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Abstract

For C' a smooth affine complex curve, there is a unique minimal unital subalgebra Ac
of the algebra Ono1(C) of holomorphic functions on its universal cover C, which is stable
under all the operations f — [ fw, for w in the space Q(C) of regular differentials on
C. We identify Ac with the image of the iterated integration map I,,: Sh(Q2(C)) —
Onot(C) based at any point ¢ of C' (here Sh(—) denotes the shuffle algebra of a vector
space), as well as with the unipotent part, with respect to the action of Aut(C/C), of a
subalgebra of (91,01(5’) of moderate growth functions. We show that any regular Maurer—
Cartan (MC) element J on C' with values in the topologically free Lie algebra over
Hir (C)* gives rise to an isomorphism of Ac with O(C)®Sh(Hig(C)), where O(C) is the
algebra of regular functions on C, leading to the assignment of a subalgebra Hc (J) of Ac
(isomorphic to Sh(H}r(C))) to any MC element. We also associate an MC element J,,
to each section ¢ of the projection Q(C) — Hig(C); when C has genus zero, we exhibit
a particular section o¢ for which Hc(Js,) is the algebra of hyperlogarithm functions
(Poincaré, Lappo-Danilevsky).

Mathematics Subject Classification 2020: 30H50 (primary); 20F40, 33E20 (secondary).
Keywords: hyperlogarithms, polylogarithms, moderate growth functions, iterated inte-
grals, shuffle algebras, formality isomorphisms, pro-unipotent completion.

Contents

1 Introduction 628

I Theorems A, B, C and their proofs 636

2 Iterated integrals, Maurer—Cartan elements, and hyperlogarithm functions 636
3 Moderate growth functions 645

Communicated by T. Mochizuki. Received April 3, 2024.

B. Enriquez: IRMA, Université de Strasbourg, 7 rue René Descartes, 67000 Strasbourg, France;
e-mail: b.enriquez@math.unistra.fr

F. Zerbini: Departamento de Matematicas Fundamentales, UNED, Calle de Juan del Rosal 10,
28040 Madrid, Spain;

e-mail: f.zerbini@mat.uned.es

(© 2025 Research Institute for Mathematical Sciences, Kyoto University.
This work is licensed under a CC BY 4.0 license.


mailto:b.enriquez@math.unistra.fr
mailto:f.zerbini@mat.uned.es
https://creativecommons.org/licenses/by/4.0/

628 B. ENRIQUEZ AND F. ZERBINI

4 The isomorphism of filtered algebras fi.,: Fo Sh(Ho) ® O(C) = FoeOmoa(C)
651
5 Filtrations on (’)hol(é), and the minimal stable subalgebra Ac 660

II Complementary results 668

Connections for HACAs 668 _

Local expansion of the elements of FooOmoda(C) 672
Relation of Ac with minimal acyclic extensions of dgas 675
Computation of ker(I,) 677

IIT Appendices 682

A Background on Hopf algebras 682

B Background on Hopf algebras with (co)actions on algebras 689
C Filtered formality for Hopf algebras and HACAs 701

D Hopf algebra duality and prounipotent completions 704
References 711

§1. Introduction
§1.1. The context

To an inclusion O C O of unital complex commutative algebras and a derivation 0
of O which is both surjective and with ker(9) = C, one may associate the smallest
subalgebra of O which contains O and is stable under the antiderivation operation
e o~(f) C O. Two instances of this construction were studied in detail
in the literature:

e O = O ($) is the algebra of holomorphic functions on the complex upper
half-plane $ = {7 € C | (1) > 0}, O = QM, is the algebra of quasi-modular
forms for SLo(Z), and 9 = d/dr (see [Ma]);

e O =Clz,1/(z = s),s € Seo] = O(PL N S), where S C P{ is a finite subset
with S 3 00, S denotes S\ {o0}, O is the algebra of holomorphic functions
on a universal cover of PL \ S, and 9 = d/dz (see [Br]).

In both cases, precise results were obtained on the structure of the said small-
est subalgebra. Let us describe the results of the second case in more detail. In
that case, the conditions on the looked-for algebra are equivalent to requiring it
to be both unital and stable under all the operations f + sz fo=(z— f;ﬂ fw),
where w runs over all the regular differentials on P{ \ S; indeed, the latter con-
dition implies that the algebra contains the functions fZO df, where f runs over
OPL N 9).

Such an algebra necessarily contains all the iterated integrals of the differ-
entials dlog(z — s), s € So, which are the hyperlogarithm (HL) functions L,



ANALOGUES OF HYPERLOGARITHM FUNCTIONS ON AFFINE COMPLEX CURVES 629

indexed by w € S* (where 5% = Lo 5™ is the set of words in S., which
is Soo viewed as an abstract set). The generating series L := > L, -w is a
multivalued holomorphic function on P§ \ S with values in the group of group-

like elements of the algebra of noncommutative formal series C{(Sw,)), such that
dL(z) = L(z) - Y_,(5-dlog(z — s)). It was proven in [Br, Cor. 5.6] that

e the algebra Ap g = O(PE N S)[Ly,w € S* ] is stable under antiderivation,
so that Ap1 g is the smallest (for the inclusion) extension of O(P¢ \ S) with
this property;

e the map O(PL \ S) ® Sh(CS) — Apris, f@w = [+ Ly is an algebra
isomorphism, where Sh(V') is the shuffle algebra associated with a vector space
V; in particular, the family (L., )y, is linearly independent over O(P¢ . S) (this
was also proved in [DDMS])).

The HL functions, and hence all the functions of Ap1__g, have unipotent mono-
dromies along the paths encircling the points of 5, and one can show that A]pé\ s
is a union of unipotent modules (i.e. iterated extensions of the trivial module) over
71 (PE N 9).

The HL functions were introduced in [Po], motivated by monodromy com-
putations. They were later applied in [LD] to the Riemann—Hilbert problem, and
subsequently in [Br] to the identification of a set of periods arising from the mod-
uli space of marked stable genus-zero curves with the set of multiple zeta values
(Goncharov—Manin conjecture). The HL techniques of [Br] led in [Pa] to an algo-
rithm which can be used to express, in physics, a large class of Feynman integrals’
in terms of HLs; this was implemented in the software program HyperInt.

Similar questions were studied replacing ]P’(l: by a curve of genus one. To an
elliptic curve £, one attaches an algebra As containing the function field of £ (see
[BDDT1], three lines before (3.35)) using iterated integration. In [BDDT1, §6],
it is proved that As is stable under f — fzo fwo, where wy is a fixed nonzero
regular differential over £ and zj is any point in £. One can derive from this the
construction, for any finite subset S of £, of an algebra containing the algebra
of regular functions on £ \ S, which is stable under f — fZO fwo; this algebra is
therefore stable under the operations f +> sz fw, where w runs over all the regular
differentials on £\ S. Similarly to the genus-zero case, the functions from A3z arise
naturally in the computation of Feynman integrals (see [BDDT2]).

It is a natural question to construct analogues of the HL functions associated
to an arbitrary affine curve C. Such functions are likely to find an application in

1Feynman integrals are a useful tool to obtain approximations of scattering amplitudes, which
predict in quantum field theory the probability of interactions of elementary particles.
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physics also when the genus of the curve is higher than one, such as for instance
to compute hyperelliptic Feynman integrals (see [MMPPW]), or the genus-two
contribution to string theory amplitudes (see [DGP]).

In order to treat this problem, we fix a universal cover p: C — C and introduce
the notion of a minimal stable subalgebra (MSSA) of the algebra of holomorphic
functions Opei(C) of C as follows: we call a stable subalgebra (SSA) of Onoi(C)

a unital subalgebra A of the algebra Oy (C) such that for any f € A, regular
differential w on C', and zy € C, the function fZO fw belongs to A. The intersection

Ac of all SSA of Oye1(C) is again an SSA which is minimal for the inclusion, and
which we call the MSSA of (’)hol(CN').

The present paper is devoted to the study of Ac. We introduce the notion of
a Maurer—Cartan element associated with the curve C, and show each such ele-
ment gives rise via iterated integration to an algebra isomorphism A¢c ~ O(C) ®
Sh(HLR (C)). We also show that Ac is a union of unipotent m; (C)-modules, con-
tained in an algebra of moderate growth functions over C , and is maximal with
respect to this property. All this shows that the properties of Ag are generaliza-
tions of those of Api._g; the isomorphism Ac ~ O(C) @ Sh(Hyg(C)) is also an
analogue of the main result of [Ma]. In the companion paper [EZ], we make Ac
explicit when C' = £\.5, with S a finite subset of an elliptic curve £, and we explic-
itly relate A¢ with the algebra Aj from [BDDT1]. The recent work [DHS], which
introduces nonholomorphic variants of HL functions over one-punctured curves C
of arbitrary genus, could hopefully be related to the present work.

§1.2. The main results

1.2.1. Conventions. The following conventions will be adopted throughout the
paper. The base field of all the algebraic structures (vector spaces, Lie, Hopf, or
associative algebras, etc.) is C. We denote? by C' a smooth complex affine algebraic
curve, as well as the underlying Riemann surface, by p: C — C a universal cover,
and by O(C) the algebra of regular functions on C. Then p*: O(C) = O (C) is
an injective algebra morphism. We denote by Q(C) the space of regular differentials

on C, and we set He := Q(C)/dO(C) (= Hi(C) as C is affine).

1.2.2. Maurer—Cartan elements and the associated isomorphisms. Denote
by g := L(H},) the free Lie algebra generated by H¢; it is graded by the condition
that H¢, has degree 1, and we denote by § its degree completion.

2Except in Remark 1.4(a), in Section 2.4, and in the second half of Section 5.5, where C' takes
a particular value.
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Definition 1.1. Consider the following definitions:

(a) A Maurer—Cartan (MC) element for C is an element .J € Q(C) ® g.

(b) J is nondegenerate if and only if im(J € Q(C) ® § — He @ HE) = id, the map
being given by the tensor product of the canonical projections.

(¢) MC(C) is the set of all MC elements for C, and MC,4(C) is the subset of all

nondegenerate elements.

Let (J,z9) € MCpa(C) x C. One proves that there is a unique smooth func-
tion Ly, : C — exp(d) = G((Ug)") (where G stands for the group of group-like
elements of a topological Hopf algebra, and (Ug)” is the degree completion of the
universal enveloping algebra of g) such that dLj,, = Ly, - J and L, (x0) =1,
which turns out to be holomorphic (see Proposition 2.14).

Define then f‘]@o : Sh(Hg) — Ohol(é) to be the map taking a to the function

(1.1) Frao(a) = (C 3z~ (a,Lyg,(z)) € C),

where (, ) is the pairing Sh(H¢) % (Ug)” — C induced by the composition Sh(H¢) =
Bno Ul = ([T,20 Ualnl)” = (Ug)")".

Similarly to the case of classical hyperlogarithms, L;,, may be viewed as
an element of O, (C) & (Ug)”". Hence Ly, is a generating series of the image
by fru, of a basis of Sh(H¢), which are multivalued functions on C' defined by
iterated integrals. By Lemma-Definition 2.1, if x € C and wi,...,wr € Q(0),
then the iterated integral fv Wy wp = fogtlgmgtkgl Y*wi(t1) A Ay*wg(ty) is

independent of a path « from zy to x, and denoted by f;o w1y - Wk

Definition 1.2. Consider the following definitions:

(a) X¢ denotes the set of sections o: Ho — Q(C) of the canonical projection.
(b) o+ J, is the map ¥¢ — MCyq(C) such that o — J, = >, o(h;) ® h?, where
(h;); is a basis of Ho and (h?); is the dual basis of Hf,.

Lemma 1.3 (See Lemma 2.13). Let (J,z0) € MCpq(C) x C.

(a) The map f])xo: Sh(H¢) — Ohol(é) is a morphism of algebras.
(b) If 0 € X¢, f]mzo([hﬂ <o |hg]) = (& — ;O o(hy)---o(hg)), where [hy]- - |hg]
€ Sh(H¢) is the element corresponding to hy ® -+ ® hy, € H%k.

Theorem A (See Section 5.4). The following statements hold true:

(a) For any J € MCpq(C), the image im(f;,,: Sh(Hg) — Onot(C)) is indepen-
dent of xo € C; it will be denoted He(J).
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(b) Let (J,z0) € MCpa(C) x C. The map fr.,: Sh(He) ® O(C) = Opai(C),
a® f — p*(f) - fJ,mo (a) induces an algebra isomorphism fj.,: Sh(He) ®
oC) — Ac.

In particular, any C-basis of He(J) (for example, the family (£, (w))w,
where w runs over a basis of Sh(H¢)) is linearly independent over O(C) and forms
a basis of Ac as an O(C)-module.

Remark 1.4. Note the following facts:

(a) If C = IP’%: N S, then Hp ~ (CS'OO. A particular element of Y is oy given
by CSeo 2 § + dlog(z — s) € Q(PL ~ S). Then Hprs(Jo) is equal to
C[Ly,w € 8% (see Section 2.4). Tt follows that the algebras Hc(J), where
J € MCpq(C), are generalizations of the algebra of HL functions.

(b) While H¢(J) varies with .J, Theorem A(b) says that the product O(C)-Hc(J)
does not and is equal to Ac.

1.2.3. Group aspects of the isomorphisms associated with the MC ele-
ments. Let I'c = Aut(CN’/C') be the automorphism group of the cover p: C - C;
it is equal to the fundamental group of C, therefore is free with 2h + |S| — 1
generators.

Definition 1.5. For I' a group, define (CT")’ to be the subset of (CT')* of all linear
forms which vanish on the union Unzo((CF)T_f_Jrl7 where (CT")4 is the augmentation
ideal of the group algebra CT.

If T is finitely generated, it follows from Lemma A.6 that (CT) is a com-
mutative Hopf algebra, which may be identified with the function algebra of the
prounipotent completion I'™" (see Appendix D.2). This is in particular the case if
I' = T'¢. The algebra Sh(H¢) is also equipped with a commutative Hopf algebra
structure, the coproduct Agys,) being given by deconcatenation.

Lemma 1.6 (See Lemma 4.6 and Proposition 4.11). For any (J,zg) € MCpq(C)
x C, the map

Piao: Cle x Sh(He) = C, v ®aw (a,Ljz, (v20))

is a Hopf algebra pairing. It gives rise to an isomorphism of commutative Hopf
algebras
v(Pre,): Sh(He) — (CTe).

The relation of this result with Chen’s “mr; de Rham theorem” is discussed in
Remark 4.12.
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The group of C-points of the spectrum of a commutative Hopf algebra O is
Spec(0)(C) := Hom(O,C). Then® Spec(Sh(H¢))(C) = G((Ug)") = exp(g), and
Spec((CT'¢))(C) = G((CT'¢)™) = T'gr(C) (see [BGF, Thm. 3.224] and Appendix
D.2). The group isomorphism corresponding to v(pj 4, ) is

(1.2) I'eg'(C) — exp(g), v — Ly, (y70).

Definition 1.7 (See Definition B.1). A Hopf algebra with a comodule-algebra
(HACA) is a pair (O, A), with O a Hopf algebra and A an associative algebra,
equipped with an algebra morphism As: A — O ® A, which turns A into a
comodule over the coalgebra O.

The action of an algebraic group G on a variety V gives rise to a HACA
(O(G),O0(V)). For any pair (O, a) of a commutative Hopf algebra O and a com-
mutative algebra a, the pair (0,0 ® a) is a HACA, with Apga = Ap ® ida;
it corresponds to the action of G = Spec(O) on V := Spec(O) x Spec(a). In
particular, the pair (Sh(H¢), Sh(He) ® O(C)) is a HACA.

Lemma 1.8 (See Lemma 2.6, Lemma-Definition 5.8, and Lemma B.10%). The

right action (f,v) = fi, = (x + f(yz)) of Tc on Ona(C) induces a HACA struc-
ture on ((CT¢), Ac).

Theorem B (See Section 5.4). Let (J,z) € MC(C) x C. The pair
(v(pr20)s f1.20): (Sh(He), Sh(He) @ O(C)) — ((CT'e)’, Ac)

is a HACA isomorphism.

To the HACA structure (Sh(H¢), Sh(He) ® O(C)) (resp. ((CT¢), A¢)), one
associates an action of the group exp(g) (resp. I'*(C)) on Sh(H¢) ® O(C) (resp.
on A¢). Theorem B can then be translated into an equivariance statement: the
algebra isomorphism fj,, is compatible with the group isomorphism (1.2) and
with the action of its source and target on the target and source of f .

One can also introduce the notion of a connection over a HACA, which gen-
eralizes the notion of connection over a principal bundle in the case of the HACA
(O(G),0(V)), with V a principal G-bundle (see Section 6). We construct a connec-
tion V on the HACA ((CT'¢)’, Ac) and compute its pull-back by (v(pJ.zo), fr.20);
which is independent of zq, for any (J, z¢) € MCya(C) x C.

30ne checks that the bijection Homg._yee (Sh(Heg),C) ~ T\(H*c) = (Ug)” induces a bijection
Home a1 (Sh(He), €) ~ G((Ug)").

The combination of Lemma 2.6 and Lemma-Definition 5.8 implies that Ac is a I'c-
stable subalgebra of FuooOpe1(C) (the notation Fso being as in Lemma B.10), and therefore
that (CT'¢, A¢) is an object in HAMA¢ (see Definition B.9); Lemma 1.8 then follows from
Lemma B.10.
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1.2.4. Isomorphisms of filtrations. Let C be the smooth compactification of
C,and S :=C~ C be the complement of C' in C, which is a finite set; then Cisa
universal cover of C' ~ p~(5). A function of Opoi(C) is called moderate growth if
its growth at the neighborhood of p~1(.9) is moderate in the sense of [Ph, §IX.1]
(see Definition 3.9).

Lemma 1.9 (See Proposition 3.10). The subset Omoa(C) C Onol(C) of moderate
growth functions is a subalgebra, which is stable under the action of T'c.

One attaches a filtration of Onea(C) to the action of I'c on Omod(é) as
follows.

Definition 1.10. For n > 0, we set FnOmOd(é) ={f¢€ Omod(é) | fKCFC)iﬂ =
0}.

Lemma 1.11 (See Proposition 3.12 and Lemma 4.16). The collection of subspaces

FoeOnmoda(C) is an increasing algebra filtration of Omea(C) with Fo(’)mod(CN') =
O(C), stable under the action of I'c.

Inspired by [Ch], we also define two “differential” filtrations of Oy (C).

Definition 1.12. Consider the following definitions:

(a) F(;s(’)hol(é) =C.

(b) For n > 0, Fg+10ho}v(0) = {f € Ohol(C)ld(f) S Q(C) . Fg@hol(C)}.
(c) For n >0, FFOuo(0O) == O(C) - FSOpe (O).

Lemma 1.13 (See Proposition 5.5). Set Fo/" = F/"Opoi(O).

(a) FS and FY are increasing algebra filtrations of Onel(C).
(b) FCFYCcF CcF'C---.

Moreover, let us set F, Sh(V) = @, ,, Shy(V) for n > 0 and V any vector
space, and let us remark that, for 2o € C, the map I, : Sh(Q(C)) — (’)hol(é) given
by [wi]--|wn] — (z — ffo w1 -+ wy) is an algebra morphism (see Lemma 2.2).
Then one has the following.

Lemma 1.14 (See Proposition 5.4). The collection of subspaces Fq Sh(Q(C)) is
an algebra filtration of Sh(Q(C)) and I, (Fe Sh(2(C))) is an algebra filtration of

Onol(C), which is independent of xq.
These various algebra filtrations can be compared as follows.

Theorem C (See Section 5.4). Let (J,z0) € MCpa(C) x C.



ANALOGUES OF HYPERLOGARITHM FUNCTIONS ON AFFINE COMPLEX CURVES 635

(a) One has the following equalities of algebra filtrations of Onel(C):

(1.3) F.Omod(c) = fJJ;O (F. Sh(Hc) X O(O)) = FthM(C),
Ly (Fa Sh(Q(C))) = F2O041(C)
(1.4) = fJ20(Fe Sh(He) ® C + Fo—1 Sh(He) @ O(C)).

(b) One has the equalities

A = Iy (Sh(A(C))) = FL0nai(C) = F£ Opat(C)
(1'5) = fJ,:vo (Sh(HC) ® O(C>) = Fooomod(é)

of subalgebras of O (C), where Foo X = UnZO F,X for FoX a filtration on
a vector space X.

1.2.5. Filtered formality for HACA structures. Theorem B leads to the
following extension of the notion of filtered formality ([SW1]) to the setting of
HACAs. Any Hopf algebra O is equipped with a Hopf algebra filtration F,O,
given when O = (CT) by F,0 = ((CI)’t*")* for n > 0 (see Lemma A.2, [BGF,
§3.3.2], and [Fr, §7.2]), which gives rise to a graded Hopf algebra gr(O). We say
that O is filtered formal if there exists an isomorphism of filtered Hopf algebras
O — gr(0), compatible with the filtrations and whose associated graded is the
identity (see Definition C.2); we show that if a finitely generated group T is fil-
tered formal in the sense of [SW1], then the Hopf algebra (CT')’ is filtered formal
(see Proposition D.18). These notions extend to HACAs as follows. Any HACA
(O, A) is equipped with a HACA filtration (F,O, F,A), whose first term is the
above filtration of O (see Lemma B.3), and therefore gives rise to a graded HACA
(gr(0),gr(A)) (see Lemma C.3). We say that the HACA (O, A) is filtered for-
mal if there is an isomorphism of filtered HACAs (O, A) — (gr(0), gr(A)), whose
associated graded is the identity (see Def. C.4).

Proposition 1.15 (See Proposition 4.18). The HACA ((CT), FooOmoa(C)) is
filtered formal; the associated graded HACA is (gr((CT')’), gr(Omoa(C))), where
the components are the graded spaces associated to the filtrations of (CT) and

Foo Omoa ().
§1.3. Organization of the paper

In Part I we prove the results announced in Section 1.2. In Section 2 (resp. Sec-
tion 3), we introduce the necessary material on iterated integrals, Maurer—Cartan
elements, and hyperlogarithm functions (resp. on moderate growth functions). In
Section 4 we prove that fj ., is an isomorphism of filtered algebras; the argument
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relies on techniques of HACAs, which are explained in the appendices. In Section 5
we prove results on the filtrations on Ohol(é) and their relation with the minimal
stable subalgebra A¢, which lead to the proofs of Theorems A, B, and C.

Part II is devoted to complementary results. In Section 6 we introduce and
study the notion of connections on HACAs. In Section 7 we provide more infor-
mation on the local behavior of elements of Ac, which may be viewed, since
Ac C Omoa(C), as functions on a universal cover of C ~ p~1(S) with mod-
erate growth near each element of p~1(S) (see Proposition 7.2); in particular,
the germs of the functions of A¢ near each such an element are Nilsson-class
functions (in the sense of [Ph, p.154]) of a particular kind. In Section 8 we
relate A¢ to the minimal acyclic extension of the differential graded algebra (dga)
Q°(C) = (0(C)®N(C),d) (see Proposition 8.5). In Section 9 we identify ker(I,)
with the image of an explicit map (see Theorem 9.7(a)), in the spirit of bar-complex
theory (see [H]), and we associate to each section o: He — Q(C) a complement
Sub, of ker(I,) in Sh(2(C)) (Theorem 9.7(b)).

Part III is divided into four appendices, dealing with Hopf algebras and mod-

ule or comodule algebras (HAMAs/HACAS).

Part I. Theorems A, B, C and their proofs

§2. Iterated integrals, Maurer—Cartan elements,
and hyperlogarithm functions

In Section 2.1 we introduce the iterated integral morphism I, attached to a point
To € C and review its standard properties. In Section 2.2 we attach to each
J € MC(C) an algebra morphism J,: Sh(Hg) — Sh(©2(C)). In Section 2.3 (see
Proposition 2.15), we show that it gives rise to the morphism f Jao: Sh(He) —
Ohol(C) from Section 1.2. We show that the image of f ., is independent of ¢, and
denote by He(J) its image. When o € ¥ (see Definition 1.2), we set Hea (o) =
Hco(J,). In Section 2.4 we consider the case where C' = P\ S, and we exhibit
a section o( such that Hp 5(0p) coincides with the algebra of hyperlogarithm
functions (Proposition 2.19).

§2.1. Iterated integrals

Recall that the shuffle algebra (Sh(V),w) associated with a vector space V is
isomorphic to the tensor algebra €~ V@4 as a vector space and that LU is com-
mutative. It has the decomposition Sh(V) = D~ Sha(V'), where Shy(V) is the
degree d component V®¢, which is an algebra graaing; an element v1 ® -+ - @ vg €
V@4 will be denoted [v1]- - |vg] € Sha(V).
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Lemma-Definition 2.1. Let zg € C.
(a) Forz € C and ws,... ,wy, € Q(C), the iterated integral

/w1-~-cwc :=/ Ywr(t1) Ao Ay wg(ty)
g 0<t1 < <tg<1

is independent of a path v from xq to x; it will be denoted f;o Wy - W

(b) For any mn > 0, there exists a unique linear map IJEZ): Sh, (2(C)) = Opai(C)
such that ng)(l) =1, and for any wy,...,w, € Q(C), one has

19 ([ o)) = (w/ww)

(¢) The linear map I, : Sh(Q(C)) — Onol(C) is the direct sum D,>o LEZ).

Proof. Let Qhol(é) be Nthe space of holomorphic differentials on C and let
intg, 1 Qnol(C) = Onei(C) be the linear map w — (z — f;’; w), which is well
defined since C' is simply connected and since the elements of Qy,,1(C) are closed.
Statement (a) follows from the equality fv w1 Wk = ity (W - Nty (We—1 -+ wa -
int,, (w1)))(x). Statements (b) and (c) are obvious. O

One has therefore, for n > 1 and wy, ..., w, € Q(C), the equality (in O (C))

(2~1) Ifco([wl| te |Wn]) = inty, (Ifco([w1| T |Wn—1]) -p*wn).

Lemma 2.2. For anyzo € C, I, : Sh(Q(C)) = Onol(C) is an algebra morphism.

Proof. See for example [BGF, Thm. 3.19, (3.22)]. O
Lemma 2.3. For any zo,21 € C, v € I¢, and a € Sh(Q(C)), I, (a)(z1) =
Lyag (@) (y21).

Proof. Tt suffices to prove this for ¢ homogeneous. One argues by induction on
deg(a). The identity is obvious for deg(a) = 0, and the identity for degree n
follows from the identity for degree n — 1, (2.1), and the invariance of p*w for
we Q0). O

Definition 2.4. If V is a vector space, then Agy, (v is the deconcatenation coprod-
uct on Sh(V'), defined by [v1] - |v,] = S p_glv1] - |vk] @ [Vgt1] - - - [vn] for vy, ...,
vp, € V5 it equips Sh(V') with a commutative Hopf algebra structure.

Lemma 2.5. For zq,2;, € C and a € Sh(Q(C)), one has
(22) Iy, (CL) = I, (a(l))(zl)lﬂﬂl (a(Q))7

where o @ a® is Sweedler’s notation for Agna(ey (a).
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Proof. Let us prove (2.2) by induction on the degree of a homogeneous element a in
Sh(£2(C)). Equation (2.2) is obvious if a has degree 0. Assume that (2.2) is proved
for any a of degree < n and let us prove it in degree n. Let wy,...,w, € Q(C).
Then

Ao ([wr]- -+ |wn]) = Loy ([w1] - - [wn—a]) - p7wn

—wao foor |-+~ ) (1) T, (Wi | - - - |wn—1]) - P
= 2 Lo (w1 -+ lwr]) (@1)d Ly, ([whs1 ] -+ [wn])

—d(zzm ol ) ) o (sl -+ o) )

where the first and third equalities follow from (2.1), and the second equality from
(2.2) in degree n — 1.
It follows that

n—1
L ([wr] -+ lwa]) = Y~ Lug ([wn] -+ - [wr]) (1) Lo, ([wrs1] -+ [wn]) € Onar(C)
k=0
is a constant function. Its value at x; is I, ([w1|- - - |wn])(z1), therefore

n

Lo ([wr] -+ wn]) = D Lug (fwr] -+ lon]) (1) L, ([wia] -+~ lwa]),
k=0

proving (2.2) in degree n. O

Lemma 2.6. Ifzo € C, then I, (Sh(Q(C))) is a T'¢-stable subalgebra of One1(C),
and for any f € I,,(Sh(Q(C))) there exists n > 0 such that fl(crc)iﬂ =0.

Proof. Tt follows from Lemma 2.5 that the map a ® v = aj, = I, (a™)(y

zo)a® defines a right action of I'c on the algebra Sh(€2(C)), and that the alge-
bra morphism I,,: Sh(Q(C)) = Oua(C) is Te-equivariant. This implies that
I, (Sh(Q(C))) is a Tc-stable subalgebra of Oye1(C). The second statement follows
from the equivariance of I, and from a)(cre)ntt = 0 for any a € Sh,(Q(C)). O

§2.2. Maurer—Cartan elements and associated morphisms

Let O be a Hopf algebra with coproduct Ap. For a > 1, let A : 0 = 0%% be
the morphism obtained by iteration of Ap. Let prp: O — O/ (C be the canonical
projection.
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Definition 2.7 (See [Q1, Appx. B3], [BGF, §3.3.2], or [Fr, §7.2]). For n > 0, we
define F, 0 := ker(pr%n+1 o Agz—&-l)).

We also set F_10 = {0}. Note that FoO = C1.

Lemma 2.8. Let O be a Hopf algebra such that O = F, O, with F,O as in
Definition 2.7, let V be a wvector space, and let p: O — V be a linear map
which is a derivation with respect to the counit € of O, i.e. satisfying the iden-

tity u(fg) = p(f)e(g) + e(f)u(g). Then the map ps: O — Sh(V) given by f
Z@o[#(f(l)ﬂ | p(fN)] s well defined (using Sweedler’s notation for the iterated
coproduct of O, which is the counit if r =0), and is a Hopf algebra morphism.

Proof. Since p(1) = 0, the map f — Zrzo[u(f(l)ﬂ--~|u(f(r))] takes F,O to
F, Sh(V) for any n > 0, which implies that u,. is well defined. For f € O, and
denoting by Ax the coproduct of X for X any of the Hopf algebras O and Sh(V),
one has

1% 0 Ao (f) = pe(fV) @ ()
= > OO p(F OO @ (W) (A

r,s>0

= > (O (N @ [T ()

r,s>0
= Agh(v) © px(f)-

For f,g € O, one has
pa(fg) = 2 ln(F Vgl n(F g )]

n>0

=D [ ug™) + p(FD)elg™)] - e(£ ") ulg™) + n(F)e(g™)]

n>0

k 1 k !

= Z Z Z Hﬂ(f(w)ia H“(g(jb))jb H e(gli)) He(f(jb))

n>0n=k+! K,L||K|=l,|L|=l a=1 =1 et paie
KUL=[1,n]

=S WU NE ™) g

n>0 n=k+l K,L||K|=l,|L|=l
KuL=[1,n]

=D D0 WO (N w g - 1ulg™)] = ma(f)pe(9),

n>0n=k+I

where the transport to Sh(V') of the product in the tensor algebra T'(V') is denoted
by the first two product signs in the third line and by - in the fourth line; in the
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third line, we denote by v — v* the map
Vo Sh(V), v [LeeeLfo]1--1],
—~ T

and by (41, ...,4) and (j1,...,7;) the increasing sequences such that K = {4y, ...,
ix} and L = {j1,...,5}; in the fourth line, z — x¥ is the map Shy (V) — Sh(V),
[w1] ..., ox] = TTF_, vie and y — y* has a similar meaning.

This proves that p, is compatible with the products and coproducts; one
checks that it is compatible with the other aspects of the Hopf algebra structure
(unit, counit, antipode). O

Lemma 2.9. For V a vector space, Sh(V) = F,(Sh(V)), where Fy Sh(V) is® as
in Definition 2.7.

Proof. Since Sh(V) is a connected graded Hopf algebra, this follows from Propo-
sition A.2(d). O

Let J € MC(C) (see Definition 1.1). Let uy: Sh(He) — Q(C) be the compo-
sition Sh(He) ~ B,,5( T(HE)[n]* = @D, LHE) [n]* — Q(C), where the second
map is dual to the inclusion L(HE)[n] C T(HE)[n] and the last map is induced
by J.

Lemma 2.10. Let J € MC(C). Then the linear map py: Sh(He) — Q(C) is a
derivation with respect to the counit of Sh(Hc).

Proof. For f,g € Sh(H¢), one has
hs(f9) = (Fg@10)(J) = ( © 9 ©10)(Agges) 1))
= (f @ g@id)(J¥ + J*) = ps(f)e(g) + e(S)na(9),

where the third equality follows from the primitiveness of the first component of
J, and z — 213,223 are the maps T(H}) ® Q(C) — T(HE)®? ® Q(C) induced by
IQw—tR1Qw, 1®tQw. O

Corollary 2.11. If J € MC(C), then the map

(2.3) Jo: Sh(He) = Sh(QC)), &> [ns ()] s (67)]

r>0

is well defined, and is an algebra morphism.

Proof. This follows from Lemmas 2.8, 2.9 with V = H¢, and 2.10. O

5This “Hopf algebra” filtration of Sh(V') can be shown to coincide with the “degree” filtration,
which a posteriori justifies denoting them in the same way.
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Lemma-Definition 2.12. For J € MCyq(C), there is a unique o € ¢ such that
the degree 1 component of J (for the degree of L(He)* ) is equal to J,. This defines
a map MCph4(C) — ¢, J — oy. It satisfies the identity oy, = 0.

Proof. Obvious. O

Lemma 2.13. The following statements hold true:

(a) Foro € ¢, the morphism (J5)«: Sh(Hg) — Sh(Q(C)) (see Definition 1.2) is
graded, and coincides with the morphism o, functorially induced by the linear
map o.

(b) For J € MCy4(C), the morphism J.: Sh(He) — Sh(Q(C)) is compatible with
the filtrations Fy of both sides, and the associated graded morphism coincides
with the morphism attached to oy so gr(J.) = (0.7)x-

Proof. (a) is obvious. For (b), let n > 1, hy,...,h, € Ho, and & == [hq]--- |h,] €
Sh(H¢). Then for r > n,

s
V@@ €d,,h @ ®hy + @ Sh(He)® ™' @ 1@ Sh(He)®
i=1
which since pj(1) =0 ( ee Lemma 2.10) and py(h) = o;(h) for h € He implies

[0 (EON] - s (€0D)] rmlos(h1)|---|os(hy)]. The statement follows by com-
bining this with (2.3). O

§2.3. The algebras Hc(J), He(o)
Let J € MCya(C), d := dim(H¢), and (h;);ep1,ap be® a basis of He. Then

(Lo © Ju(Thiy |-+ |hi 1)) k20,4, ine1.d]

is a family of elements of H¢(J). When J = J, with o € X¢, this family is equal
to

(Lo ([ (R, )] -+ |‘7(hik)]))kzo,il,...,ike[[l,d]]'
The following statement is a generalization of [Br, Cor. 5.6].

Proposition 2.14. For (J,z0) € MCpq(C) x C, the element

Ligo = >, Lpodu(lhi|-[h])® (A" ®---@h'*) € Oht(C)BT((Ho)"),
£>0
i15eesin €[1,d]
where (hi)ie[u,d]] is the basis of (He)* dual to (hi)icj1,q), satisfies the equality

(24) (d X ld) (LJ’IO) = LJJO -J

We set [[1,d] = {1,2,...,d}.



642 B. ENRIQUEZ AND F. ZERBINI

(equality in Qo (C) & T((He)*)), as well as Lo, (zo) = 1; it is the only element

~ ~

of the algebra Ono1(C) & T((He)*) satisfying these conditions.

Proof. It follows from the definition of p; that

J=Y S (b ki) @B @@ bt
720 (i1 ..nyi) €[1,d]"
(equality in Q(C) ® f(Hg)), and therefore, expanding J as a sum ), wqa @ 2%
(convergent for the topology of Q(C) ® T(HE)), that

Lico = > Lup(way| -+ |wa,]) ® 2 2.

r>0 ap,...,0p

Then
(d® ld LJmo Z Z Iy ( Wa1| |wa7»71])wa7- ® x* -z

r>1ay,...,an

=Lym Y wWa®2* =Lyg,-J.
(0%

The second statement follows from the fact that t — I (¢)(xg) is the aug-
mentation map Sh(Q(C)) — C. The uniqueness follows from the fact the ratio of
two solutions must be equal to 1 at zy and be killed by d, hence be 1. O

Equation (2.4) is a generalization of [Br, eq. (5.1)], and L, is a generaliza-
tion of the solution L(z) of this equation constructed in [Br, Prop. 5.1].

Proposition 2.15. For any (J,z9) € MCpha(C) X C, the algebra morphism I, o
Je: Sh(He) — Onol(C) is such that for any a € Sh(He),

Iy 0Ji(a) =(id®@a,Ljg,)-

Therefore, I, o J, = f‘]m) (see (1.1)); in particular fNJ@O: Sh(H¢) — Ohol(é) 18
an algebra morphism.

Proof. Tt follows from the fact that (k,41,...,9%) — [hi, |- |hi ] and (K, i1, ..., k)
+— A ® .- ® h'* are dual bases of Sh(H¢) and T(H). O

Lemma 2.16. Let J € MCpnq(C). The image f.,(Sh(He)) is independent of

zo € C. We denote this subalgebra by He(J) C Onol(C) and set He(o) = He(J,)
for any o € Y¢.

Proof. Let xg,z1 € C. Let pizl: Sh(He) — C be the map ¢ +— I, (J«(t))(w1).
This is an algebra morphism, as 1t 15 the composition of the algebra morphism
fJ,wo and the morphism C’)mod(C) 21, € of evaluation at x1. Set ajl = (upt ®
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id) o Agh(m.); this is an algebra endomorphism of Sh(H¢) as it is a composition
of algebra morphisms. It is also a vector space automorphism of Sh(H¢) since
it is compatible with the filtration and the associated graded endomorphism of
gr(Sh(Hc)) is the identity. Therefore, a3} is an algebra automorphism of Sh(Hc¢).

Equation (2.2) implies the identity I, (J.(t)) = I, (J. (M) (20) L, (J« (t3)))
(equality in O (C)) for any ¢ € Sh(H¢), therefore the equality I, 0.J, = I, 0Jy0
ai} (equality of maps Sh(H¢) — Onot (0)), ie. fra = Frm 0 aj}, which together
with the bijectivity of az! implies the statement. O

§2.4. The algebra #H (o) in the genus-zero case

Let S C P} be a finite set containing 0 and oo, let C :=PL \ S. Recall the linear
isomorphism He ~ CSoo, where Soo = S~ {oo} and let 0¢ € £¢ be such that for
any s € Soo, 00(8) = dlog(z—s). By Lemma 2.16, one attaches to it the subalgebra
HP%\S<UO) C Ohol(5)~

Set HY = @, e 0y C5 € He and Sh*(He) = C & [HY| Sh(Hc)] (recall
that [—|—] denotes the concatenation in Sh(H¢)). Then Sh*(H¢) is a subalgebra
of Sh(Hc)

Lemma 2.17 (See [Pa, §3.3]). The following statements hold true:

(a) Denote by Sh*(He)[X] the polynomial algebra in one variable over the algebra
Sh*(H¢). The combination of the canonical injection Sh*(H¢) < Sh(He) and
of the assignment X — [0] gives rise to an algebra isomorphism Sh*(He)[X] —
Sh(Hc).

(b) Let § > 0 be such that ]0,6[ C C. Fiz a connected component K of p~1(]0,d]).
The restriction of p is a bijection K —]0,6[; denote by qi: 10,0 — K the
inverse bijection. For t € Sh*(H¢) and z € C, the limit

lim 1y, () ((00)«(2))(2)

e—0

ezists; the function
o olt) = (22 lim (0 (00). (1)(2))

belongs to Onoi(C); the map f;op: Sh*(He) — Opai(C), t — f;g’o(t) is an
algebra morphism.

Definition 2.18 (See [Pa, §3.3]). We denote by f,,0: Sh(Hg) — Onot (C) the
composition with the inverse of the isomorphism of Lemma 2.17(a) of the mor-
phism Sh*(H¢)[X] — Oha(C) extending f3,.0 by X = log.
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The map fao,o is an algebra morphism. For w € S;O C Sh(H¢), the element
f{,070(w) € Opol(C) is denoted L, in [Pa, §3.3] and called the hyperlogarithm
function associated to w.

Proposition 2.19. One has f,, o(Sh(H¢)) = C[L,|w € S*] = Hpr s(00)-

Proof. Fix zy € C. The subalgebra Sh*(H¢) of Sh(H¢) is a right coideal for
the coalgebra structure, so that Agy ) induces an algebra morphism Agyp« (. :
Sh*(H¢) — Sh*(He) ® Sh(He). Composing with the tensor product of the com-
position

7 ~  ev,
Sh*(He) —2% Opoi(C) —2% C

with the identity, one gets an algebra morphism ((ev,, o ~;0,0) ® id) o Agp=(He):
Sh*(H¢) — Sh(H¢). By Lemma 2.17, there exists a unique algebra endomorphism
ag’ of Sh(H¢), whose restriction to Sh*(H¢) coincides with ((ev,, o ~;0,0) ®1id) o
Agh ey and such that [0] — [0] + log(zo). One checks that a® is compatible
with the filtration of Sh(H¢) and that the associated graded endomorphism of
gr(Sh(Hc)) is the identity, so that af® is an algebra automorphism of Sh(Hc).

Specializing (2.2) for t € (0¢)«(Sh*(H¢)) and taking its limit for = — 0, one
obtains the equality f7 (t)(2") = fi, o(t")(2") L/ (o0(t?))(2") for t € Sh*(Hc)
and any 2/,2"” € C. Setting 2/ := zo in this identity and viewing both sides as a
function of z”, one obtains the identity

Fa00() = 3,0t (20) Lo (00) (t2))

(in Ope1(C)) which is equivalent to the statement that the restrictions to Sh*(Hc)
of fsy0 and I, o (0¢)s 0 a2, which are algebra morphisms Sh(H¢) — Opoi(C)
are equal. The images by these morphisms of [0] € Sh(H¢) are also equal, since
Fowol[0) = (= = log(2)) while az*([0]) = [0] + log(z0) and L., o (00).(0]) =
(z — log(z) — log(zp)). As Sh(H¢) is generated by Sh*(H¢) and [0], the algebra
morphism status of both f,, o and I, o (c¢)« 0 aZ® implies that

(25) -on,O = IZO o (UO)* o ago = fUO’O o a(Z)o

(equality of algebra morphisms Sh(Hg) — O (C)).

One then has fryo(Sh(He)) = fopzy © a2 (Sh(He)) = fro,en(Sh(He)) =
Hp1s(00), where the first equality follows from (2.5), the second follows from
thevautomorphism status of ag’, and the last from Lemma 2.16.

One also has C[L,|w € S%] = fo,.0(Clwlw € §%]) = fuy.0(Sh(He)). O

Remark 2.20. The element J,, = > ¢ dlog(z — s) ® h® is related to the
Knizhnik—Zamolodchikov (KZ) connection as follows. Recall that this connection,
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denoted Vkz = d + Akyz, is an exp(t,)-connection over the configuration space
Cr(C) of n points in C, where t,, is the topological Lie algebra with generators
tij, © # j € [1,n] and relations t;; = t;; for |{i,j}| = 2, [tix + tjk,ti;] = 0 for
{4, 5, k} = 3 and [ti;, ty] = 0 for [{i, j, k,1}| = 4, and that Axz =3, dlog(z; —
zj) @ tij. Let (s1,...,8,) € Cn(C) and So = {s1,...,5p}; then C \ S is the
preimage of (s1,...,s,) by the projection Cy41(C) — Cy(C). Let injg_: C \
Soo = Cpnt1(C) be the canonical injection, and let ¢: L((He)*) — t,41 be the Lie
algebra morphism induced by h' + t; ,41 for i =1,...,n. Then

t(Jop) = (injs_ )" (Akz)-

§3. Moderate growth functions

In Section 3.1 we introduce the algebra Op,0q(C) of moderate growth functions on
57 and in Section 3.2 the space of moderate growth differentials Qmod(CN' ), which
is a module over it. In Section 3.3 we study the relations of the iterated integral
morphism I,, with moderate growth functions.

§3.1. Moderate growth functions on C

3.1.1. Moderate growth functions on a disc. Set D = {z € C | |z]| < 1},
D* := D~ {0}, and D* := {u € C | S(u) > 0}. Let e: DX — D* be the map
defined by e(u) = exp(2miu) (we set i :== /—1), and let 6 be the automorphism
of D* given by #(u) = u + 1. For f: M — N a morphism of complex manifolds,
we denote by f*: Opol(N) = Onot(M) the induced morphism between algebras of
holomorphic functions. For F' = D, D*| BX, we denote by Oyel(F') the algebra of
holomorphic functions on F'.

Definition 3.1 (See [Ph, Chap. VIII, Def. 1.2]). Define Opmoda(D*) C Oho(DX)
as the set of functions f such that there exist an integer n > 0 and a function
{(a,b) € R? | a < b} 3 (a,b) = Cup € Ry such that |f(z + iy)| < Cype*™™ for
(x,y) € [a,b] x R4.

Remark 3.2. If f satisfies these conditions for the pair (n, (a,b) — Cq ), then it
satisfies it also for (n + 1, (a,b) — Cqp).

Lemma 3.3. The subspace Omod(ﬁx) is a subalgebra of Ohol(ﬁx), equipped with
an action of Z. where 1 acts by 0*.

Proof. The constant function c¢ satisfies the conditions from Definition 3.1 with
n = 0 and (a,b) — C,p = |c|; if the function f (resp. g) satisfies them with
(n,(a,b) — Cqp) (resp. (m,(a,b) — Dgy)), then the function f + g satisfies
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them with (max(n,m), (a,b) — Cqp + Dayp), the function fg satisfies them with
(n+m,(a,b) = CqpDqp), and the function * f satisfies them with (n, (a,b) —
Coat1,p41)- O

Definition 3.4. Set O(D*) := {f € Opot(D*) | In >0, 2" f € Opai(D)}.

Then O(D*) is the algebra of meromorphic functions on D with the only
possible poles at 0.

Lemma 3.5. Opoq(D*)% = O(D*).

Proof. The inclusion Opeq(D*)% > O(D*) is evident; let us show the opposite
inclusion. Let f € Omod(ﬁx)z. Then there exist n > 0 and Cy1 € Ry, such that
|f(z +iy)| < Co1e*™™ for any (z,y) € [0,1] x Ry. Since f is Z-invariant, f €
Onol(D*), therefore 2" f € Ono(D*). For z € D>, there exists a unique (x,y) €
[0,1] x Ry such that z = e(z + iy). Then [2"f(2)| < Co1e " e*™ = Cj ;1. By
the removable singularity theorem (see [L, Thm. 3.1]), 2™ f is the restriction to D*
of a function of Oye1(D), therefore f € O(D*). O

3.1.2. The algebra Opmeq(C) of moderate growth functions.

Definition 3.6. Consider the following definitions:

(a) (C,S) is the pair of a nonsingular projective algebraic curve C' and a finite set
S of complex points of C such that C = C . S.

(b) For s € S, ¢s: D — C is an injective holomorphic map, such that 0 ~ s
and ¢4(D) NS = {s}; we set U, :== ¢4(D) C C, so that ¢ corestricts to a
biholomorphic map D =% Us.

(¢) For s € S, pX: D* — C is the injective holomorphic map obtained by restric-
tion of ps; we set US := U, \ {s}, so that ¢ corestricts to a biholomorphic
map D* = UL.

(d) For s € S, we set UX := p~L(UX) and X, := mo(UX); for x € X, we define
UX_ as the connected component of ﬁSX corresponding to x.

s,T
(e) For s € S and v € X, ¢7,: D* — C is a holomorphic map with image
contained in US,,

biholomorphic map D* — U'SXI

such that po ¢, = ¢ oe. Then ¢, corestricts to a

The choice of (p7,)ses,zex, is not unique, but any two choices are related by

’(/;?z =@, 00%= where (as.)seszex, is in D.cs 7%,
For any s € S, the group I'c acts on U, and therefore also on the set X.
The latter action is transitive, and the stabilizer of any element z € X; is a cyclic
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group, generated by an element 6, , € I'c which restricts to an automorphism of
ﬁsfﬂ, equal to the conjugation of § by the corestriction of ¢, to an isomorphism
D* — ﬁsfx.

Lemma 3.7. There exists a map c: I'c x Xy — Z satisfying the identity
c(y'v,z) = c(v,yx) + c(v,x), such that for any (v,xz) € T'c X X, one has
Poyz © 6 = 40 @3 (equality of holomorphic maps D* — 5}

Proof. The existence of a map c satisfying the identity p;. ., o 61 = 40 Doz
follows from the fact that for any pair of holomorphic maps a, 5: D* — C such
that poa = ¢S oe = po 3, there exists n € Z such that § = a o §". Then
B g 00T =y BX =y 0@k 00D =X, 060" 1%) 0ge(1:®) which
implies the identity satisfied by c. O

Lemma 3.8. The following statements hold true:

(a) For any s € S, the space X X D* s equipped with an action of U'c given by
v (x,d) = (yx,0°"*)d). The induced right action of T on [Loex. Ohol(DX)
is given by (fm)IGXS Y= (gz)zGXs} where g, = (QC(W’I))*(J{YI)'

(b) The map [],cq Xs X D* = C, (s,z,d) — ¢ (d) is T'c-equivariant, its source
being equipped with the direct sum of the actions of T'c defined in (a). It induces
a I'c-equivariant algebra morphism

(3.1) D I @) : 0@ = P [ Onar(D¥),

seS reX, seS reX

in which the target is equipped with the direct sum over s € S of the right
actions from (a).

Proof. This follows from Lemma 3.7. O

Definition 3.9. Denote by O,,04(C) the subset of Op01(C) of all functions f such
that, for any s € S and = € X, one has (¢7,)*(f) € Omoa(D™).

Proposition 3.10. The subset Omoa(C) is a subalgebra of Opoi(C), stable under
the action of I'c.

Proof. This follows from the equality of Onoed(C) with the preimage of the set
D.cs [locx, Omoa(D*) under (3.1), and from the fact that this is a I'c-stable
subalgebra of the target of (3.1). O

3.1.3. Computation of Opneq(C)TC.

Lemma 3.11. For anys€S, the diagonal embedding O(D*) = [[,cx. Omod(DX)
gives rise to an isomorphism O(D*) =~ ([[,cx. Omoa(D*))Fe.
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Proof. The fact that the image of the diagonal embedding is included in the
set ([Lex. Omoa(D*))Te is evident; let us prove the opposite inclusion. Let
y € Xs. The stabilizer of y for the action of I'c on X, is a cyclic group, gen-
erated by an element 0, € I'c such that c(fy,y) = 1. If now f = (fs)eex, €
(ITzex. Omod(D*))'e, then f = f - 0,, therefore for any = € X, one has f, =
(0°Cw®))*(fg, ), which for z = y implies f, = 6* f,. By Lemma 3.5(b), this implies
fr € O(D*). For any v € T, one has f = f -+, which given the ¢-invariance of
each f;, x € X, implies f, = f,, for any x € X. Since the action of I'c on X is
transitive, this implies that the map = + f, is constant. O
Proposition 3.12. Op0a(C)F = O(C).
Proof. Let n > 0. It follows from Proposition 3.10 that (3.1) induces a linear and
I'c-equivariant algebra morphism
(3:2) Omod (C) = P11 Omod(D).
seSreX,

This map restricts to a linear map Omoa(C)FC — (Dses [aex. Ormod(D*))Fe.
The target is equal to D, s([[.cx. Omod(D*))Fe, which by Lemma 3.11 is equal
to @, O(D>). B N

On the other hand, Opea(C)T¢ C Oho1(C)F¢ = Opei(C). All this implies that

Omod(C) is the preimage of @, 5 O(D*) by the map

PeX): Ona(C) = P Ona(D),

seS seS

which is equal to O(C). O

One checks that the subalgebra OmOd(f)) - (91,01(5') is independent of the
choice of the family (ps)ses-

§3.2. The module Qmod(é) of moderate growth differentials

If M is a complex manifold, let Qp (M) be the dga of holomorphic differen-
tial forms on M. Then Qf (M) = Ono(M). The assignment M +— Qf (M) is
a contravariant functor, so a morphism f: M — N of complex manifolds gives
rise to a dga morphism f*: Qp |(N) — Qp ,(M). If M is 1-dimensional, we set
Ohat (M) = Q}llol(M); then Q01 (M) is an Ope1 (M )-module, equipped with a deriva-
tion d: Ohol(M) — Qhol(M).

Lemma 3.13. The space uo1(D*) is a free rank 1 module over Ono(D*) gener-
ated by e*(dz/z), so f — f-e*(dz/z) gives rise to a Opnel(D*)-module isomorphism
Onat(D*) =5 Qo (DX).
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Proof. This follows from the fact that dz/z is an invertible differential in Qo (D),
which implies the same about its pull-back by D* — D*. O

Definition 3.14. Define Quod(D*) = Omoa(D*) - €*(dz/z) as the image of
Omod(D™) under the isomorphism from Lemma 3.13.

Lemma 3.15. The space Qyoq(D*) is a free rank 1 module over Omoa(D).

Proof. The follows from the injectivity of the map Ohol(ﬁx) — Qhol(ﬁx), e
f-e*(dz/z). O

The morphism [[ cg [[,ex, ¥sa: [lies [Liex. D* — C gives rise to a mor-
phism

(3.3) @ H (PX2)": Dot (C) — @ H ot (D)

seS xeX; seES reXy

Definition 3.16. Define ,0q(C) as the preimage of Docs [Leex, Qmod(DX)
under (3.3).

Lemma 3.17. The space Qmoa(C) is a module over Opod(C).

Proof. If f € Omod(C), w e Qmod(C) then fw € Qhol(é). If se Sand z € X,,
then 4} ,(fw) = i} ,(f)i% (W) € Qmoa(D™), where the last relation follows from
it o (f) € Omoa(DX), f;w( w) € Qmod (D). Therefore, fw € Qmoa(C). O

Since D* is simply connected, the assignment w — (z > J7w) is a well-
defined linear map inti: Qpoi(D*) — Opol(D*).

Lemma 3.18. The map int; takes Qmod(ﬁx) to Omod(ﬁx),

Proof. Let w € Qumoa(D*). Then there exists f € Opmoa(D*) such that w = f -
e*(dz/z). Let n > 0 and (a, b) — C, ; be the integer and function associated with f
(see Definition 3.1). Then int;(w) € Opoi(D*) is the function u — 27i [ ) du.
Let A > 0 and v = z + iy with x € [-A, A]; set C4 := C_4 4. Then the path of
integration may be chosen as the sequence of paths i — iy — u = x + iy; therefore
JE @y du' = [ fydu + [T ) du' = [ fGt)dt+ [y f(E+iy)dt.

One has |f(it)] < CAeQ’mt for t € [1,9], Whlle |f(t +iy)|] < Cae®*™ for
t € [0,2]. Therefore |i [/ f(it)dt| < Ca| [ e*™ dt| = Cale*™ — e*™|/(2mn),
and | [ f(t+iy)dt| < ACAeQ’T"y. Therefore

|e27rny _ e27rn|

(3.4) Ndu'| < Cy + AC 4>,

2mn
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If y > 1, the right-hand side of (3.4) is < Ca(A + 1/(2mn))e?™™ (express-
ing the absolute value as its argument as the latter is > 0 and bounding the
resulting expression from above by removing the negative term); if y < 1, the
right-hand side of (3.4) is < Cae?™/(27n) + ACAe*™¥ (expressing the abso-
lute value as the negative of its argument as the latter is < 0 and bounding
the resulting expression from above by removing the negative term) which is
< Ca(e®™/(27n))e*™™ + AC 4€*™ (as €™ > 1), therefore the right-hand side
of (3.4) is < (A + (€™ /(27n)))C4€>™.

Set Dy = (A+ (e*™/(2mn)))Ca; then one obtains [i [[* f(u') du'| < Dae*™Y
for every u € [—A, A] +iRY, and therefore |fiuw| < 27D ge*™Y for any u €
[—A, A] +iR. This shows that u — [\ w satisfies the condition of Definition 3.1
with the pair (n, (a,b) = 27 Diax(|a],|p])) and therefore belongs to Omoa (EX) O

Fix a point zg € C.

Lemma 3.19. The map int,, (see Section 1.2.2) takes Qmod(é) to Omod(CN').

Proof. Let w € Qm0a(C). Let s € S and 2 € X;. By additivity of the integral with
respect to the composition of paths, one has
@)

(3.5) (P50)" (it (w)) = / w + int; (¢ ;) w)

Zo

(equality in (’)hol(f)x))7 where fxisx’”(i) w belongs to C. Since w € Qypa(C), one
has (¢7,)*w € Qmoa(D*); it then follows from Lemma 3.18 that int;((p),)*w) €
Omod (5X) Since Omod(ﬁx) is an algebra containing C, it follows that the right-
hand side of (3.5) belongs to Opoea(D*). Equation (3.5) then implies the relation
(P2 2)" (intg, (w)) € Omod(D*). As this holds for any s € S and z € X, one derives

intz, (w) € Omoa(C). O
§3.3. Iterated integrals and moderate growth functions

Lemma 3.20. The following statements hold true:

(a) The maps e*: O(D*) = Ouo(D*) and e*: Q(D*) = Quoi(D*) have their
images respectively contained in Onod(D*) and Qmea(DX).

(b) The maps p*: O(C) = Onoi(C) and p*: Q(C) = Qnoi1(C) have their images

respectively contained in Omod(C) and Qmed(C).

Proof. (a) Let f € O(D*). Then there exist n > 1 and g € O(D) such that
f=g/z". Thene*f = e*g/(u — e(nu)). The function g is bounded on D, therefore
there exists C' € R such that for any u € D*, |(e* f)(u)| < C|1/e(nu)| = Ce?™Y.
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So e* f satisfies the condition of Definition 3.1 with the pair (n, (a,b) — C), so
e*f € Omoa(D™).

Let w € Q(D*). There exists f € O(D*) such that w = f - (dz/z). Then
e*w=c*f e*(dz/z) € Omoa(D*) - e*(dz/2) = Qmoa(D*) (see Definition 3.14).
(b) Let f € O(C) and s € S, x € X;. Then it follows from ¢ oce =po @y, that
(B20)0"f = €*(97)*f. Then ()" € O(D), and (a) then implies ¢*(o¥)*f €
Omoa(D*). Tt follows that (PX.)pf € Omoa(D*) for any pair (s, ), therefore
by Definition 3.9, that p*f € Omod(é).

Similarly, let w € Q(C) and s € S, z € X,. Then (¢7,)*p*w = e*(¢)*w,
and since (X )*w € Q(D), (a) implies e* (02X )*w € Qmoa(D*). It follows that
(PX.)P'w € Qmod(D*) for any pair (s,z), therefore by Definition 3.16, that
p*f € Qmod(gv)' O

Proposition 3.21. For any zo € C, the image of I, : Sh(Q(C)) — Ohol(é) is
contained in Onod(C); therefore it induces an algebra morphism I, : Sh(Q(C)) —
Omod(C).

Proof. We prove inductively on n > 0 that 1m(Ig(C:,L)) C Omoa(C). This is obvious
if n = 0. Assume that 1m(I(" 1)) C Omoa(C). Let wi,...,w, € Q(C). By the
induction hypothesis, 18"~ 1)([w1| -+ |wn_1]) € Omoa(C), and by Lemma 3.20(b),
prwy, € Qmod(a); since Qmod(a) is a module over Omod(é’) (see Lemma 3.17), then
I ([wi] - - Jwn-1]) - P*wn € Qmoa(C). Lemma 3.19 then implies the relation

inty, (I(n 2 ([Wl‘ o lwnoa]) - ptwn) € Omod(6)~

By (2.1), the latter term is Ia(p0 ([wi] - |wn]), and therefore Ig;)([wﬂ s wy]) €
Omod(c) S0 lm(Iﬂ(co ) - OmOd(C) =

§4. The isomorphism of filtered algebras
fr,20: FeSh(He) @ O(C) = FeOmoa(C)

We start this section with reminders on filtrations (Section 4.1). We compute the
restricted dual (CT'¢)’ of the Hopf algebra CT'¢ in Section 4.2. We define a pair-
ing pya, between this Hopf algebra and F Sh(Hg) = Sh(H¢) in Section 4.3
and prove in Section 4.4 that the induced Hopf algebra morphism v(p;z,) is an
isomorphism (Proposition 4.11). We define a filtered algebra morphism f;,, in
Section 4.5 and use Proposition 4.11 and Proposition B.18(b) to show in Propo-
sition 4.17 that it is an isomorphism. In Section 4.6 we use the material of this
proof together with Proposition B.18(c) to prove a filtered formality statement.
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§4.1. Background on filtrations

A wector space filtration of a C-vector space M is an increasing collection Fq M =
(E5 M) >0 of vector subspaces of M. The filtration Fy M is called ezhaustive if and
only if |J,,~o FnM = M. If F,M is a filtration of M, then Foo M ==, FnM is a
vector subgpace of M, called the total vector space of the filtration; then F, M is an
exhaustive filtration of this vector subspace. The associated graded of FgM is the
graded C-vector space gr,(M) = @, -, gr,, (M), where gr,, (M) = F,M/F, 1M
(with F_; M = 0). -

Let f: M — N be a morphism of C-vector spaces and FeM be a filtration
of M. Then f is said to be compatible with a filtration Fe N on N if and only if
f(F,M) C F,N for any n > 0. This is the case in particular if F¢N is the image
of FeM by f (denoted f(FoM)), defined by F,,N := f(F,M) for any n > 0; one
then has F.u N = f(Fo M).

Lemma 4.1. If M, N are filtered vector spaces and f: M — N is a linear map
compatible with the filtrations, and such that gry(f): gre(M) — gry(N) is an iso-
morphism of graded vector spaces, then the maps F,f: F,M — F,N for any
n >0, as well as Foo f : FooM — Fo N, are linear isomorphisms.

Proof. Let us prove the first statement by induction on n > 0. The map Fyf :
FoM — FyN is the composition of the isomorphisms FoM ~ groM, groN =~
FyN, and gry(f), which is an isomorphism, therefore Fyf: FoM — FyN is an
isomorphism of vector spaces. Let n > 0 and assume that F), f is an isomorphism
of vector spaces. The image of ker(F,,41f) C Fop 1M — gr,, M is contained
in ker(gr,,,f) which is 0 by assumption, so this image is 0, which implies that
ker(F,+1f) C F,M; the restriction of F,1f to F, M coincides with F), f, which
by the induction hypothesis is injective, therefore ker(F,,+1f) = 0, so F,q1f is
injective. For y € F,41N, let § be its image in gr,,,;N. By the surjectivity of
gr,41(f), there exists o € gr,, .y M with image § by gr,, ., (f). Then if x € F,, .1 M
is any lift of «, one has F,,11(z) = y mod F,,N. Then y — F,,11(x) € F,,N. Since
F.f: F,M — F,N is surjective, there exists ©o € F,,M such that F,(xzg) =
y — Foy1(x). Then y = F,,(z 4+ x¢), which implies the surjectivity of F,,11f. It
follows that Fj, 11 f is an isomorphism, proving the induction.

One has ker(Fo f) = U,,>oker(Foo f) N M) = |U,,5 ker(F, f) = 0, where
the first equality follows from FooM = U0 FnM and the last equality follows
from the injectivity of F, f for n > 0; this shows the injectivity of Fo f.

For any n > 0, one has im(FoM) D im(F,M), and im(F,M) = F,N by
the surjectivity of F, f. Then im(Foo M) D U, FnlN = Foo N, which shows the
surjectivity of F. f. It follows that Fio f is a linear isomorphism. O
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If FoM and F,N are filtrations of C-vector spaces M and N, then a filtra-
tion Fo(M ® N) of their tensor product M ® N is defined by F,(M ® N) :=
Zp-‘rq:n FyM ® FyN; we denote it by FoM ® F,N, and we call it the tensor
product of FeM and FyN.

An algebra filtration of a C-algebra A is a vector space filtration Fy A of A,
such that F,A - F,A C FhimA for nym > 0. Then F, A is a subalgebra of
A, called the total algebra of the filtration; gr,(A) is then a graded algebra. If
f: A — B is an algebra morphism and F,A is a filtration of A, then f(F,A) is
an algebra filtration of B. If Fy A and F,B are filtrations of C-algebras A and B,
then FoA ® FoB is an algebra filtration of A ® B.

An example of a filtration of an algebra A is the trivial filtration F*'V A defined
by VA = A for any n > 0. If A has a unit, another example is the unit filtration
FMmit 4 defined by Fy™*A = C1 and F'*A = A for any n > 0.

Similarly, a Hopf algebra filtration of a Hopf algebra H with coproduct Ag
is a vector space filtration Fg H of H, which is an algebra filtration and such that
Apg(FoH)C 3o o FpH ® FyH for any n > 0. Then Fio H is a Hopf subalgebra
of H and gr,(H) is a graded Hopf algebra.

§4.2. Computation of (CT'¢)’

In Appendix D.1 we recall the category CHA of complete Hopf algebras (CHAs)
and the functor HA oo — CHA, H — H” with source the category HA coco Of
cocommutative Hopf algebras.

Lemma 4.2. If T is a free group, there is an isomorphism (CI')" ~ f(f‘ab ®C)
of CHAs, where TP is the abelianization of T' and for V a vector space, ZA“(V) 1s
the CHA defined as the degree completion of the tensor algebra of V, where the
elements of V' are primitive.

Proof. By assumption, I' is the free group over a set X. Let (7;)zex be the
corresponding generating family. Then T**®@C = CX; let (v,)zex be the canonical
generating family of CX. The assignment v, — exp(v;) (defined as Y-, o, v$"/n!)
for x € X defines a group morphism I'" — f((CX )*, therefore an algebra morphism
Cr—T (CX), which is checked to be compatible with coproducts. It is compatible
with augmentations, therefore gives rise to a CHA morphism (CI)" — T(CX).
The assignment v, + log(v,) (defined as Y o, (=1)"*'(y, — 1)"/n) for z € X
defines a linear map CX — (CI')", therefore an algebra morphism T(CX) —
(CT)”, which is checked to be compatible with coproducts. It is compatible with
augmentations, therefore giving rise to a CHA morphism 7(CX) — (CI')". The
two constructed CHA morphisms can be checked to be inverses of each other. [
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In Appendix D.1 we define a subcategory HAq of finite-dimensional Hopf
algebras of the category HA of Hopf algebras, and a duality functor HAyy — HA,
H — H'. When H is the group algebra of a finitely generated group, H' is as in
Definition 1.5.

Lemma 4.3. Let T be the free group over a finite set of generators (for example,
I'=T¢). Then CT is an object in HAq and there is a Hopf algebra isomorphism
(CT)" ~ Sh((I'*® ® C)*) (we denote by V* the dual of a vector space V).

Proof. In this proof, we set V := I'**®@C. The first statement follows from the finite
generation of I'. Tt implies that (CT')" is an object in CHA¢q, and by Lemma D.7,
the duals (CT")" and ((CT")")" are well-defined isomorphic objects in HA coco-

By Lemma 4.2, the CHAs (CT')" and T(V) are isomorphic. Since (CI')"
an object in CHAgq, so is T(V), so (CI)" and T(V) are isomorphic objects in
CHA (4. By Lemma D.5(b), this gives rise to an isomorphism ((CT)") ~ T(V) in
HA oco. Since V is finite-dimensional, there is an isomorphism f(V)’ ~ Sh(V*).

The result follows by composition of these isomorphisms. One knows that I'¢
is a free group over a finite set of generators, which implies that it gives an example
of the above statements. O

Remark 4.4. Lemma 4.3 is proved in [BGF, Exa. 3.229] when | X| = 2.

§4.3. A Hopf pairing pja,: Sh(H¢) ® CT'e — C
Until the end of Section 4, an element (J,z¢) € MCypa(C) x C will be fixed.

Definition 4.5. Define p;,, as the linear map CI'c ® Sh(H¢g) — C such that
vy ®a > I, (J(a))(yzo) for v € T, a € Sh(He).

Lemma 4.6. The pairing pjz,: Cl'c ® Sh(He) — C is a Hopf pairing (in the
sense of Appendiz A.3).

Proof. Let pjz,: Cl'c ® Sh(He) — C be the map defined in Definition 4.6. For
any 7,7 € I'c and a € Sh(H¢), one has

P (VY5 a) = Ly (Ju(a)) (77 x0)

= L, (Ju(a™)) (v20) Iy (T (@) (7o)
= Loy (Ju (@) (20) Ly (J2 (a®)) (7o)
(4.1) = prao(1: 0" )pua, (7, a?),

where the second equality follows from Lemma 2.5 and the fact that J,.: Sh(H¢) —
Sh(2(C)) is a Hopf algebra morphism, the third equality follows from the
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invariance of the image of I, by the diagonal action of I'c (see Lemma 2.3),
and the first and last equalities follow from definitions.

Denote by L the product in the algebra Sh(H¢). Let v € I'e and a,d’ €
Sh(H¢). Then

Prao(vawa’) = Iy, (Jo(awa'))(yzo)
= Ly (Ju(a)) (yw0) L (Ji (@) (y20)
= Do (V> Q)P o (7, 0)
(4.2) =prae (Y, @)pra (v, a'),

where the first and third equalities follow from definitions, the second equality fol-
lows from the facts that .J,: Sh(He) — Sh(Q(C)) and I, : Sh(Q(C)) = Opar(C)
are algebra morphisms, and the last equality follows from the group-likeness of ~
for the coproduct of CI'¢.

Equalities (4.1) and (4.2) imply the statement. O

§4.4. Proof that v(pjz,): Foo Sh(He) — (CI'¢)’ is
a Hopf algebra isomorphism

By Lemma A.9, the Hopf algebra pairing pj,, (see Lemma 4.6) gives rise to a
Hopf algebra morphism v(pj4,): Foo Sh(He) = (CT'¢)’, which we now study.

4.4.1. Construction of a Hopf algebra morphism Sh(H¢) — Sh((HE)*).
Let Hy(C,Z) be the first singular homology group of C' with integer coefficients,
and let us set HE := H,(C,Z) ® C.

Lemma 4.7. There is a Hopf algebra isomorphism (CT¢)’ ~ Sh((HE)*).

Proof. Since C is an affine curve, the group I'c is free. Lemma 4.3 then implies
that (CT'¢)’ is isomorphic to Sh((I'2 @ C)*). The choice of a point z in C induces
an isomorphism I'c ~ 71(C, x¢), whose conjugation class is independent of this
choice; this isomorphism induces an isomorphism I'#? ~ 71 (C, z¢)** = H}(C, Z)
also independent of this choice, from which one derives an isomorphism F?}’ @C ~
HE. O

Definition 4.8. Define ¢;.,: Sh(Hc) — Sh((H2)*) as the Hopf algebra mor-
phism obtained by composition of

(a) the Hopf algebra isomorphism Sh(H¢) =% Fo, Sh(H¢) (see Lemma 2.9 with
V =He),

(b) the Hopf algebra morphism v(pj,): Foo Sh(He) — (CT'e),

(c) the Hopf algebra isomorphism (CT'¢)’ ~ Sh((H2)*) (see Lemma 4.7).
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4.4.2. A criterion for a Hopf algebra morphism Sh(V) — Sh(W) to be
an isomorphism.

Lemma 4.9. Let V., W be vector spaces and let f: Sh(V) — Sh(W) be a Hopf
algebra morphism. Then f(V) C W, where V., W are the degree 1 subspaces of
Sh(V), Sh(W). Denote by gr{(f): V — W the corresponding linear map. Then f
is a Hopf algebra isomorphism if and only if gr{(f) is a vector space isomorphism.

Proof. Since f is a Hopf algebra morphism, Lemma A.2(c) implies that it induces
a linear map F,, f: F, Sh(V) — F,, Sh(W) for any n > 0. When n =1, Fyf is a
linear map C®V — C @ W. The compatibility of F} f with the units and counits
on both sides implies that Fjf is the direct sum of id¢c: C — C and a linear
map V — W, which can be identified with the associated graded of f for the
filtration F,.

If f is a Hopf algebra morphism, then for each n > 0, F,f: F,, Sh(V) —
F, Sh(WW) is a linear isomorphism, which when n = 1 implies the same for id¢ &
gry(f), which implies that gr,(f) is a linear isomorphism.

Assume now that f: Sh(V) — Sh(W) is a Hopf algebra morphism such that
gri(f) is a linear isomorphism. The associated graded map gr,f: gr, Sh(V) —
gry Sh(W) can be identified, under the canonical isomorphisms gr, Sh(X) ~ Sh(X)
for X = V, W (see Lemma 2.9), with Sh(gr, (f)), which is an isomorphism of graded
vector spaces. Since the filtrations F, in the source and target are exhaustive and
by Lemma 4.1, this implies that f is an isomorphism. O

4.4.3. Isomorphism status of the linear map gry(qJ,s,): Hc — (HZ)*.
For H a Hopf algebra, denote by H, the kernel of its counit morphism.

Lemma 4.10. The following statements hold true:

(a) The pairing (CT'¢)4+ ® Q(C) — C given by (v — 1) @ w +— f;}xo w foryeT¢,
w € Q, is independent of xq. It factors through a pairing

(4.3) HE ® He = (Cle)+/(CTe)i ® ((C)/dO(0)) — C.

(b) The linear map He — (H2)* induced by (4.3) is equal to gri(qs.,): Ho —
(HE)".

(c) The linear map gri(qsuz,): Ho — (H2)* is an isomorphism.

Proof. (a) If zg,z1 € C, v € D¢, and w € Q(C), then one has f;fl w— [T =

Zo

( fflo - ,;flo Jw = 0 by the I'c-invariance of w; this implies the claimed indepen-

dence. If 7,7’ € T'¢ and w € Q(C), then one has

( ¥'zo  pyzo 'v’xo)w _ ( ' zo v/mo)w —0

Zo Zo Zo YZo Zo
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by the same reason; since the elements (y—1)(7'—1) generate (CT'¢)2, this implies
the claimed factorization. The equality follows from gr!(Cl'¢) = I'tP ® C = HE
(see [Q2)).
(b) Let O, H be Hopf algebras with gr!(H) finite-dimensional and let p: O® H —
C be a Hopf algebra pairing. By Lemma A.9, p gives rise to a Hopf algebra mor-
phism v(p): Foo O — H', and by Proposition A.2(c), this morphism is compatible
with the filtrations Fy on both sides. For any n > 0, the restriction of p to F,,OQ H
induces a pairing F,,0 ® (H/F"*1H) — C, which gives rise to a linear map
F,0 — (H/F""'H)* = F,,H*; composing this linear map with the identification
from Lemma A.7 gives rise to a linear map F,,O — F, H', which is equal to F,,v(p).
The morphism v(p) is compatible with the augmentation maps eop, e, and there-
fore gives rise to a linear map F,,ONO; — F, H'N(H'),, which for n = 1 coincides
with grq (v(p)). It follows that gr, (v(p)) may be constructed as follows: the restric-
tion of p to (F;0NJo) ® F'H induces a pairing (F1ONO0,)® (F1H/F?H) — C;
then gry (v(p)) is the induced map gr, (0) = F;ONO, — (F*H/F?H)* = gr,(H").
It follows that gry (v(pJa,)): Ho = gry (Sh(He)) — gr ((CTe)’) = (I'2P @ C)*
is induced by the restriction of pj ., to Ho ® (CI'¢)4. This restriction coincides
with the lift of (4.3) by Lemma 2.13(b), which implies the statement.
(¢) The pairing (4.3) coincides with the period pairing for C, which is nondegen-
erate. It follows that the map He — (HE)* induced by (4.3) is an isomorphism.
The statement then follows from (b). O

4.4.4. Proof that v(pj.,): Sh(Hc) — (CI'¢)’ is a Hopf algebra isomor-
phism.

Proposition 4.11. The map v(pj,): Sh(He) — (CT¢) is a Hopf algebra iso-
morphism.

Proof. By Lemma 4.10(c) and Lemma 4.9, ¢ 5, is a Hopf algebra isomorphism. By
Definition 4.8, v(pj4,) is obtained from ¢, ,, by pre- and post-composition with
Hopf algebra isomorphisms, which implies that it is a Hopf algebra isomorphism.

O

Remark 4.12. Proposition 4.11 may be related to Chen’s m; theorem as follows.
Let (HSR(C), eriv) be the augmented dga with H3g (C) = CeHe with zero differ-
ential and iy : HiR (C) — C be the projection in degree 0, and let (£°(C'), e4,) be
the augmented dga of smooth differential forms on C, with €,, given by evaluation
at zo. Then the dga morphism Hj, (C) — £°(C) induced by J is compatible with
the augmentations, therefore it induces an isomorphism of commutative Hopf alge-
bras HY(B(HSR(C),eniv)) — HO(B(E*(C),e4,)), where H°(B(—)) is the zeroth
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cohomology of the bar-construction of an augmented dga. One easily constructs
a Hopf algebra isomorphism H°(B(H$R(C),ewiv)) ~ Sh(H¢). The combination
of these isomorphisms with the Hopf algebra isomorphism HC(B(E*(C),e4,)) ~
(CT¢) from Chen’s “m; de Rham theorem” ([BGF, Thm. 3.264]) is the Hopf
algebra isomorphism from Proposition 4.11.

§4.5. The isomorphism of filtered algebras
frz0: Fe Sh(He) ® O(C) — FeOmoa(C)

Lemma-Definition 4.13. There is a unique linear map fo,: Sh(Ho)®@O(C) —
Onmod(C) such that fj4,(a® f) = Iy, o Ju(a) - p*f; it is an algebra morphism.

Proof. The fact that f;,, is well defined as a linear map follows from Proposi-
tion 3.21 and from the inclusion O(C) C Opoa(C), which follows from Proposi-
tion 3.12. The fact that it is an algebra morphism follows from the decomposition

of frz, as

LyoJ.)®p" S oy MO (C
ol )E0 ()2 LOmea @ (B,

Sh(He) ® O(C)

where Mo, (&) is the product map of Oneq(C), and from the algebra morphism
status of I, p*, J« and m,, (&) (the latter coming from the commutativity of

Omod(C)). O

In Appendix B, we introduce the notions of Hopf algebra with comodule
algebra (HACA) and Hopf algebra with module algebra (HAMA). Then, by Propo-
sition B.18(a), the algebra O(C) and the Hopf algebra Sh(H¢) give rise to a HACA
structure (Sh(H¢), Sh(He) @ O(C)); on the other hand, a HAMA structure is con-
structed as follows.

Lemma 4.14. The pair (Omod(C),CT¢) is equipped with a HAMA structure.

Proof. The HAMA structure is induced by the right I'c-action on Opeq(C) (see
Proposition 3.10 and Definition B.6). O

In Appendix B (see Definition B.12), we also introduce the notion of a pairing-
morphism from a HACA (O, A) to a HAMA (B, H), and denote by PM((O, A),
(B, H)) the set of such structures.

Recall the Hopf algebra pairing p,,: Sh(H¢g) ® CT'¢ — C (see Lemma 4.6).

Lemma 4.15. (pjzy, f7.2,) € PM((Sh(Hc¢), Sh(He) ® O(C)), (Omoa(C), CT¢)).

Proof. By Definition B.12, the identity to check is

(oo (J(@)p" (1)), = Lo (Ju(a®))p" (N)psag (v @ aV)
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for any a € Sh(H¢), f € O(C), and v € I'c, using the notation Agy .y (a) =
a® @ a?). This follows from the invariance of p*f under the action of I'c and
from the identity I, (Ju(a))ly = Lzo(Jo(a™®))psee (v @ aV)) which is proved as
follows: for any x € C, one has

Lug (J+(a)) 5 () = Lug (J<(a)) (y2) = Lo (Ju(a™)) (v20) Ly (J4 (@) ()
= Drao (v ® @MW) Ly (S (a®)) (@),

where the second identity follows from Lemma 2.5 and the third identity follows
from the definition of p;,, and Lemma 2.3. O

Lemma 4.16. The HAMA structure (Omod(C),CT¢) gives rise to an algebra fil-
tration FeOmod(C) of Omoa(C), which fits in a HACA ((CT¢)’, FooOmod(C)).

Proof. The construction of the said HACA from this HAMA follows from Lem-
ma B.8 and the fact that CI'¢ is an object in HAgq4 (see the proof of Lemma 4.3).

The filtration FoeOmod(C) is then as in the introduction (see Definition 1.10). O

Proposition 4.17. The following statements hold true:
(@) (W(Pywo): fr,ae) induces an isomorphism of HACAs

(Sh(Hc), Sh(He) ® O(C)) — ((CTe)', FacOmoa(C)).
(b) frao induces an isomorphism of algebra filtrations Fy Sh(He) ® O(C) —
Foomod(o)-

Proof. Let a := O(C), O := Sh(H¢), B = Onoa(C), H :== CT'¢, (B, H) be the
HAMA structure induced by the action of I'c on CN'; it is an object in HAMA ¢4
(see Definition B.9) since I'c is finitely generated. Set p = pj,, € Pair(O, H)
(see Definition A.8), f == fj4,. By Lemma 4.15, (p, f) € PM((0,0®a), (B, H)).
By Proposition 4.11, v(pj4,): Sh(He) — (CT'¢)" is a Hopf algebra isomorphism
and by Proposition 3.12, f;,, induces an algebra isomorphism C @ O(C) —
Omod (5 )€T'e. The assumptions of Proposition B.18(b) are therefore satisfied; the

result is then a consequence of this statement. O
§4.6. Filtered formality of the HACA ((CT¢)’, FooOmoa(C))
In Appendix C.2 we introduce the definition of a filtered formal HACA.

Proposition 4.18. The pair ((CT¢)’, FooOmod(C)) is filtered formal.

Proof. It follows from the proof of Lemma 4.17 that the data

(Ova) = (Sh(HC')a O(C))a (BaH) = (OmOd(C)a(CFC)a

(4.4)
(pa f) = (pJ7z07 fJ,a:o)
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satisfy the hypotheses of Proposition B.18(b),(c). The statement is then a conse-
quence of Proposition C.5. O

§5. Filtrations on Ohol(CN’), and the minimal stable subalgebra Ac

In Section 5.1 we study the filtration of Oy (C) given by the image by I, of
the filtration Fo(Sh(Q2(C))) of Sh(Q(C)), and identify it with the image by fj 4,
of the filtration F, Sh(H¢) ® FO(C) of Sh(He) @ O(C) (Proposition 5.3). In
Section 5.2 we introduce and study the filtrations F2Opo(C) and F¥Opoi(C) of
(’)hol(CN') inspired by [Ch] and identify the latter with the image by fj., of the
filtration F, Sh(H¢) ® F&YO(C) of Sh(He) @ O(C) (Proposition 5.6). We study
the relation of the total space of these filtrations with the MSSA A¢ of Ohol(é) in
Section 5.3. In Section 5.4 we prove Theorems A, B, and C, and in Section 5.5 we
draw consequences of Theorem A on the algebras H¢ (J) constructed in Section 2.3,
namely we show that each such algebra is a free O(C)-module with an explicit
basis. In Section 5.6 we discuss the relation of this material with the study in [Ch]
of Picard—Vessiot extensions of the function algebra of a smooth manifold.

§5.1. An algebra filtration of Ohol(é) defined by I,

In the present Section 5.1, a point xg € C is fixed. Recall the algebra morphism

I, Sh(Q(C)) = Onei(C) (Lemma-Definition 2.1 and Lemma 2.2) and the algebra
filtration Fy Sh(V') for an arbitrary vector space V' (see Section 2.1). By Section 4.1,

these data give rise to an algebra filtration I, (Fe Sh(Q2(C))) of Ope(C), which we
study in Proposition 5.3.

Lemma 5.1. One has

(5.1)  Vp,g >0, ILy([Shy(2(C))|dO(C)|She((C))]) C L (Shyp+4(C))),
(5:2) ¥ >0. L, ([dO(0)] Sh(QC))) C Ly (Sha(QAC)).

(5.3) V>0, Iy ([Sha(Q(C))AO(O)]) € p*O(C) - I, (Sha(Q(C))).

Proof. Let us prove (5.1). The space [Sh,(2(C))|dO(C)|She(2(C))] is linearly
spanned by the elements [a1| - - - |y |df |B1] - - - |Bq], where v, 55 € Q(C) for any ¢, j
and f € O(C). Then

Lo ([en] - - ewpdf|Br] - - | B))
= Ly (loa -~ aplf - Bl -+ [Bg] — o] -~ Jap - fB1] -+ |Bg]) € Ly (Shyp44(€(C))).
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Let us prove (5.2). The space [dO(C)| Shy,(£2(C))] is linearly spanned by the
elements [df|a1|- - - |an], where f € O(C) and «; € Q(C) for any . Then
Lo ([df || - -+ |an])
= Loy ([f - eal -+ lan]) = f(@0) - Lay ([ea] - Jan]) € Loy (Sha(Q(C))).

Equation (5.3) similarly follows from

Lo ([an] - - | |df])
=p"f - Lio([aa] -+ |an]) = Lo ([aa] -+ e - f]) € p*O(C) - Iy (Shy(Q(C))) O

Lemma 5.2. For any o € ¥¢ and any n > 0, one has the inclusion
L, (Fn Sh(Q(C))) C f1, 00 (FnSh(He) @ C1 + F,,_1 Sh(He) ® O(C)).

Proof. By induction on n > 0. For n = 0, the equality is obvious as both sides
are equal to C. Let n > 0, assume the equality for all steps < n — 1, and let us
prove it at step n. By the induction hypothesis, it suffices to prove the inclusion
I, (Sh, (2(C))) C f1,.40(Frn Sh(H¢e) ® C1 + F,,_; Sh(He) @ O(C)), i.e.

(5.4) I, (Shy(C))) C ILyy (Fn Sh(o(He))) 4+ p*O(C) - Iy (Fr—1 Sh(He)).

The space Sh,,(©2(C)) is linearly spanned by the elements [wi]- - |wy,] where wy,
.,wy, belong to Q(C). For all i, let h; € Ho be the projection of w; and choose
fi € O(C) such that w; = o(h;) + df;. Then

[wn - |wn] [o(h1)]- -+ |o(hn)] + [df1] Shn—1 (2A(C))] + [Shn—1 ((C))[df 1]

+ Z [Shi 1 (Q(C))ldfi| Sha—i (2(C))] C Shy(o(He)) 4 [dO(C)] Shn—1(2(C))]

+ [Sh,_1(Q(C))]|dO(C +ZShZ 1(Q(C)]dO(C)| Shy,—s (C))].

Lemma 5.1 then implies that
Lo ([wi] -+ |wn]) € Loy (Sha(o(He))) + p*O(C) - Ly (Sha—1(2(C)))

n—1

+p"0(C) - Ity (Shn—1(2(C))) + Y I, (Shn—1(2(C)))

(5.5) = L, (Shu(0(He))) +p"O(C) - Ly (Shu—s (AC)).
Moreover,
p*O(C) - I, (Shn_l(Q(C’))) Cp'OC)- I, (Fn_l Sh(Q(C’)))
Cp'OC)- I, (Fn,l Sh(U(HC)))7
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where the first inclusion follows from Sh,,_;(Q(C)) C F,,_1 Sh(£2(C)) and the sec-
ond inclusion from the induction hypothesis, i.e. (5.4) at step n—1 by multiplication
by p*O(C). Combining this inclusion with (5.5), one obtains

Iwo([wll T ‘WnD € Iy, (Shn(U(HC))) + p*O(C) Az, (anl Sh(U(HC)))a
which is (5.4) at step n. O
Proposition 5.3. For any J € MC,q(C), one has the equality

Ly (Fa Sh(Q(C))) = f7,00(Fe Sh(Hc) ® C1 + Fu_q Sh(He) ® O(C))

of filtrations of Owol(C), where fj., is the algebra morphism from Lemma-
Definition 4.13.

Proof. For n > 0, the space fjz,(FnSh(H¢) ® C1 + F,,_; Sh(He) ® O(C)) is
equal to I, (J.(F, Sh(He))) + p*(O(C)) - Iy, (Jx(Fr—1 Sh(H¢))), which is also
equal to I, (J.(F, Sh(He)) + dO(C) W J,(Fr—1 Sh(He))) since p*(O(C)) = C+
I, ([dO(C)]). This implies the equality

fra0(Frn Sh(He) ® C1 + F,,_1 Sh(He) @ O(C))
(5.6) = I, (Jo(Fn, Sh(H¢)) + dO(C) W Jo(F,—1 Sh(H¢))).

Let us now prove

Vn >0, I, (Fn Sh(Q(C)))
(5.7) = I, (Jo(F, Sh(H¢)) + dO(C) W J,(F,—1 Sh(H¢))),
The argument of I, in the right-hand side of (5.7) is contained in F;, Sh(Q(C)),
which implies the inclusion (left-hand side of (5.7)) D (right-hand side of (5.7)).
We now prove the opposite inclusion. There is a sequence of inclusions (in
Sh(©(C)))
(07)+(Fn Sh(H¢)) + dO(C) W (05)«(Fr—1 Sh(He)) C Jo(F, Sh(He))
+ F,—1Sh(Q(C)) +dO(C) W J.(Fy—1 Sh(He)) +dO(C) Wi F,,—2 Sh(2(C))
= J.(F, Sh(H¢)) + dO(C) w J.(F,—1 Sh(H¢)) + F,—1 Sh(Q2(C)),
oy being as in Lemma-Definition 2.12, where the first inclusion follows from

Lemma 2.13(b) and the second inclusion follows from dO(C) W F,,_5 Sh(Q(C)) C
F,_1Sh(©2(C)). One has therefore

V>0, (04):(F,Sh(He))+dO(C) W (o5).(Fa1 Sh(Hc))
(5.8) C J.(F, Sh(He)) + dO(C) W J, (Fy_y Sh(He)) + Fy_y Sh((C)).
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For any n > 0, one then has

Loy (F (Sh(C)))) C f1,, 20 (Frn Sh(He) ® C1 + F,,—1 Sh(He) @ O(C))
= L, ((07)«(Fn Sh(Hc)) + dO(C) W (05)«(Fn-1 Sh(Hc)))
C Iy (Jo(F, Sh(H¢)) + dO(C) W J. (F,—1 Sh(He)) + F,—1 Sh(Q(C)))
= Ly (J+(F, Sh(He)) + dO(C) W J.(Fy_1 Sh(He))) + Ly (Fu_1 Sh(Q(C)))
F, Sh(He) ® C1 + Fy—q Sh(He) ® O(C)) + Ly (Fu—1 Sh(Q(C))),

Il
-
\4
&
f=}
—~

where the first relation follows from Lemma 5.2, the second relation follows from
(5.6) applied to J,,, the third relation follows from (5.8), and the last relation
follows from the second relation follows from (5.6) applied to J. The relation

Y >0, L (Fa(Sh(Q(C)))) C fray(Fn Sh(He) ® Cl + F,_y Sh(He) @ O(C))

then follows by induction. Therefore (left-hand side of (5.7)) C (right-hand side
of (5.7)), which ends the proof of (5.7).
The result then follows from the combination of (5.7) and (5.6). O

§5.2. The filtrations Ff(’)hol(é) and F.“Ohol(é)

In Definition 1.12, we defined Ff(’)hol(é), F.“(’)hol(CN'), F&Ohol(é), and Fc‘jo(’)hol(CN')
(see Theorem C).

Proposition 5.4. For any xg € 5, one has the equality
F2040(C) = I, (Fa SH(A(C))

of filtrations of Onel(C).

Proof. Let us prove

(5.9) ¥n >0, Iy (F,Sh(Q(C))) = FOha(C)

by induction on n. For n = 0, the equality holds since both sides are equal to C.
Assume the equality at step n > 0 and let us show it at step n + 1.

Let us first show the inclusion I, (F,+1 Sh(2(C))) C F5+1(9h01(0). For this,
in view of the induction hypothesis, it suffices to prove I, (Sh,+1(Q(C))) C
F? +1Oh01(5)- The space is linearly spanned by the elements [w;] - - |wp+1], where
wi, ..o, wpp1 € QC). Then d(Ly ([wi] - |wnt1])) = Lo ([wi] -+ |wn]) - Wiy, and
Ly ([wi] - |wn]) € Iy (Shyp ((C))) € F2Opa1(C), where the last inclusion follows
from the induction hypothesis. This shows that I, ([wi] - |wnt1]) € F2 4 Ohal(C),
therefore I, (Sh,4+1(Q2(C))) C F‘5+1(9h01(0) as wanted.
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Let us now show the inclusion F, +1(9h01(C’) C Iy (Frt1Sh(Q2(C))). Let f €
Fn+1(9h01(C’); then there exist elements f1,..., fi € Fg@hol(C’) and wy,...,w €
Q(C) such that df = ", fi-p*w;. By the induction hypothesis, there exist ¢y, ...,
€ F, Sh(2(C)), such that f; = I, (t;) for any i. Then df = >, I, (t;) - p*wi.
Integration gives

f = f(l‘o) + ZI$0([t1|wZ]) = Ixo( 170 + Z t |w, ) c Ixo n+1 (Sh(Q(C)))),

which proves the claimed inclusion. O

Proposition 5.5. The following statements hold true:

(a) Both Fthol(é) and F.“(’)hol(a) are algebra filtrations of Ohol(é)
(b) For anyn >0, one has FOuo(C) C FFOuo(C) C F‘sHOhOl(C)
(¢) One has FS On01(C) = FEOpoi(C) (equality of subalgebras of Opoi(C)).

Proof. Recall the shorthand F = Ff/”Ohol(é) (see Lemma 1.13). By Propo-
sition 5.4, F? is the image of the increasing algebra filtration Fy Sh(Q(C)) by the
morphism I, : Sh(Q(C)) — Ohol(C), which implies that F? is an increasing alge-
bra filtration of Ohol(CNJ'). The fact that F.' is the product of F? with the fixed
subalgebra O(C) of Oy (C) implies that F is an increasing algebra filtration of
Ohol(C) as well. This proves (a).

For any f € O(C), df € Q(C) = Q(C) - F¢, which implies O(C) C F}. For
n > 0, one then has Ff = O(C)-FS C F{-F° C F2.,. For n > 0, one clearly also
has F° C F*, which implies (b). Statement (c) follows from (b). O

Proposition 5.6. For any (J,z0) € MC(C) x C, one has the equality
FlOwoi(C) = f12,(Fa Sh(He) @ O(C))
of filtrations of Onel(C).
Proof. Let n > 0. In Proposition 5.3, we proved the equality
Ly (B SW(ACY) = Loy (Ju(F Sh(He)) + p*OC) - Ly (Jo(For Sh(He))).

Multiplying it by p*O(C), we obtain p*O(C) - I, (F, Sh(Q(C))) = p*O(C) -
I, (J.(F, Sh(Hg))). By Proposition 5.4, I, (F, Sh(Q(C))) = F*Opei(C), and so
p*O(C) - Ly (F, Sh((C))) = p*O(C) - FyOua(C) = FOnoi(C). Tt follows that
FHOpoi(C) = p*O(C) - I, (J.(F, Sh(Hc))); the right-hand side of this equality is
equal to f g, (Fn Sh(Hc) ® O(C)). O
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§5.3. Relation with Ac
Recall the following from Section 1.1.

Definition 5.7. Consider the following definitions:

(a) A stable subalgebra (SSA) of Ope(C) is a unital subalgebra A of Oya(C),
such that for any f € A and w € Q(C), one has int,,(f - p*w) = (z —
(b> AC = ﬂA an SSA of Ohol(a) A.

Lemma-Definition 5.8. The subspace Ac is an SSA of Onei(C), contained in
any SSA of Onel(C); we therefore call Ac the minimal stable subalgebra (MSSA)
Of Ohol(C)-

Proof. This follows from the fact that an intersection of two SSAs of Oy (C) is
an SSA of Oy (C). O

Proposition 5.9. For any zo € C, one has Ac = L, (Sh((C))).

Proof. For w € Q(C), let prim, be the vector space endomorphism of Oy (C)
given by f — (z — f;; f - p*w). Also, let r, be the linear endomorphism of
Sh(2(C)) given by right concatenation with w; explicitly, r,([wi]| - |wk]) =
for any w1, ...,wi € Q(C). Then one checks the identity

(5.10) prim, o I, = I, o R,

It follows that prim (I, (¢)) = I, (R (t)) for any ¢ € Sh(Q(C)), which together
with unitality implies that I, (Sh((C))) is a stable subalgebra of Oy (C), hence
Ao © L, (Sh(QAC))). )

Now let A be a stable subalgebra of Oy (C). Let n > 0. For any wy,...,w, €
Q(C), the element prim,, o---oprim, (1) belongs to A since 1 € A and by the sta-
bility of A. It follows from (5.10) that this element is equal to I, ([wi] - - - |wy]), and
therefore A contains I, (Shy, (£2(C))). This implies that A contains I, (Sh(©2(C))),
thus concluding the proof. O

§5.4. Proof of Theorems A, B, C

5.4.1. Proof of Theorem C. In (1.3), the first (resp. second) equation fol-
lows from Proposition 4.17(b) (resp. Proposition 5.6). In (1.4), the first (resp.
second) equation follows from Proposition 5.4 (resp. Proposition 5.3). In (1.5),
the first (resp. second, third, fourth, fifth) equality follows from Proposition 5.9
(resp. Proposition 5.4 at infinity, Proposition 5.5(c), Proposition 5.6 at infinity,
Proposition 4.17(b) at infinity).
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5.4.2. Proof of Theorem A. Theorem A(a) is proved in Lemma 2.16. It fol-
lows from Proposition 4.17 that the algebra morphism fj., induces an algebra

isomorphism fj.,: Sh(H¢g) ® O(C) = FooOmod(C). By Theorem C(b), one has
FooOmod(C) = A, which implies Theorem A (b).

5.4.3. Proof of Theorem B. Theorem B follows from the combination of Prop-

osition 4.17(a) and from the equality FooOmoa(C) = A¢, which follows from
Theorem C(b).

85.5. Consequences for hyperlogarithm functions
Proposition 5.10. Let J € MC,4(C), zo € C and (hi)ieq,q) be a basis of He.

(a) The family (]F'LZO([hil' i) k0,1, ine1,d] 95 @ basis of the vector space
He(T).

(b) The family in (a) is linearly independent over O(C), i.e. for any family
(¢i1""’i’“)kzo,il,...,ike[[l,d]] in O(C), the relation

S PO ) g (i ha)) = 0

k>0,i1,...,ix €[1,d]
implies the vanishing of (™ ik)k}ZO,ih...,ikE[[l,d]]'

Proof. Tt follows from Proposition 4.17(a) that the algebra morphism f T30

Sh(He) — Onol(C) is injective, which then implies (a). (b) follows from (a) and
Proposition 4.17(a). O

Now let C' be as in Section 2.4, so C'=PL \ S, with S a finite set containing
0 and co. Let fyy.0: Sh(He) — Opoi(C) be as in Definition 2.18.

Define an algebra morphism fo, o: Sh(He) @ O(C) = Onal(C) by t ® f —
P*(f)fo00(t)-
Lemma 5.11. The following statements hold true:
(a) The algebra morphism fs, o is injective.

(b) The map fqy.0 is injective.

Proof. (a) Choose z € C. Since fr0.0 =m0 (foy0 @p*) and foy .o =mo (I, o

00) @ p*) (where m: Ono1(C)®? — Opo1(C) is the product map), one has
(5.11) fo0,0 = fog,2 © (a5’ ®id)

(equality of algebra morphisms Sh(H¢g) ® O(C) — Opo1(C)). The statement then
follows from (5.11), together with the injectivity of f,, ., (see Proposition 4.17(a))
and the automorphism status of ag’. Statement (b) follows from (a), as fo,,0 is
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the composition of f,, ¢ with the canonical injection —® 1: Sh(H¢e) — Sh(He) ®
o). O

Proposition 5.12 (See also [Br, Cor. 5.6]). The following statements hold true:

(a) The family (Lis,|...|s,])k>0,51.,....sn€50 Of functions of Ohol(é) (see notation
after Definition 2.18) is a basis of Hp1. 5(00).
(b) The family of functions in (a) is linearly independent over O(C).

Proof. Statement (a) follows from Lemma 5.11(b) and the second part of Propo-
sition 2.19. Statement (b) follows from (a) and Lemma 5.11. O

§5.6. Relation with Chen’s work

In the Introduction to [Ch], Chen defines an algebra filtration F,C° (M) of C°(M)
for any smooth manifold M, where M — M is the universal cover; it has the addi-
tional property that l;nC‘X’( ) is a subalgebra of C>(M ) for any n > 0. If X
is a nonsingular complex algebraic variety, and X is its universal cover, equipped
with its natural structure of complex manifold, one can similarly define a filtra-
tion FyOpoi(X) of the algebra Ope(X), by replacing in the definition of [Ch] the
spaces of smooth functions and 1-forms (denoted there A°(M) and A'(M)) by
the spaces of regular functions and differentials on X. When X = C, the explicit
definition of F, (’)hol(C) is as follows: FOOhol(C) = p*O(C) and ﬁrHOhOl(CN') =

Clf,inty, (g -p*w) | f g € F,0401(C), w € Q(C)] for r > 0, where C[—] means the
subalgebra generated by a family.

Lemma 5.13. Let xg € C.

(a) For anyr >0, FrOh(C) C L, (Sh(Q(C))).
(b) For any r > 0, I, (Sh,(Q(C))) C F.OLa(C).
(¢) One has FaeOnot(C) = L, (Sh(Q(C))) (equality of subalgebras of Onei(C)).

Proof. (a) FyOuo(C) = pO(C) = Ly (C & [dO(C)]) C Ly (SH(A(C))). Let 7 > 0
and assume that F,.Op(C) C I, (Sh(Q(C))). Let g € FrOLo1(C), w € Q(C). One
knows that for some a € Sh(€(C)), w = I, (a). Then inty,(g-p*w) = inte, (L2, (a) -
p"0) = Ly ([al]) € Ly (SW((C))). Then Fy1 041 (€) = CLf,intay (g-5°w) | f19 €
F0n01(C), w € QC)] C Ly, (Sh(Q(C))) by F0u1(C) C I, (Sh(Q(C))) and the
fact that I, (Sh(©(C))) is an algebra.

(b) I, (Sho(R(C))) = C C FyOLo(C). Let 7 > 0 and assume the inclusion
IZO(Sh (Q(C))) C FrOhai(C). Let a € Sh,41(2(C)). Then there exist elements
(@i)i=1,... ks (Wi)i=1,... .k where a; € Sh,.(Q(C)), w; € Q(C') such that a= Zle[a”wi].
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Then
k
Liy(a) =Y Log(laslw]) =D intyy (Tng (ai) - p*wi).
i =1

One has I, (a;) € o Ohol(c ) by assumption, therefore the final term of this equal-
ity belongs to FTHOhOl(C) Therefore, I, (Sh,+1(2(C))) C Fr110na(C). The
statement follows by induction.

(c) By (a), we know that FusOnol(C) C Iy (Sh(2(C))). Moreover, (b) implies that,
for any r > 0, I, (Shr(Q(C))) C FooOhol(C), and so I, (Sh(Q(C))) C FOOOhol(C’).
O

Remark 5.14. [Ch, §2.3] contains the definition of another filtration F.C’°°(]\7).
This definition is both an analogue of that of F£'OLe(C) (as both definitions give
analogous values for the degree 0 term of the filtration) and of F2O,0 (C) (as both
definitions share the same induction step). However, the statement “F, C’OO(N) .
F,C>*(M ) C FrysC®(M ) for any 7, s > 07 from [Ch, Prop. 2.3.1] appears to be
wrong. Indeed, if r =0, s = 1, FoC>(M ) = p*C°° (M) while F;C*>°(M ) ={f¢e
C(M) | df € FyC*=(M)- p*Al(M)}; since FyC°®(M)-p*A (M) = p* A (M), the
set F1C°(M ) is the set of functions on M of the form z — ¢ + f;o p*w, where
c € C and w € A'(M); this set is not stable under multiplication by p*C° (M)
(the mistake can be traced to the proof of Proposition 2.3.1, which overlooks the
fact that the inclusion dF,C>(M) C F,_C°°(M) - p* A} (M) is valid in general
only if one introduces F_;C>(M) = C).

Part II. Complementary results

§6. Connections for HACAs

We introduce the notion of connection on a HACA in Section 6.1. In Section 6.2 we
construct a natural connection on the HACA ((CL'¢)’, FaoOmod(C)). We compute
its pull-back under the HACA isomorphism (v(pj.z,)s fJ.2) from Proposition 4.17
in Section 6.3.

§6.1. Connections for HACAs

Let a be a commutative algebra. Recall that the a-module of Kéhler differentials
of a is the quotient 2, = ker(m)/ ker(m)?, where m is the product map a®a — a;
the derivation d: a — €, is defined by d(a) = a ® 1 — 1 ® a + ker(m)?. One has
Qo) = 2(C).
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Let (O, A) be a HACA with coaction morphism Ayz: A — O ® A. One has
O={ac A|As(a) =1®a} = FyA. If A9 is a commutative algebra, then
A® 40 Q40 is a left A-module.

Definition 6.1. Let (O, A) be a HACA such that A® is central in A, so that
A ®q0 Q40 is a right A-module. A connection for (O, A) is a map V4: A —
A ® 40 Q 40, which

(a) is a derivation, i.e. Va(aa') = aV4(a') + Va(a)ad' for any a,a’ € A,

(b) is O-equivariant, i.e. (Aa ®idg,,)oVa = (ido ® Va)o Aa;

(c) is such that Va(a) = 1 ® da for a € A°.

If (O,A) is a HACA with connection V4, then one defines the pull-back of
V 4 by a HACA isomorphism (O’, A”) — (O, A), which is a connection for (O’, A").

Remark 6.2. If G is an algebraic group and P is a principal G-bundle over an
affine base, and (O, A) is the pair of regular functions on these spaces, then a con-
nection for (O, A) is an algebraic version of a G-invariant Ehresmann connection
on the bundle P — P/G.

§6.2. A connection for ((CT'¢)’, FooOmoa(C))
Proposition 6.3. The following statements hold true:
(a) The map FsoOmoa(C) ®o(c) AC) — Qnot(C) given by f @ w — f - p*w is
imjective.
(b) There exists a unique map V: FogOmod(C) = FsoOmoa(C) Rocy QUC) such
that the diagram

FooOnod (C) —— FroOrmoa (C) ®@0c) Q(C)
(6.1)
Ohol(C) —> Qhol(()

commutes.
(c) V is a connection for the HACA ((CT¢), FaoOmoa(C)) (see Lemma 4.16).

Proof. (a) By Lemma 4.17, f; .,: Sh(H¢) ® O(C) — FooOmoa(C) is an iso-
morphism of filtered O(C)-modules. Its image by the functor — ®o(c) 2(C) is an
isomorphism of filtered vector spaces ¢ 4, : Sh(HC) ®Q(C) = F, (’)mod(C') ®o(c)
Q(C). The natural morphism can: FoOmoea(C) ®o(c) UC) — Qnol(C) is Te-
equivariant, therefore by Lemma B.5(b) is compatible with the filtrations induced
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by the action of I'c. The composed morphism can o ¢, ., : Sh(He) ® Q(C) —
Qnoi(C), given by Vom0 (0 @ w) = Iy (0(a)) - p*(w), is therefore compatible with
the filtrations F, Sh(H¢) ® Q(C) of the source and FoQuo1(C) of the target (sce
Definition B.4), therefore it gives rise to an associated graded map gr,(can o

Vo)t She(He) @ Q(C) — grodno(C). By Lemma B.5(c), one attaches to the
I'c-module Q4,01(C) the injective graded map

81e D01 (C) < @D Homcoyee (81" (CTe), 2ot (C)79),
n>0

where Qp01(C)F'¢ can be identified with the space of holomorphic differentials on
C; it contains Q(C) as a subspace.
For any n > 0, the composition of the inclusion

81, ot (C) = Home vee(gr" (CT0), 2ot (C)')
with gr,, (can o ¢, 4,) is given by the composition of the isomorphism
Homgc_yec (g (CT¢),C) ® Qhol(a)FC ~ Homg _yec(gr™ (CT ), Qhol(é)rc)

(due to the finite-dimensionality of gr"(CI'¢)) with the tensor product of the

injection Q(C) — Qhol(é)FC with the map Sh,(He) — Homg yec (g (CT¢), C),
which is injective by Lemma 4.7. It follows that gr, (cano g, 5, ) is injective, which,
as the filtration of the source of cano ¢, ,, is exhaustive, implies the injectivity of
can o Yy z,, which as ¢, 4, is an isomorphism implies the injectivity of can.

(b) In this proof, we abbreviate FSOp(C) into F?. For any n > 0, the inclusion
F? C FyoOmoa(C) gives rise to the inclusion of subspaces

im(F2 @ Q(C) = oi(C)) C im(FaoOmoa(C) @ Q(C) = Quoi(C)) C Quot(C).

By the definition of F{, one has d(F?2, ;) C im(F ® Q(C) — Qnot(C)), there-

fore d(F?,,) C im(Fa Omod (C) @ Q(C) — Qno1(C)). This holds for any n > 0
and FooOmod(C) = U,0 F? (see Propositions 4.17, 5.5, and 5.6), and there-

fore d(FacOmoa(C)) C im(FocOmoa(C) ® 2(C) — Qnol(C)). The linear map

FooOmod(C) @ Q(C) = Mnoi(C) admits a factorization FooOpmoa(C) @ Q(C) —

FooOnmoa(C) @0y UC) — Qno1(C), where the first map is surjective, therefore
im(FooOmod(C) ® Q(C) — Qhol(c)) = im(FooOmod(O) ®o(c) Q(C) — Qhol((])),
which implies

AF 5 Omoa(C) C 1m(FaoOmoa(C) @0y UC) = Qenr(C)).

The claim then follows from (a).
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(¢) The derivation property of V follows from the derivation property of d and of
the injectivity of the right vertical map of (6.1). The equivariance of V follows from
the same injectivity and from the I'¢-equivariance of d; the identity V(f) = 1® df
for f € O(C) follows from the same injectivity. O

§6.3. A connection for (Sh(H¢), Sh(Hg) ® O(C))
Lemma 6.4. The following statements hold true:

(a) Let O be a Hopf algebra and a be a commutative algebra. Then (0,0 & a),
equipped with the coaction morphism O ® a Lo®id, ® (O ®a), is a HACA
satisfying the assumptions of Definition 6.1.

(b) Any linear map p: O — a such that u(fg) = e(fp(g) + p(f)e(g) gives rise
to a connection on (0,0 ® a), where V: O @ a — O @ Q(a) is given by
foa— foda) + fYeu(f?)a.

Proof. (a) The fact that (O,0 ® a) is a HACA follows from Proposition B.18.
The fact that it satisfies the assumptions of Definition 6.1 follows from A° = a.

(b) The statement follows from the axioms, and from the fact that the left and
right action of a on €2 coincide, as a is commutative. The axioms of invariance
and restriction to (O ® a)? = a are immediate. O

Proposition 6.5. Let J € MC(C).

(a) The map V;: Sh(He) ® O(C) — Sh(He) @ Q(C) given by a® f — a @ df +
aV ® ‘LLJ(Q(Q))f, where 11y is as in Section 2.2, defines a connection for the
HACA (Sh(H¢), Sh(He) ® O(C)).

(b) The connection Vj is the pull-back of V under the HACA isomorphism
(V(PJwo)s f1o) (see Proposition 4.17).

Proof. (a) follows from Lemmas 2.10 and 6.4.
(b) For a € Sh(H¢), one has

V(fr0(a®1)) = d(Iug(Ju(a)) = Lng (Jo(@) V) msna(o)) (S (@) )
= Loy (Jo(a™))msniarey (Jo(a!?) = Loy (Jo(a®))ps (a®)
= (f120 ®o(c) Ha(ey) 0 Vila® 1),
where Tgh(o(c)) 1 Sh(Q(C)) — Q(C) is as in Section 2.1, the second equality follows

from (2.1), the third equality follows from (id ® 7sn(a(c))) © Asne)) © I+« =
(J« @ py) © Agh(ae) (equality of linear maps Sh(H¢) — Sh(Q(C) ® Q(C))), which



672 B. ENRIQUEZ AND F. ZERBINI

is proved as follows: for any £ > 0 and &1, ...,& € He, one has

(id ® Tsh(a(cy)) © Asnaey) © J«([€1] - - [€k])
= > (g (€l 1k DI T (ks v+l € D] @ g ([ 1] -+ - [€k])
1<k <-<ks;<k

Y Jual 1)) © pr(l - &) = (Je © ) © Agnguey (€] - - €k,

1<I<k

the fourth equality follows from the equality uj(a) = msn(o))(J«(a)) for any
a € Sh(H¢), which follows from the definition of u, and the fifth equality follows
from the definitions of V ; and f; 4,. One derives the commutativity of the diagram

fa,zq ~

Sh(He) ® O(C) FsOmoa(C)

y I :

Sh(HC) ®(’)(C) Q(C) FooOmod(é) ®O(C’) Q(C)

fi,20®0(c)ida(o)

Remark 6.6. The HACA (Sh(H¢),Sh(He) ® O(C)) corresponds to the trivial
principal bundle over C' with group Spec(Sh(H¢)), and V; is the flat connection
d + J over it; one has L((Hg)*) = LieSpec(Sh(H¢g)). When C = P! S (see
Section 2.4) and J = J,, (see Remark 2.20), V, is the map

Sh(CSs) ® Clz,1/(2 — 5),5 € Sso] = Sh(CSs) ® Clz,1/(z — 5), 5 € Sso] - dz
given by
[a1] -+ Jar] @ f = [an| -+ lax] @ df + D (an)slar| -+ ax—1] ® f - dz/(z — s),
segoo

where for a € CSoo, a =Y g as - §.

§7. Local expansion of the elements of Foo(’)mod(é)

By Section 3.1.1, one may view u, z as elements of Ohol(ﬁx) and Oy (D) respec-
tively, such that e*z = e(u). We therefore use the notation e* log z for 2miu. Recall

the action of Z on Oy0q(D*), where 1 acts by 8* (cf. Lemma 3.3). Let us denote by

FeOmod(D*) the algebra filtration of Opeq(D*) induced by this action according
to Definition B.7 and Lemma B.8.

Lemma 7.1. The algebra morphism O(D*)[X] — (’)mod(f)x) gwen by f — f
for f € O(D*) and X — e*logz induces an isomorphism between the algebra
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filtrations FoO(D*)[X] of O(D*)[X] given by F,O(D*)[X] = O(D*)[X]<n for
n > 0 and F.Omod(ﬁx) of Omod(ﬁx). In particular, one has FDOOmOd(f)X) =
O(D*)[e*log 2] (equality of subalgebras of Omea(DX)).

Proof. Let us denote by can: O(D*)[X] = Opoq(D*) the algebra morphism from
the statement. The image of O(D*) by can is contained in FOOmOd(E *) and the
image of e* log z by can is contained in Fy Opoq(D*) since (8*—1)%(e* log z) = (8% —
1)(1) = 0; therefore, for any n > 0, can(F,O(D*)[X]) = can(O(D*)[X]<,) C
Fnornod(ﬁx)- Therefore can is compatible with the algebra filtrations in its source
and target. Let

gr(can): O(D*)[X] = gr(Omoa(D))

be the corresponding graded algebra morphism. Its restriction to the degree 0
part of its source is given by O(D*) > f — f € O(D*) = FoOmod(f)X) =
2r0Omod(D*) and it is such that O(D*)[X] 3 X — [e*logz] € griOmoa(D*)
(degree 1 elements).

Let n > 0. By Lemma B.8(b), the linear map iy, : FnOmOd(ﬁx) — (’)mod(ﬁx)
given by f — (8* — 1)"(f)/n! has its image contained in FyOpoq(D*), whereas
the image of the subspace Fn710mod(5x) by this map is zero.

Under the identification CZ ~ C[X, X ~!] with X group-like, the ideal F,CZ
is identified with ((X —1)™), therefore ker(u,) = Ann((0* —1)") = Ann(F,CZ) =
Fn,l(’)mod(ﬁx). It follows that p,, induces an injective linear map

/j’frz: grn(omod(ﬁx)) - FOomod(BX)a

where by Lemma 3.5, the target space is equal to O(D*).
Define a graded linear map

111 g8(Omoa(D*)) = O(D¥)[X]

by p(a) = pl,(a) X" for a € gr,,(Omoa(D*)) and n > 0. As y is a direct sum of
injective maps, p is injective.
Let us show that for n,m > 0, the diagram

FpOmod(D*) @ FyOmoa(D*) 222, 0(D*) @ O(DX)

o | |

Fnomod(ﬁx) O(DX>

’
lu‘n+7n
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is commutative, where the vertical maps are given by multiplication. The relation

<X®X_1)n+m (X—l)n®(X—1)m
(n+m)! n! m!

(7.2) +CX, X @ (X —1)™*)

+ (X -1D)""HeCX, X

in C[X, X~1]%2 is a consequence of the relation

XY -1 (X -DY + (Y - 1)
(n+m) (n+m)!
I (C V910 SN Gt Vi et Vi

n!m! n! m)!

+ 1

in CLCH, Y1, where 7= (X~ 1))+ (¥~ 1)™*). Then f € F,Opoa(D*).
g€ FmOmod(DX), one has

(0" —1)"*™(fg)

M{n-l-m(fg) = (n+m)'
(X - 1)n+m (X _ 1)n+m
= =) (e
c (X 7;!1)71 . (X ;ﬂ1)m ¢ (X — ) & T X
+CX, X @ (X -1)™ ) (Fag)
- ;!1)” ot ;L!l)m g = i (f) - 1 (9),

where the third equality follows from the Hopf algebra action properties, the
inclusion relation follows from (7.2) and the group-likeness of X, and the last
equality follows from (6* — 1)"T1f = (8% — 1)™tlg = 0 as f € FpOmoa(DX),
g€ Fm(’)mod(ﬁx). The commutativity of (7.1) implies that pu: gr((’)mod(f)x)) —
O(D*)[X] is a morphism of graded algebras.

Then p o gr(can) is a graded algebra endomorphism of O(D*)[X]. For f €
O(D*), one has p o gr(can)(f) = p(f) = f. One also has u o gr(can)(X) =
wu([e*log z]) = pi([e*logz]) X = X as pf([e*logz]) = pi(e*logz) = 1. Tt follows
that u o gr(can) is the identity of O(D*)[X], therefore that u is surjective. It is
therefore an isomorphism, which, using pogr(can) = id again, implies that gr(can)
is an isomorphism. Lemma 4.1 then implies the statement. O

Proposition 7.2. The algebra morphism @ ,cs [[scx, (85,)" (see (3.1)) is such

" (@ IT @) ) (FacOmoa(C)) ¢ €D [] O(D*)[e log 2.

seS zeX; se€S zxeX,
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Proof. Tt follows from the proof of Proposition 3.12 that (3.2) is a I'c-equivariant
algebra morphism, where the action on the target is the direct sum over s € S of the
actions of Lemma 3.8(a). For any s € S, the composition of (3.2) with the canon-
ical projection is a I'c-equivariant algebra morphism @, x_ (P5,)": Omod (C) —
@azEXs (’)mod(f)x). For z € X, the decomposition of the target as Omod(ﬁx) @

(Darex. {x} Omod(D™)) is preserved by the action of the stabilizer subgroup
Stabr, (z) C T¢ of 2 € X, under the action of I'¢. The map

(7.3) (@:x)* : Omod(é) - Omod(ﬁx)
is therefore equivariant under the action of Stabr (z).

By Section 3.1.2, there is a group isomorphism Z ~ Stabr_ (z) given by 1+
05,2, and (7.3) is Z-equivariant, the action of Z on the target being as in Lemma 7.1.
Then

FooOmod(C) = FL O0a(C) € FLOumoa(C) C (% 1) (FSOmoa(D™))
= (‘P:,x)_l (Omoa (D>< )[e* log 2]),

where we use the notation of Lemma B.11, the first equality is the definition of

FooOpmoa(C), the first inclusion follows from Lemma B.11(a), the second inclusion
follows from Lemma B.11(b), and the last equality follows from Lemma 7.1. [

Remark 7.3. Proposition 7.2 implies that the elements of FmOmod(é) are Nils-
son class functions on C in the sense of [Ph, p.154]. Indeed, for any f €
O(D*)[e*log z], there exists oy € Z such that f = z* Py(logz) with Py as in
[Ph, eqn. (1.4), p.151]. The Nilsson class functions obtained in this way are not of
the most general form, as the class in C/Z of the a; in their expansion from [Ph,
eqn. (1.4), p.151] is always 0.

§8. Relation of Az with minimal acyclic extensions of dgas

Recall the definition of the dga (Qiol(é), d) from Section 3.2. Denote by (2°(C), d)
the dga of algebraic differential forms on C; it is concentrated in degrees 0 and
1, with Q°(C) = O(C), QY(C) = Q(C), algebra structure given by the alge-
bra structure of O(C') and the module structure of Q(C) over it, and differential
given by d. The pull-back of p: C—C gives rise to an injective dga morphism
p*: (2°(C),d) = (5,(C), d). One has H'(Q*(C)) ~ He, while H (Q,,(C)) = 0.

Definition 8.1. Consider the following definitions:
(a) An acyclic extension (AE) of Q°(C) is a dga (E*,d) with Q*(C) C E* C

2, (C) and H' (E®) = 0.
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(b) Eé’ = ﬂE' an AE of Q°(C) E*.

Lemma-Definition 8.2. The dga E¢ is an AE of Q°*(C), which is contained in
any AE of Q°*(C); we therefore call it the minimal AE of Q*(C).

Proof. Let us show that if E®, F* are AEs of Q°(C), then so is E®* N F*. The
intersection E* N F*® is obviously a dga containing Q°(C). If z € E* N F*, there
exists e € E° such that # = d(e) since HY(E®) = 0, and f € E° such that
x = d(f) since HY(F*®) = 0. Then d(e — f) = 0, therefore e — f € C, therefore
feet+tCCE'+C=E"so fec E'NF° So E'NF! C d(E°NFY), which implies
HY(E*NF*) = 0. It follows that E®* N F* is an AE of Q°(C). This fact implies the
statement. O

Lemma 8.3. The maps E®* — E° and A — (A® dA,d) define inverse bijections
between the sets {AEs of Q*(C)} and

Alg, = {algebras A with O(C) C A C Ohol(C) such that d(A) D Q(C)
and A-d(A) = dA (equality of subspaces of Qhol(CN'))}.

Proof. Let E* be an AE of Q°(C). Then O(C) C E° C Quo(C) since Q°(C) C
E* C Q;Ol(é) Since H!(E*) = 0, one has E* = d(E") and since Q*(C) C E*, one
has E' D Q(C), therefore d(E®) D Q(C). The equality E' = d(E°) implies the
two extreme equalities in E° - d(EY) = E° - B! = E' = d(E"), while the middle
equality follows from the fact that E* is a dga with unit. It follows that E° belongs
to Alg,.

Let A belong to Alg.. Since A - d(A) = d(A), the pair (A @ d(A),d) is a
sub-dga of Q](’wl(é)7 and since d(A4) D Q(C) and A D O(C), the dga (A ® d(A),d)
contains Q2°(C) as a sub-dga. One has clearly H' (A & dA, d) = 0. It follows that
(A@d(A),d) is an AE of Q*(C).

The composed map Alg~ — {AEs of Q*(C)} — Alg. is obviously the iden-
tity, and the fact that the composed map {AEs of Q°(C)} — Algo — {AEs of
Q°(C)} is the identity follows from the fact that if E® is an AE of Q*(C), then
E' = d(E°) due to HY(E®) = 0. O

Lemma 8.4. The following statements hold true:

(a) Alge C {SSAs of Opai(C)}.
(b) Ac € Alg..
(C) ﬂAeAlgC A= Ac.

Proof. (a) Let A € Alg,. Then A is unital. Let f € A, w € Q(C) and set F =
(z — f;o f - p*w). Since Q(C) C d(A) (by A € Alg), there exists g € A with
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dg =w. Then dF = f-p*w = f-dg € A-dA = dA, where the last equality follows

from A € Alg.. It follows that F' € A, therefore A is an SSA of Ohol(é).

(b) By Lemma 5.8, A¢ is an SSA of Oy (C), therefore it contains 1 and the
functions z — f; df for any f € O(C), therefore A¢ is a subalgebra of Opo(C)
containing O(C'). Let w € Q(C) and set F, = (z — f;o p*w) € Opoi(C). Then
F, € Ac by the stability properties of Ac. Then d(A¢) > d(F,) = w, which
implies d(A¢) D Q(C).

Let us show that Ac-dAc = dA¢. It suffices to prove that, for any f,g € A¢,
the element h == (z — f:o f-dg) € Ohol(é) belongs to A¢. By Proposition 5.9 and
F2 04(C) = U0 F30p,1(C), there exist n,m > 0 such that f € FSOL(C)
and g € F?Opoi(C). Then there exists a finite set I and maps I — Q(C),
I — th_lohol(é) denoted i ~ w;, 1 — k; such that dg = >,/ ki - p*w;.
Then dh = 32, fhi - p*w;. For any i € I, fk;i € FiOp(C) - Ff_10nal(C) C

F2 4 10na1(C), where the last inclusion follows from Proposition 5.5(a). It follows

that h € F}),,,On01(C), and therefore h € A by F2,0n01(C) = U, 50 F1Onal (C)
and Proposition 5.9.

(c) By (a), one has (4ca1e. A O (4 an ssa of 0(c) & = Ac- On the other hand,
Nacalg, A C A for any A € Algg, so by (b), (Neal,,. A C Ac. O

Proposition 8.5. Eg = (Ac ® d(Ac),d).

Proof. Set X = nAEAlgc A. One has

Bt = N E'= () (A®d(4).d) = (X®d(X),d) = (Ac ®d(Ac),d),
E*® an AE of Q*(C) A€Alg,

where the first equality follows from the definition of E, the second equality
follows from Lemma 8.3, the third equality follows from (A®d(A))N(B@d(B)) =

((ANB)®d(ANB)) (equality of subspaces of Q*(C)) for A, B any pair of subspaces
of Ope1(C) containing 1, and the last equality follows from Lemma 8.4(c). O

§9. Computation of ker(I,,)

In this section we fix xg € C'. The main result of this section is Theorem 9.7, where
we compute ker(I;,) and exhibit a complement of this space in Sh(€2(C)). These
results are expressed in terms of an element o € ¥, which is fixed in the whole
section. We also set fo 2, == f7, a0

Lemma-Definition 9.1. The direct sum of the map o.: Sh(Hg) — Sh(Q(C))
and of its concatenation with the canonical inclusion dO(C) — Q(C) is an injective
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map Sh(He) @ [Sh(He)|dO(C)] — Sh(Q(C)). We define
(9.1) Sub, = 0. (Sh(H¢)) @ [0.(Sh(H¢))|dO(C)] — Sh(2(C))
to be the image of this map.
Proof. The statement follows from Q(C) = o(He) & dO(C). O
Define a vector space filtration FySub, by
F,Sub, = 0.(F, Sh(H¢)) @ [0« (F, Sh(H¢))|dO(C)]
for n > 0.
Lemma 9.2. One has for any n > 0,

Ly (FuSubg) + Iy (F Sh(QU(C))) = fou (Fn Sh(He) @ O(C))
+ I, (Fn Sh(Q(C))),

(9.3) fo,z0(Fr Sh(He) ® C1) C I, (F,,Sub,).
Proof. Equation (9.2) follows from the inclusion F,,_;Sub, C F,, Sh(£2(C)), from
the fact that gr,,Sub, is linearly spanned by the elements [o(h1)] -+ |o(hy)|df] © 0
and 0 @ [o(hy)|---|o(hy)], where hq,...,h, € Ho and f € O(C), and from the
identities

Leo(lo(h)| -+ |o(hn)|df] € 0) = fouo([ha] - - [hn] @ f)
(9-4) — Ly ([o(P1)] - - [ (hn—1) o (hn)p" (f)]),

L (0@ [o(h)] -+ |o(hn)]) = fome([ha] -+ - [hn] @ 1).

Equation (9.3) follows from the equality of the maps F,, Sh(H¢) — Onot(C), t —
fom(t®1), and t — I, (a(t) @ 0). O

Lemma 9.3. One has, for any n > 0,
(9.5) fo,m0(FrnSh(He) @ O(C)) = I, (FSuby, ).
Proof. For any n > 0, one has

fowo(Fu Sh(He) ® O(C)) C Iy (FuSubg) + I, (Fn Sh((C)))
= I,y (F,Suby) + fo.zo(Fn Sh(He) ® C1 + F,,_ Sh(He) @ O(C))
= I, (F,Suby) + fo2(Fp Sh(He) @ C1) + fo 2 (Fo1 Sh(He) @ O(C))
= I, (F,Suby) + fo.z,(Fr—1Sh(He) @ O(C))



ANALOGUES OF HYPERLOGARITHM FUNCTIONS ON AFFINE COMPLEX CURVES 679

where the first inclusion follows from (9.2), the first equality follows from Proposi-
tion 5.3, and the third equality follows from the inclusion (9.3) applied to the two
first summands of its left-hand side. Therefore, one finds that

Jowo(Fn Sh(He) ® O(C)) C Loy (FnSubg) + fo.z, (Fn-1 Sh(He) ® O(C)).
Based on this inclusion, one proves inductively that, for any n > 0, one has
(9.6) fo,20(Fn Sh(He) @ O(C)) C I, (FnSub,).

On the other hand, for any n > 0, one has

Iy (FSubg) C fo.z,(F Sh(He) ® O(C)) + I, (Fn Sh(Q(C)))
= fo,z0(Fn Sh(He) ® O(C)) + fo,z,(Fn Sh(He) ® C1 + F,—1 Sh(He) ® O(C))
= fa,wo (Fn Sh(HC) ® O(C))7

where the inclusion follows from (9.2), the first equality follows from Proposi-

tion 5.3, and the last equality follows from the inclusion of the second summand
of its left-hand side in its first one. Therefore, one finds that

I, (FpSubs) C fou,(Frn Sh(He) ® O(C)),
which together with (9.6) implies the statement. O

It follows from Proposition 4.17(a) that the corestriction of the map fy 4,
defines a linear isomorphism f 4, : F, Sh(Ho)®O(C) = fo5.2,(Fn Sh(He)@0(C)).
Define

map,, .. : Sub, — Sh(He¢) ® O(C)

to be the composition

(foeo) ™!
IR

(9.7) Suby —2% I, (Suby) = fr.00 (Sh(He) © O(C)) Sh(He) ® O(C),

where the equality (equality of subspaces of Oye1(C)) follows from the collection
of all equalities (9.5) for n > 0.

Lemma 9.4. The map map, . is an isomorphism of vector spaces.
Proof. For any n > 0, the composition (9.7) restricts to a composition

(fo,20) ™"
Y

FySuby 2% I, (F,Suby) = fo.00 (F Sh(He) © O(C)) F, Sh(He) © O(C),

where the equality follows from (9.5).
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It follows that the map map, , is compatible with the filtrations on both
sides, and therefore induces, for any n > 0, a linear map

F,map, , : F},Sub, — F, Sh(H¢) ® O(C).

The composition of the associated graded map with the canonical isomorphisms
is then

map, : 0. (Shy (He)) & [0 (Shy (He))[dO(C)] = gr, Sub,

g, map, .o

(9.8) gr,, Sh(He) ® O(C) ~ Sh,(He) @ O(C).

Recall that a 2-step filtration of a vector space is the same as a vector subspace.
The source and target of map,, are equipped with the 2-step filtrations associated
respectively with the subspaces o, (Sh,(H¢)) and Sh, (H¢) ® C.

The composition (9.7) restricts to a composition

0. (Sh(He)) 222 I, (0 (Sha(He))) = fry (Sh(He) © C) L222 Sh(He) @ C,
where the middle equality follows from the equality of maps Sh(H¢o) — Ohol(C’),
t Iy (04(t)) and t +— fo 4, (t®1). Therefore map,, , restricts to the isomorphism
0.(Sh(H¢)) — Sh(He)®C given by o, (t) — t®1. This map is compatible with the
filtrations, therefore it induces an isomorphism o, (F, Sh(H¢)) — F,, Sh(He) @ C
for any n > 0, which by passing to the associated graded implies that map,, is
compatible to the 2-step filtrations on both sides. Its associated graded for this
filtration is then a map

EBgr map,, : 7. (Shy (He)) &0 (Shy (He))[dO(C)] — Shy (He) @ (Ca(0(C)/C)).

It follows from the fact that map, ,, restricts to the isomorphism o.(Sh(H¢)) —
Sh(H¢) ® C given by o.(t) — t ® 1 that grymap,, is the map o.(Sh,(H¢)) —
F, Sh(He) ® C, 0.(t) — t ® 1. Moreover, (9.4) implies

Ixo([a(hl)‘ e |U(hn)|df] S3] 0) € fo,wo([hll T ‘hn} ® f) + Izo (Fn Sh(Q(C)))
C fouwo([Pl-*|ha] ® f) + fowe(Fo Sh(He) ® C1 + Fy_y Sh(He) ® O(C)),

where the first relation follows from (9.4) and the second follows from Prop-
osition 5.3, thus implying that grymap, is the map [o.(Sh,(H¢))|dO(C)] —
Shy,(He) ® (O(C)/C), [ox(t)]df] = t @ [f].

The maps gr;map,, are isomorphisms for ¢ = 0,1 and any n > 0, which implies
that map,, is an isomorphism for any n > 0. This implies that gr,map, , is an
isomorphism for any n > 0; since the filtrations on the source and target of map, .
are complete, one concludes that this map is an isomorphism. O
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Lemma 9.5. The restriction of I, to Sub, is injective.

Proof. This follows from the equality of this restriction with the composition f, 4,0
map,, ., which is injective by Proposition 4.17(a) and Lemma 9.4. O

Proposition 9.6. One has Sh(Q2(C)) = Sub, +im(D,,).
Proof. Let us prove the inclusion
(9.9) Sh, (2(C)) C Sub, + im(Dy,) + Fr,—1 Sh(Q(C))

for any n > 0. One has C1 € Sub,, which proves (9.9) for n = 0. One has
Q(C) = o(He) @ dO(C), therefore Shy (2(C)) C Suby; this proves (9.9) for n = 1.
Let n > 2. Tt follows from Q(C) = dO(C) + o(H¢) that

Sh,, (Q(C)) = [o«(Sh,—1(He))[2(CO)]
(9.10) + ) [Shy—1(2(C)[dO(C)| Shy 1 (2(C))].
k=0

One has
(9.11) [04(Sh,(He))|AC)] = 0«(Shy—1(He)) @[04 (Shy—1(He))|dO(C)] C Sub,.

Moreover, for k € [0,n — 1], f € O(C), and w; € Q(C), i € [0,n] \ {k}, one has

[wi] - lwg—1|df lwkt1] -+ - [wn] = Dao ([wi] -+ - lwk—1] ® f & [wr1] -+ - [wn])
+ [wi| - fwr—1lp* (f)wrt1] - - - |wn]
= w1 |wk—1p" () Wit 1] - - [wn]

€ im(Dy,) + Fr—1 Sh(2(C))
if £ > 0 and

[df|wa| -+ lwn] = Do (1@ f @ wa -+ - |wn]) + [p* (flwz| - - lwn] = f (o) w2l - - |wn]
€ im(Dwo) + Fn—l Sh(Q(C))

if £ = 0, which implies

(9.12) [Shy—1(2(C))|dO(C)| Shy,— (2(C))] C im(Dy,) + Fr—1 Sh(Q(C)).

Then (9.10), (9.11), and (9.12) imply (9.9), which in its turn can be shown to
imply the statement by induction on n. O

Let Sh; (©2(C)) be the augmentation ideal of Sh(Q(C)). A left module struc-
ture of Shy(Q(C)) over O(C) is defined by f - [wi|---|wg] == [fwi]: - |wk] and
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a right module structure of Sh(Q(C)) over O(C) is defined by [wi] - |wk] - f =
[wi] - |wkf]ifk>0and 1-f:= f(xg)l. Define a map

Dy, Sh(Q(C)) ® O(C) ® Shy ((C)) — Sh(Q(C)),
s® f@s = [s|df|s'] — [s|f- 8]+ [s- fIs].

Theorem 9.7. The following statements hold true:

(a) The sequence of maps

Sh(Q(C)) ® O(C) @ Sh (A(C)) 2225 Sh(QA(C)) 25 Op(C)

is an exact complex, so that ker(I,,) = im(Dy,).
(b) There is a direct sum decomposition Sh(Q(C)) = Sub, & ker(I,,).

Proof. (a) One checks that I, o D,, = 0, therefore im(D,,) C ker(l,,). Let us
prove the opposite inclusion. The subspace Sub, C Sh(Q2(C)) (see (9.1)) is such
that (i) the restriction of I, to Sub, is injective (see Lemma 9.5), (ii) Sh(Q(C)) =
Sub, + im(D,,) (see Proposition 9.6). Then (i) implies Sub, N ker(I,,) = 0, and
therefore Sub, Nim(D,,) = 0. Then (ii) implies that Sh(Q2(C)) = Sub, ®im(D,,).
The restrictions of I,, to the two summands are then respectively injective (by
Lemma 9.5) and zero (by I, o D, = 0), which implies im(D,,) = ker(I,).

(b) This follows from combining the already proved equalities Sh(Q2(C)) = Sub, ®
im(D,,) and im(D,,) = ker(I,). O

Part III. Appendices

Appendix A. Background on Hopf algebras

This section is devoted to constructions on Hopf algebras. In Appendix A.1 we
define an endofunctor O — F,O of the category of Hopf algebras HA, and
in Appendix A.2 a duality functor HA > HAy — HAomm, H — H'. In
Appendix A.3 we show that a Hopf algebra pairing p: O® H — C gives rise, under
a finite-dimensionality assumption, to a Hopf algebra morphism v(p): Foo O — H’
(see Lemma A.9).

Appendix A.1. An endofunctor O — F,,O of HA

Let O be a Hopf algebra with coproduct Agp. Recall that for n > 0, one defines
F,0 = ker(pr§"*' o A(Onﬂ)) C O, where Ag): O — O®" is the morphism
obtained by iteration of Ap and pry: O — O/C is the canonical projection (see
Definition 2.7).
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Lemma A.1 (See also [Fr, §7.2.15]). The following statements hold true:

Forn >0, F,O C F,10.
Forn >0 and k € [0,n+ 1], one has Ao (F,,0) C F,_102 0+ 0 F,,_;0.
Forn >0, one has Ao (F,0) C Y1_, FrO @ F,_;0.

Proof. (a) Let no, eo be the unit and counit maps of O. One checks that F,0 =
ker((id — noep)®" 1 o A(Onﬂ)). One has (id — noep)®? 0 Ap = Ap o (id — noco),
which implies that

(id . n060)®n+2 o Agl+2) _ (AO ® id%n) o (id . 770€O)®n+1 o AgH»l)
(equality of linear maps O — O®"*2), Therefore,

F,0 = ker((id — noeo)®" ' o A(O"H)) C ker((id — noeo)®" 2o A(O"“)) = F,10.

(b) Assume that k € [1,n]. One has A(O"H) = (Ag) ® Agl_kﬂ)) o Ap, and so
prg"tto AgH_l) = ((prg" o Ag)) ® (prg" o A(On_kﬂ))) o Ap. Therefore,

Ao (F,0) C ker((pr%k o Ag)) ® (pr%n—k—&-l o ASL—k—‘rl)))
= ker(prSF o A(Ok)) ® 0+ 0 @ ker(prE"F+1 o A(On—k-',-l))
=F_ 1020 +0®F,_;0.

Assume that & = 0. It follows from the statement with k& = 1 that Ao (F,0) C
C®O+0®F,_10. It follows that for f € F,0, there exists a € O with Ap(f) €
1®a+ 0O® F,_10. Applying €¢o ® id, one derives f € a + F,_10, hence a €
f+ F,_10 C F,,0. Therefore, Ap(F,0) C C® F,0+ 0 ® F,,_10. It follows that
Ao(FnO) CcO®F,O.

For k = n + 1, the proof of the statement Ap(F,0) C F,,O ® O is similar,
based on the statement for k = n.

(¢) It follows from the statements Ao (F,,0) C O®QF, 0 and Ao (F,0) C F,0®0
((b) for k = 0,n) that Ap(F,0) C F,,O ® F,,0O. Together with statement (b) for
k € [1,n], this implies that Ap(F,0) C Fr,_10 ® F,0 + F,,0 ® F,,_;0 for any
k € [1,n]. The statement then follows from

(A1) () (Fk10 ® F,0 + F,0 ® F, 0) = Y | F,O ® F, O,
k=1 k=0
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which we now prove. For i € [0, n], let A; be a complement of F;O in F;_10. One
has then F,0 = @, A;. Then

Fr 100 F,0+F,00F, ;0= P  AeA

(i.9)€[0,n]?|
i<k—1or j<n—k

It follows that (;_;(Fx-10 ® F,,0 + F,,0 ® F,,_;,0) = Z(i,j)es A; ® A;, where
S = {(i,j) € [0,n]? | Vk € [1,n], one has i <k —1or j <n —k}. One checks
that S = {(i,) € [0,n]? | i +j < n}, therefore the left-hand side of (A.1) is equal
to @(i,j)e[[(),n]]2|i+j§n A @ A3 0o FirO® F,_;O, proving (A.1).

(d) It follows from (c) that

(A.2) Ar+mED(F 0) ¢ > F,0®---®F,..,0.

. . 1
(7117'~~a71n+'m+1)6Z;gm+ I
i1+ Fintmi1=n

For a > 1 and L C [1,a], define ¢r: [1,a] — {0,1} by ¢r(z) = 0if © € L and
or(z) = 1 otherwise. Then set

(A.3) 0 = R Fuit, 0 c 0%,
i=1

where we recall F{™*O = C1, F{™*O = O,
Then for any (i1,...,intmt1) € Z’;gmﬂ, one has [;,0® - ®@F; ., 0C

OE?FZZJS;) This and (A.2), together with the fact that [{j | i; = 0}| > m + 1 if

(i1y. - yintm+1) € Z?gmﬂ is such that i1 + -+ - + ippmy1 = m + 1, imply that
(A4) A(n+m+1)(FnO) c Z OF]n+m+1).
JC[1,n+m+1]|
|J|>m+1
Then

A HI(FL0) - (Fr,0)) ¢ A0 (F,0) - AT HD(F,0)

1 1 1

c 2 : O§n+m+ ) Ogg+m+ ) c § : O‘(]%J;(er )
J,KC[1,n+m+1]| J,KC[1,n+m~+1]|
|T1>mA1, | K| >n+1 T1>mA1, K| >n+1

c Z Oin—&-m—&-l) - ker(pr%n+m+l)7

LC[1,n+m+1]|
L#0

where the first inclusion follows from the fact that A™+™+1) is an algebra mor-
phism, the second inclusion follows from (A.4), the third inclusion follows from



ANALOGUES OF HYPERLOGARITHM FUNCTIONS ON AFFINE COMPLEX CURVES 685

Ogn+m+1)~0$+m+l) C O(%—;;”H) for J, K C [[1,n+m+1], the fourth inclusion fol-
lows from the fact that if J, K C [1, n+m~+1] are such that |J| > m+1,|K| > n+1,
then JN K # (), and the last inclusion follows from the vanishing of the restriction
of pr&" ™! to any Or, where 0 # L C [1,n + m + 1]. The resulting inclusion
A+ ED(F,0) - (F,0)) C ker(prd™™™!) implies the statement. O

Proposition A.2. The following statements hold true:

(a) FoO defines a Hopf algebra filtration of O.

(b) FsoO is a Hopf subalgebra of O. The assignment O — F,,O is an endofunctor
of the category HA of Hopf algebras.

(¢) If f: O1 — Oz is a morphism in HA, then f is compatible with the filtrations
Fy on both sides.

(d) If O is a Z>g-graded connected Hopf algebra, then O = F5,0.

Proof. (a) follows from Lemma A.1. (b) follows from the fact that Fi,,O is the total
space of F,O and from (a). The functoriality statement is obvious. (c) follows from
fe+lo(id—no,€0,)®" o Agll'H) = (id—no,€0,)®" 1 oAgL;rl) o f for any n > 0.
(d) Ifn > 0, then A(()"H) (O[n]) is contained in the sum of O[k;|®-®@O[ky+1], where
(k1,...,knt1) issuch that k1 +- - -+kpp1 = n. If (K1, ..., knt1) is such a tuple, then
there exists ¢ € [1,n+1] such that k; = 0, which by the connectedness of O implies
that the corresponding summand is contained in O®*~! @ C ® O®"~*. Therefore,
pry"tto Agﬁ_l)(O[n]) =0, hence O[n] C F,,0. Therefore, O = F,,O. O

Appendix A.2. A duality functor HA¢g — HA°P?, H — H’

Let H be a Hopf algebra with coproduct Ap. Recall that H, is the augmentation
ideal of H, and by H? the n-th power of this ideal. Set F"H = H for n = 0,
F"H = H? forn > 1.

Lemma A.3 (See also [Fr, §8.1.1]). Forn,m >0, one has F"H-F™H C F"t™H
and A (F"H) C Y FYH® F" H.

n'4+n’'=n

Proof. The decreasing character of (F™H),cz is obvious. The inclusion F"H -
F™H C F™™H follows from definitions. The last statement follows from A g (H )
C H® Hy + Hy ® H, which is itself a consequence of the compatibility of Ay
with the augmentation of H. O

The coalgebra structure of H induces an algebra structure on H*. For n > 0,
set F, H* = (F"t1H)*L,
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Lemma-Definition A.4. The collection of subspaces FeH* is an algebra filtra-
tion of H*, and
H =) F.H*

n>0

is a subalgebra of H*.

Proof. Let n,m > 0, a € (F*"'H)Y, g € (F™* H)*. Then if h € F*tmTiH,
one has Ag(h) € F"H ® H+ H @ F"™H by the second statement of Lemma A.3,
therefore (a - B)(h) = (a ® B)(Ag(h)) = 0, therefore o - 3 € (F"T™*TLH)L. This
proves the first statement. The second statement follows from the first, as H' is
the total subspace of an algebra filtration. O

Definition A.5. Define HA¢q as the full subcategory of HA of Hopf algebras H
such that gr' H :== F'H/F?H is finite-dimensional.

Lemma A.6. If H is an object of HAgq, then H' is equipped with a linear map
Apg: H — H' @ H', uniquely determined by the identity Ag:(a)(h@h') = a(hh’)
for a € H and h,h' € H. Then (H',Ag) is a Hopf algebra. The assignment
H — H' is a functor HAgfqg — HA®P.

Proof. 1t follows from Lemma A.3 that F'®* H is a decreasing algebra filtration of H.
The associated graded algebra gr®H is such that gr"H = F"H/F"t'H for any
n > 0. Then gr®H = C, and gr*H is generated by gr' H. As this space is finite-
dimensional, so is gr* H for any k > 0. It follows that for any n > 0, @?:_01 griH
is finite-dimensional. As this space is noncanonically isomorphic to the quotient
space H/F™H, this quotient is finite-dimensional as well.

It also follows from Lemma A.3 that for any n > 0, F™H is a two-sided ideal
of H, therefore H/F™H is an algebra, and H/F"*'H — H/F"H is an algebra
morphism.

Since H/F™H is finite-dimensional, its associative algebra structure gives rise
to a coassociative coalgebra structure on its dual (H/F"H)* = F,_1H* (with
F_1H* = 0). It follows from the algebra morphism status of H/F"*1H —
H/F™H that the canonical inclusion iy, p41: Fp_1H* C F, H* is a coalgebra mor-
phism.

For n > 0, define then an algebra morphism Ay ,,: F,, H* — (H')®?2 to be the
composition i®20 Ap, g+, where Ap, g+ is the coproduct of the coalgebra structure
of F,H* and 4,,: F,,H* — H’ is the canonical inclusion. One has

(A.5) AR g1 Olnng1 = Dpr .
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Indeed,

. . .®2 .
AH’,n+1 Olnn+l = ¥y © AFnJrlH* O ln,nt1

-2

_ -®2
- Zn+1 © Zn,n+1 © AFnH*

_ @2 _
=i 0 Ap g = A p,

where the first and last equalities follow from the definitions of Ay 41 and
Ap n41, the second equality follows from the coalgebra morphism status of ¢y, 5,41,
and the third equality follows from 4,41 © iy 41 = in. It follows from (A.5) and
from H' = |J,~, F,,H* that there is a unique linear map Ay : H — (H')®?,
such that Ag- c;in = Ap p for any n > 0. The identities relating Ag , with the
product implies that it satisfies the announced identity. The uniqueness statement
follows from the fact that the annihilator of H ® H in F,,H* ® F,,H* is zero for
any n,m > 0. One checks that Ay satisfies the Hopf algebra axioms as well as
the functoriality statement. O

If H is an object of HA¢q, it follows from Lemmas A.6 and A.2 that H' is
equipped with a Hopf algebra filtration F, H'; it is also equipped with the vector
space filtration Fy H* used to define it, given by F,, H* = (F"*'H)* for any n > 0.
One has the following lemma.

Lemma A.7. If H is an object of HAgq, then FoH' = F H*. One has F H'
=H'.

Proof. Let n > 0 and let us show that F,,H' = F,H*. Recall that F,,H' =
ker((id — ngreq )@ o Ag?,ﬂ)), where Ay, ng/, and ey are the coproduct, unit,
and counit maps of H'. Recall that H' = |J,,~, FmnH* C H* and that for each
m > 0, F,, H* is a sub-coalgebra of H’; denot(;by Ap, g B H* — (F, H*)®?
the corresponding coproduct. Let ep, g~ Fin H* — C be the composition of e
with the inclusion F,, H* C H’. The unit of H' corresponds to the counit map of
H, which as it vanishes on F™*1H defines an element in (H/F™ M H)* = F,, H*;
let nF,, g~ be the corresponding map C — F,, H*. Then

F,HNFE,H*

(n+1)
Fm H*

— ker (FmH* I (F H*)®nH

. 1
(id=np,, = epp, me )"t

(FmH*)®n+1)

(a subspace of F,, H*). Using that if f: E — F is a linear map, then ker(f*: F* —
E*) = im(f)*, that the duals of A, g-: F, H* — (F,H*)®% np g-: C —
FnH*, and €p, g«: FpnH* — C are respectively the product map mpy/pm+1p:
(H/F™H)®? — H/F™1H, the map eppmy1: H/F™ — C induced by the
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counit of H, and the map ng/pm+1y: C — H/F™"1H induced by the unit of H,
we see that F,, H' N F,, H* is the annihilator (in (H/F™"1 H)*) of the image of the

map

y@n+1

)®n+1 (id*nH/F”WlHeH/FmHH

(H/FerlH (H/Fm+l)®n+l

(n+1)
H/Fm+1lHg

H/F™ .
Since the image of id —ngeg: H — H is F*H, and since the image of (F1H)®"+!
by m\Pt s H®n 1 s H is FrtLH | the said image is (FP T H+F™+ H) JFm 1 H,
Therefore, the subspace F,H' N F,,H* of (H/F™t'H)* is the annihilator of
the set (F"™'H + F™F H)/F™* H. If m > n, this subspace is the annihila-
tor of F*"™1H/F™ 1 H which is the kernel of the canonical map (H/F™ ' H)* —
(FnHLH/F™ L H)* which is the image of the injection F,,H* — F,, H*. There-
fore, F,,H' = F,H*.

One then has FoH' = |J,~o(F,H)* = H', where the first equality follows

from the previous statement and the second equality follows from the definition
of H'. O

Appendix A.3. Hopf algebra pairings and Hopf algebra morphisms

Recall that if O, H are Hopf algebras with coproducts Ap, Ay and counits egp,
€, then a Hopf algebra pairing between O and H is a linear map p: O ® H — C,
such that

p(od @ h) = (p@p)om(o®d @ Ax(h)),
plo@h') = (p@p)om(Ao(o)®h@h),
p(1®@h)=cy(h), plo®1l)=c¢p(o)

for 0,0’ € O and h,h' € H (for any n > 2, 7, is the canonical map O®" @ H®" —
(O® H)®").

Definition A.8. For O, H Hopf algebras, we denote by Pair(O, H) the set of
Hopf algebra pairings between O and H.

Lemma A.9. For O an object of HA and H an object of HAgq, there is a map

v: Pair(O, H) — HA(F,, O, H).
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For p € Pair(O, H), v(p) is such that the diagram

v(p)®idg
—

F. O H H' ® H
’L()@ldHJ lpH
N
O®H s C

commutes, io: FooO — O being the canonical injection and py: H @ H — C
being the composition H @ H' — H® H* — C.

Proof. Let p € Pair(O, H). Let n > 0; then

P(Fa0 @ F™ U H) = p(F,0 © HYY) € p* o (A5 (F,0) © HY™)

< Z Pt o1 (O @ B =0,
0£LC[1,n+1]

where the first inclusion follows from the behavior of p with respect to coproducts,
the second inclusion follows from A(Onﬂ)(FnO) C Z@#LC[[l,nJrl]] OE”H), where
O(LnH) is asin (A.3) (a consequence of the definition of F},0), and the last inclusion
follows from p(1 ® H) = 0, itself a consequence of the behavior of p with respect
to counits. It follows that p(F,O @ F"*1H) = 0. This implies that the restriction
pir,0em Of p to F,O ® H induces a linear map p,: F,O ® (H/F"*'H) — C.
As H/F"!H is finite-dimensional, this gives rise to a linear map v(p),: F,O —
(H/F"*'H)* = F,H*. One checks that i/, .| ov(p)y = v(p)ns+10i9,,,,, where
igmH, ifilnﬂ are the canonical maps F,0O — F,,110 and F,H* — F, 1H".
It follows that there exists a unique linear map v(p): FooO — H’, such that
v(p) 0 i = zf' o v(p), for any n > 0, where i?, inH/ are the canonical maps
F,0O — F,O and F,H* — H’. One checks that v(p) defines a Hopf algebra

morphism as well as the announced commutative diagram. O

Appendix B. Background on Hopf algebras with (co)actions
on algebras

In Appendix B.1 we introduce a category HACA of Hopf algebras with comod-
ule algebra (HACAs) and an endofunctor of that category extending that of
Appendix A.1. In Appendix B.2 we introduce a category HAMA of Hopf algebras
with module algebras (HAMASs), together with a diagram HAMA > HAMA —
HACA extending that of Appendix A.2. In Appendix B.3 we introduce the notion
of a pairing-morphism from a HAMA to a HACA and show that it gives rise, under
a finite-dimensionality assumption, to a HACA morphism extending the Hopf
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algebra morphism of Appendix A.3. In Appendix B.4 we make use of the natural fil-
tration attached to each HACA to construct two functors gr, ®: HACA — Alg,,
and a natural transformation nat: gr = ® between these functors. Appendix B.5
is devoted to the main technical tool of this paper (Proposition B.18), based on nat
and giving a criterion for the HACA morphisms arising from pairing-morphisms
of a certain type by the construction of Appendix B.3 to be isomorphisms.

Appendix B.1. An endofunctor (O, A) — (Foo O, Fou A) of HACA

Definition B.1. A Hopf algebra with comodule algebra (HACA) is a pair (O, A)
where O is a Hopf algebra and A is an algebra, equipped with a left coaction of O;
the coproduct map of O being denoted Ay and the coaction by As: A - O ® A,
in particular A 4 is an algebra morphism and (Ap ®idg)o Ay = (ido @ Ax)o0Ay.
If (O, A) and (O', A”) are HACAs, a morphism from (O, A) to (O, A’) is the pair
of (fa, fo) of an algebra morphism fs: A — A’ and a Hopf algebra morphism
fo: O = O, such that (fo ® fa)oAs = Aar o fa. Denote the resulting category
by HACA.

Let (O, A) be a HACA.

Definition B.2. For n > 0, define F,, A to be the preimage of F,,O ® A by the
map Ag: A— O R A.

Lemma B.3. The following statements hold true:

F,A is an algebra filtration of A.

Forn >0, As(F,A) C F,0® F,A.

Forn >0, As(F,A) C Zp+q:n F,0® F/A.

The restriction of A g to Fso A corestricts to FooO @ Foo A. Together with the
structures of algebra of Fso A and of Hopf algebra of Fo O, the resulting map
Ap_a: FuoA = FuO ® Fu A equips (FsoO, Fu A) with a HACA structure.
The assignment (O, A) — (Fuo O, Fso A) is an endofunctor of HACA.

Proof. (a) AQF,O is an algebra filtration of the algebra O® A;as Ay: A - ORA
is an algebra morphism, the preimage of this filtration is an algebra filtration of
the source; as this preimage is F, A, the latter is an algebra filtration.

(b) Let a € F,,A; then A(a) € F,,O ® A. There exist families (0s)ses, (as)ses
of elements of O and A, indexed by a finite set S, such that (0s)ses is free and
Ay(a) =3, 05 ® as. Since Ap(F,0) C (F,0)®?, one has (Ap ®ida) o Ax(a) €
(F,0)%% ® A. By the coassociativity of the coaction, this term is equal to (ido ®
Ag)oA4(a), so (ido®@As)oA4(a) € (F,0)®?®A. Therefore, Y- s 0,@A4(as) €
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(F,0)®2® A. As (0s)ses is free, this implies A 4(as) € F,,O® A for any s, therefore
as € F,,A. The claim follows.

(¢) Let a € F,A; then by (b) As(a) € F,O ® F,A. Let U; be a complement of
F;_10 in F;0,s0 F;O =U; @ --- ® U;. Then

F,0® F, A= (Uy® F,A) & - & (U, ® F,A),

giving rise to a decomposition Ag(a) = zo + - - + zy.

Since Ay(a) € F,,O® F, A, Lemma A.1(c) implies that (Ap ®ida)oAx(a) €
Y ptgen 150 ® F,0 ® F, A C (F,0)%* @ F, A. By the coassociativity identity,
this term is equal to (ido ® Ax) o Au(a) = Y1 ((ido ® Aa)(z). It follows that
Yiolido ® Aa)(2:) € 32,4 4o FpO ® FO @ Fy, A. There is a direct sum decom-
position (F,0)®? @ F,A = @i,je[[O,n]] Ui @ U; ® F, A; then

Y FO®F0&F,A= P UeUeFA,
ptqg=n i,7€[0,n],i+j<n

and

(ido ® Aa)(z) €U; @ F,0@ FuA= @ UieU; @ F,A.

jelo.n]

Decomposing (ido ® Aa)(zi) = >.;cponptiy for any i € [0,n], one obtains
Zi,je[[o,nﬂ tij € Gai,je[[o,n]],i-i-jgn Ui ® U; ® F,A, therefore t;; = 0if i + 5 > n,
therefore for any ¢ € [0,n], one has

(ido ® Aa)(z) € @ UioU; @ F,A=U; ® F,_;0 ® F,,A.

§=0

There exist families (0%)ses,, (a')ses, of elements of U; and F,, A, indexed by a

finite set S;, such that (o})ses, is free and z; = > g 0L ® al. Then Y ¢ 0l ®
Aa(al) e U;@F,_;O® F,A. Since (0%)s¢s, is free, this implies A4(al) € F,,_,0®
F, A for any s € S, therefore a% € F,,_;A. Therefore, z; € F;O ® F,,_; A, proving
the claim.

(d) By (b), Aa(FrA) C FouO ® Fyu A for any n > 0, which implies A 4(FoA) C
FooO ® Fio A. One can then define the announced map Ap_a: FooA = FicO ®
F A and check it to have the announced properties. The endofunctor statement
is then immediate. O

Appendix B.2. A category HAMA and a functor HAMAy — HACA

For M a right module over an algebra A and V' C A, we use the notation Ann(V)
to denote {m € M | m -V = 0}.
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Definition B.4. For H a Hopf algebra, M a right H-module, define F,, M =
Ann(F" T H, M) for n > 0.

Note that FyM is equal to M, the submodule of M of invariants of the
action of H.

Lemma B.5. Let H be a Hopf algebra.

(a) For M a right H-module, F¢M is an increasing H-module filtration of M.

(b) Any morphism f: M — N a morphism of right H-modules is compatible with
the filtrations.

(¢) If M is a right H-module and n > 0, then for any m € F,M, the map
F"H — M, h +— m - h takes its values in M. The resulting map F,M —
Homg._yec (F"H, M®) induces a map gr,, M — Homg_yec(gr™ H, MH), which is
imjective.

Proof. (a) follows from the decreasing character of n — F"T'H and from the ideal
nature of F"*1H for n > 0. (b) is immediate.

(c) If m € F,M, h € F"H and h' € F{H, then hh/ € F"*'H so m - (hh') = 0,
therefore (m - h)-h' =0, s0 m-h € MH. The map F,, M — Homg_yec(F"H, MH)
factors through a map F, M — Homc.yec(gt"H, M) as m - h = 0 for any m €
F,M, h € F"'H. The restriction of this map to F,,_1M is zero as m-h = 0
for any m € F,_1M, h € F"H. This leads to the announced map gr, M —
Homc.yec (gt H, MH). As the map Homc_yee(gr™ H, M) — Homc._yee (F™H, M)
is injective, the kernel of the map F,, M — Homc_yec(gr™ H, M) is equal to the
kernel of the map F,,M — Homc.yec(F"H, MH), which is {m € F,M | m -
h = 0 for any h € F"H}, and this is equal to F"~1M. It follows that the map
gr, M — Homc_yec(gr H, M) is injective. O

Definition B.6. A Hopf algebra with module algebra (HAMA) is pair (B, H)
where H is a Hopf algebra and B is an algebra equipped with a right action
of H, i.e. a linear map B@ H — H, b® h + b - h, such that (b-h) b =
b- (hh') and (bb') - h = (b- KDYV - h?)) for any b,b’ € B and h,h' € H, the
coproduct of h € H being denoted h(Y) @ h(?) (Sweedler). If (B, H) and (B’, H')
are HAMAs, a morphism (B, H) — (B’, H') is a pair (fm, fB), where fg: H — H
is a Hopf algebra morphism and fg: B — B’ is an algebra morphism, such that
fe- fu(h)) = fe(b) -k for any b € B and b’/ € H'. Morphisms are composed as
follows: (9m, g5) o (fu, fB) = (fr o g, 95 © fB).

One checks that HAMASs build up a category, which will be denoted HAMA..
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Definition B.7. Let (B, H) be a HAMA. For n > 0, set
F,B:=Am(F""'H,B)={be B|b- F""'H = 0}.
Lemma B.8. Let (B,H) be a HAMA.

(a) FoB is an algebra filtration of B.

(b) Let n,m > 0. For n > m, then (F,B) - (F™H) C F,,_,B. If n < m, then
(F,B) - (F™H) = 0.

(¢) For anyn > 0, the action map B® H — B induces a linear map F,B® H —
F, B, which factorizes through a linear map F,B ® (H/F"*'H) — F, B.

Proof. (a) Let n,m > 0. By the second part of Lemma A.3, one has Ay (F" ™1 H)
CFrH'H® H+ H® F™H H. Together with the Hopf algebra action axiom, this
implies the inclusion in

(FuB)(FnB)) - (F"*™ 1 H) C (F,B) - (F"*'H))((F,n B) - H)
+((FuB) - H)((FnB) - (F™ H)) =0,

and the equality follows from (F,B) - (F"*'H) = (F,,B) - (F™T'H) = 0. The
resulting vanishing of (F, B)(F,, B) - (F*"*™*+1H) implies (F,,B)(F;nB) C FrimB.

(b) Assume n > m > 0. Then

((FuB) - (F™H)) - (F"~" " H) C (F,B) - (F™H)(F"~"+H))
c (F,B)- (F""'H) =0,
where the first inclusion follows from the right action axioms, the second inclusion
follows from the first part of Lemma A.3, and the equality follows from the defi-
nition of F;, B. This implies (F,,B) - (F™H) C F,_,, B, as claimed. In particular,
for any n >0, (F,,B) - (F"H) C FyB = BH. Then if m > n, one has

(FnB) - (F"H) = (F,B) - (F"H)(F"™"H)) C (F, B) - (F"H)) - (F" ™" H)
c BH . (F™"H) =0,
where the first equality follows from F™H = (F"H)(F™ ™H), the first inclusion
follows from the right action axioms, the second inclusion follows from the inclusion

(F,B) - (F"H) C B, and the last equality follows from B - H, = 0. This
completes the proof of the claim.

(¢) The first statement follows from (b) for m = 0. The second statement follows
from F,, B - (F""1H) = 0, which follows from the definition of F,, B. O
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Definition B.9. Define HAM A to be the full subcategory of HAMA of objects
(B, H) such that H is an object of HA¢y.

Lemma B.10. Let (B, H) be an object of HAMA,.

(a) For anyn >0, the linear map F, B (H/F""*H) — F, B from Lemma B.8(c)
induces a linear map Ap, g: F,B — (H/F""'H)*® F,B = F,H* ® F,,B.

(b) There is a linear map Ap_p: Foo B — H' ® FyoB, uniquely determined by

the condition that Ap_p oif~PB = (ifl' @ if~B)o Ap p for any n >0, where
Ap pisasin (a) andill . F,H* — H', iF>~B: F, B — F. B are the canonical
injections.

(¢) Together with the algebra structure of Foo B and Hopf algebra structure of H',
Ap_p equips (H', Foo B) with a HACA structure. The assignment (B, H) —
(H',FsoB) is a functor HAMA¢ — HACA.

Proof. (a) follows from the finite-dimensionality of H/F"*1H, which has been
established in the proof of Lemma A.6.

(b) Let n > 0 and ;% : F,B — F,1B and i)« F,H* < F, 1H* be
the canonical inclusions. Recall that zf ;l 41 is the dual of the projection map
pilyn: H/F"H — H/F"*'H. The diagram

F,B®H —— F,B® (H/F"*'B)

|

FopBO&H——— B®H

F,.1B® (H/F"2B) \ B

is built up of two commutative squares and a commutative triangle, therefore it is

commutative; it is the composition of the square whose commutativity expresses
the equality Ap_p o iff’fli = (153351 ® iﬁ;L+1) o Ap, p with the morphisms
F,y1B = Band F,B® H — F,B® (H/F""2H), which are respectively injective
and surjective. This implies the commutativity of this square, therefore the said

equality, from which one derives the statement.

(c) Let us show the coassociativity of (H', FooB). Recall that for £ € H' and

be FxB,onehas {- b= (id®& Ap(b)). Let b € Foo B and &, € H'. Then
£-(n-0) = {[d@ & Ap(n-b)) = (id@ &, Ap({id@n, Ap(b))))

(idefen (Ap®id)oAp(b) = ([d®@{@n, (Id® A) o Ap(b))

(id® (£ ), Ap(b)) = (£-n) - b B
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Lemma B.11. The following statements hold true:

(a) Let (B,H) be a HAMA and let H' C H be a Hopf subalgebra. Let us denote
by FEB, F.H,B the algebra filtrations of B attached to the actions of H, H'.
Then FXB c FII'B.

(b) Let f: B — C be an algebra morphism; let H be a Hopf algebra right acting
on B and C; assume that f is H-equivariant. Then (f,id): (B,H) — (C, H)
is a HAMA morphism, and f(FeB) C FsoC.

Proof. (a) For n > 0, one has FAB = {b € B | h-b = 0for h € F'*'H} C
{be B|h-b=0forh e F'''H'} = F'B, where the inclusion follows from
F+ H' ¢ PP+ H. This implies FYB ¢ F2'B.

(b) Forn>0,b€ F,B, and h € F*"'H, one has f(b)-h = f(b-h) = f(0) = 0,
where the first equality follows from the equivariance of f and the second equal-
ity follows from b € F,B. Therefore, f(b) € F,C. So f(F,B) C F,C, hence
f(FoB) C FxC. O

Appendix B.3. Pairing-morphisms from a HACA to HAMA
and HACA morphisms

Definition B.12. Let (O, A) be a HACA and (B, H) be a HAMA. A pairing-
morphism from (O, A) to (B, H) is a pair (p, f), where p: O ® H — C is a Hopf
algebra pairing, and f: A — B is an algebra morphism, such that the following
diagram commutes:

A® H feid BoH

(B.1) AA®ml J

ORA®RH —AR0O® H—— B,
coA®id fep

where Ay: A — O ® A is the coaction morphism of (O, A), coa: O® A - ARO
is the permutation isomorphism, and the right vertical map is the action map of
(B, H). Equivalently, one requests the identity

f(@) - h= f(a®)p(a) @ h)

to be satisfied for any a € A and h € H, where one denotes A4(a) == oY) @ a(?).
We denote by PM((O, A), (B, H)) the set of pairing-morphisms from (O, A)
to (B, H).

Lemma B.13. Let (O, A) be an object in HACA and (B, H) be an object in
HAMAgy. If (p, f) € PM((O, A), (B, H)), then f(FsA) C FoB, so that f induces
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an algebra morphism Foo f: Foo A — Foo B. The assignment (p, f) = (v(p), Fo f)
defines a map

7: PM((0, A), (B, H)) — HACA((F»0, Fx A), (H', F-. B)).

Proof. Let n > 0 and a € F,A. Then Ay(a) € F, O ® A. So (A(O"H) ®1ida) o
Aa(a) € (Cpsrepmen 08 ) ® AC A® 0=+ Then for hy,... hni € Hy,
one has

F(@) - (A1 hng1) = ((id ® f) 0 Aala), (b1 -~ hogr) @ id)
= ((1d® @ f) o ATV (@), (h @ - ® hyyr) @id) =0,

where the first equality follows from Definition B.12, the second equality fol-
lows from the Hopf algebra pairing axiom, and the last equality follows from
(O HE" 1y — 0, which follows from (1, H,) = 0. It follows that f(a) € F,B.

Let us prove that (v(p), Fof) is a morphism in HACA. Let n > 0. Since
f(F,A) C F, B, f induces a linear map F, f: F,,A — F,B.

By Lemma B.3(b), the coaction map Ag: A — O ® A induces a map Ap,_ 4:
F,A— F,0®F,A. By Lemma B.8(c), the action map actg: B® H — B induces
amap actp, p: F,B® H — F,B. Therefore (B.1) induces a commutative diagram

FLA®H fnfeid F,B® H
(B.Q) AFnA@idJ JaCtF‘nB
FO®F,A®H F,B.

(Fn f®p)o(c0a®id)

By the proof of Lemma A.9, the restriction of p to F,,O ® F"'H is zero, which
induces a pairing p,,: F,,0 ® (H/F"*'H) — C. By Lemma B.8(c), the restriction
of actp, g to F,,B® (H/F""1H) is zero, inducing a linear map actr, g: F,,B ®
(H/F"t'H) — F,B. The above diagram therefore gives rise to a commutative
diagram

F7lf®id

F,A® (H/F"'H) F,B® (H/F"'H)

AFnA®idl JactFnB

F, F,A® (H/F"T'H F,B.
O ® ® ( / ) (Fn.f@pn)o(UOA@id)

Since H/F"™'H is finite-dimensional, the map p, gives rise to a linear map
v(p)n: Fr,O — F,H* (see the proof of Lemma A.9) and the map actp p gives
rise to the map Ap p: F,B — F,H* ® F,B (see Lemma B.10(a)). The above
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commutative diagram then gives rise to a commutative diagram

F,A ot F,B

AFWAJ( lAFnB

F,O0® FJA— F,H* ® F,,B.
v(p)n@Fn f

This commutativity means that the restrictions to Fj, A of the two composed maps

of the diagram

P A et F.B

AFOOAJ lAF(X,B

F, O F( A———— H' ® Fo B
V(p)®Foof

are equal. Since F A = UnZO F, A, this diagram is commutative, therefore the
pair (v(p), Foo f) is & morphism in HACA. O

Appendix B.4. Two functors HACA — Alg,,
and a natural transformation

Definition B.14. Define Alg,, to be the category of Z>-graded associative alge-
bras.

By Proposition A.2(a), a Hopf algebra O is naturally equipped with a filtration
F,0. Set gr(0) == @,~ gr;(0), where gr;(0) := F;0/F;_,0 for i > 0. Then gr(O)
is a Zxp-graded Hopf algebra, therefore also a Zx>(-graded associative algebra.
Recall that an object (O, A) of HACA gives rise to an algebra filtration Fy A on
A (see Lemma B.3(a)). Then gr(A) = @, gr;(A), where gr;(A) = F;A/F;_1A
for i > 0 is a Z>¢-graded associative algeb;a.

Lemma B.15. The following statements hold true:

(a) The assignment (O, A) — gr(A) defines a functor gr: HACA — Alg,,.

(b) For (O,A) an object in HACA, equip gr(O) ® FoA with the tensor prod-
uct Z>o-graded associative algebra structure, where FyA is concentrated in
degree 0. Then the assignment (O, A) — gr(O) ® FoA defines a functor ®:
HACA — Alg,,.

Proof. (a) The assignment (O, A) — (A, FoA) defines a functor HACA — Algg,
where Algy, is the category of filtered algebras (in the sense of Section 4.1). The
said assignment is the composition of this functor with the “associated-graded
functor” Algg — Alg,,.
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(b) The assignments (O, A) — FyA and (O,A) — gr(O) define the functors
HACA — Alg and HACA — Alg,,, where Alg is the category of associative
algebras. The said assignment is the composition of the product of these func-
tors, of the “degree-0 functor” Alg — Alg,,, and of the tensor product functor
Alg}, — Alg,,. O

Let (O, A) be an object in HACA. By Lemma B.3(c), the coaction map
Ayg: A — O® A is compatible with the filtrations on both sides, and therefore
gives rise to a morphism of graded algebras gry(Aa): gro(A) — gr,(O ® A) =
gr, (0O)®gr, (A). There is a unique morphism of graded algebras pry: gr,(A) — FpA
given by the identity in degree 0 and O on all degree components of degree > 0.

Definition B.16. Define nat(p, 4): gre(A4) — gr,(0O)® Fy A to be the composition
of gry(A4) with id ® pry.

Lemma B.17. The following statements hold true:

(a) The assignment (O, A) = nat(p,4) € Alg,,(gr(A), ®(0, A)) is a natural trans-
formation relating the functors gr,®: HACA — Alg,,.

(b) For any object (O, A) of HACA, the morphism nat o, a) is injective.

Proof. (a) nat(o 4y is a morphism of graded algebras as it is a composition of such

morphisms. The naturality is obvious.

(b) Let us prove that for any n > 0, the degree n component nat?O’A) of nat (o, 4)
is injective. The double inclusion of vector spaces of O ® A,

Fo1(0®A)CY F, 0@ F,ACF,(0®A),
p=1
where F,(O® A) = Zf:o F._,0® F; A, gives rise to the map
F,(0O® A)JF, 1(0® A) — F,(0O® A)/ ( Y F,,0® FpA>,
p=1

which can be identified with the projection id ® pry: gr,,(O® A) — gr,, (0) ® FyA.
It follows that the map nat?o A) is the vertical cokernel of the diagram

FoA— 24 L E(0®A)

J

FuliA—— Y0 Fuly0 @ FyA,
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therefore that its kernel is the image in F,, A/ F,,_1 A of the preimage by A4 : F,A—
F,(O ® A) of the subspace Y ' | F,,,0 @ F,A of F,(O ® A). This subspace
is contained F,,_10 ® A, which together with Definition B.2 implies that this
preimage is contained in F;, 1 A. This implies the vanishing of the kernel of nat?a A)
and therefore the injectivity of nati; 4- O

Appendix B.5. Isomorphisms in HACA

Proposition B.18. The following statements hold true:

(a) A pair (O,a) of a Hopf algebra O and an associative algebra a gives rise to
an object (0,0 ® a) of HACA, with coaction morphism given by Apga =
Ao ®ida (where Ao is the coproduct of O). Its image by the endofunctor of
HACA from Lemma B.3(d) is the pair (Fso O, F5oO ® a), where the coaction
morphism is Ap_oga = Ar_o®ida (where Ap_o is the coproduct of FO).

(b) If (O, a) is a pair of a Hopf algebra and an associative algebra, if (B, H) is
an object of HAMA ¢, and if (p, f) € PM((0,0 ® a),(B, H)) is a pairing-
morphism such that v(p): FooO — H' is a Hopf algebra isomorphism and the
algebra morphism f: O @ a — B induces an algebra isomorphism C ® a =
BH between the subalgebras C @ a and B of both sides, then the morphism
(v(p), Foof): (FoO,Fxx0O ®@ a) — (H', FxB) in HACA is an isomorphism.
In particular, Fo f 1 FooO ® a — Foo B is a filtered algebra isomorphism.

(¢) In the situation of (b), the algebra morphism f: O®a — B is compatible with
the filtrations FoO @ a and Fo B, and induces an isomorphism gr,(O) ® a —
gre(B) in Alg,,.

Proof. (a) If o € O is such that Ap(0) € F,,0O® O, then 0o = (id ® ep) 0 Ap(0) €
F, 0, where ¢o is the counit of O, therefore {o € O | Ap(0) € F,,0 ® O} C F,0.
On the other hand, Lemma A.1(c) implies F,,O C {o € O | Ap(o) € F,0 ® O},
therefore F,0 = {0 € O | Ap(0) = F,O®0}. Then F,,(O®a) = {o € O | Ap(o) €
F,0®0}®a = F,0®a. It follows that F..c (O®a) = J,,», FrO®a=F,O®a.
The fact that (FaO, FsO ® a) — (0,0 ® a) is a morphism in HACA (see
Lemma B.3(d)) implies that the coaction morphism of F,,O ® a has the claimed
value.

(b) and (c). Lemma B.13 applied to the pairing-morphism (p, f) implies that
f: O®a — B is a morphism of filtered algebras. By (a), there is an isomor-
phism gr, (O ® a) = gr,(0O) ® a. Composing it with the associated graded algebra
morphism gr,(f): gr,(O ® a) — gry(B), one obtains a morphism

gre(f): gre(0) ® a — gr, (B)
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of graded algebras. Since (B, H) is an object of HAMA ¢y, one may apply to
it the functor from Lemma B.10(c) to obtain the object (H', Foo B) of HACA.
By Lemma B.17, the latter object gives rise to an injective morphism of graded
algebras

nat(H’,FocB)

O(H',FooB) = gr (H') ® (Fse B)"
= gr (H') @ B".

gre(B) = gr(Fuo B)

The composition of these morphisms is the morphism
natg: g p) © gy (f): gr,(0) ® a — gr,(H') ® BH

of graded algebras. As v(p): F,oO — H' is a Hopf algebra isomorphism, it induces
an isomorphism between the filtrations Fy on both sides (see Proposition A.2(c)),
and an associated graded isomorphism gr, (v(p)): gre(FosO) — gre(H'), which we
identify with its composition with the equality gr,(O) = gr,(FO). Let us show
that

(B.3) nat(g r., B © 8. (f) = gre(v(p)) @ fo

(equality of morphisms of graded algebras gr, (O) ® a — gr,(H') @ BH), where f,
is the isomorphism fy: C ® a — B¥. The composition

Coa=FR0oa) =Y B =Bl

is fo, which together with gry,(v(p)) = 1 proves the degree 0 part of (B.3). Let
n >0 and o € gr,(O). The image of o under nat g r_py o gr,(f) is equal to the
image of 6 ® 1 by the horizontal composition

F,H®B—— o1 (H)® B

FO®a—— FB—5—

" Fu wH' © FxB—gr, (H') ® FyB,

where 0 € F,,0 is a lift of 0. Since F), f is compatible with the coaction maps, the
image of this element in Y, _, F,—xH' ® F},B is equal to v(p)(6™M) @ f(6@ @ 1),
where 60 ® 62 = Ap(6) € Sor_y FrakO ® F,O C O%2. One has 61 @ 6 ¢
6@ 1+ F, 10 ® O, therefore v(p)(6V) @ f(6P ®1) € v(p)(6) @1+ F,_H' ® B
(inclusion in F,H' ® B). It follows that the image of 6 ® 1 in gr,(H') ® B is
im(v(p)(0) € Fr,H — gr,H)®1 =gr, (v(p))(0) ® 1. This implies that both sides
of (B.3) coincide when restricted to gr,(O) ® C for any n, therefore to gr,(O) ® C.
Equation (B.3) then follows from the fact that each of its sides is an algebra
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morphism, and that they agree on gr,(O) ® C and C ® a, which generate the
source algebra.

It follows from (B.3) that naty/ p_py o gr,(f) is an isomorphism of graded
algebras. The injectivity of nat g r_p) then implies that both nat g/ r_py and
gry(f) are isomorphisms of graded algebras. By Lemma B.13, f induces a mor-
phism of filtered algebras Fuof: Foeuo O ® a — Foo B, and gr (f) = gre(Fof). It
follows that gr,(Fs f) is an isomorphism of graded algebras, which together with
the fact that the filtrations of the source and target of F,, f are exhaustive, implies
that Fi f is an isomorphism of filtered algebras (see Lemma 4.1). O

Appendix C. Filtered formality for Hopf algebras and HACAs

In Appendix C.1 we introduce a notion of filtered formality for Hopf algebras;
this notion is related in Appendix D to the similar notion for discrete groups,
introduced in [SW1]. We extend this to a notion of filtered formality for HACAs
in Appendix C.2. The main result of this section is Proposition C.5, which shows
that a HACA constructed in the context of Proposition B.18 is filtered formal.

Appendix C.1. Filtered formality for Hopf algebras

In Proposition A.2(a), we attach to a Hopf algebra O a filtration F,O. Let gr(O)
be the associated graded vector space.

Lemma C.1. The following statements hold true:

(a) If O is a Hopf algebra, then gr(O) is a graded Hopf algebra, which is commu-
tative if O is, and such that for each n > 0, Fy,(gr(0)) = gr<,,(0).

(b) The assignment O — gr(O) defines an endofunctor of the category HA comm
of commutative Hopf algebras.

Proof. Let us show (a). The first statement follows from the fact that F,O is a
Hopf algebra filtration (see Proposition A.2(a)). Let us show the second statement.
Let n > 0. The inclusion F, (gr(O)) D gr<,,(0) follows from the fact that gr(O) is a
graded and connected Hopf algebra. Let us show the opposite inclusion. Since gr(O)
is a graded Hopf algebra, F,(gr(0O)) is the direct sum of its intersection with the
homogeneous components of gr(O). If £ > 1, the intersection F;,(gr(O))Ngr, . (O)
is contained in F,,(gr(0O)), which is the kernel of

1 [ n+1 n )
(ld - ngr(O)Egr(o))Q@n-&-l o Aér(+0)): gr(O) - (gr(o))® +1 _ gr(0®”+1)7
therefore F, (gr(0)) Ngr,,, 4 (0) is contained in the kernel of the map gr,, ,(O) —

T4, (0% 1) induced by (id — ngr(O)Egr(O))®n+1 o Agzrol)). This map is the degree
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n + k part of the associated graded of the map (id — noep)®"*! o A(O"H): 0 —
O®"*1 Tt follows that if V' is the preimage of F,(gr(0))Ngr,,,(0) in F, 410, one
has (id — noeo)®" ' 0 AGT (V) € Foipo1(0®™H). The map ((id — noeo)®* o
A¥)2id®™ maps F,4p—1(0%"1) to Fiypp_1 (O®"HF), therefore (id—noeo)®" o
AU Y € FLp1(0%7HF). Now O = C1 & F10; one has (id — noeo)®"* o
AS"*’”(V) C (FLO)®™F while F, 4 j_,(0%"HF) ¢ S 0®i-1 ¢ C1 @ 0@k,
As the second terms of both inclusions have zero intersection in O®"** one
has (id — noeo)®"* o A(OnJrk)(V) = 0. Therefore V C F,, 10, which implies
F,(gr(0)) Ngr, 1 (0) = 0. Therefore, F,(gr(0)) = gr<,,(0).

(b) follows from the naturality of the assignment O — F,O. O

Definition C.2. The Hopf algebra O is called filtered formal if there is an iso-
morphism of Hopf algebra O — gr(O) whose associated graded for the grading gr
is the identity.

This terminology is justified by Proposition D.18.

Appendix C.2. Filtered formality for HACAs
Let HACA,, be the category of Z>o-graded HACAs.

Lemma C.3. The assignment (O, A) — (gr(0),gr(A)) is a functor (gr,gr):
HACA — HACA,,.

Proof. Tt follows from the fact that for (O, A) a HACA, (F,O, F,A) is a HACA
filtration. O

Definition C.4. The HACA (O, A) is called filtered formal if there exists an
isomorphism (O, 4) — (gr(0),gr(A)) in HACA, which is compatible with the
filtrations (F,O, F,A) in the source and induced by the grading in the target,
and whose image by the functor (gr,gr): HACA — HACA,, is the identity
endomorphism of (gr(0),gr(A)).

If the HACA (O, A) is filtered formal, then the Hopf algebra O is filtered
formal in the sense of Definition C.2.

Proposition C.5. Let (O,a),(B,H),(p, f) be as in the hypothesis of Proposi-
tion B.18(b),(c). Then the HACA (H', Fx B) is filtered formal.

Proof. Recall from Lemma C.3 that (O, A) — (gr(O), gr(A)) is a functor HACA —
HACA,,; one checks that the same is true of (O, A4) — (gr(0),®(0,A)). For
(O, A) a HACA, (id57nat(5,A)) is a morphism (gr(0),gr(A)) — (gr(0), (0, A))
in HACA,,, which is an isomorphism if and only if nat 5 4 is.
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The proof of Proposition B.18(c) implies that nat g p_p) is an isomorphism
in Alg,,, therefore

(C.1) (idgr(rry, mat )+ (g1(H'), g0(B)) — (gr(H'), gr(H') @ BY)

is an isomorphism in HACA,;,.

By the assumptions of Proposition B.18(b), v(p): FoeeO — H' is an isomor-
phism in HA. Proposition C.1 then implies that gr(v(p)): gr(O) — gr(H’) is an
isomorphism in HA,,. The assumptions of Proposition B.18(b) also imply that f
restricts to an algebra isomorphism C ® a — B, we denote by f, the composed
isomorphism a ~ C ® a — B¥. Both isomorphisms gr(v(p)) and fy induce an
isomorphism

(C.2) (gr(v(p) ™ er(vp) '@ f5"): (gr(H'),er(H)®B") = (gr(0), g1(0)®a)
in HACA,,. By Proposition B.18(b) and (c), the pair
(C.3) (v(p), Fao f): (FxO, FuO ® a) — (H', F5u B)

is an isomorphism in HACA. The composition of (C.1), (C.2), and (C.3) gives
rise to an isomorphism

(v(p) o (gr(v(p) ™), Foof o (gr(v(p)) ' ® f3') o nat(ge(zry rom))
(C.4) (gr(H'),gr(B)) — (H', Foo B)

in HACA.

By Proposition A.2(c), v(p) is compatible with the filtrations F,; it follows
that v(p)ogr(v(p))~! is compatible with these filtrations as well, and one computes
gr(v(p) 0 gr(v(p)) 1) = id.

The algebra morphisms in (C.1) and (C.2) are compatible with the filtrations
since they are graded, and the algebra morphism in (C.3) is compatible with the
filtrations. It follows that the algebra morphism in (C.4) is compatible with the
filtrations. Its associated graded is the composed morphism

nat g’ p.B)

r(v -1 -1 T
BRI Bl SN F.,O®a LN gr(B).

(C5)  gr(B) gr(H') ® BH
It follows from the proof of Proposition B.18(b) that relation (B.3) holds, and that
nat g g p) and grf are both isomorphisms. The combination of these facts then
implies that the map (C.5) is the identity. Therefore, the algebra morphism in (C.4)

is compatible with the filtrations, and its associated graded is the identity. O
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Appendix D. Hopf algebra duality and prounipotent completions

Appendix D.1 relates the Hopf algebraic constructions of Appendix A to complete
Hopf algebras (CHAs) in the sense of [Q1]. This is applied in Appendix D.2 to
obtain an expression of the function algebra of the prounipotent completion of a
finitely generated group in the terms of the functors of Appendix A. The main
result of Appendix D.3 is Proposition D.18, which relates the notion of filtered
formality for a finitely generated group ([SW1]) with the similar notion for Hopf
algebras, introduced in Appendix C.

Appendix D.1. Completion and duality of Hopf algebras

Recall from [Q1, A1l and A2| the categories CA A of complete augmented algebras
(CAAs) and CHA of complete Hopf algebras (CHAs): CAA is the full subcate-
gory, in the category of pairs (A, F'* A) of an augmented algebra A and a decreasing
algebra filtration A = FCA D F'A O ..., of CAAs, i.e. of pairs such that A is
complete and Hausdorff for the topology of F® A, such that F'' A is the augmenta-
tion ideal of A and such that gr(A) is generated by gri(A); a monoidal structure
is defined on CAA, given at the level of objects by ((4,F*A),(B,F*B)) —
(A® B, F*(A® B)), where A® B = lim (A/F"A)® (B/F"B) and F"(A® B) =
Jm im(>, ep F"A® F"'B — (A/F™A) ® (B/F™B)); a CHA is a pair
(A, A4), where Aisa CAA, Ay: A— A ® A is a cocommutative and coassocia-
tive algebra morphism, which admits the augmentation of A as a counit, and a
morphism in CHA is a morphism in CAA which is compatible with coproducts.

Lemma D.1. The following statements hold true:

(a) Let H be a cocommutative Hopf algebra with coproduct Ay and counit ep.
Recall Hy = ker(eg). Set H" = mmH/HT and for n > 0, F"H" =
yan F"H/Fmax(”’m)H, Then H” is a complete augmented algebra. There
is a unique continuous evtension of Ay to a map Ag: HN — HM & H”,
which equips H™ with the structure of a complete Hopf algebra. The assignment
H — H”" is a functor HA oeo — CHA, where HA oo is the category of
cocommutative Hopf algebras.

(b) If V is a vector space and H is the cocommutative Hopf algebra T(V) with
coproduct defined by the condition that the elements of V' are primitive, then
T(V) =T(V) (the degree completion of T(V)).

Proof. (a) The first statement follows from [Q1, Al, Exa. 1.2]. One has the inclu-
sion Ay(Hy) C Hiy ® H+ H ® Hy, which implies that for any n > 0, one has
Au(HY) C3p ipta=n HY ® HY. Tt follows that Ay defines a collection of maps
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H/H3" — (H/H?)®? indexed by n > 0, which are compatible for various n and
which therefore induce a map Ay : H" — HN® H”, which is a continuous exten-
sion of Ag. The uniqueness of this extension follows from the Hausdorff property
of H™. The verification of the other properties of A g is standard.

(b) follows from the fact that T'(V')" is the part of T'(V') of degree > n, and that
T(V) is the completion with respect to the corresponding topology. O]

Definition D.2. Consider the following definitions:

(a) CHAyq is the full subcategory of CHA of CHAs A such that grA is finite-
dimensional.

(b) For H a Hopf algebra, set gr' (H) := H, /H?, where we recall H, = ker(ep),
and eg is the counit of H.

(¢) HA oco,ta is the full subcategory of HA o, of all cocommutative Hopf algebras
H such that gr' H is finite-dimensional.

(d) Gpy, is the full subcategory of Gp of finitely generated groups.

Lemma D.3. The following statements hold true:

(a) The functor Gp — HAcoco given by I' — CT' induces a functor Gpg, —
HAcoco,fd-

(b) The functor HA coco — CHA, H — H" from Lemma D.1 induces a functor
HAcoco,fd — CHAfd-

Proof. (a) If T' is a group, then gr!(CT) = I'** ® C (see [Q2]). Moreover, if T is
finitely generated, then I'® is a finitely generated abelian group, which together
with the above equality implies the finite-dimensionality of gr!(CT).

(b) follows from the fact that the natural map gr' H — gr'(H”) is a linear iso-
morphism. O

Definition D.4. For H a CHA with associated filtration H = F°H O ---, set
H = Unzo FrHL+ C H*.

Lemma D.5. The following statements hold true:

(a) If H is a CHA, then H' has a commutative and associative algebra structure.

(b) If H is an object in CHAyq, then the algebra structure on H' can be upgraded
to a commutative Hopf algebra structure; the resulting assignment H — H' is
a contravariant functor CHAy — HA omm-
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Proof. (a) Let &,n € H'. Let n > 0 be such that £, 7 € F*H+. Then £®n is a linear
form on (H/F"H)®2, which can be pulled back by the map H®? — (H/F"H)®?
to define a linear form on H ®2; it can be checked to be independent of the choice
of n and will be denoted /¢ ,,. Then /¢, vanishes on F"H ® H + H ® F"H. The
assignment £ - n: b+ le, 0 Ag(h) is then a linear form on H, i.e. an element of
H*. Since Ay (F*"H) C F"H® H + H® F"H, one has £ -1 € F?"H*, therefore
€-n € H'. One checks that this defines a commutative and associative algebra
structure on H'.

(b) If n > 0, then H/F™H is noncanonically isomorphic to @, _, gr®(H), which
is finite-dimensional since it is generated by gr'H and the latter space is
finite-dimensional. The coproduct Ay defines a coproduct Apng: H/F"H —
(H/F"H)®? for any n > 0. Since H/F"H is finite-dimensional, this coproduct
can be dualized and defines a product mpngye: (F"H):)®? — (F"H)*. As in
the proof of Lemma A.6, one checks that the collection of these products is com-
patible, which gives rise to a product mpg.: H'®2 — H’, which can be shown to
define a Hopf structure. O

The following lemma is a topological analogue of Lemma A.7.

Lemma D.6. If H is a CHA, then for any n > 0 one has F,(H') = (F"T1H)*
(equality of subspaces of H*).

Proof. Let us show that if H is a CHA and k,n > 1, then the image of the product
map (F'H/F"TFH)®" — H/F"TFH is FPH/F"**H. We proceed by induction
on k. For k = 1, the statement follows from the surjectivity of the product map
(FIH/F?H)®" — F"H/F"*1H. Assume the statement at order k and let us
show it at order k + 1. The product map (F'H/F2H)®"+tk — prtkp/prthtlg
is surjective, therefore F"*kH/F"TF+1[ is equal to the image of a subspace of
(FYH/F"F+1 )@ namely

(FYH/FE+ /S =1 @ i (FLH ) PPl ekl pl g prskel ),

Combining this with the statement at order k, one obtains the statement at order
k + 1 and therefore the induction. The proof of the lemma is then similar to that
of Lemma A.7. O

Lemma D.7. The functors HA ocota — CHAtq — HA comm (see Lemma D.3(b)
and Lemma D.5(b)) and HA oo ta — HAcomm (see Lemma A.6) are naturally
equivalent.
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Proof. For each n > 0, the algebra morphism H — H” induces an algebra iso-
morphism H/F"H = H"/F"H”, which fits in a commutative diagram

H—— H"

|

H/F"H —— HJF"HA.

Dualizing and using the equalities (H/F"H)* = F"H* and (H"/F"H")* =
(F"H")L, one obtains a commutative diagram

(D.1) (FPHN: —~ (FrH)

!

(HN* —— H*.

If V, W are filtered vector spaces and f: V — W is a linear map such that for
any n > 0, f induces a linear isomorphism F,V — F, W then f induces an
isomorphism F..V — F,,W. This and (D.1) imply that the map (H")* — H*
restricts to a linear isomorphism (H”)" — H’. One then checks this isomorphism
to be compatible with the Hopf algebra structures. O

Appendix D.2. Isomorphism CI ~ O(T ynip)

Let T be a group. A pro-unipotent completion of a group I is the pair (U, ¢) of a
prounipotent C-group scheme U and a morphism I' — U(C) satisfying a universal
property (see [BGF, Def. 3.217]).

If T is an object in Gpy,, then CI' is an object in HA¢q by Lemma D.3(a),
therefore (CT')’ is a commutative Hopf algebra (see Lemma A.6). Since I'** ® C is
finite-dimensional, one may use [BGF, Thm. 3.224] to obtain that a pro-unipotent
completion exists and is unique up to isomorphism, and can be constructed as the
pair (Tunip, Cunip), Where Typip is the spectrum of the commutative Hopf algebra
O(Tunip) == ((CT)")’, which is isomorphic to (CT")’ by Lemma D.7, and cypnip 18
induced by the commutative algebra morphism O(T'ypip) = (CT)' < (CI')* = CF,
where CI' is the algebra of all functions I' — C.

Appendix D.3. Relation between the filtered formalities of T' and (CT")’
Definition D.8 (See [Q1, §A.2]). Consider the following definitions:

(a) A Malcev Lie algebra (MLA) is a Lie algebra g, equipped with a decreasing Lie
algebra filtration g = Flg D F?g D --- (i.e. [Fig, Fig] C Fitig for i,j > 1)
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for which it is complete and Hausdorff, and such that the associated graded
Lie algebra grg is generated by gr'g.

(b) A morphism between two MLAs is a Lie algebra morphism which is compatible
with the filtrations. We denote the category of MLAs by MLA.

Lemma D.9 (See [Q1, Thm. 3.3]). The functors U: MLA <> CHA: P, where
ﬁ(g) = l'gli U(g/F'g) and P is the “primitive-elements functor”, taking (A, Aa)
to P(A) ={a€ A|Aala) =a®1+ 1R a}, equipped with the filtration given by
F,P(A) =P(A)NF,A forn >0, are quasi-inverse to one another.

Definition D.10. The composed functor Gp —» CHA r, MLA, where the first
functor is I — (CI')” (see Lemma D.1), is denoted I' + Lie(T").

Lemma-Definition D.11. The assignment g — (gr(g), F*gr(g)), where gr(g) :=
Hngri(g) and forn > 1, F"gr(g) := Hiz” gri(g), is an endofunctor of MLLA.
For g an object in MLA, one has gr(gr(g)) ~ gr(g).

Proof. Immediate. O

Definition D.12 (See [SW1]

). A group I is called filtered formal if there exists an
isomorphism Lie(I') — gr Lie(T") in MLA, whose associated graded is the identity.

One checks that A — gr(A) = [[;5, F*A/F""' A is an endofunctor of CHA.

Lemma D.13. The category equivalence CHA <+ MLA quasi-intertwines the
endofunctors g on both sides.

Proof. Tt follows from the natural isomorphism of graded Lie algebras
(D.2) gr(PA) ~ P(gr(A))
for A an object of CHA from [Q1, A1, Thm. 2.14]. O

Definition D.14. One defines MLA¢ to be the full subcategory of MLA of
MLAs g such that grlg is finite-dimensional.

Recall the full subcategory CHA¢4 of CHA (see Definition D.2).

Lemma D.15. The following statements hold:

(a) The equivalence CHA < MLA induces a category equivalence CHAgy <+
MLAg.

(b) The endofunctors gr of CHA and MLA induce endofunctors (still denoted
gAr) Of CHAfd and MLAfd.
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(¢) The category equivalence CHAq <> MLA¢y quasi-intertwines the endofunc-

tors gr on both sides.

Proof. (a) For A an object in CHA, (D.2) implies the vector space isomorphism
gri(PA) ~ P(gr(A4)) Ngr! A; moreover, gr(A) is a graded connected Hopf algebra,
therefore gr!(A) C P(gr(A)); therefore gr'(PA) ~ grl A.

(b) follows from gr!(gi(A)) = gr!(A) for A a CHA and gr!(gi(g)) = gr'(g) for g
an MLA.

(c) follows from Lemma D.13. O

Lemma D.16. Let H be an object in CHA.

(a) There is a natural vector space isomorphism (§tH) =~ €, >qer"(H)*; it
induces a natural isomorphism F,((gtH)") ~ @<, gr®(H)* for any n > 0.

(b) There is a natural isomorphism
(D3) (@H) ~ ar(1T)

in HA.

(c) The composed isomorphism €@, , gt*(H)* ~ F,((gtH)") ~ F,(gr(H')) ~
gr<,(H'), where the first isomorphism arises from (a), the second from the
image by F,, of (D.3), and the third isomorphism arises from Lemma C.1(a),
is the direct sum over k < n of the isomorphisms gr*(H)* ~ gre,(H') arising
from Lemma D.6.

Proof. (a) gr(H) is [],5oer"H, equipped with the filtration ([T, gr'H)n>o- It
follows that gr(H)' = @D, g™ (H)*. One then has F,,(gr(H)') = (F" ' gr(H))* ~
D.. <n gr¥(H)* for any n > 0, where the first equality follows from Lemma D.6.

(b) follows from the sequence of equalities

gr(H') = D Fua '/ F, H' = @(F ) /(F H)* = D(F" H/F" 1)’

n>0 n>0 n>0

=@PeH) = (gH)',

n>0
where the second equality follows from FyH' = (F**1H)L (see Lemma D.6) and
the last equality follows from (a).

(c) follows from the identification of the said isomorphism with the degree < k
part of the above sequence of equalities. O
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Lemma D.17. Let T be a group. If T is filtered formal, then there exists an iso-
morphism

(D.4) isor: (CI")" ~ gr((CM)")

in CHA, such that gr(isor) = id.

Proof. Let I' be a filtered formal group. There is an isomorphism
(D.5) Lie(T") ~ gr Lie(T")

in MLA with associated graded the identity. There is a sequence of isomorphisms
in CHA given by

(CT)" =~ U(Lie(T)) ~ U(gr Lie(T")) ~ g (U (Lie(T'))) = gr((CT)"),

where the first and last isomorphisms come from Lemma D.9 and Definition D.10,
the second isomorphism arises from applying the functor U to the isomorphism
(D.5), and the third isomorphism arises from Lemma D.15(c). This results in an
isomorphism with the claimed properties. O

Proposition D.18. If T' is a filtered formal finitely generated group, then the
Hopf algebra (CT')' is filtered formal (in the sense of Definition C.2).

Proof. Let I' be a filtered formal finitely generated group. Then (D.4) is an iso-
morphism in CHA4. There is a sequence of isomorphisms in HA,

(D.6) (CT)Y = ((CT)")" = (8:((CT)"))" =~ gr(((CT)")') = gx((CT)"),

where the first and last isomorphisms follow from Lemma D.7, the second iso-
morphism arises from applying the functor CHA¢y — HA, H — H' (see Def-
inition D.4) to (D.4), and the third isomorphism comes from (D.3). It follows
from gr(isor) = id and Lemma D.6 that the second isomorphism in (D.6) is com-
patible with the filtration F, and that the associated graded is the identity. The
third isomorphism in (D.6) induces an isomorphism between the F), of both sides
for any n > 0. By Lemma D.16(c), the associated graded morphism coincides
with the composition of natural isomorphisms gr,, ((gr((CI')"))’) ~ gr™(CI')* ~
gr,, (er(((CT)")")). This implies that the image by gr,, of the isomorphism (CI')’ ~
gr((CT)’) induced by (D.6) is the identification gr,,(CT")’ ~ gr, gr((CT")’) induced
by Lemma C.1(a). O

Remark D.19. Lemma D.17 relates as follows to [SW2]: combining [SW2, Cors
6.2 and 2.7] one obtains the equivalence of the filtered formality of I with the
conclusion of Lemma D.17 for any finitely generated group I'.
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