∈ Ω(C).

Definition 2.4. If V is a vector space, then ∆Sh(V ) is the deconcatenation coprod-

uct on Sh(V ), defined by [v1| · · · |vn] 7→
∑n

k=0[v1| · · · |vk]⊗ [vk+1| · · · |vn] for v1, . . . ,
vn ∈ V ; it equips Sh(V ) with a commutative Hopf algebra structure.

Lemma 2.5. For x0, x1 ∈ C̃ and a ∈ Sh(Ω(C)), one has

(2.2) Ix0
(a) = Ix0

(a(1))(x1)Ix1
(a(2)),

where a(1) ⊗ a(2) is Sweedler’s notation for ∆Sh(Ω(C))(a).
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Proof. Let us prove (2.2) by induction on the degree of a homogeneous element a in

Sh(Ω(C)). Equation (2.2) is obvious if a has degree 0. Assume that (2.2) is proved

for any a of degree < n and let us prove it in degree n. Let ω1, . . . , ωn ∈ Ω(C).

Then

dIx0
([ω1| · · · |ωn]) = Ix0

([ω1| · · · |ωn−1]) · p∗ωn

=

n−1∑
k=0

Ix0([ω1| · · · |ωk])(x1)Ix1([ωk+1| · · · |ωn−1]) · p∗ωn

=

n−1∑
k=0

Ix0
([ω1| · · · |ωk])(x1)dIx1

([ωk+1| · · · |ωn])

= d

(n−1∑
k=0

Ix0
([ω1| · · · |ωk])(x1)Ix1

([ωk+1| · · · |ωn])

)
,

where the first and third equalities follow from (2.1), and the second equality from

(2.2) in degree n− 1.

It follows that

Ix0
([ω1| · · · |ωn])−

n−1∑
k=0

Ix0
([ω1| · · · |ωk])(x1)Ix1

([ωk+1| · · · |ωn]) ∈ Ohol(C̃)

is a constant function. Its value at x1 is Ix0([ω1| · · · |ωn])(x1), therefore

Ix0([ω1| · · · |ωn]) =

n∑
k=0

Ix0([ω1| · · · |ωk])(x1)Ix1([ωk+1| · · · |ωn]),

proving (2.2) in degree n.

Lemma 2.6. If x0 ∈ C̃, then Ix0(Sh(Ω(C))) is a ΓC-stable subalgebra of Ohol(C̃),

and for any f ∈ Ix0
(Sh(Ω(C))) there exists n ≥ 0 such that f|(CΓC)n+1

+
= 0.

Proof. It follows from Lemma 2.5 that the map a ⊗ γ 7→ a|γ := Ix0(a
(1))(γ ·

x0)a
(2) defines a right action of ΓC on the algebra Sh(Ω(C)), and that the alge-

bra morphism Ix0
: Sh(Ω(C)) → Ohol(C̃) is ΓC-equivariant. This implies that

Ix0
(Sh(Ω(C))) is a ΓC-stable subalgebra of Ohol(C̃). The second statement follows

from the equivariance of Ix0
and from a|(CΓC)n+1

+
= 0 for any a ∈ Shn(Ω(C)).

§2.2. Maurer–Cartan elements and associated morphisms

Let O be a Hopf algebra with coproduct ∆O. For a ≥ 1, let ∆
(a)
O : O → O⊗a be

the morphism obtained by iteration of ∆O. Let prO : O → O/C be the canonical

projection.
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Definition 2.7 (See [Q1, Appx. B3], [BGF, §3.3.2], or [Fr, §7.2]). For n ≥ 0, we

define FnO := ker(pr⊗n+1
O ◦∆(n+1)

O ).

We also set F−1O = {0}. Note that F0O = C1.

Lemma 2.8. Let O be a Hopf algebra such that O = F∞O, with F•O as in

Definition 2.7, let V be a vector space, and let µ : O → V be a linear map

which is a derivation with respect to the counit ϵ of O, i.e. satisfying the iden-

tity µ(fg) = µ(f)ϵ(g) + ϵ(f)µ(g). Then the map µ∗ : O → Sh(V ) given by f 7→∑
r≥0[µ(f

(1))| · · · |µ(f (r))] is well defined (using Sweedler’s notation for the iterated

coproduct of O, which is the counit if r = 0), and is a Hopf algebra morphism.

Proof. Since µ(1) = 0, the map f 7→
∑

r≥0[µ(f
(1))| · · · |µ(f (r))] takes FnO to

Fn Sh(V ) for any n ≥ 0, which implies that µ∗ is well defined. For f ∈ O, and

denoting by ∆X the coproduct of X for X any of the Hopf algebras O and Sh(V ),

one has

µ⊗2
∗ ◦∆O(f) = µ∗(f

(1))⊗ µ∗(f
(2))

=
∑
r,s≥0

[µ(f (1)(1))| · · · |µ(f (1)(r))]⊗ [µ(f (2)(1))| · · · |µ(f (2)(s))]

=
∑
r,s≥0

[µ(f (1))| · · · |µ(f (r))]⊗ [µ(f (r+1))| · · · |µ(f (r+s))]

= ∆Sh(V ) ◦ µ∗(f).

For f, g ∈ O, one has

µ∗(fg) =
∑
n≥0

[µ(f (1)g(1))| · · · |µ(f (n)g(n))]

=
∑
n≥0

[ϵ(f (1))µ(g(1)) + µ(f (1))ϵ(g(1))| · · · |ϵ(f (n))µ(g(n)) + µ(f (n))ϵ(g(n))]

=
∑
n≥0

∑
n=k+l

∑
K,L||K|=l,|L|=l

K⊔L=[[1,n]]

k∏
a=1

µ(f (ia))ia
l∏

b=1

µ(g(jb))jb
k∏

a=1

ϵ(g(ia))

l∏
b=1

ϵ(f (jb))

=
∑
n≥0

∑
n=k+l

∑
K,L||K|=l,|L|=l

K⊔L=[[1,n]]

[µ(f (1))| · · · |µ(f (k))]K · [µ(g(1))| · · · |µ(g(l))]L

=
∑
n≥0

∑
n=k+l

[µ(f (1))| · · · |µ(f (k))]� [µ(g(1))| · · · |µ(g(l))] = µ∗(f)µ∗(g),

where the transport to Sh(V ) of the product in the tensor algebra T (V ) is denoted

by the first two product signs in the third line and by · in the fourth line; in the



640 B. Enriquez and F. Zerbini

third line, we denote by v 7→ vi the map

V → Sh(V ), v 7→ [1 · · · 1︸ ︷︷ ︸
i−1

|v| 1 · · · 1︸ ︷︷ ︸
n−i

],

and by (i1, . . . , ik) and (j1, . . . , jl) the increasing sequences such that K = {i1, . . . ,
ik} and L = {j1, . . . , jl}; in the fourth line, x 7→ xK is the map Shk(V )→ Sh(V ),

[v1| . . . , |vk] 7→
∏k

a=1 v
ia
a and y 7→ yL has a similar meaning.

This proves that µ∗ is compatible with the products and coproducts; one

checks that it is compatible with the other aspects of the Hopf algebra structure

(unit, counit, antipode).

Lemma 2.9. For V a vector space, Sh(V ) = F∞(Sh(V )), where F• Sh(V ) is5 as

in Definition 2.7.

Proof. Since Sh(V ) is a connected graded Hopf algebra, this follows from Propo-

sition A.2(d).

Let J ∈ MC(C) (see Definition 1.1). Let µJ : Sh(HC)→ Ω(C) be the compo-

sition Sh(HC) ≃
⊕

n≥0 T (H
∗
C)[n]

∗ →
⊕

n≥0 L(H∗
C)[n]

∗ → Ω(C), where the second

map is dual to the inclusion L(H∗
C)[n] ⊂ T (H∗

C)[n] and the last map is induced

by J .

Lemma 2.10. Let J ∈ MC(C). Then the linear map µJ : Sh(HC) → Ω(C) is a

derivation with respect to the counit of Sh(HC).

Proof. For f, g ∈ Sh(HC), one has

µJ(fg) = (fg ⊗ id)(J) = (f ⊗ g ⊗ id)((∆T̂ (H∗
C) ⊗ id)(J))

= (f ⊗ g ⊗ id)(J13 + J23) = µJ(f)ϵ(g) + ϵ(f)µJ(g),

where the third equality follows from the primitiveness of the first component of

J , and x 7→ x13, x23 are the maps T̂ (H∗
C) ⊗̂ Ω(C)→ T̂ (H∗

C)
⊗̂2 ⊗̂ Ω(C) induced by

t⊗ ω 7→ t⊗ 1⊗ ω, 1⊗ t⊗ ω.

Corollary 2.11. If J ∈ MC(C), then the map

(2.3) J∗ : Sh(HC)→ Sh(Ω(C)), ξ 7→
∑
r≥0

[µJ(ξ
(1))| · · · |µJ(ξ

(r))]

is well defined, and is an algebra morphism.

Proof. This follows from Lemmas 2.8, 2.9 with V = HC , and 2.10.

5This “Hopf algebra” filtration of Sh(V ) can be shown to coincide with the “degree” filtration,
which a posteriori justifies denoting them in the same way.
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Lemma-Definition 2.12. For J ∈ MCnd(C), there is a unique σ ∈ ΣC such that

the degree 1 component of J (for the degree of L̂(HC)
∗) is equal to Jσ. This defines

a map MCnd(C)→ ΣC , J 7→ σJ . It satisfies the identity σJσ
= σ.

Proof. Obvious.

Lemma 2.13. The following statements hold true:

(a) For σ ∈ ΣC , the morphism (Jσ)∗ : Sh(HC)→ Sh(Ω(C)) (see Definition 1.2) is

graded, and coincides with the morphism σ∗ functorially induced by the linear

map σ.

(b) For J ∈ MCnd(C), the morphism J∗ : Sh(HC)→ Sh(Ω(C)) is compatible with

the filtrations F• of both sides, and the associated graded morphism coincides

with the morphism attached to σJ so gr(J∗) = (σJ)∗.

Proof. (a) is obvious. For (b), let n ≥ 1, h1, . . . , hn ∈ HC , and ξ := [h1| · · · |hn] ∈
Sh(HC). Then for r ≥ n,

ξ(1) ⊗ · · · ⊗ ξ(r) ∈ δr,nh1 ⊗ · · · ⊗ hn +

r⊕
i=1

Sh(HC)
⊗i−1 ⊗ 1⊗ Sh(HC)

⊗r−i,

which since µJ(1) = 0 (see Lemma 2.10) and µJ(h) = σJ(h) for h ∈ HC implies

[µJ(ξ
(1))| · · · |µJ(ξ

(r))] = δr,n[σJ(h1)| · · · |σJ(hn)]. The statement follows by com-

bining this with (2.3).

§2.3. The algebras HC(J), HC(σ)

Let J ∈ MCnd(C), d := dim(HC), and (hi)i∈[[1,d]] be
6 a basis of HC . Then

(Ix0
◦ J∗([hi1 | · · · |hik ]))k≥0,i1,...,ik∈[[1,d]]

is a family of elements of HC(J). When J = Jσ with σ ∈ ΣC , this family is equal

to (
Ix0([σ(hi1)| · · · |σ(hik)])

)
k≥0,i1,...,ik∈[[1,d]]

.

The following statement is a generalization of [Br, Cor. 5.6].

Proposition 2.14. For (J, x0) ∈ MCnd(C)× C̃, the element

LJ,x0
:=

∑
k≥0

i1,...,ik∈[[1,d]]

Ix0
◦J∗([hi1 | · · · |hik ])⊗ (hi1⊗· · ·⊗hik) ∈ Ohol(C̃) ⊗̂ T̂ ((HC)

∗),

where (hi)i∈[[1,d]] is the basis of (HC)
∗ dual to (hi)i∈[1,d], satisfies the equality

(2.4) (d⊗ id)(LJ,x0
) = LJ,x0

· J

6We set [[1, d]] := {1, 2, . . . , d}.



642 B. Enriquez and F. Zerbini

(equality in Ωhol(C̃) ⊗̂ T̂ ((HC)
∗)), as well as LJ,x0

(x0) = 1; it is the only element

of the algebra Ohol(C̃) ⊗̂ T̂ ((HC)
∗) satisfying these conditions.

Proof. It follows from the definition of µJ that

J =
∑
r≥0

∑
(i1,...,ir)∈[[1,d]]r

µJ([hi1 | · · · |hir ])⊗ hi1 ⊗ · · · ⊗ hir

(equality in Ω(C) ⊗̂ T̂ (H∗
C)), and therefore, expanding J as a sum

∑
α ωα ⊗ xα

(convergent for the topology of Ω(C) ⊗̂ T̂ (H∗
C)), that

LJ,x0
=

∑
r≥0

∑
α1,...,αr

Ix0
([ωα1

| · · · |ωαr
])⊗ xα1 · · ·xαr .

Then

(d⊗ id)LJ,x0
=

∑
r≥1

∑
α1,...,αr

Ix0
([ωα1

| · · · |ωαr−1
])ωαr

⊗ xα1 · · ·xαr

= LJ,x0
·
∑
α

ωα ⊗ xα = LJ,x0
· J.

The second statement follows from the fact that t 7→ Ix0
(t)(x0) is the aug-

mentation map Sh(Ω(C))→ C. The uniqueness follows from the fact the ratio of

two solutions must be equal to 1 at x0 and be killed by d, hence be 1.

Equation (2.4) is a generalization of [Br, eq. (5.1)], and LJ,x0
is a generaliza-

tion of the solution L(z) of this equation constructed in [Br, Prop. 5.1].

Proposition 2.15. For any (J, x0) ∈ MCnd(C)× C̃, the algebra morphism Ix0 ◦
J∗ : Sh(HC)→ Ohol(C̃) is such that for any a ∈ Sh(HC),

Ix0
◦ J∗(a) = ⟨id⊗ a,LJ,x0

⟩.

Therefore, Ix0
◦ J∗ = f̃J,x0

(see (1.1)); in particular f̃J,x0
: Sh(HC) → Ohol(C̃) is

an algebra morphism.

Proof. It follows from the fact that (k, i1, . . . , ik) 7→ [hi1 | · · · |hik ] and (k, i1, . . . , ik)

7→ hi1 ⊗ · · · ⊗ hik are dual bases of Sh(HC) and T (H
∗
C).

Lemma 2.16. Let J ∈ MCnd(C). The image f̃J,x0(Sh(HC)) is independent of

x0 ∈ C̃. We denote this subalgebra by HC(J) ⊂ Ohol(C̃) and set HC(σ) := HC(Jσ)

for any σ ∈ ΣC .

Proof. Let x0, x1 ∈ C̃. Let µx1
x0

: Sh(HC) → C be the map t 7→ Ix0
(J∗(t))(x1).

This is an algebra morphism, as it is the composition of the algebra morphism

f̃J,x0
and the morphism Omod(C̃)

evx1−−−→ C of evaluation at x1. Set a
x1
x0

:= (µx1
x0
⊗
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id) ◦∆Sh(HC); this is an algebra endomorphism of Sh(HC) as it is a composition

of algebra morphisms. It is also a vector space automorphism of Sh(HC) since

it is compatible with the filtration and the associated graded endomorphism of

gr(Sh(HC)) is the identity. Therefore, ax1
x0

is an algebra automorphism of Sh(HC).

Equation (2.2) implies the identity Ix1
(J∗(t)) = Ix1

(J∗(t
(1)))(x0)Ix0

(J∗(t
(2)))

(equality in Ohol(C̃)) for any t ∈ Sh(HC), therefore the equality Ix1
◦J∗ = Ix0

◦J∗◦
ax1
x0

(equality of maps Sh(HC)→ Ohol(C̃)), i.e. f̃J,x1
= f̃J,x0

◦ ax1
x0
, which together

with the bijectivity of ax1
x0

implies the statement.

§2.4. The algebra HC(σ) in the genus-zero case

Let S ⊂ P1
C be a finite set containing 0 and ∞, let C := P1

C ∖ S. Recall the linear

isomorphism HC ≃ CŜ∞, where S∞ = S ∖ {∞} and let σ0 ∈ ΣC be such that for

any s ∈ S∞, σ0(ŝ) = dlog(z−s). By Lemma 2.16, one attaches to it the subalgebra

HP1
C∖S(σ0) ⊂ Ohol(C̃).

Set H
(0)
C :=

⊕
s∈S∞∖{0} Cŝ ⊂ HC and Sh∗(HC) := C ⊕ [H

(0)
C |Sh(HC)] (recall

that [−|−] denotes the concatenation in Sh(HC)). Then Sh∗(HC) is a subalgebra

of Sh(HC).

Lemma 2.17 (See [Pa, §3.3]). The following statements hold true:

(a) Denote by Sh∗(HC)[X] the polynomial algebra in one variable over the algebra

Sh∗(HC). The combination of the canonical injection Sh∗(HC) ↪→ Sh(HC) and

of the assignment X 7→ [0̂] gives rise to an algebra isomorphism Sh∗(HC)[X]→
Sh(HC).

(b) Let δ > 0 be such that ]0, δ[ ⊂ C. Fix a connected component K of p−1(]0, δ[).

The restriction of p is a bijection K →]0, δ[; denote by qK : ]0, δ[ → K the

inverse bijection. For t ∈ Sh∗(HC) and z ∈ C̃, the limit

lim
ϵ→0

IqK(ϵ)((σ0)∗(t))(z)

exists; the function

f̃∗σ0,0(t) :=
(
z 7→ lim

ϵ→0
IqK(ϵ)((σ0)∗(t))(z)

)
belongs to Ohol(C̃); the map f̃∗σ0,0 : Sh∗(HC) → Ohol(C̃), t 7→ f̃∗σ0,0(t) is an

algebra morphism.

Definition 2.18 (See [Pa, §3.3]). We denote by f̃σ0,0 : Sh(HC) → Ohol(C̃) the

composition with the inverse of the isomorphism of Lemma 2.17(a) of the mor-

phism Sh∗(HC)[X]→ Ohol(C̃) extending f̃
∗
σ0,0 by X 7→ log.
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The map f̃σ0,0 is an algebra morphism. For w ∈ Ŝ∗
∞ ⊂ Sh(HC), the element

f̃σ0,0(w) ∈ Ohol(C̃) is denoted Lw in [Pa, §3.3] and called the hyperlogarithm

function associated to w.

Proposition 2.19. One has f̃σ0,0(Sh(HC)) = C[Lw|w ∈ Ŝ∗
∞] = HP1

C∖S(σ0).

Proof. Fix z0 ∈ C̃. The subalgebra Sh∗(HC) of Sh(HC) is a right coideal for

the coalgebra structure, so that ∆Sh(HC) induces an algebra morphism ∆Sh∗(HC) :

Sh∗(HC) → Sh∗(HC) ⊗ Sh(HC). Composing with the tensor product of the com-

position

Sh∗(HC)
f̃∗
σ0,0−−−→ Ohol(C̃)

evz0−−−→ C

with the identity, one gets an algebra morphism ((evz0 ◦ f̃∗σ0,0) ⊗ id) ◦ ∆Sh∗(HC):

Sh∗(HC)→ Sh(HC). By Lemma 2.17, there exists a unique algebra endomorphism

az00 of Sh(HC), whose restriction to Sh∗(HC) coincides with ((evz0 ◦ f̃∗σ0,0)⊗ id) ◦
∆Sh∗(HC) and such that [0̂] 7→ [0̂] + log(z0). One checks that az00 is compatible

with the filtration of Sh(HC) and that the associated graded endomorphism of

gr(Sh(HC)) is the identity, so that az00 is an algebra automorphism of Sh(HC).

Specializing (2.2) for t ∈ (σ0)∗(Sh
∗(HC)) and taking its limit for z → 0, one

obtains the equality f̃∗σ0,0(t)(z
′′) = f̃∗σ0,0(t

(1))(z′)Iz′(σ0(t
(2)))(z′′) for t ∈ Sh∗(HC)

and any z′, z′′ ∈ C̃. Setting z′ := z0 in this identity and viewing both sides as a

function of z′′, one obtains the identity

f̃∗σ0,0(t) = f̃∗σ0,0(t
(1))(z0)Iz0((σ0)∗(t

(2)))

(in Ohol(C̃)) which is equivalent to the statement that the restrictions to Sh∗(HC)

of f̃σ0,0 and Iz0 ◦ (σ0)∗ ◦ a
z0
0 , which are algebra morphisms Sh(HC) → Ohol(C̃)

are equal. The images by these morphisms of [0̂] ∈ Sh(HC) are also equal, since

f̃σ0,0([0̂]) = (z 7→ log(z)) while az00 ([0̂]) = [0̂] + log(z0) and Iz0 ◦ (σ0)∗([0̂]) =

(z 7→ log(z) − log(z0)). As Sh(HC) is generated by Sh∗(HC) and [0̂], the algebra

morphism status of both f̃σ0,0 and Iz0 ◦ (σ0)∗ ◦ a
z0
0 implies that

(2.5) f̃σ0,0 = Iz0 ◦ (σ0)∗ ◦ a
z0
0 = f̃σ0,0 ◦ a

z0
0

(equality of algebra morphisms Sh(HC)→ Ohol(C̃)).

One then has f̃σ0,0(Sh(HC)) = f̃σ0,z0 ◦ a
z0
0 (Sh(HC)) = f̃σ0,z0(Sh(HC)) =

HP1
C∖S(σ0), where the first equality follows from (2.5), the second follows from

the automorphism status of az00 , and the last from Lemma 2.16.

One also has C[Lw|w ∈ Ŝ∗
∞] = f̃σ0,0(C[w|w ∈ Ŝ∗

∞]) = f̃σ0,0(Sh(HC)).

Remark 2.20. The element Jσ0 =
∑

s∈S∞
d log(z − s) ⊗ hs is related to the

Knizhnik–Zamolodchikov (KZ) connection as follows. Recall that this connection,
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denoted ∇KZ = d + AKZ, is an exp(tn)-connection over the configuration space

Cn(C) of n points in C, where tn is the topological Lie algebra with generators

tij , i ̸= j ∈ [[1, n]] and relations tji = tij for |{i, j}| = 2, [tik + tjk, tij ] = 0 for

|{i, j, k}| = 3 and [tij , tkl] = 0 for |{i, j, k, l}| = 4, and that AKZ =
∑

i̸=j d log(zi−
zj) ⊗ tij . Let (s1, . . . , sn) ∈ Cn(C) and S∞ := {s1, . . . , sn}; then C ∖ S∞ is the

preimage of (s1, . . . , sn) by the projection Cn+1(C) → Cn(C). Let injS∞
: C ∖

S∞ ↪→ Cn+1(C) be the canonical injection, and let ι : L((HC)
∗)→ tn+1 be the Lie

algebra morphism induced by hi 7→ ti,n+1 for i = 1, . . . , n. Then

ι∗(Jσ0) = (injS∞
)∗(AKZ).

§3. Moderate growth functions

In Section 3.1 we introduce the algebra Omod(C̃) of moderate growth functions on

C̃, and in Section 3.2 the space of moderate growth differentials Ωmod(C̃), which

is a module over it. In Section 3.3 we study the relations of the iterated integral

morphism Ix0
with moderate growth functions.

§3.1. Moderate growth functions on C̃

3.1.1. Moderate growth functions on a disc. Set D := {z ∈ C | |z| < 1},
D× := D ∖ {0}, and D̃× := {u ∈ C | ℑ(u) > 0}. Let e : D̃× → D× be the map

defined by e(u) := exp(2πiu) (we set i :=
√
−1), and let θ be the automorphism

of D̃× given by θ(u) = u + 1. For f : M → N a morphism of complex manifolds,

we denote by f∗ : Ohol(N)→ Ohol(M) the induced morphism between algebras of

holomorphic functions. For F = D,D×, D̃×, we denote by Ohol(F ) the algebra of

holomorphic functions on F .

Definition 3.1 (See [Ph, Chap. VIII, Def. 1.2]). Define Omod(D̃
×) ⊂ Ohol(D̃

×)

as the set of functions f such that there exist an integer n > 0 and a function

{(a, b) ∈ R2 | a ≤ b} ∋ (a, b) 7→ Ca,b ∈ R+ such that |f(x + iy)| ≤ Ca,be
2πny for

(x, y) ∈ [a, b]× R+.

Remark 3.2. If f satisfies these conditions for the pair (n, (a, b) 7→ Ca,b), then it

satisfies it also for (n+ 1, (a, b) 7→ Ca,b).

Lemma 3.3. The subspace Omod(D̃
×) is a subalgebra of Ohol(D̃

×), equipped with

an action of Z where 1 acts by θ∗.

Proof. The constant function c satisfies the conditions from Definition 3.1 with

n = 0 and (a, b) 7→ Ca,b = |c|; if the function f (resp. g) satisfies them with

(n, (a, b) 7→ Ca,b) (resp. (m, (a, b) 7→ Da,b)), then the function f + g satisfies
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them with (max(n,m), (a, b) 7→ Ca,b +Da,b), the function fg satisfies them with

(n +m, (a, b) 7→ Ca,bDa,b), and the function θ∗f satisfies them with (n, (a, b) 7→
Ca+1,b+1).

Definition 3.4. Set O(D×) := {f ∈ Ohol(D
×) | ∃n ≥ 0, znf ∈ Ohol(D)}.

Then O(D×) is the algebra of meromorphic functions on D with the only

possible poles at 0.

Lemma 3.5. Omod(D̃
×)Z = O(D×).

Proof. The inclusion Omod(D̃
×)Z ⊃ O(D×) is evident; let us show the opposite

inclusion. Let f ∈ Omod(D̃
×)Z. Then there exist n > 0 and C0,1 ∈ R+, such that

|f(x + iy)| ≤ C0,1e
2πny for any (x, y) ∈ [0, 1] × R+. Since f is Z-invariant, f ∈

Ohol(D
×), therefore znf ∈ Ohol(D

×). For z ∈ D×, there exists a unique (x, y) ∈
[0, 1[ × R+ such that z = e(x + iy). Then |znf(z)| ≤ C0,1e

−2πnye2πny = C0,1. By

the removable singularity theorem (see [L, Thm. 3.1]), znf is the restriction to D×

of a function of Ohol(D), therefore f ∈ O(D×).

3.1.2. The algebra Omod(C̃) of moderate growth functions.

Definition 3.6. Consider the following definitions:

(a) (C,S) is the pair of a nonsingular projective algebraic curve C and a finite set

S of complex points of C such that C = C ∖ S.

(b) For s ∈ S, φs : D → C is an injective holomorphic map, such that 0 7→ s

and φs(D) ∩ S = {s}; we set Us := φs(D) ⊂ C, so that φs corestricts to a

biholomorphic map D ∼−→ Us.

(c) For s ∈ S, φ×
s : D× → C is the injective holomorphic map obtained by restric-

tion of φs; we set U×
s := Us ∖ {s}, so that φ×

s corestricts to a biholomorphic

map D× ∼−→ U×
s .

(d) For s ∈ S, we set Ũ×
s := p−1(U×

s ) and Xs := π0(Ũ
×
s ); for x ∈ Xs, we define

Ũ×
s,x as the connected component of Ũ×

s corresponding to x.

(e) For s ∈ S and x ∈ Xs, φ̃
×
s,x : D̃

× → C̃ is a holomorphic map with image

contained in Ũ×
s,x, such that p ◦ φ̃×

s,x = φ×
s ◦ e. Then φ̃×

s,x corestricts to a

biholomorphic map D̃× → Ũ×
s,x.

The choice of (φ̃×
s,x)s∈S,x∈Xs

is not unique, but any two choices are related by

ψ̃×
s,x = φ̃×

s,x ◦ θas,x , where (as,x)s∈S,x∈Xs
is in

⊕
s∈S ZXs .

For any s ∈ S, the group ΓC acts on Ũ×
s , and therefore also on the set Xs.

The latter action is transitive, and the stabilizer of any element x ∈ Xs is a cyclic
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group, generated by an element θs,x ∈ ΓC which restricts to an automorphism of

Ũ×
s,x, equal to the conjugation of θ by the corestriction of φ̃×

s,x to an isomorphism

D̃× → Ũ×
s,x.

Lemma 3.7. There exists a map c : ΓC × Xs → Z satisfying the identity

c(γ′γ, x) = c(γ′, γx) + c(γ, x), such that for any (γ, x) ∈ ΓC × Xs, one has

φ̃×
s,γx ◦ θc(γ,x) = γ ◦ φ̃×

s,x (equality of holomorphic maps D̃× → C̃).

Proof. The existence of a map c satisfying the identity φ̃×
s,γx ◦ θc(γ,x) = γ ◦ φ̃×

s,x

follows from the fact that for any pair of holomorphic maps α, β : D̃× → C̃ such

that p ◦ α = φ×
s ◦ e = p ◦ β, there exists n ∈ Z such that β = α ◦ θn. Then

φ̃×
s,γ′γx ◦θc(γ

′γ,x) = γ′γ ◦ φ̃×
s,x = γ′ ◦ φ̃×

s,γx ◦θc(γ,x) = φ̃×
s,γ′γx ◦θc(γ

′,γx) ◦θc(γ,x) which
implies the identity satisfied by c.

Lemma 3.8. The following statements hold true:

(a) For any s ∈ S, the space Xs × D̃× is equipped with an action of ΓC given by

γ · (x, d) := (γx, θc(γ,x)d). The induced right action of ΓC on
∏

x∈Xs
Ohol(D̃

×)

is given by (fx)x∈Xs
· γ = (gx)x∈Xs

, where gx := (θc(γ,x))∗(fγx).

(b) The map
∐

s∈S Xs×D̃× → C̃, (s, x, d) 7→ φ̃×
s,x(d) is ΓC-equivariant, its source

being equipped with the direct sum of the actions of ΓC defined in (a). It induces

a ΓC-equivariant algebra morphism

(3.1)
⊕
s∈S

∏
x∈Xs

(φ̃×
s,x)

∗ : Ohol(C̃)→
⊕
s∈S

∏
x∈Xs

Ohol(D̃
×),

in which the target is equipped with the direct sum over s ∈ S of the right

actions from (a).

Proof. This follows from Lemma 3.7.

Definition 3.9. Denote by Omod(C̃) the subset of Ohol(C̃) of all functions f such

that, for any s ∈ S and x ∈ Xs, one has (φ̃×
s,x)

∗(f) ∈ Omod(D̃
×).

Proposition 3.10. The subset Omod(C̃) is a subalgebra of Ohol(C̃), stable under

the action of ΓC .

Proof. This follows from the equality of Omod(C̃) with the preimage of the set⊕
s∈S

∏
x∈Xs

Omod(D̃
×) under (3.1), and from the fact that this is a ΓC-stable

subalgebra of the target of (3.1).

3.1.3. Computation of Omod(C̃)ΓC .

Lemma 3.11. For any s∈S, the diagonal embedding O(D×) ↪→
∏

x∈Xs
Omod(D̃

×)

gives rise to an isomorphism O(D×) ≃ (
∏

x∈Xs
Omod(D̃

×))ΓC .
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Proof. The fact that the image of the diagonal embedding is included in the

set (
∏

x∈Xs
Omod(D̃

×))ΓC is evident; let us prove the opposite inclusion. Let

y ∈ Xs. The stabilizer of y for the action of ΓC on Xs is a cyclic group, gen-

erated by an element θy ∈ ΓC such that c(θy, y) = 1. If now f := (fx)x∈Xs ∈
(
∏

x∈Xs
Omod(D̃

×))ΓC , then f = f · θy, therefore for any x ∈ Xs, one has fx =

(θc(θy,x))∗(fθyx), which for x = y implies fx = θ∗fx. By Lemma 3.5(b), this implies

fx ∈ O(D×). For any γ ∈ Γ, one has f = f · γ, which given the θ-invariance of

each fx, x ∈ Xs, implies fx = fγx for any x ∈ Xs. Since the action of ΓC on Xs is

transitive, this implies that the map x 7→ fx is constant.

Proposition 3.12. Omod(C̃)
ΓC = O(C).

Proof. Let n ≥ 0. It follows from Proposition 3.10 that (3.1) induces a linear and

ΓC-equivariant algebra morphism

(3.2) Omod(C̃)→
⊕
s∈S

∏
x∈Xs

Omod(D̃
×).

This map restricts to a linear map Omod(C̃)
ΓC → (

⊕
s∈S

∏
x∈Xs

Omod(D̃
×))ΓC .

The target is equal to
⊕

s∈S(
∏

x∈Xs
Omod(D̃

×))ΓC , which by Lemma 3.11 is equal

to
⊕

s∈S O(D×).

On the other hand, Omod(C̃)
ΓC ⊂ Ohol(C̃)

ΓC = Ohol(C). All this implies that

Omod(C̃)
ΓC is the preimage of

⊕
s∈S O(D×) by the map⊕

s∈S

(φ×
s )

∗ : Ohol(C)→
⊕
s∈S

Ohol(D
×),

which is equal to O(C).

One checks that the subalgebra Omod(D̃) ⊂ Ohol(C̃) is independent of the

choice of the family (φs)s∈S .

§3.2. The module Ωmod(C̃) of moderate growth differentials

If M is a complex manifold, let Ω•
hol(M) be the dga of holomorphic differen-

tial forms on M . Then Ω0
hol(M) = Ohol(M). The assignment M 7→ Ω•

hol(M) is

a contravariant functor, so a morphism f : M → N of complex manifolds gives

rise to a dga morphism f∗ : Ω•
hol(N) → Ω•

hol(M). If M is 1-dimensional, we set

Ωhol(M) := Ω1
hol(M); then Ωhol(M) is anOhol(M)-module, equipped with a deriva-

tion d : Ohol(M)→ Ωhol(M).

Lemma 3.13. The space Ωhol(D̃
×) is a free rank 1 module over Ohol(D̃

×) gener-

ated by e∗(dz/z), so f 7→ f ·e∗(dz/z) gives rise to a Ohol(D̃
×)-module isomorphism

Ohol(D̃
×) ∼−→ Ωhol(D̃

×).
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Proof. This follows from the fact that dz/z is an invertible differential in Ωhol(D
×),

which implies the same about its pull-back by D̃× → D×.

Definition 3.14. Define Ωmod(D̃
×) := Omod(D̃

×) · e∗(dz/z) as the image of

Omod(D̃
×) under the isomorphism from Lemma 3.13.

Lemma 3.15. The space Ωmod(D̃
×) is a free rank 1 module over Omod(D̃

×).

Proof. The follows from the injectivity of the map Ohol(D̃
×) → Ωhol(D̃

×), f 7→
f · e∗(dz/z).

The morphism
∏

s∈S

∏
x∈Xs

φs,x :
∏

s∈S

∏
x∈Xs

D̃× → C̃ gives rise to a mor-

phism

(3.3)
⊕
s∈S

∏
x∈Xs

(φ̃×
s,x)

∗ : Ωhol(C̃)→
⊕
s∈S

∏
x∈Xs

Ωhol(D̃
×).

Definition 3.16. Define Ωmod(C̃) as the preimage of
⊕

s∈S

∏
x∈Xs

Ωmod(D̃
×)

under (3.3).

Lemma 3.17. The space Ωmod(C̃) is a module over Omod(C̃).

Proof. If f ∈ Omod(C̃), ω ∈ Ωmod(C̃), then fω ∈ Ωhol(C̃). If s ∈ S and x ∈ Xs,

then i∗s,x(fω) = i∗s,x(f)i
∗
s,x(ω) ∈ Ωmod(D̃

×), where the last relation follows from

i∗s,x(f) ∈ Omod(D̃
×), i∗s,x(ω) ∈ Ωmod(D̃

×). Therefore, fω ∈ Ωmod(C̃).

Since D̃× is simply connected, the assignment ω 7→ (z 7→
∫ z

i
ω) is a well-

defined linear map inti : Ωhol(D̃
×)→ Ohol(D̃

×).

Lemma 3.18. The map inti takes Ωmod(D̃
×) to Omod(D̃

×).

Proof. Let ω ∈ Ωmod(D̃
×). Then there exists f ∈ Omod(D̃

×) such that ω = f ·
e∗(dz/z). Let n > 0 and (a, b) 7→ Ca,b be the integer and function associated with f

(see Definition 3.1). Then inti(ω) ∈ Ohol(D̃
×) is the function u 7→ 2πi

∫ u

i
f(u′) du′.

Let A ≥ 0 and u = x + iy with x ∈ [−A,A]; set CA := C−A,A. Then the path of

integration may be chosen as the sequence of paths i→ iy → u = x+ iy; therefore∫ u

i
f(u′) du′ =

∫ iy

i
f(u′) du′ +

∫ x+iy

iy
f(u′) du′ = i

∫ y

1
f(it) dt+

∫ x

0
f(t+ iy)dt.

One has |f(it)| ≤ CAe
2πnt for t ∈ [1, y], while |f(t + iy)| ≤ CAe

2πny for

t ∈ [0, x]. Therefore |i
∫ y

1
f(it) dt| ≤ CA|

∫ y

1
e2πnt dt| = CA|e2πny − e2πn|/(2πn),

and |
∫ x

0
f(t+ iy) dt| ≤ ACAe

2πny. Therefore

(3.4)

∣∣∣∣i∫ u

i

f(u′) du′
∣∣∣∣ ≤ CA

|e2πny − e2πn|
2πn

+ACAe
2πny.
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If y ≥ 1, the right-hand side of (3.4) is ≤ CA(A + 1/(2πn))e2πny (express-

ing the absolute value as its argument as the latter is ≥ 0 and bounding the

resulting expression from above by removing the negative term); if y < 1, the

right-hand side of (3.4) is ≤ CAe
2πn/(2πn) + ACAe

2πny (expressing the abso-

lute value as the negative of its argument as the latter is ≤ 0 and bounding

the resulting expression from above by removing the negative term) which is

≤ CA(e
2πn/(2πn))e2πny +ACAe

2πny (as e2πny ≥ 1), therefore the right-hand side

of (3.4) is ≤ (A+ (e2πn/(2πn)))CAe
2πny.

Set DA := (A+(e2πn/(2πn)))CA; then one obtains |i
∫ u

i
f(u′) du′| ≤ DAe

2πny

for every u ∈ [−A,A] + iR×
+, and therefore |

∫ u

i
ω| ≤ 2πDAe

2πny for any u ∈
[−A,A] + iR×

+. This shows that u 7→
∫ u

i
ω satisfies the condition of Definition 3.1

with the pair (n, (a, b) 7→ 2πDmax(|a|,|b|)), and therefore belongs to Omod(D̃
×).

Fix a point x0 ∈ C̃.

Lemma 3.19. The map intx0
(see Section 1.2.2) takes Ωmod(C̃) to Omod(C̃).

Proof. Let ω ∈ Ωmod(C̃). Let s ∈ S and x ∈ Xs. By additivity of the integral with

respect to the composition of paths, one has

(3.5) (φ̃×
s,x)

∗(intx0
(ω)) =

∫ φ̃×
s,x(i)

x0

ω + inti((φ̃
×
s,x)

∗ω)

(equality in Ohol(D̃
×)), where

∫ φ̃×
s,x(i)

x0
ω belongs to C. Since ω ∈ Ωmod(C̃), one

has (φ̃×
s,x)

∗ω ∈ Ωmod(D̃
×); it then follows from Lemma 3.18 that inti((φ̃

×
s,x)

∗ω) ∈
Omod(D̃

×). Since Omod(D̃
×) is an algebra containing C, it follows that the right-

hand side of (3.5) belongs to Omod(D̃
×). Equation (3.5) then implies the relation

(φ̃×
s,x)

∗(intx0
(ω)) ∈ Omod(D̃

×). As this holds for any s ∈ S and x ∈ Xs, one derives

intx0
(ω) ∈ Omod(C̃).

§3.3. Iterated integrals and moderate growth functions

Lemma 3.20. The following statements hold true:

(a) The maps e∗ : O(D×) → Ohol(D̃
×) and e∗ : Ω(D×) → Ωhol(D̃

×) have their

images respectively contained in Omod(D̃
×) and Ωmod(D̃

×).

(b) The maps p∗ : O(C) → Ohol(C̃) and p∗ : Ω(C) → Ωhol(C̃) have their images

respectively contained in Omod(C̃) and Ωmod(C̃).

Proof. (a) Let f ∈ O(D×). Then there exist n ≥ 1 and g ∈ O(D) such that

f = g/zn. Then e∗f = e∗g/(u 7→ e(nu)). The function g is bounded onD, therefore

there exists C ∈ R+ such that for any u ∈ D̃×, |(e∗f)(u)| ≤ C|1/e(nu)| = Ce2πny.
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So e∗f satisfies the condition of Definition 3.1 with the pair (n, (a, b) 7→ C), so

e∗f ∈ Omod(D
×).

Let ω ∈ Ω(D×). There exists f ∈ O(D×) such that ω = f · (dz/z). Then
e∗ω = e∗f · e∗(dz/z) ∈ Omod(D̃

×) · e∗(dz/z) = Ωmod(D̃
×) (see Definition 3.14).

(b) Let f ∈ O(C) and s ∈ S, x ∈ Xt. Then it follows from φ×
s ◦ e = p ◦ φ̃×

s,x that

(φ̃×
s,x)

∗p∗f = e∗(φ×
s )

∗f . Then (φ×
s )

∗f ∈ O(D×), and (a) then implies e∗(φ×
s )

∗f ∈
Omod(D̃

×). It follows that (φ̃×
s,x)

∗p∗f ∈ Omod(D̃
×) for any pair (s, x), therefore

by Definition 3.9, that p∗f ∈ Omod(C̃).

Similarly, let ω ∈ Ω(C) and s ∈ S, x ∈ Xs. Then (φ̃×
s,x)

∗p∗ω = e∗(φ×
s )

∗ω,

and since (φ×
s )

∗ω ∈ Ω(D×), (a) implies e∗(φ×
s )

∗ω ∈ Ωmod(D̃
×). It follows that

(φ̃×
s,x)

∗p∗ω ∈ Ωmod(D̃
×) for any pair (s, x), therefore by Definition 3.16, that

p∗f ∈ Ωmod(C̃).

Proposition 3.21. For any x0 ∈ C̃, the image of Ix0 : Sh(Ω(C)) → Ohol(C̃) is

contained in Omod(C̃); therefore it induces an algebra morphism Ix0
: Sh(Ω(C))→

Omod(C̃).

Proof. We prove inductively on n ≥ 0 that im(I
(n)
x0 ) ⊂ Omod(C̃). This is obvious

if n = 0. Assume that im(I
(n−1)
x0 ) ⊂ Omod(C̃). Let ω1, . . . , ωn ∈ Ω(C). By the

induction hypothesis, I
(n−1)
x0 ([ω1| · · · |ωn−1]) ∈ Omod(C̃), and by Lemma 3.20(b),

p∗ωn ∈ Ωmod(C̃); since Ωmod(C̃) is a module over Omod(C̃) (see Lemma 3.17), then

I
(n−1)
x0 ([ω1| · · · |ωn−1]) · p∗ωn ∈ Ωmod(C̃). Lemma 3.19 then implies the relation

intx0
(I(n−1)

x0
([ω1| · · · |ωn−1]) · p∗ωn) ∈ Omod(C̃).

By (2.1), the latter term is I
(n)
x0 ([ω1| · · · |ωn]), and therefore I

(n)
x0 ([ω1| · · · |ωn]) ∈

Omod(C̃), so im(I
(n)
x0 ) ⊂ Omod(C̃).

§4. The isomorphism of filtered algebras

fJ,x0 : F• Sh(HC) ⊗ O(C) → F•Omod(C̃)

We start this section with reminders on filtrations (Section 4.1). We compute the

restricted dual (CΓC)
′ of the Hopf algebra CΓC in Section 4.2. We define a pair-

ing pJ,x0
between this Hopf algebra and F∞ Sh(HC) = Sh(HC) in Section 4.3

and prove in Section 4.4 that the induced Hopf algebra morphism ν(pJ,x0
) is an

isomorphism (Proposition 4.11). We define a filtered algebra morphism fJ,x0
in

Section 4.5 and use Proposition 4.11 and Proposition B.18(b) to show in Propo-

sition 4.17 that it is an isomorphism. In Section 4.6 we use the material of this

proof together with Proposition B.18(c) to prove a filtered formality statement.
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§4.1. Background on filtrations

A vector space filtration of a C-vector space M is an increasing collection F•M =

(FnM)n≥0 of vector subspaces ofM . The filtration F•M is called exhaustive if and

only if
⋃

n≥0 FnM =M . If F•M is a filtration ofM , then F∞M :=
⋃

n≥0 FnM is a

vector subspace ofM , called the total vector space of the filtration; then F•M is an

exhaustive filtration of this vector subspace. The associated graded of F•M is the

graded C-vector space gr•(M) :=
⊕

n≥0 grn(M), where grn(M) = FnM/Fn−1M

(with F−1M := 0).

Let f : M → N be a morphism of C-vector spaces and F•M be a filtration

of M . Then f is said to be compatible with a filtration F•N on N if and only if

f(FnM) ⊂ FnN for any n ≥ 0. This is the case in particular if F•N is the image

of F•M by f (denoted f(F•M)), defined by FnN := f(FnM) for any n ≥ 0; one

then has F∞N = f(F∞M).

Lemma 4.1. If M , N are filtered vector spaces and f : M → N is a linear map

compatible with the filtrations, and such that gr•(f) : gr•(M)→ gr•(N) is an iso-

morphism of graded vector spaces, then the maps Fnf : FnM → FnN for any

n ≥ 0, as well as F∞f : F∞M → F∞N , are linear isomorphisms.

Proof. Let us prove the first statement by induction on n ≥ 0. The map F0f :

F0M → F0N is the composition of the isomorphisms F0M ≃ gr0M , gr0N ≃
F0N , and gr0(f), which is an isomorphism, therefore F0f : F0M → F0N is an

isomorphism of vector spaces. Let n ≥ 0 and assume that Fnf is an isomorphism

of vector spaces. The image of ker(Fn+1f) ⊂ Fn+1M → grn+1M is contained

in ker(grn+1f) which is 0 by assumption, so this image is 0, which implies that

ker(Fn+1f) ⊂ FnM ; the restriction of Fn+1f to FnM coincides with Fnf , which

by the induction hypothesis is injective, therefore ker(Fn+1f) = 0, so Fn+1f is

injective. For y ∈ Fn+1N , let ȳ be its image in grn+1N . By the surjectivity of

grn+1(f), there exists α ∈ grn+1M with image ȳ by grn+1(f). Then if x ∈ Fn+1M

is any lift of α, one has Fn+1(x) ≡ y mod FnN . Then y − Fn+1(x) ∈ FnN . Since

Fnf : FnM → FnN is surjective, there exists x0 ∈ FnM such that Fn(x0) =

y − Fn+1(x). Then y = Fn(x + x0), which implies the surjectivity of Fn+1f . It

follows that Fn+1f is an isomorphism, proving the induction.

One has ker(F∞f) =
⋃

n≥0(ker(F∞f) ∩ FnM) =
⋃

n≥0 ker(Fnf) = 0, where

the first equality follows from F∞M =
⋃

n≥0 FnM and the last equality follows

from the injectivity of Fnf for n ≥ 0; this shows the injectivity of F∞f .

For any n ≥ 0, one has im(F∞M) ⊃ im(FnM), and im(FnM) = FnN by

the surjectivity of Fnf . Then im(F∞M) ⊃
⋃

n≥0 FnN = F∞N , which shows the

surjectivity of F∞f . It follows that F∞f is a linear isomorphism.
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If F•M and F•N are filtrations of C-vector spaces M and N , then a filtra-

tion F•(M ⊗ N) of their tensor product M ⊗ N is defined by Fn(M ⊗ N) :=∑
p+q=n FpM ⊗ FqN ; we denote it by F•M ⊗ F•N , and we call it the tensor

product of F•M and F•N .

An algebra filtration of a C-algebra A is a vector space filtration F•A of A,

such that FnA · FmA ⊂ Fn+mA for n,m ≥ 0. Then F∞A is a subalgebra of

A, called the total algebra of the filtration; gr•(A) is then a graded algebra. If

f : A → B is an algebra morphism and F•A is a filtration of A, then f(F•A) is

an algebra filtration of B. If F•A and F•B are filtrations of C-algebras A and B,

then F•A⊗ F•B is an algebra filtration of A⊗B.

An example of a filtration of an algebra A is the trivial filtration F triv
• A defined

by F triv
n A = A for any n ≥ 0. If A has a unit, another example is the unit filtration

F unit
• A defined by F unit

0 A = C1 and F unit
n A = A for any n > 0.

Similarly, a Hopf algebra filtration of a Hopf algebra H with coproduct ∆H

is a vector space filtration F•H of H, which is an algebra filtration and such that

∆H(FnH) ⊂
∑

p+q=n FpH ⊗FqH for any n ≥ 0. Then F∞H is a Hopf subalgebra

of H and gr•(H) is a graded Hopf algebra.

§4.2. Computation of (CΓC)′

In Appendix D.1 we recall the category CHA of complete Hopf algebras (CHAs)

and the functor HAcoco → CHA, H 7→ H∧ with source the category HAcoco of

cocommutative Hopf algebras.

Lemma 4.2. If Γ is a free group, there is an isomorphism (CΓ)∧ ≃ T̂ (Γab ⊗ C)
of CHAs, where Γab is the abelianization of Γ and for V a vector space, T̂ (V ) is

the CHA defined as the degree completion of the tensor algebra of V , where the

elements of V are primitive.

Proof. By assumption, Γ is the free group over a set X. Let (γx)x∈X be the

corresponding generating family. Then Γab⊗C = CX; let (vx)x∈X be the canonical

generating family of CX. The assignment γx 7→ exp(vx) (defined as
∑

n≥0 v
⊗n
x /n!)

for x ∈ X defines a group morphism Γ→ T̂ (CX)×, therefore an algebra morphism

CΓ→ T̂ (CX), which is checked to be compatible with coproducts. It is compatible

with augmentations, therefore gives rise to a CHA morphism (CΓ)∧ → T̂ (CX).

The assignment vx 7→ log(γx) (defined as
∑

n≥1(−1)n+1(γx − 1)n/n) for x ∈ X
defines a linear map CX → (CΓ)∧, therefore an algebra morphism T (CX) →
(CΓ)∧, which is checked to be compatible with coproducts. It is compatible with

augmentations, therefore giving rise to a CHA morphism T̂ (CX) → (CΓ)∧. The
two constructed CHA morphisms can be checked to be inverses of each other.
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In Appendix D.1 we define a subcategory HAfd of finite-dimensional Hopf

algebras of the category HA of Hopf algebras, and a duality functor HAfd → HA,

H 7→ H ′. When H is the group algebra of a finitely generated group, H ′ is as in

Definition 1.5.

Lemma 4.3. Let Γ be the free group over a finite set of generators (for example,

Γ = ΓC). Then CΓ is an object in HAfd and there is a Hopf algebra isomorphism

(CΓ)′ ≃ Sh((Γab ⊗ C)∗) (we denote by V ∗ the dual of a vector space V ).

Proof. In this proof, we set V := Γab⊗C. The first statement follows from the finite

generation of Γ. It implies that (CΓ)∧ is an object in CHAfd, and by Lemma D.7,

the duals (CΓ)′ and ((CΓ)∧)′ are well-defined isomorphic objects in HAcoco.

By Lemma 4.2, the CHAs (CΓ)∧ and T̂ (V ) are isomorphic. Since (CΓ)∧ is

an object in CHAfd, so is T̂ (V ), so (CΓ)∧ and T̂ (V ) are isomorphic objects in

CHAfd. By Lemma D.5(b), this gives rise to an isomorphism ((CΓ)∧)′ ≃ T̂ (V )′ in

HAcoco. Since V is finite-dimensional, there is an isomorphism T̂ (V )′ ≃ Sh(V ∗).

The result follows by composition of these isomorphisms. One knows that ΓC

is a free group over a finite set of generators, which implies that it gives an example

of the above statements.

Remark 4.4. Lemma 4.3 is proved in [BGF, Exa. 3.229] when |X| = 2.

§4.3. A Hopf pairing pJ,x0 : Sh(HC) ⊗ CΓC → C

Until the end of Section 4, an element (J, x0) ∈ MCnd(C)× C̃ will be fixed.

Definition 4.5. Define pJ,x0
as the linear map CΓC ⊗ Sh(HC) → C such that

γ ⊗ a 7→ Ix0
(J∗(a))(γx0) for γ ∈ ΓC , a ∈ Sh(HC).

Lemma 4.6. The pairing pJ,x0
: CΓC ⊗ Sh(HC) → C is a Hopf pairing (in the

sense of Appendix A.3).

Proof. Let pJ,x0
: CΓC ⊗ Sh(HC) → C be the map defined in Definition 4.6. For

any γ, γ′ ∈ ΓC and a ∈ Sh(HC), one has

pJ,x0
(γγ′, a) = Ix0

(J∗(a))(γγ
′x0)

= Ix0(J∗(a
(1)))(γx0)Iγx0(J∗(a

(2)))(γγ′x0)

= Ix0
(J∗(a

(1)))(γx0)Ix0
(J∗(a

(2)))(γ′x0)

= pJ,x0
(γ, a(1))pJ,x0

(γ′, a(2)),(4.1)

where the second equality follows from Lemma 2.5 and the fact that J∗ : Sh(HC)→
Sh(Ω(C)) is a Hopf algebra morphism, the third equality follows from the
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invariance of the image of Ix0
by the diagonal action of ΓC (see Lemma 2.3),

and the first and last equalities follow from definitions.

Denote by � the product in the algebra Sh(HC). Let γ ∈ ΓC and a, a′ ∈
Sh(HC). Then

pJ,x0(γ, a� a′) = Ix0(J∗(a� a′))(γx0)

= Ix0
(J∗(a))(γx0)Ix0

(J∗(a
′))(γx0)

= pJ,x0(γ, a)pJ,x0(γ, a
′)

= pJ,x0
(γ(1), a)pJ,x0

(γ(2), a′),(4.2)

where the first and third equalities follow from definitions, the second equality fol-

lows from the facts that J∗ : Sh(HC)→ Sh(Ω(C)) and Ix0 : Sh(Ω(C))→ Ohol(C̃)

are algebra morphisms, and the last equality follows from the group-likeness of γ

for the coproduct of CΓC .

Equalities (4.1) and (4.2) imply the statement.

§4.4. Proof that ν(pJ,x0) : F∞ Sh(HC) → (CΓC)′ is

a Hopf algebra isomorphism

By Lemma A.9, the Hopf algebra pairing pJ,x0 (see Lemma 4.6) gives rise to a

Hopf algebra morphism ν(pJ,x0
) : F∞ Sh(HC)→ (CΓC)

′, which we now study.

4.4.1. Construction of a Hopf algebra morphism Sh(HC) → Sh((HB
C)∗).

Let H1(C,Z) be the first singular homology group of C with integer coefficients,

and let us set HB
C := H1(C,Z)⊗ C.

Lemma 4.7. There is a Hopf algebra isomorphism (CΓC)
′ ≃ Sh((HB

C)
∗).

Proof. Since C is an affine curve, the group ΓC is free. Lemma 4.3 then implies

that (CΓC)
′ is isomorphic to Sh((Γab

C ⊗C)∗). The choice of a point x0 in C̃ induces

an isomorphism ΓC ≃ π1(C, x0), whose conjugation class is independent of this

choice; this isomorphism induces an isomorphism Γab
C ≃ π1(C, x0)

ab = HB
1 (C,Z)

also independent of this choice, from which one derives an isomorphism Γab
C ⊗C ≃

HB
C .

Definition 4.8. Define qJ,x0
: Sh(HC) → Sh((HB

C)
∗) as the Hopf algebra mor-

phism obtained by composition of

(a) the Hopf algebra isomorphism Sh(HC)
∼−→ F∞ Sh(HC) (see Lemma 2.9 with

V = HC),

(b) the Hopf algebra morphism ν(pJ,x0
) : F∞ Sh(HC)→ (CΓC)

′,

(c) the Hopf algebra isomorphism (CΓC)
′ ≃ Sh((HB

C)
∗) (see Lemma 4.7).



656 B. Enriquez and F. Zerbini

4.4.2. A criterion for a Hopf algebra morphism Sh(V ) → Sh(W ) to be

an isomorphism.

Lemma 4.9. Let V , W be vector spaces and let f : Sh(V ) → Sh(W ) be a Hopf

algebra morphism. Then f(V ) ⊂ W , where V , W are the degree 1 subspaces of

Sh(V ), Sh(W ). Denote by gr1(f) : V → W the corresponding linear map. Then f

is a Hopf algebra isomorphism if and only if gr1(f) is a vector space isomorphism.

Proof. Since f is a Hopf algebra morphism, Lemma A.2(c) implies that it induces

a linear map Fnf : Fn Sh(V ) → Fn Sh(W ) for any n ≥ 0. When n = 1, F1f is a

linear map C⊕ V → C⊕W . The compatibility of F1f with the units and counits

on both sides implies that F1f is the direct sum of idC : C → C and a linear

map V → W , which can be identified with the associated graded of f for the

filtration F•.

If f is a Hopf algebra morphism, then for each n ≥ 0, Fnf : Fn Sh(V ) →
Fn Sh(W ) is a linear isomorphism, which when n = 1 implies the same for idC ⊕
gr1(f), which implies that gr1(f) is a linear isomorphism.

Assume now that f : Sh(V )→ Sh(W ) is a Hopf algebra morphism such that

gr1(f) is a linear isomorphism. The associated graded map gr•f : gr• Sh(V ) →
gr• Sh(W ) can be identified, under the canonical isomorphisms gr• Sh(X) ≃ Sh(X)

forX = V,W (see Lemma 2.9), with Sh(gr1(f)), which is an isomorphism of graded

vector spaces. Since the filtrations F• in the source and target are exhaustive and

by Lemma 4.1, this implies that f is an isomorphism.

4.4.3. Isomorphism status of the linear map gr1(qJ,x0) : HC → (HB
C)∗.

For H a Hopf algebra, denote by H+ the kernel of its counit morphism.

Lemma 4.10. The following statements hold true:

(a) The pairing (CΓC)+ ⊗ Ω(C)→ C given by (γ − 1)⊗ ω 7→
∫ γx0

x0
ω for γ ∈ ΓC ,

ω ∈ Ω, is independent of x0. It factors through a pairing

(4.3) HB
C ⊗HC = (CΓC)+/(CΓC)

2
+ ⊗ (Ω(C)/dO(C))→ C.

(b) The linear map HC → (HB
C)

∗ induced by (4.3) is equal to gr1(qJ,x0
) : HC →

(HB
C)

∗.

(c) The linear map gr1(qJ,x0) : HC → (HB
C)

∗ is an isomorphism.

Proof. (a) If x0, x1 ∈ C̃, γ ∈ ΓC , and ω ∈ Ω(C), then one has
∫ γx1

x1
ω −

∫ γx0

x0
ω =

(
∫ x0

x1
−
∫ γx0

γx1
)ω = 0 by the ΓC-invariance of ω; this implies the claimed indepen-

dence. If γ, γ′ ∈ ΓC and ω ∈ Ω(C), then one has(∫ γγ′x0

x0
−
∫ γx0

x0
−
∫ γ′x0

x0

)
ω =

(∫ γγ′x0

γx0
−
∫ γ′x0

x0

)
ω = 0
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by the same reason; since the elements (γ−1)(γ′−1) generate (CΓC)
2
+, this implies

the claimed factorization. The equality follows from gr1(CΓC) = Γab
C ⊗ C = HB

C

(see [Q2]).

(b) Let O, H be Hopf algebras with gr1(H) finite-dimensional and let p : O⊗H →
C be a Hopf algebra pairing. By Lemma A.9, p gives rise to a Hopf algebra mor-

phism ν(p) : F∞O → H ′, and by Proposition A.2(c), this morphism is compatible

with the filtrations F• on both sides. For any n ≥ 0, the restriction of p to FnO⊗H
induces a pairing FnO ⊗ (H/Fn+1H) → C, which gives rise to a linear map

FnO → (H/Fn+1H)∗ = FnH
∗; composing this linear map with the identification

from Lemma A.7 gives rise to a linear map FnO → FnH
′, which is equal to Fnν(p).

The morphism ν(p) is compatible with the augmentation maps ϵO, ϵH′ , and there-

fore gives rise to a linear map FnO∩O+ → FnH
′∩(H ′)+, which for n = 1 coincides

with gr1(ν(p)). It follows that gr1(ν(p)) may be constructed as follows: the restric-

tion of p to (F1O∩ JO)⊗F 1H induces a pairing (F1O∩O+)⊗ (F 1H/F 2H)→ C;
then gr1(ν(p)) is the induced map gr1(O) = F1O∩O+ → (F 1H/F 2H)∗ = gr1(H

′).

It follows that gr1(ν(pJ,x0)) : HC = gr1(Sh(HC))→ gr1((CΓC)
′) = (Γab

C ⊗C)∗

is induced by the restriction of pJ,x0
to HC ⊗ (CΓC)+. This restriction coincides

with the lift of (4.3) by Lemma 2.13(b), which implies the statement.

(c) The pairing (4.3) coincides with the period pairing for C, which is nondegen-

erate. It follows that the map HC → (HB
C)

∗ induced by (4.3) is an isomorphism.

The statement then follows from (b).

4.4.4. Proof that ν(pJ,x0) : Sh(HC) → (CΓC)′ is a Hopf algebra isomor-

phism.

Proposition 4.11. The map ν(pJ,x0
) : Sh(HC) → (CΓC)

′ is a Hopf algebra iso-

morphism.

Proof. By Lemma 4.10(c) and Lemma 4.9, qJ,x0
is a Hopf algebra isomorphism. By

Definition 4.8, ν(pJ,x0
) is obtained from qJ,x0

by pre- and post-composition with

Hopf algebra isomorphisms, which implies that it is a Hopf algebra isomorphism.

Remark 4.12. Proposition 4.11 may be related to Chen’s π1 theorem as follows.

Let (H•
dR(C), εtriv) be the augmented dga with H•

dR(C) := C⊕HC with zero differ-

ential and εtriv : H
•
dR(C)→ C be the projection in degree 0, and let (E•(C), εx0) be

the augmented dga of smooth differential forms on C, with εx0
given by evaluation

at x0. Then the dga morphism H•
dR(C)→ E•(C) induced by J is compatible with

the augmentations, therefore it induces an isomorphism of commutative Hopf alge-

bras H0(B(H•
dR(C), εtriv)) → H0(B(E•(C), εx0

)), where H0(B(−)) is the zeroth
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cohomology of the bar-construction of an augmented dga. One easily constructs

a Hopf algebra isomorphism H0(B(H•
dR(C), εtriv)) ≃ Sh(HC). The combination

of these isomorphisms with the Hopf algebra isomorphism H0(B(E•(C), εx0
)) ≃

(CΓC)
′ from Chen’s “π1 de Rham theorem” ([BGF, Thm. 3.264]) is the Hopf

algebra isomorphism from Proposition 4.11.

§4.5. The isomorphism of filtered algebras

fJ,x0 : F• Sh(HC) ⊗ O(C) → F•Omod(C̃)

Lemma-Definition 4.13. There is a unique linear map fJ,x0 : Sh(HC)⊗O(C)→
Omod(C̃) such that fJ,x0

(a⊗ f) := Ix0
◦ J∗(a) · p∗f ; it is an algebra morphism.

Proof. The fact that fJ,x0
is well defined as a linear map follows from Proposi-

tion 3.21 and from the inclusion O(C) ⊂ Omod(C̃), which follows from Proposi-

tion 3.12. The fact that it is an algebra morphism follows from the decomposition

of fJ,x0
as

Sh(HC)⊗O(C)
(Ix0

◦J∗)⊗p∗

−−−−−−−−→ Omod(C̃)
⊗2

mOmod(C̃)−−−−−−−→ Omod(C̃),

where mOmod(C̃) is the product map of Omod(C̃), and from the algebra morphism

status of Ix0
, p∗, J∗ and mOmod(C̃) (the latter coming from the commutativity of

Omod(C̃)).

In Appendix B, we introduce the notions of Hopf algebra with comodule

algebra (HACA) and Hopf algebra with module algebra (HAMA). Then, by Propo-

sition B.18(a), the algebra O(C) and the Hopf algebra Sh(HC) give rise to a HACA

structure (Sh(HC),Sh(HC)⊗O(C)); on the other hand, a HAMA structure is con-

structed as follows.

Lemma 4.14. The pair (Omod(C̃),CΓC) is equipped with a HAMA structure.

Proof. The HAMA structure is induced by the right ΓC-action on Omod(C̃) (see

Proposition 3.10 and Definition B.6).

In Appendix B (see Definition B.12), we also introduce the notion of a pairing-

morphism from a HACA (O,A) to a HAMA (B,H), and denote by PM((O,A),

(B,H)) the set of such structures.

Recall the Hopf algebra pairing pJ,x0 : Sh(HC)⊗CΓC → C (see Lemma 4.6).

Lemma 4.15. (pJ,x0
, fJ,x0

) ∈ PM((Sh(HC),Sh(HC)⊗O(C)), (Omod(C̃),CΓC)).

Proof. By Definition B.12, the identity to check is(
Ix0

(J∗(a))p
∗(f)

)
|γ = Ix0

(J∗(a
(2)))p∗(f)pJ,x0

(γ ⊗ a(1))
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for any a ∈ Sh(HC), f ∈ O(C), and γ ∈ ΓC , using the notation ∆Sh(HC)(a) =

a(1) ⊗ a(2). This follows from the invariance of p∗f under the action of ΓC and

from the identity Ix0
(J∗(a))|γ = Ix0

(J∗(a
(2)))pJ,x0

(γ ⊗ a(1)) which is proved as

follows: for any x ∈ C̃, one has

Ix0
(J∗(a))|γ(x) = Ix0

(J∗(a))(γx) = Ix0
(J∗(a

(1)))(γx0)Iγx0
(J∗(a

(2)))(γx)

= pJ,x0(γ ⊗ a(1))Ix0(J∗(a
(2)))(x),

where the second identity follows from Lemma 2.5 and the third identity follows

from the definition of pJ,x0
and Lemma 2.3.

Lemma 4.16. The HAMA structure (Omod(C̃),CΓC) gives rise to an algebra fil-

tration F•Omod(C̃) of Omod(C̃), which fits in a HACA ((CΓC)
′, F∞Omod(C̃)).

Proof. The construction of the said HACA from this HAMA follows from Lem-

ma B.8 and the fact that CΓC is an object in HAfd (see the proof of Lemma 4.3).

The filtration F•Omod(C̃) is then as in the introduction (see Definition 1.10).

Proposition 4.17. The following statements hold true:

(a) (ν(pJ,x0), fJ,x0) induces an isomorphism of HACAs

(Sh(HC),Sh(HC)⊗O(C))→ ((CΓC)
′, F∞Omod(C̃)).

(b) fJ,x0
induces an isomorphism of algebra filtrations F• Sh(HC) ⊗ O(C) →

F•Omod(C̃).

Proof. Let a := O(C), O := Sh(HC), B := Omod(C̃), H := CΓC , (B,H) be the

HAMA structure induced by the action of ΓC on C̃; it is an object in HAMAfd

(see Definition B.9) since ΓC is finitely generated. Set p := pJ,x0 ∈ Pair(O,H)

(see Definition A.8), f := fJ,x0
. By Lemma 4.15, (p, f) ∈ PM((O,O⊗a), (B,H)).

By Proposition 4.11, ν(pJ,x0
) : Sh(HC) → (CΓC)

′ is a Hopf algebra isomorphism

and by Proposition 3.12, fJ,x0 induces an algebra isomorphism C ⊗ O(C) →
Omod(C̃)

CΓC . The assumptions of Proposition B.18(b) are therefore satisfied; the

result is then a consequence of this statement.

§4.6. Filtered formality of the HACA ((CΓC)′, F∞Omod(C̃))

In Appendix C.2 we introduce the definition of a filtered formal HACA.

Proposition 4.18. The pair ((CΓC)
′, F∞Omod(C̃)) is filtered formal.

Proof. It follows from the proof of Lemma 4.17 that the data

(4.4)
(O,a) := (Sh(HC),O(C)), (B,H) = (Omod(C̃),CΓC),

(p, f) = (pJ,x0 , fJ,x0)
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satisfy the hypotheses of Proposition B.18(b),(c). The statement is then a conse-

quence of Proposition C.5.

§5. Filtrations on Ohol(C̃), and the minimal stable subalgebra AC

In Section 5.1 we study the filtration of Ohol(C̃) given by the image by Ix0
of

the filtration F•(Sh(Ω(C))) of Sh(Ω(C)), and identify it with the image by fJ,x0

of the filtration F• Sh(HC) ⊗ F unit
• O(C) of Sh(HC) ⊗ O(C) (Proposition 5.3). In

Section 5.2 we introduce and study the filtrations F δ
•Ohol(C̃) and Fµ

• Ohol(C̃) of

Ohol(C̃) inspired by [Ch] and identify the latter with the image by fJ,x0 of the

filtration F• Sh(HC) ⊗ F triv
• O(C) of Sh(HC) ⊗O(C) (Proposition 5.6). We study

the relation of the total space of these filtrations with the MSSA AC of Ohol(C̃) in

Section 5.3. In Section 5.4 we prove Theorems A, B, and C, and in Section 5.5 we

draw consequences of Theorem A on the algebrasHC(J) constructed in Section 2.3,

namely we show that each such algebra is a free O(C)-module with an explicit

basis. In Section 5.6 we discuss the relation of this material with the study in [Ch]

of Picard–Vessiot extensions of the function algebra of a smooth manifold.

§5.1. An algebra filtration of Ohol(C̃) defined by Ix0

In the present Section 5.1, a point x0 ∈ C̃ is fixed. Recall the algebra morphism

Ix0 : Sh(Ω(C))→ Ohol(C̃) (Lemma-Definition 2.1 and Lemma 2.2) and the algebra

filtration F• Sh(V ) for an arbitrary vector space V (see Section 2.1). By Section 4.1,

these data give rise to an algebra filtration Ix0(F• Sh(Ω(C))) of Ohol(C̃), which we

study in Proposition 5.3.

Lemma 5.1. One has

∀ p, q > 0, Ix0

(
[Shp(Ω(C))|dO(C)|Shq(Ω(C))]

)
⊂ Ix0

(
Shp+q(Ω(C))

)
,(5.1)

∀n > 0, Ix0

(
[dO(C)|Shn(Ω(C))]

)
⊂ Ix0

(
Shn(Ω(C))

)
,(5.2)

∀n > 0, Ix0

(
[Shn(Ω(C))|dO(C)]

)
⊂ p∗O(C) · Ix0

(
Shn(Ω(C))

)
.(5.3)

Proof. Let us prove (5.1). The space [Shp(Ω(C))|dO(C)|Shq(Ω(C))] is linearly

spanned by the elements [α1| · · · |αp|df |β1| · · · |βq], where αi, βj ∈ Ω(C) for any i, j

and f ∈ O(C). Then

Ix0
([α1| · · · |αp|df |β1| · · · |βq])

= Ix0([α1| · · · |αp|f · β1| · · · |βq]− [α1| · · · |αp · f |β1| · · · |βq]) ∈ Ix0

(
Shp+q(Ω(C))

)
.
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Let us prove (5.2). The space [dO(C)|Shn(Ω(C))] is linearly spanned by the

elements [df |α1| · · · |αn], where f ∈ O(C) and αi ∈ Ω(C) for any i. Then

Ix0
([df |α1| · · · |αn])

= Ix0
([f · α1| · · · |αn])− f(x0) · Ix0

([α1| · · · |αn]) ∈ Ix0

(
Shn(Ω(C))

)
.

Equation (5.3) similarly follows from

Ix0
([α1| · · · |αn|df ])
= p∗f · Ix0

([α1| · · · |αn])− Ix0
([α1| · · · |αn · f ]) ∈ p∗O(C) · Ix0

(
Shn(Ω(C))

)
.

Lemma 5.2. For any σ ∈ ΣC and any n ≥ 0, one has the inclusion

Ix0

(
Fn Sh(Ω(C))

)
⊂ fJσ,x0

(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C)).

Proof. By induction on n ≥ 0. For n = 0, the equality is obvious as both sides

are equal to C. Let n > 0, assume the equality for all steps ≤ n − 1, and let us

prove it at step n. By the induction hypothesis, it suffices to prove the inclusion

Ix0
(Shn(Ω(C))) ⊂ fJσ,x0

(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C)), i.e.

(5.4) Ix0

(
Shn(Ω(C))

)
⊂ Ix0

(
Fn Sh(σ(HC))

)
+ p∗O(C) · Ix0

(Fn−1 Sh(HC)).

The space Shn(Ω(C)) is linearly spanned by the elements [ω1| · · · |ωn] where ω1,

. . . , ωn belong to Ω(C). For all i, let hi ∈ HC be the projection of ωi and choose

fi ∈ O(C) such that ωi = σ(hi) + dfi. Then

[ω1| · · · |ωn] ∈ [σ(h1)| · · · |σ(hn)] + [df1|Shn−1(Ω(C))] + [Shn−1(Ω(C))|dfn−1]

+

n−1∑
i=1

[Shi−1(Ω(C))|dfi|Shn−i(Ω(C))] ⊂ Shn(σ(HC)) + [dO(C)|Shn−1(Ω(C))]

+ [Shn−1(Ω(C))|dO(C)] +
n−1∑
i=1

[Shi−1(Ω(C))|dO(C)|Shn−i(Ω(C))].

Lemma 5.1 then implies that

Ix0([ω1| · · · |ωn]) ∈ Ix0

(
Shn(σ(HC))

)
+ p∗O(C) · Ix0

(
Shn−1(Ω(C))

)
+ p∗O(C) · Ix0

(
Shn−1(Ω(C))

)
+

n−1∑
i=1

Ix0

(
Shn−1(Ω(C))

)
= Ix0

(
Shn(σ(HC))

)
+ p∗O(C) · Ix0

(
Shn−1(Ω(C))

)
.(5.5)

Moreover,

p∗O(C) · Ix0

(
Shn−1(Ω(C))

)
⊂ p∗O(C) · Ix0

(
Fn−1 Sh(Ω(C))

)
⊂ p∗O(C) · Ix0

(
Fn−1 Sh(σ(HC))

)
,
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where the first inclusion follows from Shn−1(Ω(C)) ⊂ Fn−1 Sh(Ω(C)) and the sec-

ond inclusion from the induction hypothesis, i.e. (5.4) at step n−1 by multiplication

by p∗O(C). Combining this inclusion with (5.5), one obtains

Ix0
([ω1| · · · |ωn]) ∈ Ix0

(
Shn(σ(HC))

)
+ p∗O(C) · Ix0

(
Fn−1 Sh(σ(HC))

)
,

which is (5.4) at step n.

Proposition 5.3. For any J ∈ MCnd(C), one has the equality

Ix0

(
F• Sh(Ω(C))

)
= fJ,x0

(F• Sh(HC)⊗ C1 + F•−1 Sh(HC)⊗O(C))

of filtrations of Ohol(C̃), where fJ,x0
is the algebra morphism from Lemma-

Definition 4.13.

Proof. For n ≥ 0, the space fJ,x0
(Fn Sh(HC) ⊗ C1 + Fn−1 Sh(HC) ⊗ O(C)) is

equal to Ix0(J∗(Fn Sh(HC))) + p∗(O(C)) · Ix0(J∗(Fn−1 Sh(HC))), which is also

equal to Ix0
(J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC))) since p

∗(O(C)) = C +

Ix0([dO(C)]). This implies the equality

fJ,x0
(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C))
= Ix0

(
J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC))

)
.(5.6)

Let us now prove

∀n ≥ 0, Ix0

(
Fn Sh(Ω(C))

)
= Ix0

(
J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC))

)
,(5.7)

The argument of Ix0
in the right-hand side of (5.7) is contained in FnSh(Ω(C)),

which implies the inclusion (left-hand side of (5.7)) ⊃ (right-hand side of (5.7)).

We now prove the opposite inclusion. There is a sequence of inclusions (in

Sh(Ω(C)))

(σJ)∗(Fn Sh(HC)) + dO(C)� (σJ)∗(Fn−1 Sh(HC)) ⊂ J∗(Fn Sh(HC))

+ Fn−1 Sh(Ω(C))+ dO(C)� J∗(Fn−1 Sh(HC))+ dO(C)� Fn−2 Sh(Ω(C))

= J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC)) + Fn−1 Sh(Ω(C)),

σJ being as in Lemma-Definition 2.12, where the first inclusion follows from

Lemma 2.13(b) and the second inclusion follows from dO(C)� Fn−2 Sh(Ω(C)) ⊂
Fn−1 Sh(Ω(C)). One has therefore

∀n ≥ 0, (σJ)∗(Fn Sh(HC)) + dO(C)� (σJ)∗(Fn−1 Sh(HC))

⊂ J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC)) + Fn−1 Sh(Ω(C)).(5.8)
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For any n ≥ 0, one then has

Ix0

(
Fn

(
Sh(Ω(C))

))
⊂ fJσJ

,x0(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C))

= Ix0

(
(σJ)∗(Fn Sh(HC)) + dO(C)� (σJ)∗(Fn−1 Sh(HC))

)
⊂ Ix0

(
J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC)) + Fn−1 Sh(Ω(C))

)
= Ix0

(
J∗(Fn Sh(HC)) + dO(C)� J∗(Fn−1 Sh(HC))

)
+ Ix0

(
Fn−1 Sh(Ω(C))

)
= fJ,x0

(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C)) + Ix0

(
Fn−1 Sh(Ω(C))

)
,

where the first relation follows from Lemma 5.2, the second relation follows from

(5.6) applied to JσJ
, the third relation follows from (5.8), and the last relation

follows from the second relation follows from (5.6) applied to J . The relation

∀n ≥ 0, Ix0

(
Fn

(
Sh(Ω(C))

))
⊂ fJ,x0(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C))

then follows by induction. Therefore (left-hand side of (5.7)) ⊂ (right-hand side

of (5.7)), which ends the proof of (5.7).

The result then follows from the combination of (5.7) and (5.6).

§5.2. The filtrations F δ
•Ohol(C̃) and Fµ

• Ohol(C̃)

In Definition 1.12, we defined F δ
•Ohol(C̃), F

µ
• Ohol(C̃), F

δ
∞Ohol(C̃), and F

µ
∞Ohol(C̃)

(see Theorem C).

Proposition 5.4. For any x0 ∈ C̃, one has the equality

F δ
•Ohol(C̃) = Ix0

(
F• Sh(Ω(C))

)
of filtrations of Ohol(C̃).

Proof. Let us prove

(5.9) ∀n ≥ 0, Ix0

(
Fn Sh(Ω(C))

)
= F δ

nOhol(C̃)

by induction on n. For n = 0, the equality holds since both sides are equal to C.
Assume the equality at step n ≥ 0 and let us show it at step n+ 1.

Let us first show the inclusion Ix0(Fn+1 Sh(Ω(C))) ⊂ F δ
n+1Ohol(C̃). For this,

in view of the induction hypothesis, it suffices to prove Ix0
(Shn+1(Ω(C))) ⊂

F δ
n+1Ohol(C̃). The space is linearly spanned by the elements [ω1| · · · |ωn+1], where

ω1, . . . , ωn+1 ∈ Ω(C). Then d(Ix0([ω1| · · · |ωn+1])) = Ix0([ω1| · · · |ωn]) · ωn+1, and

Ix0
([ω1| · · · |ωn]) ∈ Ix0

(Shn(Ω(C))) ⊂ F δ
nOhol(C̃), where the last inclusion follows

from the induction hypothesis. This shows that Ix0([ω1| · · · |ωn+1]) ∈ F δ
n+1Ohol(C̃),

therefore Ix0
(Shn+1(Ω(C))) ⊂ F δ

n+1Ohol(C̃) as wanted.
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Let us now show the inclusion F δ
n+1Ohol(C̃) ⊂ Ix0

(Fn+1 Sh(Ω(C))). Let f ∈
F δ
n+1Ohol(C̃); then there exist elements f1, . . . , fk ∈ F δ

nOhol(C̃) and ω1, . . . , ωk ∈
Ω(C) such that df =

∑
i fi ·p∗ωi. By the induction hypothesis, there exist t1, . . . , tk

∈ Fn Sh(Ω(C)), such that fi = Ix0(ti) for any i. Then df =
∑

i Ix0(ti) · p∗ωi.

Integration gives

f = f(x0) +
∑
i

Ix0
([ti|ωi]) = Ix0

(
f(x0) +

∑
i

[ti|ωi]

)
∈ Ix0

(
Fn+1

(
Sh(Ω(C))

))
,

which proves the claimed inclusion.

Proposition 5.5. The following statements hold true:

(a) Both F δ
•Ohol(C̃) and F

µ
• Ohol(C̃) are algebra filtrations of Ohol(C̃).

(b) For any n ≥ 0, one has F δ
nOhol(C̃) ⊂ Fµ

nOhol(C̃) ⊂ F δ
n+1Ohol(C̃).

(c) One has F δ
∞Ohol(C̃) = Fµ

∞Ohol(C̃) (equality of subalgebras of Ohol(C̃)).

Proof. Recall the shorthand F
δ/µ
• := F

δ/µ
• Ohol(C̃) (see Lemma 1.13). By Propo-

sition 5.4, F δ
• is the image of the increasing algebra filtration F• Sh(Ω(C)) by the

morphism Ix0
: Sh(Ω(C))→ Ohol(C̃), which implies that F δ

• is an increasing alge-

bra filtration of Ohol(C̃). The fact that Fµ
• is the product of F δ

• with the fixed

subalgebra O(C) of Ohol(C̃) implies that Fµ
• is an increasing algebra filtration of

Ohol(C̃) as well. This proves (a).

For any f ∈ O(C), df ∈ Ω(C) = Ω(C) · F δ
0 , which implies O(C) ⊂ F 1

δ . For

n ≥ 0, one then has Fµ
n = O(C) ·F δ

n ⊂ F δ
1 ·F δ

n ⊂ F δ
n+1. For n ≥ 0, one clearly also

has F δ
n ⊂ Fµ

n , which implies (b). Statement (c) follows from (b).

Proposition 5.6. For any (J, x0) ∈ MC(C)× C̃, one has the equality

Fµ
• Ohol(C̃) = fJ,x0(F• Sh(HC)⊗O(C))

of filtrations of Ohol(C̃).

Proof. Let n ≥ 0. In Proposition 5.3, we proved the equality

Ix0

(
Fn Sh(Ω(C))

)
= Ix0

(
J∗(Fn Sh(HC))

)
+ p∗O(C) · Ix0

(
J∗(Fn−1 Sh(HC))

)
.

Multiplying it by p∗O(C), we obtain p∗O(C) · Ix0(Fn Sh(Ω(C))) = p∗O(C) ·
Ix0

(J∗(Fn Sh(HC))). By Proposition 5.4, Ix0
(Fn Sh(Ω(C))) = F δ

nOhol(C̃), and so

p∗O(C) · Ix0
(Fn Sh(Ω(C))) = p∗O(C) · F δ

nOhol(C̃) = Fµ
nOhol(C̃). It follows that

Fµ
nOhol(C̃) = p∗O(C) · Ix0(J∗(Fn Sh(HC))); the right-hand side of this equality is

equal to fJ,x0
(Fn Sh(HC)⊗O(C)).
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§5.3. Relation with AC

Recall the following from Section 1.1.

Definition 5.7. Consider the following definitions:

(a) A stable subalgebra (SSA) of Ohol(C̃) is a unital subalgebra A of Ohol(C̃),

such that for any f ∈ A and ω ∈ Ω(C), one has intx0(f · p∗ω) = (x 7→∫ x

x0
f · p∗ω) ∈ A.

(b) AC :=
⋂

A an SSA of Ohol(C̃)A.

Lemma-Definition 5.8. The subspace AC is an SSA of Ohol(C̃), contained in

any SSA of Ohol(C̃); we therefore call AC the minimal stable subalgebra (MSSA)

of Ohol(C̃).

Proof. This follows from the fact that an intersection of two SSAs of Ohol(C̃) is

an SSA of Ohol(C̃).

Proposition 5.9. For any x0 ∈ C̃, one has AC = Ix0
(Sh(Ω(C))).

Proof. For ω ∈ Ω(C), let primω be the vector space endomorphism of Ohol(C̃)

given by f 7→ (x 7→
∫ x

x0
f · p∗ω). Also, let rω be the linear endomorphism of

Sh(Ω(C)) given by right concatenation with ω; explicitly, rω([ω1| · · · |ωk]) =

for any ω1, . . . , ωk ∈ Ω(C). Then one checks the identity

(5.10) primω ◦ Ix0
= Ix0

◦Rω.

It follows that primω(Ix0(t)) = Ix0(Rω(t)) for any t ∈ Sh(Ω(C)), which together

with unitality implies that Ix0
(Sh(Ω(C))) is a stable subalgebra of Ohol(C̃), hence

AC ⊂ Ix0
(Sh(Ω(C))).

Now let A be a stable subalgebra of Ohol(C̃). Let n ≥ 0. For any ω1, . . . , ωn ∈
Ω(C), the element primωn

◦· · ·◦primω1
(1) belongs to A since 1 ∈ A and by the sta-

bility of A. It follows from (5.10) that this element is equal to Ix0([ω1| · · · |ωn]), and

therefore A contains Ix0
(Shn(Ω(C))). This implies that A contains Ix0

(Sh(Ω(C))),

thus concluding the proof.

§5.4. Proof of Theorems A, B, C

5.4.1. Proof of Theorem C. In (1.3), the first (resp. second) equation fol-

lows from Proposition 4.17(b) (resp. Proposition 5.6). In (1.4), the first (resp.

second) equation follows from Proposition 5.4 (resp. Proposition 5.3). In (1.5),

the first (resp. second, third, fourth, fifth) equality follows from Proposition 5.9

(resp. Proposition 5.4 at infinity, Proposition 5.5(c), Proposition 5.6 at infinity,

Proposition 4.17(b) at infinity).
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5.4.2. Proof of Theorem A. Theorem A(a) is proved in Lemma 2.16. It fol-

lows from Proposition 4.17 that the algebra morphism fJ,x0
induces an algebra

isomorphism fJ,x0
: Sh(HC) ⊗ O(C) → F∞Omod(C̃). By Theorem C(b), one has

F∞Omod(C̃) = AC , which implies Theorem A(b).

5.4.3. Proof of Theorem B. Theorem B follows from the combination of Prop-

osition 4.17(a) and from the equality F∞Omod(C̃) = AC , which follows from

Theorem C(b).

§5.5. Consequences for hyperlogarithm functions

Proposition 5.10. Let J ∈ MCnd(C), x0 ∈ C̃ and (hi)i∈[[1,d]] be a basis of HC .

(a) The family (f̃J,x0
([hi1 | · · · |hik ]))k≥0,i1,...,ik∈[[1,d]] is a basis of the vector space

HC(J).

(b) The family in (a) is linearly independent over O(C), i.e. for any family

(ϕi1,...,ik)k≥0,i1,...,ik∈[[1,d]] in O(C), the relation∑
k≥0,i1,...,ik∈[[1,d]]

p∗(ϕi1,...,ik)f̃J,x0
([hi1 | · · · |hik ]) = 0

implies the vanishing of (ϕi1,...,ik)k≥0,i1,...,ik∈[[1,d]].

Proof. It follows from Proposition 4.17(a) that the algebra morphism f̃J,x0
:

Sh(HC) → Ohol(C̃) is injective, which then implies (a). (b) follows from (a) and

Proposition 4.17(a).

Now let C be as in Section 2.4, so C = P1
C ∖ S, with S a finite set containing

0 and ∞. Let f̃σ0,0 : Sh(HC)→ Ohol(C̃) be as in Definition 2.18.

Define an algebra morphism fσ0,0 : Sh(HC) ⊗ O(C) → Ohol(C̃) by t ⊗ f 7→
p∗(f)f̃σ0,0(t).

Lemma 5.11. The following statements hold true:

(a) The algebra morphism fσ0,0 is injective.

(b) The map f̃σ0,0 is injective.

Proof. (a) Choose z0 ∈ C̃. Since fσ0,0 = m ◦ (f̃σ0,0 ⊗ p∗) and fσ0,z0 = m ◦ ((Iz0 ◦
σ0)⊗ p∗) (where m : Ohol(C̃)

⊗2 → Ohol(C̃) is the product map), one has

(5.11) fσ0,0 = fσ0,z0 ◦ (a
z0
0 ⊗ id)

(equality of algebra morphisms Sh(HC)⊗O(C)→ Ohol(C̃)). The statement then

follows from (5.11), together with the injectivity of fσ0,z0 (see Proposition 4.17(a))

and the automorphism status of az00 . Statement (b) follows from (a), as f̃σ0,0 is
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the composition of fσ0,0 with the canonical injection −⊗ 1: Sh(HC)→ Sh(HC)⊗
O(C).

Proposition 5.12 (See also [Br, Cor. 5.6]). The following statements hold true:

(a) The family (L[s1|···|sk])k≥0,s1,...,sk∈S∞ of functions of Ohol(C̃) (see notation

after Definition 2.18) is a basis of HP1
C∖S(σ0).

(b) The family of functions in (a) is linearly independent over O(C).

Proof. Statement (a) follows from Lemma 5.11(b) and the second part of Propo-

sition 2.19. Statement (b) follows from (a) and Lemma 5.11.

§5.6. Relation with Chen’s work

In the Introduction to [Ch], Chen defines an algebra filtration F̃•C
∞(M̃) of C∞(M̃)

for any smooth manifoldM , where M̃ →M is the universal cover; it has the addi-

tional property that F̃nC
∞(M̃) is a subalgebra of C∞(M̃) for any n ≥ 0. If X

is a nonsingular complex algebraic variety, and X̃ is its universal cover, equipped

with its natural structure of complex manifold, one can similarly define a filtra-

tion F̃•Ohol(X̃) of the algebra Ohol(X̃), by replacing in the definition of [Ch] the

spaces of smooth functions and 1-forms (denoted there Λ0(M) and Λ1(M)) by

the spaces of regular functions and differentials on X. When X = C, the explicit

definition of F̃•Ohol(C̃) is as follows: F̃0Ohol(C̃) := p∗O(C) and F̃r+1Ohol(C̃) :=

C[f, intx0
(g · p∗ω) | f, g ∈ F̃rOhol(C̃), ω ∈ Ω(C)] for r ≥ 0, where C[−] means the

subalgebra generated by a family.

Lemma 5.13. Let x0 ∈ C̃.

(a) For any r ≥ 0, F̃rOhol(C̃) ⊂ Ix0(Sh(Ω(C))).

(b) For any r ≥ 0, Ix0(Shr(Ω(C))) ⊂ F̃rOhol(C̃).

(c) One has F̃∞Ohol(C̃) = Ix0(Sh(Ω(C))) (equality of subalgebras of Ohol(C̃)).

Proof. (a) F̃0Ohol(C̃) = p∗O(C) = Ix0
(C⊕ [dO(C)]) ⊂ Ix0

(Sh(Ω(C))). Let r ≥ 0

and assume that F̃rOhol(C̃) ⊂ Ix0
(Sh(Ω(C))). Let g ∈ F̃rOhol(C̃), ω ∈ Ω(C). One

knows that for some a ∈ Sh(Ω(C)), ω = Ix0(a). Then intx0(g ·p∗ω) = intx0(Ix0(a) ·
p∗ω) = Ix0

([a|ω]) ∈ Ix0
(Sh(Ω(C))). Then F̃r+1Ohol(C̃) = C[f, intx0

(g·p∗ω) | f, g ∈
F̃rOhol(C̃), ω ∈ Ω(C)] ⊂ Ix0(Sh(Ω(C))) by F̃rOhol(C̃) ⊂ Ix0(Sh(Ω(C))) and the

fact that Ix0
(Sh(Ω(C))) is an algebra.

(b) Ix0
(Sh0(Ω(C))) = C ⊂ F̃0Ohol(C̃). Let r ≥ 0 and assume the inclusion

Ix0(Shr(Ω(C))) ⊂ F̃rOhol(C̃). Let a ∈ Shr+1(Ω(C)). Then there exist elements

(ai)i=1,...,k, (ωi)i=1,...,k where ai∈ Shr(Ω(C)), ωi∈Ω(C) such that a=
∑k

i=1[ai|ωi].
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Then

Ix0(a) =

k∑
i=1

Ix0([ai|ωi]) =

k∑
i=1

intx0(Ix0(ai) · p∗ωi).

One has Ix0(ai) ∈ F̃rOhol(C̃) by assumption, therefore the final term of this equal-

ity belongs to F̃r+1Ohol(C̃). Therefore, Ix0
(Shr+1(Ω(C))) ⊂ F̃r+1Ohol(C̃). The

statement follows by induction.

(c) By (a), we know that F̃∞Ohol(C̃) ⊂ Ix0
(Sh(Ω(C))). Moreover, (b) implies that,

for any r ≥ 0, Ix0(Shr(Ω(C))) ⊂ F̃∞Ohol(C̃), and so Ix0(Sh(Ω(C))) ⊂ F̃∞Ohol(C̃).

Remark 5.14. [Ch, §2.3] contains the definition of another filtration F•C
∞(M̃).

This definition is both an analogue of that of Fµ
• Ohol(C̃) (as both definitions give

analogous values for the degree 0 term of the filtration) and of F δ
•Ohol(C̃) (as both

definitions share the same induction step). However, the statement “FrC
∞(M̃) ·

FsC
∞(M̃) ⊂ Fr+sC

∞(M̃) for any r, s ≥ 0” from [Ch, Prop. 2.3.1] appears to be

wrong. Indeed, if r = 0, s = 1, F0C
∞(M̃) = p∗C∞(M) while F1C

∞(M̃) = {f ∈
C∞(M̃) | df ∈ F0C

∞(M̃) · p∗Λ1(M)}; since F0C
∞(M̃) · p∗Λ1(M) = p∗Λ1(M), the

set F1C
∞(M̃) is the set of functions on M̃ of the form x 7→ c +

∫ x

x0
p∗ω, where

c ∈ C and ω ∈ Λ1(M); this set is not stable under multiplication by p∗C∞(M)

(the mistake can be traced to the proof of Proposition 2.3.1, which overlooks the

fact that the inclusion dFrC
∞(M̃) ⊂ Fr−1C

∞(M̃) · p∗Λ1(M) is valid in general

only if one introduces F−1C
∞(M̃) = C).

Part II. Complementary results

§6. Connections for HACAs

We introduce the notion of connection on a HACA in Section 6.1. In Section 6.2 we

construct a natural connection on the HACA ((CΓC)
′, F∞Omod(C̃)). We compute

its pull-back under the HACA isomorphism (ν(pJ,x0
), fJ,x0

) from Proposition 4.17

in Section 6.3.

§6.1. Connections for HACAs

Let a be a commutative algebra. Recall that the a-module of Kähler differentials

of a is the quotient Ωa := ker(m)/ ker(m)2, wherem is the product map a⊗a→ a;

the derivation d : a → Ωa is defined by d(a) = a ⊗ 1 − 1 ⊗ a + ker(m)2. One has

ΩO(C) = Ω(C).
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Let (O,A) be a HACA with coaction morphism ∆A : A → O ⊗ A. One has

AO = {a ∈ A | ∆A(a) = 1 ⊗ a} = F0A. If A
O is a commutative algebra, then

A⊗AO ΩAO is a left A-module.

Definition 6.1. Let (O,A) be a HACA such that AO is central in A, so that

A ⊗AO ΩAO is a right A-module. A connection for (O,A) is a map ∇A : A →
A⊗AO ΩAO , which

(a) is a derivation, i.e. ∇A(aa
′) = a∇A(a

′) +∇A(a)a
′ for any a, a′ ∈ A;

(b) is O-equivariant, i.e. (∆A ⊗ idΩAO
) ◦ ∇A = (idO ⊗∇A) ◦∆A;

(c) is such that ∇A(a) = 1⊗ da for a ∈ AO.

If (O,A) is a HACA with connection ∇A, then one defines the pull-back of

∇A by a HACA isomorphism (O′, A′)→ (O,A), which is a connection for (O′, A′).

Remark 6.2. If G is an algebraic group and P is a principal G-bundle over an

affine base, and (O,A) is the pair of regular functions on these spaces, then a con-

nection for (O,A) is an algebraic version of a G-invariant Ehresmann connection

on the bundle P → P/G.

§6.2. A connection for ((CΓC)′, F∞Omod(C̃))

Proposition 6.3. The following statements hold true:

(a) The map F∞Omod(C̃) ⊗O(C) Ω(C) → Ωhol(C̃) given by f ⊗ ω 7→ f · p∗ω is

injective.

(b) There exists a unique map ∇ : F∞Omod(C̃) → F∞Omod(C̃) ⊗O(C) Ω(C) such

that the diagram

(6.1)

F∞Omod(C̃)
∇ //

� _

��

F∞Omod(C̃)⊗O(C) Ω(C)� _

��

Ohol(C̃)
d

// Ωhol(C̃)

commutes.

(c) ∇ is a connection for the HACA ((CΓC)
′, F∞Omod(C̃)) (see Lemma 4.16).

Proof. (a) By Lemma 4.17, fJσ,x0 : Sh(HC) ⊗ O(C) → F∞Omod(C̃) is an iso-

morphism of filtered O(C)-modules. Its image by the functor −⊗O(C) Ω(C) is an

isomorphism of filtered vector spaces φσ,x0
: Sh(HC)⊗Ω(C)→ F∞Omod(C̃)⊗O(C)

Ω(C). The natural morphism can: F∞Omod(C̃) ⊗O(C) Ω(C) → Ωhol(C̃) is ΓC-

equivariant, therefore by Lemma B.5(b) is compatible with the filtrations induced
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by the action of ΓC . The composed morphism can ◦ φσ,x0
: Sh(HC) ⊗ Ω(C) →

Ωhol(C̃), given by φσ,x0
(a ⊗ ω) = Ix0

(σ(a)) · p∗(ω), is therefore compatible with

the filtrations F• Sh(HC) ⊗ Ω(C) of the source and F•Ωhol(C̃) of the target (see

Definition B.4), therefore it gives rise to an associated graded map gr•(can ◦
φσ,x0

) : Sh•(HC) ⊗ Ω(C) → gr•Ωhol(C̃). By Lemma B.5(c), one attaches to the

ΓC-module Ωhol(C̃) the injective graded map

gr•Ωhol(C̃) ↪→
⊕
n≥0

HomC-vec(gr
n(CΓC),Ωhol(C̃)

ΓC ),

where Ωhol(C̃)
ΓC can be identified with the space of holomorphic differentials on

C; it contains Ω(C) as a subspace.

For any n ≥ 0, the composition of the inclusion

grnΩhol(C̃) ↪→ HomC-vec(gr
n(CΓC),Ωhol(C̃)

ΓC )

with grn(can ◦ φσ,x0
) is given by the composition of the isomorphism

HomC-vec(gr
n(CΓC),C)⊗ Ωhol(C̃)

ΓC ≃ HomC-vec(gr
n(CΓC),Ωhol(C̃)

ΓC )

(due to the finite-dimensionality of grn(CΓC)) with the tensor product of the

injection Ω(C) ↪→ Ωhol(C̃)
ΓC with the map Shn(HC) → HomC-vec(gr

n(CΓC),C),
which is injective by Lemma 4.7. It follows that gr•(can◦φσ,x0) is injective, which,

as the filtration of the source of can ◦φσ,x0
is exhaustive, implies the injectivity of

can ◦ φσ,x0 , which as φσ,x0 is an isomorphism implies the injectivity of can.

(b) In this proof, we abbreviate F δ
•Ohol(C̃) into F

δ
• . For any n ≥ 0, the inclusion

F δ
n ⊂ F∞Omod(C̃) gives rise to the inclusion of subspaces

im(F δ
n ⊗ Ω(C)→ Ωhol(C̃)) ⊂ im(F∞Omod(C̃)⊗ Ω(C)→ Ωhol(C̃)) ⊂ Ωhol(C̃).

By the definition of F δ
• , one has d(F δ

n+1) ⊂ im(F δ
n ⊗ Ω(C) → Ωhol(C̃)), there-

fore d(F δ
n+1) ⊂ im(F∞Omod(C̃) ⊗ Ω(C) → Ωhol(C̃)). This holds for any n ≥ 0

and F∞Omod(C̃) =
⋃

n≥0 F
δ
n (see Propositions 4.17, 5.5, and 5.6), and there-

fore d(F∞Omod(C̃)) ⊂ im(F∞Omod(C̃) ⊗ Ω(C) → Ωhol(C̃)). The linear map

F∞Omod(C̃) ⊗ Ω(C) → Ωhol(C̃) admits a factorization F∞Omod(C̃) ⊗ Ω(C) ↠
F∞Omod(C̃) ⊗O(C) Ω(C) → Ωhol(C̃), where the first map is surjective, therefore

im(F∞Omod(C̃) ⊗ Ω(C) → Ωhol(C̃)) = im(F∞Omod(C̃) ⊗O(C) Ω(C) → Ωhol(C̃)),

which implies

dF∞Omod(C̃) ⊂ im(F∞Omod(C̃)⊗O(C) Ω(C)→ Ωhol(C̃)).

The claim then follows from (a).
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(c) The derivation property of ∇ follows from the derivation property of d and of

the injectivity of the right vertical map of (6.1). The equivariance of∇ follows from

the same injectivity and from the ΓC-equivariance of d; the identity ∇(f) = 1⊗df
for f ∈ O(C) follows from the same injectivity.

§6.3. A connection for (Sh(HC), Sh(HC) ⊗ O(C))

Lemma 6.4. The following statements hold true:

(a) Let O be a Hopf algebra and a be a commutative algebra. Then (O,O ⊗ a),

equipped with the coaction morphism O ⊗ a
∆O⊗id−−−−→ O ⊗ (O ⊗ a), is a HACA

satisfying the assumptions of Definition 6.1.

(b) Any linear map µ : O → a such that µ(fg) = ϵ(f)µ(g) + µ(f)ϵ(g) gives rise

to a connection on (O,O ⊗ a), where ∇ : O ⊗ a → O ⊗ Ω(a) is given by

f ⊗ a 7→ f ⊗ d(a) + f (1) ⊗ µ(f (2))a.

Proof. (a) The fact that (O,O ⊗ a) is a HACA follows from Proposition B.18.

The fact that it satisfies the assumptions of Definition 6.1 follows from AO = a.

(b) The statement follows from the axioms, and from the fact that the left and

right action of a on Ω1
a coincide, as a is commutative. The axioms of invariance

and restriction to (O ⊗ a)O = a are immediate.

Proposition 6.5. Let J ∈ MC(C).

(a) The map ∇J : Sh(HC)⊗O(C)→ Sh(HC)⊗ Ω(C) given by a⊗ f 7→ a⊗ df +

a(1) ⊗ µJ(a
(2))f , where µJ is as in Section 2.2, defines a connection for the

HACA (Sh(HC),Sh(HC)⊗O(C)).
(b) The connection ∇J is the pull-back of ∇ under the HACA isomorphism

(ν(pJ,x0
), fJ,x0

) (see Proposition 4.17).

Proof. (a) follows from Lemmas 2.10 and 6.4.

(b) For a ∈ Sh(HC), one has

∇(fJ,x0(a⊗ 1)) = d
(
Ix0(J∗(a))

)
= Ix0(J∗(a)

(1))πSh(Ω(C))(J∗(a)
(2))

= Ix0
(J∗(a

(1)))πSh(Ω(C))(J∗(a
(2))) = Ix0

(J∗(a
(1)))µJ(a

(2))

= (fJ,x0
⊗O(C) idΩ(C)) ◦ ∇J(a⊗ 1),

where πSh(Ω(C)) : Sh(Ω(C))→ Ω(C) is as in Section 2.1, the second equality follows

from (2.1), the third equality follows from (id ⊗ πSh(Ω(C))) ◦ ∆Sh(Ω(C)) ◦ J∗ =

(J∗ ⊗ µJ) ◦∆Sh(HC) (equality of linear maps Sh(HC)→ Sh(Ω(C)⊗Ω(C))), which
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is proved as follows: for any k ≥ 0 and ξ1, . . . , ξk ∈ HC , one has

(id⊗ πSh(Ω(C))) ◦∆Sh(Ω(C)) ◦ J∗([ξ1| · · · |ξk])

=
∑
s≥1

1≤k1≤···≤ks≤k

[µJ([ξ1| · · · |ξk1 ])| · · · |µJ([ξks−1+1| · · · |ξks ])]⊗ µJ([ξks+1| · · · |ξk])

=
∑

1≤l≤k

J∗([ξ1| · · · |ξl−1])⊗ µJ([ξ1| · · · |ξk]) = (J∗ ⊗ µJ) ◦∆Sh(HC)([ξ1| · · · |ξk]),

the fourth equality follows from the equality µJ(a) = πSh(Ω(C))(J∗(a)) for any

a ∈ Sh(HC), which follows from the definition of µJ , and the fifth equality follows

from the definitions of∇J and fJ,x0
. One derives the commutativity of the diagram

Sh(HC)⊗O(C)
fJ,x0 //

∇J

��

F∞Omod(C̃)

∇
��

Sh(HC)⊗O(C) Ω(C)
fJ,x0

⊗O(C)idΩ(C)

// F∞Omod(C̃)⊗O(C) Ω(C).

Remark 6.6. The HACA (Sh(HC),Sh(HC) ⊗ O(C)) corresponds to the trivial

principal bundle over C with group Spec(Sh(HC)), and ∇J is the flat connection

d + J over it; one has L((HC)
∗) = Lie Spec(Sh(HC)). When C = P1 ∖ S (see

Section 2.4) and J = Jσ0 (see Remark 2.20), ∇J0 is the map

Sh(CŜ∞)⊗ C[z, 1/(z − s), s ∈ S∞]→ Sh(CŜ∞)⊗ C[z, 1/(z − s), s ∈ S∞] · dz

given by

[a1| · · · |ak]⊗ f 7→ [a1| · · · |ak]⊗ df +
∑
s∈Ŝ∞

(ak)s[a1| · · · |ak−1]⊗ f · dz/(z − s),

where for a ∈ CŜ∞, a =
∑

s∈S∞
as · ŝ.

§7. Local expansion of the elements of F∞Omod(C̃)

By Section 3.1.1, one may view u, z as elements of Ohol(D̃
×) and Ohol(D

×) respec-

tively, such that e∗z = e(u). We therefore use the notation e∗ log z for 2πiu. Recall

the action of Z on Omod(D̃
×), where 1 acts by θ∗ (cf. Lemma 3.3). Let us denote by

F•Omod(D̃
×) the algebra filtration of Omod(D̃

×) induced by this action according

to Definition B.7 and Lemma B.8.

Lemma 7.1. The algebra morphism O(D×)[X] → Omod(D̃
×) given by f 7→ f

for f ∈ O(D×) and X 7→ e∗ log z induces an isomorphism between the algebra
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filtrations F•O(D×)[X] of O(D×)[X] given by FnO(D×)[X] := O(D×)[X]≤n for

n ≥ 0 and F•Omod(D̃
×) of Omod(D̃

×). In particular, one has F∞Omod(D̃
×) =

O(D×)[e∗ log z] (equality of subalgebras of Omod(D̃
×)).

Proof. Let us denote by can: O(D×)[X]→ Omod(D̃
×) the algebra morphism from

the statement. The image of O(D×) by can is contained in F0Omod(D̃
×) and the

image of e∗ log z by can is contained in F1Omod(D̃
×) since (θ∗−1)2(e∗ log z) = (θ∗−

1)(1) = 0; therefore, for any n ≥ 0, can(FnO(D×)[X]) = can(O(D×)[X]≤n) ⊂
FnOmod(D̃

×). Therefore can is compatible with the algebra filtrations in its source

and target. Let

gr(can) : O(D×)[X]→ gr(Omod(D̃
×))

be the corresponding graded algebra morphism. Its restriction to the degree 0

part of its source is given by O(D×) ∋ f 7→ f ∈ O(D×) = F0Omod(D̃
×) =

gr0Omod(D̃
×) and it is such that O(D×)[X] ∋ X 7→ [e∗ log z] ∈ gr1Omod(D̃

×)

(degree 1 elements).

Let n ≥ 0. By Lemma B.8(b), the linear map µn : FnOmod(D̃
×)→ Omod(D̃

×)

given by f 7→ (θ∗ − 1)n(f)/n! has its image contained in F0Omod(D̃
×), whereas

the image of the subspace Fn−1Omod(D̃
×) by this map is zero.

Under the identification CZ ≃ C[X,X−1] with X group-like, the ideal FnCZ
is identified with ((X− 1)n), therefore ker(µn) = Ann((θ∗− 1)n) = Ann(FnCZ) =
Fn−1Omod(D̃

×). It follows that µn induces an injective linear map

µ′
n : grn(Omod(D̃

×))→ F0Omod(D̃
×),

where by Lemma 3.5, the target space is equal to O(D×).

Define a graded linear map

µ : gr(Omod(D̃
×))→ O(D×)[X]

by µ(a) := µ′
n(a)X

n for a ∈ grn(Omod(D̃
×)) and n ≥ 0. As µ is a direct sum of

injective maps, µ is injective.

Let us show that for n,m ≥ 0, the diagram

(7.1)

FnOmod(D̃
×)⊗ FmOmod(D̃

×)
µ′
n⊗µ′

m //

��

O(D×)⊗O(D×)

��

FnOmod(D̃
×)

µ′
n+m

// O(D×)
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is commutative, where the vertical maps are given by multiplication. The relation

(X ⊗X − 1)n+m

(n+m)!
∈ (X − 1)n

n!
⊗ (X − 1)m

m!
+ ((X − 1)n+1)⊗ C[X,X−1]

+ C[X,X−1]⊗ ((X − 1)m+1)(7.2)

in C[X,X−1]⊗2 is a consequence of the relation

(XY − 1)n+m

(n+m)!
=

((X − 1)Y + (Y − 1))n+m

(n+m)!

∈ ((X − 1)Y )nY m

n!m!
+ I =

(X − 1)n

n!

(Y − 1)m

m!
+ I

in C[X±1, Y ±1], where I := ((X−1)n+1)+((Y −1)m+1). Then f ∈ FnOmod(D̃
×),

g ∈ FmOmod(D̃
×), one has

µ′
n+m(fg) =

(θ∗ − 1)n+m(fg)

(n+m)!

=
(X − 1)n+m

(n+m)!
· (f · g) = ∆

( (X − 1)n+m

(n+m)!

)
· (f ⊗ g)

∈ (X − 1)n

n!
⊗ (X − 1)m

m!
+ ((X − 1)n+1)⊗ C[X,X−1]

+ C[X,X−1]⊗ ((X − 1)m+1) · (f ⊗ g)

=
(X − 1)n

n!
· f ⊗ (X − 1)m

m!
· g = µ′

n(f) · µ′
m(g),

where the third equality follows from the Hopf algebra action properties, the

inclusion relation follows from (7.2) and the group-likeness of X, and the last

equality follows from (θ∗ − 1)n+1f = (θ∗ − 1)m+1g = 0 as f ∈ FnOmod(D̃
×),

g ∈ FmOmod(D̃
×). The commutativity of (7.1) implies that µ : gr(Omod(D̃

×)) →
O(D×)[X] is a morphism of graded algebras.

Then µ ◦ gr(can) is a graded algebra endomorphism of O(D×)[X]. For f ∈
O(D×), one has µ ◦ gr(can)(f) = µ(f) = f . One also has µ ◦ gr(can)(X) =

µ([e∗ log z]) = µ′
1([e

∗ log z])X = X as µ′
1([e

∗ log z]) = µ1(e
∗ log z) = 1. It follows

that µ ◦ gr(can) is the identity of O(D×)[X], therefore that µ is surjective. It is

therefore an isomorphism, which, using µ◦gr(can) = id again, implies that gr(can)

is an isomorphism. Lemma 4.1 then implies the statement.

Proposition 7.2. The algebra morphism
⊕

s∈S

∏
s∈Xs

(φ̃×
s,x)

∗ (see (3.1)) is such

that (⊕
s∈S

∏
x∈Xs

(φ̃×
s,x)

∗
)
(F∞Omod(C̃)) ⊂

⊕
s∈S

∏
x∈Xs

O(D×)[e∗ log z].
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Proof. It follows from the proof of Proposition 3.12 that (3.2) is a ΓC-equivariant

algebra morphism, where the action on the target is the direct sum over s ∈ S of the

actions of Lemma 3.8(a). For any s ∈ S, the composition of (3.2) with the canon-

ical projection is a ΓC-equivariant algebra morphism
⊕

x∈Xs
(φ̃×

s,x)
∗ : Omod(C̃)→⊕

x∈Xs
Omod(D̃

×). For x ∈ Xs, the decomposition of the target as Omod(D̃
×) ⊕

(
⊕

x′∈Xs∖{x}Omod(D̃
×)) is preserved by the action of the stabilizer subgroup

StabΓC
(x) ⊂ ΓC of x ∈ Xs under the action of ΓC . The map

(7.3) (φ̃×
s,x)

∗ : Omod(C̃)→ Omod(D̃
×)

is therefore equivariant under the action of StabΓC
(x).

By Section 3.1.2, there is a group isomorphism Z ≃ StabΓC
(x) given by 1 7→

θs,x, and (7.3) is Z-equivariant, the action of Z on the target being as in Lemma 7.1.

Then

F∞Omod(C̃) = FCΓC
∞ Omod(C̃) ⊂ FCZ

∞ Omod(C̃) ⊂ (φ∗
s,x)

−1(FCZ
∞ Omod(D̃

×))

= (φ∗
s,x)

−1(Omod(D
×)[e∗ log z]),

where we use the notation of Lemma B.11, the first equality is the definition of

F∞Omod(C̃), the first inclusion follows from Lemma B.11(a), the second inclusion

follows from Lemma B.11(b), and the last equality follows from Lemma 7.1.

Remark 7.3. Proposition 7.2 implies that the elements of F∞Omod(C̃) are Nils-

son class functions on C in the sense of [Ph, p. 154]. Indeed, for any f ∈
O(D×)[e∗ log z], there exists α0 ∈ Z such that f = zα0P0(log z) with P0 as in

[Ph, eqn. (1.4), p. 151]. The Nilsson class functions obtained in this way are not of

the most general form, as the class in C/Z of the αi in their expansion from [Ph,

eqn. (1.4), p. 151] is always 0.

§8. Relation of AC with minimal acyclic extensions of dgas

Recall the definition of the dga (Ω•
hol(C̃), d) from Section 3.2. Denote by (Ω•(C), d)

the dga of algebraic differential forms on C; it is concentrated in degrees 0 and

1, with Ω0(C) = O(C), Ω1(C) = Ω(C), algebra structure given by the alge-

bra structure of O(C) and the module structure of Ω(C) over it, and differential

given by d. The pull-back of p : C̃ → C gives rise to an injective dga morphism

p∗ : (Ω•(C), d) ↪→ (Ω•
hol(C̃), d). One has H1(Ω•(C)) ≃ HC , while H1(Ω•

hol(C̃)) = 0.

Definition 8.1. Consider the following definitions:

(a) An acyclic extension (AE) of Ω•(C) is a dga (E•, d) with Ω•(C) ⊂ E• ⊂
Ω•

hol(C̃) and H1(E•) = 0.
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(b) E•
C :=

⋂
E• an AE of Ω•(C)E

•.

Lemma-Definition 8.2. The dga E•
C is an AE of Ω•(C), which is contained in

any AE of Ω•(C); we therefore call it the minimal AE of Ω•(C).

Proof. Let us show that if E•, F • are AEs of Ω•(C), then so is E• ∩ F •. The

intersection E• ∩ F • is obviously a dga containing Ω•(C). If x ∈ E1 ∩ F 1, there

exists e ∈ E0 such that x = d(e) since H1(E•) = 0, and f ∈ E0 such that

x = d(f) since H1(F •) = 0. Then d(e − f) = 0, therefore e − f ∈ C, therefore
f ∈ e+C ⊂ E0+C = E0, so f ∈ E0∩F 0. So E1∩F 1 ⊂ d(E0∩F 0), which implies

H1(E• ∩F •) = 0. It follows that E• ∩F • is an AE of Ω•(C). This fact implies the

statement.

Lemma 8.3. The maps E• 7→ E0 and A 7→ (A⊕ dA, d) define inverse bijections

between the sets {AEs of Ω•(C)} and

AlgC :=
{
algebras A with O(C) ⊂ A ⊂ Ohol(C̃) such that d(A) ⊃ Ω(C)

and A · d(A) = dA (equality of subspaces of Ωhol(C̃))
}
.

Proof. Let E• be an AE of Ω•(C). Then O(C) ⊂ E0 ⊂ Ωhol(C̃) since Ω•(C) ⊂
E• ⊂ Ω•

hol(C̃). Since H1(E•) = 0, one has E1 = d(E0) and since Ω•(C) ⊂ E•, one

has E1 ⊃ Ω(C), therefore d(E0) ⊃ Ω(C). The equality E1 = d(E0) implies the

two extreme equalities in E0 · d(E0) = E0 · E1 = E1 = d(E0), while the middle

equality follows from the fact that E• is a dga with unit. It follows that E0 belongs

to AlgC .

Let A belong to AlgC . Since A · d(A) = d(A), the pair (A ⊕ d(A), d) is a

sub-dga of Ω•
hol(C̃), and since d(A) ⊃ Ω(C) and A ⊃ O(C), the dga (A⊕ d(A), d)

contains Ω•(C) as a sub-dga. One has clearly H1(A ⊕ dA, d) = 0. It follows that

(A⊕ d(A), d) is an AE of Ω•(C).

The composed map AlgC → {AEs of Ω•(C)} → AlgC is obviously the iden-

tity, and the fact that the composed map {AEs of Ω•(C)} → AlgC → {AEs of

Ω•(C)} is the identity follows from the fact that if E• is an AE of Ω•(C), then

E1 = d(E0) due to H1(E•) = 0.

Lemma 8.4. The following statements hold true:

(a) AlgC ⊂ {SSAs of Ohol(C̃)}.
(b) AC ∈ AlgC .

(c)
⋂

A∈AlgC
A = AC .

Proof. (a) Let A ∈ AlgC . Then A is unital. Let f ∈ A, ω ∈ Ω(C) and set F :=

(z 7→
∫ z

x0
f · p∗ω). Since Ω(C) ⊂ d(A) (by A ∈ AlgC), there exists g ∈ A with
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dg = ω. Then dF = f · p∗ω = f · dg ∈ A · dA = dA, where the last equality follows

from A ∈ AlgC . It follows that F ∈ A, therefore A is an SSA of Ohol(C̃).

(b) By Lemma 5.8, AC is an SSA of Ohol(C̃), therefore it contains 1 and the

functions z 7→
∫ z

x0
df for any f ∈ O(C), therefore AC is a subalgebra of Ohol(C̃)

containing O(C). Let ω ∈ Ω(C) and set Fω := (z 7→
∫ z

x0
p∗ω) ∈ Ohol(C̃). Then

Fω ∈ AC by the stability properties of AC . Then d(AC) ∋ d(Fω) = ω, which

implies d(AC) ⊃ Ω(C).

Let us show that AC ·dAC = dAC . It suffices to prove that, for any f, g ∈ AC ,

the element h := (z 7→
∫ z

x0
f ·dg) ∈ Ohol(C̃) belongs to AC . By Proposition 5.9 and

F δ
∞Ohol(C̃) =

⋃
n≥0 F

δ
nOhol(C̃), there exist n,m ≥ 0 such that f ∈ F δ

nOhol(C̃)

and g ∈ F δ
mOhol(C̃). Then there exists a finite set I and maps I → Ω(C),

I → F δ
m−1Ohol(C̃) denoted i 7→ ωi, i 7→ ki such that dg =

∑
i∈I ki · p∗ωi.

Then dh =
∑

i∈I fki · p∗ωi. For any i ∈ I, fki ∈ F δ
nOhol(C̃) · F δ

m−1Ohol(C̃) ⊂
F δ
n+m−1Ohol(C̃), where the last inclusion follows from Proposition 5.5(a). It follows

that h ∈ F δ
n+mOhol(C̃), and therefore h ∈ AC by F δ

∞Ohol(C̃) =
⋃

n≥0 F
δ
nOhol(C̃)

and Proposition 5.9.

(c) By (a), one has
⋂

A∈AlgC
A ⊃

⋂
A an SSA of O(C)A = AC . On the other hand,⋂

A∈AlgC
A ⊂ A for any A ∈ AlgC , so by (b),

⋂
A∈AlgC

A ⊂ AC .

Proposition 8.5. E•
C = (AC ⊕ d(AC), d).

Proof. Set X :=
⋂

A∈AlgC
A. One has

E•
C =

⋂
E• an AE of Ω•(C)

E• =
⋂

A∈AlgC

(A⊕d(A), d) = (X⊕d(X), d) = (AC ⊕d(AC), d),

where the first equality follows from the definition of E•
C , the second equality

follows from Lemma 8.3, the third equality follows from (A⊕d(A))∩ (B⊕d(B)) =

((A∩B)⊕d(A∩B)) (equality of subspaces of Ω•(C̃)) for A, B any pair of subspaces

of Ohol(C̃) containing 1, and the last equality follows from Lemma 8.4(c).

§9. Computation of ker(Ix0)

In this section we fix x0 ∈ C̃. The main result of this section is Theorem 9.7, where

we compute ker(Ix0
) and exhibit a complement of this space in Sh(Ω(C)). These

results are expressed in terms of an element σ ∈ ΣC , which is fixed in the whole

section. We also set fσ,x0
:= fJσ,x0

.

Lemma-Definition 9.1. The direct sum of the map σ∗ : Sh(HC) → Sh(Ω(C))

and of its concatenation with the canonical inclusion dO(C) ↪→ Ω(C) is an injective
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map Sh(HC)⊕ [Sh(HC)|dO(C)]→ Sh(Ω(C)). We define

(9.1) Subσ := σ∗(Sh(HC))⊕ [σ∗(Sh(HC))|dO(C)] ↪→ Sh(Ω(C))

to be the image of this map.

Proof. The statement follows from Ω(C) = σ(HC)⊕ dO(C).

Define a vector space filtration F•Subσ by

FnSubσ := σ∗(Fn Sh(HC))⊕ [σ∗(Fn Sh(HC))|dO(C)]

for n ≥ 0.

Lemma 9.2. One has for any n ≥ 0,

Ix0
(FnSubσ) + Ix0

(
Fn Sh(Ω(C))

)
= fσ,x0

(Fn Sh(HC)⊗O(C))
+ Ix0

(
Fn Sh(Ω(C))

)
,(9.2)

fσ,x0
(Fn Sh(HC)⊗ C1) ⊂ Ix0

(FnSubσ).(9.3)

Proof. Equation (9.2) follows from the inclusion Fn−1Subσ ⊂ Fn Sh(Ω(C)), from

the fact that grnSubσ is linearly spanned by the elements [σ(h1)| · · · |σ(hn)|df ]⊕ 0

and 0 ⊕ [σ(h1)| · · · |σ(hn)], where h1, . . . , hn ∈ HC and f ∈ O(C), and from the

identities

Ix0
([σ(h1)| · · · |σ(hn)|df ]⊕ 0) = fσ,x0

([h1| · · · |hn]⊗ f)
− Ix0([σ(h1)| · · · |σ(hn−1)|σ(hn)p∗(f)]),(9.4)

Ix0
(0⊕ [σ(h1)| · · · |σ(hn)]) = fσ,x0

([h1| · · · |hn]⊗ 1).

Equation (9.3) follows from the equality of the maps Fn Sh(HC) → Ohol(C̃), t 7→
fσ,x0

(t⊗ 1), and t 7→ Ix0
(σ(t)⊕ 0).

Lemma 9.3. One has, for any n ≥ 0,

(9.5) fσ,x0(Fn Sh(HC)⊗O(C)) = Ix0(FnSubσ).

Proof. For any n ≥ 0, one has

fσ,x0
(Fn Sh(HC)⊗O(C)) ⊂ Ix0

(FnSubσ) + Ix0

(
Fn Sh(Ω(C))

)
= Ix0

(FnSubσ) + fσ,x0
(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C))

= Ix0(FnSubσ) + fσ,x0(Fn Sh(HC)⊗ C1) + fσ,x0(Fn−1 Sh(HC)⊗O(C))
= Ix0

(FnSubσ) + fσ,x0
(Fn−1 Sh(HC)⊗O(C))
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where the first inclusion follows from (9.2), the first equality follows from Proposi-

tion 5.3, and the third equality follows from the inclusion (9.3) applied to the two

first summands of its left-hand side. Therefore, one finds that

fσ,x0
(Fn Sh(HC)⊗O(C)) ⊂ Ix0

(FnSubσ) + fσ,x0
(Fn−1 Sh(HC)⊗O(C)).

Based on this inclusion, one proves inductively that, for any n ≥ 0, one has

(9.6) fσ,x0
(Fn Sh(HC)⊗O(C)) ⊂ Ix0

(FnSubσ).

On the other hand, for any n ≥ 0, one has

Ix0
(FnSubσ) ⊂ fσ,x0

(Fn Sh(HC)⊗O(C)) + Ix0

(
Fn Sh(Ω(C))

)
= fσ,x0

(Fn Sh(HC)⊗O(C)) + fσ,x0
(Fn Sh(HC)⊗ C1 + Fn−1 Sh(HC)⊗O(C))

= fσ,x0(Fn Sh(HC)⊗O(C)),

where the inclusion follows from (9.2), the first equality follows from Proposi-

tion 5.3, and the last equality follows from the inclusion of the second summand

of its left-hand side in its first one. Therefore, one finds that

Ix0(FnSubσ) ⊂ fσ,x0(Fn Sh(HC)⊗O(C)),

which together with (9.6) implies the statement.

It follows from Proposition 4.17(a) that the corestriction of the map fσ,x0

defines a linear isomorphism fσ,x0
: Fn Sh(HC)⊗O(C)→ fσ,x0

(Fn Sh(HC)⊗O(C)).
Define

mapσ,x0
: Subσ → Sh(HC)⊗O(C)

to be the composition

(9.7) Subσ
Ix0−−→ Ix0

(Subσ) = fσ,x0
(Sh(HC)⊗O(C))

(fσ,x0 )
−1

−−−−−−→ Sh(HC)⊗O(C),

where the equality (equality of subspaces of Ohol(C̃)) follows from the collection

of all equalities (9.5) for n ≥ 0.

Lemma 9.4. The map mapσ,x0
is an isomorphism of vector spaces.

Proof. For any n ≥ 0, the composition (9.7) restricts to a composition

FnSubσ
Ix0−−→Ix0

(FnSubσ)=fσ,x0
(Fn Sh(HC)⊗O(C))

(fσ,x0 )
−1

−−−−−−→Fn Sh(HC)⊗O(C),

where the equality follows from (9.5).



680 B. Enriquez and F. Zerbini

It follows that the map mapσ,x0
is compatible with the filtrations on both

sides, and therefore induces, for any n ≥ 0, a linear map

Fnmapσ,x0
: FnSubσ → Fn Sh(HC)⊗O(C).

The composition of the associated graded map with the canonical isomorphisms

is then

mapn : σ∗(Shn(HC))⊕ [σ∗(Shn(HC))|dO(C)] ≃ grnSubσ
grnmapσ,x0−−−−−−−→ grn Sh(HC)⊗O(C) ≃ Shn(HC)⊗O(C).(9.8)

Recall that a 2-step filtration of a vector space is the same as a vector subspace.

The source and target of mapn are equipped with the 2-step filtrations associated

respectively with the subspaces σ∗(Shn(HC)) and Shn(HC)⊗ C.
The composition (9.7) restricts to a composition

σ∗(Sh(HC))
Ix0−−→ Ix0

(
σ∗(Shn(HC))

)
= fσ,x0(Sh(HC)⊗ C)

(fσ,x0
)−1

−−−−−−→ Sh(HC)⊗ C,

where the middle equality follows from the equality of maps Sh(HC) → Ohol(C̃),

t 7→ Ix0
(σ∗(t)) and t 7→ fσ,x0

(t⊗1). Therefore mapσ,x0
restricts to the isomorphism

σ∗(Sh(HC))→ Sh(HC)⊗C given by σ∗(t) 7→ t⊗1. This map is compatible with the

filtrations, therefore it induces an isomorphism σ∗(Fn Sh(HC))→ Fn Sh(HC)⊗ C
for any n ≥ 0, which by passing to the associated graded implies that mapn is

compatible to the 2-step filtrations on both sides. Its associated graded for this

filtration is then a map

1⊕
i=0

grimapn : σ∗(Shn(HC))⊕[σ∗(Shn(HC))|dO(C)]→ Shn(HC)⊗
(
C⊕(O(C)/C)

)
.

It follows from the fact that mapσ,x0
restricts to the isomorphism σ∗(Sh(HC))→

Sh(HC) ⊗ C given by σ∗(t) 7→ t ⊗ 1 that gr0mapn is the map σ∗(Shn(HC)) →
Fn Sh(HC)⊗ C, σ∗(t) 7→ t⊗ 1. Moreover, (9.4) implies

Ix0([σ(h1)| · · · |σ(hn)|df ]⊕ 0) ∈ fσ,x0([h1| · · · |hn]⊗ f) + Ix0

(
Fn Sh(Ω(C))

)
⊂ fσ,x0

([h1| · · · |hn]⊗ f) + fσ,x0
(F• Sh(HC)⊗ C1 + F•−1 Sh(HC)⊗O(C)),

where the first relation follows from (9.4) and the second follows from Prop-

osition 5.3, thus implying that gr1mapn is the map [σ∗(Shn(HC))|dO(C)] →
Shn(HC)⊗ (O(C)/C), [σ∗(t)|df ] 7→ t⊗ [f ].

The maps grimapn are isomorphisms for i = 0, 1 and any n ≥ 0, which implies

that mapn is an isomorphism for any n ≥ 0. This implies that grnmapσ,x0
is an

isomorphism for any n ≥ 0; since the filtrations on the source and target of mapσ,x0

are complete, one concludes that this map is an isomorphism.
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Lemma 9.5. The restriction of Ix0
to Subσ is injective.

Proof. This follows from the equality of this restriction with the composition fσ,x0◦
mapσ,x0

, which is injective by Proposition 4.17(a) and Lemma 9.4.

Proposition 9.6. One has Sh(Ω(C)) = Subσ + im(Dx0
).

Proof. Let us prove the inclusion

(9.9) Shn(Ω(C)) ⊂ Subσ + im(Dx0
) + Fn−1 Sh(Ω(C))

for any n ≥ 0. One has C1 ∈ Subσ, which proves (9.9) for n = 0. One has

Ω(C) = σ(HC)⊕ dO(C), therefore Sh1(Ω(C)) ⊂ Subσ; this proves (9.9) for n = 1.

Let n ≥ 2. It follows from Ω(C) = dO(C) + σ(HC) that

Shn(Ω(C)) = [σ∗(Shn−1(HC))|Ω(C)]

+

n−1∑
k=0

[Shk−1(Ω(C))|dO(C)|Shn−k(Ω(C))].(9.10)

One has

(9.11) [σ∗(Shn(HC))|Ω(C)] = σ∗(Shn−1(HC))⊕ [σ∗(Shn−1(HC))|dO(C)] ⊂ Subσ.

Moreover, for k ∈ [[0, n− 1]], f ∈ O(C), and ωi ∈ Ω(C), i ∈ [[0, n]]∖ {k}, one has

[ω1| · · · |ωk−1|df |ωk+1| · · · |ωn] = Dx0
([ω1| · · · |ωk−1]⊗ f ⊗ [ωk+1| · · · |ωn])

+ [ω1| · · · |ωk−1|p∗(f)ωk+1| · · · |ωn]

− [ω1| · · · |ωk−1p
∗(f)|ωk+1| · · · |ωn]

∈ im(Dx0
) + Fn−1 Sh(Ω(C))

if k > 0 and

[df |ω2| · · · |ωn] = Dx0
(1⊗ f ⊗ [ω2| · · · |ωn]) + [p∗(f)ω2| · · · |ωn]− f(x0)[ω2| · · · |ωn]

∈ im(Dx0) + Fn−1 Sh(Ω(C))

if k = 0, which implies

(9.12) [Shk−1(Ω(C))|dO(C)|Shn−k(Ω(C))] ⊂ im(Dx0
) + Fn−1 Sh(Ω(C)).

Then (9.10), (9.11), and (9.12) imply (9.9), which in its turn can be shown to

imply the statement by induction on n.

Let Sh+(Ω(C)) be the augmentation ideal of Sh(Ω(C)). A left module struc-

ture of Sh+(Ω(C)) over O(C) is defined by f · [ω1| · · · |ωk] := [fω1| · · · |ωk] and
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a right module structure of Sh(Ω(C)) over O(C) is defined by [ω1| · · · |ωk] · f :=

[ω1| · · · |ωkf ] if k > 0 and 1 · f := f(x0)1. Define a map

Dx0
: Sh(Ω(C))⊗O(C)⊗ Sh+(Ω(C))→ Sh(Ω(C)),

s⊗ f ⊗ s′ 7→ [s|df |s′]− [s|f · s′] + [s · f |s′].

Theorem 9.7. The following statements hold true:

(a) The sequence of maps

Sh(Ω(C))⊗O(C)⊗ Sh+(Ω(C))
Dx0−−−→ Sh(Ω(C))

Ix0−−→ Ohol(C̃)

is an exact complex, so that ker(Ix0
) = im(Dx0

).

(b) There is a direct sum decomposition Sh(Ω(C)) = Subσ ⊕ ker(Ix0
).

Proof. (a) One checks that Ix0 ◦ Dx0 = 0, therefore im(Dx0) ⊂ ker(Ix0). Let us

prove the opposite inclusion. The subspace Subσ ⊂ Sh(Ω(C)) (see (9.1)) is such

that (i) the restriction of Ix0
to Subσ is injective (see Lemma 9.5), (ii) Sh(Ω(C)) =

Subσ + im(Dx0) (see Proposition 9.6). Then (i) implies Subσ ∩ ker(Ix0) = 0, and

therefore Subσ ∩ im(Dx0
) = 0. Then (ii) implies that Sh(Ω(C)) = Subσ⊕ im(Dx0

).

The restrictions of Ix0 to the two summands are then respectively injective (by

Lemma 9.5) and zero (by Ix0
◦Dx0

= 0), which implies im(Dx0
) = ker(Ix0

).

(b) This follows from combining the already proved equalities Sh(Ω(C)) = Subσ⊕
im(Dx0) and im(Dx0) = ker(Ix0).

Part III. Appendices

Appendix A. Background on Hopf algebras

This section is devoted to constructions on Hopf algebras. In Appendix A.1 we

define an endofunctor O 7→ F∞O of the category of Hopf algebras HA, and

in Appendix A.2 a duality functor HA ⊃ HAfd → HAcomm, H 7→ H ′. In

Appendix A.3 we show that a Hopf algebra pairing p : O⊗H → C gives rise, under

a finite-dimensionality assumption, to a Hopf algebra morphism ν(p) : F∞O → H ′

(see Lemma A.9).

Appendix A.1. An endofunctor O 7→ F∞O of HA

Let O be a Hopf algebra with coproduct ∆O. Recall that for n ≥ 0, one defines

FnO := ker(pr⊗n+1
O ◦ ∆(n+1)

O ) ⊂ O, where ∆
(n)
O : O → O⊗n is the morphism

obtained by iteration of ∆O and prO : O → O/C is the canonical projection (see

Definition 2.7).
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Lemma A.1 (See also [Fr, §7.2.15]). The following statements hold true:

(a) For n ≥ 0, FnO ⊂ Fn+1O.

(b) For n ≥ 0 and k ∈ [[0, n+ 1]], one has ∆O(FnO) ⊂ Fk−1O⊗O+O⊗ Fn−kO.

(c) For n ≥ 0, one has ∆O(FnO) ⊂
∑n

k=0 FkO ⊗ Fn−kO.

(d) For n,m ≥ 0, one has (FnO) · (FmO) ⊂ Fn+mO.

Proof. (a) Let ηO, ϵO be the unit and counit maps of O. One checks that FnO =

ker((id− ηOϵO)⊗n+1 ◦∆(n+1)
O ). One has (id− ηOϵO)⊗2 ◦∆O = ∆O ◦ (id− ηOϵO),

which implies that

(id− ηOϵO)⊗n+2 ◦∆(n+2)
O = (∆O ⊗ id⊗n

O ) ◦ (id− ηOϵO)⊗n+1 ◦∆(n+1)
O

(equality of linear maps O → O⊗n+2). Therefore,

FnO = ker((id− ηOϵO)⊗n+1 ◦∆(n+1)
O ) ⊂ ker((id− ηOϵO)⊗n+2 ◦∆(n+2)

O ) = Fn+1O.

(b) Assume that k ∈ [[1, n]]. One has ∆
(n+1)
O = (∆

(k)
O ⊗ ∆

(n−k+1)
O ) ◦ ∆O, and so

pr⊗n+1
O ◦∆(n+1)

O = ((pr⊗k
O ◦∆(k)

O )⊗ (pr⊗n−k+1
O ◦∆(n−k+1)

O )) ◦∆O. Therefore,

∆O(FnO) ⊂ ker((pr⊗k
O ◦∆(k)

O )⊗ (pr⊗n−k+1
O ◦∆(n−k+1)

O ))

= ker(pr⊗k
O ◦∆(k)

O )⊗O +O ⊗ ker(pr⊗n−k+1
O ◦∆(n−k+1)

O )

= Fk−1O ⊗O +O ⊗ Fn−kO.

Assume that k = 0. It follows from the statement with k = 1 that ∆O(FnO) ⊂
C⊗O+O⊗Fn−1O. It follows that for f ∈ FnO, there exists a ∈ O with ∆O(f) ∈
1 ⊗ a + O ⊗ Fn−1O. Applying ϵO ⊗ id, one derives f ∈ a + Fn−1O, hence a ∈
f +Fn−1O ⊂ FnO. Therefore, ∆O(FnO) ⊂ C⊗FnO+O⊗Fn−1O. It follows that

∆O(FnO) ⊂ O ⊗ FnO.

For k = n + 1, the proof of the statement ∆O(FnO) ⊂ FnO ⊗ O is similar,

based on the statement for k = n.

(c) It follows from the statements ∆O(FnO) ⊂ O⊗FnO and ∆O(FnO) ⊂ FnO⊗O
((b) for k = 0, n) that ∆O(FnO) ⊂ FnO ⊗ FnO. Together with statement (b) for

k ∈ [[1, n]], this implies that ∆O(FnO) ⊂ Fk−1O ⊗ FnO + FnO ⊗ Fn−kO for any

k ∈ [[1, n]]. The statement then follows from

(A.1)

n⋂
k=1

(Fk−1O ⊗ FnO + FnO ⊗ Fn−kO) =

n∑
k=0

FkO ⊗ Fn−kO,
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which we now prove. For i ∈ [[0, n]], let Ai be a complement of FiO in Fi−1O. One

has then FnO =
⊕n

i=0Ai. Then

Fk−1O ⊗ FnO + FnO ⊗ Fn−kO =
⊕

(i,j)∈[[0,n]]2|
i≤k−1 or j≤n−k

Ai ⊗Aj .

It follows that
⋂n

k=1(Fk−1O ⊗ FnO + FnO ⊗ Fn−kO) =
∑

(i,j)∈S Ai ⊗ Aj , where

S := {(i, j) ∈ [[0, n]]2 | ∀ k ∈ [[1, n]], one has i ≤ k − 1 or j ≤ n− k}. One checks

that S = {(i, j) ∈ [[0, n]]2 | i+ j ≤ n}, therefore the left-hand side of (A.1) is equal

to
⊕

(i,j)∈[[0,n]]2|i+j≤nAi ⊗Aj

∑n
k=0 FkO ⊗ Fn−kO, proving (A.1).

(d) It follows from (c) that

(A.2) ∆(n+m+1)(FnO) ⊂
∑

(i1,...,in+m+1)∈Zn+m+1
≥0

|
i1+···+in+m+1=n

Fi1O ⊗ · · · ⊗ Fin+m+1O.

For a ≥ 1 and L ⊂ [[1, a]], define φL : [[1, a]] → {0, 1} by φL(x) = 0 if x ∈ L and

φL(x) = 1 otherwise. Then set

(A.3) O
(a)
L :=

a⊗
i=1

F unit
φL(i)O ⊂ O

⊗a,

where we recall F unit
0 O = C1, F unit

1 O = O.

Then for any (i1, . . . , in+m+1) ∈ Zn+m+1
≥0 , one has Fi1O ⊗ · · · ⊗ Fin+m+1O ⊂

O
(n+m+1)
{j|ij=0} . This and (A.2), together with the fact that |{j | ij = 0}| ≥ m + 1 if

(i1, . . . , in+m+1) ∈ Zn+m+1
≥0 is such that i1 + · · ·+ in+m+1 ≥ m+ 1, imply that

(A.4) ∆(n+m+1)(FnO) ⊂
∑

J⊂[[1,n+m+1]]|
|J|≥m+1

O
(n+m+1)
J .

Then

∆(n+m+1)((FnO) · (FmO)) ⊂ ∆(n+m+1)(FnO) ·∆(n+m+1)(FmO)

⊂
∑

J,K⊂[[1,n+m+1]]|
|J|≥m+1,|K|≥n+1

O
(n+m+1)
J ·O(n+m+1)

K ⊂
∑

J,K⊂[[1,n+m+1]]|
|J|≥m+1,|K|≥n+1

O
(n+m+1)
J∩K

⊂
∑

L⊂[[1,n+m+1]]|
L ̸=∅

O
(n+m+1)
L ⊂ ker(pr⊗n+m+1

O ),

where the first inclusion follows from the fact that ∆(n+m+1) is an algebra mor-

phism, the second inclusion follows from (A.4), the third inclusion follows from
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O
(n+m+1)
J ·O(n+m+1)

K ⊂ O(n+m+1)
J∩K for J,K ⊂ [[1, n+m+1]], the fourth inclusion fol-

lows from the fact that if J,K ⊂ [[1, n+m+1]] are such that |J | ≥ m+1, |K| ≥ n+1,

then J ∩K ̸= ∅, and the last inclusion follows from the vanishing of the restriction

of pr⊗n+m+1
O to any OL where ∅ ̸= L ⊂ [[1, n + m + 1]]. The resulting inclusion

∆(n+m+1)((FnO) · (FmO)) ⊂ ker(pr⊗n+m+1
O ) implies the statement.

Proposition A.2. The following statements hold true:

(a) F•O defines a Hopf algebra filtration of O.

(b) F∞O is a Hopf subalgebra of O. The assignment O 7→ F∞O is an endofunctor

of the category HA of Hopf algebras.

(c) If f : O1 → O2 is a morphism in HA, then f is compatible with the filtrations

F• on both sides.

(d) If O is a Z≥0-graded connected Hopf algebra, then O = F∞O.

Proof. (a) follows from Lemma A.1. (b) follows from the fact that F∞O is the total

space of F•O and from (a). The functoriality statement is obvious. (c) follows from

f⊗n+1 ◦(id−ηO1ϵO1)
⊗n+1 ◦∆(n+1)

O1
= (id−ηO2ϵO2)

⊗n+1 ◦∆(n+1)
O2

◦f for any n ≥ 0.

(d) If n ≥ 0, then ∆
(n+1)
0 (O[n]) is contained in the sum of O[k1]⊗·⊗O[kn+1], where

(k1, . . . , kn+1) is such that k1+· · ·+kn+1 = n. If (k1, . . . , kn+1) is such a tuple, then

there exists i ∈ [[1, n+1]] such that ki = 0, which by the connectedness of O implies

that the corresponding summand is contained in O⊗i−1 ⊗ C⊗O⊗n−i. Therefore,

pr⊗n+1
O ◦∆(n+1)

O (O[n]) = 0, hence O[n] ⊂ FnO. Therefore, O = F∞O.

Appendix A.2. A duality functor HAfd → HAop, H 7→ H ′

Let H be a Hopf algebra with coproduct ∆H . Recall that H+ is the augmentation

ideal of H, and by Hn
+ the n-th power of this ideal. Set FnH := H for n = 0,

FnH := Hn
+ for n ≥ 1.

Lemma A.3 (See also [Fr, §8.1.1]). For n,m ≥ 0, one has FnH·FmH ⊂ Fn+mH

and ∆H(FnH) ⊂
∑

n′+n′′=n F
n′
H ⊗ Fn′′

H.

Proof. The decreasing character of (FnH)n∈Z is obvious. The inclusion FnH ·
FmH ⊂ Fn+mH follows from definitions. The last statement follows from ∆H(H+)

⊂ H ⊗ H+ + H+ ⊗ H, which is itself a consequence of the compatibility of ∆H

with the augmentation of H.

The coalgebra structure of H induces an algebra structure on H∗. For n ≥ 0,

set FnH
∗ := (Fn+1H)⊥.
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Lemma-Definition A.4. The collection of subspaces F•H
∗ is an algebra filtra-

tion of H∗, and

H ′ :=
⋃
n≥0

FnH
∗

is a subalgebra of H∗.

Proof. Let n,m ≥ 0, α ∈ (Fn+1H)⊥, β ∈ (Fm+1H)⊥. Then if h ∈ Fn+m+1H,

one has ∆H(h) ∈ FnH ⊗H +H ⊗ FmH by the second statement of Lemma A.3,

therefore (α · β)(h) = (α ⊗ β)(∆H(h)) = 0, therefore α · β ∈ (Fn+m+1H)⊥. This

proves the first statement. The second statement follows from the first, as H ′ is

the total subspace of an algebra filtration.

Definition A.5. Define HAfd as the full subcategory of HA of Hopf algebras H

such that gr1H := F 1H/F 2H is finite-dimensional.

Lemma A.6. If H is an object of HAfd, then H ′ is equipped with a linear map

∆H′ : H ′ → H ′⊗H ′, uniquely determined by the identity ∆H′(α)(h⊗h′) = α(hh′)

for α ∈ H ′ and h, h′ ∈ H. Then (H ′,∆H′) is a Hopf algebra. The assignment

H 7→ H ′ is a functor HAfd → HAop.

Proof. It follows from Lemma A.3 that F •H is a decreasing algebra filtration ofH.

The associated graded algebra gr•H is such that grnH = FnH/Fn+1H for any

n ≥ 0. Then gr0H = C, and gr•H is generated by gr1H. As this space is finite-

dimensional, so is grkH for any k ≥ 0. It follows that for any n ≥ 0,
⊕n−1

i=0 griH

is finite-dimensional. As this space is noncanonically isomorphic to the quotient

space H/FnH, this quotient is finite-dimensional as well.

It also follows from Lemma A.3 that for any n ≥ 0, FnH is a two-sided ideal

of H, therefore H/FnH is an algebra, and H/Fn+1H → H/FnH is an algebra

morphism.

Since H/FnH is finite-dimensional, its associative algebra structure gives rise

to a coassociative coalgebra structure on its dual (H/FnH)∗ = Fn−1H
∗ (with

F−1H
∗ := 0). It follows from the algebra morphism status of H/Fn+1H →

H/FnH that the canonical inclusion in,n+1 : Fn−1H
∗ ⊂ FnH

∗ is a coalgebra mor-

phism.

For n ≥ 0, define then an algebra morphism ∆H′,n : FnH
∗ → (H ′)⊗2 to be the

composition i⊗2
n ◦∆FnH∗ , where ∆FnH∗ is the coproduct of the coalgebra structure

of FnH
∗ and in : FnH

∗ → H ′ is the canonical inclusion. One has

(A.5) ∆H′,n+1 ◦ in,n+1 = ∆H′,n.
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Indeed,

∆H′,n+1 ◦ in,n+1 = i⊗2
n+1 ◦∆Fn+1H∗ ◦ in,n+1

= i⊗2
n+1 ◦ i

⊗2
n,n+1 ◦∆FnH∗

= i⊗2
n ◦∆FnH∗ = ∆H′,n,

where the first and last equalities follow from the definitions of ∆H′,n+1 and

∆H′,n+1, the second equality follows from the coalgebra morphism status of in,n+1,

and the third equality follows from in+1 ◦ in,n+1 = in. It follows from (A.5) and

from H ′ =
⋃

n≥0 FnH
∗ that there is a unique linear map ∆H′ : H ′ → (H ′)⊗2,

such that ∆H′ ◦ in = ∆H′,n for any n ≥ 0. The identities relating ∆H′,n with the

product implies that it satisfies the announced identity. The uniqueness statement

follows from the fact that the annihilator of H ⊗H in FnH
∗ ⊗ FmH

∗ is zero for

any n,m ≥ 0. One checks that ∆H′ satisfies the Hopf algebra axioms as well as

the functoriality statement.

If H is an object of HAfd, it follows from Lemmas A.6 and A.2 that H ′ is

equipped with a Hopf algebra filtration F•H
′; it is also equipped with the vector

space filtration F•H
∗ used to define it, given by FnH

∗ = (Fn+1H)⊥ for any n ≥ 0.

One has the following lemma.

Lemma A.7. If H is an object of HAfd, then F•H
′ = F•H

∗. One has F∞H
′

= H ′.

Proof. Let n ≥ 0 and let us show that FnH
′ = FnH

∗. Recall that FnH
′ =

ker((id−ηH′ϵH′)⊗n+1 ◦∆(n+1)
H′ ), where ∆H′ , ηH′ , and ϵH′ are the coproduct, unit,

and counit maps of H ′. Recall that H ′ =
⋃

m≥0 FmH
∗ ⊂ H∗ and that for each

m ≥ 0, FmH
∗ is a sub-coalgebra of H ′; denote by ∆FmH∗ : FmH

∗ → (FmH
∗)⊗2

the corresponding coproduct. Let ϵFmH∗ : FmH
∗ → C be the composition of ϵH′

with the inclusion FmH
∗ ⊂ H ′. The unit of H ′ corresponds to the counit map of

H, which as it vanishes on Fm+1H defines an element in (H/Fm+1H)∗ = FmH
∗;

let ηFmH∗ be the corresponding map C→ FmH
∗. Then

FnH
′ ∩ FmH

∗

= ker
(
FmH

∗ ∆
(n+1)

FmH∗
−−−−−→ (FmH

∗)⊗n+1 (id−ηFmH∗ ϵFmH∗ )⊗n+1

−−−−−−−−−−−−−−−−→ (FmH
∗)⊗n+1

)
(a subspace of FmH

∗). Using that if f : E → F is a linear map, then ker(f∗ : F ∗ →
E∗) = im(f)⊥, that the duals of ∆FmH∗ : FmH

∗ → (FmH
∗)⊗2, ηFmH∗ : C →

FmH
∗, and ϵFmH∗ : FmH

∗ → C are respectively the product map mH/Fm+1H :

(H/Fm+1H)⊗2 → H/Fm+1H, the map ϵH/Fm+1 : H/F
m+1 → C induced by the
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counit of H, and the map ηH/Fm+1H : C→ H/Fm+1H induced by the unit of H,

we see that FnH
′∩FmH

∗ is the annihilator (in (H/Fm+1H)∗) of the image of the

map

(H/Fm+1H)⊗n+1
(id−ηH/Fm+1HϵH/Fm+1H)⊗n+1

−−−−−−−−−−−−−−−−−−−−−→ (H/Fm+1)⊗n+1

m
(n+1)

H/Fm+1H−−−−−−−−→ H/Fm+1H.

Since the image of id−ηHϵH : H → H is F 1H, and since the image of (F 1H)⊗n+1

bym
(n+1)
H : H⊗n+1 → H is Fn+1H, the said image is (Fn+1H+Fm+1H)/Fm+1H.

Therefore, the subspace FnH
′ ∩ FmH

∗ of (H/Fm+1H)∗ is the annihilator of

the set (Fn+1H + Fm+1H)/Fm+1H. If m ≥ n, this subspace is the annihila-

tor of Fn+1H/Fm+1H, which is the kernel of the canonical map (H/Fm+1H)∗ →
(Fn+1H/Fm+1H)∗, which is the image of the injection FnH

∗ ↪→ FmH
∗. There-

fore, FnH
′ = FnH

∗.

One then has F∞H
′ =

⋃
n≥0(FnH)⊥ = H ′, where the first equality follows

from the previous statement and the second equality follows from the definition

of H ′.

Appendix A.3. Hopf algebra pairings and Hopf algebra morphisms

Recall that if O, H are Hopf algebras with coproducts ∆O, ∆H and counits ϵO,

ϵH , then a Hopf algebra pairing between O and H is a linear map p : O⊗H → C,
such that

p(oo′ ⊗ h) = (p⊗ p) ◦ τ2(o⊗ o′ ⊗∆H(h)),

p(o⊗ h′) = (p⊗ p) ◦ τ2(∆O(o)⊗ h⊗ h′),

p(1⊗ h) = ϵH(h), p(o⊗ 1) = ϵO(o)

for o, o′ ∈ O and h, h′ ∈ H (for any n ≥ 2, τn is the canonical map O⊗n⊗H⊗n →
(O ⊗H)⊗n).

Definition A.8. For O, H Hopf algebras, we denote by Pair(O,H) the set of

Hopf algebra pairings between O and H.

Lemma A.9. For O an object of HA and H an object of HAfd, there is a map

ν : Pair(O,H)→ HA(F∞O,H
′).
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For p ∈ Pair(O,H), ν(p) is such that the diagram

F∞O ⊗H
ν(p)⊗idH

//

iO⊗idH

��

H ′ ⊗H

pH

��

O ⊗H
p

// C

commutes, iO : F∞O → O being the canonical injection and pH : H ⊗ H ′ → C
being the composition H ⊗H ′ ↪→ H ⊗H∗ → C.

Proof. Let p ∈ Pair(O,H). Let n ≥ 0; then

p(FnO ⊗ Fn+1H) = p(FnO ⊗Hn+1
+ ) ⊂ p⊗n+1 ◦ τn+1(∆

(n+1)
O (FnO)⊗H⊗n+1

+ )

⊂
∑

∅̸=L⊂[[1,n+1]]

p⊗n+1 ◦ τn+1(O
(n+1)
L ⊗H⊗n+1

+ ) = 0,

where the first inclusion follows from the behavior of p with respect to coproducts,

the second inclusion follows from ∆
(n+1)
O (FnO) ⊂

∑
∅̸=L⊂[[1,n+1]]O

(n+1)
L , where

O
(n+1)
L is as in (A.3) (a consequence of the definition of FnO), and the last inclusion

follows from p(1⊗H+) = 0, itself a consequence of the behavior of p with respect

to counits. It follows that p(FnO⊗ Fn+1H) = 0. This implies that the restriction

p|FnO⊗H of p to FnO ⊗ H induces a linear map pn : FnO ⊗ (H/Fn+1H) → C.
As H/Fn+1H is finite-dimensional, this gives rise to a linear map ν(p)n : FnO →
(H/Fn+1H)∗ = FnH

∗. One checks that iH
′

n,n+1 ◦ ν(p)n = ν(p)n+1 ◦ iOn,n+1, where

iOn,n+1, i
H′

n,n+1 are the canonical maps FnO → Fn+1O and FnH
∗ → Fn+1H

∗.

It follows that there exists a unique linear map ν(p) : F∞O → H ′, such that

ν(p) ◦ iOn = iH
′

n ◦ ν(p)n for any n ≥ 0, where iOn , i
H′

n are the canonical maps

FnO → F∞O and FnH
∗ → H ′. One checks that ν(p) defines a Hopf algebra

morphism as well as the announced commutative diagram.

Appendix B. Background on Hopf algebras with (co)actions

on algebras

In Appendix B.1 we introduce a category HACA of Hopf algebras with comod-

ule algebra (HACAs) and an endofunctor of that category extending that of

Appendix A.1. In Appendix B.2 we introduce a category HAMA of Hopf algebras

with module algebras (HAMAs), together with a diagramHAMA ⊃ HAMAfd →
HACA extending that of Appendix A.2. In Appendix B.3 we introduce the notion

of a pairing-morphism from a HAMA to a HACA and show that it gives rise, under

a finite-dimensionality assumption, to a HACA morphism extending the Hopf
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algebra morphism of Appendix A.3. In Appendix B.4 we make use of the natural fil-

tration attached to each HACA to construct two functors gr,Φ: HACA→ Alggr

and a natural transformation nat : gr⇒ Φ between these functors. Appendix B.5

is devoted to the main technical tool of this paper (Proposition B.18), based on nat

and giving a criterion for the HACA morphisms arising from pairing-morphisms

of a certain type by the construction of Appendix B.3 to be isomorphisms.

Appendix B.1. An endofunctor (O,A) 7→ (F∞O, F∞A) of HACA

Definition B.1. A Hopf algebra with comodule algebra (HACA) is a pair (O,A)

where O is a Hopf algebra and A is an algebra, equipped with a left coaction of O;

the coproduct map of O being denoted ∆O and the coaction by ∆A : A→ O⊗A,
in particular ∆A is an algebra morphism and (∆O⊗ idA)◦∆A = (idO⊗∆A)◦∆A.

If (O,A) and (O′, A′) are HACAs, a morphism from (O,A) to (O′, A′) is the pair

of (fA, fO) of an algebra morphism fA : A → A′ and a Hopf algebra morphism

fO : O → O′, such that (fO ⊗ fA) ◦∆A = ∆A′ ◦ fA. Denote the resulting category

by HACA.

Let (O,A) be a HACA.

Definition B.2. For n ≥ 0, define FnA to be the preimage of FnO ⊗ A by the

map ∆A : A→ O ⊗A.

Lemma B.3. The following statements hold true:

(a) F•A is an algebra filtration of A.

(b) For n ≥ 0, ∆A(FnA) ⊂ FnO ⊗ FnA.

(c) For n ≥ 0, ∆A(FnA) ⊂
∑

p+q=n FpO ⊗ FqA.

(d) The restriction of ∆A to F∞A corestricts to F∞O ⊗ F∞A. Together with the

structures of algebra of F∞A and of Hopf algebra of F∞O, the resulting map

∆F∞A : F∞A → F∞O ⊗ F∞A equips (F∞O,F∞A) with a HACA structure.

The assignment (O,A) 7→ (F∞O,F∞A) is an endofunctor of HACA.

Proof. (a) A⊗F•O is an algebra filtration of the algebra O⊗A; as ∆A : A→ O⊗A
is an algebra morphism, the preimage of this filtration is an algebra filtration of

the source; as this preimage is F•A, the latter is an algebra filtration.

(b) Let a ∈ FnA; then ∆A(a) ∈ FnO ⊗ A. There exist families (os)s∈S , (as)s∈S

of elements of O and A, indexed by a finite set S, such that (os)s∈S is free and

∆A(a) =
∑

s os ⊗ as. Since ∆O(FnO) ⊂ (FnO)⊗2, one has (∆O ⊗ idA) ◦∆A(a) ∈
(FnO)⊗2 ⊗A. By the coassociativity of the coaction, this term is equal to (idO ⊗
∆A)◦∆A(a), so (idO⊗∆A)◦∆A(a) ∈ (FnO)⊗2⊗A. Therefore,

∑
s∈S os⊗∆A(as) ∈
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(FnO)⊗2⊗A. As (os)s∈S is free, this implies ∆A(as) ∈ FnO⊗A for any s, therefore

as ∈ FnA. The claim follows.

(c) Let a ∈ FnA; then by (b) ∆A(a) ∈ FnO ⊗ FnA. Let Ui be a complement of

Fi−1O in FiO, so FiO = U1 ⊕ · · · ⊕ Ui. Then

FnO ⊗ FnA = (U0 ⊗ FnA)⊕ · · · ⊕ (Un ⊗ FnA),

giving rise to a decomposition ∆A(a) = z0 + · · ·+ zn.

Since ∆A(a) ∈ FnO⊗FnA, Lemma A.1(c) implies that (∆O⊗ idA)◦∆A(a) ∈∑
p+q=n FpO ⊗ FqO ⊗ FnA ⊂ (FnO)⊗2 ⊗ FnA. By the coassociativity identity,

this term is equal to (idO ⊗∆A) ◦∆A(a) =
∑n

i=0(idO ⊗∆A)(zi). It follows that∑n
i=0(idO ⊗∆A)(zi) ∈

∑
p+q=n FpO ⊗ FqO ⊗ FnA. There is a direct sum decom-

position (FnO)⊗2 ⊗ FnA =
⊕

i,j∈[[0,n]] Ui ⊗ Uj ⊗ FnA; then∑
p+q=n

FpO ⊗ FqO ⊗ FnA =
⊕

i,j∈[[0,n]],i+j≤n

Ui ⊗ Uj ⊗ FnA,

and

(idO ⊗∆A)(zi) ∈ Ui ⊗ FnO ⊗ FnA =
⊕

j∈[[0,n]]

Ui ⊗ Uj ⊗ FnA.

Decomposing (idO ⊗ ∆A)(zi) =
∑

j∈[[0,n]] tij for any i ∈ [[0, n]], one obtains∑
i,j∈[[0,n]] tij ∈

⊕
i,j∈[[0,n]],i+j≤n Ui ⊗ Uj ⊗ FnA, therefore tij = 0 if i + j > n,

therefore for any i ∈ [[0, n]], one has

(idO ⊗∆A)(zi) ∈
n−i⊕
j=0

Ui ⊗ Uj ⊗ FnA = Ui ⊗ Fn−iO ⊗ FnA.

There exist families (ois)s∈Si
, (ais)s∈Si

of elements of Ui and FnA, indexed by a

finite set Si, such that (ois)s∈Si is free and zi =
∑

s∈Si
ois ⊗ ais. Then

∑
s∈Si

ois ⊗
∆A(a

i
s) ∈ Ui⊗Fn−iO⊗FnA. Since (o

i
s)s∈Si

is free, this implies ∆A(a
i
s) ∈ Fn−iO⊗

FnA for any s ∈ Si, therefore a
i
s ∈ Fn−iA. Therefore, zi ∈ FiO ⊗ Fn−iA, proving

the claim.

(d) By (b), ∆A(FnA) ⊂ F∞O ⊗ F∞A for any n ≥ 0, which implies ∆A(F∞A) ⊂
F∞O ⊗ F∞A. One can then define the announced map ∆F∞A : F∞A → F∞O ⊗
F∞A and check it to have the announced properties. The endofunctor statement

is then immediate.

Appendix B.2. A category HAMA and a functor HAMAfd → HACA

For M a right module over an algebra A and V ⊂ A, we use the notation Ann(V )

to denote {m ∈M | m · V = 0}.
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Definition B.4. For H a Hopf algebra, M a right H-module, define FnM :=

Ann(Fn+1H,M) for n ≥ 0.

Note that F0M is equal to MH , the submodule of M of invariants of the

action of H.

Lemma B.5. Let H be a Hopf algebra.

(a) For M a right H-module, F•M is an increasing H-module filtration of M .

(b) Any morphism f : M → N a morphism of right H-modules is compatible with

the filtrations.

(c) If M is a right H-module and n ≥ 0, then for any m ∈ FnM , the map

FnH → M , h 7→ m · h takes its values in MH . The resulting map FnM →
HomC-vec(F

nH,MH) induces a map grnM → HomC-vec(gr
nH,MH), which is

injective.

Proof. (a) follows from the decreasing character of n 7→ Fn+1H and from the ideal

nature of Fn+1H for n ≥ 0. (b) is immediate.

(c) If m ∈ FnM , h ∈ FnH and h′ ∈ F1H, then hh′ ∈ Fn+1H so m · (hh′) = 0,

therefore (m · h) · h′ = 0, so m · h ∈MH . The map FnM → HomC-vec(F
nH,MH)

factors through a map FnM → HomC-vec(gr
nH,MH) as m · h = 0 for any m ∈

FnM , h ∈ Fn+1H. The restriction of this map to Fn−1M is zero as m · h = 0

for any m ∈ Fn−1M , h ∈ FnH. This leads to the announced map grnM →
HomC-vec(gr

nH,MH). As the map HomC-vec(gr
nH,MH)→ HomC-vec(F

nH,MH)

is injective, the kernel of the map FnM → HomC-vec(gr
nH,MH) is equal to the

kernel of the map FnM → HomC-vec(F
nH,MH), which is {m ∈ FnM | m ·

h = 0 for any h ∈ FnH}, and this is equal to Fn−1M . It follows that the map

grnM → HomC-vec(gr
nH,MH) is injective.

Definition B.6. A Hopf algebra with module algebra (HAMA) is pair (B,H)

where H is a Hopf algebra and B is an algebra equipped with a right action

of H, i.e. a linear map B ⊗ H → H, b ⊗ h 7→ b · h, such that (b · h) · h′ =

b · (hh′) and (bb′) · h = (b · h(1))(b′ · h(2)) for any b, b′ ∈ B and h, h′ ∈ H, the

coproduct of h ∈ H being denoted h(1) ⊗ h(2) (Sweedler). If (B,H) and (B′, H ′)

are HAMAs, a morphism (B,H)→ (B′, H ′) is a pair (fH , fB), where fH : H ′ → H

is a Hopf algebra morphism and fB : B → B′ is an algebra morphism, such that

fB(b · fH(h′)) = fB(b) · h′ for any b ∈ B and h′ ∈ H ′. Morphisms are composed as

follows: (gH , gB) ◦ (fH , fB) := (fH ◦ gH , gB ◦ fB).

One checks that HAMAs build up a category, which will be denoted HAMA.
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Definition B.7. Let (B,H) be a HAMA. For n ≥ 0, set

FnB := Ann(Fn+1H,B) = {b ∈ B | b · Fn+1H = 0}.

Lemma B.8. Let (B,H) be a HAMA.

(a) F•B is an algebra filtration of B.

(b) Let n,m ≥ 0. For n ≥ m, then (FnB) · (FmH) ⊂ Fn−mB. If n < m, then

(FnB) · (FmH) = 0.

(c) For any n ≥ 0, the action map B⊗H → B induces a linear map FnB⊗H →
FnB, which factorizes through a linear map FnB ⊗ (H/Fn+1H)→ FnB.

Proof. (a) Let n,m ≥ 0. By the second part of Lemma A.3, one has ∆H(Fn+m+1H)

⊂ Fn+1H ⊗H +H ⊗Fm+1H. Together with the Hopf algebra action axiom, this

implies the inclusion in

((FnB)(FmB)) · (Fn+m+1H) ⊂ ((FnB) · (Fn+1H))((FmB) ·H)

+ ((FnB) ·H)((FmB) · (Fm+1H)) = 0,

and the equality follows from (FnB) · (Fn+1H) = (FmB) · (Fm+1H) = 0. The

resulting vanishing of (FnB)(FmB) · (Fn+m+1H) implies (FnB)(FmB) ⊂ Fn+mB.

(b) Assume n ≥ m ≥ 0. Then

((FnB) · (FmH)) · (Fn−m+1H) ⊂ (FnB) · ((FmH)(Fn−m+1H))

⊂ (FnB) · (Fn+1H) = 0,

where the first inclusion follows from the right action axioms, the second inclusion

follows from the first part of Lemma A.3, and the equality follows from the defi-

nition of FnB. This implies (FnB) · (FmH) ⊂ Fn−mB, as claimed. In particular,

for any n ≥ 0, (FnB) · (FnH) ⊂ F0B = BH . Then if m > n, one has

(FnB) · (FmH) = (FnB) · ((FnH)(Fm−nH)) ⊂ ((FnB) · (FnH)) · (Fm−nH)

⊂ BH · (Fm−nH) = 0,

where the first equality follows from FmH = (FnH)(Fm−nH), the first inclusion

follows from the right action axioms, the second inclusion follows from the inclusion

(FnB) · (FnH) ⊂ BH , and the last equality follows from BH · H+ = 0. This

completes the proof of the claim.

(c) The first statement follows from (b) for m = 0. The second statement follows

from FnB · (Fn+1H) = 0, which follows from the definition of FnB.
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Definition B.9. DefineHAMAfd to be the full subcategory ofHAMA of objects

(B,H) such that H is an object of HAfd.

Lemma B.10. Let (B,H) be an object of HAMAfd.

(a) For any n ≥ 0, the linear map FnB⊗(H/Fn+1H)→ FnB from Lemma B.8(c)

induces a linear map ∆FnB : FnB → (H/Fn+1H)∗ ⊗ FnB = FnH
∗ ⊗ FnB.

(b) There is a linear map ∆F∞B : F∞B → H ′ ⊗ F∞B, uniquely determined by

the condition that ∆F∞B ◦ iF∞B
n = (iH

′

n ⊗ iF∞B
n ) ◦∆FnB for any n ≥ 0, where

∆FnB is as in (a) and iH
′

n : FnH
∗ → H ′, iF∞B

n : FnB → F∞B are the canonical

injections.

(c) Together with the algebra structure of F∞B and Hopf algebra structure of H ′,

∆F∞B equips (H ′, F∞B) with a HACA structure. The assignment (B,H) 7→
(H ′, F∞B) is a functor HAMAfd → HACA.

Proof. (a) follows from the finite-dimensionality of H/Fn+1H, which has been

established in the proof of Lemma A.6.

(b) Let n ≥ 0 and iF∞B
n,n+1 : FnB ↪→ Fn+1B and iH

′

n,n+1 : FnH
∗ ↪→ Fn+1H

∗ be

the canonical inclusions. Recall that iH
′

n,n+1 is the dual of the projection map

pHn+1,n : H/F
n+2H → H/Fn+1H. The diagram

FnB ⊗H //

vv ��

FnB ⊗ (H/Fn+1B)

��

Fn+1B ⊗H //

��

B ⊗H

((
Fn+1B ⊗ (H/Fn+2B) // B

is built up of two commutative squares and a commutative triangle, therefore it is

commutative; it is the composition of the square whose commutativity expresses

the equality ∆F∞B ◦ iF∞B
n,n+1 = (iF∞B

n,n+1 ⊗ iH
′

n,n+1) ◦ ∆FnB with the morphisms

Fn+1B → B and FnB⊗H → FnB⊗ (H/Fn+2H), which are respectively injective

and surjective. This implies the commutativity of this square, therefore the said

equality, from which one derives the statement.

(c) Let us show the coassociativity of (H ′, F∞B). Recall that for ξ ∈ H ′ and

b ∈ F∞B, one has ξ · b = ⟨id⊗ ξ,∆B(b)⟩. Let b ∈ F∞B and ξ, η ∈ H ′. Then

ξ · (η · b) = ⟨id⊗ ξ,∆B(η · b)⟩ = ⟨id⊗ ξ,∆B(⟨id⊗ η,∆B(b)⟩)⟩
= ⟨id⊗ ξ ⊗ η, (∆B ⊗ id) ◦∆B(b)⟩ = ⟨id⊗ ξ ⊗ η, (id⊗∆H) ◦∆B(b)⟩
= ⟨id⊗ (ξ · η),∆B(b)⟩ = (ξ · η) · b.
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Lemma B.11. The following statements hold true:

(a) Let (B,H) be a HAMA and let H ′ ⊂ H be a Hopf subalgebra. Let us denote

by FH
• B, FH′

• B the algebra filtrations of B attached to the actions of H, H ′.

Then FH
∞B ⊂ FH′

∞ B.

(b) Let f : B → C be an algebra morphism; let H be a Hopf algebra right acting

on B and C; assume that f is H-equivariant. Then (f, id) : (B,H)→ (C,H)

is a HAMA morphism, and f(F∞B) ⊂ F∞C.

Proof. (a) For n ≥ 0, one has FH
n B = {b ∈ B | h · b = 0 for h ∈ Fn+1H} ⊂

{b ∈ B | h · b = 0 for h ∈ Fn+1H ′} = FH′

n B, where the inclusion follows from

Fn+1H ′ ⊂ Fn+1H. This implies FH
∞B ⊂ FH′

∞ B.

(b) For n ≥ 0, b ∈ FnB, and h ∈ Fn+1H, one has f(b) · h = f(b · h) = f(0) = 0,

where the first equality follows from the equivariance of f and the second equal-

ity follows from b ∈ FnB. Therefore, f(b) ∈ FnC. So f(FnB) ⊂ FnC, hence

f(F∞B) ⊂ F∞C.

Appendix B.3. Pairing-morphisms from a HACA to HAMA

and HACA morphisms

Definition B.12. Let (O,A) be a HACA and (B,H) be a HAMA. A pairing-

morphism from (O,A) to (B,H) is a pair (p, f), where p : O ⊗H → C is a Hopf

algebra pairing, and f : A → B is an algebra morphism, such that the following

diagram commutes:

(B.1)

A⊗H
f⊗id

//

∆A⊗id

��

B ⊗H

��

O ⊗A⊗H
σOA⊗id

// A⊗O ⊗H
f⊗p

// B,

where ∆A : A→ O⊗A is the coaction morphism of (O,A), σOA : O⊗A→ A⊗O
is the permutation isomorphism, and the right vertical map is the action map of

(B,H). Equivalently, one requests the identity

f(a) · h = f(a(2))p(a(1) ⊗ h)

to be satisfied for any a ∈ A and h ∈ H, where one denotes ∆A(a) := a(1) ⊗ a(2).
We denote by PM((O,A), (B,H)) the set of pairing-morphisms from (O,A)

to (B,H).

Lemma B.13. Let (O,A) be an object in HACA and (B,H) be an object in

HAMAfd. If (p, f) ∈ PM((O,A), (B,H)), then f(F•A) ⊂ F•B, so that f induces
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an algebra morphism F∞f : F∞A → F∞B. The assignment (p, f) 7→ (ν(p), F∞f)

defines a map

ν̃ : PM((O,A), (B,H))→ HACA((F∞O,F∞A), (H
′, F∞B)).

Proof. Let n ≥ 0 and a ∈ FnA. Then ∆A(a) ∈ FnO ⊗ A. So (∆
(n+1)
O ⊗ idA) ◦

∆A(a) ∈ (
∑

∅̸=L⊂[[1,n+1]]O
(n+1)
L )⊗ A ⊂ A⊗O⊗n+1. Then for h1, . . . , hn+1 ∈ H+,

one has

f(a) · (h1 · · ·hn+1) = ⟨(id⊗ f) ◦∆A(a), (h1 · · ·hn+1)⊗ id⟩

= ⟨(id⊗n+1 ⊗ f) ◦∆(n+1)
A (a), (h1 ⊗ · · · ⊗ hn+1)⊗ id⟩ = 0,

where the first equality follows from Definition B.12, the second equality fol-

lows from the Hopf algebra pairing axiom, and the last equality follows from

⟨O(n+1)
L , H⊗n+1

+ ⟩ = 0, which follows from ⟨1, H+⟩ = 0. It follows that f(a) ∈ FnB.

Let us prove that (ν(p), F∞f) is a morphism in HACA. Let n ≥ 0. Since

f(FnA) ⊂ FnB, f induces a linear map Fnf : FnA→ FnB.

By Lemma B.3(b), the coaction map ∆A : A→ O ⊗ A induces a map ∆FnA:

FnA→ FnO⊗FnA. By Lemma B.8(c), the action map actB : B⊗H → B induces

a map actFnB : FnB⊗H → FnB. Therefore (B.1) induces a commutative diagram

(B.2)

FnA⊗H

∆FnA⊗id

��

Fnf⊗id
// FnB ⊗H

actFnB

��

FnO ⊗ FnA⊗H
(Fnf⊗p)◦(σOA⊗id)

// FnB.

By the proof of Lemma A.9, the restriction of p to FnO ⊗ Fn+1H is zero, which

induces a pairing pn : FnO⊗ (H/Fn+1H)→ C. By Lemma B.8(c), the restriction

of actFnB to FnB ⊗ (H/Fn+1H) is zero, inducing a linear map actFnB : FnB ⊗
(H/Fn+1H) → FnB. The above diagram therefore gives rise to a commutative

diagram

FnA⊗ (H/Fn+1H)
Fnf⊗id

//

∆FnA⊗id

��

FnB ⊗ (H/Fn+1H)

actFnB

��

FnO ⊗ FnA⊗ (H/Fn+1H)
(Fnf⊗pn)◦(σOA⊗id)

// FnB.

Since H/Fn+1H is finite-dimensional, the map pn gives rise to a linear map

ν(p)n : FnO → FnH
∗ (see the proof of Lemma A.9) and the map actFnB gives

rise to the map ∆FnB : FnB → FnH
∗ ⊗ FnB (see Lemma B.10(a)). The above
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commutative diagram then gives rise to a commutative diagram

FnA
Fnf //

∆FnA

��

FnB

∆FnB

��

FnO ⊗ FnA
ν(p)n⊗Fnf

// FnH
∗ ⊗ FnB.

This commutativity means that the restrictions to FnA of the two composed maps

of the diagram

F∞A
F∞f

//

∆F∞A

��

F∞B

∆F∞B

��

F∞O ⊗ F∞A
ν(p)⊗F∞f

// H ′ ⊗ F∞B

are equal. Since F∞A =
⋃

n≥0 FnA, this diagram is commutative, therefore the

pair (ν(p), F∞f) is a morphism in HACA.

Appendix B.4. Two functors HACA → Alggr

and a natural transformation

Definition B.14. DefineAlggr to be the category of Z≥0-graded associative alge-

bras.

By Proposition A.2(a), a Hopf algebra O is naturally equipped with a filtration

F•O. Set gr(O) :=
⊕

i≥0 gri(O), where gri(O) := FiO/Fi−1O for i ≥ 0. Then gr(O)

is a Z≥0-graded Hopf algebra, therefore also a Z≥0-graded associative algebra.

Recall that an object (O,A) of HACA gives rise to an algebra filtration F•A on

A (see Lemma B.3(a)). Then gr(A) :=
⊕

i≥0 gri(A), where gri(A) := FiA/Fi−1A

for i ≥ 0 is a Z≥0-graded associative algebra.

Lemma B.15. The following statements hold true:

(a) The assignment (O,A) 7→ gr(A) defines a functor gr : HACA→ Alggr.

(b) For (O,A) an object in HACA, equip gr(O) ⊗ F0A with the tensor prod-

uct Z≥0-graded associative algebra structure, where F0A is concentrated in

degree 0. Then the assignment (O,A) 7→ gr(O) ⊗ F0A defines a functor Φ:

HACA→ Alggr.

Proof. (a) The assignment (O,A) 7→ (A,F•A) defines a functor HACA→ Algfil

where Algfil is the category of filtered algebras (in the sense of Section 4.1). The

said assignment is the composition of this functor with the “associated-graded

functor” Algfil → Alggr.
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(b) The assignments (O,A) 7→ F0A and (O,A) 7→ gr(O) define the functors

HACA → Alg and HACA → Alggr, where Alg is the category of associative

algebras. The said assignment is the composition of the product of these func-

tors, of the “degree-0 functor” Alg → Alggr, and of the tensor product functor

Alg2
gr → Alggr.

Let (O,A) be an object in HACA. By Lemma B.3(c), the coaction map

∆A : A → O ⊗ A is compatible with the filtrations on both sides, and therefore

gives rise to a morphism of graded algebras gr•(∆A) : gr•(A) → gr•(O ⊗ A) =

gr•(O)⊗gr•(A). There is a unique morphism of graded algebras pr0 : gr•(A)→ F0A

given by the identity in degree 0 and 0 on all degree components of degree > 0.

Definition B.16. Define nat(O,A) : gr•(A)→ gr•(O)⊗F0A to be the composition

of gr•(∆A) with id⊗ pr0.

Lemma B.17. The following statements hold true:

(a) The assignment (O,A) 7→ nat(O,A) ∈ Alggr(gr(A),Φ(O,A)) is a natural trans-

formation relating the functors gr,Φ: HACA→ Alggr.

(b) For any object (O,A) of HACA, the morphism nat(O,A) is injective.

Proof. (a) nat(O,A) is a morphism of graded algebras as it is a composition of such

morphisms. The naturality is obvious.

(b) Let us prove that for any n ≥ 0, the degree n component natn(O,A) of nat(O,A)

is injective. The double inclusion of vector spaces of O ⊗A,

Fn−1(O ⊗A) ⊂
n∑

p=1

Fn−pO ⊗ FpA ⊂ Fn(O ⊗A),

where Fk(O ⊗A) :=
∑k

i=0 Fk−iO ⊗ FiA, gives rise to the map

Fn(O ⊗A)/Fn−1(O ⊗A)→ Fn(O ⊗A)/
( n∑

p=1

Fn−pO ⊗ FpA

)
,

which can be identified with the projection id⊗pr0 : grn(O⊗A)→ grn(O)⊗F0A.

It follows that the map natn(O,A) is the vertical cokernel of the diagram

FnA
∆A // Fn(O ⊗A)

Fn−1A //
?�

OO

∑n
p=1 Fn−pO ⊗ FpA,

?�

OO
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therefore that its kernel is the image in FnA/Fn−1A of the preimage by ∆A : FnA→
Fn(O ⊗ A) of the subspace

∑n
p=1 Fn−pO ⊗ FpA of Fn(O ⊗ A). This subspace

is contained Fn−1O ⊗ A, which together with Definition B.2 implies that this

preimage is contained in Fn−1A. This implies the vanishing of the kernel of natn(O,A)

and therefore the injectivity of natn(O,A).

Appendix B.5. Isomorphisms in HACA

Proposition B.18. The following statements hold true:

(a) A pair (O,a) of a Hopf algebra O and an associative algebra a gives rise to

an object (O,O ⊗ a) of HACA, with coaction morphism given by ∆O⊗a :=

∆O ⊗ ida (where ∆O is the coproduct of O). Its image by the endofunctor of

HACA from Lemma B.3(d) is the pair (F∞O,F∞O⊗ a), where the coaction

morphism is ∆F∞O⊗a := ∆F∞O⊗ ida (where ∆F∞O is the coproduct of F∞O).

(b) If (O,a) is a pair of a Hopf algebra and an associative algebra, if (B,H) is

an object of HAMAfd, and if (p, f) ∈ PM((O,O ⊗ a), (B,H)) is a pairing-

morphism such that ν(p) : F∞O → H ′ is a Hopf algebra isomorphism and the

algebra morphism f : O ⊗ a → B induces an algebra isomorphism C ⊗ a ∼−→
BH between the subalgebras C ⊗ a and BH of both sides, then the morphism

(ν(p), F∞f) : (F∞O,F∞O ⊗ a) → (H ′, F∞B) in HACA is an isomorphism.

In particular, F∞f : F∞O ⊗ a→ F∞B is a filtered algebra isomorphism.

(c) In the situation of (b), the algebra morphism f : O⊗a→ B is compatible with

the filtrations F•O ⊗ a and F•B, and induces an isomorphism gr•(O) ⊗ a →
gr•(B) in Alggr.

Proof. (a) If o ∈ O is such that ∆O(o) ∈ FnO ⊗O, then o = (id⊗ ϵO) ◦∆O(o) ∈
FnO, where ϵO is the counit of O, therefore {o ∈ O | ∆O(o) ∈ FnO ⊗O} ⊂ FnO.

On the other hand, Lemma A.1(c) implies FnO ⊂ {o ∈ O | ∆O(o) ∈ FnO ⊗ O},
therefore FnO = {o ∈ O | ∆O(o) = FnO⊗O}. Then Fn(O⊗a) = {o ∈ O | ∆O(o) ∈
FnO⊗O}⊗a = FnO⊗a. It follows that F∞(O⊗a) =

⋃
n≥0 FnO⊗a = F∞O⊗a.

The fact that (F∞O,F∞O ⊗ a) → (O,O ⊗ a) is a morphism in HACA (see

Lemma B.3(d)) implies that the coaction morphism of F∞O ⊗ a has the claimed

value.

(b) and (c). Lemma B.13 applied to the pairing-morphism (p, f) implies that

f : O ⊗ a → B is a morphism of filtered algebras. By (a), there is an isomor-

phism gr•(O⊗ a) = gr•(O)⊗ a. Composing it with the associated graded algebra

morphism gr•(f) : gr•(O ⊗ a)→ gr•(B), one obtains a morphism

gr•(f) : gr•(O)⊗ a→ gr•(B)
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of graded algebras. Since (B,H) is an object of HAMAfd, one may apply to

it the functor from Lemma B.10(c) to obtain the object (H ′, F∞B) of HACA.

By Lemma B.17, the latter object gives rise to an injective morphism of graded

algebras

gr•(B) = gr•(F∞B)
nat(H′,F∞B)−−−−−−−−→ Φ(H ′, F∞B) = gr•(H

′)⊗ (F∞B)H

= gr•(H
′)⊗BH .

The composition of these morphisms is the morphism

nat(H′,F∞B) ◦ gr•(f) : gr•(O)⊗ a→ gr•(H
′)⊗BH

of graded algebras. As ν(p) : F∞O → H ′ is a Hopf algebra isomorphism, it induces

an isomorphism between the filtrations F• on both sides (see Proposition A.2(c)),

and an associated graded isomorphism gr•(ν(p)) : gr•(F∞O)→ gr•(H
′), which we

identify with its composition with the equality gr•(O) = gr•(F∞O). Let us show

that

(B.3) nat(H′,F∞B) ◦ gr•(f) = gr•(ν(p))⊗ f0

(equality of morphisms of graded algebras gr•(O)⊗ a→ gr•(H
′)⊗BH), where f0

is the isomorphism f0 : C⊗ a→ BH . The composition

C⊗ a = F0(O ⊗ a)
gr0(f)−−−−→ F0B = BH

is f0, which together with gr0(ν(p)) = 1 proves the degree 0 part of (B.3). Let

n ≥ 0 and o ∈ grn(O). The image of o under nat(H′,F∞B) ◦ grn(f) is equal to the

image of õ⊗ 1 by the horizontal composition

FnH
′ ⊗B // grn(H

′)⊗B

FnO ⊗ a
Fnf

// FnB
∆FnB

//
∑n

k=0 Fn−kH
′ ⊗ FkB //

?�

OO

grn(H
′)⊗ F0B,
?�

OO

where õ ∈ FnO is a lift of o. Since Fnf is compatible with the coaction maps, the

image of this element in
∑n

k=0 Fn−kH
′ ⊗ FkB is equal to ν(p)(õ(1))⊗ f(õ(2) ⊗ 1),

where õ(1) ⊗ õ(2) = ∆O(õ) ∈
∑n

k=0 Fn−kO ⊗ FkO ⊂ O⊗2. One has õ(1) ⊗ õ(2) ∈
õ⊗ 1 + Fn−1O⊗O, therefore ν(p)(õ(1))⊗ f(õ(2) ⊗ 1) ∈ ν(p)(õ)⊗ 1 + Fn−1H

′ ⊗B
(inclusion in FnH

′ ⊗ B). It follows that the image of õ ⊗ 1 in grn(H
′) ⊗ B is

im(ν(p)(õ) ∈ FnH
′ → grnH

′)⊗ 1 = grn(ν(p))(o)⊗ 1. This implies that both sides

of (B.3) coincide when restricted to grn(O)⊗C for any n, therefore to gr•(O)⊗C.
Equation (B.3) then follows from the fact that each of its sides is an algebra
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morphism, and that they agree on gr•(O) ⊗ C and C ⊗ a, which generate the

source algebra.

It follows from (B.3) that nat(H′,F∞B) ◦ gr•(f) is an isomorphism of graded

algebras. The injectivity of nat(H′,F∞B) then implies that both nat(H′,F∞B) and

gr•(f) are isomorphisms of graded algebras. By Lemma B.13, f induces a mor-

phism of filtered algebras F∞f : F∞O ⊗ a → F∞B, and gr•(f) = gr•(F∞f). It

follows that gr•(F∞f) is an isomorphism of graded algebras, which together with

the fact that the filtrations of the source and target of F∞f are exhaustive, implies

that F∞f is an isomorphism of filtered algebras (see Lemma 4.1).

Appendix C. Filtered formality for Hopf algebras and HACAs

In Appendix C.1 we introduce a notion of filtered formality for Hopf algebras;

this notion is related in Appendix D to the similar notion for discrete groups,

introduced in [SW1]. We extend this to a notion of filtered formality for HACAs

in Appendix C.2. The main result of this section is Proposition C.5, which shows

that a HACA constructed in the context of Proposition B.18 is filtered formal.

Appendix C.1. Filtered formality for Hopf algebras

In Proposition A.2(a), we attach to a Hopf algebra O a filtration F•O. Let gr(O)

be the associated graded vector space.

Lemma C.1. The following statements hold true:

(a) If O is a Hopf algebra, then gr(O) is a graded Hopf algebra, which is commu-

tative if O is, and such that for each n ≥ 0, Fn(gr(O)) = gr≤n(O).

(b) The assignment O 7→ gr(O) defines an endofunctor of the category HAcomm

of commutative Hopf algebras.

Proof. Let us show (a). The first statement follows from the fact that F•O is a

Hopf algebra filtration (see Proposition A.2(a)). Let us show the second statement.

Let n ≥ 0. The inclusion Fn(gr(O)) ⊃ gr≤n(O) follows from the fact that gr(O) is a

graded and connected Hopf algebra. Let us show the opposite inclusion. Since gr(O)

is a graded Hopf algebra, Fn(gr(O)) is the direct sum of its intersection with the

homogeneous components of gr(O). If k ≥ 1, the intersection Fn(gr(O))∩grn+k(O)

is contained in Fn(gr(O)), which is the kernel of

(id− ηgr(O)ϵgr(O))
⊗n+1 ◦∆(n+1)

gr(O) : gr(O)→ (gr(O))⊗n+1 = gr(O⊗n+1),

therefore Fn(gr(O))∩ grn+k(O) is contained in the kernel of the map grn+k(O)→
grn+k(O

⊗n+1) induced by (id−ηgr(O)ϵgr(O))
⊗n+1 ◦∆(n+1)

gr(O) . This map is the degree
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n + k part of the associated graded of the map (id − ηOϵO)⊗n+1 ◦ ∆(n+1)
O : O →

O⊗n+1. It follows that if V is the preimage of Fn(gr(O))∩grn+k(O) in Fn+kO, one

has (id − ηOϵO)⊗n+1 ◦∆(n+1)
O (V ) ⊂ Fn+k−1(O

⊗n+1). The map ((id − ηOϵO)⊗k ◦
∆

(k)
O )⊗id⊗n maps Fn+k−1(O

⊗n+1) to Fn+k−1(O
⊗n+k), therefore (id−ηOϵO)⊗n+k◦

∆
(n+k)
O (V ) ⊂ Fn+k−1(O

⊗n+k). Now O = C1 ⊕ F1O; one has (id − ηOϵO)⊗n+k ◦
∆

(n+k)
O (V ) ⊂ (F1O)⊗n+k while Fn+k−1(O

⊗n+k) ⊂
∑n+k

i=1 O
⊗i−1 ⊗C1⊗O⊗n+k−i.

As the second terms of both inclusions have zero intersection in O⊗n+k, one

has (id − ηOϵO)⊗n+k ◦ ∆(n+k)
O (V ) = 0. Therefore V ⊂ Fn+k−1O, which implies

Fn(gr(O)) ∩ grn+k(O) = 0. Therefore, Fn(gr(O)) = gr≤n(O).

(b) follows from the naturality of the assignment O 7→ F•O.

Definition C.2. The Hopf algebra O is called filtered formal if there is an iso-

morphism of Hopf algebra O → gr(O) whose associated graded for the grading gr

is the identity.

This terminology is justified by Proposition D.18.

Appendix C.2. Filtered formality for HACAs

Let HACAgr be the category of Z≥0-graded HACAs.

Lemma C.3. The assignment (O,A) 7→ (gr(O), gr(A)) is a functor (gr, gr):

HACA→ HACAgr.

Proof. It follows from the fact that for (O,A) a HACA, (F•O,F•A) is a HACA

filtration.

Definition C.4. The HACA (O,A) is called filtered formal if there exists an

isomorphism (O,A) → (gr(O), gr(A)) in HACA, which is compatible with the

filtrations (F•O,F•A) in the source and induced by the grading in the target,

and whose image by the functor (gr, gr) : HACA → HACAgr is the identity

endomorphism of (gr(O), gr(A)).

If the HACA (O,A) is filtered formal, then the Hopf algebra O is filtered

formal in the sense of Definition C.2.

Proposition C.5. Let (O,a), (B,H), (p, f) be as in the hypothesis of Proposi-

tion B.18(b),(c). Then the HACA (H ′, F∞B) is filtered formal.

Proof. Recall from Lemma C.3 that (Õ, A) 7→ (gr(Õ), gr(A)) is a functorHACA→
HACAgr; one checks that the same is true of (Õ, A) 7→ (gr(Õ),Φ(Õ, A)). For

(Õ, A) a HACA, (idÕ,nat(Õ,A)) is a morphism (gr(Õ), gr(A))→ (gr(Õ),Φ(Õ, A))

in HACAgr, which is an isomorphism if and only if nat(Õ,A) is.
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The proof of Proposition B.18(c) implies that nat(H′,F∞B) is an isomorphism

in Alggr, therefore

(C.1) (idgr(H′),nat(H′,F∞B)) : (gr(H
′), gr(B))→ (gr(H ′), gr(H ′)⊗BH)

is an isomorphism in HACAgr.

By the assumptions of Proposition B.18(b), ν(p) : F∞O → H ′ is an isomor-

phism in HA. Proposition C.1 then implies that gr(ν(p)) : gr(O) → gr(H ′) is an

isomorphism in HAgr. The assumptions of Proposition B.18(b) also imply that f

restricts to an algebra isomorphism C⊗ a→ BH , we denote by f0 the composed

isomorphism a ≃ C ⊗ a → BH . Both isomorphisms gr(ν(p)) and f0 induce an

isomorphism

(C.2)
(
gr(ν(p))−1, gr(ν(p))−1⊗f−1

0

)
: (gr(H ′), gr(H ′)⊗BH)→ (gr(O), gr(O)⊗a)

in HACAgr. By Proposition B.18(b) and (c), the pair

(C.3) (ν(p), F∞f) : (F∞O,F∞O ⊗ a)→ (H ′, F∞B)

is an isomorphism in HACA. The composition of (C.1), (C.2), and (C.3) gives

rise to an isomorphism(
ν(p) ◦

(
gr(ν(p))−1

)
, F∞f ◦

(
gr(ν(p))−1 ⊗ f−1

0

)
◦ nat(gr(H′),F∞B)

)
:

(gr(H ′), gr(B))→ (H ′, F∞B)(C.4)

in HACA.

By Proposition A.2(c), ν(p) is compatible with the filtrations F•; it follows

that ν(p)◦gr(ν(p))−1 is compatible with these filtrations as well, and one computes

gr(ν(p) ◦ gr(ν(p))−1) = id.

The algebra morphisms in (C.1) and (C.2) are compatible with the filtrations

since they are graded, and the algebra morphism in (C.3) is compatible with the

filtrations. It follows that the algebra morphism in (C.4) is compatible with the

filtrations. Its associated graded is the composed morphism

(C.5) gr(B)
nat(H′,F∞B)−−−−−−−−→ gr(H ′)⊗BH gr(ν(p))−1⊗f−1

0−−−−−−−−−−→ F∞O ⊗ a
grf−−→ gr(B).

It follows from the proof of Proposition B.18(b) that relation (B.3) holds, and that

nat(H′,F∞B) and grf are both isomorphisms. The combination of these facts then

implies that the map (C.5) is the identity. Therefore, the algebra morphism in (C.4)

is compatible with the filtrations, and its associated graded is the identity.
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Appendix D. Hopf algebra duality and prounipotent completions

Appendix D.1 relates the Hopf algebraic constructions of Appendix A to complete

Hopf algebras (CHAs) in the sense of [Q1]. This is applied in Appendix D.2 to

obtain an expression of the function algebra of the prounipotent completion of a

finitely generated group in the terms of the functors of Appendix A. The main

result of Appendix D.3 is Proposition D.18, which relates the notion of filtered

formality for a finitely generated group ([SW1]) with the similar notion for Hopf

algebras, introduced in Appendix C.

Appendix D.1. Completion and duality of Hopf algebras

Recall from [Q1, A1 and A2] the categories CAA of complete augmented algebras

(CAAs) and CHA of complete Hopf algebras (CHAs): CAA is the full subcate-

gory, in the category of pairs (A,F •A) of an augmented algebra A and a decreasing

algebra filtration A = F 0A ⊃ F 1A ⊃ · · · , of CAAs, i.e. of pairs such that A is

complete and Hausdorff for the topology of F •A, such that F 1A is the augmenta-

tion ideal of A and such that gr(A) is generated by gr1(A); a monoidal structure

is defined on CAA, given at the level of objects by ((A,F •A), (B,F •B)) 7→
(A ⊗̂B,F •(A ⊗̂B)), where A ⊗̂B := lim←−n

(A/FnA)⊗ (B/FnB) and Fn(A ⊗̂B) =

lim←−m
im(

∑
n′+n′′=n F

n′
A ⊗ Fn′′

B → (A/FmA) ⊗ (B/FmB)); a CHA is a pair

(A,∆A), where A is a CAA, ∆A : A → A ⊗̂ A is a cocommutative and coassocia-

tive algebra morphism, which admits the augmentation of A as a counit, and a

morphism in CHA is a morphism in CAA which is compatible with coproducts.

Lemma D.1. The following statements hold true:

(a) Let H be a cocommutative Hopf algebra with coproduct ∆H and counit ϵH .

Recall H+ = ker(ϵH). Set H∧ := lim←−m
H/Hm

+ and for n ≥ 0, FnH∧ :=

lim←−m
FnH/Fmax(n,m)H. Then H∧ is a complete augmented algebra. There

is a unique continuous extension of ∆H to a map ∆̂H : H∧ → H∧ ⊗̂ H∧,

which equips H∧ with the structure of a complete Hopf algebra. The assignment

H 7→ H∧ is a functor HAcoco → CHA, where HAcoco is the category of

cocommutative Hopf algebras.

(b) If V is a vector space and H is the cocommutative Hopf algebra T (V ) with

coproduct defined by the condition that the elements of V are primitive, then

T (V )∧ = T̂ (V ) (the degree completion of T (V )).

Proof. (a) The first statement follows from [Q1, A1, Exa. 1.2]. One has the inclu-

sion ∆H(H+) ⊂ H+ ⊗ H + H ⊗ H+, which implies that for any n ≥ 0, one has

∆H(Hn
+) ⊂

∑
p,q|p+q=nH

p
+ ⊗H

q
+. It follows that ∆H defines a collection of maps
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H/H2n
+ → (H/Hn

+)
⊗2 indexed by n ≥ 0, which are compatible for various n and

which therefore induce a map ∆̂H : H∧ → H∧ ⊗̂H∧, which is a continuous exten-

sion of ∆H . The uniqueness of this extension follows from the Hausdorff property

of H∧. The verification of the other properties of ∆̂H is standard.

(b) follows from the fact that T (V )n+ is the part of T (V ) of degree ≥ n, and that

T̂ (V ) is the completion with respect to the corresponding topology.

Definition D.2. Consider the following definitions:

(a) CHAfd is the full subcategory of CHA of CHAs A such that gr1A is finite-

dimensional.

(b) For H a Hopf algebra, set gr1(H) := H+/H
2
+, where we recall H+ = ker(ϵH),

and ϵH is the counit of H.

(c) HAcoco,fd is the full subcategory ofHAcoco of all cocommutative Hopf algebras

H such that gr1H is finite-dimensional.

(d) Gpfg is the full subcategory of Gp of finitely generated groups.

Lemma D.3. The following statements hold true:

(a) The functor Gp → HAcoco given by Γ 7→ CΓ induces a functor Gpfg →
HAcoco,fd.

(b) The functor HAcoco → CHA, H 7→ H∧ from Lemma D.1 induces a functor

HAcoco,fd → CHAfd.

Proof. (a) If Γ is a group, then gr1(CΓ) = Γab ⊗ C (see [Q2]). Moreover, if Γ is

finitely generated, then Γab is a finitely generated abelian group, which together

with the above equality implies the finite-dimensionality of gr1(CΓ).

(b) follows from the fact that the natural map gr1H → gr1(H∧) is a linear iso-

morphism.

Definition D.4. For H a CHA with associated filtration H = F 0H ⊃ · · · , set
H ′ :=

⋃
n≥0 F

nH⊥ ⊂ H∗.

Lemma D.5. The following statements hold true:

(a) If H is a CHA, then H ′ has a commutative and associative algebra structure.

(b) If H is an object in CHAfd, then the algebra structure on H ′ can be upgraded

to a commutative Hopf algebra structure; the resulting assignment H 7→ H ′ is

a contravariant functor CHAfd → HAcomm.
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Proof. (a) Let ξ, η ∈ H ′. Let n ≥ 0 be such that ξ, η ∈ FnH⊥. Then ξ⊗η is a linear
form on (H/FnH)⊗2, which can be pulled back by the map H⊗̂2 → (H/FnH)⊗2

to define a linear form on H⊗̂2; it can be checked to be independent of the choice

of n and will be denoted ℓξ,η. Then ℓξ,η vanishes on FnH ⊗H +H ⊗ FnH. The

assignment ξ · η : h 7→ ℓξ,η ◦∆H(h) is then a linear form on H, i.e. an element of

H∗. Since ∆H(F 2nH) ⊂ FnH ⊗H +H ⊗ FnH, one has ξ · η ∈ F 2nH⊥, therefore

ξ · η ∈ H ′. One checks that this defines a commutative and associative algebra

structure on H ′.

(b) If n ≥ 0, then H/FnH is noncanonically isomorphic to
⊕n

k=0 gr
k(H), which

is finite-dimensional since it is generated by gr1H and the latter space is

finite-dimensional. The coproduct ∆H defines a coproduct ∆FnH : H/FnH →
(H/FnH)⊗2 for any n ≥ 0. Since H/FnH is finite-dimensional, this coproduct

can be dualized and defines a product m(FnH)⊥ : ((FnH)⊥)⊗2 → (FnH)⊥. As in

the proof of Lemma A.6, one checks that the collection of these products is com-

patible, which gives rise to a product mH′ : H ′⊗2 → H ′, which can be shown to

define a Hopf structure.

The following lemma is a topological analogue of Lemma A.7.

Lemma D.6. If H is a CHA, then for any n ≥ 0 one has Fn(H
′) = (Fn+1H)⊥

(equality of subspaces of H∗).

Proof. Let us show that if H is a CHA and k, n ≥ 1, then the image of the product

map (F 1H/Fn+kH)⊗n → H/Fn+kH is FnH/Fn+kH. We proceed by induction

on k. For k = 1, the statement follows from the surjectivity of the product map

(F 1H/F 2H)⊗n → FnH/Fn+1H. Assume the statement at order k and let us

show it at order k + 1. The product map (F 1H/F 2H)⊗n+k → Fn+kH/Fn+k+1H

is surjective, therefore Fn+kH/Fn+k+1H is equal to the image of a subspace of

(F 1H/Fn+k+1H)⊗n, namely

(F 1H/Fn+k+1H)⊗n−1 ⊗ im((F 1H/Fn+k+1H)⊗k+1 → F 1H/Fn+k+1H).

Combining this with the statement at order k, one obtains the statement at order

k + 1 and therefore the induction. The proof of the lemma is then similar to that

of Lemma A.7.

Lemma D.7. The functors HAcoco,fd→CHAfd→HAcomm (see Lemma D.3(b)

and Lemma D.5(b)) and HAcoco,fd → HAcomm (see Lemma A.6) are naturally

equivalent.
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Proof. For each n ≥ 0, the algebra morphism H → H∧ induces an algebra iso-

morphism H/FnH ∼−→ H∧/FnH∧, which fits in a commutative diagram

H //

��

H∧

��

H/FnH // H∧/FnH∧.

Dualizing and using the equalities (H/FnH)∗ = FnH⊥ and (H∧/FnH∧)∗ =

(FnH∧)⊥, one obtains a commutative diagram

(D.1) (FnH∧)⊥
∼ //

� _

��

(FnH)⊥� _

��

(H∧)∗ // H∗.

If V , W are filtered vector spaces and f : V → W is a linear map such that for

any n ≥ 0, f induces a linear isomorphism FnV → FnW , then f induces an

isomorphism F∞V → F∞W . This and (D.1) imply that the map (H∧)∗ → H∗

restricts to a linear isomorphism (H∧)′ → H ′. One then checks this isomorphism

to be compatible with the Hopf algebra structures.

Appendix D.2. Isomorphism CΓ′ ≃ O(Γunip)

Let Γ be a group. A pro-unipotent completion of a group Γ is the pair (U, c) of a

prounipotent C-group scheme U and a morphism Γ→ U(C) satisfying a universal

property (see [BGF, Def. 3.217]).

If Γ is an object in Gpfg, then CΓ is an object in HAfd by Lemma D.3(a),

therefore (CΓ)′ is a commutative Hopf algebra (see Lemma A.6). Since Γab⊗C is

finite-dimensional, one may use [BGF, Thm. 3.224] to obtain that a pro-unipotent

completion exists and is unique up to isomorphism, and can be constructed as the

pair (Γunip, cunip), where Γunip is the spectrum of the commutative Hopf algebra

O(Γunip) := ((CΓ)∧)′, which is isomorphic to (CΓ)′ by Lemma D.7, and cunip is

induced by the commutative algebra morphism O(Γunip) = (CΓ)′ ↪→ (CΓ)∗ = CΓ,

where CΓ is the algebra of all functions Γ→ C.

Appendix D.3. Relation between the filtered formalities of Γ and (CΓ)′

Definition D.8 (See [Q1, §A.2]). Consider the following definitions:

(a) A Malcev Lie algebra (MLA) is a Lie algebra g, equipped with a decreasing Lie

algebra filtration g = F 1g ⊃ F 2g ⊃ · · · (i.e. [F ig, F jg] ⊂ F i+jg for i, j ≥ 1)



708 B. Enriquez and F. Zerbini

for which it is complete and Hausdorff, and such that the associated graded

Lie algebra grg is generated by gr1g.

(b) A morphism between two MLAs is a Lie algebra morphism which is compatible

with the filtrations. We denote the category of MLAs by MLA.

Lemma D.9 (See [Q1, Thm. 3.3]). The functors Û : MLA ↔ CHA : P, where
Û(g) := lim←−i

U(g/F ig) and P is the “primitive-elements functor”, taking (A,∆A)

to P(A) := {a ∈ A | ∆A(a) = a⊗ 1 + 1⊗ a}, equipped with the filtration given by

FnP(A) := P(A) ∩ FnA for n ≥ 0, are quasi-inverse to one another.

Definition D.10. The composed functor Gp→ CHA
P−→MLA, where the first

functor is Γ 7→ (CΓ)∧ (see Lemma D.1), is denoted Γ 7→ Lie(Γ).

Lemma-Definition D.11. The assignment g 7→ (ĝr(g), F •ĝr(g)), where ĝr(g) :=∏
i≥1 gr

i(g) and for n ≥ 1, Fnĝr(g) :=
∏

i≥n gr
i(g), is an endofunctor of MLA.

For g an object in MLA, one has gr(ĝr(g)) ≃ gr(g).

Proof. Immediate.

Definition D.12 (See [SW1]). A group Γ is called filtered formal if there exists an

isomorphism Lie(Γ)→ ĝr Lie(Γ) in MLA, whose associated graded is the identity.

One checks that A 7→ ĝr(A) :=
∏

i≥0 F
iA/F i+1A is an endofunctor of CHA.

Lemma D.13. The category equivalence CHA ↔ MLA quasi-intertwines the

endofunctors ĝr on both sides.

Proof. It follows from the natural isomorphism of graded Lie algebras

(D.2) gr(PA) ≃ P(gr(A))

for A an object of CHA from [Q1, A1, Thm. 2.14].

Definition D.14. One defines MLAfd to be the full subcategory of MLA of

MLAs g such that gr1g is finite-dimensional.

Recall the full subcategory CHAfd of CHA (see Definition D.2).

Lemma D.15. The following statements hold:

(a) The equivalence CHA ↔ MLA induces a category equivalence CHAfd ↔
MLAfd.

(b) The endofunctors ĝr of CHA and MLA induce endofunctors (still denoted

ĝr) of CHAfd and MLAfd.
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(c) The category equivalence CHAfd ↔ MLAfd quasi-intertwines the endofunc-

tors ĝr on both sides.

Proof. (a) For A an object in CHA, (D.2) implies the vector space isomorphism

gr1(PA) ≃ P(gr(A))∩ gr1A; moreover, gr(A) is a graded connected Hopf algebra,

therefore gr1(A) ⊂ P(gr(A)); therefore gr1(PA) ≃ gr1A.

(b) follows from gr1(ĝr(A)) = gr1(A) for A a CHA and gr1(ĝr(g)) = gr1(g) for g

an MLA.

(c) follows from Lemma D.13.

Lemma D.16. Let H be an object in CHAfd.

(a) There is a natural vector space isomorphism (ĝrH)′ ≃
⊕

n≥0 gr
n(H)∗; it

induces a natural isomorphism Fn((ĝrH)′) ≃
⊕

k≤n gr
k(H)∗ for any n ≥ 0.

(b) There is a natural isomorphism

(D.3) (ĝrH)′ ≃ gr(H ′)

in HA.

(c) The composed isomorphism
⊕

k≤n gr
k(H)∗ ≃ Fn((ĝrH)′) ≃ Fn(gr(H

′)) ≃
gr≤n(H

′), where the first isomorphism arises from (a), the second from the

image by Fn of (D.3), and the third isomorphism arises from Lemma C.1(a),

is the direct sum over k ≤ n of the isomorphisms grk(H)∗ ≃ gr≤n(H
′) arising

from Lemma D.6.

Proof. (a) ĝr(H) is
∏

n≥0 gr
nH, equipped with the filtration (

∏
i≥n gr

iH)n≥0. It

follows that ĝr(H)′ =
⊕

n≥0 gr
n(H)∗. One then has Fn(ĝr(H)′)= (Fn+1ĝr(H))⊥ ≃⊕

k≤n gr
k(H)∗ for any n ≥ 0, where the first equality follows from Lemma D.6.

(b) follows from the sequence of equalities

gr(H ′) =
⊕
n≥0

Fn+1H
′/FnH

′ =
⊕
n≥0

(Fn+1H)⊥/(FnH)⊥ =
⊕
n≥0

(FnH/Fn+1H)∗

=
⊕
n≥0

grn(H)∗ = (ĝrH)′,

where the second equality follows from F•H
′ = (F •+1H)⊥ (see Lemma D.6) and

the last equality follows from (a).

(c) follows from the identification of the said isomorphism with the degree ≤ k

part of the above sequence of equalities.
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Lemma D.17. Let Γ be a group. If Γ is filtered formal, then there exists an iso-

morphism

(D.4) isoΓ : (CΓ)∧ ≃ ĝr((CΓ)∧)

in CHA, such that gr(isoΓ) = id.

Proof. Let Γ be a filtered formal group. There is an isomorphism

(D.5) Lie(Γ) ≃ ĝr Lie(Γ)

in MLA with associated graded the identity. There is a sequence of isomorphisms

in CHA given by

(CΓ)∧ ≃ Û(Lie(Γ)) ≃ Û(ĝr Lie(Γ)) ≃ ĝr
(
Û(Lie(Γ))

)
= ĝr((CΓ)∧),

where the first and last isomorphisms come from Lemma D.9 and Definition D.10,

the second isomorphism arises from applying the functor Û to the isomorphism

(D.5), and the third isomorphism arises from Lemma D.15(c). This results in an

isomorphism with the claimed properties.

Proposition D.18. If Γ is a filtered formal finitely generated group, then the

Hopf algebra (CΓ)′ is filtered formal (in the sense of Definition C.2).

Proof. Let Γ be a filtered formal finitely generated group. Then (D.4) is an iso-

morphism in CHAfd. There is a sequence of isomorphisms in HA,

(D.6) (CΓ)′ ≃ ((CΓ)∧)′ ≃
(
ĝr((CΓ)∧)

)′ ≃ gr
(
((CΓ)∧)′

)
≃ gr((CΓ)′),

where the first and last isomorphisms follow from Lemma D.7, the second iso-

morphism arises from applying the functor CHAfd → HA, H 7→ H ′ (see Def-

inition D.4) to (D.4), and the third isomorphism comes from (D.3). It follows

from gr(isoΓ) = id and Lemma D.6 that the second isomorphism in (D.6) is com-

patible with the filtration F• and that the associated graded is the identity. The

third isomorphism in (D.6) induces an isomorphism between the Fn of both sides

for any n ≥ 0. By Lemma D.16(c), the associated graded morphism coincides

with the composition of natural isomorphisms grn((ĝr((CΓ)∧))′) ≃ grn(CΓ)∗ ≃
grn(gr(((CΓ)∧)′)). This implies that the image by grn of the isomorphism (CΓ)′ ≃
gr((CΓ)′) induced by (D.6) is the identification grn(CΓ)′ ≃ grngr((CΓ)′) induced
by Lemma C.1(a).

Remark D.19. Lemma D.17 relates as follows to [SW2]: combining [SW2, Cors

6.2 and 2.7] one obtains the equivalence of the filtered formality of Γ with the

conclusion of Lemma D.17 for any finitely generated group Γ.
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