Extensions of Co-Compact Gabor Frames on Locally Compact Abelian Groups and Applications

by

Yun-Zhang Li and Ming Yang

Abstract

This paper addresses the extensions of co-compact Gabor Bessel sequences to tight frames and dual pairs on locally compact abelian (LCA) groups, and its applications to the $L^2(\mathbb{R}^d)$ -setting. Firstly, we present a method to construct co-compact Gabor frames on LCA groups under a mild condition. This condition is optimal in the sense that it reduces to the usual density condition for lattice-based Gabor frames in $L^2(\mathbb{R}^d)$. Secondly, we obtain an extension theorem of a co-compact Gabor Bessel sequence (a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame (a pair of dual co-compact Gabor frames). Finally, as an application, we derive a strategy to obtain co-compact Gabor frames for $L^2(\mathbb{R}^d)$, and establish an extension theorem of dual co-compact Gabor frames for $L^2(\mathbb{R}^d)$ with $C_c^{\infty}(\mathbb{R}^d)$ -window functions. An example is also provided. It demonstrates that, for general co-compact (i.e., at least one of time and frequency translations is not a lattice) Gabor frames, the product of the sizes of time and frequency translations can take an arbitrary positive number.

Mathematics Subject Classification 2020: 42C15 (primary); 42C40, 43A32, 43A70 (secondary).

Keywords: locally compact abelian group, frame, co-compact Gabor frame, dual frames, tight frame.

Communicated by N. Ozawa. Received April 17, 2024. Revised September 19, 2024; November 21, 2024.

Y.-Z. Li: School of Mathematics, Statistics and Mechanics, Beijing University of Technology, 100124 Beijing, P. R. China;

e-mail: yzlee@bjut.edu.cn

M. Yang: School of Mathematics, Statistics and Mechanics, Beijing University of Technology, 100124 Beijing; College of Mathematics and Information Science, Hebei University, 071002 Baoding, P. R. China;

e-mail: mingyang@hbu.edu.cn, ymingy02@163.com

^{© 2025} Research Institute for Mathematical Sciences, Kyoto University. This work is licensed under a CC BY 4.0 license.

§1. Introduction

Due to unifying a number of different results into a general framework with a concise and elegant notation, the frame theory on locally compact abelian (LCA) groups has attracted much attention from mathematicians in the last two decades. The LCA group approach enables us to visualize hidden relationships between the different components of the theory. Recall that the LCA group approach applies to signals on all groups of the form $\mathbb{R}^s \times \mathbb{Z}^d \times \mathbb{T}^q \times \mathbb{Z}_p$ which include multichannel video signals based on the group $\mathbb{Z}^d \times \mathbb{Z}_p$, where \mathbb{Z}_p is the finite group of the integers modulo p. In practice, one can also encounter signals on LCA groups other than $\mathbb{R}^s \times \mathbb{Z}^d \times \mathbb{T}^q \times \mathbb{Z}_p$ ([2, 6, 5, 3, 11]). Gabor analysis on LCA groups dates back to the works [14, 24] by Gröchenig, Kaniuth and Kutyniok. Gabor frames are closely related to shift- (translation-)invariant systems. Uniform lattice-based shiftinvariant systems and Gabor frames on LCA groups were studied by many authors including Cabrelli, Christensena, Feichtinger, Goh, Kamyabi Gol, Kazarian, Kozek, Kutyniok, Labate, Luef, Mohammadian, Paternostro, Raisi Tousi, Tabatabaie and Jokar; cf. [2, 23, 6, 12, 25, 7, 8, 22, 26, 30, 33]. Recall that not all LCA groups possess uniform lattices, for example the group \mathbb{Q}_p of p-adic numbers, but every LCA group has co-compact subgroups. Co-compact translation-invariant systems were recently studied by some authors including Bownik, Ross, Gumber, Shukla, Jakobsen and Lemvig; cf. [1, 15, 21, 20].

For frame extension, Casazza and Leonhard [4] showed that every Bessel sequence in a finite-dimensional space can be extended to a tight frame. Li and Sun [27] generalized this result to general Hilbert spaces, and proved that every Gabor Bessel sequence in $L^2(\mathbb{R})$ can be extended to a tight frame by adding one Gabor system with the same time-frequency parameters. Christensen, Kim and Kim [9] obtained similar results in the setting of dual frames. In particular, they proved that every pair of Gabor Bessel sequences in $L^2(\mathbb{R})$ can be extended to a pair of dual frames by adding one extra Gabor system to each Bessel sequence, and that the generators of added Gabor systems can be chosen to be compactly supported if the generators of initial Gabor Bessel sequences have compact support in addition.

Motivated by the above works, in this paper we investigate the extension of cocompact Gabor frames on second countable LCA groups and their applications. For a group, we will denote the neutral element by 0, the group operation by "+" and its inverse operation by "-". Let G be a second countable LCA group. We denote its dual group by \widehat{G} which consists of all characters, i.e., all continuous homomorphisms from G into the torus \mathbb{T} . When equipped with the weak* topology and group operation pointwise multiplication, \widehat{G} is also an LCA group. A closed subgroup H of G is said to be co-compact if G/H is compact, and is said to be a (uniform) lattice if H is discrete and co-compact. For a closed subgroup H of G, its annihilator H^{\perp} is defined by $H^{\perp} := \{ \gamma \in \widehat{G} : \gamma(x) = 1, \ \forall x \in H \}$. Then H^{\perp} is a closed subgroup of \widehat{G} . We denote by μ_G the Haar measure on G (it is unique up to a positive constant), by $L^p(G)$ the Banach space of all p-integral functions on G for $1 \leq p < \infty$, and by $L^{\infty}(G)$ the Banach space of all essentially bounded functions on G with respect to μ_G . In particular, $L^2(G)$ is a separable Hilbert space. We define the Fourier transform by

$$\mathcal{F}f(\gamma) = \hat{f}(\gamma) = \int_G f(x)\overline{\gamma(x)} d\mu_G(x), \quad \gamma \in \widehat{G}$$

for $f \in L^1(G)$ and extend it to $L^2(G)$ in the usual way. For convenience, we require that the measures μ_G and $\mu_{\widehat{G}}$ are normalized so that the *Plancherel theorem* holds, i.e.,

$$\int_{G} f(x)\overline{g(x)} \, d\mu_{G}(x) = \int_{\widehat{G}} \hat{f}(\gamma)\overline{\hat{g}(\gamma)} \, d\mu_{\widehat{G}}(\gamma) \quad \text{for } f, g \in L^{2}(G).$$

In this case, we say that μ_G and $\mu_{\widehat{G}}$ are dual measures. We mention Weil's theorem in [31].

Proposition 1.1. Let H denote a closed subgroup of the LCA group G. Then the following hold:

(i) Taking any Haar measures on two of the LCA groups G, H, and G/H, the third Haar measure can be normalized such that for all $f \in L^1(G)$,

(1.1)
$$\int_{G} f(x) d\mu_{G}(x) = \int_{G/H} \int_{H} f(x+h) d\mu_{H}(h) d\mu_{G/H}(\dot{x}).$$

(ii) If the measures on G, H, and G/H, are chosen such that (1.1) holds, then the corresponding dual measures on the dual groups \widehat{G} , $\widehat{H} = \widehat{G}/H^{\perp}$ and $\widehat{G/H} = H^{\perp}$ satisfy that for all $F \in L^1(G)$,

$$\int_{\widehat{G}} F(\gamma) \, d\mu_{\widehat{G}}(\gamma) = \int_{\widehat{G}/H^{\perp}} \int_{H^{\perp}} F(\gamma + \omega) \, d\mu_{H^{\perp}}(\omega) \, d\mu_{\widehat{G}/H^{\perp}}(\dot{\gamma}).$$

From Proposition 1.1, if two of the measures on G, H, G/H, \widehat{G} , H^{\perp} and \widehat{G}/H^{\perp} are given, and these two are not dual measures, then all others are uniquely determined by requiring Plancherel's theorem and Weil's theorem. Throughout this paper, all measures are assumed to satisfy Plancherel's theorem and Weil's theorem. A Borel section or a fundamental domain of a closed subgroup H in G is a Borel measurable subset Ξ of G which meets each coset G/H once. By [29, Lem. 1.1] or [13], an arbitrary closed subgroup H of G has a Borel section. The

size of H is defined by

$$s(H) = \int_{G/H} d\mu_{G/H}(\dot{x}).$$

Then s(H) is finite if and only if H is co-compact by [5]. In particular, if H is discrete in addition, then the mapping $T: \Xi \to G/H$ defined by

$$T\xi = \xi + H \quad \text{for } \xi \in \Xi$$

is measure preserving by [1, Prop. 3.2], which implies that $s(H) = \mu_G(\Xi)$. And also by [1, Prop. 3.2], a co-compact subgroup H is a lattice if and only if $s(H^{\perp}) < \infty$. We refer to [17, 18, 32] for the basics on LCA groups.

Similarly to the case of Gabor analysis on $L^2(\mathbb{R})$, we begin our analysis on $L^2(G)$ with relevant operators. Define the translation operator $T_s: L^2(G) \to L^2(G)$ with $s \in G$ and the modulation operator $E_t: L^2(G) \to L^2(G)$ with $t \in \widehat{G}$ by

$$T_s f(\cdot) = f(\cdot - s)$$
 and $E_t f(\cdot) = t(\cdot) f(\cdot)$

for $f \in L^2(G)$, respectively. Given co-compact subgroups Λ and Γ of G and \widehat{G} respectively, the *Gabor system* generated by a finite family $\{g_l : 1 \leq l \leq L\}$ in $L^2(G)$ is defined by

$${E_{\eta}T_{\lambda}g_{l}}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}.$$

We say that it is a frame for $L^2(G)$ if there exist constants A, B > 0 such that

$$(1.2) A||f||^2 \le \sum_{l=1}^L \int_{\Gamma} \int_{\Lambda} |\langle f, E_{\eta} T_{\lambda} g_l \rangle|^2 d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

$$\le B||f||^2 \quad \text{for all } f \in L^2(G),$$

where A and B are called the lower and upper frame bounds respectively. It is called a tight frame if A=B in (1.2), and it is called a Bessel sequence in $L^2(G)$ if at least the upper inequality in (1.2) is satisfied. Given $g \in L^2(G)$ and a measurable function $c(\lambda, \eta)$ on $\Lambda \times \Gamma$, $f = \int_{\Gamma} \int_{\Lambda} c(\lambda, \eta) E_{\eta} T_{\lambda} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$ means that

$$\mathcal{A} \colon L^2(G) \to \mathbb{C}$$
 by $\mathcal{A}h = \int_{\Gamma} \int_{\Lambda} \overline{c(\lambda, \eta)} \langle h, E_{\eta} T_{\lambda} g \rangle d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$ for $h \in L^2(G)$

defines a bounded linear functional on $L^2(G)$, and f is exactly the unique element in $L^2(G)$ such that $Ah = \langle h, f \rangle$ for $h \in L^2(G)$. Recall that if $c(\lambda, \eta) \in L^2(\Lambda \times \Gamma)$ and $\{E_{\eta}T_{\lambda}g\}_{\eta \in \Gamma, \lambda \in \Lambda}$ is a Bessel sequence in $L^2(G)$, then

$$f = \int_{\Gamma} \int_{\Lambda} c(\lambda, \eta) E_{\eta} T_{\lambda} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$$

is well defined, and by a simple computation,

$$\mathcal{B}f = \int_{\Gamma} \int_{\Lambda} c(\lambda, \eta) E_{\eta} T_{\lambda} \mathcal{B}g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$$

for each bounded linear operator \mathcal{B} which commutes $E_{\eta}T_{\lambda}$ for all $\lambda \in \Lambda$, $\eta \in \Gamma$. Given a Bessel sequence $\{E_{\eta}T_{\lambda}g\}_{\eta \in \Gamma, \lambda \in \Lambda}$ in $L^{2}(G)$, the synthesis operator, analysis operator and frame operator are respectively defined by

$$U: L^{2}(\Lambda \times \Gamma) \to L^{2}(G), \quad Uc = \int_{\Gamma} \int_{\Lambda} c(\lambda, \eta) E_{\eta} T_{\lambda} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta) \quad \text{for } c \in L^{2}(\Lambda \times \Gamma),$$

$$U^{*}: L^{2}(G) \to L^{2}(\Lambda \times \Gamma), \quad U^{*}f = \left\{ \langle f, E_{\eta} T_{\lambda} g \rangle \right\}_{\lambda \in \Lambda, \eta \in \Gamma} \quad \text{for } f \in L^{2}(G),$$

$$S: L^{2}(G) \to L^{2}(G), \qquad S = UU^{*}.$$

Two frames $\{E_{\eta}T_{\lambda}g_l\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_l\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ forming a pair of dual frames for $L^2(G)$ means that

$$(1.3) f = \sum_{l=1}^{L} \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} g_{l} \rangle E_{\eta} T_{\lambda} h_{l} d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta) for all f \in L^{2}(G).$$

In particular, (1.3) converges unconditionally if Λ and Γ are lattices. By a standard argument, two Gabor systems $\{E_{\eta}T_{\lambda}g_l\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_l\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ form a pair of dual frames for $L^2(G)$ if and only if they are Bessel sequences in $L^2(G)$ satisfying (1.3). By the proof of [1, Thm. 5.1] and an argument before [20, Cor. 6.8], there exists no Riesz sequence of the form $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ in $L^2(G)$ if either Λ or Γ is not discrete.

Now we come back to our theme. Let Λ and Γ be respective co-compact subgroups of G and \widehat{G} , $Q \subset G$ and $\Omega \subset G$ be respective Borel sections for Λ and Γ^{\perp} . This paper addresses the extension from a co-compact Gabor Bessel sequence (a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame (a pair of dual co-compact Gabor frames) under the assumption that

(1.4)
$$\operatorname*{ess\,inf}_{x\in Q}\mu_{\Lambda}[(K-x)\cap\Lambda]>0\quad\text{for some measurable }K\subset\Omega.$$

To the best of our knowledge, this assumption does not appear in the existing literature. Let \mathbb{R}^d be the LCA group equipped with the usual addition, topology and Lebesgue measure as its Haar measure. The following Example 1.1 shows that, to some extent, (1.4) is a substitution of density condition for lattice-based Gabor frames in $L^2(\mathbb{R}^d)$. In addition, Example 1.2 gives a class of examples for which (1.4) is necessary for the existence of complete co-compact Gabor systems $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ in $L^2(\mathbb{R}^d)$ with $\operatorname{supp}(g)\subset\Omega$. This partially explains why (1.4) is required through this paper. For readability, the proof of Example 1.2 will be given in Section 3.

Example 1.1. Let $\Lambda = \mathcal{A}\mathbb{Z}^d$ and $\Gamma = \mathcal{B}\mathbb{Z}^d$ in \mathbb{R}^d with \mathcal{A} and \mathcal{B} being $d \times d$ invertible real matrices, and take $Q = \mathcal{A}([0,1)^d + y^{(1)})$ and $K = \Omega = \mathcal{B}^{\sharp}([0,1)^d + y^{(2)})$ for some $y^{(1)}$, $y^{(2)} \in \mathbb{R}^d$, where \mathcal{B}^{\sharp} is the inverse of the transpose of \mathcal{B} , i.e., $\mathcal{B}^{\sharp} = (\mathcal{B}^{\mathsf{T}})^{-1}$. Then (1.4) holds if and only if

$$(\mathcal{B}^{\sharp}([0,1)^d + y^{(2)}) - x) \cap \mathcal{A}\mathbb{Z}^d \neq \emptyset$$
 for a.e. $x \in \mathcal{A}([0,1)^d + y^{(1)})$,

equivalently,

$$[0,1)^d \subset \bigcup_{k \in \mathbb{Z}^d} (\mathcal{A}^{-1}\mathcal{B}^{\sharp}[0,1)^d + k) + z \quad \text{with } z = \mathcal{A}^{-1}\mathcal{B}^{\sharp}y^{(2)} - y^{(1)}.$$

It is in turn equivalent to

$$\mathbb{R}^d = \bigcup_{k \in \mathbb{Z}^d} (\mathcal{A}^{-1} \mathcal{B}^{\sharp} [0, 1)^d + k).$$

This implies that $|\det \mathcal{A}| |\det \mathcal{B}| \leq 1$ by [28, Lem. 2.1], and in particular, (1.4) is equivalent to $|\mathcal{A}| |\mathcal{B}| \leq 1$ when d = 1. Recall from [16, Thm. 1.3] that the existence of frames of the form $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is equivalent to $|\det \mathcal{A}| |\det \mathcal{B}| \leq 1$.

Example 1.2. Given 0 < s < d, let \mathcal{A} and \mathcal{B} be $d \times d$ invertible real matrices having the following forms:

(1.5)
$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} \end{pmatrix} \text{ and } B = \begin{pmatrix} B_{1,1} & 0 \\ 0 & B_{2,2} \end{pmatrix},$$

where $A_{2,2}$ and $B_{2,2}$ are $(d-s) \times (d-s)$ matrices satisfying

(1.6)
$$A_{2,2}^{-1}B_{2,2}^{\sharp} = \operatorname{diag}(\zeta_1, \zeta_2, \dots, \zeta_{d-s})$$
 with $0 < \zeta_l < 1$ for $1 \le l \le d-s$, and $\operatorname{rank}(A_{1,2}) = s$. Define

(1.7)
$$\Lambda = \mathcal{A}(\mathbb{R}^s \times \mathbb{Z}^{d-s}) \quad \text{and} \quad \Gamma = \mathcal{B}(\mathbb{R}^s \times \mathbb{Z}^{d-s}).$$

Take $Q = \mathcal{A}(\{0\}^s \times [0,1)^{d-s})$ and $\Omega = \mathcal{B}^{\sharp}(\mathbb{R}^s \times [0,1)^{d-s})$. Then

(1.8)
$$\operatorname*{ess\,inf}_{x\in Q}\mu_{\Lambda}[(\Omega-x)\cap\Lambda]=0,$$

and there exists no $g \in L^2(\mathbb{R}^d)$ with $\operatorname{supp}(g) \subset \Omega$ such that $\{E_{\eta}T_{\lambda}g\}_{\eta \in \Gamma, \lambda \in \Lambda}$ is complete in $L^2(\mathbb{R}^d)$.

This paper is organized as follows. In Section 2, under the assumption (1.4), we first give a method to construct co-compact Gabor frames whose canonical dual windows have the same support with initial windows (see Theorem 2.1). Then we derive the extension theorems from co-compact Gabor Bessel sequences

to tight co-compact Gabor frames, and from a pair of co-compact Gabor Bessel sequences to a pair of dual co-compact Gabor frames (see Theorems 2.2 and 2.3). In Section 3, by normalizing Haar measures on \mathbb{R}^d , its co-compact subgroups and the corresponding quotient groups in Weil's theorem, we give an application to co-compact Gabor systems in $L^2(\mathbb{R}^d)$. Applying Theorem 2.1, we first give a method to construct co-compact Gabor frames for $L^2(\mathbb{R}^d)$ with $C_c^{\infty}(\mathbb{R}^d)$ -window functions, whose canonical dual window functions belong to $C_c^{\infty}(\mathbb{R}^d)$ if initial window functions are real valued in addition (see Theorem 3.1). Then we obtain an extension theorem from a pair of co-compact Gabor Bessel sequences to a pair of dual co-compact Gabor frames, where both initial and adding generators belong to $C_c^{\infty}(\mathbb{R}^d)$ (see Theorem 3.2). It is worth noting that for general co-compact (i.e., at least one of Λ and Γ is not a lattice) Gabor frames $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ in $L^2(\mathbb{R}^d)$, $s(\Lambda)s(\Gamma)$ can take an arbitrary positive number (see Example 3.1).

§2. Extension theorems

This section focuses on the extension from a co-compact Gabor Bessel sequence (a pair of co-compact Gabor Bessel sequences) to a tight co-compact Gabor frame (a pair of dual co-compact Gabor frames) on LCA groups. For this purpose, we first present some lemmas. The following result, Lemma 2.1, is an extension of [21, Thm. 4.1] or [5, Cor. 21.8.1] to the multi-window case. We can prove it by a line-by-line procedure as in [21, Thm. 4.1].

Lemma 2.1. Let Λ and Γ be co-compact subgroups of G and \widehat{G} respectively, $\{E_{\eta}T_{\lambda}g_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ be Bessel sequences in $L^{2}(G)$. Then the following statements are equivalent:

- (i) $\{E_{\eta}T_{\lambda}g_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ are a pair of dual frames for $L^{2}(G)$.
- (ii) For each $\alpha \in \Lambda^{\perp}$,

$$\frac{1}{s(\Lambda)} \sum_{l=1}^{L} \int_{\Gamma} \overline{\widehat{g}_{l}(\gamma + \eta)} \widehat{h}_{l}(\gamma + \eta + \alpha) d\mu_{\Gamma}(\eta) = \delta_{\alpha,0} \quad \text{for a.e. } \gamma \in \widehat{G}.$$

(iii) For each $\beta \in \Gamma^{\perp}$,

$$\frac{1}{s(\Gamma)} \sum_{l=1}^{L} \int_{\Lambda} \overline{g_l(x+\lambda)} h_l(x+\lambda+\beta) d\mu_{\Lambda}(\lambda) = \delta_{\beta,0} \quad \text{for a.e. } x \in G.$$

The following lemma gives sufficient conditions for co-compact Gabor systems to be Bessel sequences and frames in $L^2(G)$, respectively.

Lemma 2.2. Let Λ and Γ be co-compact subgroups of G and \widehat{G} respectively. Consider the Gabor system $\{E_nT_\lambda g_l\}_{1\leq l\leq L,n\in\Gamma,\lambda\in\Lambda}$ in $L^2(G)$; then the following hold:

(i) *If*

$$B := \operatorname{ess\,sup}_{x \in G} \frac{1}{s(\Gamma)} \sum_{l=1}^{L} \int_{\Lambda} \sum_{\alpha \in \Gamma^{\perp}} |g_{l}(x+\lambda)g_{l}(x+\lambda+\alpha)| \, d\mu_{\Lambda}(\lambda) < \infty,$$

then $\{E_{\eta}T_{\lambda}g_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ is a Bessel sequence in $L^{2}(G)$ with bound B.

(ii) Furthermore, if also

$$A := \underset{x \in G}{\operatorname{ess inf}} \frac{1}{s(\Gamma)} \left(\sum_{l=1}^{L} \int_{\Lambda} |g_{l}(x+\lambda)|^{2} d\mu_{\Lambda}(\lambda) - \sum_{l=1}^{L} \int_{\Lambda} \sum_{\alpha \in \Gamma^{\perp} \setminus \{0\}} |g_{l}(x+\lambda)g_{l}(x+\lambda + \alpha)| d\mu_{\Lambda}(\lambda) \right) > 0,$$

then $\{E_{\eta}T_{\lambda}g_l\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ is a frame for $L^2(G)$ with bounds A and B.

Proof. By the unitarity of the Fourier transform, $\{E_{\eta}T_{\lambda}g_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ is a Bessel sequence (frame) for $L^{2}(G)$ if and only if $\{T_{\eta}E_{-\lambda}\hat{g}_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ is a Bessel sequence (frame) for $L^{2}(\widehat{G})$. Applying [19, Prop. IV.1] to the Gabor system $\{T_{\eta}E_{-\lambda}\hat{g}_{l}\}_{1\leq l\leq L,\eta\in\Gamma,\lambda\in\Lambda}$ gives the lemma.

Remark 2.1. Lemma 2.2(i) demonstrates that if $\{g_l : 1 \leq l \leq L\}$ is a finite family in $L^{\infty}(G)$ with each g_l being of compact support, then $\{E_{\eta}T_{\lambda}g_l\}_{1\leq l\leq L, \eta\in\Gamma, \lambda\in\Lambda}$ is a Bessel sequence in $L^2(G)$ for arbitrary co-compact subgroups Λ and Γ of G and \widehat{G} respectively.

The following lemma is auxiliary to Theorems 2.1 and 2.2.

Lemma 2.3. Let Γ be a closed subgroup of \widehat{G} . Suppose $f_1, f_2 \in \mathcal{D}$ and $g, h \in L^2(G)$, where

(2.1)
$$\mathcal{D} = \{ f \in L^2(G) : f \in L^\infty(G) \text{ and supp}(f) \text{ is compact} \}.$$

Then for all $\lambda \in G$,

$$\int_{\Gamma} \langle f_1, E_{\eta} T_{\lambda} g \rangle \langle E_{\eta} T_{\lambda} h, f_2 \rangle d\mu_{\Gamma}(\eta)$$

$$= \frac{1}{s(\Gamma)} \int_{G} \sum_{\alpha \in \Gamma^{\perp}} f_1(x) \overline{f_2(x+\alpha)} \overline{g(x+\lambda)} h(x+\lambda+\alpha) d\mu_G(x).$$

Proof. Arbitrarily fix $\lambda \in G$. By Plancherel's theorem, $\langle f, E_{\eta} T_{\lambda} g \rangle = \langle \hat{f}, T_{\eta} E_{-\lambda} \hat{g} \rangle$ for $\eta \in \Gamma$ and $f, g \in L^2(G)$. Applying [21, Lem. 2.2] to $E_{-\lambda} \hat{g}$ and $E_{-\lambda} \hat{h}$ gives the lemma.

The following theorem gives a method to construct co-compact Gabor frames for $L^2(G)$.

Theorem 2.1. Given co-compact subgroups Λ of G and Γ of \widehat{G} , let $Q \subset G$ and $\Omega \subset G$ be Borel sections for Λ and Γ^{\perp} respectively, and let K be a measurable set satisfying (1.4). Suppose $g \in L^{\infty}(G) \cap L^2(G)$ is such that $K \subset \text{supp}(g) \subset \Omega$:

(2.2)
$$\operatorname{ess\,sup}_{x\in O} \mu_{\Lambda}[(\operatorname{supp}(g)-x)\cap\Lambda] < \infty \quad and \quad \operatorname{ess\,inf}_{x\in K} |g(x)| > 0.$$

Then $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a frame for $L^{2}(G)$, and

(2.3)
$$Sf = \frac{\widetilde{G}}{s(\Gamma)}f, \ S^{-1}f = \frac{s(\Gamma)}{\widetilde{G}}f \quad for \ f \in L^2(G),$$

where S is the frame operator for $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$, and $\widetilde{G}(y)=\int_{\Lambda}|g(y+\lambda)|^2 d\mu_{\Lambda}(\lambda)$ for a.e. $y\in G$.

Proof. Since supp $(g) \subset \Omega$, we have $\sum_{\alpha \in \Gamma^{\perp}} |g(\cdot + \lambda)g(\cdot + \lambda + \alpha)| = |g(\cdot + \lambda)|^2$. Then, by Lemma 2.2, we only need to prove that $\int_{\Lambda} |g(\cdot + \lambda)|^2 d\mu_{\Lambda}(\lambda)$ has positive lower and upper bounds on Q. Observe that

$$\int_{\Lambda} |g(x+\lambda)|^2 d\mu_{\Lambda}(\lambda) = \int_{\Lambda \cap (\text{supp}(g)-x)} |g(x+\lambda)|^2 d\mu_{\Lambda}(\lambda)$$

for $x \in Q$. It implies that

$$\int_{\Lambda} |g(x+\lambda)|^2 d\mu_{\Lambda}(\lambda) \ge \operatorname{ess \, inf}_{x \in Q} \mu_{\Lambda}[(K-x) \cap \Lambda] \cdot \operatorname{ess \, inf}_{x \in K} |g(x)|^2,$$

and

$$\int_{\Lambda} |g(x+\lambda)|^2 d\mu_{\Lambda}(\lambda) \le ||g||_{\infty}^2 \cdot \operatorname{ess\,sup}_{x \in Q} \mu_{\Lambda}[(\operatorname{supp}(g) - x) \cap \Lambda]$$

by (1.4) and (2.2). Thus $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a frame for $L^2(G)$. On the other hand,

$$\int_{\Gamma} |\langle f, E_{\eta} T_{\lambda} g \rangle|^{2} d\mu_{\Gamma}(\eta) = \frac{1}{s(\Gamma)} \int_{G} \sum_{\alpha \in \Gamma^{\perp}} f(y) \overline{f(y+\alpha)} \overline{g(y+\lambda)} g(y+\lambda+\alpha) d\mu_{G}(y)$$

$$= \frac{1}{s(\Gamma)} \int_{G} |f(y)|^{2} |g(y+\lambda)|^{2} d\mu_{G}(y)$$
(2.4)

for $f \in \mathcal{D}$ by Lemma 2.3 and the fact that $\operatorname{supp}(g) \subset \Omega$, where \mathcal{D} is as in (2.1). Integrating the two sides of (2.4) over Λ gives

(2.5)
$$\int_{\Lambda} \int_{\Gamma} |\langle f, E_{\eta} T_{\lambda} g \rangle|^{2} d\mu_{\Gamma}(\eta) d\mu_{\Lambda}(\lambda)$$
$$= \frac{1}{s(\Gamma)} \int_{G} \left(\int_{\Lambda} |g(y+\lambda)|^{2} d\mu_{\Lambda}(\lambda) \right) |f(y)|^{2} d\mu_{G}(y)$$

for $f \in \mathcal{D}$. Obviously, (2.5) can be rewritten as

$$\langle Sf, f \rangle = \frac{1}{s(\Gamma)} \langle \widetilde{G}(\cdot)f(\cdot), f(\cdot) \rangle \text{ for } f \in \mathcal{D}.$$

This leads to (2.3) due to \mathcal{D} being dense in $L^2(G)$.

Remark 2.2. We have the following supplementary explanations for Theorem 2.1:

- (i) Obviously, $S^{-1}g$, $S^{-\frac{1}{2}}g \in L^{\infty}(G)$, and $\{E_{\eta}T_{\lambda}S^{-\frac{1}{2}}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a Parseval frame for $L^2(G)$ under the assumptions of Theorem 2.1. If we make a further convention that $\operatorname{supp}(g)$ is compact in Theorem 2.1, then $S^{-1}g$ and $S^{-\frac{1}{2}}g$ also have compact support.
- (ii) The idea of Theorem 2.1 closely resembles the classical painless nonorthogonal expansions by Daubechies, Grossmann and Meyer [10]. Also, in view of Example 1.2, Theorem 2.1 can be regarded as a generalized version of painless nonorthogonal expansions.

The following theorem gives a tight co-compact Gabor frame extension which preserves the support property.

Theorem 2.2. Given co-compact subgroups Λ of G and Γ of \widehat{G} , let $Q \subset G$ and $\Omega \subset G$ be Borel sections for Λ and Γ^{\perp} , respectively, and let K be a measurable set satisfying (1.4). Assume that $\{E_{\eta}T_{\lambda}g_1\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a Bessel sequence in $L^2(G)$ with bound B. Then, for each $\beta \geq B$, there exists $g_2 \in L^2(G)$ such that

$${E_{\eta}T_{\lambda}g_1}_{\eta\in\Gamma,\lambda\in\Lambda}\cup{E_{\eta}T_{\lambda}g_2}_{\eta\in\Gamma,\lambda\in\Lambda}$$

is a tight frame for $L^2(G)$ with bound β . Furthermore, g_2 can be chosen to have compact support if $\operatorname{supp}(g_1)$ is compact and $\operatorname{supp}(g_1) \subset \Omega$ in addition.

Proof. Let S_1 denote the frame operator for $\{E_{\eta}T_{\lambda}g_1\}_{\eta\in\Gamma,\lambda\in\Lambda}$. Then

$$(2.6) \quad \langle S_1 f, f \rangle = \int_{\Gamma} \int_{\Lambda} |\langle f, E_{\eta} T_{\lambda} g_1 \rangle|^2 d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta) \le B \|f\|^2 \quad \text{for } f \in L^2(G).$$

It follows that $\beta I - S_1$ is a positive operator. Now let us express $(\beta I - S_1)f$. Choose a Parseval frame $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ for $L^2(G)$ (this can be done by Theorem 2.1 and

Remark 2.2(i)). By [20, Lem. 5.1], $S_1E_{\eta}T_{\lambda}=E_{\eta}T_{\lambda}S_1$ for $\eta\in\Gamma,\,\lambda\in\Lambda.$ This implies that

$$(\beta I - S_1)^{\frac{1}{2}} E_{\eta} T_{\lambda} = E_{\eta} T_{\lambda} (\beta I - S_1)^{\frac{1}{2}}$$

for $\eta \in \Gamma$, $\lambda \in \Lambda$. Thus

$$(\beta I - S_1)^{\frac{1}{2}} f = \int_{\Gamma} \int_{\Lambda} \langle (\beta I - S_1)^{\frac{1}{2}} f, E_{\eta} T_{\lambda} g \rangle E_{\eta} T_{\lambda} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$$

$$= \int_{\Gamma} \int_{\Lambda} \langle f, (\beta I - S_1)^{\frac{1}{2}} E_{\eta} T_{\lambda} g \rangle E_{\eta} T_{\lambda} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$$

$$= \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} (\beta I - S_1)^{\frac{1}{2}} g \rangle E_{\eta} T_{\lambda} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$$

for $f \in L^2(G)$. It follows that

$$(2.7) \quad (\beta I - S_1)f = \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} (\beta I - S_1)^{\frac{1}{2}} g \rangle E_{\eta} T_{\lambda} (\beta I - S_1)^{\frac{1}{2}} g \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta)$$

for $f \in L^2(G)$. Let

$$(2.8) g_2 = (\beta I - S_1)^{\frac{1}{2}} g.$$

Then $\{E_{\eta}T_{\lambda}g_2\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a Bessel sequence since $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a frame, and

$$\beta \|f\|^2 = \langle S_1 f, f \rangle + \langle (\beta I - S_1) f, f \rangle$$

$$= \int_{\Gamma} \int_{\Lambda} |\langle f, E_{\eta} T_{\lambda} g_1 \rangle|^2 d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

$$+ \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} g_2 \rangle E_{\eta} T_{\lambda} g_2 d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

for $f \in L^2(G)$ by (2.6) and (2.7). Therefore, $\{E_{\eta}T_{\lambda}g_1\}_{\eta\in\Gamma,\lambda\in\Lambda} \cup \{E_{\eta}T_{\lambda}g_2\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a tight frame for $L^2(G)$ with bound β .

Next we prove that g_2 can be chosen to have compact support if $\operatorname{supp}(g_1)$ is compact and $\operatorname{supp}(g_1) \subset \Omega$. Choose g in (2.8) such that $\operatorname{supp}(g)$ is compact (this can be done by Theorem 2.1 and Remark 2.2(i)). Then

$$S_1 f(x) = \left(\frac{1}{s(\Gamma)} \int_{\Lambda} |g_1(x - \lambda)|^2 d\mu_{\Lambda}(\lambda)\right) f(x) \quad \text{for } f \in L^2(G)$$

by the same procedure as in Theorem 2.1. This leads to

$$g_2(x) = \left(\beta - \frac{1}{s(\Gamma)} \int_{\Lambda} |g_1(x - \lambda)|^2 d\mu_{\Lambda}(\lambda)\right)^{\frac{1}{2}} g(x)$$

by (2.8), and thus g_2 is compactly supported.

In Theorem 2.2, $\operatorname{supp}(g_1) \subset \Omega$ is required to guarantee $\operatorname{supp}(g_2)$ being compact. In the following dual extension theorem, Theorem 2.3, $\operatorname{supp}(g_1)$ being compactly supported (not necessarily contained in Ω) is enough to guarantee added generators having compact support. Therefore, the dual extension enjoys more freedom than the tight extension.

Theorem 2.3. Given co-compact subgroups Λ of G and Γ of \widehat{G} , let $Q \subset G$ and $\Omega \subset G$ be Borel sections for Λ and Γ^{\perp} , respectively, and let K be a measurable set satisfying (1.4). Assume that $\{E_{\eta}T_{\lambda}g_1\}_{\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_1\}_{\eta\in\Gamma,\lambda\in\Lambda}$ are Bessel sequences in $L^2(G)$. Then there exist $g_2,h_2\in L^2(G)$ such that

$${E_{\eta}T_{\lambda}g_1}_{\eta\in\Gamma,\lambda\in\Lambda}\cup{E_{\eta}T_{\lambda}g_2}_{\eta\in\Gamma,\lambda\in\Lambda}$$

and

$${E_{\eta}T_{\lambda}h_1}_{\eta\in\Gamma,\lambda\in\Lambda}\cup{E_{\eta}T_{\lambda}h_2}_{\eta\in\Gamma,\lambda\in\Lambda}$$

form a pair of dual frames for $L^2(G)$. Furthermore, g_2 and h_2 can be chosen to have compact support if $supp(g_1)$ and $supp(h_1)$ are compact.

Proof. Let T and U denote the synthesis operators for $\{E_{\eta}T_{\lambda}g_{1}\}_{\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_{1}\}_{\eta\in\Gamma,\lambda\in\Lambda}$ respectively. Then

(2.9)
$$TU^*f = \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} h_1 \rangle E_{\eta} T_{\lambda} g_1 d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta) \quad \text{for } f \in L^2(G).$$

Next we will express $(I-TU^*)f$. Choose a pair of dual frames $(\{E_{\eta}T_{\lambda}\gamma_1\}_{\eta\in\Gamma,\lambda\in\Lambda},\{E_{\eta}T_{\lambda}\gamma_2\}_{\eta\in\Gamma,\lambda\in\Lambda})$ for $L^2(G)$ (this can be done by Theorem 2.1 and Remark 2.2(i)). Then

$$(I - TU^*)f = \int_{\Gamma} \int_{\Lambda} \langle (I - TU^*)f, E_{\eta}T_{\lambda}\gamma_{1} \rangle E_{\eta}T_{\lambda}\gamma_{2} d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

$$= \int_{\Gamma} \int_{\Lambda} \langle f, (I - UT^*)E_{\eta}T_{\lambda}\gamma_{1} \rangle E_{\eta}T_{\lambda}\gamma_{2} d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

$$= \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta}T_{\lambda}(I - UT^*)\gamma_{1} \rangle E_{\eta}T_{\lambda}\gamma_{2} d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

$$(2.10)$$

for $f \in L^2(G)$ by [20, Lem. 5.1]. Take

(2.11)
$$h_2 = (I - UT^*)\gamma_1, g_2 = \gamma_2.$$

Observe that $\{E_{\eta}T_{\lambda}\gamma_{1}\}_{\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}\gamma_{2}\}_{\eta\in\Gamma,\lambda\in\Lambda}$ are both Bessel sequences in $L^{2}(G)$ and that $(I-UT^{*})E_{\eta}T_{\lambda}\gamma_{1}=E_{\eta}T_{\lambda}h_{2}$ for $\eta\in\Gamma$, $\lambda\in\Lambda$ by [20, Lem. 5.1]. It follows that $\{E_{\eta}T_{\lambda}h_{2}\}_{\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}g_{2}\}_{\eta\in\Gamma,\lambda\in\Lambda}$ are Bessel sequences in

 $L^2(G)$. Collecting (2.9) and (2.10) gives

$$\begin{split} f &= TU^*f + (I - TU^*)f \\ &= \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} h_1 \rangle E_{\eta} T_{\lambda} g_1 \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta) \\ &+ \int_{\Gamma} \int_{\Lambda} \langle f, E_{\eta} T_{\lambda} h_2 \rangle E_{\eta} T_{\lambda} g_2 \, d\mu_{\Lambda}(\lambda) \, d\mu_{\Gamma}(\eta) \end{split}$$

for $f \in L^2(G)$. Therefore,

 $\{E_{\eta}T_{\lambda}g_1\}_{\eta\in\Gamma,\lambda\in\Lambda}\cup\{E_{\eta}T_{\lambda}g_2\}_{\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_1\}_{\eta\in\Gamma,\lambda\in\Lambda}\cup\{E_{\eta}T_{\lambda}h_2\}_{\eta\in\Gamma,\lambda\in\Lambda}$ are a pair of dual frames for $L^2(G)$.

Next we prove that g_2 , h_2 can be chosen to have compact support if $\operatorname{supp}(g_1)$ and $\operatorname{supp}(h_1)$ are compact. Choose γ_1 , γ_2 in (2.11) such that $\operatorname{supp}(\gamma_1)$ and $\operatorname{supp}(\gamma_2)$ are compact (this can be done by Theorem 2.1 and Remark 2.2(i)). We only need to prove that $\operatorname{supp}(h_2)$ is compact. By (2.11), we have

$$h_2(x) = (I - UT^*)\gamma_1(x)$$

$$= \gamma_1(x) - UT^*\gamma_1(x)$$

$$= \gamma_1(x) - \int_{\Gamma} \int_{\Lambda} \langle \gamma_1, E_{\eta} T_{\lambda} g_1 \rangle E_{\eta} T_{\lambda} h_1(x) d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta).$$

Since $\operatorname{supp}(\gamma_1)$ and $\operatorname{supp}(g_1)$ are compact, there exists a compact subset $\widetilde{\Lambda}$ of Λ such that

$$\langle \gamma_1, E_{\eta} T_{\lambda} g_1 \rangle = 0$$
 for $\lambda \in \Lambda \backslash \widetilde{\Lambda}$ and $\eta \in \Gamma$.

This implies that

$$h_{2}(x) = \gamma_{1}(x) - \int_{\widetilde{\Lambda}} \int_{\Gamma} \langle \gamma_{1}, E_{\eta} T_{\lambda} g_{1} \rangle E_{\eta} T_{\lambda} h_{1}(x) d\mu_{\Lambda}(\lambda) d\mu_{\Gamma}(\eta)$$

$$= \gamma_{1}(x) - \int_{\widetilde{\Lambda}} \left(\int_{\Gamma} \langle \gamma_{1}, E_{\eta} T_{\lambda} g_{1} \rangle E_{\eta}(x) d\mu_{\Gamma}(\eta) \right) T_{\lambda} h_{1}(x) d\mu_{\Lambda}(\lambda)$$

$$= \gamma_{1}(x) - \xi(x),$$

$$(2.12)$$

where

(2.13)
$$\xi(x) = \int_{\widetilde{\Lambda}} \left(\int_{\Gamma} \langle \gamma_1, E_{\eta} T_{\lambda} g_1 \rangle E_{\eta}(x) \, d\mu_{\Gamma}(\eta) \right) T_{\lambda} h_1(x) \, d\mu_{\Lambda}(\lambda).$$

Observe that

$$\operatorname{supp}(\xi) \subset \left\{ x \in G : x - \lambda \in \operatorname{supp}(h_1) \text{ for some } \lambda \in \widetilde{\Lambda} \right\}$$
$$\subset \widetilde{\Lambda} + \operatorname{supp}(h_1).$$

It follows that $\operatorname{supp}(\xi)$ is compact due to $\operatorname{supp}(h_1)$ being compact. Thus $\operatorname{supp}(h_2)$ is compact by (2.12).

§3. Applications to co-compact Gabor systems in $L^2(\mathbb{R}^d)$

This section focuses on the application of Theorems 2.1 and 2.3 to $L^2(\mathbb{R}^d)$. Applying Theorem 2.1, we derive a strategy to construct co-compact Gabor frames for $L^2(\mathbb{R}^d)$ generated by $C_c^{\infty}(\mathbb{R}^d)$ -window functions (see Theorem 3.1). Then, with the help of Theorems 3.1 and 2.3, we establish a dual extension theorem from a pair of co-compact Gabor Bessel sequences to a pair of dual co-compact Gabor frames for $L^2(\mathbb{R}^d)$ with $C_c^{\infty}(\mathbb{R}^d)$ -window functions (see Theorem 3.2).

Herein, \mathbb{R}^d is an LCA group equipped with the usual addition, topology and Lebesgue measure as its Haar measure. Firstly, we fix related measures such that Weil's theorem holds. Recall that $\widehat{\mathbb{R}^d} = \mathbb{R}^d$, and that an arbitrary co-compact subgroup of \mathbb{R}^d has the form $\mathcal{C}(\mathbb{R}^s \times \mathbb{Z}^{d-s})$ or $\mathcal{C}(\mathbb{Z}^s \times \mathbb{R}^{d-s})$ with $0 \le s \le d$ and \mathcal{C} being a $d \times d$ invertible real matrix. In what follows, we always use |E| to denote the Lebesgue measure of a Lebesgue measurable set E regardless of its dimension, and use μ to denote the counting measure. Let $\Theta = \mathcal{C}(\mathbb{R}^s \times \mathbb{Z}^{d-s})$ be a co-compact subgroup of \mathbb{R}^d . When 0 < s < d, define $P_1 \colon \mathbb{R}^d \to \mathbb{R}^s$ and $P_2 \colon \mathbb{R}^d \to \mathbb{R}^{d-s}$ by

(3.1)
$$P_1 \begin{pmatrix} x \\ y \end{pmatrix} = x \text{ and } P_2 \begin{pmatrix} x \\ y \end{pmatrix} = y \text{ for } x \in \mathbb{R}^s, y \in \mathbb{R}^{d-s}.$$

For arbitrary measurable sets $E \subset \mathbb{R}^d/\Theta$ and $F \subset \Theta$, define

(3.2)
$$\mu_{\mathbb{R}^d/\Theta}(E) = \begin{cases} |E| & \text{if } s = 0, \\ |\det \mathcal{C}|\mu(E) & \text{if } s = d, \\ |\det \mathcal{C}||P_2(\mathcal{C}^{-1}E)| & \text{if } 0 < s < d, \end{cases}$$

and

(3.3)
$$\mu_{\Theta}(F) = \begin{cases} \mu(\mathcal{C}^{-1}F) & \text{if } s = 0, \\ |\mathcal{C}^{-1}F| & \text{if } s = d, \\ |P_1(\mathcal{C}^{-1}F)|\mu(P_2(\mathcal{C}^{-1}F)) & \text{if } 0 < s < d. \end{cases}$$

Similarly, if $\Theta = \mathcal{C}(\mathbb{Z}^s \times \mathbb{R}^{d-s})$ is a co-compact subgroup of \mathbb{R}^d , define

$$\mu_{\mathbb{R}^d/\Theta}(E) = \begin{cases} |\det \mathcal{C}| \mu(E) & \text{if } s = 0, \\ |E| & \text{if } s = d, \\ |\det \mathcal{C}| |P_1(\mathcal{C}^{-1}E)| & \text{if } 0 < s < d, \end{cases}$$

and

$$\mu_{\Theta}(F) = \begin{cases} |\mathcal{C}^{-1}F| & \text{if } s = 0, \\ \mu(\mathcal{C}^{-1}F) & \text{if } s = d, \\ \mu(P_1(\mathcal{C}^{-1}F))|P_2(\mathcal{C}^{-1}F)| & \text{if } 0 < s < d, \end{cases}$$

for arbitrary measurable sets $E \subset \mathbb{R}^d/\Theta$ and $F \subset \Theta$. In the above two cases, Weil's theorem holds, i.e.,

$$\int_{\mathbb{R}^d} f(z) dz = \int_{\mathbb{R}^d/\Theta} d\mu_{\mathbb{R}^d/\Theta}(\dot{z}) \int_{\Theta} f(z+\xi) d\mu_{\Theta}(\xi) \quad \text{for } f \in L^1(\mathbb{R}^d),$$

and

$$s(\Theta) = |\det \mathcal{C}| \quad \text{for } 0 \le s \le d.$$

With the above preparations, next we prove Example 1.2.

Proof of Example 1.2. By (3.2) and (3.3), for arbitrary measurable sets $F \subset \Lambda$ and $E \subset \mathbb{R}^d/\Lambda$, we have

(3.4)
$$\mu_{\Lambda}(F) = |P_1(\mathcal{A}^{-1}F)|\mu(P_2(\mathcal{A}^{-1}F))$$
 and $\mu_{\mathbb{R}^d/\Lambda}(E) = |\det \mathcal{A}||P_2(\mathcal{A}^{-1}E)|$.

Arbitrarily fix $0 < \delta \le 1 - \max\{\zeta_1, \zeta_2, \dots, \zeta_{d-s}\}$. By (1.6), we have

$$A_{2,2}^{-1}B_{2,2}^{\sharp}[0,1)^{d-s}\cap([1-\delta,1)^{d-s}+\mathbb{Z}^{d-s})=\emptyset.$$

This implies that

$$P_2(\mathcal{A}^{-1}((\Omega-x)\cap\Lambda)) \subset (A_2^{-1}B_2^{\sharp})[0,1)^{d-s} - P_2(\mathcal{A}^{-1}x) \cap \mathbb{Z}^{d-s} = \emptyset,$$

and thus

$$(3.5) \quad \mu_{\Lambda}[(\Omega - x) \cap \Lambda] = \left| P_1 \left(\mathcal{A}^{-1}((\Omega - x) \cap \Lambda) \right) \right| \mu \left[P_2 \left(\mathcal{A}^{-1}((\Omega - x) \cap \Lambda) \right) \right] = 0$$

for $x \in \mathcal{A}(\{0\}^s \times [1-\delta,1)^{d-s})$. Therefore, (1.8) holds due to

$$\mu_{\mathbb{R}^d/\Lambda}[\mathcal{A}(\{0\}^s \times [1-\delta, 1)^{d-s})] = |\det \mathcal{A}| \cdot \delta^{d-s} > 0.$$

Next we prove that $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is incomplete in $L^{2}(\mathbb{R}^{d})$ for each $g\in L^{2}(\mathbb{R}^{d})$ with $\operatorname{supp}(g)\subset\Omega$. Arbitrarily fix $g\in L^{2}(\mathbb{R}^{d})$ with $\operatorname{supp}(g)\subset\Omega$. Write

$$\Delta = A_{1,2}[0,1)^{d-s} \times (A_{2,2}[0,1)^{d-s} \backslash B_{2,2}^{\sharp}[0,1)^{d-s}).$$

Then

$$|\Delta| = |A_{1,2}[0,1)^{d-s}| |\det A_{2,2}| |[0,1)^{d-s} \setminus A_{2,2}^{-1} B_{2,2}^{\sharp} [0,1)^{d-s}| > 0$$

due to $rank(A_{1,2}) = s$ and (1.6). Observe that

$$\left(([0,1)^{d-s}\backslash A_{2,2}^{-1}B_{2,2}^{\sharp}[0,1)^{d-s})+k\right)\cap A_{2,2}^{-1}B_{2,2}^{\sharp}[0,1)^{d-s}=\emptyset\quad\text{for each }k\in\mathbb{Z}^{d-s}$$

by (1.6). It follows that

$$(\Delta + \lambda) \cap \Omega = \emptyset$$
 for each $\lambda \in \Lambda$,

and thus

$$\langle E_n T_{\lambda} g, \chi_{\Delta} \rangle = 0$$
 for each $\eta \in \Gamma$ and $\lambda \in \Lambda$.

Therefore, $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is incomplete in $L^2(\mathbb{R}^d)$. The proof is completed. \square

Now we turn to the application of Theorems 2.1 and 2.3 to $L^2(\mathbb{R}^d)$. Given an LCA group G, by Theorem 2.1 and Remark 2.2(i), we can construct co-compact frames $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ for $L^2(G)$ with $g\in L^{\infty}(G)$ and $\operatorname{supp}(g)$ being compact. For $G=\mathbb{R}^d$, the following Theorem 3.1 presents a method to construct co-compact Gabor frames with $C_c^{\infty}(\mathbb{R}^d)$ -window functions by choosing special $K\subset\Omega$ satisfying (1.4). Specifically, given co-compact subgroups $\Lambda=\mathcal{A}(\mathbb{R}^{s_1}\times\mathbb{Z}^{d-s_1})$ and $\Gamma=\mathcal{B}(\mathbb{R}^{s_2}\times\mathbb{Z}^{d-s_2})$ ($\Gamma=\mathcal{B}(\mathbb{Z}^{s_2}\times\mathbb{R}^{d-s_2})$) of \mathbb{R}^d with $0\leq s_1,s_2\leq d$ and \mathcal{A},\mathcal{B} being $d\times d$ invertible real matrices, and let $Q=\mathcal{A}(\{0\}^{s_1}\times([0,1]^{d-s_1}+x^{(1)}))$ and $\Omega=\mathcal{B}^{\sharp}(\mathbb{R}^{s_2}\times((0,1)^{d-s_2}+x^{(2)}))$ ($\Omega=\mathcal{B}^{\sharp}(((0,1)^{s_2}+x^{(2)})\times\mathbb{R}^{d-s_2})$) be Borel sections for Λ and Γ^{\perp} , respectively. Take $K=\mathcal{A}(E_{s_1}\times([0,1]^{d-s_1}+x^{(1)}))\subset\Omega$ for some compact set E_{s_1} in \mathbb{R}^{s_1} with positive measure. Then

(3.6)
$$\operatorname{ess \, inf}_{x \in Q} \mu_{\Lambda}[(K - x) \cap \Lambda] = \begin{cases} 1 & \text{if } s_1 = 0, \\ |E_{s_1}| & \text{if } 0 < s_1 \le d. \end{cases}$$

We also claim that

(3.7) ess $\sup_{x \in Q} \mu_{\Lambda}[(W - x) \cap \Lambda] < \infty$ for bounded and measurable $W \subset \mathbb{R}^d$.

Indeed, without loss of generality, we assume that

$$W \subset \mathcal{A}([a_1, b_1]^{s_1} \times ([a_2, b_2]^{d-s_1} + x^{(1)}))$$

for some $a_1, b_1, a_2, b_2 \in \mathbb{R}$. Then

$$(3.8) W - x \subset \mathcal{A}([a_1, b_1]^{s_1} \times [a_2 - 1, b_2]^{d - s_1}) for x \in Q.$$

By a simple computation, we have

$$(3.9) \mu_{\Lambda}(\mathcal{A}([a_1,b_1]^{s_1} \times [a_2-1,b_2]^{d-s_1}) \cap \Lambda) \leq (b_1-a_1)^{s_1}(b_2-a_2+2)^{d-s_1}.$$

This together with (3.8) leads to (3.7). Since K is a compact subset of the open set Ω , we can always choose $g \in C_c^{\infty}(\mathbb{R}^d)$ such that

$$K \subset \text{supp}(g) \subset \Omega$$
 and $g|_K = 1$.

Thus (1.4) and (2.2) hold by (3.6) and (3.7). Applying Theorem 2.1, we have the following theorem.

Theorem 3.1. Given co-compact subgroups

$$\Lambda = \mathcal{A}(\mathbb{R}^{s_1} \times \mathbb{Z}^{d-s_1}) \quad and \quad \Gamma = \mathcal{B}(\mathbb{R}^{s_2} \times \mathbb{Z}^{d-s_2}) \quad (\Gamma = \mathcal{B}(\mathbb{Z}^{s_2} \times \mathbb{R}^{d-s_2}))$$

of \mathbb{R}^d with $0 \leq s_1, s_2 \leq d$ and \mathcal{A} , \mathcal{B} being $d \times d$ invertible real matrices, let $E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})$ be a compact set in \mathbb{R}^d with positive measure satisfying

(3.10)
$$\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})) \subset \mathcal{B}^{\sharp}(\mathbb{R}^{s_2} \times ((0,1)^{d-s_2} + x^{(2)}))$$

$$(3.11) \qquad (\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})) \subset \mathcal{B}^{\sharp}(((0,1)^{s_2} + x^{(2)}) \times \mathbb{R}^{d-s_2}))$$

for some $x^{(2)} \in \mathbb{R}^{d-s_2}$ $(x^{(2)} \in \mathbb{R}^{s_2})$. Choose $g \in C_c^{\infty}(\mathbb{R}^d)$ such that

$$\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})) \subset \operatorname{supp}(g) \subset \mathcal{B}^{\sharp} (\mathbb{R}^{s_2} \times ((0,1)^{d-s_2} + x^{(2)}))$$
$$(\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})) \subset \operatorname{supp}(g) \subset \mathcal{B}^{\sharp} (((0,1)^{s_2} + x^{(2)}) \times \mathbb{R}^{d-s_2}))$$

and

$$g(\cdot) = 1$$
 on $\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})).$

Then $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a frame for $L^2(\mathbb{R}^d)$, and the frame operator and its inverse are given by

(3.12)
$$Sf = \frac{\widetilde{G}}{|\det \mathcal{B}|} f, \quad S^{-1}f = \frac{|\det \mathcal{B}|}{\widetilde{G}} f \quad \text{for } f \in L^2(\mathbb{R}^d),$$

where

$$\widetilde{G}(y) = \begin{cases} \sum_{k \in \mathbb{Z}^{d-s_1}} \int_{\mathbb{R}^{s_1}} \left| g \left(y + \mathcal{A} \begin{pmatrix} \lambda \\ k \end{pmatrix} \right) \right|^2 d\lambda & \text{if } 0 < s_1 < d, \\ \sum_{k \in \mathbb{Z}^d} |g(y + \mathcal{A}k)|^2 & \text{if } s_1 = 0, \\ \int_{\mathbb{R}^d} |g(y + \mathcal{A}\lambda)|^2 d\lambda & \text{if } s_1 = d, \end{cases}$$

for a.e. $y \in \mathbb{R}^d$.

Remark 3.1. We have the following supplementary explanations for Theorem 3.1:

(i) If g in Theorem 3.1 is required to be real valued in addition, then $\widetilde{G} \in C^{\infty}(\mathbb{R}^d)$ by a standard argument. Thus $S^{-1}g \in C_c^{\infty}(\mathbb{R}^d)$ by (3.12), and

$$(\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda},\{E_{\eta}T_{\lambda}S^{-1}g\}_{\eta\in\Gamma,\lambda\in\Lambda})$$

is a pair of dual frames for $L^2(\mathbb{R}^d)$ with $g, S^{-1}g \in C_c^{\infty}(\mathbb{R}^d)$.

(ii) Theorem 3.1 can be adjusted to the case of (Λ, Γ) such that $\Lambda = \mathcal{A}(\mathbb{Z}^{d-s_1} \times \mathbb{R}^{s_1})$ and $\Gamma = \mathcal{B}(\mathbb{Z}^{d-s_2} \times \mathbb{R}^{s_2})$ $(\Gamma = \mathcal{B}(\mathbb{R}^{d-s_2} \times \mathbb{Z}^{s_2}))$ with $0 \leq s_1, s_2 \leq d$ and \mathcal{A}, \mathcal{B}

being $d \times d$ invertible real matrices. Indeed, for $0 \le s \le d$, define the $d \times d$ permutation matrix \mathcal{P}_s by

$$\mathcal{P}_s = \begin{pmatrix} 0 & I_{d-s} \\ I_s & 0 \end{pmatrix},$$

where I_r denotes the $r \times r$ identity matrix. We can do this if \mathcal{A} and \mathcal{B} in Theorem 3.1 are replaced by $\mathcal{A} = \mathcal{AP}_{s_1}$ and $\mathcal{B} = \mathcal{BP}_{s_2}$.

For the lattice case of $\Lambda = \mathcal{A}\mathbb{Z}^d$ and $\Gamma = \mathcal{B}\mathbb{Z}^d$, [16, Thm. 1.3] shows that the existence of Riesz bases (frames) of the form $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is equivalent to $|\det\mathcal{A}||\det\mathcal{B}|=1$ ($|\det\mathcal{A}||\det\mathcal{B}|\leq 1$), i.e., $s(\Lambda)s(\Gamma)=1$ ($s(\Lambda)s(\Gamma)\leq 1$). It is easy to check that $|\det\mathcal{A}||\det\mathcal{B}|<1$ if $\Lambda=\mathcal{A}\mathbb{Z}^d$ and $\Gamma=\mathcal{B}\mathbb{Z}^d$ in Theorem 3.1. Thus Theorem 3.1 gives a method to construct redundant frames $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ for $L^2(\mathbb{R}^d)$ with $g\in C_c^\infty(\mathbb{R}^d)$. The following example shows that $s(\Lambda)s(\Gamma)$ (i.e., $|\det\mathcal{A}||\det\mathcal{B}|$) can take an arbitrary positive number for general co-compact (i.e., at least one of Λ and Γ is not a lattice) Gabor frames in $L^2(\mathbb{R}^d)$, and in this case the window functions can be chosen in $C_c^\infty(\mathbb{R}^d)$. This demonstrates that there exist essential differences between lattice-based Gabor frames and general co-compact Gabor frames. For convenience, write

$$\begin{split} A_1(s_1,s_2) &= \big\{ (\Lambda,\Gamma) : \Lambda = \mathcal{A}(\mathbb{R}^{s_1} \times \mathbb{Z}^{d-s_1}), \ \Gamma = \mathcal{B}(\mathbb{R}^{s_2} \times \mathbb{Z}^{d-s_2}) \big\}, \\ A_2(s_1,s_2) &= \big\{ (\Lambda,\Gamma) : \Lambda = \mathcal{A}(\mathbb{R}^{s_1} \times \mathbb{Z}^{d-s_1}), \ \Gamma = \mathcal{B}(\mathbb{Z}^{s_2} \times \mathbb{R}^{d-s_2}) \big\}, \\ A_3(s_1,s_2) &= \big\{ (\Lambda,\Gamma) : \Lambda = \mathcal{A}(\mathbb{Z}^{s_1} \times \mathbb{R}^{d-s_1}), \ \Gamma = \mathcal{B}(\mathbb{R}^{s_2} \times \mathbb{Z}^{d-s_2}) \big\}, \\ A_4(s_1,s_2) &= \big\{ (\Lambda,\Gamma) : \Lambda = \mathcal{A}(\mathbb{Z}^{s_1} \times \mathbb{R}^{d-s_1}), \ \Gamma = \mathcal{B}(\mathbb{Z}^{s_2} \times \mathbb{R}^{d-s_2}) \big\} \end{split}$$

for $0 \le s_1, s_2 \le d$.

Example 3.1. Given an arbitrary positive constant ϱ , and $0 \le s_1, s_2 \le d$ satisfying $(s_1, s_2) \ne (0, 0)$ ((0, d), (d, 0), (d, d)), there exist $g \in C_c^{\infty}(\mathbb{R}^d)$ and

$$(\Lambda, \Gamma) \in A_1(s_1, s_2) \quad (A_2(s_1, s_2), A_3(s_1, s_2), A_4(s_1, s_2)),$$

such that $s(\Lambda)s(\Gamma) = \varrho$ and $\{E_{\eta}T_{\lambda}g\}_{\eta\in\Gamma,\lambda\in\Lambda}$ is a frame for $L^2(\mathbb{R}^d)$.

Proof. We only treat the cases of $(s_1, s_2) \neq (0, 0)$ and $(s_1, s_2) \neq (0, d)$. The others can be proved similarly. By Theorem 3.1, it is enough to show the existence of \mathcal{A} , \mathcal{B} and E_{s_1} satisfying $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ and (3.10) ((3.11)) with $x^{(2)} = 0$.

Case 1: $(s_1, s_2) \neq (0, 0)$. If $s_1 = 0$ and $s_2 = d$, then (3.10) holds for all \mathcal{A} and \mathcal{B} satisfying $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$). If $s_1 = 0$ and $0 < s_2 < d$, take $x^{(1)}$ such that its every component is positive, and choose a_{s_2+1}, \ldots, a_d small

enough that

$$\begin{pmatrix} a_{s_2+1} & & \\ & \ddots & \\ & & a_d \end{pmatrix} ([0,1]^{d-s_2} + x^{(1)}) \subset (0,1)^{d-s_2}.$$

Choose $a_1, \ldots, a_{s_2} > 0$, and \mathcal{A}, \mathcal{B} such that

$$\mathcal{B}^{\mathsf{T}}\mathcal{A} = \operatorname{diag}(a_1 \cdots a_{s_2} a_{s_2+1} \cdots a_d)$$
 and $a_1 a_2 \cdots a_d = \varrho$.

Then (3.10) holds and $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$). If $s_1 = d$, choose \mathcal{A} , \mathcal{B} satisfying $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$) and a compact set E_d in \mathbb{R}^d such that $\mathcal{B}^T \mathcal{A} E_d \subset (0,1)^d$. Then

$$\mathcal{A}E_d \subset \mathcal{B}^{\sharp}(0,1)^d \subset \mathcal{B}^{\sharp}(\mathbb{R}^{s_2} \times (0,1)^{d-s_2}).$$

Thus (3.10) holds and $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$). If $0 < s_1 < d$, take $x^{(1)}$ such that its every component is positive, and choose a_{s_1+1}, \ldots, a_d small enough that

$$\begin{pmatrix} a_{s_1+1} & & \\ & \ddots & \\ & & a_d \end{pmatrix} ([0,1]^{d-s_1} + x^{(1)}) \subset (0,1)^{d-s_1}.$$

Choose $a_1, \ldots, a_{s_1} > 0$, and \mathcal{A}, \mathcal{B} such that

$$\mathcal{B}^{\mathsf{T}}\mathcal{A} = \operatorname{diag}(a_1 \cdots a_{s_1} a_{s_1+1} \cdots a_d)$$
 and $a_1 a_2 \cdots a_d = \varrho$.

Take a compact set E_{s_1} in \mathbb{R}^{s_1} such that $\operatorname{diag}(a_1 \cdots a_{s_1}) E_{s_1} \subset (0,1)^{s_1}$. Then

$$\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})) \subset \mathcal{B}^{\sharp}(0,1)^d \subset \mathcal{B}^{\sharp}(\mathbb{R}^{s_2} \times (0,1)^{d-s_2}).$$

Thus (3.10) holds and $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$).

Case 2: $(s_1, s_2) \neq (0, d)$. If $0 < s_1 \le d$, then (3.11) holds when choosing \mathcal{A} , \mathcal{B} and E_{s_1} as in the " $0 < s_1 \le d$ " case of Case 1. If $s_1 = s_2 = 0$, then (3.11) holds for all \mathcal{A} and \mathcal{B} satisfying $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$). If $s_1 = 0$ and $0 < s_2 < d$, take $x^{(1)}$ such that its every component is positive, and choose a_1, \ldots, a_{s_2} small enough that

$$\begin{pmatrix} a_1 \\ \ddots \\ a_{s_2} \end{pmatrix} ([0,1]^{s_2} + x^{(1)}) \subset (0,1)^{s_2}.$$

Choose $a_{s_2+1}, \ldots, a_d > 0$, and \mathcal{A}, \mathcal{B} such that

$$\mathcal{B}^{\mathsf{T}} \mathcal{A} = \operatorname{diag}(a_1 \cdots a_{s_2} a_{s_2+1} \cdots a_d)$$
 and $a_1 a_2 \cdots a_d = \varrho$.

Then (3.11) holds and $|\det \mathcal{A}| |\det \mathcal{B}| = \varrho$ (i.e., $s(\Lambda)s(\Gamma) = \varrho$). The proof is completed.

Given an LCA group G, Theorem 2.3 shows that, under the hypothesis of (1.4), a pair of co-compact Gabor Bessel sequences in $L^2(G)$ can be extended to a pair of dual co-compact Gabor frames for $L^2(G)$, and simultaneously, the added window functions can be chosen to have compact support if the initial ones are of compact support. For $G = \mathbb{R}^d$, as an application of Theorem 2.3, the following theorem shows that a pair of $C_c^{\infty}(\mathbb{R}^d)$ -window-function-generated co-compact Gabor Bessel sequences in $L^2(\mathbb{R}^d)$ can be extended to a pair of dual co-compact Gabor frames for $L^2(\mathbb{R}^d)$ with the added window functions belonging to $C_c^{\infty}(\mathbb{R}^d)$.

Theorem 3.2. Given d > 1, and co-compact subgroups $\Lambda = \mathcal{A}(\mathbb{R}^{s_1} \times \mathbb{Z}^{d-s_1})$ $(\Lambda = \mathcal{A}(\mathbb{Z}^{s_1} \times \mathbb{R}^{d-s_1}))$ and $\Gamma = \mathcal{B}(\mathbb{R}^{s_2} \times \mathbb{Z}^{d-s_2})$ of \mathbb{R}^d with $0 \le s_1, s_2 \le d$ and \mathcal{A} , \mathcal{B} being $d \times d$ invertible real matrices, let

$$\mathcal{A}(E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})) \subset \mathcal{B}^{\sharp} \left(\mathbb{R}^{s_2} \times ((0,1)^{d-s_2} + x^{(2)}) \right)$$

$$\left(\mathcal{A}(([0,1]^{s_1} + x^{(1)}) \times E_{d-s_1}) \subset \mathcal{B}^{\sharp} \left(\mathbb{R}^{s_2} \times ((0,1)^{d-s_2} + x^{(2)}) \right) \right)$$

for some $x^{(2)} \in \mathbb{R}^{d-s_2}$ and compact set $E_{s_1} \times ([0,1]^{d-s_1} + x^{(1)})$ (([0,1]^{s_1} + $x^{(1)}$) $\times E_{d-s_1}$) in \mathbb{R}^d with positive measure. Assume that $\{E_{\eta}T_{\lambda}g_1\}_{\eta\in\Gamma,\lambda\in\Lambda}$ and $\{E_{\eta}T_{\lambda}h_1\}_{\eta\in\Gamma,\lambda\in\Lambda}$ are Bessel sequences in $L^2(\mathbb{R}^d)$, and that $g_1,h_1\in C_c^{\infty}(\mathbb{R}^d)$. Then there exist $g_2,h_2\in C_c^{\infty}(\mathbb{R}^d)$ such that

$${E_{\eta}T_{\lambda}g_1}_{\eta\in\Gamma,\lambda\in\Lambda}\cup{E_{\eta}T_{\lambda}g_2}_{\eta\in\Gamma,\lambda\in\Lambda}$$

and

$${E_{\eta}T_{\lambda}h_1}_{\eta\in\Gamma,\lambda\in\Lambda}\cup{E_{\eta}T_{\lambda}h_2}_{\eta\in\Gamma,\lambda\in\Lambda}$$

are a pair of dual frames for $L^2(\mathbb{R}^d)$.

Proof. Choose a pair of dual frames $(\{E_{\eta}T_{\lambda}\gamma_1\}_{\eta\in\Gamma,\lambda\in\Lambda},\{E_{\eta}T_{\lambda}\gamma_2\}_{\eta\in\Gamma,\lambda\in\Lambda})$ for $L^2(\mathbb{R}^d)$ with $\gamma_1,\gamma_2\in C_c^{\infty}(\mathbb{R}^d)$ in Theorem 2.3. This can be done by Remark 3.1(i). Define g_2 and h_2 as in (2.11). Then, by Theorem 2.3,

$$\{E_{\eta}T_{\lambda}g_{1}\}_{\eta\in\Gamma,\lambda\in\Lambda}\cup\{E_{\eta}T_{\lambda}g_{2}\}_{\eta\in\Gamma,\lambda\in\Lambda}\quad\text{and}\quad\{E_{\eta}T_{\lambda}h_{1}\}_{\eta\in\Gamma,\lambda\in\Lambda}\cup\{E_{\eta}T_{\lambda}h_{2}\}_{\eta\in\Gamma,\lambda\in\Lambda}$$

form a pair of dual frames for $L^2(\mathbb{R}^d)$ with $g_2 \in C_c^{\infty}(\mathbb{R}^d)$ and h_2 being compactly supported. Next we will prove that $h_2 \in C^{\infty}(\mathbb{R}^d)$ to finish the proof. Since $\gamma_1 \in C^{\infty}(\mathbb{R}^d)$, by (2.12) and (2.13), we only need to prove that $\xi \in C^{\infty}(\mathbb{R}^d)$, where

(3.14)
$$\xi(x) = \int_{\widetilde{\Lambda}} \left(\int_{\Gamma} \langle \gamma_1, E_{\eta} T_{\lambda} g_1 \rangle E_{\eta}(x) \, d\mu_{\Gamma}(\eta) \right) T_{\lambda} h_1(x) \, d\mu_{\Lambda}(\lambda)$$

for some compact subset $\widetilde{\Lambda}$ of Λ . By a simple computation, we have

(3.15)
$$D^{\alpha}E_{\mathcal{B}\eta}T_{\lambda}h_{1}(x) = \sum_{0 \leq l \leq \alpha} C_{\alpha}^{l}(2\pi i)^{|l|}(\mathcal{B}\eta)^{l}E_{\mathcal{B}\eta}(x)T_{\lambda}D^{\alpha-l}h_{1}(x)$$

for $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{Z}_+^d$, where $l = (l_1, l_2, \dots, l_d), |l| = l_1 + l_2 + \dots + l_d$,

$$C_{\alpha}^{l} = C_{\alpha_{1}}^{l_{1}} C_{\alpha_{2}}^{l_{2}} \cdots C_{\alpha_{d}}^{l_{d}}$$

$$= \frac{\alpha_{1} \cdots (\alpha_{1} - l_{1} + 1)}{l_{1}!} \frac{\alpha_{2} \cdots (\alpha_{2} - l_{2} + 1)}{l_{2}!} \cdots \frac{\alpha_{d} \cdots (\alpha_{d} - l_{d} + 1)}{l_{d}!}, \quad 0 \leq l \leq \alpha,$$

means that $0 \leq l_i \leq \alpha_i$ with $1 \leq i \leq d$ and $z^l = z_1^{l_1} z_2^{l_2} \cdots z_d^{l_d}$ for $z = (z_1, z_2, \dots, z_d)^\mathsf{T} \in \mathbb{R}^d$. Observe that

$$|(\mathcal{B}\eta)^l| \le (1 + |\mathcal{B}\eta|)^{|\alpha|}$$

and

$$|E_{\mathcal{B}\eta}(x)T_{\lambda}D^{\alpha-l}h_1(x)| \le \max_{0 \le l \le \alpha} \|D^{\alpha-l}h_1\|_{\infty}$$

for $0 \le l \le \alpha$, where $|\xi| = |\xi_1| + |\xi_2| + \dots + |\xi_d|$ for $\xi \in \mathbb{R}^d$. It follows that

(3.16)
$$||D^{\alpha} E_{\mathcal{B}\eta} T_{\lambda} h_1||_{\infty} \le M_1 (1 + |\mathcal{B}\eta|)^{|\alpha|}$$

for $\lambda \in \widetilde{\Lambda}$ and $\eta \in \mathbb{R}^{s_2} \times \mathbb{Z}^{d-s_2}$ by a standard argument, where $M_1 = (2\pi + 1)^{|\alpha|} \max_{0 \leq l \leq \alpha} \|D^{\alpha-l}h_1\|_{\infty}$. Now let us estimate $\langle \gamma_1, E_{\mathcal{B}\eta}T_{\lambda}g_1 \rangle$. Observe that $T_{\lambda}\overline{g_1} = (E_{-\lambda}\widehat{g_1})^{\vee}$ and $\gamma_1 = (\widehat{\gamma_1})^{\vee}$. It follows that

$$\gamma_1 T_{\lambda} \overline{g_1} = (\widehat{\gamma_1} * E_{-\lambda} \widehat{g_1})^{\vee}.$$

This implies that

$$\langle \gamma_1, E_{\mathcal{B}\eta} T_{\lambda} g_1 \rangle = (\gamma_1 T_{\lambda} \overline{g_1})^{\wedge} (\mathcal{B}\eta)$$
$$= \widehat{\gamma_1} * E_{-\lambda} \widehat{g_1} (\mathcal{B}\eta),$$

and thus

$$|\langle \gamma_1, E_{\mathcal{B}\eta} T_{\lambda} g_1 \rangle| \le |\widehat{\gamma_1}| * |\widehat{\overline{g_1}}| (\mathcal{B}\eta).$$

Also, observing that $\widehat{\gamma}_1, \widehat{\widehat{g}_1} \in \mathcal{S}(\mathbb{R}^d)$ leads to the fact that to every $\tau \in \mathbb{Z}_+$ there corresponds a constant C_{τ} such that

(3.17)
$$|\langle \gamma_1, E_{\mathcal{B}\eta} T_{\lambda} g_1 \rangle| \le \frac{C_{\tau}}{(1 + |\mathcal{B}\eta|)^{\tau}} \quad \text{for } \eta \in \mathbb{R}^d.$$

Since \mathcal{B} is invertible, there exists a constant a > 0 such that

$$(3.18) |\mathcal{B}x| \ge a|x| \text{for } x \in \mathbb{R}^d.$$

Choose $\tau = |\alpha| + d + 1$ in (3.17). Then collecting (3.16)–(3.18) leads to

$$\sum_{\substack{\eta_{s_{2}+1},\dots,\\\eta_{d}\in\mathbb{Z}}} \int_{\mathbb{R}^{s_{2}}} \|\langle \gamma_{1}, E_{\mathcal{B}\eta} T_{\lambda} g_{1} \rangle D^{\alpha} E_{\mathcal{B}\eta} T_{\lambda} h_{1}(\cdot) \|_{\infty} d\eta_{1} \cdots d\eta_{s_{2}} \\
\leq M_{1} C_{\tau} \sum_{\substack{\eta_{s_{2}+1},\dots,\\\eta_{d}\in\mathbb{Z}}} \int_{\mathbb{R}^{s_{2}}} \frac{d\eta_{1} \cdots d\eta_{s_{2}}}{(1+a|\eta|)^{\tau-|\alpha|}} \\
\leq M_{1} C_{\tau} \sum_{\substack{\eta_{s_{2}+1},\dots,\\\eta_{d}\in\mathbb{Z}}} \frac{1}{(1+a(|\eta_{s_{2}+1}|+\dots+|\eta_{d}|))^{d-s_{2}+\frac{1}{2}}} \\
\times \int_{\mathbb{R}^{s_{2}}} \frac{d\eta_{1} \cdots d\eta_{s_{2}}}{(1+a(|\eta_{1}|+\dots+|\eta_{s_{2}}|))^{s_{2}+\frac{1}{2}}} \\
\leq \infty.$$
(3.19)

This implies that

$$(3.20) \int_{\widetilde{\Lambda}} \sum_{\substack{\eta_{s_2+1},\dots,\\\eta_{s_l} \in \mathbb{Z}}} \int_{\mathbb{R}^{s_2}} \|\langle \gamma_1, E_{\mathcal{B}\eta} T_{\lambda} g_1 \rangle D^{\alpha} E_{\mathcal{B}\eta} T_{\lambda} h_1(\cdot)\|_{\infty} d\eta_1 \cdots d\eta_{s_2} d\mu_{\Lambda}(\lambda) < \infty$$

due to $\widetilde{\Lambda}$ being compact. Also observe that $D^{\alpha}E_{\mathcal{B}\eta}T_{\lambda}h_1$ is continuous for an arbitrary $\alpha \in \mathbb{Z}^d_+$. It follows that $\xi \in C^{\infty}(\mathbb{R}^d)$. The proof is completed.

Remark 3.2. Let \mathcal{P}_s be as in (3.13). If \mathcal{B} in Theorem 3.2 is replaced by \mathcal{BP}_{s_2} , Theorem 3.2 can be adjusted to the case of (Λ, Γ) that $\Lambda = \mathcal{A}(\mathbb{R}^{s_1} \times \mathbb{Z}^{d-s_1})$ $(\Lambda = \mathcal{A}(\mathbb{Z}^{s_1} \times \mathbb{R}^{d-s_1}))$ and $\Gamma = \mathcal{B}(\mathbb{Z}^{d-s_2} \times \mathbb{R}^{s_2})$ with $0 \leq s_1, s_2 \leq d$, \mathcal{A} and \mathcal{B} being $d \times d$ invertible real matrices.

Acknowledgments

Supported by National Natural Science Foundation of China (Grant No. 12371091) and High-Level Talent Research Start-Up Project of Hebei University (Grant No. 521100225113).

References

- M. Bownik and K. A. Ross, The structure of translation-invariant spaces on locally compact abelian groups, J. Fourier Anal. Appl. 21 (2015), 849–884. Zbl 1328.42006 MR 3370013
- [2] C. Cabrelli and V. Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal. 258 (2010), 2034–2059.
 Zbl 1190.43003 MR 2578463
- [3] G. Cariolaro, Unified signal theory, Springer, London, 2011. Zbl 1226.94006 MR 3221844
- [4] P. G. Casazza and N. Leonhard, Classes of finite equal norm Parseval frames, in Frames and operator theory in analysis and signal processing, Contemporary Mathematics 451, American Mathematical Society, Providence, RI, 2008, 11–31. Zbl 1210.42047 MR 2422239

- O. Christensen, An introduction to frames and Riesz bases, 2nd ed., Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, 2016. Zbl 1348.42033 MR 3495345
- [6] O. Christensen and S. S. Goh, Fourier-like frames on locally compact abelian groups,J. Approx. Theory 192 (2015), 82–101. Zbl 1311.42075 MR 3313475
- [7] O. Christensen and S. S. Goh, The unitary extension principle on locally compact abelian groups, Appl. Comput. Harmon. Anal. 47 (2019), 1–29. Zbl 1440.42149 MR 3958692
- [8] O. Christensen and S. S. Goh, Explicit construction of frames and pairs of dual frames on locally compact abelian groups, Sampl. Theory Signal Process. Data Anal. 19 (2021), article no. 4. Zbl 1491.43003 MR 4301191
- [9] O. Christensen, H. O. Kim and R. Y. Kim, Extensions of Bessel sequences to dual pairs of frames, Appl. Comput. Harmon. Anal. 34 (2013), 224–233. Zbl 1323.42027 MR 3008563
- [10] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283. Zbl 0608.46014 MR 0836025
- [11] H. G. Feichtinger and W. Kozek, Quantization of TF lattice-invariant operators on elementary LCA groups, in Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 1998, 233–266. MR 1601091
- [12] H. G. Feichtinger, W. Kozek and F. Luef, Gabor analysis over finite abelian groups, Appl. Comput. Harmon. Anal. 26 (2009), 230–248. Zbl 1162.43002 MR 2490216
- [13] J. Feldman and F. P. Greenleaf, Existence of Borel transversals in groups, Pacific J. Math. 25 (1968), 455–461. Zbl 0159.31703 MR 0230837
- [14] K. Gröchenig, Aspects of Gabor analysis on locally compact abelian groups, in Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 1998, 211–231. Zbl 0890,42004 MR 1601095
- [15] A. Gumber and N. K. Shukla, Orthogonality of a pair of frames over locally compact abelian groups, J. Math. Anal. Appl. 458 (2018), 1344–1360. Zbl 1377.42033 MR 3724732
- [16] D. Han and Y. Wang, Lattice tiling and the Weyl-Heisenberg frames, Geom. Funct. Anal. 11 (2001), 742–758. Zbl 0992.42021 MR 1866800
- [17] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften 115, Springer, Berlin-Göttingen-Heidelberg; Academic Press, New York, 1963. Zbl 0115.10603 MR 0156915
- [18] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact abelian groups, Die Grundlehren der mathematischen Wissenschaften 152, Springer, New York-Berlin, 1970. Zbl 0213.40103 MR 0262773
- [19] M. S. Jakobsen and J. Lemvig, A characterization of tight and dual generalized translation invariant frames, in *Proceeding of the SAMPTA Conference*, Washington (2015).
- [20] M. S. Jakobsen and J. Lemvig, Co-compact Gabor systems on locally compact abelian groups, J. Fourier Anal. Appl. 22 (2016), 36–70. Zbl 1440.42154 MR 3448915
- [21] M. S. Jakobsen and J. Lemvig, Reproducing formulas for generalized translation invariant systems on locally compact abelian groups, Trans. Amer. Math. Soc. 368 (2016), 8447–8480. Zbl 1348.42036 MR 3551577
- [22] R. A. Kamyabi Gol and R. Raisi Tousi, A range function approach to shift-invariant spaces on locally compact abelian groups, Int. J. Wavelets Multiresolut. Inf. Process. 8 (2010), 49–59. Zbl 1188.43002 MR 2654392
- [23] R. A. Kamyabi Gol and R. R. Tousi, The structure of shift invariant spaces on a locally compact abelian group, J. Math. Anal. Appl. 340 (2008), 219–225. Zbl 1136.43006 MR 2376149

- [24] E. Kaniuth and G. Kutyniok, Zeros of the Zak transform on locally compact abelian groups, Proc. Amer. Math. Soc. 126 (1998), 3561–3569. Zbl 0907.43005 MR 1459128
- [25] G. Kutyniok, A qualitative uncertainty principle for functions generating a Gabor frame on LCA groups, J. Math. Anal. Appl. 279 (2003), 580–596. Zbl 1023.43003 MR 1974047
- [26] G. Kutyniok and D. Labate, The theory of reproducing systems on locally compact abelian groups, Colloq. Math. 106 (2006), 197–220. Zbl 1113.43008 MR 2283810
- [27] D. F. Li and W. C. Sun, Expansion of frames to tight frames, Acta Math. Sin. (Engl. Ser.) 25 (2009), 287–292. Zbl 1177.41030 MR 2481496
- [28] Y.-Z. Li, A note on Gabor orthonormal bases, Proc. Amer. Math. Soc. 133 (2005), 2419–2428. Zbl 1061.42027 MR 2138885
- [29] G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. Zbl 0046.11601 MR 0044536
- [30] N. Mohammadian, R. A. Kamyabi Gol and R. Raisi Tousi, A characterization of the Riesz family of shifts of functions on locally compact Abelian groups, Ann. Funct. Anal. 7 (2016), 314–325. Zbl 1337.43001 MR 3484385
- [31] H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, 2nd ed., London Mathematical Society Monographs, New Series 22, The Clarendon Press, Oxford University Press, New York, 2000. Zbl 0965.43001 MR 1802924
- [32] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics 12, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. Zbl 0107.09603 MR 0152834
- [33] S. M. Tabatabaie, K. Kazarian, R. A. Kamyabi Gol and S. Jokar, The structure of finitely generated shift-invariant subspaces on locally compact abelian groups, *Mediterr. J. Math.* 18 (2021), article no. 27. Zbl 1466.43003 MR 4202250