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Perturbative Expansion of
Yang—Baxter Operators

by

Emanuele ZAPPALA

Abstract

We study the deformations of a wide class of Yang—Baxter (YB) operators arising from Lie
algebras. We relate the higher-order deformations of YB operators to Lie algebra defor-
mations. We show that the obstruction to integrating deformations of self-distributive
(SD) objects lies in the corresponding Lie algebra third cohomology group, and we inter-
pret this result in terms of YB deformations. We show that there are YB operators that
admit integrable deformations (i.e. that can be deformed infinitely many times), and that
therefore give rise to a full perturbative series in the deformation parameter . We con-
sider the second cohomology group of YB operators corresponding to certain types of Lie
algebras, and show that this can be nontrivial even if the Lie algebra is rigid, providing
examples of nontrivial YB deformations that do not arise from SD deformations.
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§1. Introduction

The study of Yang—Baxter (YB) operators was initiated in statistical mechanics
[18], where they were used for the conservation of momentum in scattering pro-
cesses. After their introduction in statistical mechanics, YB operators found deep
applications in geometric topology [27, 22], where the YB equation is the algebraic
counterpart of the combinatorial Reidemeister move III, while the invertibility of
YB operators takes the diagrammatic form of Reidemeister move II. This impor-
tant relation between combinatorial moves that characterize the isotopy classes
of links, and the (algebraic) operatorial YB equation paved the way for the con-
struction of quantum invariants of links, as traces of operators derived from YB
operators.
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Furthermore, YB operators play a fundamental role in the theory of ribbon
Hopf algebras [7]. The latter are used (with certain additional assumptions) to
construct invariants of 3-manifolds, and as such they are widely employed in the-
oretical physics — e.g. in Chern—Simons theory [17], and quantum computation —
e.g. in the Freedman—Kitaev—Wang model [14].

Homology theories of YB operators (in the set-theoretic context) were intro-
duced by Carter, Elhamdadi and Saito [5]. The inspiring construction for the
theory was a procedure for generalizing the construction of knot invariants from
quandles and racks, which are known algebraic objects that naturally produce (set-
theoretic) YB operators. Since their introduction, such theories have been studied
by various authors — e.g. [24, 20, 12]. Moreover, related cohomology theories of
YB operators have been considered since the introduction of YB homology — see
[10, 11, 13].

Self-distributive (SD) objects in tensor categories are a generalization of quan-
dles and racks to the setting of general tensor categories, instead of the category of
sets — see [1, 4, 19]. SD objects give rise to YB operators in tensor categories, and
can therefore be used to define quantum invariants of links when a suitable notion
of trace is present in the category [28]. As such, one is interested in studying the
YB operators that arise from SD structures in tensor categories and, of course,
modules and vector spaces are a very natural starting point. Toward the objective
of constructing quantum invariants of links, one is interested in modifying the YB
operators through some cohomological procedure, mostly in view of the success of
the cohomological invariants of [6].

In order to modify YB operators associated to SD structures for quantum
invariants, one can proceed in two very natural ways. Firstly, one can use the
cohomology of SD structures with coefficients in the unit object of the category,
which is a generalization of the standard cohomology theory of racks and quandles
in [6]. The second approach is computationally more involved (in terms of coho-
mology), but it has the convenience of being general for YB operators, without the
need of these arising from SD structures. Namely, this is the approach of deform-
ing a YB operator through nontrivial classes of its second cohomology group, and
using this to obtain quantum link invariants. This can be performed through a
cohomological infinitesimal deformation in the style of Gerstenhaber [15].

The first approach has been used in [16, 28]. In [28] it was shown to have
nontrivial applications for Hopf algebras and, more generally, Hopf monoids in
tensor categories. However, another well-known class of SD structures arises from
(n-ary) Lie algebras [4, 1]. These structures were not considered in [28], and it is
not clear whether nontrivial quantum invariants arise from them using cohomology
with coefficients in the ground ring of the Lie algebra. This has prompted the
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study of SD deformations of SD structures arising from Lie algebras in [13]. Under
some mild assumptions it was shown that Lie second cohomology and SD second
cohomology are isomorphic, and that the former always injects into the latter. It
was also shown that such deformations naturally induce YB deformations of the
associated YB operator. However, YB operator deformations might in principle
arise even if they are not induced by Lie algebra deformations.

The scope of this article is twofold. First, we study higher (i.e. not infinites-
imal) deformations of YB operators associated to Lie algebras. As a result we
obtain YB operators that are perturbed with respect to the deformation parameter
h. Such construction would produce quantum invariants in the form of polynomi-
als or power series in £, and this will be studied in the future. Second, we study
YB deformations that do not arise from Lie deformations, and that are in a sense
purely YB deformations. We find that even simple Lie algebras, whose rigidity has
long been known, give rise to YB operators that can be nontrivially deformed.

This article is structured as follows. In Section 2 we recall some definitions
that are used throughout the article, and give the references for the needed back-
ground material. In Section 3 we consider higher deformations of SD structures in
relation to Lie algebra deformations. In Section 4 we consider higher deformations
of YB operators and study their relation to Lie algebra higher deformations. In
Section 5 we give a characterization of the second cohomology group for YB oper-
ators arising from a class of Lie algebras. In Section 6 we give some examples of
YB operators that can be deformed infinitely many times, and therefore give rise
to a full perturbative series in the deformation parameter 4, and show that rigid
Lie algebras can give rise to nontrivially deformable YB operators.

§2. Preliminaries

We collect here some notions that will be used throughout the article.

§2.1. Racks and quandles

First recall that a rack is a magma X with a binary operation * satisfying the
following two conditions:

e Right multiplication R,: X — X is invertible for all y € X, where R, (x) :=
T * Y.
o (xxy)*z=(xx2)*(y=xz), called self-distributivity.
These properties are algebraic versions of the Redemeister moves II and 111, respec-

tively. If, in addition, a rack satisfies the idempotency relation, x * z = z, then it
is called a quandle; see [6]. Let X be a rack. Define chain groups C,,(X) to be the
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free abelian group generated by the elements of X™ for each n. Then in [6] the
nth-differential 0,, was defined on generators according to the assignment

n

an(mlv cee ,SCn) = Z(—l)n[(l'h cee 7xi717§7i7xi+17 ce 71'71)

=2

— (T * Ty, Tyt F Ty, By Tigs -5 T

These differentials define a homology theory for quandles, and its dualization gives
a cohomology which has been extensively used in geometric topology to construct
state-sum invariants of links and knotted surfaces [6].

The categorical counterpart of racks and quandles was introduced in [4]. They
are self-distributive (SD) objects in tensor categories, defined through a relatively
straightforward generalization of the set-theoretic definitions above. For a general
perspective on categorical SD structures with n-ary operators see [28, Sect. 7]. The
cohomological theory that classifies the infinitesimal deformations of SD structures
was introduced and studied in [13]. We very briefly recall some of the definitions
from [28] and [13].

Let C be a symmetric monoidal category and let X be an object in C. Then
we say that a coalgebra object (X, A) is an SD object if there exists a morphism
(of coalgebras) ¢: X ® X — X that makes the following diagram commute:

192QA

X®4 X®3
% %ﬂ
X4 X®2
(I®QJ/ l‘l
X ®2 X

q )

where W = 1 ® 7 ® 1, having indicated by 7 the switching morphism of C,
Tx,x: X ®X = X ®X. If C is the category of sets with ® = x, and X is a
rack with A(z) = x x x, then one recovers the usual definition of rack given above.
More general examples arise from Hopf monoids in symmetric monoidal categories;
see [28]. In the category of modules, an SD object is a coalgebra (X, A) endowed
with a coalgebra homomorphism ¢: X ® X — X satisfying the condition

a(g(z ®y) ® 2) = q(q(z @ zV) ® q(y @ 2?)),

where we have used Sweedler’s notation to indicate the coproduct A(z) = (! @
2(2), We say that ¢ is invertible if there exists ¢, that turns (X, A) into an SD
object as well, such that (¢ ® 1) (1 ® A) = ¢(¢®@ 1)(1 ® A) = 1 ® ¢, where ¢ is
the counit morphism of the coalgebra object X. In this situation we say that X is
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a rack object. The SD objects arising from Lie algebras considered in this article
are all invertible.

There is a similar notion of n-ary SD object and rack object as well. The
definitions are obtained by straightforward generalization of the notions given
above for the binary case. Details can be found in [28, 13].

Throughout the article, k will indicate a commutative ring with unit. For an
SD object (X, A) in the category of k-modules, we can define the SD cohomology
group (with coefficients in X) that classifies SD deformations of X following [13].
We set C(X, X) to be the module of coderivations of (X, A). Next, define the
second cochain group C3p (X, X) to be the module of linear maps 1: X ® X — X
satisfying the property Ay = (Y @q¢+q@9) (170 1)A®A. We set C3 (X, X) =
Homy, (X®3, X), consisting of module homomorphisms. The first differential §* is
defined as

' fz@y) = flalz®y)) —q(f(z) ©y) — q(z @ q(y)),

while the second differential is defined as

PPy 2) =qry) ®2)+v(eQy) ®2) —Y(gz @ 2V) @ ¢y @ 2?))
— gz ® ) @4y @ 2?)) - qloz @ V) @Yy ® 2)).

We recall that given a Lie algebra g over the ring k, we obtain a rack object as
follows [4]. Set X = k® g and indicate elements of X as pairs (a, z). The coalgebra
structure on X is given by A(a,z) = (a,z) ® (1,0) + (1,0) ® (0, z). The coalgebra
counit is defined as e(a,z) = a. Define ¢((a,z) ® (b,y)) = (ab, bx + [x,y]). It can
be shown that (X, A) is a rack object with this choice of q. When g is an n-Lie
algebra, a similar construction, mutatis mutandis gives an n-rack object.

On X = k @& g we define the projections mg: X — k and m1: X — g as
mo(a, ) = a and 71 (a,z) = . We will also often use the tensor products m; & ;.

§2.2. Yang—Baxter operators

Let V be a module over k, and let R: V®V — V ®V be a linear map. If R
satisfies the operator equation

(2.1) (RODA®R)(RR1)=(1®R)(R®1)(1®R),

then we say that R is a pre-Yang—Baxter operator. An invertible pre-Yang—Baxter
operator is called a Yang-Baxter (YB) operator. The full cochain complex for YB
cohomology can be found in [10]. We will, however, mostly use the low-dimensional
differentials, since we are mostly concerned with the second YB cohomology group,
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and recall them here:

Sye()=R(fOL+R(1®f)~(fel)R—(1® f)R,
p(0) = (RO1)(1I®R)(¢21)+(RO1)(1®¢) (RO 1)
+ (@11 R)(R®1)— (1@ R)(R21)(1®¢)
~(19R)(¢®1)(1®R)—(1®¢)(R21)(1® R),

where f: V — V is a YB 1-cochain, and ¢: V @ V — V is a YB 2-cochain.
We recall that given a rack object X, we obtain a YB operator by setting

Rz®@y) =y @q(z2y?).

This procedure generalizes the standard set-theoretic YB operator arising from
racks. Given an n-rack, we can similarly obtain a YB operator on X®("—1) by
setting

R(x1®x2®-~-®xn):xgl)®-~®x§})®q(m1®x§2)®‘“®fﬂg))~

This correspondence has been used in [13] to show that from an n-Lie algebra,
and its corresponding n-rack object X, one can derive a monomorphism between
the second rack cohomology group into the YB second cohomology group. In other
words, infinitesimal deformations of n-Lie algebras (or infinitesimal deformations
of the corresponding n-rack objects) give rise to infinitesimal deformations of the
corresponding YB operators. Moreover, if the Lie deformation is nontrivial, the
corresponding YB deformation is nontrivial as well.

§3. Higher deformations of rack objects

Let us consider an n-ary rack object (X,T,A) induced by an n-ary Lie algebra
g as in [1, 13]. In this case, in [13] it was shown that there is an injective map
from the Lie algebra second cohomology group of g to the rack second cohomology
group of X. Moreover, under some mild assumptions this homomorphism is also
an isomorphism. As the second rack cohomology group H2, (X, X) characterizes
the infinitesimal deformations of X, we have an infinitesimal deformation of X cor-
responding to each n-Lie algebra 2-cocycle. We want to consider the obstructions
to extending this infinitesimal deformation to higher orders.

Throughout this article we leave the comultiplication undeformed. In [13] it
was shown that SD deformations where the comultiplication is deformed nontriv-
ially exist. However, we leave this more general case to a subsequent study.
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We recall that, following definitions of [13], a 2-cochain ¥: X®X — X is called
special if for all (a,z) and (b,y) in X it holds that ¥((a,z) ® (b,y)) = (0, p(x ®y))
for some ¢p: gR g — g.

For a Lie k-cochain ¢, define the following SD k-cochain: ©%(¢)((a1,r1)®- - -®
(ak,zr)) = (0,¢(x1 ® -+ ® x1)). This correspondence defines a map CF, (g,g) —
Ck5 (X, X), from the kth Lie cochain group to the kth SD cochain group. In the
next result, and the rest of the article, the term tensorand will be used to indicate
the elements appearing in simple (i.e. pure) tensors. For instance, in the tensor
r ®y, x and y will be called tensorands.

Theorem 3.1. Let g be an n-Lie algebra and let (X, T, A) denote its correspond-
ing n-rack object. Assume that ¢ =Y ;" hi¢; is an order m deformation of the
bracket of g. Then the correspondence O™ gives an order m + 1 deformation
of X if the obstruction to extending ¢ to an order m + 1 Lie deformation van-
ishes. Moreover, if g has trivial center, then the obstructions to integrating any
infinitesimal deformation to a degree m deformation lie in Hﬁie(g,g), for all m.

Proof. We proceed by induction on the order m of the deformation. For the base
of induction, i.e. m = 1, we use [13, Thm. 5.1 and Prop. 6.6]. In fact, let ¢ =
¢o + hp1, where ¢g = [e, o] is the bracket of g. Then it is known that ¢ is a
deformation if and only if ¢ is a Lie algebra 2-cocycle of g. Let us define the map
¥ = g + hapy, where 1Py == T is the n-rack operation corresponding to ¢q, and
P1((a1,21) @ ®(an,xn)) = (0,¢1(21 ®- - - ®x,)). Using [13, Prop. 6.6] it follows
that ¢y is an n-rack 2-cocycle and, using [13, Thm. 5.1, ¢ is an infinitesimal
deformation of T. Now assume that ¢ can be deformed through a map ¢s, and
let us consider a deformation of order 2 of the n-rack structure zZ = ¢ + K%,
where 1y = ©3(¢). Then imposing the n-ary self-distributive condition on 1//}\ is
equivalent to verifying that the equation

o~ o~

P(Y((ar, 1) ® (ag, 22) @ (a3, 23)) © (a3, £3) @ (a4, 24) @ (a5, 25))
= P(P(x1 @ y1) ® P(x2 ® y2) @ P(3 @ y3))

holds, where we have used the shorthand notation y; = :174(5) ® xéi) (with upper
index indicating Sweedler’s notation for coalgebra multiplication). We can there-
fore equate the terms of the same degree in 7, and we only need to verify that the
terms of degree 2 are the same, since terms in degree higher than 2 in & vanish
modulo /%, and terms of lower degree are already known to be satisfied by hypoth-
esis. Moreover, from the definition of ©3, we have that 1»(X®") C g®", and also
12 maps vectors containing a tensorand in a copy of the ground ring k to zero.

These facts simplify the computation very much. For notational simplicity, we write



812 E. ZAPPALA

the equations in the case of ternary Lie algebras and 3-rack. This is generalized
immediately to the n-ary case. For the left-hand side of n-ary self-distributivity
evaluated on simple tensors we have

b (((a1, 21) ® (a2, 22) ® (a3, 23)) @ (a3, 23) @ (a4, 24) @ (a5, 25))
=h[-]+A ]
+ 122 (o (1 ® 22 ® 23) @ T4 ® T5) + D1(P1 (21 © T2 ® 3) ® T4 @ T5)
+ ¢o(P2(71 ®@ 22 ® 3) ® 4 @ 5]
+ R3]

For the right-hand side of the equation we have, setting for simplicity y; == xff) &

xéi) (observe the superscript due to comultiplication in Sweedler notation),
D1 ® 41) © (w2 @ 12) @ D23 © y))
=h[- ]+ A
+ B2[$2(do @ ¢o ® o) + do(P2 ® do @ ¢o) + do(do © G2 @ ¢o)
+ ¢o(do ® do ® P2) + d1(1 @ o @ do) + P1(Po ® P1 ® o)
+ ¢1(d0 ® o @ ¢1) + Po(P1 ® 1 @ o) + Po(P1 ® o @ ¢1)

+ do(¢o @ $1 @ ¢1)](21 @ Y1 @ T2 @ Y2 ® T3 @ y3)
+ R3]

Equating, we see that in order for 12 to satisfy the self-distributive property, the
equation

(3.1) Lie(th2) + %WH, 1]nr =0,

needs to hold, where [o, o]yg is the ternary (n-ary in general) version of the Lie
bracket defined by Nijenhuis and Richardson [21] in the binary case. Therefore,
this is the same obstruction to extend ¢y + higp; to a deformation of degree 2, and
the obstruction lies in H7, (g, 9) generalizing the binary case shown in [21]. To
complete the proof of the base of induction, we need to show that this is always
the case when g has trivial center. Observe that, from [13, Lem. 6.3], whenever g
has trivial center, the infinitesimal deformation 1), of the SD structure is special,
and it is characterized by a map ¢1: g ® g — g. This in practice means that every
infinitesimal deformation of X arises from a deformation of g through ©2 (see [13,
Thm. 6.4]). Now we want to show that an order 2 deformation will also be obtained
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through ©3 and a higher-order deformation ¢, for g. To do so, observe that the
term [¢1, $1]nr in equation (3.1) is trivial when evaluated on terms containing
a tensorand in k, because of [13, Lem. 6.3]. Therefore, on simple tensors of type
(0,z) ® (1,0) ® (0,2) and (0,z) ® (0,y) ® (1,0), equation (3.1) reduces to the
evaluation of 6%, (12). However, this is exactly the same situation as the proof of
[13, Lem. 6.3], which can be repeated, showing that 12 = ©3(¢3) for some Lie
algebra 2-cochain. Therefore, this has been reduced to the previous situation, for
which we already know that the obstruction to the degree 2 deformation lies in
H3,.(g,9). This completes the proof of the base of induction.

Let us now assume that the statement has been proved for some m > 1, and
let us consider the case m+ 1. Let then ¢ = 7" h’¢; be an order m deformation
of g. We want to show that if the obstruction to extending the deformation of g
to order m + 1 vanishes, then we obtain an order m + 1 deformation of X via
©™+1 Observe that from the induction step, we already know that ¢ = ©™(¢)
is an order m deformation of X. Let us set zz = + W™, 4 1. Let us consider
the SD condition for 12 Since we already know that up to degree m the equation
is satisfied, we can discard all terms of degree lower than m + 1. We consider in
what follows the binary case, since the n-ary case is a straightforward, although
cumbersome, generalization of this. For the left-hand side of the SD condition in
degree m + 1 we obtain

m—+1

(32) Y1) = i 1)

4,j=0
For the right-hand side of the SD property, we have

m+1
(3.3) PP WA @A) = > iy @ ¢) W (12 @ A).

,7,k=0

Now, using the definition of zz as the image of $ through ©™*1, we can rewrite
equations (3.2) and (3.3) in terms of ¢. For equation (3.2) on simple tensors
(a1,21) ® (az,x2) ® (a3, x3) we obtain

12(72((@1,301) ® (ag, x2)) ® (as, x3))

= (alagag,agagx + ZQShi¢i(I1 ® 1‘2) + Zaghjgbj(xl X 1‘3)
J

+ Z R o (de(v1 @ 22) @ 963)> .

k.0
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For equation (3.3) evaluated on simple tensors as above, and setting LU(1®2®A) =
Ay, we find

-~

72(12;(@ V)Ay (a1, 1) ® (a2, z2) ® (a3, x3)

= (alagag, a2a3x1 + Z aghigm(xl & 503) + Z aghj¢j (IE] & xz)
i J

F A (60l ©.2) 8 22) + e © 1l 5 20))
k.l

From the inductive assumption, up to degree m in the powers of &, the SD property
holds, so we can restrict ourselves to degrees of order m + 1 (higher orders vanish
modulo A™*2). For the left-hand side of the SD property we obtain

[D(¥((a1,21) ® (az,22)) @ (a3, €3))]degmm-+1
= a30m+1(T1 @ T2) + a2Pm41 (21 ® 3) + Pmg1(do(21 @ 22) ® x3)
+ 00(Dmr1 (21 @ 22) @ w3) + Y 9i(8; (w1 © w2) @ )
]

and for the right-hand side we have

[$( ® ¥)Aw (a1, 21) ® (a2, 22) @ (a3, 73)]aeg=m 1
= a20m+1(T1 ® 3) + a30m+1(T1 @ T2) + Pmr1(Po(T1 @ 73) @ 72)
+ ¢o(Pma1(T1 @ 3) @ T2) + Pmr1(T1 @ Po(T2 @ 73))
+ ¢0(21 ® Ppmt1(z2 ® 73))

+ ) [6i(0)(1 @ 23) @ T2) + $i11 ® 6j(w2 @ 3))].
,J
We observe that all the terms containing a; cancel out, and what is left can be
rewritten as

Lie(dmr1) + %[¢21, ¢>1]xr =0,

which is the obstruction for ¢ to be extended to a degree m + 1 deformation
as a Lie algebra [21]. This completes the inductive step for the first part of the
statement. We need to show, now, that when g has trivial center, the deformations
in the form of ©™!(¢,,11) are the only ones. Let ¢ = > . he); be an order m
deformation and set ¢ = Z;T:{)l hiv;. Then, if 11 is such that ¢ is an order
m + 1 deformation, we can equate the left-hand side and right-hand side of the
SD property at degree m + 1 substantially following the computation given before,

which for the left-hand side gives

[$(% ® Dlaeg=m+1 = Yo(Ymi1 @ 1) + Ymia (o ® 1) + Y 9t @ 1),
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where the sum runs over the pairs (¢, 7) such that i+ j =m+ 1 and 4,5 # m + 1.
For the right-hand side of the SD property, we have

[( ® P) W (182 @ A)degmmt1 = Pmr1 (o ® o) W (192 ® A)
+ Yo (Ym+1 @ o) W (12 @ A)
+ Yo(o ® Y1) W (1% ® A)

+) v @) W (182 @ A),

where the sum runs over i, j, k # m + 1 such that i + j + kK = m + 1. Observe that
equating we obtain a term that coincides with 6§D (¥m+1) and a term that only
contains terms v¥; where ¢ < m + 1, which we will denote €2,,, 1. By the inductive
assumption, all the maps ;<1 appearing in Q,,.1 are obtained as ©%(¢;) for
some Lie 2-cochain ¢;: g ® g — g. A direct computation shows that €,,,1, as
a result, is a special 2-cochain mapping g ® g — g, and that it is trivial when
evaluated on Xg = k@ kdk ® g g ® k. As a consequence, the SD property
in degree m + 1 evaluated on Xy reduces to the 2-cocycle condition for ¢,,41
evaluated on Xy. However, from [13, Lem. 6.3] we know that this forces i,,+1 to
be special, and therefore in the image of @™, It follows now that if ¢, is such
that ©" %1 (¢,,11) = VY1, the obstruction in terms of the Lie algebra g for ¢, 41
needs to vanish, and the proof is complete. O

As a direct consequence of the previous result, we obtain the following rigidity
criterion for SD structures.

Corollary 3.2. Let (X,T,A) denote the n-rack object associated to a semisimple
Lie algebra g. Then X cannot be deformed as an SD structure.

Proof. Observe that from Theorem 3.1 there are no deformations due to terms
purely in the Lie algebra, i.e. special, since the second cohomology group of g is
trivial. Then the result follows once we show that there are no deformations that
are not special. This was shown in [13], therefore concluding the proof. O

§4. Higher deformations of Yang—Baxter operators

We now consider the effect of integrating infinitesimal deformations, and we show
that the obstruction to lifting YB deformations lies in the n-Lie algebra cohomol-
ogy, under suitable conditions. This construction gives a way of producing higher
deformations of YB operators corresponding to an n-Lie algebra.

We start by considering certain types of YB cochains that arise from Lie
algebra cochains, and study the obstruction to higher-order YB deformations.
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Definition 4.1. For ¢: g ® g — g a Lie algebra 2-cochain with coefficients in g,
we construct a YB 2-cochain A%(¢): X ® X — X ® X through the assignment

A2(g)((a,z) @ (b,y)) = (by) D ® oz @ m1((b,y) @),

where m;: X — g projects on the second coordinate. We will call these cochains
A-cochains, and the corresponding deformations will be called A-deformations.

Such a correspondence defines a subclass of YB 2-cochains, and we will show
that the deformation theory of such cochains directly relates to that of the Lie
algebra g. In the following we assume k to have zero characteristic. We use the
notation found in [21] for the Lie bracket [¢, ] in the space of alternating maps.
We also introduce the following sets

L= {(0.4,k) €N it j+k=m, i,jk#m}.

We further introduce the decomposition I',, = |_|l=1,273 It u fm, where I'! | is the
subset of I';,, such that the triples (i, j, k) have zero in the entry [, and fm is the
subset such that no entry is zero. Observe that from the definition of I',,, at least
two entries in (4, j, k) need to be nonzero.

Theorem 4.2. Let g be an n-Lie algebra, and let X denote the corresponding n-
ary SD object, with R the induced YB operator. Assume that R= Z:io h'R; is a
deformation of order m, with Ry := R and R; = A?(¢;) for Lie algebra 2-cochains
¢i. Then the obstruction to deforming R to degree m + 1 is given by

(ks Pmt1-k] = 0.

N —

(4.1) St ieOmr1 + Z
k=1

Proof. We prove the result for binary SD structure, although the same approach,
with notational modifications also gives the result for n-ary SD structures. We
proceed by induction on m. The case m = 1 means that we have an infinitesimal
deformation of R of type A%(¢;), and we want to derive the obstruction to lifting
this deformation to a quadratic one. From [13] we already know that A%(¢1) needs
to be a YB 2-cocycle, and that this fact implies that ¢, is a Lie algebra 2-cocycle.
Let us consider A%(¢9), where ¢o is a Lie 2-cochain. Here, ¢o indicates the Lie
bracket of g. Also, observe that A%(¢g) coincides with the SD operation ¢, as it is
seen by a direct computation. For short we will indicate the mapping A? simply
by A. Let us consider the right-hand side of the YB equation for the terms which
are quadratic in &, since we already know that the equation holds for the other
terms. Denoting the right-hand side quadratic terms as WL by evaluating on a
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simple tensor (a,z) ® (b,y) ® (¢, z) we have

U3 (a,2) @ (b,y) @ (c, 2)
= (1@ A(¢0))(A(do) @ 1)((a,z) © (1,0) @ ¢a(y @ 2))
+ (1 ®A(¢0))(A(p2) @ 1)((a,2) ® (¢, 2) ® (b,y)
+ (a,2) ©(1,0) @ (0, [y, 2]))
+ (1@ A(¢2))(A(¢o) © 1)(A(¢2) © 1)((a, ) @ (¢, 2) @ (b, y)
+(a,2) ® (1,0) @ (0, [y, 2]))
+ (1@ A(d0)) (A1) @ 1)((a,2) @ (1,0) © d1(y ® 2))
+ (T A(¢1))(Algo) @ 1)((a,7) @ (1,0) © d1(y © 2))
+ (1@ A(¢1))(Alpr1) © 1)((a,2) ® (¢, 2) @ (b, y)
+ (a,7) ® (1,0) @ [y, 2])

=(1,0) ® ¢2(y ® 2) @ (a,2) + (1,0) @ (1,0) ® [z, ¢2(y ® )]
+(1,0) ® (b,y) ® d2(z ®2) + (1,0) ® (1,0) ® [y, d2(z ® 2)]
+(c,2) ® (1,0) ® po(z @ y) + (1,0) ® (1,0) ® ¢2([z, 2] @ y)
+(1,0) ® (1,0) ® ¢2(z @ [y, 2])
+(1,0) ®(1,0) @ ¢1(z @ ¢1(y @ 2))
+(1,0) ®(1,0) ® ¢1(p1(z ® 2) @ y)

where we have indicated terms of type (0,z) for x € g by z, for ease of notation.
Similarly, for the left-hand side of the YB equation in degree 2, which we indicate
by UL, we find the equality
V3 (a,2) ® (b,y) @ (c, 2)
+ (170) & (ba y) & ¢2($ ® Z) + (170) ® ¢2(y Y Z) ® (aax)
+(1,0) ® (1,0) ® ¢2([z, y] ® 2) + (1,0) @ (1,0) @ ¢1(d1(z @ y) ® 2).
Equating the two terms we find that the YB equation holds if and only if

(1,0) ® (1,0) ® ([p2(z @ y), 2] + d2([2,y] ® 2) + ¢1(d1(z @ y) ® 2))
=(1,0) ® (1,0) @ ([z, p2(y @ 2)] + [y, p2(x @ 2)] + ¢2([z, 2] ® y)
+ a2 ® [y, 2]) + 01(x @ D1 (y @ 2)) + d1(d1(z® 2) ®Y)).

Up to two tensorands (1,0), we see that this equation is equivalent to

1
0ot + Z §[¢17 $1] =0
k=1
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which completes the case m = 1.

We now suppose that the statement holds true for some m > 1, and we
want to verify it for m + 1. We let ¢; be a family of Lie 2-cochains such that
R = St o A(¢) is a YB deformation of degree m, and we want to derive the
obstruction for A(¢p,,+1), where ¢, 11 is a Lie 2-cochain, to give a deformation of
degree m + 1. From the assumptions, we just need to impose that the YBE holds
for terms in degree m + 1. We observe that when considering the terms of type

(A(di) @ 1)1 @ A(;))(A(Pr) @ 1) — (1@ A(¢i))(A(¢;) @ 1)(1 © A¢w)),

withi =m-+1,or j =m+1 or k =m+ 1, this gives us the Lie algebra 2-cocycle
condition for ¢,,+1 up to an overall tensor product of (1,0) ® (1,0) as for the case
with m = 1. Therefore, these terms give rise to 0%, (¢m+1) of equation (4.1). Let us
now consider the terms where more than one subscript of the ¢; is nontrivial. We
distinguish four different cases, depending on which component of I';,, 1 the triple
(4,7, k) belongs to. We consider first the terms (A(¢;) @ 1)(1 Q@ A(¢;))(A(pr) @ 1).
When (i, j, k) € T}, 1, we have

(A(di) @ 1) (1 @ A(9;))(Alor) @ 1)((a, ) @ (byy) @ (¢, 2))
= (Al¢o) ® 1)(1 @ A(¢r)) (A Pmr1-x) @ 1)((a,7) ® (b,y) @ (¢, 2))
=(1,0)® (1,0) ® px(dm+1-k(z @ Yy) @ 2).

A direct inspection shows that when (i, j, k) € Typqq — Il 4, the term (A(¢;) ®
(1 ® A(¢;))(Algr) @ 1)((a,z) ® (b,y) @ (¢, z)) vanishes for all simple tensors.
When considering the terms of type (L@A(¢;))(A(¢;) QL) (L®A(¢Px)), we have that
for (i,7,k) € F}n+1,fm+1 the terms vanish identically, while for (4,5, k) € T2,
we obtain (1,0)®(1,0) ® ¢x(x @ ¢p1-k(y®2)), and for (i, 4, k) € I'3 | we obtain
(1,0)®(1,0) ® o (Ppmi1—k(x @ 2) ®y). Therefore, for each k = 1,...,m we obtain
(up to a tensor factor) (¢, dm+1—k]. Putting all the terms together completes
the proof. O

A perturbative expansion of a YB operator is a deformed YB operator with
higher-order (i.e. at least quadratic) deformations.

Corollary 4.3. Let g be an n-Lie algebra, and let R denote the associated YB
operator. The obstruction to lifting a degree k A-deformation to a degree k + 1
A-deformation lies in the third Lie algebra cohomology group H>(g,g).

Proof. Given a degree k A-deformation, from Theorem 4.2 we see that the obstruc-
tion coincides with the Lie algebra obstruction of degree k4 1, which is well known
to lie in H3(g,g) (see for instance [21] for the binary case, and [26] for the n-ary
case). O
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The following result, concerning the perturbative expansion of YB operators,
is now immediate.

Corollary 4.4. Let g be an n-Lie algebra, and let R denote the associated oper-
ator. Assume that a nontrivial infinitesimal A-deformation of R exists. Then, if
H?(g,9) =0, we can deform R arbitrarily many times.

The results above give a procedure to start with a Lie algebra g, obtain a YB
operator over the k-module and then produce a perturbative series R= Z?io R R;,
where Ry = R, that satisfies the YB equation over the k[h]-module X = k[i]®X.
This can automatically be done whenever g has nontrivial second cohomology and
trivial third cohomology.

However, from Theorem 3.1 we also obtain that when g has trivial center, and
Hfie(g, g) = 0, the corresponding YB operator does not admit A-deformations.

Corollary 4.5. Let g be an n-Lie algebra with trivial center and HZ, (g,9) = 0.
Let R denote the corresponding YB operator. Then R does not admit A-deforma-
tions.

Proof. Theorem 3.1 and the results of [13] show that deforming the Lie algebra
structure is equivalent to deforming the SD structure. The rigidity of g implies that
the SD structure is rigid as well. A direct computation shows that A-deformations
are equivalent to deformations of the underlying SD structure, completing the
proof. O

§5. More on second cohomology

It is of interest to consider in more detail a study of the second cohomology group
of YB operators. In fact, in order to be able to produce perturbative expansions
(of any degree), one needs the second cohomology group to be nontrivial.

In this section we assume that the ground field k is of zero characteristic,
and g indicates a (binary) Lie algebra. In the following, we assume the convention,
inspired by Sweedler’s notation, that a map ¢: A — B ® B is written as ¢(z) =
d(x)1 @ ¢(x)2, where a summation is intended.

Lemma 5.1. Let X = k@ g, and let R be the YB operator associated to g, which
is assumed to have trivial center and to be perfect (e.g. it is semisimple). Suppose
that ¢ is a YB 2-cocycle. Then ¢ is characterized by the following conditions:

(i) (mo ®@mo)d: g @ g — k is a Lie algebra 2-cocycle with coefficients in k.

(ii) ¢(k® k) =0.

(iii) (m ®mo)o(g®g) = 0.
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(iv) ¢((1,0) ® (0,2)) = (1,0) @ g(x) and ¢((0,z) ® (1,0)) = —(1,0) ® g(z) for

some Lie algebra derivation g: g — g.

(v) 0fie((mo @ m)d) (2 ® y ® 2) = [z, mP(y @ 2)1], My ® 2)2] — [9(2), [y, 2]].
(vi) It holds that

O([z,y] ® 2)1 @ ¢([z, 9] © 2)2
= oy ®2)1 @ [z, m(y ® 2)o] + ¢(x ® 2)1 @ [mP(x © 2)1,y].

(vii) It holds that

[M1d(z @ Y)1,2] @ pz @ Y)2 + d(z @ y)1 @ [M1¢(z ®y), 2]
+ [y, oz @ 2)1] @ ¢z ® 2)2 — g(y) @ [2, 2] + g(2) ® [z, Y]
=0y ®2)2 @ [z, md(y ®2)1] — [y, 2] ® g(x)
+o([7,2] @y)1 @ d([7, 2] @ y)2 + d(x @ [y, 2])1 @ (= @ [y, 2])2.

Proof. Let us set ¢ = ¢o + Ay, where ¢o == R and ¢, = ¢. Then ¢ being a
2-cocycle means that we have the equality

(01 ® 1) (L @ ¢o)(o ® 1) + (o ® 1)(1 ® 1) (o ® 1)
+ (60 @ 1)(1® o) (¢1 ® 1)
= (1® ¢1)(¢0 ® 1)(1 ® ¢o) + (1 ® ¢o)(¢1 ® 1)(1 ® ¢o)
(5.1) + (1 ® ¢0)(¢o ® 1)(1 @ ¢1).

The proof consists of a tedious direct analysis of the equality evaluated on differ-
ent types of simple tensors in X®2, where X = k @ g. Recall that we indicate by
mo: X — k the projection on the first direct summand, and likewise by m1: X — g
the projection on the second summand. Also, recall the (Sweedler-inspired) nota-
tion ¢;(u®v) 1) ® ¢i(u®v)(2) to indicate the sum of terms in X ® X in the image
of ¢;, for i = 0,1. We also use the shorthand a + z for (a, z).

Observe that, in general, we have

(1e)=r191+10v +v1+uP @u?,
¢( ) 1 1

)

for some r € k, some fixed vectors vi,v2 € g, and u; ’ ® u?)

€ g ® g. However,
equation (5.1) on simple tensors of type z®1®1 and 1 ® 1 ® 2z gives that all terms
in ¢1(1® 1) are zero, except possibly for r-1® 1, where we use the fact that g has
trivial center. So we have $;(1® 1) =r-1® 1.
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We evaluate equation (5.1) on tensors of type © ® 1 ® z, giving us the equation

r-1®1®x,z2+1Q[md1(r®1)1,2] @ p1(z @ 1)2
+1@¢1(r®1); @ [m1¢1(z @ 1)2, 2]
=1@¢1([z,2] ®1)1 @ d1([z, 2] @ 1)2 + ¢1(1, ®2)1 @ 1@ [, m1¢1 (1 © 2)2]
10 (1®2):@[z,md1(1R@2)1]+1R1& [[x,md1(1l ® 2)1], 71 (1 ® 2)2],

which forces (m ® 71)¢1(1 ® z) = 0 for all z € g.

Equation (5.1) on tensors of type £ ® y ® 1 produces a term in the equation of
type ¢1([z,y] ®1)1 ®1® ¢1 ([, y] ® 1)2 which cannot have components in gk ® k
because it cannot be balanced by other terms. Therefore, using the fact that g
is perfect, it follows that (m ® mg)¢1(z ® 1) = 0 for all = in g. Similarly, the
component k ® k ® k of this equation gives that (my ® mg)¢1(z ® 1) = 0 for all =
in g.

Equation (5.1) on tensors of type 1 ® y ® z projected on the components
k®k® g gives

1@mep1(1®y)1 @ [me1(1®@y)2] =Top1(1®2)1 @1Q [mi¢1(1® 2)2,y]
+1® 7T0¢1(1 ® [y7 Z])l ® Wl(bl(l Y [ya z])27

from which we derive that (79 ® m1)¢1(1 ® ) = 1 ® g(x) for some derivation
g: g — g of g. This is one of the equations characterizing ¢; in the statement of
the lemma. Terms projected in k ® g ® k give the symmetry

[f(y), 2]l =7 [y, 2] + f([y, 2]),

for all y, z in g, where f is defined through (m ® m)d1(1 ® z) = f(z) ® 1.
Moreover, projecting on k ® k ® k (and using the fact that g is perfect) we find
that (mo ® mo)p1(1 @ ) =0 for all z € g.

Writing the symmetries that we have found up to now more explicitly, we can
write 1 (1@ ) = f1(2) @1+1®g1(x), p1(z®1) =1® g2(2) + h(z)1 ® h(z)2 and
$»1(1®1)=r-1®1, where g; is a Lie algebra derivation.

Equation (5.1) evaluated on z ® y ® 2z projected on g ® g ® g gives

hMy)1 @ h(y2) @ [z, 2] = h(z)1 @ [y, 2] @ h(z)2,

which taking = = z forces h(z); ® h(x)2 to be zero. This further simplifies the
expression of ¢1(z ® 1).

Substituting equation (5.1) evaluated on = ® z ® 1 projected on k ® k ® g into
the equation on x ® 1 ® z projected on k ® k ® g we get

2rfz, 2] = [2,92(2)] + [, 91(2)] + [, f1(2))];
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which gives [z, 2rz + g2(2) — g1(x) + f1(2)] = 0 for all x and z. Since g has trivial
center, we get 2rz + g2(z) — g1(z) + f1(z) = 0. A similar approach also gives that
2ry + g1(y) — g2(y) = 0 for all y € g. Therefore, we must have that fi(x) = —4drz
for all z. However, from equation (5.1) evaluated on 1 ® z ® y and projected on
k ® k ® g we obtain that [f1(z),y] = r[z,y] + fi([z,y]). Substituting the f; just
obtained we find that r[z,y] = 0 for all x, y, which is possible only if = 0, since g
is not abelian. This gives us that ¢1(1® 1) = 0, as in the statement of the lemma.
Moreover, we also have that go = —g;. This completes the proof of facts (ii), (iii)
and (iv).

The proofs of (i), (vi) and (vii) are obtained by considering equation (5.1)
evaluated on = ® y ® z projected on the direct summands of X ® X ® X. In fact,
projecting over k ® k ® k we obtain the equation

a(lz,y] @ 2) = afz, 2] @ y) + a(z @ [y, 2]),

where a: gRg — k is given by a(z®vy) = (7o ®@mp)¢1(x ®y). This equation is the
2-cocycle condition for o with coefficients in k, which gives us (i). Equation (5.1)
projected on g ® g ® g was considered above. The projections over k ® g ® k and
g ® g ® k are seen to be satisfied identically. The projection over g ® k ® g gives
(vi), while the projection over k ® g ® g gives (vii). Finally, (v) follows from the
projection on the summand k ® k ® g. O

Let g be a Lie algebra satisfying the hypotheses of Lemma 5.1. We define the
groups Z(g), B(g) and H(g) as follows. The group Z(g) is defined as the group of
triples (¢,(,€) with g: g > g, (:g®g —>gand £: g®g — g® g, where g is a
derivation, £ satisfies (vi), and the compatibility conditions (v) and (vii) between
g, ¢ and ¢ are satisfied. The group B(g) is defined as the subgroup of Z(g), where
g(w) = [w,a] (inner derivation), C(z ® y) = [h(x), y] + [z, h(y)] — h([z,y]) - sl
and {(z ®y) = —w R [z,y] for some s € k, w € g and h: g — g. Finally, we set
H(g) = Z(9)/B(g).

We give now a characterization of the second cohomology group of YB oper-
ators Ry arising from Lie algebras that are perfect, and with zero center (e.g. they
are semisimple).

Theorem 5.2. Let g be a perfect Lie algebra with zero center. Let us denote by R
the YB operator associated to it. Then the second cohomology group of R is given
by H%B(R) = Hﬁie(ga ]k) D H(g)

Proof. The most difficult part of the proof is to obtain a characterization for the
2-cocycles. This has been done in Lemma 5.1. They constitute the set Z(g) defined
above.
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We need to derive the coboundaries. The coboundary of a 1-cochain f: X —
X is given by

dyp(f)(a,z) ® (b,y)
=a-(1,0) (0, [w,y]) +b-(1,0) @ (0, [z,w]) + (1,0) ® (0, [f1(2),y])
+(L0)® (0, [z, AY)]) — - (1,0) @ (0, [z,4]) = (0,w) @ (0, [z, y])
= (L0) @ (fo([z,4],0)) = (1,0) @ (0, f1([z,4])),
where we have used the decomposition of f as f(a,z) = af(1) + f(x), we have set
f(1) = (s,w) and written f(z) = (fo(x), f1(z)), with fo: X - k and f1: X — g.
While not immediately obvious, one can directly verify that these coboundaries

,0)
(1,
0)

satisfy (i)—(vii) in Lemma 5.1 as required.

To complete the proof, we need now to consider the components of equa-
tion (5.1) projected on the simple tensorands modulo the projections of the
coboundaries. A direct (and rather tedious) analysis shows that projecting on
summands other than k ® k ® k we obtain B(g) defined above. Combining this
with the 2-cocycles from Lemma 5.1 gives rise to the direct summand #(g).

Projecting on k ® k ® k we find fo([z, y]), which is the Lie coboundary with
trivial coefficients in k. Observe that the 2-cocycle component on k ® k ® k is
precisely the 2-cocycle condition for Lie cohomology with trivial coefficients, by
Lemma 5.1. This term is completely independent of the triples in H(g). Therefore,
we get the remaining summand H?, (g, k). This completes the proof. O

It is well known that Lie cohomology is trivial for semisimple Lie algebras.
However, as we will see in the examples below, the cohomology of YB operators
associated to semisimple Lie algebras is not necessarily trivial. In fact, it turns
out that H(g) # 0 when g = sl3(C). This fact is somewhat surprising, considering
that semisimple Lie algebras do not admit any nontrivial deformations, which is
the second Whitehead lemma.

Remark 5.3. A Lie algebra g endowed with a 2-cocycle 8: g ® g — k is also
called a quasi-Frobenius Lie algebra. Moreover, if 8 is a coboundary, g is said to
be a Frobenius Lie algebra; see [23]. Therefore, the direct summand HZ, (g, k) of
HZ25(R) is the set of equivalence classes of quasi-Frobenius structures on g.

Remark 5.4. There is an interesting class of perfect Lie algebras with trivial
center, namely the sympathetic Lie algebras of Benayadi [2]. They are additionally
assumed to satisfy the condition that all derivations are inner. Recent work of
Burde and Wagemann has shown that sympathetic Lie algebras might have non-
trivial second cohomology [3], which therefore gives rise to nontrivial YB second
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cohomology. By virtue of the characterization in Theorem 5.2, it is possible to
attempt a complete study of H25(R) where R is the YB operator associated to
the 25-dimensional Benayadi Lie algebra gp, whose second Lie cohomology group
is nontrivial. In fact, H?(gp,C) = 0, and all derivations are inner. So the problem
of determining H2y(R) is simpler.

§6. Examples

We now consider some examples of the theory developed in this article. In particu-
lar, we show that there exist YB operators that admit infinitely many deformations
(i.e. their deformations are integrable), and show that starting from semisimple
Lie algebras, we can find YB operators that have nontrivial deformations.

We start by constructing a YB operator that can be deformed infinitely many
times and, therefore, admits perturbative expansions of any order.

Example 6.1. Let $),, be the Heisenberg Lie algebra of dimension 2m + 1. From
[25], we know that the Betti numbers of $),,, are given by

wrtonsn = () ()

p p—2
where p < m, which is not restrictive due to Poincaré duality. Therefore, the
5-dimensional Heisenberg Lie algebra $2 has

dim H?($)2,92) =5

and
dim H3($)2,92) = 0.

This shows, applying Corollary 4.4, that the corresponding YB operator Rg, can
be deformed arbitrarily many times, giving rise to a perturbative expansion

R oo
R=>h'R;,
=0

where Ry = Rg, is the original YB operator, and R; is any choice of 2-cocycle in
any class of H?($)2, ).

More generally, nilpotent Lie algebras are known to have highly nontrivial
cohomologies (in particular second cohomology) [9, 8], which have been studied in
some special cases in detail. The same procedure can be applied whenever the third
cohomology vanishes. Alternatively, one can consider the obstruction in the third
cohomology and determine whether this vanishes even when H?3(g,g) is nonzero
on a case-by-case basis.
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Let us now consider the semisimple case. For such a Lie algebra, we know
that the bracket cannot be deformed. However, as we will see, there are nontrivial
YB deformations, which therefore do not arise from Lie algebra deformations.

Example 6.2. Let g := sl3(C) be the special linear Lie algebra of dimension 3
with complex coefficients. It is a well-known fact that g has trivial cohomology,
since it is simple (Whitehead lemmas). A natural question that arises is whether
the YB second cohomology of the operator associated to g is trivial as well. In such
a case, the operator could not be deformed and no perturbative expansion would
exist. However, it turns out that the rigidity of the Lie algebra structure does not
imply the rigidity of the corresponding YB operator. In fact, a direct computation
using the characterization of Theorem 5.2 gives dim HZ(R) = 2.

Since, following Theorem 4.2, nontrivial A-deformations are equivalent to Lie
algebra deformations, it follows that the deformations of the YB operator R must
not be A-deformations, and therefore they do not arise from deformations of the
Lie algebra structure.
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