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Tame Fundamental Group Schemes of Curves
in Positive Characteristic

by

Shusuke OTABE

Abstract

The tame fundamental group scheme for an algebraic variety is the maximal linearly
reductive quotient of Nori’s fundamental group scheme. In this paper, we study the tame
fundamental group schemes of smooth curves defined over algebraically closed fields of
positive characteristic and develop the theory of cospecialization maps for them. As a
result, we see that the tame fundamental group schemes heavily depend on the curves.
We also see that numerical invariants of curves can be reconstructed from the tame
fundamental group schemes.

Mathematics Subject Classification 2020: 14H30 (primary); 14D23, 14115 (secondary).
Keywords: fundamental group schemes, linearly reductive group schemes, positive char-
acteristic.

§1. Introduction

Nori’s fundamental group scheme ©(X) [13, Chap. II] for a variety X defined over
a field k is by definition a profinite k-group scheme classifying finite flat torsors
of X. In the present paper, we will study its maximal linearly reductive quotient
mtame( X) (cf. Section 4.2) in the case where k = k is an algebraically closed field of
positive characteristic p > 0. We call 7%%™¢( X)) the tame fundamental group scheme
following [5, §10], where the terminology “tame” comes from the notion of tame
stacks in the sense of [2]. As the group of k-valued points, we recover the maximal
prime-to-p quotient of Grothendieck’s étale fundamental group, i.e. m**™¢(X)(k) ~
76 (X)®). Therefore, the tame fundamental group scheme m#™¢(X) is a group-
scheme-theoretic analogue of the prime-to-p étale fundamental group 75t (X )(p/).
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We will investigate the tame fundamental group schemes 7%™¢(U) of smooth
curves U defined over k. The structure of the étale part 75 (U)®") is well under-
stood by the experts (cf. [9]). If we denote by g the genus of the smooth compacti-
fication X = U°P' and by n the cardinality n = # (X \U)(k), then the isomorphism
class of 7é(U)®) can be determined by the pair of integers (g, n) and the profin-
ite group 7 (U)®") is not dependent on the curve U. See Section 3.1 for further
details. In contrast, as main results of the present paper, we will see that the tame
fundamental group scheme 7*3™¢(U) heavily depends on the curve U. As one of
the main results, we will prove the following.

Theorem 1.1 (Cf. Corollary 5.12). Let kg = F, be an algebraic closure of the
prime field F), of characteristic p > 0 and set S def Specko[t] = {s,n}, where s
andn are the closed point and the generic point of S, respectively. Let X be a proper
smooth relative S-curve of genus g together with a relatively étale Cartier divisor
D on X/S of degree n. We set U def ¥ \ Supp(D). Suppose that U is hyperbolic,
i.e. 2—2g9—mn < 0. If Uy is not defined over ko, then the tame fundamental group
scheme 7™ (Uy) of Uy is not isomorphic to w2 (Uy) X, ko (7).

We will also discuss reconstruction of numerical invariants (such as g, n) from
the tame fundamental group schemes. For ¢ = 1,2, let X; be a proper smooth
connected curve of genus g; and of p-rank ; over k and S; a finite set of closed
points of X; with cardinality n; = #5; > 0. We put U; def X; \ S;. As the
second main result, we will prove the following version of Tamagawa’s theorem

22, Thm. 4.1].

Theorem 1.2 (Cf. Theorem 5.16). Suppose that there exists an isomorphism of
k-group schemes w*®™e(U;) ~ w'¥me({,). Then we have (g1,n1,71) = (g2, n2,72)
unless g; =0 and n; <1 foriv=1,2.

We will explain the idea of the proof of Theorem 1.1. For the proof of the
theorem, we will give an extension of the theory of specialization maps for the
étale fundamental groups to the tame fundamental group schemes. Let S be a
scheme. Let X be a proper smooth relative S-curve of genus ¢ together with a
relatively étale Cartier divisor D on X/S of degree n. Let U ©f x \ Supp(D) be
the associated S-curve. We denote by 7t (U) the tame fundamental group of U in
the sense of Grothendieck [9, Exp. XIII, 2.1.3]. This is a profinite group classifying
finite étale coverings of U which are tamely ramified along D. By definition, the
tame fundamental group 7 (U) is a quotient of the étale fundamental group 7¢*(U).
In [9, Exp. XIII, 2.10], Grothendieck developed the theory of specialization maps
for the tame fundamental groups. The theory says that for any two geometric
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points 3, ¢ of S, where 5 is a specialization of ¢, there exists a surjective continuous
homomorphism, called the specialization map,

sp: my (Ug) - m1(Us),

which is canonical up to conjugation (see also Section 3.1). The theory of the spe-
cialization maps has many applications to analysis of the tame fundamental groups
of curves defined over fields of positive characteristic p > 0. Indeed, Grothen-
dieck himself used it to prove the finite-generatedness of the tame fundamental
groups and to give an explicit description of the maximal pro-prime-to-p quotient
7 (U)#) of the étale fundamental group (cf. Corollary 3.1). Other uses appear
in anabelian geometry (cf. [19, 18, 23, 21]; see also Section 3.2), where the spe-
cialization map plays a crucial role to prove non-constancy results for the tame
fundamental group on the moduli space M ), of n-pointed genus g curves.

To obtain an analogous theory for the tame fundamental group schemes, we
will consider a smaller quotient 7@™¢(U)?, which is the maximal pro-2 quotient
of the tame fundamental group scheme, where 2 is the class of finite linearly
reductive group schemes G whose connected part G is elementary, i.e. G° ~ Hp
for some integer s > 0 (see Definition 4.3). As a result, we will establish the
following theorem.

Theorem 1.3 (Cf. Proposition 5.9, Theorem 5.11). Let k be an algebraically closed
field of characteristic p > 0 and set S < Spec E[t] = {s,n}, where s and n are
the closed point and the generic point of S respectively. Let X be a proper smooth
relative S-curve of genus g together with a relatively étale Cartier divisor D on
X/S of degree n. We set U o x \ Supp(D).

(1) There exists a canonical homomorphism of affine k(7j)-group schemes
Cosp@: 7rtame(U-s)@ X1 k(T_]) — ,n_tame(Uﬁ)@

up to conjugation, which we call the cospecialization map, such that the fol-
lowing conditions are satisfied:

(i) The map cosp? is injective.

(ii) By taking the groups of k(7)-valued points, the map cosp? induces an
isomorphism between the mazximal pro-prime-to-p quotients of the étale
fundamental groups (cf. (3.3)) w$8(U,)®) o 78(U,)#").

(2) The following are equivalent:

(a) The cospecialization map cosp? is isomorphism.
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(b) For any G € 2, we have
#Hom (7™ (U,, )7, G) = #Hom(n"*™(Uy, z,7)?, Gr(m))-

(c) There exists an isomorphism of k-group schemes w4 (Uy, x4)? x 1.k(7) ~
7Ttame((]ﬁ’ xﬁ)@'

Remark 1.4. Below, we give some remarks concerning the main theorems.

(1) Theorem 1.3(1) is a variant of Grothendieck’s specialization theorem (cf. [9,
Exp. XIII, 2.10]; see also Section 3.1). The surjectivity of the specialization map
sp': 7 (Uz) — i (Us) is replaced by the injectivity of the cospecialization map.
Theorem 1.3(2) is a key ingredient for the proof of Theorem 1.1. Other ingredients
of the proof of Theorem 1.1 are structural results discussed in Section 4.3 and
Tamagawa’s specialization theorem for proper smooth curves (cf. [23, Thm. 6.1];
see also Theorem 3.4). Theorem 1.1 can be considered as a version of Tamagawa’s
specialization theorem (cf. [23, Thm. 8.1]; see Theorem 3.2).

(2) One can also see that if U is isomorphic to the trivial deformation Us Xy, k(7))
of the special fiber Uy, then the cospecialization map becomes an isomorphism
cosp? : e (U)? xy k() —» 7t%m¢(U,)?, which can be deduced from the base
change theorem for the tame fundamental group schemes of curves (cf. Proposition
4.17). On the other hand, Theorem 1.1 implies that the tame fundamental group
scheme is not constant on the moduli space Mg (4], of n-pointed genus g curves
over ky under the assumption that 2 — 2g — n < 0. However, this result is much
weaker than the non-constancy result for the tame fundamental group due to
Tamagawa (cf. [23, Thm. 8.6]), which asserts that the tame fundamental group is
not constant on the set M, 1,,(ko) of ko-valued points.

(3) As an application of [22, Thm. 4.1], Tamagawa provided a group-theoretic
characterization of inertia groups of the tame fundamental group 7% (U) for affine
hyperbolic curves U/k (cf. [22, Thm. 5.2]). It seems natural to seek an analogous
use of Theorem 1.2 for the tame fundamental group scheme 7%™¢(U). However,
the author has no idea of how to reconstruct inertia subgroup schemes in a purely
group-scheme theoretic manner at present.

(4) The starting point of this work was the expectation that results known for
prime-to-p Galois coverings could be extended to finite linearly reductive torsors
in some form. However, lifting problems for j,-torsors already indicate that the
situation is quite different. When U = X, the Serre duality implies that there exists
a natural isomorphism H} (X7, up) ~ Hg (X5, Z/pZ) for t € {s,n}, which sug-
gests that the classification of p,-torsors is closely related to the classification of
Z/pZ-torsors. However, the geometries of them are different. Indeed, it is known
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that any pp,-torsor over X can be extended to a p,-torsor over X xg S’ for
some finite extension S’ — S. On the other hand, the same does not hold for
Z/pZ-coverings. The non-existence of Z/pZ-models over X gives an obstruction
for the injectivity of the specialization map sp: 7" (X;) — 7¢*(Xs). Instead, any
Z/pZ-coverings over X, can be uniquely lifted to a Z/pZ-covering over X, but
deformations of a p,-torsor of X5 are far from unique. The non-uniqueness of
deformations of p,-torsors gives an obstruction for the surjectivity of the cospe-
cialization map cosp? : wt¥m¢(X )7 x, k(7)) — wtame(X ;).

We end this introduction section with the organization of the present paper.
In Section 2 we recall some basic notions which we freely use in the present paper.
In Section 2.1 we recall the definition of the Nori fundamental gerbe following [5]
(see also [13, Chap. II]). In Section 2.2 we recall the definition of root stacks in the
sense of [1]. In Section 3 we recall Grothendieck’s construction of the specialization
map for the tame fundamental group (cf. Section 3.1). We also recall the theorem
of Tamagawa (cf. Section 3.2). In the final subsection (cf. Section 3.3) we recall
a description of certain finite quotients of the étale fundamental groups of proper
smooth curves. In Section 4 we recall the definition of the tame fundamental
group scheme (cf. Section 4.1, Section 4.2) and discuss several structural results
(cf. Section 4.3, Section 4.4).

In Section 5 we prove the main results. First we recall a description of finite
quotients of the tame fundamental group scheme in Section 5.1. Next we settle a
certain lifting problem for finite linearly reductive torsors of curves in Section 5.2,
which is crucial for condition (i) in Theorem 1.3(1). In Section 5.3, we construct
the cospecialization map and prove Theorems 1.1 and 1.3. In the final Section 5.4,
we prove Theorem 1.2.

§2. Preliminaries

For a field k, we denote by Vec, the category of finite-dimensional vector spaces
over k. For an affine k-group scheme G, we denote by Rep(G) the category of
finite-dimensional left k-linear representations of GG. For an algebraic stack X over
a scheme S, we denote by QCoh(X) (respectively Vect(X)) the category of quasi-
coherent sheaves on X (respectively the category of vector bundles on X'). For
a field k, we have Vect(Speck) = Vecy. If X is Noetherian, we also consider the
category Coh(X) of coherent sheaves on X. If X = BgG is the classifying stack
of an affine flat and finitely presented S-group scheme G, then QCoh(BsG) is
nothing but the category of G-equivariant quasi-coherent sheaves on S. Namely,
it is the category of quasi-coherent sheaves F on S endowed with an action of G
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(cf. [2, §2.1]). In the case where S = Speck is the spectrum of a field k, all
three categories Coh(BG), Vect(BG) and Rep(G) are canonically equivalent to
each other.

§2.1. The Nori fundamental gerbe

2.1.1. Let k be a field. A finite stack over k is an algebraic stack I' over k
which has finite flat diagonal and admits a flat surjective morphism U — T' for
some finite k-scheme U (cf. [5, Def. 4.1]). A finite gerbe over k is a finite stack
over k which is a gerbe in the fppf topology. A finite stack I' is a finite gerbe
if and only if it is geometrically connected and geometrically reduced (cf. [5,
Prop. 4.3]). A profinite gerbe over k is a projective limit of finite gerbes over k
(cf. [5, Def. 4.6]).

2.1.2. Let X be an algebraic stack of finite type over k. Suppose that X is inflexible
in the sense of [5, Def. 5.3]. For example, if X' is geometrically connected and
geometrically reduced, then it is inflexible (cf. [5, Prop. 5.5(b)]). Then there exists
a profinite gerbe II over k together with a morphism X — II such that, for any
finite stack I' over k, the induced functor

Homy, (II,T') — Homyg (X, T)

is an equivalence of categories (cf. [5, Thm. 5.7]). Such a gerbe II is unique up to
unique isomorphism, so we denote it by Hljc ko and call it the Nori fundamental
gerbe for X (cf. [5]). If G is a finite k-group scheme, then the associated classifying
stack BG is a finite gerbe and there exists a natural bijection

Homy, (T} 1., BkG) = Homy, (X, BxG) = Hi, (X, G).

2.1.3. If X admits a k-rational point z € X' (k), then the composition Speck N
X = Hﬁ/k defines a section £ € Hﬁ/k(kz). We denote by 7N (X, z) the automorph-
ism group scheme Auty(€), i.e. 7N(X, ) def Auti(€). Let XY — X be the fpqc
aN(X, z)-torsor associated with the morphism X — Hﬁ/k & BerN(X,z). By
definition, it admits a unique k-rational point 2N € XN (k) above z. The result-
ing triple (XY, 7N(X, x),2N) then recovers Nori’s construction of the fundamental
group scheme of (X, z) in [13, Chap. II]. Namely, for any finite k-group scheme G,
the set of homomorphisms Hom (7N (X, z), G) is naturally bijective onto the set of
isomorphism classes of pointed G-torsors (P,p) — (X, z). More precisely, for each
homomorphism ¢: 7N(X,2) — G into a finite k-group scheme, the corresponding

pointed G-torsor is given by (P,p) o (XN, 2Ny x™ (X0 G,
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2.1.4. Let X be an inflexible algebraic stack of finite type over k. A morphism
X — T into a finite gerbe I is said to be Nori-reduced (cf. [5, Def. 5.10]) if for any
factorization X — I'" — T" where I is a finite gerbe and IV — T is faithful, then
I — T is an isomorphism. According to [5, Lem. 5.12], for any morphism X — T
into a finite gerbe, there exists a unique factorization X — A — T', where A is
a finite gerbe, X — A is Nori-reduced and A — T' is representable. A G-torsor
P — X is said to be Nori-reduced if the morphism X — BG is Nori-reduced.

2.1.5. Under the assumption that & is proper over k, the Nori fundamental gerbe
HI; Jk has a tannakian interpretation in terms of vector bundles on X'. Indeed, the
pullback functor of the morphism X — Hg Jk induces a fully faithful tensor functor

Vect(Hli/k) — Vect(X)

whose essential image is the tannakian category EFin(X) of essentially finite
bundles on X (cf. [5, §7]), i.e.

Vect(IT}, /) = EFin(X) C Vect(X).
§2.2. Root stacks

In this subsection, we will recall the definition of root stacks (cf. [1, Appx. B.2]).
Let S be a scheme and X a Noetherian S-scheme. Let D = (D;)_; be an n-tuple
of reduced irreducible relative effective Cartier divisors D; on X/S. For each i, let
Ox (D;) be the line bundle associated with D; and sp, € T'(X, Ox(D;)) a canonical
section. Then the pair (€x (D;), sp,) gives rise to a morphism ¢;: X — [AL/G,, s]
into the quotient stack [AL/G,, s] of the affine line A} with respect to the natural
action by the multiplicative group scheme G,, s. By taking the fiber product over
S, we get the S-morphism

oxp) = (0011 X = [[IAL/Gms] = [AZ/G, ).

i=1
Here, each morphism ¢; does not depend on the choice of the canonical section
sp, and the morphism ¢ x p) is natural with respect to the pair (X, D).

2.2.1. Now for any n-tuple of positive integers r = (r;)"_,, by taking the 2-fiber
product of the r-th power map 0,: [AS/G], 5] — [AG/G, ], we obtain the root
stack 3/D/X associated with the data (X, D,r),

VD/X —— [A"/GF)]

l g Jer

X —— 5 [A"/G2).



870 S. OTABE

The root stack {/D/X is a tame stack over S in the sense of [2], where the
natural projection map 7: {/D/X — X gives the coarse moduli space map. In
particular, the push-forward functor of the categories of quasi-coherent sheaves

7t QCoh(y/D/X) — QCoh(X)

is exact.

As the coarse moduli space map 7 is proper by definition, if X is proper over
S, then so is the root stack {/D/X. Note that the map 7: /D/X — X is an
isomorphism over the open subscheme U df x \ D, where D def Ui, Supp(D;)

and hence we have a natural open embedding U — /D/X.

2.2.2. On the other hand, the local picture around a stacky point can be described
as follows. Namely, for any closed point = € |{/D/X|o = | X|o with z & |U]o, there
exists a closed immersion By, y(z) < /D/X, where r, = (r;),ep, which fits
into the following commutative diagram:

B,U/rm,k(;c)c—> \/ D/X

L)

Spec k(r) —*— X.

The closed immersion Bjiy, pz) = +/D/X is nothing but the residual gerbe at
the point z in the sense of [24, Def. 06MU]. In particular, the residual gerbes of
the root stacks are always neutral gerbes.

83. The specialization map for the tame fundamental group
§3.1. Grothendieck’s specialization theorem

In this subsection, we will recall Grothendieck’s specialization theorem for the tame
fundamental group (cf. [9, Exp. XIII, 2.10]). Let S be a scheme. Let X be a proper
smooth relative S-curve of genus g with geometrically connected fibers and D a
relatively étale Cartier divisor on X/S of degree n. We set U df x \ Supp(D). For
each geometric point ¥ — U, we denote by 7} (U, ) the tame fundamental group
of U with respect to & (cf. [9, Exp. XIII, 2.1.3]). Note that if D = @ or S is the
spectrum of a field of characteristic 0, then the tame fundamental group =} (U, Z)
coincides with the étale fundamental group 7$*(U, 7). Let 3, £ be geometric points
of S such that 5 is a specialization of . Let S be the strict henselization of S at 3.



TAME FUNDAMENTAL GROUP SCHEMES OF CURVES IN POSITIVE CHARACTERISTIC 871

Then we get the commutative diagram

Ut-*ﬂ?<—U§

| 1]

f— S+,

with the Cartesian squares, where Uy X g S.
If we choose the geometric points Z; and Zy of Uz and Us respectively, then
we have canonical homomorphisms between the tame fundamental groups,

o1 WE(U{,.’EQ —» 7_[_1{([’;.7:%1) and ¢s: F{(Ug,fg) i) F;(ﬁ,i’z),

where the first homomorphism ¢, is surjective and the second one ¢, is an iso-
morphism (cf. [9, Exp. XIII, 2.10]). Therefore, if we take any path ¢12: W}((}, )=
ﬂ(ﬁ ,To) from Ty to Ty, then we get a surjective continuous homomorphism of
profinite groups

def
sp' =

(3.1) 5 1agn s T (Up, 71) — 7 (Us, %2),

which we call the specialization map for the tame fundamental group. By definition,
the map sp' is canonically determined by the curve U together with the geometric
points 3, ¢ of S up to inner automorphism of 7} (Us, Z2). Thus, we will often write

sp': 1 (Uz) — 71 (Us)

without mentioning the base points.
In the case where D = (), i.e. X = U, we get the specialization map for the
étale fundamental group

(3.2) sp =sp': 7S (Xg, 1) - 75( X5, To).

Moreover, if the point § has residue characteristic p > 0, then the special-
ization map (3.1) induces an isomorphism between the maximal pro-prime-to-p
quotients of the étale fundamental groups

(3.3) sp®): 7St (U, 7)) S w8t (U, 20) ).

These are the contents of Grothendieck’s specialization theorem. As an applic-
ation, we have the following consequence.

Corollary 3.1 (cf. [9, Exp. XIII, Cor. 2.12]). Let k be an algebraically closed field
of characteristic p > 0. Let X be a proper smooth connected curve of genus g over
k together with a finite (possibly empty) set Dy of closed points of Xo. We set
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n #S. Let X be a proper smooth relative curve of genus g over S def Spec W (k)
and D a set of S-valued points of X such that (X, D) xg Speck ~ (X, Dg). We
set U % X\ D and Uy ef Xo\ Dg. Let n € S be the generic point of S. Then

there exists a surjective continuous homomorphism
1" (Uy) — 71 (Vo)
which induces an isomorphism between the maximal pro-prime-to-p quotients
i (Up) ') = it (Uo) @).
In particular, the tame fundamental group w4 (Uy) of the curve Uy is topologically
finitely generated and we have an isomorphism of pro-prime-to-p groups

7 (U)®) ~ 1I®)

g,n>

where we define

a1,bi,...,a4,bq, |
(3.4) Hg’ndéf< b 927 H[ai,bi]51-~-6n:1>.
S1yee b | ih

§3.2. Tamagawa’s specialization theorem

In this subsection we will recall use of the specialization maps in anabelian geo-
metry for hyperbolic curves over algebraically closed fields of positive characteristic
(cf. [19, 18, 23, 21]). In particular, we will recall Tamagawa’s specialization theor-
ems (see Theorems 3.2 and 3.4 below).

Let ko e F,. Let S be an F,-scheme and U a smooth relative S-curve as in
Section 3.1. Recall that the curve U is said to be hyperbolic if 2 — 2g —n < 0.
Moreover, a curve over a field containing kg is said to be constant if it is defined

over ko.

Theorem 3.2 (Cf. [23, Thm. 8.1]). Let U be a hyperbolic S-curve and 3,t € S
two geometric points of S such that 5 is a specialization of t. Suppose that Us is
constant and that Uy is not constant. Then the specialization map sp*: % (Ur) —
73 (Us) for the tame fundamental group (cf. (3.1)) is not an isomorphism.

As a corollary of the theorem, Tamagawa also obtained a non-constancy result
of the tame fundamental group on the moduli space M [, F, of n-pointed genus
g curves (cf. [23, Thms. 8.3 and 8.6]).

For later use, let us reformulate the theorem for proper curves as follows.

Definition 3.3. Let % be the category of finite groups which has an elementary
abelian normal p-Sylow subgroup. For any profinite group II, we define the quotient
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II% to be
def .
(3.5) 0= lim TII/N,
NeE (M)

where €(IT) is the set of open normal subgroups N of II such that II/N € %.

Note that for any G € € with P <G the unique p-Sylow subgroup, the short
exact sequence

1-P—-G—-G/P—1

splits, i.e. G ~ (G/P) x P.

Theorem 3.4 (Cf. [23, Thm. 6.1 and Rem. 6.3], [19, Prop. 2.2.4(2)]). Let S =
Specko[[t] = {s,n}, where s (respectively n) is the closed point (respectively the
generic point) of S. Let X be a proper smooth relative S-curve of genus g > 2
with geometrically connected fibers. Suppose that X5 is not constant. Then the
map sp? : THX7)C — 7¢(X5)C induced by the specialization map for the étale
fundamental group (cf. (3.2)) is not an isomorphism.

Remark 3.5. In fact, the quotient considered in [19, Prop. 2.2.4(2)] or [23, Rem.
6.3] is not our 7$*(X)? but a larger one ng’p )(X) (cf. [19, §2, p. 343]). Precisely,
if we set P % Ker(ﬂp’p )(X) — 78 (X)®)), we have

o' (07 = a7 (X) /[P, PP

The latter group is the maximal pro-¢” quotient of w$*(X), i.e. ﬂ%p’p/)(X) o
(X )%ﬂl, where €” is the class of finite groups which has a normal p-Sylow sub-
group. Note that 4 C %’ and that each group G € %’ is isomorphic to a semi-direct
product G ~ H x P, where H has prime-to-p order and P is a p-group (cf. [16,
Sect. 1.1]).

However, the isomorphism class of the profinite group r{*? /)(X ) =7 (X)?
can be completely determined by the smaller quotient 7t (X)? . Indeed, as 7¢*(X)?’
is topologically finitely generated (cf. Corollary 3.1), the isomorphism class of the
profinite group 7¢*(X)%" can be determined by the set wé(X)%" of finite quo-
tients of 7$*(X)%" (cf. [23, Lem. 8.4]; see also Section 3.3). However, by the result
of Pacheco—Stevenson [16, Thm. 1.3] (see also [6, Prop. 2.5]), the set of finite quo-
tients 76 (X)?" can be completely determined by the one 7%(X)? of the maximal
pro-¢ quotient m¢t(X )%. Therefore, Theorem 3.4 is a valid reinterpretation of

Tamagawa’s theorem [23, Thm. 6.1].
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§3.3. Finite quotients of the étale fundamental groups of proper curves

In the whole of this subsection, we fix an algebraically closed field k of characteristic
p>0.

Let X be a proper smooth connected curve of genus g over k. As the étale
fundamental group 7$*(X) is topologically finitely generated (cf. Corollary 3.1),
the isomorphism class of the profinite group 7¢*(X) can be completely determined
by the set 7%(X) of isomorphism classes of finite quotients of 7$*(X) (cf. [23,
Lem. 8.4]).

We denote by wf}(X )% the set of isomorphism classes of finite quotients of
the profinite group 75*(X)® (cf. (3.5)). As Theorem 3.4 suggests, the set 7 (X)?%
of finite quotients is already complicated. This is in fact caused by the complexity
of the p-rank of prime-to-p Galois coverings over X (cf. [12, 20, 15, 6]).

Definition 3.6 (Cf. [15, §1], [6]). The p-rank 4 of an abelian variety A over k
is defined to be y4 def dimp, A[p](k). The p-rank vx of a proper smooth connected
curve X over k is defined as the p-rank ; of the Jacobian variety J = Jx of X.
The p-rank vx is also called the Hasse-Witt invariant for X.

Let X be a proper smooth connected curve of genus g over k. The Kummer
theory in the fppf topology gives an isomorphism

(3.6) Hipos (X, 1) =+ JIp) (k).

Moreover, according to [11, III, Prop. 4.14], we also have a natural isomorphism
Hflppf(X7 p) =~ HO(X, Q%) where C is the Cartier operator and the right-hand
side is the F,-subspace of H°(X, QL) consisting of regular differential forms w €
HO(X, Q%) satisfying C(w) = w. On the other hand, by the Artin—Schreier the-

ory, we have an isomorphism of F,-vector spaces H} (X, Z/pZ) ~ H (X, Ox)" et
Ker(HY(X, 0x) 2% HY(X, 0x)). Then the Serre duality HO(X, QL) ~ H'(X,

Ox)" induces an isomorphism of F,-vector spaces
(3.7)  Hippe( X, pp) = HO(X, Q%) = (HY(X, 0x)7)" =~ Hy (X, Z/pZ)".

Lemma 3.7 (Cf. [15, Prop. 2.5], [6, Lem. 2.3]). Let Y — X be a connected finite
étale Galois covering over X with Galois group H def Gal(Y/X) having prime-
to-p order. Then there ezists a bijection between the set of isomorphism classes
of connected finite étale Galois covering Z — X which dominates the covering
Y — X whose Galois group Gal(Z/X) is isomorphic to an extension of H by an
elementary abelian p-group and the set of H-submodules of Hom(w$*(Y), Z/pZ).
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Note that the isomorphism (3.7) for the curve Y is compatible with the Galois
module structure, hence we have an isomorphism of H-modules (cf. [6, §2]),

(3.8) Jy [p](k) ~ Hom(x$'(Y), Z/pZ)" .

We now consider the problem describing the set of finite quotients 7§ (X)?
(cf. (3.5)). Recall that the maximal pro-prime-to-p quotient m¢*(X)®") is iso-
morphic to the profinite group Hélj (;) (cf. Corollary 3.1). Therefore, Lemma 3.7 sug-
gests that it remains to determine the Gal(Y/X )-module structure of Hom(7$*(Y),
Z/pZ) for every prime-to-p Galois covering ¥ — X. In fact, the Galois mod-
ule structure on Hom(7$*(Y'),Z/pZ) can be described in terms of the generalized
Hasse—Witt invariants. For the detail, see [15].

§4. The tame fundamental group scheme
§4.1. Finite linearly reductive group schemes

Let S be a scheme. For an affine flat S-group scheme G, we will denote by X(G)
the group of characters of G, i.e. X(G) def Homg g (G, Gy, 5).

For any abelian group A, we denote by Ag(A) the diagonalizable S-group
scheme associated with A [25, Sect. 2.2]. For example, we have Ag(Z) = Gy, 5
and Ag(Z/mZ) = pm,s (m € Z). An affine flat S-group scheme G is said to
be diagonalizable if it is isomorphic to the diagonalizable S-group scheme Ag(A)
for some abelian group A. Then the correspondence A — Ag(A) gives an anti-
equivalence of categories between the category of abelian groups and the category
of diagonalizable S-group schemes. A quasi-inverse functor is given by taking the
groups of characters, G — X(G). Furthermore, this equivalence of categories is
compatible with any base change. Namely, for any morphism 7" — S and any
abelian group A, we have Ag(A) xg T ~ Ar(A). Note that if A is finite, then
the Cartier dual GP” = Homg(G, Gm,s) of the diagonalizable S-group scheme G =
Ag(A) is canonically isomorphic to the constant S-group scheme Ag associated
with the finite abelian group A.

A finite flat S-group scheme G is said to be linearly reductive if the functor
QCoh(BsG) — QCoh(S); F + FC is exact (cf. [2, Def. 2.2]), where F¢ denotes
the G-invariant subsheaf of F. If S = Speck is the spectrum of a field k, then
the condition can be replaced by the condition that the category Rep(G) is semi-
simple. The class of linearly reductive group schemes is stable under any base
change S — S and admits faithfully flat descent (cf. [2, Prop. 2.4]). Moreover, the
class of linearly reductive group schemes is closed under taking subgroup schemes,
quotients and extensions (cf. [2, Prop. 2.5]).
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Now let us recall the following classification result.

Proposition 4.1 (Cf. [2, Lem. 2.17]). Let S be the spectrum of a strictly hensel-
ian local Ting and G a finite linearly reductive S-group scheme. Then there exists
a diagonalizable normal subgroup scheme A of G such that G/A is a constant
S-group scheme of order invertible in S.

Let S = Spec k be the spectrum of a field k. If k is of characteristic 0, then any
finite k-group scheme G is linearly reductive. So let us assume that & is of positive
characteristic p > 0. If k is algebraically closed, then the classification is quite
simple. Let G be a finite linearly reductive group scheme over an algebraically
closed field k of characteristic p > 0. Then the connected-to-étale exact sequence
(cf. [25, §6.7])

1 -G =G —=mG) =1

admits a unique section s: mo(G) — G, which is in fact induced by the reduced
closed subgroup scheme G,eq of G, i.e. the composition Greq — G — m(G) is an
isomorphism of finite étale group schemes. As 7y(G) is étale and linearly reductive,
it must be isomorphic to a constant k-group scheme H associated with a finite
group H of prime-to-p order. On the other hand, G° is connected and linearly
reductive; it is isomorphic to the diagonalizable k group scheme A(A) for some
abelian p-group A. Therefore, G is isomorphic to a semi-direct product H x A(A).
Thus, the isomorphism class of G is uniquely determined by the groups H, A and
the conjugacy action H — Aut(A(A)) = Aut(A), where the last identification
is due to the fact that A(A)P = A. However, as k is algebraically closed, the
étale k-group scheme Aut(A) is constant and the homomorphism H — Aut(A)
is uniquely determined by the induced homomorphism between the groups of k-
valued points H — Aut(A). In particular, any finite linearly reductive k-group
scheme G is defined over an algebraic closure F,, of the prime field F,,.
As a consequence, we have the following.

Proposition 4.2. Let K/k be an extension of algebraically closed fields of charac-
teristic p > 0. Then there exists an equivalence of categories between the category of
finite linearly reductive k-group schemes and the category of finite linearly reductive
K -group schemes.

Now we introduce a subclass of finite linearly reductive group schemes.

Definition 4.3. Let k£ be an algebraically closed field of characteristic p > 0. A
finite linearly reductive k-group scheme G is said to be elementary if the character
group X(GP) of the connected part G° is an elementary abelian p-group, or equi-
valently if G© is isomorphic to a finite direct product of i, i.e. G° ~ W 1, for some



TAME FUNDAMENTAL GROUP SCHEMES OF CURVES IN POSITIVE CHARACTERISTIC 877

integer s > 0. We denote by Z the category of finite elementary linearly reductive
k-group schemes.

Then the above discussion implies the following result.

Proposition 4.4. There exists a canonical equivalence of categories between the
category € in Definition 3.3 and the category 2 of elementary linearly reductive
k-group schemes.

Proof. For any I' € €, we define the group scheme ¥(I') € Z as follows. By
definition, there exists a unique elementary abelian normal p-Sylow subgroup P<G

so that G = (G/P) x P. Then we define ¥(T") e (G/P) x A(PY), which clearly

belongs to Z. Then the correspondence € — 2; G — ¥U(G) gives a desired
equivalence of categories U: € = 2. O

Finally, let us recall the following two results due to Olsson.

Proposition 4.5 (Cf. [14, Cor. 4.3]). Let S be the spectrum of a discrete valu-
ation ring with generic pointn € S, X a smooth S-scheme and G a finite linearly
reductive S-group scheme. Then for any G,-torsor P, — X,,, after taking a finite
extension S’ — S there exists an extension of P, to a G-torsor P — X and such
an extension P — X is unique up to isomorphism.

Proposition 4.6 (Cf. [14, Prop. 4.5]). Let k be a separably closed field. Let X be
a smooth scheme over k and D = (D;)_; a family of distinct reduced irreducible
effective Cartier divisors D; on X, and U def ¥ \ D, where D = J"_, Supp(D;).
Let G be a finite linearly reductive k-group scheme. Then for any G-torsor P — U,
there exists an n-tuple r = (r;)1_, of positive integers r; such that P — U extends
to a G-torsor P — 3/D/X over the root stack associated with the data (X,D,r)
(cf. Section 2.2.1). Moreover, the extension over {/D/X is unique up to unique
isomorphism.

Note that if G is constant of order prime to the characteristic of k, then the
composite map P — {/D/X — X is nothing other than the normalization of the
étale covering P — U.

§4.2. The tame fundamental group scheme

In this subsection we recall the definition of the tame fundamental group scheme,
which is the main object in the present paper.

Definition 4.7 (Cf. [5, Def. 10.1]). A finite stack I' over a field & (cf. Section 2.1.1)
is said to be tame if the global section functor Coh(I') — Vecy; F + HO(T, F) is
exact.
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For example, if G is a finite k-group scheme, then the classifying stack BG is
tame if and only if G is linearly reductive (cf. Section 4.1).

Proposition 4.8 (Cf. [5, §10]). Let X be an inflexible algebraic stack of finite type
over a field k (cf. Section 2.1.2). Then there exists a profinite tame gerbe Il together
with a morphism X — 11 such that for any finite tame stack T' over k, the induced
functor

Homy (I, T') — Homyg (X, T)

is an equivalence of categories.

Definition 4.9 (Cf. [5, Def. 10.4]). With the above notation, the profinite tame
gerbe IT in Proposition 4.8 is unique up to unique isomorphism for X' /k. We denote
it by Hg‘}?}f and call it the tame fundamental gerbe for X over k. Moreover, if X
admits a k-rational point x: Speck — X, then we denote by 7'™¢(X ) the
automorphism group scheme Auty(€) of the object £: Speck = X — Hg??}f and
call it the tame fundamental group scheme for (X, x).

Remark 4.10. Let 7N(X, ) be the fundamental group scheme for (X, ) (cf. Sec-
tion 2.1.3, see also [13, Chap. II]). Then the tame fundamental group scheme
mTtame (¥ 1) is canonically isomorphic to the maximal pro-linearly reductive quo-
tient of 7N (X, z).

tame

As H?ﬁe is a profinite gerbe, the morphism & — II'Y h factors through the
Nori fundamental gerbe Hﬁ/k (cf. Section 2.1.2),

X —— Ty,

N

Hg?;r;f
and the resulting morphism HEI( kT Hg?r/r}f gives a gerbe. Recall that if X' is proper
over k, then we have an equivalence of tannakian categories over k,

Vect(IT}, /) = EFin(&),

where EFin(X) is the full subcategory of Vect(X) consisting of essentially finite
bundles (cf. Section 2.1.5). An essentially finite bundle F on X is said to be
tamely finite if all the indecomposable components of all the tensor powers E®™
are irreducible (cf. [5, Def. 12.1]). We now define the category TFin(X) to be
the full tannakian subcategory of EFin(&X’) which consists of tamely finite bundles



TAME FUNDAMENTAL GROUP SCHEMES OF CURVES IN POSITIVE CHARACTERISTIC 879

on X. Then the fully faithful tensor functor

Vect(TTE)5) < Vect(ITy ) — EFin(X) C Vect(X)
induces an equivalence of categories (cf. [5, Thm. 12.2])
(4.1) Vect(ITY) — TFin(X).

In particular, TFin(X) is a tannakian category over k and it is the largest tannakian
semi-simple subcategory of EFin(X).

§4.3. Structural results

In this subsection we will see several structural results for the tame fundamental
group schemes of curves. All the results should be well understood by the experts,
but we put them here for lack of references.

Let us begin with the following version of [3, Thm. IJ.

Proposition 4.11. Let X be a proper inflexible algebraic stack over a perfect
field k of characteristic p > 0. Let f: Y — X be a Nori-reduced G-torsor (cf. Sec-
tion 2.1.4), where G is a finite étale linearly reductive k-group scheme. Then all
the squares in the following diagram are 2-Cartesian:

y— Hgf”/”,f — Speck
X —— Hgg"/’f — BG.

Proof. We will adapt the argument in the proof of [3, Thm. I]. We define a finite
stack IT over IT'%¢7;° to be the 2-fiber product

II ——— Speck

J e

mighe —— BG.

Hence, all the squares in the diagram

Yy Y II Speck

o]

X — > TIme —— BG.
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are 2-Cartesian. It suffices to show that the morphism v: ) — II gives the tame
fundamental gerbe of ). First note that since f: Y — X is Nori-reduced, the
morphism H?ﬁe — BG is a gerbe and so is II — Speck. Moreover, since II —
Hf@?}f is representable and Hg‘?;‘}f is tame, the gerbe Il is tame as well. In particular,
by [5, Prop. 10.3], the category Vect(II) is semi-simple.

Since X is proper over k, the pullback functor v* induces an equivalence of
tannakian categories (cf. (4.1))

u*Vect(HE\?ﬁe) — TFin(X),

hence u, Oy ~ ﬁnﬁvaﬂe (cf. [3, Lem. 1.22]). As f, is faithfully flat, by the flat base
change theorem, we also have v, 0y ~ Oy, which implies that the pullback functor

(4.2) v*: Vect(Il) — Vect(Y)

is fully faithful. However, as Vect(Il) is a semi-simple tannakian category, the
essential image of v* must be contained in TFin())). To prove that ) — II gives
the tame fundamental gerbe of Y, it suffices to show that the functor (4.2) has
essential image TFin()).

By applying [3, Lem. 2.7] to the diagram

v*

Vect(Y) +—TFin(Y) +—Vect(II)

N T

Vect(X) wea(n?ﬁe)

we can conclude that for any V' € Vect()), it is contained in the essential image
of v* if and only if f,V is tamely finite. Therefore, to complete the proof, we have
only to show that for any tamely finite bundle V' € TFin(}), the pushforward sheaf
f+V is tamely finite on X.

This is a consequence of the existence of Galois envelopes in the sense of
[3, Def. 3.8]. In our situation, this ensures that for any H-torsor £ — Y with
H linearly reductive, there exists a I'-torsor P — X where I' is linearly reductive
together with homomorphisms a: I' = G and 3: Ker(a) = H and a commutative

1N

Z*>y—>/’\,’

diagram

where g: P — Y is Ker(a)-equivariant and P — Z is Ker(/3)-equivariant.
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For any tamely finite bundle V' € TFin())), by definition, there exists an H-
torsor h: Z — ), where H is a finite linearly reductive k-group scheme, such that
h*V ~ ﬁgm. Therefore, if 7: P — X denotes the Galois envelope associated with
the tower Z — ) — X as above and g: P — Y the Ker(a)-equivariant morphism,
then V C g.g*V =~ g. 05", hence f.V C f.g.Op™ ~ m, 0™, where the latter
vector bundle is tamely finite because 7: P — & is a finite linearly reductive
torsor. This completes the proof. O

Now we study the tame fundamental group schemes of curves. Let k& be an
algebraically closed field k of characteristic p > 0. Let X be a projective smooth
curve over k. Let S be a finite (possibly empty) set of closed points of X with
n & #S. Let U def x \ S. We set D def (2)zes. For any n-tuple r = (r4)zcs of

positive integers, we define

(4.3) Y y/D/X
to be the root stack associated with the data (X,D,r) (cf. Section 2.2.1).

Proposition 4.12. With the above notation, there exists a natural isomorphism
of affine gerbes over k,
R~ i TS
r
Proof. The morphisms into root stacks U — X' induce morphisms between the
tame fundamental gerbes H%j‘/‘ﬂ‘f — H?H}z, hence we obtain a morphism H?ﬁe —

tame

yLnr I e This is surjective. The injectivity follows from Proposition 4.6. O

Corollary 4.13. With the above notation, we further fix a k-rational point xy €
U. Then for each x € S, there exists a homomorphism 8, : A(Q/Z) — wtame (U, zq)
which is canonical up to conjugation so that the kernel of the surjective homo-
morphism 7tme(U, xg) — wtMe(X z4) 4s the normal subgroup generated by the
images of §.

Proof. We will use the same notation as in Proposition 4.12. For each r = (r;)z¢s,
let J],cq Bpr, — X* be the coproduct of the maps from the residual gerbes into
the root stack X* (cf. Section 2.2.2). By taking the limit, we get a sequence of
morphisms of pro-algebraic stacks,

1 BA@/Z) — lim %" — Lim ITE7; — T,

z€s r r
If £: Speck — Hg?;‘,’f is any section, then by Biswas-Borne’s theorem (cf. [4,
Cor. 3.6]), the map Hm H?}‘/‘z — Hg?;r}f is a relative gerbe whose fiber

a

B
Qin 75 < mgme ¢ Speck
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over § is generated by the image of the map [[ g BA(Q/Z) — @r Hggf/‘z The
assertion is then a consequence of Proposition 4.12. O

Corollary 4.14. With the above notation, suppose that n > 0 and fix a point
xg € S. Then for any integer m > 0, there exists an exact sequence of Z/p™7Z-
modules,

0— Hflppf(Xv p’p"") — Hflppf(Ua :LLP"‘) - @ Z/me — 0.
z€S\{wo}

Proof. First consider the case n = 1. In this case, the natural restriction map
Pic(X) — Pic(U) induces an isomorphism Pic(X)[p™] = Pic(U)[p™]. Thus, by
the Kummer theory, we obtain a natural isomorphism Hp, ¢(X, p,m) = Hi (U,
tpm ). Therefore, the assertion is true for n = 1.

Next we will deal with the arbitrary case. Let us consider the one-punctured
curve Xg df x \ {z0}. By the previous case n = 1, we are reduced to showing that
there exists an exact sequence of Z/p™Z-modules,

0= Hioo(Xo, ppm) = Hy (U ppm) = €D Z/pZ — 0.
z€S\{zo}

Let p™ def (P™)zes\{z0}- By Proposition 4.6, we have an isomorphism of Z/p™Z-
modules,

H}ppf(xg  fpm ) —> H}ppf(U, )

where }ﬁgm is the root stack associated with the data (Xo, S\{zo}, p™). Therefore,
it suffices to show that there exists an exact sequence of Z/p™Z-modules,

(4.4) 0 — Hi oo (Xo, ppm) = Hiy o (X5 ppm) = @ Z/p™Z — 0.
z€S\{zo}

Recall that there exists an exact sequence of abelian groups

0 — Pic(Xo) — Pic(xf" ) = P Z/p"Z—0
ze€S\{zo}

(cf. [7, §5.4]). Therefore, by the Kummer theory together with the snake lemma,
we obtain the desired exact sequence (4.4). This completes the proof. O

Finally, we notice the following fact.

Proposition 4.15. With the same notation as above, let f: V — U be a Nori-
reduced G-torsor (cf. Section 2.1.4), where G is a constant k-group scheme of
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prime-to-p order. Then all the squares in the following diagram are 2-Cartesian:

V—s H%}*ﬁ‘f — Speck

1o

U—— 1) —— BG.
Proof. The assertion is immediate from Propositions 4.11 and 4.12. O
As a consequence, we obtain the following version of [8, Thm. 2.9].

Corollary 4.16. Let k be an algebraically closed field of characteristic p > 0. Let
U be a smooth connected curve over k with x € U(k) a k-rational point. Let H
be a finite group of prime-to-p order. Suppose given a surjective homomorphism
¢: (U, x) — H onto the constant group scheme H. Let (V,y) — (U, x) be the
corresponding pointed H-torsor. Then we have an exact sequence of affine k-group
schemes

1 — 7' me(V,y) — gtame(U, 1) S H 1.
Proof. This directly follows from Proposition 4.15. O

§4.4. The base change theorem

Let X be a proper connected and reduced scheme over an algebraically closed field
k and K an algebraically closed extension of k. Let « € X (k) be a k-rational point.
By [9, Exp. X, Cor. 1.8], the natural homomorphism 7$*( X, 7xc) — 754 (X, x) of
the étale fundamental groups is an isomorphism. However, it is known that the
natural map between Nori’s fundamental group schemes

(4.5) ™N( X, wx) = (X, x) x5, K

is not an isomorphism in general (cf. [10, 17]). In this subsection we will prove that
the homomorphism (4.5) induces an isomorphism of the tame fundamental group
schemes for smooth curves.

Let k be an algebraically closed field of characteristic p > 0. Let X be a proper
smooth curve over k and S C X a finite (possibly empty) set of closed points. Let
U x \ S and fix a k-rational point x € U (k).

Proposition 4.17. With the above notation, let K/k be an extension of algebra-
ically closed fields. Then we have a natural isomorphism of affine K-group schemes

hic: T80 (U, 2 ) — wt%0¢(U, z) x, K.
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Proof. First let us show the surjectivity of the natural homomorphism hg:
mhAme (U wp) — 72me(U, 2) X, K. Let ¢: w**™¢(U, z) — G be any finite quotient

map. We have to show that the composition of the homomorphism
. . K
Wtame(UnyK) h—K> Wtdme(U,x) Xk K ¢X—k> G Xk K

is surjective. Let (P,p) — (U,z) be the pointed G-torsor associated with ¢. We

set (V,y) def (P,p)/G°, which is a pointed 7 (G)-torsor. Thanks to Corollary 4.16,

we have the commutative diagram

1 1 1
7.rtame(‘/K,yK) ﬂ_tame(‘/’ y) X e K GO X p K
K

h :
mtame (g, xgc) —— w20 (U, x) x5, K AN xi K

WQ(G) XkK:ﬂ'o(G) XkK:ﬂ'o(G) Xk K,

1 1 1

where all the vertical sequences are exact. Therefore, the map (¢ xy K) o hg is
surjective if and only if so is the map

T (Vie, yi) = 72 (V,y) xp K — G° x K.
The latter condition is valid because we have an isomorphism
(46) Hflppf(V7 GO) i) Hflppf(VKaGO Xk K)a

which follows from Corollary 4.14 together with the isomorphism Picg(K s Picg( X ke
K. This completes the proof of the surjectivity of the map hg.
For the injectivity of the map hg, it suffices to notice that any finite quotient
map
P (U, o) — G

factors through the map hg. Indeed, by Proposition 4.1, we may assume that
G' = G Xy K for some finite linearly reductive k-group scheme G. It suffices
to show that the pointed G xj K-torsor (P,p) — (Uk,zk) corresponding to
is defined over (U,x). This is well known when G is étale, in which the torsor
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P — Uy is a prime-to-p Galois covering, hence we are reduced to the connected
case G = G, for which the claim immediately follows from the isomorphism (4.6).
This completes the proof of the proposition. O

§5. The cospecialization map for the tame fundamental group scheme
§5.1. Finite quotients of the tame fundamental group scheme

Let k be an algebraically closed field of characteristic p > 0 and X a proper smooth
connected curve over k. Let S C X (k) be a finite (possibly empty) set of closed
points and set U < X \ S. Fix a k-rational point € U(k). In this subsection,
we follow the argument in Section 3.3 to investigate finite quotients of the tame
fundamental group scheme 7%™¢(U, z).

Let H be a fixed finite group of prime-to-p order. Suppose given a surjective
homomorphism

¢: 7_‘,taume((]’x) — Ii
and let (V,y) — (U, x) be the corresponding pointed H-torsor.

Lemma 5.1. There exists a bijection between the set of isomorphism classes of
surjective homomorphisms m'#me(V, y) — wy, for some integer s > 0 and the set of
subspaces of the Fp-vector space Hom(m"™¢(V,y), f1).

Here, any two surjective homomorphisms vy : 7%™m¢(V,y) — ppt and to:
mhame (Y y) —» pp? are said to be isomorphic if s1 = sy and there exists an iso-
morphism of group schemes o € Aut(us!) such that ¢ = a o 1s.

Proof of Lemma 5.1. Let S1(¢) be the set of isomorphism classes of surjective
homomorphisms 7**™¢(V,y) — 2 for some s > 0. Let Sz(¢) be the set of subspaces
of the F,-vector space Hom(m'*™¢(V,y), u,). Then the map M: Si(¢) — Sa2(¢);
P +— M (1)) defined by
def

(5.1) M () & Tm (Hom(pi3, 1) 2 Hom(n"™(V, ), 1))

gives the desired bijective map. O

Note that the F,-vector space Hom(7'*™¢(V,y), 1) is canonically isomorphic
to the cohomology group Hflppf(V, tp) as an Fp[H]-module. Let M be a finitely gen-
erated F,[H]-module. Then the corresponding action H — Aut(M) QL (Fp)
induces a homomorphism of k-group schemes H — Aut(A(M)). Hence, we obtain

a finite linearly reductive k-group scheme G def H x A(M).
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Lemma 5.2. Suppose given a surjective homomorphism : w20(V y) —» Hp
and let M () C Hom(m**™¢(V,y), u,) be the corresponding subspace (cf. Lemma
5.1 and (5.1)). Let T'y, < w*ame(V,y)2P be the kernel of the homomorphism ¢":
grtame (7 g )ab Hy, induced by . Then the following conditions are equivalent:

(a) The subspace M (1) is stable under the action by H on Hom(7"*™¢(V,y), f1p).

(b) The subgroup scheme Ty, < 7%me(V, y)2P is stable under the conjugacy action
by H.

(c) The surjective homomorphism v: w"(V,y) — pus extends to a surject-
ive homomorphism : w**me(U x) —» G onto a semi-direct product G def

H % ps and the composition 7™ (U, x) %G - G/us = H coincides with
¢: wame(U,x) - H.

Proof. Thanks to Corollary 4.16, we have an exact sequence
1 — 7™V y) — 7@ (U,z) — H — 1.

By the universality of the maximal abelian quotient wt@me(V,g) —» mtame(V/, ¢)ab,
the kernel of the quotient map is normal in the group scheme 7**m¢(U, z). Hence,

we get the quotient
wtme(U,z) E wt (U, a) / Ker(n' ™ (V.y) — 70 (V,y)™),
which fits into the commutative diagram with exact rows
11— gtame(V ) — s glame(y ) — s H ——— 1

|

1 ﬂ.tame(‘/7 y)ab 7.rtame(U7 l‘)/ I;[ 1.

«7

I

™ »

Condition (¢) is then equivalent to the existence of the pushout G as in the diagram

1 7.l.taume(‘/7 y)ab 7.rtame(U7 l‘)/ H 1

S S

1 oy Is4

Now the equivalences among conditions (a), (b) and (c) clearly holds true. O

The following is a version of Lemma 3.7.
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Lemma 5.3. Let H be a finite group of prime-to-p order. Let V. — U be a con-
nected H-torsor. Then the set of isomorphism classes of Nori-reduced G-torsors
P — U (cf. Section 2.1.4) which dominate V- — U, where G is an extension of H
by a diagonalizable group scheme A with pX(A) = 0 is in bijection with the set of
F,[H]-submodules of Hom(7**™¢(V), u,).

Proof. This is a consequence of Lemmas 5.1 and 5.2. O

Proposition 5.4. Let X be a proper smooth connected curve over k and fix a
k-rational point x € X (k). Let H be a finite group of prime-to-p order. Let M be
a finite-dimensional Fp[H|-module. Consider the finite group T’ 7« (M) and
the finite linearly reductive k-group scheme G def H x A(M). Then there exists a
surjective homomorphism w*¢( X, z) — G if and only if there exists a surjective
homomorphism w$ (X, x) — T.

Proof. When M = 0, the assertion is straightforward from the fact that 7**™¢(X,
2)(k) = (X, z)®). Let us consider the arbitrary case. Suppose given a sur-
jective homomorphism : 7**™¢(X z) - G = H x A(M). Let (Y,y) — (X, 2)
be the Nori-reduced pointed H-torsor associated with the surjective homomorph-
ism 7w%™¢(X ) - G — H. Then, by Lemma 5.3, the map 1) makes M an H-
submodule of Hom(7"*™¢(Y,y), up) = H, ¢ (Y, pp) = Jy [p](k). As there exists a
natural isomorphism Jy [p](k) ~ Hom(7$*(Y'), Z/pZ)" of F,[H]-modules (cf. (3.8)),
the dual MV can be embedded into Hom(7$*(Y'),Z/pZ) as an H-submodule. By
Lemma 3.7, this implies that T' appears as a quotient of 7¢*(X, z). The dual argu-
ment proves that the converse is also true. This completes the proof. O

Finally, we remark on the following finiteness result.

Proposition 5.5. Let U be a smooth connected curve over k together with a
k-rational point x € U(k). Then for any G € P (cf. Definition 4.3), the set
Hom(m**™(U, z),G) of homomorphisms into G is a finite set.

Proof. Let H Lt G(k) = mo(G)(k), which is a finite group of prime-to-p order.

As the set of subgroup schemes of G is finite, it suffices to show that the set of
surjective homomorphisms is a finite set. However, by Lemma 5.3, this follows from
the finiteness of the set of H-submodules of any finite-dimensional H-module M.
This completes the proof. O

§5.2. Lifting problems for linearly reductive torsors

Let k be an algebraically closed field of characteristic p > 0. Let R def k[t] be the

ring of formal power series with coefficients in k and K f FracR = k((¢)) its field
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of fractions. Let us fix an algebraic closure K of K and R the integral closure of
Rin K. Let S = Spec R.

Let f: X — S be a proper smooth S-curve with geometrically connected
fibers. Let Xz (respectively X}) be the geometrically generic fiber (respectively
the special fiber) of X/S. Let D be a relatively étale Cartier divisor on X/S of
degree n. We set U e x \ Supp(D) and denote by Uz (respectively by Uy) the
geometrically generic fiber (respectively the special fiber) of the S-curve U.

Lemma 5.6. There exists a canonical surjective homomorphism between the coho-
mology groups Hi (Ug, pip) — Hi ¢ (U, ip)-

Proof. Thanks to Proposition 4.5 applied to the diagonalizable group scheme G =
Ip, We get a natural map

Hflppf(UF7 IU’P) — Hflppf(UR’ IU’P) - Hflppf(Uk7/’Lp)'

It suffices to prove that it is surjective. By Corollary 4.14, one can reduce the
problem to the proper case X = U.

Let Picg( /s be the connected component of the identity on the Picard scheme
Picx/g for X/S. As PicOX /s 1s an abelian S-scheme, we have the surjective reduc-

tion map
Pic’(X) = Pick s(K) = Picks(R) - Pick,s(k) = Pic®(Xx).

As both the groups Pic’(Xz) and Pic’(Xj) are divisible, the reduction map
induces a surjective homomorphism

Pic’(Xz)[p] — Pic”(X)[p].
On the other hand, by the Kummer theory, we have the canonical isomorphisms

Hflppf(XRhuP) E_> PICO(XK)[p] and Hflppf(kau‘P) E_> PICO(Xk)[p]a
which implies that the map Hflppf(Xf,,up) — Hflppf(Xk,up) is surjective. This
completes the proof. O

Proposition 5.7. Let G € & (cf. Definition 4.3). Then any pointed G-torsor
(P,p) = (Uk, k) can be lifted to a pointed Gg-torsor (Pr,pir) = (U, 2%).

Proof. Let H be a finite group of prime-to-p order and M a finitely generated
F,[H]-module so that G ~ H x A(M). Without loss of generality, we may assume
that (P, p) — (Ug, xy) is a Nori-reduced G-torsor (cf. Section 2.1.4). Let (Vi, y) et
(P,p)/A(M) be the induced pointed H-torsor, which can be uniquely lifted to a

pointed H-torsor (V,y) — (U, x) with the geometrically generic fiber (V,yz) —
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(Ug,x%). By Lemma 5.6, we get a surjective homomorphism of finitely generated
F,[H]-modules,
Hioot(Vies tip) = Hior (Vi i),

and the Fy[H]-module M can be embedded into Hg, (Vi,pp) as an Fy[H]-sub-
module. However, as the category Mod(F,[H]) is semi-simple, M can be (non-
canonically) lifted to an F,[H]-submodule of Hf, ¢(V, ). By Lemma 5.2, this
amounts to saying that the pointed G-torsor (P,p) — (U, ) can be lifted to a
pointed Gg-torsor (Pr,pr) = (Ug, 2% ). This completes the proof. O

85.3. The cospecialization map for the tame fundamental
group scheme

Let k be an algebraically closed field of characteristic p > 0. Let R Lef k[t] and
K % Frac R = k((t). Let us fix an algebraic closure K of K and R the integ-
ral closure of R in K. Let f: X — § def Spec R be a smooth morphism with
geometrically connected fibers with an S-valued point € X(5). We denote by
(X%, 25) (respectively (X, xy)) the geometrically generic fiber (respectively the
special fiber) of (X, z)/S.

Let (X%ame, x'}%me) — (X%, z%) be the universal pointed 7**™°(X%, 27 )-tor-
sor. As K is algebraically closed, by Proposition 4.2, there exists a profinite linearly
reductive k-group scheme 7tame (X 7> T )& which is unique up to isomorphism such
that

(X ap) ~ (X, 2 )k Xg K.
Then the base change 7%™(X 5, 2% r et M (X ), Xk R is an R-model of
M (X x7). As X is smooth over S, by Proposition 4.5, the 7%™¢(X &, 25 )-
torsor X3¢ — Xz uniquely extends to a 7'*"°(Xz, v)g-torsor (X7, 212™m€)
— (X5, xR). By taking the special fiber, we get a pointed 7%*™¢(X, 25 )s-torsor
over (X, zk). As 7™¢( X, 23y is a profinite linearly reductive k-group scheme,
by the universality of the tame fundamental group scheme 7%™¢( X} z;) for the

pointed scheme (X, z), there exists a unique homomorphism of k-group schemes
(52) 71_taume()(]ﬁl,L,k) N Wtame(X?,w?)k.

Definition 5.8. We call the map (5.2) the cospecialization map associated with
the pointed smooth scheme (X,z) over S and denote it by cosp(y ;g or simply
by cosp.

We also consider a truncated version of the cospecialization map. Let ¢: G —
G’ be a homomorphism of finite linearly reductive k-group schemes. As the connec-
ted component G° of the identity is diagonalizable, we have a canonical isomorph-
ism G° = A(X(G?)). The p-torsion subgroup X(G°)[p] of the character group
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X(G?) is stable under the conjugacy action mo(G) — Aut(G®) = Aut(X(G?)) by
the étale quotient 7o (G), hence the kernel of the quotient map G — A(X(G)[p])
is normal in the group scheme G. Therefore, we obtain the quotient

G7 ¥ @/ Ker (G = AX(GO)[p)),

which belongs to the class Z (cf. Definition 4.3). Moreover, any homomorphism
¢: G — @G of finite linearly reductive group schemes induces a homomorphism
$7: G7 = & ?_ The construction can be generalized to an arbitrary homo-
morphism between pro-finite linearly reductive group schemes over k. Thus, the
cospecialization map in Definition 5.8 induces a homomorphism

(5.3) cosp(@X@)/S: rteme(Xy xp)? — (X e, i)

which we call the truncated cospecialization map for the tame fundamental group
schemes. Now we prove Theorem 1.3(1).

Proposition 5.9. Let f: X — S be a proper smooth S-curve with geometrically
connected fibers. Let D be a relatively étale Cartier divisor on X/S of degree n.
We set U % X\ Supp(D) and denote by Ug (respectively by Uy, ) the geometrically
generic fiber (respectively the special fiber) of U/S. Fiz an S-valued point x € U(S).
Then the truncated cospecialization map (cf. (5.3)),

2 .t 2 te 2
COSP(7,2) /5 T (U, x)” = o (Ug, 2%)i
18 tnjective.

Proof. Let n*2™¢(Uy, z1)? — G be an arbitrary finite quotient, which corresponds
to some pointed G-torsor (P,p) — (U, zx). By Proposition 5.7, the pointed G-
torsor is lifted to a pointed Gg-torsor over (Ug,zg). This amounts to saying
that the surjective homomorphism ¢ factors through wtame(UTOxg),? . As G is
arbitrary, this immediately implies that the homomorphism cosp? is injective. [

Remark 5.10. With the same notation as in Proposition 5.9, thanks to the base
change property for the tame fundamental group schemes (cf. Proposition 4.17),
the (truncated) cospecialization map induces the map of affine K-group schemes

cosp%: Wtame(Uk Toxkf)@ — Wtame(Uf(,xE)g

)

where (U, %, ) is the trivial deformation, i.e. U, g = Uy x K and z;, z =
x5, X K. We also call this map the (truncated) cospecialization map.

Theorem 5.11. With the same notation as in Proposition 5.9, for the pointed
S-curve (U, x), the following conditions are equivalent to each other:
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(a) The truncated cospecialization map cosp(%x)/s s an isomorphism.
(b) For any G € 9 (cf. Definition 4.3), we have

#Hom (7™ (Uy,, 21,)?, G) = #Hom (7" (U, v%)?, G ).

(¢c) There exists an isomorphism of k-group schemes,

2

>~ T UE?ZE)k:'

7Tt ame (

Uk:a mk)@ tamc(
Proof. The implications (a) = (¢) = (b) are clear. It suffices to show the implic-
ation (b) = (a) holds true. Indeed, by Propositions 5.5 and 5.7, condition (b)

implies that for any G € 2, the induced map
Hom (7" (Ug, 2)”, G) +—— Hom(r"*™ (U, 2%){, G)
«nD*
s Hom(m™ (U, 1) 7, G)

is a bijection, which implies that the homomorphism cosp? itself is an isomorph-
ism. Hence, condition (a) holds true. This completes the proof. O

Now we can prove Theorem 1.1.

Corollary 5.12. Let ko = F,, and S = Specko[t] = {s,n}, where s (respectively
n) is the closed point (respectively generic point) of S. Let X be a proper smooth
relative S-curve of genus g with geometrically connected fibers and D an étale
relative Cartier divisor on X of degree n. We set U f x \ Supp(D) and fix
an S-valued point v € U(S). Suppose that U is hyperbolic. If Uy is not constant
(cf. Section 3.2), then 7™ (Uy, x5) is not isomorphic to 7™ (Us, s) Xk, ko (7).

Proof. Suppose that Uy is a non-constant hyperbolic curve. It suffices to show that
Uy, ;)7 is not isomorphic to 7tm¢(Uy, x5)? Xy, ko(7). By Theorem 5.11,
we have only to show that the truncated cospecialization map

7.l.taumc(

cosp%: Wtame(Us,ms)@ — wtame(Uﬁ,wﬁ)k@O

is not an isomorphism. We will adapt the argument in the proof of [23, Thm. 8.1].
Suppose that the map cospg : wt8m¢(Uy, z,)? — mtame (U, a?,—,)k@o is an isomorph-
ism. As 2 —2g —n < 0, there exists a connected pointed H-torsor (Vg,y5) —
(Ug, ), where H is a finite group of prime-to-p order such that the normalization
Yy of X, in V5 has genus greater than or equal to 2. Moreover, we may assume
that Y; — X5 is ramified at every point in Supp(D5). Then Grothendieck’s spe-
cialization theorem for the prime-to-p étale fundamental groups

spyf s i (Ug ) ) 5wt (U ) )
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(cf. (3.3)) says that the prime-to-p covering (V, z5) — (Us, x5) is isomorphic to
the geometrically generic fiber of the connected H g/-torsor (V,y) — (Usr,xg) for
some finite extension S — S. Then by Corollary 4.16, we have the commutative
diagram of exact sequences

1 7Ttame(‘/s’ ys)@ 7Ttame(US’xs)Q N ﬂ s 1

2
lcosp? ’leDSPUS,

1—>7rtame(Vﬁ,yﬁ),?o %wtame(Uﬁ,xﬁ)kg@ — H——1.

This gives an isomorphism cosp?: 7am¢(V, ys)? = Wtame(Vﬁ,yﬁ)k% and hence,
by Corollary 4.13 (dividing by tame inertia), we get the isomorphism

cosp? : wtAMe(Y,, y,)? = wtame(Yﬁ,yﬁ);?o.

By Propositions 4.4 and 5.4, this implies that 7%(Y;)? = 7% (Y;)%. However, as
both the profinite groups 7$(Y;)? and 7$t(Y;)? are topologically finitely gener-
ated (cf. Corollary 3.1), it turns out that the specialization map sp: 7t (Y;)% —
7% (Ys)® is an isomorphism (cf. [23, Lem. 8.4]). By Theorem 3.4, we can con-
clude that Y3 is constant. Since Yy is hyperbolic, Auty, ) (Y5) is a constant group
scheme. Therefore, Uz = (Y;/H) \ {ramification locus} is also constant, which is

a contradiction. This completes the proof. O

§5.4. Reconstruction of numerical invariants

Let k be an algebraically closed field of characteristic p > 0. Let X be a proper
smooth connected curve over k of genus g and of p-rank ~ (cf. Definition 3.6). Let

S be a finite (possibly empty) set of closed points of X and we set n wef #S. Let

U x \'S. We denote by 7**™¢(U7) the isomorphism class of the tame fundamental
group scheme ™€ (U, z) for some (any) k-rational point z € U (k). We will discuss
reconstruction of numerical invariants (g, n,v) from the tame fundamental group
scheme 7*™¢({J). This is motivated by the work of Tamagawa [22], in which the

following result is established.

Theorem 5.13 (Cf. [22, Thm. 4.1]). For each i = 1,2, let p; be a prime number,
k; an algebraically closed field of characteristic p;, X; a proper smooth connected
curve of genus g; over ki, S; a finite (possibly empty) set of closed points of X;
with n; def #S; and U; def X;\ S;. If w¥(Uy) ~ w8 (Us), then we have p1 = pa,

g1 = g2 and ny = ng unless g; =0 and n; <1 fori=1,2.

Note that, as we have v; = dimp, Hom(n$*(X;), Z/pZ) = dimg, Hom(7} (U;),
Z/pZ) (cf. Section 3.3), the p-rank +; can be easily reconstructed from the tame
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fundamental group ¢ (U;). The proof involves analysis of the behavior of the gen-
eralized Hasse-Witt invariants for prime-to-p cyclic coverings of curves.

It seems natural to ask whether or not the same result still holds true after
replacing the tame fundamental group «%(U) by the tame fundamental group
scheme 7t2™¢({J). We assume that k def k1 = ko and set p def p1 = pa. We will
freely use the base field k and hence its characteristic p. Let X;, S;, U;, g, 1y
(i = 1,2) be as in Theorem 5.13. For each i = 1,2, let ~; be the p-rank of the curve
X; (cf. Definition 3.6).

Lemma 5.14. With the above notation, suppose that we have an isomorphism
mtame({])) ~ gtame () as affine k-group schemes. Then we have the following:

(1) 2g1 +n1 — 1+ 61 =292 +ng — 1+ d2.
(2) 14+n—140 =72 +n2— 1+ 0.

"o ifn; >o0.

Here we set

Proof. Both can be readily verified by considering abelian quotients of the tame
fundamental group schemes as follows:

(1) Let ¢ be a prime number with ¢ # p. Then the assertion immediately follows
from

2g;+mn; —1+0; = dim]peHom(ﬂ'ft(Uz-)(‘”')7 we(k)) = dimp, Hom(7*™¢(U;), ).

(2) By replacing e with p,, and by using Corollary 4.14 or the equation (3.6), the
same argument as in the proof of (1) implies the desired equality. This completes
the proof. O

Example 5.15. The following examples illustrate immediate consequences of the
preceding lemma.

(1) Let us assume that n; = 0, i.e. Uy = X;. Then the condition that 7**™¢(X;) ~
wtame({7y) implies (g1,n1,71) = (91,0,71) = (g2,n2,72) unless g; = 0 and n; < 1
for ¢ = 1,2. By Lemma 5.14, the claim holds in the case no = 0. Suppose that
ng > 0. Let us prove that ¢y = go = 0 and ny = 1. Indeed, by Corollary 3.1,
W‘ft(Ug)(p,) is a free pro-prime-to-p group of rank 2go+ns—1. On the other hand, our
condition implies that 7t (U;)®) = gtame(7))(k) ~ wtame () (k) = st (Uy)®).
Hence 7¢*(U1)®") must be a free pro-prime-to-p group. As wét(U;)®") ~ H;I;:z)
(cf. (3.4)), we must have g1 < 1, in which the tame fundamental group scheme
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mtme( X ) is abelian. Hence, so is 7'%™¢(Us). As ny > 0, this implies that go = 0.
By Lemma 5.14, we have
291 =ny —1=m,

which is possible only when g; = 0 as ; < g;. In this case, we have ny = 1.

(2) Let us suppose that g1 = 0, i.e. X; ~ P}. Then the condition that 7**™¢(U;) ~
mtame({),) implies that (g1,m1,v) = (0,1n1,0) = (92,n2,%2). If ny = 0 or ny = 0,
by the first case (1), the assertion is obviously true. Thus, let us assume that
ni,ng > 0. Then, by Lemma 5.14, we have 2g5 +no — 1 =n1 — 1 = +ns — 1,
hence 2g2 = v2. As 2 < g, this only happens when gy = 72 = 0, in which case
we have ny = ns.

Now we prove Theorem 1.2.

Theorem 5.16. Suppose that there exists an isomorphism of k-group schemes
mtame({y)) ~ gtame(1]y). Then we have (g1,n1,71) = (g2, n2,72) unless g; =0 and
n; <1 fori=1,2.

Proof. To ease the notation, we set II(U;) of mtame () for = 1,2. By Example
5.15(1),(2), we may assume that g;,n; > 0 for ¢ = 1,2. In this case, by Lemma
5.14, we have

291 +n1 = 2g2 +n2, Y1 +n1 =72+ na.

Hence, it suffices to show that the equality g1 = g2 holds true. We will apply the
results in [22, §4]. Fix ¢ € {1,2}. For any positive integer N > 0 with p { N,
let U;(N) — U; be the finite étale Galois covering corresponding to the surjective
homomorphism II(U;) — (IL(U;))2> /N = (7¢8(U;)®))aP /N . We denote by X;(N)
the normalization of X; in U;(N). We set n;(N) = #(X;(N)\ U;(N)) for i =1, 2.
Then we have

dimg, Hippe (Ui(N), pp) = dimg, Hypoe (X (N), 1) +ni(N) — 1
(5.4) = dimp, H (X;(N),Z/pZ) + n;(N) — 1,

where the first equality is due to Corollary 4.14 and the second one is due to the
Serre duality (3.7). Thanks to Corollary 4.16, we have

Hi(Ui(N), pp) = Hom (Ker (IL(U;) — (IL({U;)*)*™/N), ).
Therefore, the assumption I1(U;) ~ II(Us) implies that

(5.5) dimg, Hypf (U1 (N), 1) = dime, Hype (Uz(N), 1)
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for any integer N > 0 with p { N. By Tamagawa’s theorem [22, Cor. 4.11; see also
Rem. 4.8], we have

dimg, H}, (X;(N),Z/pZ) {gi —1 ifn=1,

N=p/ —1 N2git+ni—1
f—o0

On the other hand, as

Gi if n; > 1.

N2gitni=l if =1,
ni(N) =

N29+ni=2p if > 1
(cf. proof of [22, Lem. 4.13]), we obtain

V)~ 1 _{1 if n; = 1,

Nf:pffl N2gitni—1 0 ifn; >1.
— 00

Therefore, by (5.4), we have
dimg, HL_(Us(N), 1)

Nilpr?_l N2gi+tni—1
(5.6) fee —
(e HACX(N)LZ/02) | ) -1
- N=pf -1 N2gi+ni—1 N2gi+ni—1 | = -
f—x

The equations (5.5) and (5.6) thus imply that g; = g2. This completes the proof.
O

Remark 5.17. As a consequence of [22, Thm. 4.1] and [23, Thm. 8.1], Tamagawa
established the finiteness theorem [23, Thm. 8.6]. It is natural to ask whether we
can deduce our version of the finiteness theorem from Corollary 5.12 and Theorem
5.16. Thanks to Proposition 5.4, this is correct for proper hyperbolic curves. In
the following, we will see that we need more arguments for the general case. Let
ko = Fp and U be a smooth connected hyperbolic curve over ky. Let ¥ be the
set of kg-isomorphism classes of smooth connected curves U’ over kg such that

grtame(]) ~ qtame(7") Tet X 4 f7ept he the smooth compactification of U. Let g

be the genus of X and n def #(X\U)(ko) the cardinality of the complement of U.
By Theorem 5.16, we have ¥ C My ,, r,, where My ,, 1, is the coarse moduli space
over kg of smooth connected curves of type (g,n). Suppose that ¥ is an infinite
set. Let C' C Mgk, be an integral ko-curve with #(C' N X) = oco. Let 77 be a
geometric point over the generic point 7 of C'. Let Uy be the curve corresponding
to the geometric point 7 — My p ,. Therefore, the problem is reduced to proving

that wt4me(U)? Xy, ko(7) ~ 7**me(U;)?, which contradicts Corollary 5.12.
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In particular, it is necessary that they have the same set of isomorphism classes
of finite quotients. We denote by 7%m¢(U)? (respectively by 7'2m¢(U;)?) the set
of isomorphism classes of finite quotients of 7w*™¢(U)? x,, ko(7) (respectively
finite quotients of 7**m¢(U;)?). Thanks to Proposition 5.7, we have 7%me(U)? C
miame ()2, It suffices to show that w%me(U;)? C nteme(U)?. Let G € nme(U;)?
be an arbitrary finite quotient of 7*#m¢(U;)?. By definition, there exists a Nori-
reduced G-torsor P; — Uy (cf. Section 2.1.4). The problem is that the Nori-
reducedness does not mean that Pj is reduced in general. If Py is reduced, we can
conclude that G € w%m¢(U)? as follows. After shrinking C' if necessary, there exist
a finite flat morphism between integral kq-curves C’ — C and a G-torsor P — Ugr
over a smooth model Ug: of Uy over C” such that P|Uﬁ ~ Py as G-torsors over Uy.
If P; is reduced, according to [24, Lem. 0578], by shrinking C' if necessary, we may
assume that P — C’ has geometrically reduced fibers. If s € C’(ko) is a closed
point of C’ whose image in C belongs to X, we obtain a G-torsor P|y, — Us with
P|y, reduced and connected. This implies that G € 7'2m¢(Uy)? = wtame(U)?.
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