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Abstract

This paper addresses the extensions of co-compact Gabor Bessel sequences to tight frames
and dual pairs on locally compact abelian (LCA) groups, and its applications to the
Lz(Rd)-setting. Firstly, we present a method to construct co-compact Gabor frames
on LCA groups under a mild condition. This condition is optimal in the sense that
it reduces to the usual density condition for lattice-based Gabor frames in L*(R?). Sec-
ondly, we obtain an extension theorem of a co-compact Gabor Bessel sequence (a pair of
co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame (a pair of dual
co-compact Gabor frames). Finally, as an application, we derive a strategy to obtain
co-compact Gabor frames for L? (]Rd)7 and establish an extension theorem of dual co-
compact Gabor frames for L?(R?) with C2°(R%)-window functions. An example is also
provided. It demonstrates that, for general co-compact (i.e., at least one of time and
frequency translations is not a lattice) Gabor frames, the product of the sizes of time
and frequency translations can take an arbitrary positive number.

Mathematics Subject Classification 2020: 42C15 (primary); 42C40, 43A32, 43A70 (sec-
ondary).

Keywords: locally compact abelian group, frame, co-compact Gabor frame, dual frames,
tight frame.

Communicated by N. Ozawa. Received April 17, 2024. Revised September 19, 2024; November
21, 2024.

Y.-Z. Li: School of Mathematics, Statistics and Mechanics, Beijing University of Technology,
100124 Beijing, P. R. China;

e-mail: yzlee@bjut.edu.cn

M. Yang: School of Mathematics, Statistics and Mechanics, Beijing University of Technology,
100124 Beijing; College of Mathematics and Information Science, Hebei University, 071002 Baod-
ing, P. R. China;

e-mail: mingyang@hbu.edu.cn, ymingy02@163.com

(© 2025 Research Institute for Mathematical Sciences, Kyoto University.
This work is licensed under a CC BY 4.0 license.


mailto:yzlee@bjut.edu.cn
mailto:mingyang@hbu.edu.cn
mailto:ymingy02@163.com
https://creativecommons.org/licenses/by/4.0/

764 Y.-Z. L1 AND M. YANG

§1. Introduction

Due to unifying a number of different results into a general framework with a
concise and elegant notation, the frame theory on locally compact abelian (LCA)
groups has attracted much attention from mathematicians in the last two decades.
The LCA group approach enables us to visualize hidden relationships between the
different components of the theory. Recall that the LCA group approach applies
to signals on all groups of the form R* x Z% x T9 x Z,, which include multichannel
video signals based on the group Z? x Z,, where Z, is the finite group of the
integers modulo p. In practice, one can also encounter signals on LCA groups other
than R® x Z? x T x Z, (]2, 6, 5, 3, 11]). Gabor analysis on LCA groups dates
back to the works [14, 24] by Grochenig, Kaniuth and Kutyniok. Gabor frames are
closely related to shift- (translation-)invariant systems. Uniform lattice-based shift-
invariant systems and Gabor frames on LCA groups were studied by many authors
including Cabrelli, Christensena, Feichtinger, Goh, Kamyabi Gol, Kazarian, Kozek,
Kutyniok, Labate, Luef, Mohammadian, Paternostro, Raisi Tousi, Tabatabaie and
Jokar; cf. [2, 23, 6, 12, 25, 7, 8, 22, 26, 30, 33]. Recall that not all LCA groups
possess uniform lattices, for example the group @Q, of p-adic numbers, but every
LCA group has co-compact subgroups. Co-compact translation-invariant systems
were recently studied by some authors including Bownik, Ross, Gumber, Shukla,
Jakobsen and Lemvig; cf. [1, 15, 21, 20].

For frame extension, Casazza and Leonhard [4] showed that every Bessel
sequence in a finite-dimensional space can be extended to a tight frame. Li and
Sun [27] generalized this result to general Hilbert spaces, and proved that every
Gabor Bessel sequence in L?(R) can be extended to a tight frame by adding one
Gabor system with the same time-frequency parameters. Christensen, Kim and
Kim [9] obtained similar results in the setting of dual frames. In particular, they
proved that every pair of Gabor Bessel sequences in L?(R) can be extended to a
pair of dual frames by adding one extra Gabor system to each Bessel sequence,
and that the generators of added Gabor systems can be chosen to be compactly
supported if the generators of initial Gabor Bessel sequences have compact support
in addition.

Motivated by the above works, in this paper we investigate the extension of co-
compact Gabor frames on second countable LCA groups and their applications.
For a group, we will denote the neutral element by 0, the group operation by
“+” and its inverse operation by “—”. Let G be a second countable LCA group.
We denote its dual group by G which consists of all characters, i.e., all continuous
homomorphisms from G into the torus T. When equipped with the weak™ topology
and group operation pointwise multiplication, G is also an LCA group. A closed
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subgroup H of G is said to be co-compact if G/H is compact, and is said to be a
(uniform) lattice if H is discrete and co-compact. For a closed subgroup H of G,
its annihilator H* is defined by H* := {y € G : v(z) = 1, V& € H}. Then H*
is a closed subgroup of G. We denote by pe the Haar measure on G (it is unique
up to a positive constant), by LP(G) the Banach space of all p-integral functions
on G for 1 < p < 00, and by L*(G) the Banach space of all essentially bounded
functions on G with respect to pg. In particular, L?(G) is a separable Hilbert
space. We define the Fourier transform by

Ffly /f (@) dpc(z), v€G

for f € L'(G) and extend it to L?(G) in the usual way. For convenience, we require
that the measures ug and pg are normalized so that the Plancherel theorem holds,
i.e.,

/f 9(@) duc(a /f dug(y) for f. g€ L3(G).

In this case, we say that ug and pg are dual measures. We mention Weil’s theorem
in [31].

Proposition 1.1. Let H denote a closed subgroup of the LCA group G. Then the
following hold:

(i) Taking any Haar measures on two of the LCA groups G, H, and G/H, the
third Haar measure can be normalized such that for all f € LY(G),

(11) / 1) dpc(a /G . /f:c+h ) dprr (h) dpic ().

(ii) If the measures on G, H, and G/H, are chosen such that (1.1) holds, then the
corresponding dual measures on the dual groups @, H= @/Hl and G/H =
H* satisfy that for all F € LY(Q),

Lreo= [ [P g @) dugy )

From Proposition 1.1, if two of the measures on G, H, G/H, G, H*+ and
G /H* are given, and these two are not dual measures, then all others are uniquely
determined by requiring Plancherel’s theorem and Weil’s theorem. Throughout
this paper, all measures are assumed to satisfy Plancherel’s theorem and Weil’s
theorem. A Borel section or a fundamental domain of a closed subgroup H in G
is a Borel measurable subset = of G which meets each coset G/H once. By [29,
Lem. 1.1] or [13], an arbitrary closed subgroup H of G has a Borel section. The
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size of H is defined by
st) = [ ducy@)
G/H

Then s(H) is finite if and only if H is co-compact by [5]. In particular, if H is
discrete in addition, then the mapping T: = — G/H defined by

T¢E=¢+H forEez=

is measure preserving by [1, Prop. 3.2], which implies that s(H) = ue(E). And also
by [1, Prop. 3.2], a co-compact subgroup H is a lattice if and only if s(H+) < oco.
We refer to [17, 18, 32] for the basics on LCA groups.

Similarly to the case of Gabor analysis on L?(R), we begin our analysis on
L?(G) with relevant operators. Define the translation operator Ty: L*(G) — L?(G)
with s € G and the modulation operator E,: L2(G) — L2(G) with t € G by

Tof()=f(—s) and Ef(:) =t()f()

for f € L?(G), respectively. Given co-compact subgroups A and I' of G and G
respectively, the Gabor system generated by a finite family {¢g; : 1 <1 < L} in
L?(G) is defined by

{E,Tagi}1<i<LnerreA-

We say that it is a frame for L?(G) if there exist constants A, B > 0 such that
L
AP <3 [ 1B D) P dia ) o)
1=1

(1.2) < B|f|I? forall f € L*(G),

where A and B are called the lower and upper frame bounds respectively. It is
called a tight frame if A = B in (1.2), and it is called a Bessel sequence in L?(G) if
at least the upper inequality in (1.2) is satisfied. Given g € L?(G) and a measurable
function ¢(X,n) on A x T, f = [ [, ¢(A,n)EyTrg dpa(X) dpr(n) means that

A: IX@) = C by Ah= / / cOnm) (s EyTag) dun(N) dur(n)  for h € L*(G)
rJA
defines a bounded linear functional on L?(G), and f is exactly the unique element

in L?(G) such that Ah = (h, f) for h € L*(G). Recall that if ¢(\,n) € L?(A x T)
and {E,;Txg}ner aea is a Bessel sequence in L?(G), then

f= /F /A c(A\,m) EyTrg dua(N) dur(n)
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is well defined, and by a simple computation,

Bf = /F /A ¢\ 1) EyT>Bg dua(N) dur (n)

for each bounded linear operator B which commutes E,T) for all A € A, n eI
Given a Bessel sequence {E,T\g},er rea in L?(G), the synthesis operator, analysis
operator and frame operator are respectively defined by

U: L*(AxT)— L*(G), Uc://c(/\,n)EnTAgduA(A) dur(n) for c€ L*(AxT),
T JA

U*: L*(G)— L*(AxTD), U* f = {{/, EyTr9) } yepmer for f € L*(@),

S: L*(G) — L*(G), S =UU".

Two frames {E,Thgi }1<i<rner,aea and {E;Thhi}i<i<rner,aea forming a pair of
dual frames for L*(G) means that

L
INESY [ [ B D) B Db i) dur(a)tor all £ € 2(G),

In particular, (1.3) converges unconditionally if A and T" are lattices. By a standard
argument, two Gabor systems { E,Txgi }1<i<rner,aea and { EyThhi b i<i<r,nerxea
form a pair of dual frames for L?(G) if and only if they are Bessel sequences in
L?(G) satisfying (1.3). By the proof of [1, Thm. 5.1] and an argument before [20,
Cor. 6.8], there exists no Riesz sequence of the form {E,T\g},er rea in L*(G) if
either A or T is not discrete.

Now we come back to our theme. Let A and I' be respective co-compact
subgroups of G and CAY', Q C G and Q C G be respective Borel sections for A and
I't. This paper addresses the extension from a co-compact Gabor Bessel sequence
(a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame
(a pair of dual co-compact Gabor frames) under the assumption that

(1.4) esseigf pA[(K —x)NA] >0 for some measurable K C €.
x

To the best of our knowledge, this assumption does not appear in the existing
literature. Let R? be the LCA group equipped with the usual addition, topology
and Lebesgue measure as its Haar measure. The following Example 1.1 shows
that, to some extent, (1.4) is a substitution of density condition for lattice-based
Gabor frames in L?(R?). In addition, Example 1.2 gives a class of examples for
which (1.4) is necessary for the existence of complete co-compact Gabor systems
{E,Thg}nerrea in L2(R?) with supp(g) C Q. This partially explains why (1.4)
is required through this paper. For readability, the proof of Example 1.2 will be
given in Section 3.
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Example 1.1. Let A = AZ? and T' = BZ? in R? with A and B being d x d
invertible real matrices, and take Q=.A([0,1)?+y™)) and K =Q=B8%([0,1)?+y?)
for some y(), y(®) € R? where B? is the inverse of the transpose of B, i.e., Bf =
(BT)~L. Then (1.4) holds if and only if

(BH0, )+ yP) —2) NAZ £ 0 for ace. z € A([0,1)% + V),
equivalently,

0.1)*c |J (AT'BH0, 1) + k) + 2z with 2 = A" BHy@ — 1),
kezd
It is in turn equivalent to
RY = J (A7'B0,1)* + k).
kezd

This implies that |det A||det B] < 1 by [28, Lem. 2.1], and in particular, (1.4) is
equivalent to |A||B| < 1 when d = 1. Recall from [16, Thm. 1.3] that the existence
of frames of the form {E,T\g}ner aen is equivalent to |det Al |det B| < 1.

Example 1.2. Given 0 < s < d, let A and B be d x d invertible real matrices
having the following forms:

w9 A= <A5’1 j) md B (Bgl B°> ,

where Ag o and Bg o are (d — s) x (d — s) matrices satisfying

(1.6)  A;3Bh, =diag(C1, ¢, Cas) WithO<(<lfor1<i<d-—s,
and rank(A; o) = s. Define

(1.7) A= AR x Z247%) and T = B(R® x Z97%).

Take Q@ = A({0}* x [0,1)47%) and Q = B#(R® x [0,1)¢*). Then

(1.8) essicrglqu[(Q—x)ﬁA} =0,

S
and there exists no g € L*(R?) with supp(g) C 2 such that {E,Tx\g}yerrea is
complete in L?(R).

This paper is organized as follows. In Section 2, under the assumption (1.4),
we first give a method to construct co-compact Gabor frames whose canonical
dual windows have the same support with initial windows (see Theorem 2.1).
Then we derive the extension theorems from co-compact Gabor Bessel sequences
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to tight co-compact Gabor frames, and from a pair of co-compact Gabor Bessel
sequences to a pair of dual co-compact Gabor frames (see Theorems 2.2 and 2.3).
In Section 3, by normalizing Haar measures on R¢, its co-compact subgroups
and the corresponding quotient groups in Weil’s theorem, we give an application
to co-compact Gabor systems in L2(R?). Applying Theorem 2.1, we first give a
method to construct co-compact Gabor frames for L2(R?) with C2°(R¢)-window
functions, whose canonical dual window functions belong to C°(R?) if initial
window functions are real valued in addition (see Theorem 3.1). Then we obtain
an extension theorem from a pair of co-compact Gabor Bessel sequences to a pair
of dual co-compact Gabor frames, where both initial and adding generators belong
to C2°(R%) (see Theorem 3.2). It is worth noting that for general co-compact (i.e.,
at least one of A and T is not a lattice) Gabor frames {E,T\g}yeraea in L2(R?),
s(A)s(T') can take an arbitrary positive number (see Example 3.1).

§2. Extension theorems

This section focuses on the extension from a co-compact Gabor Bessel sequence
(a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame
(a pair of dual co-compact Gabor frames) on LCA groups. For this purpose, we
first present some lemmas. The following result, Lemma 2.1, is an extension of
[21, Thm. 4.1] or [5, Cor. 21.8.1] to the multi-window case. We can prove it by a
line-by-line procedure as in [21, Thm. 4.1].

Lemma 2.1. Let A and T' be co-compact subgroups of G and G respectively,
{E,Tagi}i<i<imeraea and {EyTxhi}i<i<rneraen be Bessel sequences in L*(G).
Then the following statements are equivalent:

(i) {EyTrgi}i<i<pmeraen and {E,Thhiti<i<pner,aea are a pair of dual frames
for L*(G).
(ii) For each a € A*,

L
1 = pa~
— /91(’7+77)hl(7+77+04)dur(77>=5a,0 for a.e. v €G.
s(A) = /T

(iii) For each g € T'*,

L
Tll“) Z/Amhl(x + A+ B)dua(A) = g0 forae v €G.
=1

The following lemma gives sufficient conditions for co-compact Gabor systems
to be Bessel sequences and frames in L?(G), respectively.
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Lemma 2.2. Let A and T’ be co-compact subgroups of G and G respectively. Con-
sider the Gabor system {E,Trgi}1<i<rnerrea in L2(G); then the following hold:

(i) 7r
B—esssups Z/ Z|91x+)\gzx+)\+a)|d,u,\()
aert

then {E,Trgi}1<i<Lner,ea s a Bessel sequence in L*(G) with bound B.

(ii) Furthermore, if also

A —essmf (Z/ 191 (2 + N2 dpa (V)
—Z/ 5> It + Naa + A+ @)l dus(3) ) >0

acl't\{0}

then {E,Tagi}1<i<rinerxea @S a frame for L?(G) with bounds A and B.

Proof. By the unitarity of the Fourier transform, {E,Th\gi}1<i<rnerrea is a
Bessel sequence (frame) for L%(G) if and only if {T,,E_\gi}1<i<Lnerrea is a
Bessel sequence (frame) for L? (@) Applying [19, Prop. IV.1] to the Gabor system
{TnEfkgl}lglgL,neF,)\eA gives the lemma. O

Remark 2.1. Lemma 2.2(i) demonstrates that if {g; : 1 <! < L} is a finite family
in L>°(G) with each g; being of compact support, then {E;T\gi}1<i<rner,rea is
a Bessel sequence in L?(G) for arbitrary co-compact subgroups A and T of G and
G respectively.

The following lemma is auxiliary to Theorems 2.1 and 2.2.

Lemma 2.3. Let T be a closed subgroup of G. Suppose f1,fo € D and g,h €
L?(G), where

(2.1) D= {feL*G): feL*G) and supp(f) is compact }.

Then for all X € G,

/F<f17EnT>\9><Ev7T>\haf2> dpr(n)

5 [ 5 AR @it VA A+ o) duc)

aelt
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Proof. Arbitrarily fix A € G. By Plancherel’s theorem, (f, E,T\g) = (f, T,E_»G)
for n e I and f,g € L2(G). Applying [21, Lem. 2.2] to E_,§ and E_yh gives the
lemma. O

The following theorem gives a method to construct co-compact Gabor frames
for L*(G).

Theorem 2.1. Given co-compact subgroups A of G and I' of @, let @ C G and
Q C G be Borel sections for A and T respectively, and let K be a measurable set
satisfying (1.4). Suppose g € L°°(G) N L*(G) is such that K C supp(g) C Q:

(2.2) esssup pal[(supp(g) —x) NA] < oo and essinf|g(x)| > 0.
TEQ rzeK

Then {E,Trg}ner ea is a frame for L*(G), and

LG g s
(2.3) Sf=ph 87 =Tg o fe1¥©),

where S is the frame operator for { EyTxg}ner aen, and G = [\ lg(y+X) > dua(N)
for a.e. y € @G.

Proof. Since supp(g) C Q, we have > pu [9(- + Ng(- + A+ )| = |g(- + V)%
Then, by Lemma 2.2, we only need to prove that [, |g(-+ A)[* dua(X) has positive
lower and upper bounds on @Q. Observe that

/Ig(w+k)lzdm(%) =/ lg(z + A) | dua(N)
A AN(supp(g)—x)

for z € Q. It implies that

/ lg(z 4+ N> dua(N) > eSSeicngA[(K —2) N A]-essinf|g(z)|?,
A xT

zeK

and

/A o+ ) dia (3) < . - esssiup o (supp(g) — )1
TEe

by (1.4) and (2.2). Thus {E,Trg}ner,aea is a frame for L?(G). On the other hand,

[0 B i) = 5 [ 3 s T Ng(y+ A +0) duc(y)

a€el't

(2.4) = ﬁ /G LFWPlg(y + NP duc(y)
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for f € D by Lemma 2.3 and the fact that supp(g) C Q, where D is as in (2.1).
Integrating the two sides of (2.4) over A gives

//Hf,EnTAgHZdur(n) dpa(X)
AJT

1 2 2
(2.5) - /. ( [ latw+ ) duA<A>)|f(y> duc(y)

for f € D. Obviously, (2.5) can be rewritten as

(S7.0) = 55 (GOS0 F() for f €.
This leads to (2.3) due to D being dense in L?(G). O

Remark 2.2. We have the following supplementary explanations for Theorem 2.1:

(i) Obviously, S~1g, S~2¢g € L*(G), and {EnT/\S_%Q}neF,AeA is a Parseval
frame for L?(G) under the assumptions of Theorem 2.1. If we make a further
convention that supp(g) is compact in Theorem 2.1, then S~'g and S -3 g also
have compact support.

(ii) The idea of Theorem 2.1 closely resembles the classical painless nonorthogo-
nal expansions by Daubechies, Grossmann and Meyer [10]. Also, in view of
Example 1.2, Theorem 2.1 can be regarded as a generalized version of painless
nonorthogonal expansions.

The following theorem gives a tight co-compact Gabor frame extension which
preserves the support property.

Theorem 2.2. Given co-compact subgroups A of G and T' of CA;, let @ C G and
Q C G be Borel sections for A and T, respectively, and let K be a measurable
set satisfying (1.4). Assume that {E,Th\g1 }ner ren is a Bessel sequence in L*(Q)
with bound B. Then, for each 8 > B, there exists go € L*(G) such that

{E,Tag1 }neraen U{EyTrg2 ner aen

is a tight frame for L?(G) with bound 3. Furthermore, go can be chosen to have
compact support if supp(g1) is compact and supp(gr) C Q in addition.

Proof. Let Sy denote the frame operator for {E,Txg1}ner rea. Then

(26) (Suf. f) = / / (2 EyTagn)|? dua (V) dyur () < BISIP for f € I(G).

It follows that 51— S is a positive operator. Now let us express (61 —S1)f. Choose
a Parseval frame {E,T\g},er rea for L?(G) (this can be done by Theorem 2.1 and
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Remark 2.2(1)). By [20, Lem. 5.1], S1 E,T\ = E,T)\S; forn € ', A € A. This implies
that
(BI — 1) E, Ty = E,Tx(BI — 5,)?
forn e ', A € A. Thus
(61-s0}7 = [ /A (B — 1)} £, By Tag) By Tag dua (V) dpr ()
I
= [ [ 4561 = 50} B 1) By T din () din ()
T
= [ [ B 061 = 8020 B g din(3) due )
T

for f € L*(G). 1t follows that

1) (31-50f = [ [ (1. BI\GT - S0} BTA(BT - 50 g dua ) dur ()
rJa
for f € L*(G). Let
(2.8) g2 = (BI - 81)%g.
Then {EnT)\gg}ne]j))\eA is a Bessel sequence since {E,,T,\g}nep,,\eA is a frame, and
BIFIP = (Suf, f) + (BT = S1)f, f)
= [ [ 10 B D) dia ) e ()
rJa

+/F/A<f’ B, Txg2) EnTrga dua(N) dur(n)

for f € L?(G) by (2.6) and (2.7). Therefore, {E;Txg1 tneraea U {E;Trg2}ner rea
is a tight frame for L?(G) with bound .

Next we prove that go can be chosen to have compact support if supp(g;) is
compact and supp(g1) C Q. Choose ¢ in (2.8) such that supp(g) is compact (this
can be done by Theorem 2.1 and Remark 2.2(i)). Then

Suf(a) = <(1F) [ lata = dm(A))f(a:) for | € L7(G)

by the same procedure as in Theorem 2.1. This leads to

2

0 = (8- <5 [ e = NP A ) oo

by (2.8), and thus g is compactly supported. O
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In Theorem 2.2, supp(g1) C 2 is required to guarantee supp(gs) being com-
pact. In the following dual extension theorem, Theorem 2.3, supp(g;) being com-
pactly supported (not necessarily contained in ) is enough to guarantee added
generators having compact support. Therefore, the dual extension enjoys more
freedom than the tight extension.

Theorem 2.3. Given co-compact subgroups A of G and T' of é, let @ C G and
Q C G be Borel sections for A and T+, respectively, and let K be a measurable set
satisfying (1.4). Assume that {E,Txag1 tner ren and {E)Tah1}yer ren are Bessel
sequences in L(G). Then there exist ga, ho € L*(GQ) such that

{ETrg1}ner aea U{EyTrg2}ner e

and
{EyTrhi}ner aea U {EyTaha}ner rea

form a pair of dual frames for L*>(G). Furthermore, go and hy can be chosen to
have compact support if supp(g1) and supp(h1) are compact.

Proof. Let T and U denote the synthesis operators for {E,T5\g1}neraea and
{E,T\h1}ner,aca respectively. Then

(2.9) TU*f = / /(f, E,T\h1)E,Trgi dun(N) dur(n)  for f € L*(G).
rJa
Next we will express (I —TU*)f. Choose a pair of dual frames ({ £, Tx\1 }ner,aea,

{E,Txy2}neraea) for L2(G) (this can be done by Theorem 2.1 and Remark 2.2(i)).
Then

(=10 = [ [ (0 =TU") . BT By T dis () da o)
= [ [0 =0T B T By a a3 de (o)
(2.10) = [ [ B = UT ) B T d ) o)
for f € L%(GQ) by [20, Lem. 5.1]. Take
(2.11) ho = (I =UT")11,92 = 2.
Observe that {E,Txav1}ner,aea and {E,Txv2}ner,aea are both Bessel sequences

in L?(G) and that (I —UT*)E,Th\y1 = E,;Tahs for n € ', X\ € A by [20, Lem. 5.1].
It follows that {E,Thhs}yerrea and {E;T\g2}ner,aca are Bessel sequences in
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L?(G). Collecting (2.9) and (2.10) gives
F=TU f+ (I -TU")f
Z/F/A<ﬁ E,Txh1)E,Txgy dpa(X) dur(n)
+/F/A<f, EyTaha) EyTrg2 dpa(N) dpr (1)
for f € L?(G). Therefore,

{EyTag1 tner xeaU{ By Trgatneraen  and  {E,Thhibper aeaU{ EyTaha byer aea

are a pair of dual frames for L?(G).

Next we prove that go, ho can be chosen to have compact support if supp(g;)
and supp(h;) are compact. Choose 1, v2 in (2.11) such that supp(+y1) and supp(7y2)
are compact (this can be done by Theorem 2.1 and Remark 2.2(i)). We only need
to prove that supp(hs) is compact. By (2.11), we have

ho(x) = (I = UT")y1(x)
=n(z) - UT"n(z)

— () — /F /A (11, EyTagn) EyToha () dpea (N dpr ().

Since supp(7y1) and supp(g1) are compact, there exists a compact subset A of A
such that
(71, ByThgr) =0 for Ae AAAand neT.

This implies that
ha(@) = 12(0) ~ [ [ o, By Tagn) By Tah o) dia (3 de ()
AJT

1)~ [ ([ B0 By ) ) s () a0

A
212) =) - £,
where
1) )= [ ( [ 1B o) dur<n>)m1<x> dia ().

Observe that

supp(¢) C {z € G: x — A € supp(hq) for some \ € K}
C A + supp(hy).
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It follows that supp() is compact due to supp(hi) being compact. Thus supp(hs)
is compact by (2.12). O

§3. Applications to co-compact Gabor systems in L?(R%)

This section focuses on the application of Theorems 2.1 and 2.3 to L?(R?). Apply-
ing Theorem 2.1, we derive a strategy to construct co-compact Gabor frames for
L?(R4) generated by C2°(R%)-window functions (see Theorem 3.1). Then, with the
help of Theorems 3.1 and 2.3, we establish a dual extension theorem from a pair
of co-compact Gabor Bessel sequences to a pair of dual co-compact Gabor frames
for L?(R?) with C°(R?)-window functions (see Theorem 3.2).

Herein, R? is an LCA group equipped with the usual addition, topology and
Lebesgue measure as its Haar measure. Firstly, we fix related measures such that
Weil’s theorem holds. Recall that R? = R? and that an arbitrary co-compact
subgroup of R has the form C(R® x Z~*) or C(Z* x R?~*) with 0 < s < d and C
being a d x d invertible real matrix. In what follows, we always use |E| to denote
the Lebesgue measure of a Lebesgue measurable set F regardless of its dimension,
and use y to denote the counting measure. Let © = C(R* x Z%~*) be a co-compact
subgroup of RY. When 0 < s < d, define P;: R — R® and P,: R — R?%* by

(3.1) Py (2) =z and P (Z;) =y forzcR® yecRI™S

For arbitrary measurable sets £ C R?/0 and F C O, define

|E| if s =0,
(3.2) a0 (E) = { |det Clu(E) if s —d,

|det C||P,(C7LE)| if0<s<d,
and

w(C1F) if s =0,
(3.3) pe(F) =< |C7LF| if s =d,

|PL(CTIE)|u(Py(CTYF)) if0<s<d.
Similarly, if © = C(Z* x R?~*) is a co-compact subgroup of R?, define

|det C|u(E) if s =0,
traje(E) = < |E| if s =d,
|detC||PL(CTIE)| if0 < s<d,
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and
|IC~1F| ifs=0,
pe(F) = { u(CF) if s =d,
w(P (CTYF)|P(CTIF)| if 0 < s <d,

for arbitrary measurable sets E C R?/© and F' C ©. In the above two cases, Weil’s
theorem holds, i.e.,

[1Ga= [ dimajols) [ FG+Oduole) for e LE,

and
s(©) =|detC| for 0 <s<d.

With the above preparations, next we prove Example 1.2.

Proof of Example 1.2. By (3.2) and (3.3), for arbitrary measurable sets F C A
and E C R%/A, we have

(3:4) pa(F) = [PLAT F)|u(Po(ATF))  and  pga/a(E) = |det Al |[P2(ATE).
Arbitrarily fix 0 < § <1 —max{(1,Cs,...,Ci_s}. By (1.6), we have
Ag3B5 o0, 1) N ([1—6,1)7 +277%) = 0.
This implies that
Py(A7H(Q = 2) NA)) C (A53B5,0,1)%° — Py(A™'2)) N2~ =),
and thus
(35) pal(Q—2)NA] = |P (A ((Q=2)NA)|p[P(A (2 —2)NA))] =0
for € A({0}* x [1 — §,1)%7#%). Therefore, (1.8) holds due to
pira/a[A{0} x [1—6,1)97%)] = |det A| - 697 > 0.

Next we prove that {E,Txg}ner rea is incomplete in L?(R?) for each g € L*(R?)
with supp(g) C Q. Arbitrarily fix g € L?(R?) with supp(g) C Q. Write

A = A1[0,1)?7% x (A22[0, 1)\ B} 5[0, 1)47).

Then
Al = [A1,2(0,1)**|[det Az 5[[0, 1)\ A3 5 B 5[0, 1)**| > 0
due to rank(A4; o) = s and (1.6). Observe that

(([0, 1)\ A5 3B5 ,[0,1)%*) + k) N A5 3B5 ,[0,1)"* =0 for each k € 2%~
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by (1.6). It follows that
(A+XM)NQ=0 foreach A €A,
and thus
(EyTrg,xa) =0 foreachn el and A € A.
Therefore, {E,Trg}yeraea is incomplete in L?(R?). The proof is completed. [
Now we turn to the application of Theorems 2.1 and 2.3 to L?(R%). Given an
LCA group G, by Theorem 2.1 and Remark 2.2(i), we can construct co-compact
frames {E,Trg}neraea for L?(G) with g € L°°(G) and supp(g) being compact.
For G = R?, the following Theorem 3.1 presents a method to construct co-compact
Gabor frames with C°(R?)-window functions by choosing special K C Q satis-
fying (1.4). Specifically, given co-compact subgroups A = A(R®* x Z4=%1) and
I' = B(R*2 x Z3=%2) (I' = B(Z** x R%752)) of R? with 0 < s1,50 < d and A, B
being d x d invertible real matrices, and let Q@ = A({0}** x ([0,1]?=5* + z(1))
and Q = B¥(R*2 x ((0,1)47%2 + 2)) (Q = B*(((0,1)*2 + 2(?)) x R¥=2)) be Borel
sections for A and T'*, respectively. Take K = A(E,, x ([0, 1]47*1 4 2(1))) c Q for
some compact set E, in R®! with positive measure. Then
3.0) NN ETTYES
. essin —x =
zeQ Ha |Es, | if0< s <d.

We also claim that

(3.7)  esssup ua[(W —z) NA] < oo for bounded and measurable W C RY.
z€Q

Indeed, without loss of generality, we assume that
W c A([a1,b1]** x ([ag, ba]?™*1 + z(M)))
for some ay,by,as,bs € R. Then
(3.8) W —x C A(lar, b1]™ x [ag — 1,b9]77%1)  for z € Q.
By a simple computation, we have
(3.9)  ua(A([ar,b1]** X [ag — 1,bo]47*) N A) < (b1 — a1)® (by — ag + 2)7751,

This together with (3.8) leads to (3.7). Since K is a compact subset of the open
set {2, we can always choose g € C°(R%) such that

K Csupp(g) CQ and g¢glx =1

Thus (1.4) and (2.2) hold by (3.6) and (3.7). Applying Theorem 2.1, we have the
following theorem.
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Theorem 3.1. Given co-compact subgroups
A=AR™ x Z75) and T =B(R*2 x Z7%2) (T = B(Z** x R¥*2))

of R with 0 < s1,s9 < d and A, B being d x d invertible real matrices, let
Ey, x ([0,1)%5 4 2(M)) be a compact set in R with positive measure satisfying
(3.10) A(Es, x ([0,1]47% 4 2M)) € BFH(R® x ((0,1)%7%2 4 2(2)))

(3.11) (A(B,, x ([0,1)97 +2M)) € BH(((0,1)* + 2) x RT7*2))

for some 22 € R¥=52 (2(2) € R*2). Choose g € C°(R?) such that

A(E, x ([0,1]47*1 + 21))) ¢ supp(g) c B (R*2 x ((0,1)%*2 —|—x(2)))
(.A(ES1 x (10, 1]d_51 + x(l))) C supp(g) C B’j(((O7 1)%2 + x(2)) X Rd_s2))
and
g() =1 on A(E,, x ([0, +21)).

Then {E,T\g}nerea is a frame for L*(R?), and the frame operator and its
inverse are given by

G det B
B12)  Sf= gl s =TSR g e 2o,
where
\ 2
> / g<y+A<k>> d\ if0< s <d,
kezd—s1 VR
G) =9 Y lgly + AR)P? if 51 =0,
kezd
[ 1oty + anpar 51 =d,
Rd
for a.e. y € RY,

Remark 3.1. We have the following supplementary explanations for Theorem 3.1:

(i) If g in Theorem 3.1 is required to be real valued in addition, then G € C°°(R?)
by a standard argument. Thus S~!g € C>°(R%) by (3.12), and

({EyTrg}ner ren, {EnTAS_lg}neF,AGA)

is a pair of dual frames for L?(R?) with g, S~1g € C°(R?).
(ii) Theorem 3.1 can be adjusted to the case of (A, I') such that A = A(Z4~%1 xR*1)
and I' = B(Z47%2 x R*2) (T = B(RY™%2 x Z*2)) with 0 < 51,82 < d and A, B
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being d x d invertible real matrices. Indeed, for 0 < s < d, define the d x d
permutation matrix P, by

o 0 Idfs
(3.13) Py = (Is 0 ),

where I, denotes the r x r identity matrix. We can do this if A and B in
Theorem 3.1 are replaced by A = AP;, and B = BPs,.

For the lattice case of A = AZ? and T' = BZ<, [16, Thm. 1.3] shows that
the existence of Riesz bases (frames) of the form {E,Th\g}ner aen is equivalent to
|det A||det B] = 1 (|det A]|det B] < 1), i.e., s(A)s(T) =1 (s(A)s(T") < 1). It is
easy to check that |det A||det B] < 1 if A = AZ? and T' = BZ? in Theorem 3.1.
Thus Theorem 3.1 gives a method to construct redundant frames { E,Thg}ner, rea
for L2(R?) with g € C°(R?). The following example shows that s(A)s(T) (i.e.,
|det A |det B|) can take an arbitrary positive number for general co-compact (i.e.,
at least one of A and I is not a lattice) Gabor frames in L?(R?), and in this case
the window functions can be chosen in C2°(R%). This demonstrates that there exist
essential differences between lattice-based Gabor frames and general co-compact
Gabor frames. For convenience, write

Ai(s1,82) = {(A,T) : A = AR x Z97%1), T = B(R*? x Z%7*2)},
As(s1,82) = {(A,T) : A = AR x Z97°1), T = B(Z* x R*"*?)},
Az(s1,82) = {(A,T): A = A(Z* x RT™*1), T = B(R*? x Z%~*2)},
Ag(s1,82) = {(AT) : A = A(Z* x R"™*Y), T' = B(Z* x R*™*2)}

for 0 < s1,89 < d.

Example 3.1. Given an arbitrary positive constant g, and 0 < s1,s2 < d satis-
fying (s1, s2) # (0,0) ((0,d), (d,0), (d,d)), there exist g € C2°(R%) and

(A,T) € Ai(s1,52) (Aa(s1,52), Asz(s1,82), Aa(s1,82)),
such that s(A)s(T) = ¢ and {E,T\g}yer ren is a frame for L2(R?).

Proof. We only treat the cases of (s1, s2) # (0,0) and (s1, s2) # (0,d). The others
can be proved similarly. By Theorem 3.1, it is enough to show the existence of A,
B and E,, satisfying |det A||det B] = ¢ and (3.10) ((3.11)) with () = 0.

Case 1: (s1,82) # (0,0). If s = 0 and sy = d, then (3.10) holds for all A and
B satisfying |det A||det B] = o (i.e., s(A)s(I') = o). If s; = 0 and 0 < s2 < d,
take () such that its every component is positive, and choose Gsyt1,--- Q4 small
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enough that
Asy+1
([0,1]47%2 4 2™y (0, 1)4 .
aq

Choose ay,...,as, > 0, and A, B such that
BT A = diag(a; - - - Gs,Qsy41° - aq) and ajag---aq = 0.

Then (3.10) holds and |det A||det B| = ¢ (i.e., s(A)s(T') = o). If s1 = d, choose A,
B satistying |det A||det B| = o (i.e., s(A)s(T) =
such that BTAE, C (0,1)%. Then

s
0) and a compact set Fy in R?

AE; € B(0,1)? c B¥(R*2 x (0,1)%7%2).

Thus (3.10) holds and |det A||det B] = o (i-e., s(A)s(T') = o). If 0 < s1 < d,
take () such that its every component is positive, and choose Gsy41, - - -, aq small
enough that
Asy+1
([0, 2)4=r + M) € (0,1)%7*1.
aq

Choose ay,...,as, > 0, and A, B such that
BT A = diag(a; - - - Gs, Q5,41 - aq) and ajag---aq = 0.
Take a compact set E,, in R®! such that diag(a; - --as,)Es, C (0,1)°*. Then
A(Es, x ([0,1]47 + 2M)) ¢ BH0,1)? ¢ BF(R*2 x (0,1)47%2).
Thus (3.10) holds and |det A||det B|] = ¢ (i.e., s(A)s(T') = o).

Case 2: (s1,s2) # (0,d). If 0 < s; < d, then (3.11) holds when choosing A, B and
E, asin the “0 < s1 < d” case of Case 1. If 51 = s = 0, then (3.11) holds for all A
and B satisfying |det Al |det B] = o (i.e., s(A)s(T") = p). If sy =0 and 0 < s2 < d,
take (1) such that its every component is positive, and choose aq, ... , G, small
enough that
a1
([0,1]*> + ™) c (0,1)*
Qs

Choose as,41,...,aq > 0, and A, B such that

BT A = diag(a; - - - Gs,0s541° - aq) and ajag---aq = 0.
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Then (3.11) holds and |det A||det B| = g (i.e., s(A)s(I') = p). The proof is com-
pleted. O

Given an LCA group G, Theorem 2.3 shows that, under the hypothesis of
(1.4), a pair of co-compact Gabor Bessel sequences in L?(G) can be extended
to a pair of dual co-compact Gabor frames for L?(G), and simultaneously, the
added window functions can be chosen to have compact support if the initial
ones are of compact support. For G = R?, as an application of Theorem 2.3,
the following theorem shows that a pair of C2°(R¢)-window-function-generated
co-compact Gabor Bessel sequences in L?(R%) can be extended to a pair of dual
co-compact Gabor frames for L#(R?) with the added window functions belonging
to C°(RY).

Theorem 3.2. Given d > 1, and co-compact subgroups A = A(R** x Z3~51)
(A = A(Z** x R4751)) and T' = B(R®2 x Z4752) of R? with 0 < 51,52 < d and A,

B being d x d invertible real matrices, let

A(E, x (0,175 + ) € BE(R® x ((0,1)47°2 +21))
(A0, 1 +2W) x Ea—y,) B (R x ((0,1)77*2 +23))))

for some (2 € R and compact set E,, x ([0,1]5* + 2M) (([0,1] + 2M)
X Eq_s,) in R with positive measure. Assume that {E,T\g1}nerrea and
{E,Txh1}per,aen are Bessel sequences in L2(RY), and that g1, hy € C°(RY). Then
there exist ga, ha € C°(RY) such that

{E,Tag1 }ner aea U{ETag2}ner ren

and
{E,Txh1}neraen U{E,Taha}ner aea
are a pair of dual frames for L*(R?).

Proof. Choose a pair of dual frames ({E,T\71}ner,rea; {EyTrY2}ner,aen) for
L*(R?) with 71,72 € C2°(R?) in Theorem 2.3. This can be done by Remark 3.1(i).
Define go and hs as in (2.11). Then, by Theorem 2.3,

{E,Tagi bner aeAU{EyThg2tnernea  and  {E,Thhi bper xeAU{EnTaho bner aen

form a pair of dual frames for L?(R9) with go € C°(R?) and hy being compactly
supported. Next we will prove that hy € C>°(R?) to finish the proof. Since v; €
C>(R%), by (2.12) and (2.13), we only need to prove that ¢ € C>°(R?), where

G - [

. </F<’Yl’ EyThg1) Ey(z) dpr (77)) Taha(x) dpa(A)
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for some compact subset A of A. By a simple computation, we have

(3.15) D*Ep,Tahy(x) = Y CL2mi)'l(Bn) Eg,(x)TAD* ' hy (z)
0<i<a

for a = (a1, aa,...,aq) € Z%, where | = (I1,la,...,1q), |I| =1y + 1o + -+ g,

U _ iy ole la
Ca - Cozlcag T Cad

:041“'(0417ll+1)042~"(042*12+1)'..ad"'(adfld+1)7 0<i<a
ll' l2| ld'

means that 0 < I; < a; with 1 <4 < d and 2! = zlllzé2~~~zéd for z = (21, 22, .- .,
zq)T € R Observe that

|(Bn)'| < (1 + [Bny|)!*!
and

a—l a—l
By (@) T30~ (@)] < max [D°

for 0 <1 < o, where |£] = [&1] + |&2| + -+ - + |&4] for € € R Tt follows that
(3.16) | D* By Taha oo < Mi(1+ Bn)!*!

for A € A and n € R%2 x Z9%2 by a standard argument, where M; = (27 +
Dl maxg<i<q [ D*hilco. Now let us estimate (71, EgyThg1). Observe that
Thgi = (E_xg1)¥ and 1 = (71)V. It follows that

g = (51 * E_xgn).
This implies that
(M, By Tagr) = (nThgi)" (Bn)
=71 * E_xg1(Bn),
and thus

(1, EnTag1)| < 11| * |g1|(Bn).

Also, observing that 41,77 € S(R?) leads to the fact that to every 7 € Z, there
corresponds a constant C. such that

C

— T forpeRL
(1+[Bnl)

(3.17) [(y1, BBy Tag1)| <

Since B is invertible, there exists a constant a > 0 such that

(3.18) |Bz| > alz| for x € R™.
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Choose 7 = |a] +d + 1 in (3.17). Then collecting (3.16)—(3.18) leads to

> / 171, By Tag1) D* Epy Taha ()|l o iy - -+ dis,
Rs2

Mso+15--

ﬁdEZ
dns
SMiCr D / —72(1
Nsg+1;- s (L+alp|)7=lel
N4EL
1
< M,C.
77*2; L+ a([nsy+1] + -+ |nd|))d*52+%

na €l X/ d dnsz
ez (L+a(|m]+ - +[ns, )2+ 2
(3.19) < 0.

This implies that
(3.20) /
Iy

due to A being compact. Also observe that D*Ep,T\h is continuous for an arbi-
trary « € Z‘i. It follows that & € C*°(R%). The proof is completed. O

/ s By Tagi) D Essy Toha ()l oo di -« difey djaa(A) < oo
RS2

MNso+1y--s
N4 EL

Remark 3.2. Let P; be as in (3.13). If B in Theorem 3.2 is replaced by BPs,,
Theorem 3.2 can be adjusted to the case of (A, T') that A = A(R%1 x Z4—51)
(A = A(Z5 xR4=51)) and T = B(Z97%2 x R*?) with 0 < sy, 2 < d, A and B being
d x d invertible real matrices.
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