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Abstract

This paper addresses the extensions of co-compact Gabor Bessel sequences to tight frames
and dual pairs on locally compact abelian (LCA) groups, and its applications to the
L2(Rd)-setting. Firstly, we present a method to construct co-compact Gabor frames
on LCA groups under a mild condition. This condition is optimal in the sense that
it reduces to the usual density condition for lattice-based Gabor frames in L2(Rd). Sec-
ondly, we obtain an extension theorem of a co-compact Gabor Bessel sequence (a pair of
co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame (a pair of dual
co-compact Gabor frames). Finally, as an application, we derive a strategy to obtain
co-compact Gabor frames for L2(Rd), and establish an extension theorem of dual co-
compact Gabor frames for L2(Rd) with C∞

c (Rd)-window functions. An example is also
provided. It demonstrates that, for general co-compact (i.e., at least one of time and
frequency translations is not a lattice) Gabor frames, the product of the sizes of time
and frequency translations can take an arbitrary positive number.
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§1. Introduction

Due to unifying a number of different results into a general framework with a

concise and elegant notation, the frame theory on locally compact abelian (LCA)

groups has attracted much attention from mathematicians in the last two decades.

The LCA group approach enables us to visualize hidden relationships between the

different components of the theory. Recall that the LCA group approach applies

to signals on all groups of the form Rs ×Zd ×Tq ×Zp which include multichannel

video signals based on the group Zd × Zp, where Zp is the finite group of the

integers modulo p. In practice, one can also encounter signals on LCA groups other

than Rs × Zd × Tq × Zp ([2, 6, 5, 3, 11]). Gabor analysis on LCA groups dates

back to the works [14, 24] by Gröchenig, Kaniuth and Kutyniok. Gabor frames are

closely related to shift- (translation-)invariant systems. Uniform lattice-based shift-

invariant systems and Gabor frames on LCA groups were studied by many authors

including Cabrelli, Christensena, Feichtinger, Goh, Kamyabi Gol, Kazarian, Kozek,

Kutyniok, Labate, Luef, Mohammadian, Paternostro, Raisi Tousi, Tabatabaie and

Jokar; cf. [2, 23, 6, 12, 25, 7, 8, 22, 26, 30, 33]. Recall that not all LCA groups

possess uniform lattices, for example the group Qp of p-adic numbers, but every

LCA group has co-compact subgroups. Co-compact translation-invariant systems

were recently studied by some authors including Bownik, Ross, Gumber, Shukla,

Jakobsen and Lemvig; cf. [1, 15, 21, 20].

For frame extension, Casazza and Leonhard [4] showed that every Bessel

sequence in a finite-dimensional space can be extended to a tight frame. Li and

Sun [27] generalized this result to general Hilbert spaces, and proved that every

Gabor Bessel sequence in L2(R) can be extended to a tight frame by adding one

Gabor system with the same time-frequency parameters. Christensen, Kim and

Kim [9] obtained similar results in the setting of dual frames. In particular, they

proved that every pair of Gabor Bessel sequences in L2(R) can be extended to a

pair of dual frames by adding one extra Gabor system to each Bessel sequence,

and that the generators of added Gabor systems can be chosen to be compactly

supported if the generators of initial Gabor Bessel sequences have compact support

in addition.

Motivated by the above works, in this paper we investigate the extension of co-

compact Gabor frames on second countable LCA groups and their applications.

For a group, we will denote the neutral element by 0, the group operation by

“+” and its inverse operation by “−”. Let G be a second countable LCA group.

We denote its dual group by Ĝ which consists of all characters, i.e., all continuous

homomorphisms from G into the torus T. When equipped with the weak∗ topology

and group operation pointwise multiplication, Ĝ is also an LCA group. A closed
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subgroup H of G is said to be co-compact if G/H is compact, and is said to be a

(uniform) lattice if H is discrete and co-compact. For a closed subgroup H of G,

its annihilator H⊥ is defined by H⊥ := {γ ∈ Ĝ : γ(x) = 1, ∀x ∈ H}. Then H⊥

is a closed subgroup of Ĝ. We denote by µG the Haar measure on G (it is unique

up to a positive constant), by Lp(G) the Banach space of all p-integral functions

on G for 1 ≤ p < ∞, and by L∞(G) the Banach space of all essentially bounded

functions on G with respect to µG. In particular, L2(G) is a separable Hilbert

space. We define the Fourier transform by

Ff(γ) = f̂(γ) =

∫
G

f(x)γ(x) dµG(x), γ ∈ Ĝ

for f ∈ L1(G) and extend it to L2(G) in the usual way. For convenience, we require

that the measures µG and µĜ are normalized so that the Plancherel theorem holds,

i.e., ∫
G

f(x)g(x) dµG(x) =

∫
Ĝ

f̂(γ)ĝ(γ) dµĜ(γ) for f , g ∈ L2(G).

In this case, we say that µG and µĜ are dual measures. We mention Weil’s theorem

in [31].

Proposition 1.1. Let H denote a closed subgroup of the LCA group G. Then the

following hold:

(i) Taking any Haar measures on two of the LCA groups G, H, and G/H, the

third Haar measure can be normalized such that for all f ∈ L1(G),

(1.1)

∫
G

f(x) dµG(x) =

∫
G/H

∫
H

f(x+ h) dµH(h) dµG/H(ẋ).

(ii) If the measures on G, H, and G/H, are chosen such that (1.1) holds, then the

corresponding dual measures on the dual groups Ĝ, Ĥ = Ĝ/H⊥ and Ĝ/H =

H⊥ satisfy that for all F ∈ L1(G),∫
Ĝ

F (γ) dµĜ(γ) =

∫
Ĝ/H⊥

∫
H⊥

F (γ + ω) dµH⊥(ω) dµĜ/H⊥(γ̇).

From Proposition 1.1, if two of the measures on G, H, G/H, Ĝ, H⊥ and

Ĝ/H⊥ are given, and these two are not dual measures, then all others are uniquely

determined by requiring Plancherel’s theorem and Weil’s theorem. Throughout

this paper, all measures are assumed to satisfy Plancherel’s theorem and Weil’s

theorem. A Borel section or a fundamental domain of a closed subgroup H in G

is a Borel measurable subset Ξ of G which meets each coset G/H once. By [29,

Lem. 1.1] or [13], an arbitrary closed subgroup H of G has a Borel section. The
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size of H is defined by

s(H) =

∫
G/H

dµG/H(ẋ).

Then s(H) is finite if and only if H is co-compact by [5]. In particular, if H is

discrete in addition, then the mapping T : Ξ → G/H defined by

Tξ = ξ +H for ξ ∈ Ξ

is measure preserving by [1, Prop. 3.2], which implies that s(H) = µG(Ξ). And also

by [1, Prop. 3.2], a co-compact subgroup H is a lattice if and only if s(H⊥) < ∞.

We refer to [17, 18, 32] for the basics on LCA groups.

Similarly to the case of Gabor analysis on L2(R), we begin our analysis on

L2(G) with relevant operators. Define the translation operator Ts : L
2(G) → L2(G)

with s ∈ G and the modulation operator Et : L
2(G) → L2(G) with t ∈ Ĝ by

Tsf(·) = f(· − s) and Etf(·) = t(·)f(·)

for f ∈ L2(G), respectively. Given co-compact subgroups Λ and Γ of G and Ĝ

respectively, the Gabor system generated by a finite family {gl : 1 ≤ l ≤ L} in

L2(G) is defined by

{EηTλgl}1≤l≤L,η∈Γ,λ∈Λ.

We say that it is a frame for L2(G) if there exist constants A,B > 0 such that

A∥f∥2 ≤
L∑

l=1

∫
Γ

∫
Λ

|⟨f,EηTλgl⟩|2 dµΛ(λ) dµΓ(η)

≤ B∥f∥2 for all f ∈ L2(G),(1.2)

where A and B are called the lower and upper frame bounds respectively. It is

called a tight frame if A = B in (1.2), and it is called a Bessel sequence in L2(G) if

at least the upper inequality in (1.2) is satisfied. Given g ∈ L2(G) and a measurable

function c(λ, η) on Λ× Γ, f =
∫
Γ

∫
Λ
c(λ, η)EηTλg dµΛ(λ) dµΓ(η) means that

A : L2(G) → C by Ah =

∫
Γ

∫
Λ

c(λ, η)⟨h,EηTλg⟩ dµΛ(λ) dµΓ(η) for h ∈ L2(G)

defines a bounded linear functional on L2(G), and f is exactly the unique element

in L2(G) such that Ah = ⟨h, f⟩ for h ∈ L2(G). Recall that if c(λ, η) ∈ L2(Λ× Γ)

and {EηTλg}η∈Γ,λ∈Λ is a Bessel sequence in L2(G), then

f =

∫
Γ

∫
Λ

c(λ, η)EηTλg dµΛ(λ) dµΓ(η)
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is well defined, and by a simple computation,

Bf =

∫
Γ

∫
Λ

c(λ, η)EηTλBg dµΛ(λ) dµΓ(η)

for each bounded linear operator B which commutes EηTλ for all λ ∈ Λ, η ∈ Γ.

Given a Bessel sequence {EηTλg}η∈Γ,λ∈Λ in L2(G), the synthesis operator, analysis

operator and frame operator are respectively defined by

U : L2(Λ×Γ)→L2(G), Uc =

∫
Γ

∫
Λ

c(λ, η)EηTλg dµΛ(λ) dµΓ(η) for c∈L2(Λ×Γ),

U∗ : L2(G)→L2(Λ×Γ), U∗f =
{
⟨f,EηTλg⟩

}
λ∈Λ,η∈Γ

for f ∈ L2(G),

S : L2(G) → L2(G), S = UU∗.

Two frames {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ and {EηTλhl}1≤l≤L,η∈Γ,λ∈Λ forming a pair of

dual frames for L2(G) means that

(1.3) f =

L∑
l=1

∫
Γ

∫
Λ

⟨f,EηTλgl⟩EηTλhl dµΛ(λ) dµΓ(η) for all f ∈ L2(G).

In particular, (1.3) converges unconditionally if Λ and Γ are lattices. By a standard

argument, two Gabor systems {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ and {EηTλhl}1≤l≤L,η∈Γ,λ∈Λ

form a pair of dual frames for L2(G) if and only if they are Bessel sequences in

L2(G) satisfying (1.3). By the proof of [1, Thm. 5.1] and an argument before [20,

Cor. 6.8], there exists no Riesz sequence of the form {EηTλg}η∈Γ,λ∈Λ in L2(G) if

either Λ or Γ is not discrete.

Now we come back to our theme. Let Λ and Γ be respective co-compact

subgroups of G and Ĝ, Q ⊂ G and Ω ⊂ G be respective Borel sections for Λ and

Γ⊥. This paper addresses the extension from a co-compact Gabor Bessel sequence

(a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame

(a pair of dual co-compact Gabor frames) under the assumption that

(1.4) ess inf
x∈Q

µΛ[(K − x) ∩ Λ] > 0 for some measurable K ⊂ Ω.

To the best of our knowledge, this assumption does not appear in the existing

literature. Let Rd be the LCA group equipped with the usual addition, topology

and Lebesgue measure as its Haar measure. The following Example 1.1 shows

that, to some extent, (1.4) is a substitution of density condition for lattice-based

Gabor frames in L2(Rd). In addition, Example 1.2 gives a class of examples for

which (1.4) is necessary for the existence of complete co-compact Gabor systems

{EηTλg}η∈Γ,λ∈Λ in L2(Rd) with supp(g) ⊂ Ω. This partially explains why (1.4)

is required through this paper. For readability, the proof of Example 1.2 will be

given in Section 3.
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Example 1.1. Let Λ = AZd and Γ = BZd in Rd with A and B being d × d

invertible real matrices, and take Q=A([0, 1)d+y(1)) and K=Ω=B♯([0, 1)d+y(2))

for some y(1), y(2) ∈ Rd, where B♯ is the inverse of the transpose of B, i.e., B♯ =

(BT)−1. Then (1.4) holds if and only if

(B♯([0, 1)d + y(2))− x) ∩ AZd ̸= ∅ for a.e. x ∈ A([0, 1)d + y(1)),

equivalently,

[0, 1)d ⊂
⋃

k∈Zd

(A−1B♯[0, 1)d + k) + z with z = A−1B♯y(2) − y(1).

It is in turn equivalent to

Rd =
⋃

k∈Zd

(A−1B♯[0, 1)d + k).

This implies that |detA||detB| ≤ 1 by [28, Lem. 2.1], and in particular, (1.4) is

equivalent to |A||B| ≤ 1 when d = 1. Recall from [16, Thm. 1.3] that the existence

of frames of the form {EηTλg}η∈Γ,λ∈Λ is equivalent to |detA||detB| ≤ 1.

Example 1.2. Given 0 < s < d, let A and B be d × d invertible real matrices

having the following forms:

(1.5) A =

(
A1,1 A1,2

0 A2,2

)
and B =

(
B1,1 0

0 B2,2

)
,

where A2,2 and B2,2 are (d− s)× (d− s) matrices satisfying

(1.6) A−1
2,2B

♯
2,2 = diag(ζ1, ζ2, . . . , ζd−s) with 0 < ζl < 1 for 1 ≤ l ≤ d− s,

and rank(A1,2) = s. Define

(1.7) Λ = A(Rs × Zd−s) and Γ = B(Rs × Zd−s).

Take Q = A({0}s × [0, 1)d−s) and Ω = B♯(Rs × [0, 1)d−s). Then

(1.8) ess inf
x∈Q

µΛ[(Ω− x) ∩ Λ] = 0,

and there exists no g ∈ L2(Rd) with supp(g) ⊂ Ω such that {EηTλg}η∈Γ,λ∈Λ is

complete in L2(Rd).

This paper is organized as follows. In Section 2, under the assumption (1.4),

we first give a method to construct co-compact Gabor frames whose canonical

dual windows have the same support with initial windows (see Theorem 2.1).

Then we derive the extension theorems from co-compact Gabor Bessel sequences
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to tight co-compact Gabor frames, and from a pair of co-compact Gabor Bessel

sequences to a pair of dual co-compact Gabor frames (see Theorems 2.2 and 2.3).

In Section 3, by normalizing Haar measures on Rd, its co-compact subgroups

and the corresponding quotient groups in Weil’s theorem, we give an application

to co-compact Gabor systems in L2(Rd). Applying Theorem 2.1, we first give a

method to construct co-compact Gabor frames for L2(Rd) with C∞
c (Rd)-window

functions, whose canonical dual window functions belong to C∞
c (Rd) if initial

window functions are real valued in addition (see Theorem 3.1). Then we obtain

an extension theorem from a pair of co-compact Gabor Bessel sequences to a pair

of dual co-compact Gabor frames, where both initial and adding generators belong

to C∞
c (Rd) (see Theorem 3.2). It is worth noting that for general co-compact (i.e.,

at least one of Λ and Γ is not a lattice) Gabor frames {EηTλg}η∈Γ,λ∈Λ in L2(Rd),

s(Λ)s(Γ) can take an arbitrary positive number (see Example 3.1).

§2. Extension theorems

This section focuses on the extension from a co-compact Gabor Bessel sequence

(a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame

(a pair of dual co-compact Gabor frames) on LCA groups. For this purpose, we

first present some lemmas. The following result, Lemma 2.1, is an extension of

[21, Thm. 4.1] or [5, Cor. 21.8.1] to the multi-window case. We can prove it by a

line-by-line procedure as in [21, Thm. 4.1].

Lemma 2.1. Let Λ and Γ be co-compact subgroups of G and Ĝ respectively,

{EηTλgl}1≤l≤L,η∈Γ,λ∈Λ and {EηTλhl}1≤l≤L,η∈Γ,λ∈Λ be Bessel sequences in L2(G).

Then the following statements are equivalent:

(i) {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ and {EηTλhl}1≤l≤L,η∈Γ,λ∈Λ are a pair of dual frames

for L2(G).

(ii) For each α ∈ Λ⊥,

1

s(Λ)

L∑
l=1

∫
Γ

ĝl(γ + η)ĥl(γ + η + α) dµΓ(η) = δα,0 for a.e. γ ∈ Ĝ.

(iii) For each β ∈ Γ⊥,

1

s(Γ)

L∑
l=1

∫
Λ

gl(x+ λ)hl(x+ λ+ β) dµΛ(λ) = δβ,0 for a.e. x ∈ G.

The following lemma gives sufficient conditions for co-compact Gabor systems

to be Bessel sequences and frames in L2(G), respectively.
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Lemma 2.2. Let Λ and Γ be co-compact subgroups of G and Ĝ respectively. Con-

sider the Gabor system {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ in L2(G); then the following hold:

(i) If

B := ess sup
x∈G

1

s(Γ)

L∑
l=1

∫
Λ

∑
α∈Γ⊥

|gl(x+ λ)gl(x+ λ+ α)| dµΛ(λ) < ∞,

then {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ is a Bessel sequence in L2(G) with bound B.

(ii) Furthermore, if also

A := ess inf
x∈G

1

s(Γ)

( L∑
l=1

∫
Λ

|gl(x+ λ)|2 dµΛ(λ)

−
L∑

l=1

∫
Λ

∑
α∈Γ⊥\{0}

|gl(x+ λ)gl(x+ λ+ α)| dµΛ(λ)

)
> 0,

then {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ is a frame for L2(G) with bounds A and B.

Proof. By the unitarity of the Fourier transform, {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ is a

Bessel sequence (frame) for L2(G) if and only if {TηE−λĝl}1≤l≤L,η∈Γ,λ∈Λ is a

Bessel sequence (frame) for L2(Ĝ). Applying [19, Prop. IV.1] to the Gabor system

{TηE−λĝl}1≤l≤L,η∈Γ,λ∈Λ gives the lemma.

Remark 2.1. Lemma 2.2(i) demonstrates that if {gl : 1 ≤ l ≤ L} is a finite family

in L∞(G) with each gl being of compact support, then {EηTλgl}1≤l≤L,η∈Γ,λ∈Λ is

a Bessel sequence in L2(G) for arbitrary co-compact subgroups Λ and Γ of G and

Ĝ respectively.

The following lemma is auxiliary to Theorems 2.1 and 2.2.

Lemma 2.3. Let Γ be a closed subgroup of Ĝ. Suppose f1, f2 ∈ D and g, h ∈
L2(G), where

(2.1) D =
{
f ∈ L2(G) : f ∈ L∞(G) and supp(f) is compact

}
.

Then for all λ ∈ G,∫
Γ

⟨f1, EηTλg⟩⟨EηTλh, f2⟩ dµΓ(η)

=
1

s(Γ)

∫
G

∑
α∈Γ⊥

f1(x)f2(x+ α)g(x+ λ)h(x+ λ+ α) dµG(x).
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Proof. Arbitrarily fix λ ∈ G. By Plancherel’s theorem, ⟨f,EηTλg⟩ = ⟨f̂ , TηE−λĝ⟩
for η ∈ Γ and f, g ∈ L2(G). Applying [21, Lem. 2.2] to E−λĝ and E−λĥ gives the

lemma.

The following theorem gives a method to construct co-compact Gabor frames

for L2(G).

Theorem 2.1. Given co-compact subgroups Λ of G and Γ of Ĝ, let Q ⊂ G and

Ω ⊂ G be Borel sections for Λ and Γ⊥ respectively, and let K be a measurable set

satisfying (1.4). Suppose g ∈ L∞(G) ∩ L2(G) is such that K ⊂ supp(g) ⊂ Ω:

(2.2) ess sup
x∈Q

µΛ[(supp(g)− x) ∩ Λ] < ∞ and ess inf
x∈K

|g(x)| > 0.

Then {EηTλg}η∈Γ,λ∈Λ is a frame for L2(G), and

(2.3) Sf =
G̃

s(Γ)
f, S−1f =

s(Γ)

G̃
f for f ∈ L2(G),

where S is the frame operator for {EηTλg}η∈Γ,λ∈Λ, and G̃(y)=
∫
Λ
|g(y+λ)|2 dµΛ(λ)

for a.e. y ∈ G.

Proof. Since supp(g) ⊂ Ω, we have
∑

α∈Γ⊥ |g(· + λ)g(· + λ + α)| = |g(· + λ)|2.
Then, by Lemma 2.2, we only need to prove that

∫
Λ
|g(·+λ)|2 dµΛ(λ) has positive

lower and upper bounds on Q. Observe that∫
Λ

|g(x+ λ)|2 dµΛ(λ) =

∫
Λ∩(supp(g)−x)

|g(x+ λ)|2 dµΛ(λ)

for x ∈ Q. It implies that∫
Λ

|g(x+ λ)|2 dµΛ(λ) ≥ ess inf
x∈Q

µΛ[(K − x) ∩ Λ] · ess inf
x∈K

|g(x)|2,

and ∫
Λ

|g(x+ λ)|2 dµΛ(λ) ≤ ∥g∥2∞ · ess sup
x∈Q

µΛ[(supp(g)− x) ∩ Λ]

by (1.4) and (2.2). Thus {EηTλg}η∈Γ,λ∈Λ is a frame for L2(G). On the other hand,∫
Γ

|⟨f,EηTλg⟩|2 dµΓ(η) =
1

s(Γ)

∫
G

∑
α∈Γ⊥

f(y)f(y + α)g(y + λ)g(y + λ+ α) dµG(y)

=
1

s(Γ)

∫
G

|f(y)|2|g(y + λ)|2 dµG(y)(2.4)
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for f ∈ D by Lemma 2.3 and the fact that supp(g) ⊂ Ω, where D is as in (2.1).

Integrating the two sides of (2.4) over Λ gives∫
Λ

∫
Γ

|⟨f,EηTλg⟩|2 dµΓ(η) dµΛ(λ)

=
1

s(Γ)

∫
G

(∫
Λ

|g(y + λ)|2 dµΛ(λ)

)
|f(y)|2 dµG(y)(2.5)

for f ∈ D. Obviously, (2.5) can be rewritten as

⟨Sf, f⟩ = 1

s(Γ)
⟨G̃(·)f(·), f(·)⟩ for f ∈ D.

This leads to (2.3) due to D being dense in L2(G).

Remark 2.2. We have the following supplementary explanations for Theorem 2.1:

(i) Obviously, S−1g, S− 1
2 g ∈ L∞(G), and {EηTλS

− 1
2 g}η∈Γ,λ∈Λ is a Parseval

frame for L2(G) under the assumptions of Theorem 2.1. If we make a further

convention that supp(g) is compact in Theorem 2.1, then S−1g and S− 1
2 g also

have compact support.

(ii) The idea of Theorem 2.1 closely resembles the classical painless nonorthogo-

nal expansions by Daubechies, Grossmann and Meyer [10]. Also, in view of

Example 1.2, Theorem 2.1 can be regarded as a generalized version of painless

nonorthogonal expansions.

The following theorem gives a tight co-compact Gabor frame extension which

preserves the support property.

Theorem 2.2. Given co-compact subgroups Λ of G and Γ of Ĝ, let Q ⊂ G and

Ω ⊂ G be Borel sections for Λ and Γ⊥, respectively, and let K be a measurable

set satisfying (1.4). Assume that {EηTλg1}η∈Γ,λ∈Λ is a Bessel sequence in L2(G)

with bound B. Then, for each β ≥ B, there exists g2 ∈ L2(G) such that

{EηTλg1}η∈Γ,λ∈Λ ∪ {EηTλg2}η∈Γ,λ∈Λ

is a tight frame for L2(G) with bound β. Furthermore, g2 can be chosen to have

compact support if supp(g1) is compact and supp(g1) ⊂ Ω in addition.

Proof. Let S1 denote the frame operator for {EηTλg1}η∈Γ,λ∈Λ. Then

(2.6) ⟨S1f, f⟩ =
∫
Γ

∫
Λ

|⟨f,EηTλg1⟩|2 dµΛ(λ) dµΓ(η) ≤ B∥f∥2 for f ∈ L2(G).

It follows that βI−S1 is a positive operator. Now let us express (βI−S1)f . Choose

a Parseval frame {EηTλg}η∈Γ,λ∈Λ for L2(G) (this can be done by Theorem 2.1 and
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Remark 2.2(i)). By [20, Lem. 5.1], S1EηTλ = EηTλS1 for η ∈ Γ, λ ∈ Λ. This implies

that

(βI − S1)
1
2EηTλ = EηTλ(βI − S1)

1
2

for η ∈ Γ, λ ∈ Λ. Thus

(βI − S1)
1
2 f =

∫
Γ

∫
Λ

⟨(βI − S1)
1
2 f,EηTλg⟩EηTλg dµΛ(λ) dµΓ(η)

=

∫
Γ

∫
Λ

⟨f, (βI − S1)
1
2EηTλg⟩EηTλg dµΛ(λ) dµΓ(η)

=

∫
Γ

∫
Λ

⟨f,EηTλ(βI − S1)
1
2 g⟩EηTλg dµΛ(λ) dµΓ(η)

for f ∈ L2(G). It follows that

(2.7) (βI − S1)f =

∫
Γ

∫
Λ

⟨f,EηTλ(βI − S1)
1
2 g⟩EηTλ(βI − S1)

1
2 g dµΛ(λ) dµΓ(η)

for f ∈ L2(G). Let

(2.8) g2 = (βI − S1)
1
2 g.

Then {EηTλg2}η∈Γ,λ∈Λ is a Bessel sequence since {EηTλg}η∈Γ,λ∈Λ is a frame, and

β∥f∥2 = ⟨S1f, f⟩+ ⟨(βI − S1)f, f⟩

=

∫
Γ

∫
Λ

|⟨f,EηTλg1⟩|2 dµΛ(λ) dµΓ(η)

+

∫
Γ

∫
Λ

⟨f,EηTλg2⟩EηTλg2 dµΛ(λ) dµΓ(η)

for f ∈ L2(G) by (2.6) and (2.7). Therefore, {EηTλg1}η∈Γ,λ∈Λ ∪{EηTλg2}η∈Γ,λ∈Λ

is a tight frame for L2(G) with bound β.

Next we prove that g2 can be chosen to have compact support if supp(g1) is

compact and supp(g1) ⊂ Ω. Choose g in (2.8) such that supp(g) is compact (this

can be done by Theorem 2.1 and Remark 2.2(i)). Then

S1f(x) =

(
1

s(Γ)

∫
Λ

|g1(x− λ)|2 dµΛ(λ)

)
f(x) for f ∈ L2(G)

by the same procedure as in Theorem 2.1. This leads to

g2(x) =

(
β − 1

s(Γ)

∫
Λ

|g1(x− λ)|2 dµΛ(λ)

) 1
2

g(x)

by (2.8), and thus g2 is compactly supported.
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In Theorem 2.2, supp(g1) ⊂ Ω is required to guarantee supp(g2) being com-

pact. In the following dual extension theorem, Theorem 2.3, supp(g1) being com-

pactly supported (not necessarily contained in Ω) is enough to guarantee added

generators having compact support. Therefore, the dual extension enjoys more

freedom than the tight extension.

Theorem 2.3. Given co-compact subgroups Λ of G and Γ of Ĝ, let Q ⊂ G and

Ω ⊂ G be Borel sections for Λ and Γ⊥, respectively, and let K be a measurable set

satisfying (1.4). Assume that {EηTλg1}η∈Γ,λ∈Λ and {EηTλh1}η∈Γ,λ∈Λ are Bessel

sequences in L2(G). Then there exist g2, h2 ∈ L2(G) such that

{EηTλg1}η∈Γ,λ∈Λ ∪ {EηTλg2}η∈Γ,λ∈Λ

and

{EηTλh1}η∈Γ,λ∈Λ ∪ {EηTλh2}η∈Γ,λ∈Λ

form a pair of dual frames for L2(G). Furthermore, g2 and h2 can be chosen to

have compact support if supp(g1) and supp(h1) are compact.

Proof. Let T and U denote the synthesis operators for {EηTλg1}η∈Γ,λ∈Λ and

{EηTλh1}η∈Γ,λ∈Λ respectively. Then

(2.9) TU∗f =

∫
Γ

∫
Λ

⟨f,EηTλh1⟩EηTλg1 dµΛ(λ) dµΓ(η) for f ∈ L2(G).

Next we will express (I−TU∗)f . Choose a pair of dual frames ({EηTλγ1}η∈Γ,λ∈Λ,

{EηTλγ2}η∈Γ,λ∈Λ) for L
2(G) (this can be done by Theorem 2.1 and Remark 2.2(i)).

Then

(I − TU∗)f =

∫
Γ

∫
Λ

⟨(I − TU∗)f,EηTλγ1⟩EηTλγ2 dµΛ(λ) dµΓ(η)

=

∫
Γ

∫
Λ

⟨f, (I − UT ∗)EηTλγ1⟩EηTλγ2 dµΛ(λ) dµΓ(η)

=

∫
Γ

∫
Λ

⟨f,EηTλ(I − UT ∗)γ1⟩EηTλγ2 dµΛ(λ) dµΓ(η)(2.10)

for f ∈ L2(G) by [20, Lem. 5.1]. Take

(2.11) h2 = (I − UT ∗)γ1, g2 = γ2.

Observe that {EηTλγ1}η∈Γ,λ∈Λ and {EηTλγ2}η∈Γ,λ∈Λ are both Bessel sequences

in L2(G) and that (I−UT ∗)EηTλγ1 = EηTλh2 for η ∈ Γ, λ ∈ Λ by [20, Lem. 5.1].

It follows that {EηTλh2}η∈Γ,λ∈Λ and {EηTλg2}η∈Γ,λ∈Λ are Bessel sequences in
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L2(G). Collecting (2.9) and (2.10) gives

f = TU∗f + (I − TU∗)f

=

∫
Γ

∫
Λ

⟨f,EηTλh1⟩EηTλg1 dµΛ(λ) dµΓ(η)

+

∫
Γ

∫
Λ

⟨f,EηTλh2⟩EηTλg2 dµΛ(λ) dµΓ(η)

for f ∈ L2(G). Therefore,

{EηTλg1}η∈Γ,λ∈Λ∪{EηTλg2}η∈Γ,λ∈Λ and {EηTλh1}η∈Γ,λ∈Λ∪{EηTλh2}η∈Γ,λ∈Λ

are a pair of dual frames for L2(G).

Next we prove that g2, h2 can be chosen to have compact support if supp(g1)

and supp(h1) are compact. Choose γ1, γ2 in (2.11) such that supp(γ1) and supp(γ2)

are compact (this can be done by Theorem 2.1 and Remark 2.2(i)). We only need

to prove that supp(h2) is compact. By (2.11), we have

h2(x) = (I − UT ∗)γ1(x)

= γ1(x)− UT ∗γ1(x)

= γ1(x)−
∫
Γ

∫
Λ

⟨γ1, EηTλg1⟩EηTλh1(x) dµΛ(λ) dµΓ(η).

Since supp(γ1) and supp(g1) are compact, there exists a compact subset Λ̃ of Λ

such that

⟨γ1, EηTλg1⟩ = 0 for λ ∈ Λ\Λ̃ and η ∈ Γ.

This implies that

h2(x) = γ1(x)−
∫
Λ̃

∫
Γ

⟨γ1, EηTλg1⟩EηTλh1(x) dµΛ(λ) dµΓ(η)

= γ1(x)−
∫
Λ̃

(∫
Γ

⟨γ1, EηTλg1⟩Eη(x) dµΓ(η)

)
Tλh1(x) dµΛ(λ)

= γ1(x)− ξ(x),(2.12)

where

(2.13) ξ(x) =

∫
Λ̃

(∫
Γ

⟨γ1, EηTλg1⟩Eη(x) dµΓ(η)

)
Tλh1(x) dµΛ(λ).

Observe that

supp(ξ) ⊂
{
x ∈ G : x− λ ∈ supp(h1) for some λ ∈ Λ̃

}
⊂ Λ̃ + supp(h1).
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It follows that supp(ξ) is compact due to supp(h1) being compact. Thus supp(h2)

is compact by (2.12).

§3. Applications to co-compact Gabor systems in L2(Rd)

This section focuses on the application of Theorems 2.1 and 2.3 to L2(Rd). Apply-

ing Theorem 2.1, we derive a strategy to construct co-compact Gabor frames for

L2(Rd) generated by C∞
c (Rd)-window functions (see Theorem 3.1). Then, with the

help of Theorems 3.1 and 2.3, we establish a dual extension theorem from a pair

of co-compact Gabor Bessel sequences to a pair of dual co-compact Gabor frames

for L2(Rd) with C∞
c (Rd)-window functions (see Theorem 3.2).

Herein, Rd is an LCA group equipped with the usual addition, topology and

Lebesgue measure as its Haar measure. Firstly, we fix related measures such that

Weil’s theorem holds. Recall that R̂d = Rd, and that an arbitrary co-compact

subgroup of Rd has the form C(Rs ×Zd−s) or C(Zs ×Rd−s) with 0 ≤ s ≤ d and C
being a d× d invertible real matrix. In what follows, we always use |E| to denote

the Lebesgue measure of a Lebesgue measurable set E regardless of its dimension,

and use µ to denote the counting measure. Let Θ = C(Rs×Zd−s) be a co-compact

subgroup of Rd. When 0 < s < d, define P1 : Rd → Rs and P2 : Rd → Rd−s by

(3.1) P1

(
x

y

)
= x and P2

(
x

y

)
= y for x ∈ Rs, y ∈ Rd−s.

For arbitrary measurable sets E ⊂ Rd/Θ and F ⊂ Θ, define

µRd/Θ(E) =


|E| if s = 0,

|det C|µ(E) if s = d,

|det C||P2(C−1E)| if 0 < s < d,

(3.2)

and

µΘ(F ) =


µ(C−1F ) if s = 0,

|C−1F | if s = d,

|P1(C−1F )|µ(P2(C−1F )) if 0 < s < d.

(3.3)

Similarly, if Θ = C(Zs × Rd−s) is a co-compact subgroup of Rd, define

µRd/Θ(E) =


|det C|µ(E) if s = 0,

|E| if s = d,

|det C||P1(C−1E)| if 0 < s < d,
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and

µΘ(F ) =


|C−1F | if s = 0,

µ(C−1F ) if s = d,

µ(P1(C−1F ))|P2(C−1F )| if 0 < s < d,

for arbitrary measurable sets E ⊂ Rd/Θ and F ⊂ Θ. In the above two cases, Weil’s

theorem holds, i.e.,∫
Rd

f(z) dz =

∫
Rd/Θ

dµRd/Θ(ż)

∫
Θ

f(z + ξ) dµΘ(ξ) for f ∈ L1(Rd),

and

s(Θ) = |det C| for 0 ≤ s ≤ d.

With the above preparations, next we prove Example 1.2.

Proof of Example 1.2. By (3.2) and (3.3), for arbitrary measurable sets F ⊂ Λ

and E ⊂ Rd/Λ, we have

(3.4) µΛ(F ) = |P1(A−1F )|µ(P2(A−1F )) and µRd/Λ(E) = |detA||P2(A−1E)|.

Arbitrarily fix 0 < δ ≤ 1−max{ζ1, ζ2, . . . , ζd−s}. By (1.6), we have

A−1
2,2B

♯
2,2[0, 1)

d−s ∩ ([1− δ, 1)d−s + Zd−s) = ∅.

This implies that

P2

(
A−1((Ω− x) ∩ Λ)

)
⊂ (A−1

2,2B
♯
2,2[0, 1)

d−s − P2(A−1x)) ∩ Zd−s = ∅,

and thus

(3.5) µΛ[(Ω− x) ∩ Λ] =
∣∣P1

(
A−1((Ω− x) ∩ Λ)

)∣∣µ[P2

(
A−1((Ω− x) ∩ Λ)

)]
= 0

for x ∈ A({0}s × [1− δ, 1)d−s). Therefore, (1.8) holds due to

µRd/Λ[A({0}s × [1− δ, 1)d−s)] = |detA| · δd−s > 0.

Next we prove that {EηTλg}η∈Γ,λ∈Λ is incomplete in L2(Rd) for each g ∈ L2(Rd)

with supp(g) ⊂ Ω. Arbitrarily fix g ∈ L2(Rd) with supp(g) ⊂ Ω. Write

∆ = A1,2[0, 1)
d−s × (A2,2[0, 1)

d−s\B♯
2,2[0, 1)

d−s).

Then

|∆| = |A1,2[0, 1)
d−s| |detA2,2| |[0, 1)d−s\A−1

2,2B
♯
2,2[0, 1)

d−s| > 0

due to rank(A1,2) = s and (1.6). Observe that(
([0, 1)d−s\A−1

2,2B
♯
2,2[0, 1)

d−s) + k
)
∩A−1

2,2B
♯
2,2[0, 1)

d−s = ∅ for each k ∈ Zd−s
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by (1.6). It follows that

(∆ + λ) ∩ Ω = ∅ for each λ ∈ Λ,

and thus

⟨EηTλg, χ∆⟩ = 0 for each η ∈ Γ and λ ∈ Λ.

Therefore, {EηTλg}η∈Γ,λ∈Λ is incomplete in L2(Rd). The proof is completed.

Now we turn to the application of Theorems 2.1 and 2.3 to L2(Rd). Given an

LCA group G, by Theorem 2.1 and Remark 2.2(i), we can construct co-compact

frames {EηTλg}η∈Γ,λ∈Λ for L2(G) with g ∈ L∞(G) and supp(g) being compact.

For G = Rd, the following Theorem 3.1 presents a method to construct co-compact

Gabor frames with C∞
c (Rd)-window functions by choosing special K ⊂ Ω satis-

fying (1.4). Specifically, given co-compact subgroups Λ = A(Rs1 × Zd−s1) and

Γ = B(Rs2 × Zd−s2) (Γ = B(Zs2 × Rd−s2)) of Rd with 0 ≤ s1, s2 ≤ d and A, B
being d × d invertible real matrices, and let Q = A({0}s1 × ([0, 1]d−s1 + x(1)))

and Ω = B♯(Rs2 × ((0, 1)d−s2 + x(2))) (Ω = B♯(((0, 1)s2 + x(2))×Rd−s2)) be Borel

sections for Λ and Γ⊥, respectively. Take K = A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ Ω for

some compact set Es1 in Rs1 with positive measure. Then

(3.6) ess inf
x∈Q

µΛ[(K − x) ∩ Λ] =

{
1 if s1 = 0,

|Es1 | if 0 < s1 ≤ d.

We also claim that

(3.7) ess sup
x∈Q

µΛ[(W − x) ∩ Λ] < ∞ for bounded and measurable W ⊂ Rd.

Indeed, without loss of generality, we assume that

W ⊂ A([a1, b1]
s1 × ([a2, b2]

d−s1 + x(1)))

for some a1, b1, a2, b2 ∈ R. Then

(3.8) W − x ⊂ A([a1, b1]
s1 × [a2 − 1, b2]

d−s1) for x ∈ Q.

By a simple computation, we have

(3.9) µΛ(A([a1, b1]
s1 × [a2 − 1, b2]

d−s1) ∩ Λ) ≤ (b1 − a1)
s1(b2 − a2 + 2)d−s1 .

This together with (3.8) leads to (3.7). Since K is a compact subset of the open

set Ω, we can always choose g ∈ C∞
c (Rd) such that

K ⊂ supp(g) ⊂ Ω and g|K = 1.

Thus (1.4) and (2.2) hold by (3.6) and (3.7). Applying Theorem 2.1, we have the

following theorem.
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Theorem 3.1. Given co-compact subgroups

Λ = A(Rs1 × Zd−s1) and Γ = B(Rs2 × Zd−s2) (Γ = B(Zs2 × Rd−s2))

of Rd with 0 ≤ s1, s2 ≤ d and A, B being d × d invertible real matrices, let

Es1 × ([0, 1]d−s1 + x(1)) be a compact set in Rd with positive measure satisfying

A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ B♯
(
Rs2 × ((0, 1)d−s2 + x(2))

)
(3.10) (

A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ B♯(((0, 1)s2 + x(2))× Rd−s2)
)

(3.11)

for some x(2) ∈ Rd−s2 (x(2) ∈ Rs2). Choose g ∈ C∞
c (Rd) such that

A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ supp(g) ⊂ B♯
(
Rs2 × ((0, 1)d−s2 + x(2))

)(
A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ supp(g) ⊂ B♯

(
((0, 1)s2 + x(2))× Rd−s2

))
and

g(·) = 1 on A(Es1 × ([0, 1]d−s1 + x(1))).

Then {EηTλg}η∈Γ,λ∈Λ is a frame for L2(Rd), and the frame operator and its

inverse are given by

(3.12) Sf =
G̃

|detB|
f, S−1f =

|detB|
G̃

f for f ∈ L2(Rd),

where

G̃(y) =



∑
k∈Zd−s1

∫
Rs1

∣∣∣∣∣g
(
y +A

(
λ

k

))∣∣∣∣∣
2

dλ if 0 < s1 < d,

∑
k∈Zd

|g(y +Ak)|2 if s1 = 0,∫
Rd

|g(y +Aλ)|2dλ if s1 = d,

for a.e. y ∈ Rd.

Remark 3.1. We have the following supplementary explanations for Theorem 3.1:

(i) If g in Theorem 3.1 is required to be real valued in addition, then G̃ ∈ C∞(Rd)

by a standard argument. Thus S−1g ∈ C∞
c (Rd) by (3.12), and

({EηTλg}η∈Γ,λ∈Λ, {EηTλS
−1g}η∈Γ,λ∈Λ)

is a pair of dual frames for L2(Rd) with g, S−1g ∈ C∞
c (Rd).

(ii) Theorem 3.1 can be adjusted to the case of (Λ, Γ) such that Λ = A(Zd−s1×Rs1)

and Γ = B(Zd−s2 × Rs2) (Γ = B(Rd−s2 × Zs2)) with 0 ≤ s1, s2 ≤ d and A, B
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being d × d invertible real matrices. Indeed, for 0 ≤ s ≤ d, define the d × d

permutation matrix Ps by

(3.13) Ps =

(
0 Id−s

Is 0

)
,

where Ir denotes the r × r identity matrix. We can do this if A and B in

Theorem 3.1 are replaced by A = APs1 and B = BPs2 .

For the lattice case of Λ = AZd and Γ = BZd, [16, Thm. 1.3] shows that

the existence of Riesz bases (frames) of the form {EηTλg}η∈Γ,λ∈Λ is equivalent to

|detA||detB| = 1 (|detA||detB| ≤ 1), i.e., s(Λ)s(Γ) = 1 (s(Λ)s(Γ) ≤ 1). It is

easy to check that |detA||detB| < 1 if Λ = AZd and Γ = BZd in Theorem 3.1.

Thus Theorem 3.1 gives a method to construct redundant frames {EηTλg}η∈Γ,λ∈Λ

for L2(Rd) with g ∈ C∞
c (Rd). The following example shows that s(Λ)s(Γ) (i.e.,

|detA||detB|) can take an arbitrary positive number for general co-compact (i.e.,

at least one of Λ and Γ is not a lattice) Gabor frames in L2(Rd), and in this case

the window functions can be chosen in C∞
c (Rd). This demonstrates that there exist

essential differences between lattice-based Gabor frames and general co-compact

Gabor frames. For convenience, write

A1(s1, s2) =
{
(Λ,Γ) : Λ = A(Rs1 × Zd−s1), Γ = B(Rs2 × Zd−s2)

}
,

A2(s1, s2) =
{
(Λ,Γ) : Λ = A(Rs1 × Zd−s1), Γ = B(Zs2 × Rd−s2)

}
,

A3(s1, s2) =
{
(Λ,Γ) : Λ = A(Zs1 × Rd−s1), Γ = B(Rs2 × Zd−s2)

}
,

A4(s1, s2) =
{
(Λ,Γ) : Λ = A(Zs1 × Rd−s1), Γ = B(Zs2 × Rd−s2)

}
for 0 ≤ s1, s2 ≤ d.

Example 3.1. Given an arbitrary positive constant ϱ, and 0 ≤ s1, s2 ≤ d satis-

fying (s1, s2) ̸= (0, 0) ((0, d), (d, 0), (d, d)), there exist g ∈ C∞
c (Rd) and

(Λ,Γ) ∈ A1(s1, s2) (A2(s1, s2), A3(s1, s2), A4(s1, s2)),

such that s(Λ)s(Γ) = ϱ and {EηTλg}η∈Γ,λ∈Λ is a frame for L2(Rd).

Proof. We only treat the cases of (s1, s2) ̸= (0, 0) and (s1, s2) ̸= (0, d). The others

can be proved similarly. By Theorem 3.1, it is enough to show the existence of A,

B and Es1 satisfying |detA||detB| = ϱ and (3.10) ((3.11)) with x(2) = 0.

Case 1: (s1, s2) ̸= (0, 0). If s1 = 0 and s2 = d, then (3.10) holds for all A and

B satisfying |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ). If s1 = 0 and 0 < s2 < d,

take x(1) such that its every component is positive, and choose as2+1, . . . , ad small
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enough that as2+1

. . .

ad

 ([0, 1]d−s2 + x(1)) ⊂ (0, 1)d−s2 .

Choose a1, . . . , as2 > 0, and A, B such that

BTA = diag(a1 · · · as2as2+1 · · · ad) and a1a2 · · · ad = ϱ.

Then (3.10) holds and |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ). If s1 = d, choose A,

B satisfying |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ) and a compact set Ed in Rd

such that BTAEd ⊂ (0, 1)d. Then

AEd ⊂ B♯(0, 1)d ⊂ B♯(Rs2 × (0, 1)d−s2).

Thus (3.10) holds and |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ). If 0 < s1 < d,

take x(1) such that its every component is positive, and choose as1+1, . . . , ad small

enough that as1+1

. . .

ad

 ([0, 1]d−s1 + x(1)) ⊂ (0, 1)d−s1 .

Choose a1, . . . , as1 > 0, and A, B such that

BTA = diag(a1 · · · as1as1+1 · · · ad) and a1a2 · · · ad = ϱ.

Take a compact set Es1 in Rs1 such that diag(a1 · · · as1)Es1 ⊂ (0, 1)s1 . Then

A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ B♯(0, 1)d ⊂ B♯(Rs2 × (0, 1)d−s2).

Thus (3.10) holds and |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ).

Case 2: (s1, s2) ̸= (0, d). If 0 < s1 ≤ d, then (3.11) holds when choosing A, B and

Es1 as in the “0 < s1 ≤ d” case of Case 1. If s1 = s2 = 0, then (3.11) holds for all A
and B satisfying |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ). If s1 = 0 and 0 < s2 < d,

take x(1) such that its every component is positive, and choose a1, . . . , as2 small

enough that a1
. . .

as2

 ([0, 1]s2 + x(1)) ⊂ (0, 1)s2 .

Choose as2+1, . . . , ad > 0, and A, B such that

BTA = diag(a1 · · · as2as2+1 · · · ad) and a1a2 · · · ad = ϱ.
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Then (3.11) holds and |detA||detB| = ϱ (i.e., s(Λ)s(Γ) = ϱ). The proof is com-

pleted.

Given an LCA group G, Theorem 2.3 shows that, under the hypothesis of

(1.4), a pair of co-compact Gabor Bessel sequences in L2(G) can be extended

to a pair of dual co-compact Gabor frames for L2(G), and simultaneously, the

added window functions can be chosen to have compact support if the initial

ones are of compact support. For G = Rd, as an application of Theorem 2.3,

the following theorem shows that a pair of C∞
c (Rd)-window-function-generated

co-compact Gabor Bessel sequences in L2(Rd) can be extended to a pair of dual

co-compact Gabor frames for L2(Rd) with the added window functions belonging

to C∞
c (Rd).

Theorem 3.2. Given d > 1, and co-compact subgroups Λ = A(Rs1 × Zd−s1)

(Λ = A(Zs1 × Rd−s1)) and Γ = B(Rs2 × Zd−s2) of Rd with 0 ≤ s1, s2 ≤ d and A,

B being d× d invertible real matrices, let

A(Es1 × ([0, 1]d−s1 + x(1))) ⊂ B♯
(
Rs2 × ((0, 1)d−s2 + x(2))

)(
A(([0, 1]s1 + x(1))× Ed−s1) ⊂ B♯

(
Rs2 × ((0, 1)d−s2 + x(2))

))
for some x(2) ∈ Rd−s2 and compact set Es1 × ([0, 1]d−s1 + x(1)) (([0, 1]s1 + x(1))

× Ed−s1) in Rd with positive measure. Assume that {EηTλg1}η∈Γ,λ∈Λ and

{EηTλh1}η∈Γ,λ∈Λ are Bessel sequences in L2(Rd), and that g1, h1 ∈ C∞
c (Rd). Then

there exist g2, h2 ∈ C∞
c (Rd) such that

{EηTλg1}η∈Γ,λ∈Λ ∪ {EηTλg2}η∈Γ,λ∈Λ

and

{EηTλh1}η∈Γ,λ∈Λ ∪ {EηTλh2}η∈Γ,λ∈Λ

are a pair of dual frames for L2(Rd).

Proof. Choose a pair of dual frames ({EηTλγ1}η∈Γ,λ∈Λ, {EηTλγ2}η∈Γ,λ∈Λ) for

L2(Rd) with γ1, γ2 ∈ C∞
c (Rd) in Theorem 2.3. This can be done by Remark 3.1(i).

Define g2 and h2 as in (2.11). Then, by Theorem 2.3,

{EηTλg1}η∈Γ,λ∈Λ∪{EηTλg2}η∈Γ,λ∈Λ and {EηTλh1}η∈Γ,λ∈Λ∪{EηTλh2}η∈Γ,λ∈Λ

form a pair of dual frames for L2(Rd) with g2 ∈ C∞
c (Rd) and h2 being compactly

supported. Next we will prove that h2 ∈ C∞(Rd) to finish the proof. Since γ1 ∈
C∞(Rd), by (2.12) and (2.13), we only need to prove that ξ ∈ C∞(Rd), where

(3.14) ξ(x) =

∫
Λ̃

(∫
Γ

⟨γ1, EηTλg1⟩Eη(x) dµΓ(η)

)
Tλh1(x) dµΛ(λ)
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for some compact subset Λ̃ of Λ. By a simple computation, we have

(3.15) DαEBηTλh1(x) =
∑

0≤l≤α

Cl
α(2πi)

|l|(Bη)lEBη(x)TλD
α−lh1(x)

for α = (α1, α2, . . . , αd) ∈ Zd
+, where l = (l1, l2, . . . , ld), |l| = l1 + l2 + · · ·+ ld,

Cl
α = Cl1

α1
Cl2

α2
· · ·Cld

αd

=
α1 · · · (α1 − l1 + 1)

l1!

α2 · · · (α2 − l2 + 1)

l2!
· · · αd · · · (αd − ld + 1)

ld!
, 0 ≤ l ≤ α,

means that 0 ≤ li ≤ αi with 1 ≤ i ≤ d and zl = zl11 zl22 · · · zldd for z = (z1, z2, . . . ,

zd)
T ∈ Rd. Observe that

|(Bη)l| ≤ (1 + |Bη|)|α|

and

|EBη(x)TλD
α−lh1(x)| ≤ max

0≤l≤α
∥Dα−lh1∥∞

for 0 ≤ l ≤ α, where |ξ| = |ξ1|+ |ξ2|+ · · ·+ |ξd| for ξ ∈ Rd. It follows that

(3.16) ∥DαEBηTλh1∥∞ ≤ M1(1 + |Bη|)|α|

for λ ∈ Λ̃ and η ∈ Rs2 × Zd−s2 by a standard argument, where M1 = (2π +

1)|α| max0≤l≤α ∥Dα−lh1∥∞. Now let us estimate ⟨γ1, EBηTλg1⟩. Observe that

Tλg1 = (E−λĝ1)
∨ and γ1 = (γ̂1)

∨. It follows that

γ1Tλg1 = (γ̂1 ∗ E−λĝ1)
∨.

This implies that

⟨γ1, EBηTλg1⟩ = (γ1Tλg1)
∧(Bη)

= γ̂1 ∗ E−λĝ1(Bη),

and thus

|⟨γ1, EBηTλg1⟩| ≤ |γ̂1| ∗ |ĝ1|(Bη).

Also, observing that γ̂1, ĝ1 ∈ S(Rd) leads to the fact that to every τ ∈ Z+ there

corresponds a constant Cτ such that

(3.17) |⟨γ1, EBηTλg1⟩| ≤
Cτ

(1 + |Bη|)τ
for η ∈ Rd.

Since B is invertible, there exists a constant a > 0 such that

(3.18) |Bx| ≥ a|x| for x ∈ Rd.
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Choose τ = |α|+ d+ 1 in (3.17). Then collecting (3.16)–(3.18) leads to∑
ηs2+1,...,
ηd∈Z

∫
Rs2

∥⟨γ1, EBηTλg1⟩DαEBηTλh1(·)∥∞ dη1 · · · dηs2

≤ M1Cτ

∑
ηs2+1,...,
ηd∈Z

∫
Rs2

dη1 · · · dηs2
(1 + a|η|)τ−|α|

≤ M1Cτ

∑
ηs2+1,...,
ηd∈Z

1

(1 + a(|ηs2+1|+ · · ·+ |ηd|))d−s2+
1
2

×
∫
Rs2

dη1 · · · dηs2
(1 + a(|η1|+ · · ·+ |ηs2 |))s2+

1
2

< ∞.(3.19)

This implies that

(3.20)

∫
Λ̃

∑
ηs2+1,...,
ηd∈Z

∫
Rs2

∥⟨γ1, EBηTλg1⟩DαEBηTλh1(·)∥∞ dη1 · · · dηs2 dµΛ(λ) < ∞

due to Λ̃ being compact. Also observe that DαEBηTλh1 is continuous for an arbi-

trary α ∈ Zd
+. It follows that ξ ∈ C∞(Rd). The proof is completed.

Remark 3.2. Let Ps be as in (3.13). If B in Theorem 3.2 is replaced by BPs2 ,

Theorem 3.2 can be adjusted to the case of (Λ, Γ) that Λ = A(Rs1 × Zd−s1)

(Λ = A(Zs1 ×Rd−s1)) and Γ = B(Zd−s2 ×Rs2) with 0 ≤ s1, s2 ≤ d, A and B being

d× d invertible real matrices.
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[14] K. Gröchenig, Aspects of Gabor analysis on locally compact abelian groups, in Gabor analy-
sis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston,
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