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Abstract

We study the deformations of a wide class of Yang–Baxter (YB) operators arising from Lie
algebras. We relate the higher-order deformations of YB operators to Lie algebra defor-
mations. We show that the obstruction to integrating deformations of self-distributive
(SD) objects lies in the corresponding Lie algebra third cohomology group, and we inter-
pret this result in terms of YB deformations. We show that there are YB operators that
admit integrable deformations (i.e. that can be deformed infinitely many times), and that
therefore give rise to a full perturbative series in the deformation parameter ℏ. We con-
sider the second cohomology group of YB operators corresponding to certain types of Lie
algebras, and show that this can be nontrivial even if the Lie algebra is rigid, providing
examples of nontrivial YB deformations that do not arise from SD deformations.
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§1. Introduction

The study of Yang–Baxter (YB) operators was initiated in statistical mechanics

[18], where they were used for the conservation of momentum in scattering pro-

cesses. After their introduction in statistical mechanics, YB operators found deep

applications in geometric topology [27, 22], where the YB equation is the algebraic

counterpart of the combinatorial Reidemeister move III, while the invertibility of

YB operators takes the diagrammatic form of Reidemeister move II. This impor-

tant relation between combinatorial moves that characterize the isotopy classes

of links, and the (algebraic) operatorial YB equation paved the way for the con-

struction of quantum invariants of links, as traces of operators derived from YB

operators.
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Furthermore, YB operators play a fundamental role in the theory of ribbon

Hopf algebras [7]. The latter are used (with certain additional assumptions) to

construct invariants of 3-manifolds, and as such they are widely employed in the-

oretical physics – e.g. in Chern–Simons theory [17], and quantum computation –

e.g. in the Freedman–Kitaev–Wang model [14].

Homology theories of YB operators (in the set-theoretic context) were intro-

duced by Carter, Elhamdadi and Saito [5]. The inspiring construction for the

theory was a procedure for generalizing the construction of knot invariants from

quandles and racks, which are known algebraic objects that naturally produce (set-

theoretic) YB operators. Since their introduction, such theories have been studied

by various authors – e.g. [24, 20, 12]. Moreover, related cohomology theories of

YB operators have been considered since the introduction of YB homology – see

[10, 11, 13].

Self-distributive (SD) objects in tensor categories are a generalization of quan-

dles and racks to the setting of general tensor categories, instead of the category of

sets – see [1, 4, 19]. SD objects give rise to YB operators in tensor categories, and

can therefore be used to define quantum invariants of links when a suitable notion

of trace is present in the category [28]. As such, one is interested in studying the

YB operators that arise from SD structures in tensor categories and, of course,

modules and vector spaces are a very natural starting point. Toward the objective

of constructing quantum invariants of links, one is interested in modifying the YB

operators through some cohomological procedure, mostly in view of the success of

the cohomological invariants of [6].

In order to modify YB operators associated to SD structures for quantum

invariants, one can proceed in two very natural ways. Firstly, one can use the

cohomology of SD structures with coefficients in the unit object of the category,

which is a generalization of the standard cohomology theory of racks and quandles

in [6]. The second approach is computationally more involved (in terms of coho-

mology), but it has the convenience of being general for YB operators, without the

need of these arising from SD structures. Namely, this is the approach of deform-

ing a YB operator through nontrivial classes of its second cohomology group, and

using this to obtain quantum link invariants. This can be performed through a

cohomological infinitesimal deformation in the style of Gerstenhaber [15].

The first approach has been used in [16, 28]. In [28] it was shown to have

nontrivial applications for Hopf algebras and, more generally, Hopf monoids in

tensor categories. However, another well-known class of SD structures arises from

(n-ary) Lie algebras [4, 1]. These structures were not considered in [28], and it is

not clear whether nontrivial quantum invariants arise from them using cohomology

with coefficients in the ground ring of the Lie algebra. This has prompted the
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study of SD deformations of SD structures arising from Lie algebras in [13]. Under

some mild assumptions it was shown that Lie second cohomology and SD second

cohomology are isomorphic, and that the former always injects into the latter. It

was also shown that such deformations naturally induce YB deformations of the

associated YB operator. However, YB operator deformations might in principle

arise even if they are not induced by Lie algebra deformations.

The scope of this article is twofold. First, we study higher (i.e. not infinites-

imal) deformations of YB operators associated to Lie algebras. As a result we

obtain YB operators that are perturbed with respect to the deformation parameter

ℏ. Such construction would produce quantum invariants in the form of polynomi-

als or power series in ℏ, and this will be studied in the future. Second, we study

YB deformations that do not arise from Lie deformations, and that are in a sense

purely YB deformations. We find that even simple Lie algebras, whose rigidity has

long been known, give rise to YB operators that can be nontrivially deformed.

This article is structured as follows. In Section 2 we recall some definitions

that are used throughout the article, and give the references for the needed back-

ground material. In Section 3 we consider higher deformations of SD structures in

relation to Lie algebra deformations. In Section 4 we consider higher deformations

of YB operators and study their relation to Lie algebra higher deformations. In

Section 5 we give a characterization of the second cohomology group for YB oper-

ators arising from a class of Lie algebras. In Section 6 we give some examples of

YB operators that can be deformed infinitely many times, and therefore give rise

to a full perturbative series in the deformation parameter ℏ, and show that rigid

Lie algebras can give rise to nontrivially deformable YB operators.

§2. Preliminaries

We collect here some notions that will be used throughout the article.

§2.1. Racks and quandles

First recall that a rack is a magma X with a binary operation ∗ satisfying the

following two conditions:

� Right multiplication Ry : X → X is invertible for all y ∈ X, where Ry(x) :=

x ∗ y.
� (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), called self-distributivity.

These properties are algebraic versions of the Redemeister moves II and III, respec-

tively. If, in addition, a rack satisfies the idempotency relation, x ∗ x = x, then it

is called a quandle; see [6]. Let X be a rack. Define chain groups Cn(X) to be the
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free abelian group generated by the elements of Xn for each n. Then in [6] the

nth-differential ∂n was defined on generators according to the assignment

∂n(x1, . . . , xn) =

n∑
i=2

(−1)n[(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)

− (x1 ∗ xi, . . . , xi−1 ∗ xi, x̂i, xi+1, . . . , xn)].

These differentials define a homology theory for quandles, and its dualization gives

a cohomology which has been extensively used in geometric topology to construct

state-sum invariants of links and knotted surfaces [6].

The categorical counterpart of racks and quandles was introduced in [4]. They

are self-distributive (SD) objects in tensor categories, defined through a relatively

straightforward generalization of the set-theoretic definitions above. For a general

perspective on categorical SD structures with n-ary operators see [28, Sect. 7]. The

cohomological theory that classifies the infinitesimal deformations of SD structures

was introduced and studied in [13]. We very briefly recall some of the definitions

from [28] and [13].

Let C be a symmetric monoidal category and let X be an object in C. Then
we say that a coalgebra object (X,∆) is an SD object if there exists a morphism

(of coalgebras) q : X ⊗X → X that makes the following diagram commute:

X⊗4 X⊗3

X⊗4 X⊗2

X⊗2 X,

� q⊗1

1
⊗2⊗∆

q⊗q q

q

where � = 1 ⊗ τ ⊗ 1, having indicated by τ the switching morphism of C,
τX,X : X ⊗ X → X ⊗ X. If C is the category of sets with ⊗ = ×, and X is a

rack with ∆(x) = x×x, then one recovers the usual definition of rack given above.

More general examples arise from Hopf monoids in symmetric monoidal categories;

see [28]. In the category of modules, an SD object is a coalgebra (X,∆) endowed

with a coalgebra homomorphism q : X ⊗X → X satisfying the condition

q(q(x⊗ y)⊗ z) = q(q(x⊗ z(1))⊗ q(y ⊗ z(2))),

where we have used Sweedler’s notation to indicate the coproduct ∆(z) = z(1) ⊗
z(2). We say that q is invertible if there exists q̃, that turns (X,∆) into an SD

object as well, such that q̃(q ⊗ 1)(1 ⊗∆) = q(q̃ ⊗ 1)(1 ⊗∆) = 1 ⊗ ε, where ε is

the counit morphism of the coalgebra object X. In this situation we say that X is
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a rack object. The SD objects arising from Lie algebras considered in this article

are all invertible.

There is a similar notion of n-ary SD object and rack object as well. The

definitions are obtained by straightforward generalization of the notions given

above for the binary case. Details can be found in [28, 13].

Throughout the article, k will indicate a commutative ring with unit. For an

SD object (X,∆) in the category of k-modules, we can define the SD cohomology

group (with coefficients in X) that classifies SD deformations of X following [13].

We set C1
SD(X,X) to be the module of coderivations of (X,∆). Next, define the

second cochain group C2
SD(X,X) to be the module of linear maps ψ : X⊗X → X

satisfying the property ∆ψ = (ψ⊗q+q⊗ψ)(1⊗τ⊗1)∆⊗∆. We set C3
SD(X,X) =

Homk(X
⊗3, X), consisting of module homomorphisms. The first differential δ1 is

defined as

δ1f(x⊗ y) = f(q(x⊗ y))− q(f(x)⊗ y)− q(x⊗ q(y)),

while the second differential is defined as

δ2ψ(x⊗ y ⊗ z) = q(ψ(x⊗ y)⊗ z)+ψ(q(x⊗ y)⊗ z)−ψ(q(x⊗ z(1))⊗ q(y ⊗ z(2)))

− q(ψ(x⊗ z(1))⊗ q(y ⊗ z(2)))− q(q(x⊗ z(1))⊗ ψ(y ⊗ z(2))).

We recall that given a Lie algebra g over the ring k, we obtain a rack object as

follows [4]. Set X = k⊕g and indicate elements of X as pairs (a, x). The coalgebra

structure on X is given by ∆(a, x) = (a, x)⊗ (1, 0) + (1, 0)⊗ (0, x). The coalgebra

counit is defined as ε(a, x) = a. Define q((a, x) ⊗ (b, y)) = (ab, bx + [x, y]). It can

be shown that (X,∆) is a rack object with this choice of q. When g is an n-Lie

algebra, a similar construction, mutatis mutandis gives an n-rack object.

On X = k ⊕ g we define the projections π0 : X → k and π1 : X → g as

π0(a, x) = a and π1(a, x) = x. We will also often use the tensor products πi ⊗ πj .

§2.2. Yang–Baxter operators

Let V be a module over k, and let R : V ⊗ V → V ⊗ V be a linear map. If R

satisfies the operator equation

(2.1) (R⊗ 1)(1⊗R)(R⊗ 1) = (1⊗R)(R⊗ 1)(1⊗R),

then we say that R is a pre-Yang–Baxter operator. An invertible pre-Yang–Baxter

operator is called a Yang–Baxter (YB) operator. The full cochain complex for YB

cohomology can be found in [10]. We will, however, mostly use the low-dimensional

differentials, since we are mostly concerned with the second YB cohomology group,
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and recall them here:

δ1YB(f) = R(f ⊗ 1) +R(1⊗ f)− (f ⊗ 1)R− (1⊗ f)R,

δ2YB(ϕ) = (R⊗ 1)(1⊗R)(ϕ⊗ 1) + (R⊗ 1)(1⊗ ϕ)(R⊗ 1)

+ (ϕ⊗ 1)(1⊗R)(R⊗ 1)− (1⊗R)(R⊗ 1)(1⊗ ϕ)

− (1⊗R)(ϕ⊗ 1)(1⊗R)− (1⊗ ϕ)(R⊗ 1)(1⊗R),

where f : V → V is a YB 1-cochain, and ϕ : V ⊗ V → V is a YB 2-cochain.

We recall that given a rack object X, we obtain a YB operator by setting

R(x⊗ y) = y(1) ⊗ q(x⊗ y(2)).

This procedure generalizes the standard set-theoretic YB operator arising from

racks. Given an n-rack, we can similarly obtain a YB operator on X⊗(n−1) by

setting

R(x1 ⊗ x2 ⊗ · · · ⊗ xn) = x
(1)
2 ⊗ · · · ⊗ x(1)n ⊗ q(x1 ⊗ x

(2)
2 ⊗ · · · ⊗ x(2)n ).

This correspondence has been used in [13] to show that from an n-Lie algebra,

and its corresponding n-rack object X, one can derive a monomorphism between

the second rack cohomology group into the YB second cohomology group. In other

words, infinitesimal deformations of n-Lie algebras (or infinitesimal deformations

of the corresponding n-rack objects) give rise to infinitesimal deformations of the

corresponding YB operators. Moreover, if the Lie deformation is nontrivial, the

corresponding YB deformation is nontrivial as well.

§3. Higher deformations of rack objects

Let us consider an n-ary rack object (X,T,∆) induced by an n-ary Lie algebra

g as in [1, 13]. In this case, in [13] it was shown that there is an injective map

from the Lie algebra second cohomology group of g to the rack second cohomology

group of X. Moreover, under some mild assumptions this homomorphism is also

an isomorphism. As the second rack cohomology group H2
SD(X,X) characterizes

the infinitesimal deformations of X, we have an infinitesimal deformation of X cor-

responding to each n-Lie algebra 2-cocycle. We want to consider the obstructions

to extending this infinitesimal deformation to higher orders.

Throughout this article we leave the comultiplication undeformed. In [13] it

was shown that SD deformations where the comultiplication is deformed nontriv-

ially exist. However, we leave this more general case to a subsequent study.
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We recall that, following definitions of [13], a 2-cochain ψ : X⊗X → X is called

special if for all (a, x) and (b, y) in X it holds that ψ((a, x)⊗ (b, y)) = (0, ϕ(x⊗y))
for some ϕ : g⊗ g → g.

For a Lie k-cochain ϕ, define the following SD k-cochain: Θk(ϕ)((a1, x1)⊗· · ·⊗
(ak, xk)) = (0, ϕ(x1 ⊗ · · · ⊗ xk)). This correspondence defines a map Ck

Lie(g, g) →
Ck

SD(X,X), from the kth Lie cochain group to the kth SD cochain group. In the

next result, and the rest of the article, the term tensorand will be used to indicate

the elements appearing in simple (i.e. pure) tensors. For instance, in the tensor

x⊗ y, x and y will be called tensorands.

Theorem 3.1. Let g be an n-Lie algebra and let (X,T,∆) denote its correspond-

ing n-rack object. Assume that ϕ =
∑m

i=0 ℏiϕi is an order m deformation of the

bracket of g. Then the correspondence Θm+1 gives an order m + 1 deformation

of X if the obstruction to extending ϕ to an order m + 1 Lie deformation van-

ishes. Moreover, if g has trivial center, then the obstructions to integrating any

infinitesimal deformation to a degree m deformation lie in H3
Lie(g, g), for all m.

Proof. We proceed by induction on the order m of the deformation. For the base

of induction, i.e. m = 1, we use [13, Thm. 5.1 and Prop. 6.6]. In fact, let ϕ =

ϕ0 + ℏϕ1, where ϕ0 = [•, •] is the bracket of g. Then it is known that ϕ is a

deformation if and only if ϕ1 is a Lie algebra 2-cocycle of g. Let us define the map

ψ = ψ0 + ℏψ1, where ψ0 := T is the n-rack operation corresponding to ϕ0, and

ψ1((a1, x1)⊗· · ·⊗ (an, xn)) = (0, ϕ1(x1⊗· · ·⊗xn)). Using [13, Prop. 6.6] it follows

that ψ1 is an n-rack 2-cocycle and, using [13, Thm. 5.1], ψ is an infinitesimal

deformation of T . Now assume that ϕ can be deformed through a map ϕ2, and

let us consider a deformation of order 2 of the n-rack structure ψ̂ = ψ + ℏ2ψ2,

where ψ2 := Θ3(ϕ2). Then imposing the n-ary self-distributive condition on ψ̂ is

equivalent to verifying that the equation

ψ̂
(
ψ̂((a1, x1)⊗ (a2, x2)⊗ (a3, x3))⊗ (a3, x3)⊗ (a4, x4)⊗ (a5, x5)

)
= ψ̂(ψ̂(x1 ⊗ y1)⊗ ψ̂(x2 ⊗ y2)⊗ ψ̂(x3 ⊗ y3))

holds, where we have used the shorthand notation yi := x
(i)
4 ⊗ x

(i)
5 (with upper

index indicating Sweedler’s notation for coalgebra multiplication). We can there-

fore equate the terms of the same degree in ℏ, and we only need to verify that the

terms of degree 2 are the same, since terms in degree higher than 2 in ℏ vanish

modulo ℏ3, and terms of lower degree are already known to be satisfied by hypoth-

esis. Moreover, from the definition of Θ3, we have that ψ2(X
⊗n) ⊂ g⊗n, and also

ψ2 maps vectors containing a tensorand in a copy of the ground ring k to zero.

These facts simplify the computation very much. For notational simplicity, we write
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the equations in the case of ternary Lie algebras and 3-rack. This is generalized

immediately to the n-ary case. For the left-hand side of n-ary self-distributivity

evaluated on simple tensors we have

ψ̂
(
ψ̂((a1, x1)⊗ (a2, x2)⊗ (a3, x3))⊗ (a3, x3)⊗ (a4, x4)⊗ (a5, x5)

)
= ℏ0[· · · ] + ℏ1[· · · ]
+ ℏ2[ϕ2(ϕ0(x1 ⊗ x2 ⊗ x3)⊗ x4 ⊗ x5) + ϕ1(ϕ1(x1 ⊗ x2 ⊗ x3)⊗ x4 ⊗ x5)

+ ϕ0(ϕ2(x1 ⊗ x2 ⊗ x3)⊗ x4 ⊗ x5)]

+ ℏ3[· · · ].

For the right-hand side of the equation we have, setting for simplicity yi := x
(i)
4 ⊗

x
(i)
5 (observe the superscript due to comultiplication in Sweedler notation),

ψ̂(ψ̂(x1 ⊗ y1)⊗ ψ̂(x2 ⊗ y2)⊗ ψ̂(x3 ⊗ y3))

= ℏ0[· · · ] + ℏ1[· · · ]
+ ℏ2[ϕ2(ϕ0 ⊗ ϕ0 ⊗ ϕ0) + ϕ0(ϕ2 ⊗ ϕ0 ⊗ ϕ0) + ϕ0(ϕ0 ⊗ ϕ2 ⊗ ϕ0)

+ ϕ0(ϕ0 ⊗ ϕ0 ⊗ ϕ2) + ϕ1(ϕ1 ⊗ ϕ0 ⊗ ϕ0) + ϕ1(ϕ0 ⊗ ϕ1 ⊗ ϕ0)

+ ϕ1(ϕ0 ⊗ ϕ0 ⊗ ϕ1) + ϕ0(ϕ1 ⊗ ϕ1 ⊗ ϕ0) + ϕ0(ϕ1 ⊗ ϕ0 ⊗ ϕ1)

+ ϕ0(ϕ0 ⊗ ϕ1 ⊗ ϕ1)](x1 ⊗ y1 ⊗ x2 ⊗ y2 ⊗ x3 ⊗ y3)

+ ℏ3[· · · ].

Equating, we see that in order for ψ̂ to satisfy the self-distributive property, the

equation

(3.1) δ2Lie(ψ2) +
1

2
[ψ1, ψ1]NR = 0,

needs to hold, where [•, •]NR is the ternary (n-ary in general) version of the Lie

bracket defined by Nijenhuis and Richardson [21] in the binary case. Therefore,

this is the same obstruction to extend ϕ0 + ℏϕ1 to a deformation of degree 2, and

the obstruction lies in H3
Lie(g, g) generalizing the binary case shown in [21]. To

complete the proof of the base of induction, we need to show that this is always

the case when g has trivial center. Observe that, from [13, Lem. 6.3], whenever g

has trivial center, the infinitesimal deformation ψ1 of the SD structure is special,

and it is characterized by a map ϕ1 : g⊗ g → g. This in practice means that every

infinitesimal deformation of X arises from a deformation of g through Θ2 (see [13,

Thm. 6.4]). Now we want to show that an order 2 deformation will also be obtained
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through Θ3 and a higher-order deformation ϕ2 for g. To do so, observe that the

term [ϕ1, ϕ1]NR in equation (3.1) is trivial when evaluated on terms containing

a tensorand in k, because of [13, Lem. 6.3]. Therefore, on simple tensors of type

(0, x) ⊗ (1, 0) ⊗ (0, z) and (0, x) ⊗ (0, y) ⊗ (1, 0), equation (3.1) reduces to the

evaluation of δ2Lie(ψ2). However, this is exactly the same situation as the proof of

[13, Lem. 6.3], which can be repeated, showing that ψ2 = Θ3(ϕ2) for some Lie

algebra 2-cochain. Therefore, this has been reduced to the previous situation, for

which we already know that the obstruction to the degree 2 deformation lies in

H3
Lie(g, g). This completes the proof of the base of induction.

Let us now assume that the statement has been proved for some m > 1, and

let us consider the case m+1. Let then ϕ =
∑m

i=0 ℏiϕi be an order m deformation

of g. We want to show that if the obstruction to extending the deformation of g

to order m + 1 vanishes, then we obtain an order m + 1 deformation of X via

Θm+1. Observe that from the induction step, we already know that ψ = Θm(ϕ)

is an order m deformation of X. Let us set ψ̂ = ψ + ℏm+1ψm+1. Let us consider

the SD condition for ψ̂. Since we already know that up to degree m the equation

is satisfied, we can discard all terms of degree lower than m + 1. We consider in

what follows the binary case, since the n-ary case is a straightforward, although

cumbersome, generalization of this. For the left-hand side of the SD condition in

degree m+ 1 we obtain

(3.2) ψ̂(ψ̂ ⊗ 1) =

m+1∑
i,j=0

ψi(ψj ⊗ 1).

For the right-hand side of the SD property, we have

(3.3) ψ̂(ψ̂ ⊗ ψ̂)� (1⊗2 ⊗∆) =

m+1∑
i,j,k=0

ψi(ψj ⊗ ψk)� (1⊗2 ⊗∆).

Now, using the definition of ψ̂ as the image of ϕ̂ through Θm+1, we can rewrite

equations (3.2) and (3.3) in terms of ϕ̂. For equation (3.2) on simple tensors

(a1, x1)⊗ (a2, x2)⊗ (a3, x3) we obtain

ψ̂
(
ψ̂((a1, x1)⊗ (a2, x2))⊗ (a3, x3)

)
=

(
a1a2a3, a2a3x+

∑
a3ℏiϕi(x1 ⊗ x2) +

∑
j

a2ℏjϕj(x1 ⊗ x3)

+
∑
k,ℓ

ℏk+ℓϕk(ϕℓ(x1 ⊗ x2)⊗ x3)

)
.
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For equation (3.3) evaluated on simple tensors as above, and setting�(1⊗2⊗∆) :=

∆�, we find

ψ̂(ψ̂ ⊗ ψ̂)∆�(a1, x1)⊗ (a2, x2)⊗ (a3, x3)

=

(
a1a2a3, a2a3x1 +

∑
i

a2ℏiϕi(x1 ⊗ x3) +
∑
j

a3ℏjϕj(x1 ⊗ x2)

+
∑
k,ℓ

ℏk+ℓ[ϕk(ϕℓ(x1 ⊗ x3)⊗ x2) + ϕk(x1 ⊗ ϕℓ(x2 ⊗ x3))]

)
.

From the inductive assumption, up to degreem in the powers of ℏ, the SD property

holds, so we can restrict ourselves to degrees of order m+ 1 (higher orders vanish

modulo ℏm+2). For the left-hand side of the SD property we obtain

[ψ̂(ψ̂((a1, x1)⊗ (a2, x2))⊗ (a3, x3))]deg=m+1

= a3ϕm+1(x1 ⊗ x2) + a2ϕm+1(x1 ⊗ x3) + ϕm+1(ϕ0(x1 ⊗ x2)⊗ x3)

+ ϕ0(ϕm+1(x1 ⊗ x2)⊗ x3) +
∑
i,j

ϕi(ϕj(x1 ⊗ x2)⊗ x3)

and for the right-hand side we have

[ψ̂(ψ̂ ⊗ ψ̂)∆�(a1, x1)⊗ (a2, x2)⊗ (a3, x3)]deg=m+1

= a2ϕm+1(x1 ⊗ x3) + a3ϕm+1(x1 ⊗ x2) + ϕm+1(ϕ0(x1 ⊗ x3)⊗ x2)

+ ϕ0(ϕm+1(x1 ⊗ x3)⊗ x2) + ϕm+1(x1 ⊗ ϕ0(x2 ⊗ x3))

+ ϕ0(x1 ⊗ ϕm+1(x2 ⊗ x3))

+
∑
i,j

[ϕi(ϕj(x1 ⊗ x3)⊗ x2) + ϕi(x1 ⊗ ϕj(x2 ⊗ x3))].

We observe that all the terms containing ai cancel out, and what is left can be

rewritten as

δ2Lie(ϕm+1) +
1

2
[ϕ≥1, ϕ≥1]NR = 0,

which is the obstruction for ϕ to be extended to a degree m + 1 deformation

as a Lie algebra [21]. This completes the inductive step for the first part of the

statement. We need to show, now, that when g has trivial center, the deformations

in the form of Θm+1(ϕm+1) are the only ones. Let ψ =
∑m

i=0 ℏiψi be an order m

deformation and set ψ̂ =
∑m+1

i=0 ℏiψi. Then, if ψm+1 is such that ψ̂ is an order

m + 1 deformation, we can equate the left-hand side and right-hand side of the

SD property at degree m+1 substantially following the computation given before,

which for the left-hand side gives

[ψ̂(ψ̂ ⊗ 1)]deg=m+1 = ψ0(ψm+1 ⊗ 1) + ψm+1(ψ0 ⊗ 1) +
∑

ψi(ψj ⊗ 1),
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where the sum runs over the pairs (i, j) such that i+ j = m+ 1 and i, j ̸= m+ 1.

For the right-hand side of the SD property, we have

[ψ̂(ψ̂ ⊗ ψ̂)� (1⊗2 ⊗∆)]deg=m+1 = ψm+1(ψ0 ⊗ ψ0)� (1⊗2 ⊗∆)

+ ψ0(ψm+1 ⊗ ψ0)� (1⊗2 ⊗∆)

+ ψ0(ψ0 ⊗ ψm+1)� (1⊗2 ⊗∆)

+
∑

ψi(ψj ⊗ ψk)� (1⊗2 ⊗∆),

where the sum runs over i, j, k ̸= m+1 such that i+ j + k = m+1. Observe that

equating we obtain a term that coincides with δ2SD(ψm+1) and a term that only

contains terms ψi where i < m+ 1, which we will denote Ωm+1. By the inductive

assumption, all the maps ψi<m+1 appearing in Ωm+1 are obtained as Θi(ϕi) for

some Lie 2-cochain ϕi : g ⊗ g → g. A direct computation shows that Ωm+1, as

a result, is a special 2-cochain mapping g ⊗ g → g, and that it is trivial when

evaluated on X0 := k ⊗ k ⊕ k ⊗ g ⊕ g ⊗ k. As a consequence, the SD property

in degree m + 1 evaluated on X0 reduces to the 2-cocycle condition for ψm+1

evaluated on X0. However, from [13, Lem. 6.3] we know that this forces ψm+1 to

be special, and therefore in the image of Θm+1. It follows now that if ϕm+1 is such

that Θm+1(ϕm+1) = ψm+1, the obstruction in terms of the Lie algebra g for ϕm+1

needs to vanish, and the proof is complete.

As a direct consequence of the previous result, we obtain the following rigidity

criterion for SD structures.

Corollary 3.2. Let (X,T,∆) denote the n-rack object associated to a semisimple

Lie algebra g. Then X cannot be deformed as an SD structure.

Proof. Observe that from Theorem 3.1 there are no deformations due to terms

purely in the Lie algebra, i.e. special, since the second cohomology group of g is

trivial. Then the result follows once we show that there are no deformations that

are not special. This was shown in [13], therefore concluding the proof.

§4. Higher deformations of Yang–Baxter operators

We now consider the effect of integrating infinitesimal deformations, and we show

that the obstruction to lifting YB deformations lies in the n-Lie algebra cohomol-

ogy, under suitable conditions. This construction gives a way of producing higher

deformations of YB operators corresponding to an n-Lie algebra.

We start by considering certain types of YB cochains that arise from Lie

algebra cochains, and study the obstruction to higher-order YB deformations.



816 E. Zappala

Definition 4.1. For ϕ : g ⊗ g → g a Lie algebra 2-cochain with coefficients in g,

we construct a YB 2-cochain Λ2(ϕ) : X ⊗X → X ⊗X through the assignment

Λ2(ϕ)((a, x)⊗ (b, y)) = (b, y)(1) ⊗ ϕ
(
x⊗ π1((b, y)

(2))
)
,

where π1 : X → g projects on the second coordinate. We will call these cochains

Λ-cochains, and the corresponding deformations will be called Λ-deformations.

Such a correspondence defines a subclass of YB 2-cochains, and we will show

that the deformation theory of such cochains directly relates to that of the Lie

algebra g. In the following we assume k to have zero characteristic. We use the

notation found in [21] for the Lie bracket [ξ, χ] in the space of alternating maps.

We also introduce the following sets

Γm :=
{
(i, j, k) ∈ N×3

∣∣ i+ j + k = m, i, j, k ̸= m
}
.

We further introduce the decomposition Γm =
⊔

l=1,2,3 Γ
l
m ⊔ Γ̂m, where Γl

m is the

subset of Γm such that the triples (i, j, k) have zero in the entry l, and Γ̂m is the

subset such that no entry is zero. Observe that from the definition of Γm at least

two entries in (i, j, k) need to be nonzero.

Theorem 4.2. Let g be an n-Lie algebra, and let X denote the corresponding n-

ary SD object, with R the induced YB operator. Assume that R̂ =
∑m

i=0 ℏiRi is a

deformation of order m, with R0 := R and Ri = Λ2(ϕi) for Lie algebra 2-cochains

ϕi. Then the obstruction to deforming R to degree m+ 1 is given by

(4.1) δ2Lieϕm+1 +

m∑
k=1

1

2
[ϕk, ϕm+1−k] = 0.

Proof. We prove the result for binary SD structure, although the same approach,

with notational modifications also gives the result for n-ary SD structures. We

proceed by induction on m. The case m = 1 means that we have an infinitesimal

deformation of R of type Λ2(ϕ1), and we want to derive the obstruction to lifting

this deformation to a quadratic one. From [13] we already know that Λ2(ϕ1) needs

to be a YB 2-cocycle, and that this fact implies that ϕ1 is a Lie algebra 2-cocycle.

Let us consider Λ2(ϕ2), where ϕ2 is a Lie 2-cochain. Here, ϕ0 indicates the Lie

bracket of g. Also, observe that Λ2(ϕ0) coincides with the SD operation q, as it is

seen by a direct computation. For short we will indicate the mapping Λ2 simply

by Λ. Let us consider the right-hand side of the YB equation for the terms which

are quadratic in ℏ, since we already know that the equation holds for the other

terms. Denoting the right-hand side quadratic terms as ΨR
2 , by evaluating on a
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simple tensor (a, x)⊗ (b, y)⊗ (c, z) we have

ΨR
2 (a, x)⊗ (b, y)⊗ (c, z)

= (1⊗ Λ(ϕ0))(Λ(ϕ0)⊗ 1)((a, x)⊗ (1, 0)⊗ ϕ2(y ⊗ z))

+ (1⊗ Λ(ϕ0))(Λ(ϕ2)⊗ 1)((a, x)⊗ (c, z)⊗ (b, y)

+ (a, x)⊗ (1, 0)⊗ (0, [y, z]))

+ (1⊗ Λ(ϕ2))(Λ(ϕ0)⊗ 1)(Λ(ϕ2)⊗ 1)((a, x)⊗ (c, z)⊗ (b, y)

+ (a, x)⊗ (1, 0)⊗ (0, [y, z]))

+ (1⊗ Λ(ϕ0))(Λ(ϕ1)⊗ 1)((a, x)⊗ (1, 0)⊗ ϕ1(y ⊗ z))

+ (1⊗ Λ(ϕ1))(Λ(ϕ0)⊗ 1)((a, x)⊗ (1, 0)⊗ ϕ1(y ⊗ z))

+ (1⊗ Λ(ϕ1))(Λ(ϕ1)⊗ 1)((a, x)⊗ (c, z)⊗ (b, y)

+ (a, x)⊗ (1, 0)⊗ [y, z])

= (1, 0)⊗ ϕ2(y ⊗ z)⊗ (a, x) + (1, 0)⊗ (1, 0)⊗ [x, ϕ2(y ⊗ z)]

+ (1, 0)⊗ (b, y)⊗ ϕ2(x⊗ z) + (1, 0)⊗ (1, 0)⊗ [y, ϕ2(x⊗ z)]

+ (c, z)⊗ (1, 0)⊗ ϕ2(x⊗ y) + (1, 0)⊗ (1, 0)⊗ ϕ2([x, z]⊗ y)

+ (1, 0)⊗ (1, 0)⊗ ϕ2(x⊗ [y, z])

+ (1, 0)⊗ (1, 0)⊗ ϕ1(x⊗ ϕ1(y ⊗ z))

+ (1, 0)⊗ (1, 0)⊗ ϕ1(ϕ1(x⊗ z)⊗ y),

where we have indicated terms of type (0, x) for x ∈ g by x, for ease of notation.

Similarly, for the left-hand side of the YB equation in degree 2, which we indicate

by ΨL
2 , we find the equality

ΨL
2 (a, x)⊗ (b, y)⊗ (c, z)

= (c, z)⊗ (1, 0)⊗ ϕ2(x⊗ y) + (1, 0)⊗ (1, 0)⊗ [ϕ2(x⊗ y), z]

+ (1, 0)⊗ (b, y)⊗ ϕ2(x⊗ z) + (1, 0)⊗ ϕ2(y ⊗ z)⊗ (a, x)

+ (1, 0)⊗ (1, 0)⊗ ϕ2([x, y]⊗ z) + (1, 0)⊗ (1, 0)⊗ ϕ1(ϕ1(x⊗ y)⊗ z).

Equating the two terms we find that the YB equation holds if and only if

(1, 0)⊗ (1, 0)⊗
(
[ϕ2(x⊗ y), z] + ϕ2([x, y]⊗ z) + ϕ1(ϕ1(x⊗ y)⊗ z)

)
= (1, 0)⊗ (1, 0)⊗

(
[x, ϕ2(y ⊗ z)] + [y, ϕ2(x⊗ z)] + ϕ2([x, z]⊗ y)

+ ϕx(x⊗ [y, z]) +ϕ1(x⊗ϕ1(y⊗ z))+ϕ1(ϕ1(x⊗ z)⊗ y)
)
.

Up to two tensorands (1, 0), we see that this equation is equivalent to

δ2Lieϕ2 +

m∑
k=1

1

2
[ϕ1, ϕ1] = 0,
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which completes the case m = 1.

We now suppose that the statement holds true for some m > 1, and we

want to verify it for m + 1. We let ϕi be a family of Lie 2-cochains such that

R̂ =
∑m

i=0 Λ(ϕi) is a YB deformation of degree m, and we want to derive the

obstruction for Λ(ϕm+1), where ϕm+1 is a Lie 2-cochain, to give a deformation of

degree m+ 1. From the assumptions, we just need to impose that the YBE holds

for terms in degree m+ 1. We observe that when considering the terms of type

(Λ(ϕi)⊗ 1)(1⊗ Λ(ϕj))(Λ(ϕk)⊗ 1)− (1⊗ Λ(ϕi))(Λ(ϕj)⊗ 1)(1⊗ Λ(ϕk)),

with i = m+1, or j = m+1 or k = m+1, this gives us the Lie algebra 2-cocycle

condition for ϕm+1 up to an overall tensor product of (1, 0)⊗ (1, 0) as for the case

withm = 1. Therefore, these terms give rise to δ2Lie(ϕm+1) of equation (4.1). Let us

now consider the terms where more than one subscript of the ϕi is nontrivial. We

distinguish four different cases, depending on which component of Γm+1 the triple

(i, j, k) belongs to. We consider first the terms (Λ(ϕi)⊗1)(1⊗Λ(ϕj))(Λ(ϕk)⊗1).

When (i, j, k) ∈ Γ1
m+1, we have

(Λ(ϕi)⊗ 1)(1⊗ Λ(ϕj))(Λ(ϕk)⊗ 1)((a, x)⊗ (b, y)⊗ (c, z))

= (Λ(ϕ0)⊗ 1)(1⊗ Λ(ϕk))(Λ(ϕm+1−k)⊗ 1)((a, x)⊗ (b, y)⊗ (c, z))

= (1, 0)⊗ (1, 0)⊗ ϕk(ϕm+1−k(x⊗ y)⊗ z).

A direct inspection shows that when (i, j, k) ∈ Γm+1 − Γ1
m+1, the term (Λ(ϕi) ⊗

1)(1 ⊗ Λ(ϕj))(Λ(ϕk) ⊗ 1)((a, x) ⊗ (b, y) ⊗ (c, z)) vanishes for all simple tensors.

When considering the terms of type (1⊗Λ(ϕi))(Λ(ϕj)⊗1)(1⊗Λ(ϕk)), we have that

for (i, j, k) ∈ Γ1
m+1, Γ̂m+1 the terms vanish identically, while for (i, j, k) ∈ Γ2

m+1

we obtain (1, 0)⊗(1, 0)⊗ϕk(x⊗ϕm+1−k(y⊗z)), and for (i, j, k) ∈ Γ3
m+1 we obtain

(1, 0)⊗ (1, 0)⊗ϕk(ϕm+1−k(x⊗ z)⊗ y). Therefore, for each k = 1, . . . ,m we obtain

(up to a tensor factor) 1
2 [ϕk, ϕm+1−k]. Putting all the terms together completes

the proof.

A perturbative expansion of a YB operator is a deformed YB operator with

higher-order (i.e. at least quadratic) deformations.

Corollary 4.3. Let g be an n-Lie algebra, and let R denote the associated YB

operator. The obstruction to lifting a degree k Λ-deformation to a degree k + 1

Λ-deformation lies in the third Lie algebra cohomology group H3(g, g).

Proof. Given a degree k Λ-deformation, from Theorem 4.2 we see that the obstruc-

tion coincides with the Lie algebra obstruction of degree k+1, which is well known

to lie in H3(g, g) (see for instance [21] for the binary case, and [26] for the n-ary

case).
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The following result, concerning the perturbative expansion of YB operators,

is now immediate.

Corollary 4.4. Let g be an n-Lie algebra, and let R denote the associated oper-

ator. Assume that a nontrivial infinitesimal Λ-deformation of R exists. Then, if

H3(g, g) = 0, we can deform R arbitrarily many times.

The results above give a procedure to start with a Lie algebra g, obtain a YB

operator over the k-module and then produce a perturbative series R̂ =
∑∞

i=0 ℏiRi,

where R0 = R, that satisfies the YB equation over the k[[ℏ]]-module X̂ = k[[ℏ]]⊗X.

This can automatically be done whenever g has nontrivial second cohomology and

trivial third cohomology.

However, from Theorem 3.1 we also obtain that when g has trivial center, and

H2
Lie(g, g) = 0, the corresponding YB operator does not admit Λ-deformations.

Corollary 4.5. Let g be an n-Lie algebra with trivial center and H2
Lie(g, g) = 0.

Let R denote the corresponding YB operator. Then R does not admit Λ-deforma-

tions.

Proof. Theorem 3.1 and the results of [13] show that deforming the Lie algebra

structure is equivalent to deforming the SD structure. The rigidity of g implies that

the SD structure is rigid as well. A direct computation shows that Λ-deformations

are equivalent to deformations of the underlying SD structure, completing the

proof.

§5. More on second cohomology

It is of interest to consider in more detail a study of the second cohomology group

of YB operators. In fact, in order to be able to produce perturbative expansions

(of any degree), one needs the second cohomology group to be nontrivial.

In this section we assume that the ground field k is of zero characteristic,

and g indicates a (binary) Lie algebra. In the following, we assume the convention,

inspired by Sweedler’s notation, that a map ϕ : A → B ⊗ B is written as ϕ(x) =

ϕ(x)1 ⊗ ϕ(x)2, where a summation is intended.

Lemma 5.1. Let X = k⊕ g, and let R be the YB operator associated to g, which

is assumed to have trivial center and to be perfect (e.g. it is semisimple). Suppose

that ϕ is a YB 2-cocycle. Then ϕ is characterized by the following conditions:

(i) (π0 ⊗ π0)ϕ : g⊗ g → k is a Lie algebra 2-cocycle with coefficients in k.

(ii) ϕ(k⊗ k) = 0.

(iii) (π1 ⊗ π0)ϕ(g⊗ g) = 0.
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(iv) ϕ((1, 0) ⊗ (0, x)) = (1, 0) ⊗ g(x) and ϕ((0, x) ⊗ (1, 0)) = −(1, 0) ⊗ g(x) for

some Lie algebra derivation g : g → g.

(v) δ2Lie((π0 ⊗ π1)ϕ)(x⊗ y ⊗ z) = [[x, π1ϕ(y ⊗ z)1], π1ϕ(y ⊗ z)2]− [g(x), [y, z]].

(vi) It holds that

ϕ([x, y]⊗ z)1 ⊗ ϕ([x, y]⊗ z)2

= ϕ(y ⊗ z)1 ⊗ [x, π1ϕ(y ⊗ z)2] + ϕ(x⊗ z)1 ⊗ [π1ϕ(x⊗ z)1, y].

(vii) It holds that

[π1ϕ(x⊗ y)1, z]⊗ ϕ(x⊗ y)2 + ϕ(x⊗ y)1 ⊗ [π1ϕ(x⊗ y), z]

+ [y, π1ϕ(x⊗ z)1]⊗ ϕ(x⊗ z)2 − g(y)⊗ [x, z] + g(z)⊗ [x, y]

= ϕ(y ⊗ z)2 ⊗ [x, π1ϕ(y ⊗ z)1]− [y, z]⊗ g(x)

+ ϕ([x, z]⊗ y)1 ⊗ ϕ([x, z]⊗ y)2 + ϕ(x⊗ [y, z])1 ⊗ ϕ(x⊗ [y, z])2.

Proof. Let us set ϕ̂ = ϕ0 + ℏϕ1, where ϕ0 := R and ϕ1 := ϕ. Then ϕ being a

2-cocycle means that we have the equality

(ϕ1 ⊗ 1)(1⊗ ϕ0)(ϕ0 ⊗ 1) + (ϕ0 ⊗ 1)(1⊗ ϕ1)(ϕ0 ⊗ 1)

+ (ϕ0 ⊗ 1)(1⊗ ϕ0)(ϕ1 ⊗ 1)

= (1⊗ ϕ1)(ϕ0 ⊗ 1)(1⊗ ϕ0) + (1⊗ ϕ0)(ϕ1 ⊗ 1)(1⊗ ϕ0)

+ (1⊗ ϕ0)(ϕ0 ⊗ 1)(1⊗ ϕ1).(5.1)

The proof consists of a tedious direct analysis of the equality evaluated on differ-

ent types of simple tensors in X⊗3, where X = k⊕ g. Recall that we indicate by

π0 : X → k the projection on the first direct summand, and likewise by π1 : X → g

the projection on the second summand. Also, recall the (Sweedler-inspired) nota-

tion ϕi(u⊗ v)(1)⊗ϕi(u⊗ v)(2) to indicate the sum of terms in X⊗X in the image

of ϕi, for i = 0, 1. We also use the shorthand a+ x for (a, x).

Observe that, in general, we have

ϕ1(1⊗ 1) = r · 1⊗ 1 + 1⊗ v1 + v2 ⊗ 1 + u
(1)
i ⊗ u

(2)
i ,

for some r ∈ k, some fixed vectors v1, v2 ∈ g, and u
(1)
i ⊗ u

(2)
i ∈ g ⊗ g. However,

equation (5.1) on simple tensors of type x⊗1⊗1 and 1⊗1⊗z gives that all terms

in ϕ1(1⊗ 1) are zero, except possibly for r · 1⊗ 1, where we use the fact that g has

trivial center. So we have ϕ1(1⊗ 1) = r · 1⊗ 1.
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We evaluate equation (5.1) on tensors of type x⊗1⊗z, giving us the equation

r · 1⊗ 1⊗ [x, z] + 1⊗ [π1ϕ1(x⊗ 1)1, z]⊗ ϕ1(x⊗ 1)2

+ 1⊗ ϕ1(x⊗ 1)1 ⊗ [π1ϕ1(x⊗ 1)2, z]

= 1⊗ ϕ1([x, z]⊗ 1)1 ⊗ ϕ1([x, z]⊗ 1)2 + ϕ1(1,⊗z)1 ⊗ 1⊗ [x, π1ϕ1(1⊗ z)2]

+ 1⊗ ϕ1(1⊗ z)2 ⊗ [x, π1ϕ1(1⊗ z)1] + 1⊗ 1⊗ [[x, π1ϕ1(1⊗ z)1], π1(1⊗ z)2],

which forces (π1 ⊗ π1)ϕ1(1⊗ z) = 0 for all z ∈ g.

Equation (5.1) on tensors of type x⊗y⊗1 produces a term in the equation of

type ϕ1([x, y]⊗1)1⊗1⊗ϕ1([x, y]⊗1)2 which cannot have components in g⊗k⊗k

because it cannot be balanced by other terms. Therefore, using the fact that g

is perfect, it follows that (π1 ⊗ π0)ϕ1(x ⊗ 1) = 0 for all x in g. Similarly, the

component k⊗ k⊗ k of this equation gives that (π0 ⊗ π0)ϕ1(x⊗ 1) = 0 for all x

in g.

Equation (5.1) on tensors of type 1 ⊗ y ⊗ z projected on the components

k⊗ k⊗ g gives

1⊗ π0ϕ1(1⊗ y)1 ⊗ [π1ϕ1(1⊗ y)2] = π0ϕ1(1⊗ z)1 ⊗ 1⊗ [π1ϕ1(1⊗ z)2, y]

+ 1⊗ π0ϕ1(1⊗ [y, z])1 ⊗ π1ϕ1(1⊗ [y, z])2,

from which we derive that (π0 ⊗ π1)ϕ1(1 ⊗ x) = 1 ⊗ g(x) for some derivation

g : g → g of g. This is one of the equations characterizing ϕ1 in the statement of

the lemma. Terms projected in k⊗ g⊗ k give the symmetry

[f(y), z] = r · [y, z] + f([y, z]),

for all y, z in g, where f is defined through (π1 ⊗ π0)ϕ1(1 ⊗ x) = f(x) ⊗ 1.

Moreover, projecting on k ⊗ k ⊗ k (and using the fact that g is perfect) we find

that (π0 ⊗ π0)ϕ1(1⊗ x) = 0 for all x ∈ g.

Writing the symmetries that we have found up to now more explicitly, we can

write ϕ1(1⊗ x) = f1(x)⊗ 1+ 1⊗ g1(x), ϕ1(x⊗ 1) = 1⊗ g2(x)+h(x)1 ⊗h(x)2 and

ϕ1(1⊗ 1) = r · 1⊗ 1, where g1 is a Lie algebra derivation.

Equation (5.1) evaluated on x⊗ y ⊗ z projected on g⊗ g⊗ g gives

h(y)1 ⊗ h(y2)⊗ [x, z] = h(x)1 ⊗ [y, z]⊗ h(x)2,

which taking x = z forces h(x)1 ⊗ h(x)2 to be zero. This further simplifies the

expression of ϕ1(x⊗ 1).

Substituting equation (5.1) evaluated on x⊗ z⊗ 1 projected on k⊗k⊗g into

the equation on x⊗ 1⊗ z projected on k⊗ k⊗ g we get

2r[x, z] = [x, g2(z)] + [x, g1(z)] + [x, f1(z)],



822 E. Zappala

which gives [x, 2rz + g2(z)− g1(x) + f1(z)] = 0 for all x and z. Since g has trivial

center, we get 2rz + g2(z)− g1(x) + f1(z) = 0. A similar approach also gives that

2ry + g1(y)− g2(y) = 0 for all y ∈ g. Therefore, we must have that f1(x) = −4rx

for all x. However, from equation (5.1) evaluated on 1 ⊗ x ⊗ y and projected on

k ⊗ k ⊗ g we obtain that [f1(x), y] = r[x, y] + f1([x, y]). Substituting the f1 just

obtained we find that r[x, y] = 0 for all x, y, which is possible only if r = 0, since g

is not abelian. This gives us that ϕ1(1⊗ 1) = 0, as in the statement of the lemma.

Moreover, we also have that g2 = −g1. This completes the proof of facts (ii), (iii)

and (iv).

The proofs of (i), (vi) and (vii) are obtained by considering equation (5.1)

evaluated on x⊗ y ⊗ z projected on the direct summands of X ⊗X ⊗X. In fact,

projecting over k⊗ k⊗ k we obtain the equation

α([x, y]⊗ z) = α([x, z]⊗ y) + α(x⊗ [y, z]),

where α : g⊗g → k is given by α(x⊗y) := (π0⊗π0)ϕ1(x⊗y). This equation is the

2-cocycle condition for α with coefficients in k, which gives us (i). Equation (5.1)

projected on g⊗ g⊗ g was considered above. The projections over k⊗ g⊗ k and

g ⊗ g ⊗ k are seen to be satisfied identically. The projection over g ⊗ k ⊗ g gives

(vi), while the projection over k ⊗ g ⊗ g gives (vii). Finally, (v) follows from the

projection on the summand k⊗ k⊗ g.

Let g be a Lie algebra satisfying the hypotheses of Lemma 5.1. We define the

groups Z(g), B(g) and H(g) as follows. The group Z(g) is defined as the group of

triples (g, ζ, ξ) with g : g → g, ζ : g ⊗ g → g and ξ : g ⊗ g → g ⊗ g, where g is a

derivation, ξ satisfies (vi), and the compatibility conditions (v) and (vii) between

g, ζ and ξ are satisfied. The group B(g) is defined as the subgroup of Z(g), where

g(x) = [w, x] (inner derivation), ζ(x⊗ y) = [h(x), y] + [x, h(y)]− h([x, y])− s[x, y]

and ξ(x ⊗ y) = −w ⊗ [x, y] for some s ∈ k, w ∈ g and h : g → g. Finally, we set

H(g) := Z(g)/B(g).
We give now a characterization of the second cohomology group of YB oper-

ators Rg arising from Lie algebras that are perfect, and with zero center (e.g. they

are semisimple).

Theorem 5.2. Let g be a perfect Lie algebra with zero center. Let us denote by R

the YB operator associated to it. Then the second cohomology group of R is given

by H2
YB(R) = H2

Lie(g,k)⊕H(g).

Proof. The most difficult part of the proof is to obtain a characterization for the

2-cocycles. This has been done in Lemma 5.1. They constitute the set Z(g) defined

above.
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We need to derive the coboundaries. The coboundary of a 1-cochain f : X →
X is given by

δ1YB(f)(a, x)⊗ (b, y)

= a · (1, 0)⊗ (0, [w, y]) + b · (1, 0)⊗ (0, [x,w]) + (1, 0)⊗ (0, [f1(x), y])

+ (1, 0)⊗ (0, [x, f1(y)])− s · (1, 0)⊗ (0, [x, y])− (0, w)⊗ (0, [x, y])

− (1, 0)⊗ (f0([x, y], 0))− (1, 0)⊗ (0, f1([x, y])),

where we have used the decomposition of f as f(a, x) = af(1)+ f(x), we have set

f(1) = (s, w) and written f(x) = (f0(x), f1(x)), with f0 : X → k and f1 : X → g.

While not immediately obvious, one can directly verify that these coboundaries

satisfy (i)–(vii) in Lemma 5.1 as required.

To complete the proof, we need now to consider the components of equa-

tion (5.1) projected on the simple tensorands modulo the projections of the

coboundaries. A direct (and rather tedious) analysis shows that projecting on

summands other than k ⊗ k ⊗ k we obtain B(g) defined above. Combining this

with the 2-cocycles from Lemma 5.1 gives rise to the direct summand H(g).

Projecting on k⊗ k⊗ k we find f0([x, y]), which is the Lie coboundary with

trivial coefficients in k. Observe that the 2-cocycle component on k ⊗ k ⊗ k is

precisely the 2-cocycle condition for Lie cohomology with trivial coefficients, by

Lemma 5.1. This term is completely independent of the triples in H(g). Therefore,

we get the remaining summand H2
Lie(g,k). This completes the proof.

It is well known that Lie cohomology is trivial for semisimple Lie algebras.

However, as we will see in the examples below, the cohomology of YB operators

associated to semisimple Lie algebras is not necessarily trivial. In fact, it turns

out that H(g) ̸= 0 when g = sl2(C). This fact is somewhat surprising, considering

that semisimple Lie algebras do not admit any nontrivial deformations, which is

the second Whitehead lemma.

Remark 5.3. A Lie algebra g endowed with a 2-cocycle β : g ⊗ g → k is also

called a quasi-Frobenius Lie algebra. Moreover, if β is a coboundary, g is said to

be a Frobenius Lie algebra; see [23]. Therefore, the direct summand H2
Lie(g,k) of

H2
YB(R) is the set of equivalence classes of quasi-Frobenius structures on g.

Remark 5.4. There is an interesting class of perfect Lie algebras with trivial

center, namely the sympathetic Lie algebras of Benayadi [2]. They are additionally

assumed to satisfy the condition that all derivations are inner. Recent work of

Burde and Wagemann has shown that sympathetic Lie algebras might have non-

trivial second cohomology [3], which therefore gives rise to nontrivial YB second
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cohomology. By virtue of the characterization in Theorem 5.2, it is possible to

attempt a complete study of H2
YB(R) where R is the YB operator associated to

the 25-dimensional Benayadi Lie algebra gB , whose second Lie cohomology group

is nontrivial. In fact, H2(gB ,C) = 0, and all derivations are inner. So the problem

of determining H2
YB(R) is simpler.

§6. Examples

We now consider some examples of the theory developed in this article. In particu-

lar, we show that there exist YB operators that admit infinitely many deformations

(i.e. their deformations are integrable), and show that starting from semisimple

Lie algebras, we can find YB operators that have nontrivial deformations.

We start by constructing a YB operator that can be deformed infinitely many

times and, therefore, admits perturbative expansions of any order.

Example 6.1. Let Hm be the Heisenberg Lie algebra of dimension 2m+1. From

[25], we know that the Betti numbers of Hm are given by

dimHp(Hm,Hm) =

(
2m

p

)
−

(
2m

p− 2

)
,

where p ≤ m, which is not restrictive due to Poincaré duality. Therefore, the

5-dimensional Heisenberg Lie algebra H2 has

dimH2(H2,H2) = 5

and

dimH3(H2,H2) = 0.

This shows, applying Corollary 4.4, that the corresponding YB operator RH2
can

be deformed arbitrarily many times, giving rise to a perturbative expansion

R̂ =

∞∑
i=0

ℏiRi,

where R0 = RH2
is the original YB operator, and R1 is any choice of 2-cocycle in

any class of H2(H2,H2).

More generally, nilpotent Lie algebras are known to have highly nontrivial

cohomologies (in particular second cohomology) [9, 8], which have been studied in

some special cases in detail. The same procedure can be applied whenever the third

cohomology vanishes. Alternatively, one can consider the obstruction in the third

cohomology and determine whether this vanishes even when H3(g, g) is nonzero

on a case-by-case basis.
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Let us now consider the semisimple case. For such a Lie algebra, we know

that the bracket cannot be deformed. However, as we will see, there are nontrivial

YB deformations, which therefore do not arise from Lie algebra deformations.

Example 6.2. Let g := sl2(C) be the special linear Lie algebra of dimension 3

with complex coefficients. It is a well-known fact that g has trivial cohomology,

since it is simple (Whitehead lemmas). A natural question that arises is whether

the YB second cohomology of the operator associated to g is trivial as well. In such

a case, the operator could not be deformed and no perturbative expansion would

exist. However, it turns out that the rigidity of the Lie algebra structure does not

imply the rigidity of the corresponding YB operator. In fact, a direct computation

using the characterization of Theorem 5.2 gives dimH2
YB(R) = 2.

Since, following Theorem 4.2, nontrivial Λ-deformations are equivalent to Lie

algebra deformations, it follows that the deformations of the YB operator R must

not be Λ-deformations, and therefore they do not arise from deformations of the

Lie algebra structure.
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