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Tame Fundamental Group Schemes of Curves
in Positive Characteristic

by

Shusuke Otabe

Abstract

The tame fundamental group scheme for an algebraic variety is the maximal linearly
reductive quotient of Nori’s fundamental group scheme. In this paper, we study the tame
fundamental group schemes of smooth curves defined over algebraically closed fields of
positive characteristic and develop the theory of cospecialization maps for them. As a
result, we see that the tame fundamental group schemes heavily depend on the curves.
We also see that numerical invariants of curves can be reconstructed from the tame
fundamental group schemes.
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§1. Introduction

Nori’s fundamental group scheme πN(X) [13, Chap. II] for a variety X defined over

a field k is by definition a profinite k-group scheme classifying finite flat torsors

of X. In the present paper, we will study its maximal linearly reductive quotient

πtame(X) (cf. Section 4.2) in the case where k = k̄ is an algebraically closed field of

positive characteristic p > 0. We call πtame(X) the tame fundamental group scheme

following [5, §10], where the terminology “tame” comes from the notion of tame

stacks in the sense of [2]. As the group of k-valued points, we recover the maximal

prime-to-p quotient of Grothendieck’s étale fundamental group, i.e. πtame(X)(k) ≃
πét
1 (X)(p

′). Therefore, the tame fundamental group scheme πtame(X) is a group-

scheme-theoretic analogue of the prime-to-p étale fundamental group πét
1 (X)(p

′).
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We will investigate the tame fundamental group schemes πtame(U) of smooth

curves U defined over k. The structure of the étale part πét
1 (U)(p

′) is well under-

stood by the experts (cf. [9]). If we denote by g the genus of the smooth compacti-

fication X = U cpt and by n the cardinality n = #(X\U)(k), then the isomorphism

class of πét
1 (U)(p

′) can be determined by the pair of integers (g, n) and the profin-

ite group πét
1 (U)(p

′) is not dependent on the curve U . See Section 3.1 for further

details. In contrast, as main results of the present paper, we will see that the tame

fundamental group scheme πtame(U) heavily depends on the curve U . As one of

the main results, we will prove the following.

Theorem 1.1 (Cf. Corollary 5.12). Let k0 = Fp be an algebraic closure of the

prime field Fp of characteristic p > 0 and set S
def
= Spec k0[[t]] = {s, η}, where s

and η are the closed point and the generic point of S, respectively. Let X be a proper

smooth relative S-curve of genus g together with a relatively étale Cartier divisor

D on X/S of degree n. We set U
def
= X \ Supp(D). Suppose that U is hyperbolic,

i.e. 2− 2g− n < 0. If Uη̄ is not defined over k0, then the tame fundamental group

scheme πtame(Uη̄) of Uη̄ is not isomorphic to πtame(Us)×k0 k0(η̄).

We will also discuss reconstruction of numerical invariants (such as g, n) from

the tame fundamental group schemes. For i = 1, 2, let Xi be a proper smooth

connected curve of genus gi and of p-rank γi over k and Si a finite set of closed

points of Xi with cardinality ni = #Si ≥ 0. We put Ui
def
= Xi \ Si. As the

second main result, we will prove the following version of Tamagawa’s theorem

[22, Thm. 4.1].

Theorem 1.2 (Cf. Theorem 5.16). Suppose that there exists an isomorphism of

k-group schemes πtame(U1) ≃ πtame(U2). Then we have (g1, n1, γ1) = (g2, n2, γ2)

unless gi = 0 and ni ≤ 1 for i = 1, 2.

We will explain the idea of the proof of Theorem 1.1. For the proof of the

theorem, we will give an extension of the theory of specialization maps for the

étale fundamental groups to the tame fundamental group schemes. Let S be a

scheme. Let X be a proper smooth relative S-curve of genus g together with a

relatively étale Cartier divisor D on X/S of degree n. Let U
def
= X \ Supp(D) be

the associated S-curve. We denote by πt
1(U) the tame fundamental group of U in

the sense of Grothendieck [9, Exp. XIII, 2.1.3]. This is a profinite group classifying

finite étale coverings of U which are tamely ramified along D. By definition, the

tame fundamental group πt
1(U) is a quotient of the étale fundamental group πét

1 (U).

In [9, Exp. XIII, 2.10], Grothendieck developed the theory of specialization maps

for the tame fundamental groups. The theory says that for any two geometric
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points s̄, t̄ of S, where s̄ is a specialization of t̄, there exists a surjective continuous

homomorphism, called the specialization map,

spt : πt
1(Ut̄) ↠ πt

1(Us̄),

which is canonical up to conjugation (see also Section 3.1). The theory of the spe-

cialization maps has many applications to analysis of the tame fundamental groups

of curves defined over fields of positive characteristic p > 0. Indeed, Grothen-

dieck himself used it to prove the finite-generatedness of the tame fundamental

groups and to give an explicit description of the maximal pro-prime-to-p quotient

πét
1 (U)(p

′) of the étale fundamental group (cf. Corollary 3.1). Other uses appear

in anabelian geometry (cf. [19, 18, 23, 21]; see also Section 3.2), where the spe-

cialization map plays a crucial role to prove non-constancy results for the tame

fundamental group on the moduli spaceMg,[n],Fp
of n-pointed genus g curves.

To obtain an analogous theory for the tame fundamental group schemes, we

will consider a smaller quotient πtame(U)D , which is the maximal pro-D quotient

of the tame fundamental group scheme, where D is the class of finite linearly

reductive group schemes G whose connected part G0 is elementary, i.e. G0 ≃ µsp
for some integer s ≥ 0 (see Definition 4.3). As a result, we will establish the

following theorem.

Theorem 1.3 (Cf. Proposition 5.9, Theorem5.11). Let k be an algebraically closed

field of characteristic p > 0 and set S
def
= Spec k[[t]] = {s, η}, where s and η are

the closed point and the generic point of S respectively. Let X be a proper smooth

relative S-curve of genus g together with a relatively étale Cartier divisor D on

X/S of degree n. We set U
def
= X \ Supp(D).

(1) There exists a canonical homomorphism of affine k(η̄)-group schemes

cospD : πtame(Us)
D ×k k(η̄)→ πtame(Uη̄)

D

up to conjugation, which we call the cospecialization map, such that the fol-

lowing conditions are satisfied:

(i) The map cospD is injective.

(ii) By taking the groups of k(η̄)-valued points, the map cospD induces an

isomorphism between the maximal pro-prime-to-p quotients of the étale

fundamental groups (cf. (3.3)) πét
1 (Us)

(p′) ≃ πét
1 (Uη̄)

(p′).

(2) The following are equivalent:

(a) The cospecialization map cospD is isomorphism.
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(b) For any G ∈ D , we have

#Hom(πtame(Us, xs)
D , G) = #Hom(πtame(Uη̄, xη̄)

D , Gk(η̄)).

(c) There exists an isomorphism of k-group schemes πtame(Us, xs)
D×kk(η̄) ≃

πtame(Uη̄, xη̄)
D .

Remark 1.4. Below, we give some remarks concerning the main theorems.

(1) Theorem 1.3(1) is a variant of Grothendieck’s specialization theorem (cf. [9,

Exp. XIII, 2.10]; see also Section 3.1). The surjectivity of the specialization map

spt : πt
1(Ut̄) ↠ πt

1(Us̄) is replaced by the injectivity of the cospecialization map.

Theorem 1.3(2) is a key ingredient for the proof of Theorem 1.1. Other ingredients

of the proof of Theorem 1.1 are structural results discussed in Section 4.3 and

Tamagawa’s specialization theorem for proper smooth curves (cf. [23, Thm. 6.1];

see also Theorem 3.4). Theorem 1.1 can be considered as a version of Tamagawa’s

specialization theorem (cf. [23, Thm. 8.1]; see Theorem 3.2).

(2) One can also see that if Uη̄ is isomorphic to the trivial deformation Us×k k(η̄)
of the special fiber Us, then the cospecialization map becomes an isomorphism

cospD : πtame(Us)
D ×k k(η̄)

≃−→ πtame(Uη̄)
D , which can be deduced from the base

change theorem for the tame fundamental group schemes of curves (cf. Proposition

4.17). On the other hand, Theorem 1.1 implies that the tame fundamental group

scheme is not constant on the moduli spaceMg,[n],k0 of n-pointed genus g curves

over k0 under the assumption that 2 − 2g − n < 0. However, this result is much

weaker than the non-constancy result for the tame fundamental group due to

Tamagawa (cf. [23, Thm. 8.6]), which asserts that the tame fundamental group is

not constant on the setMg,[n](k0) of k0-valued points.

(3) As an application of [22, Thm. 4.1], Tamagawa provided a group-theoretic

characterization of inertia groups of the tame fundamental group πt
1(U) for affine

hyperbolic curves U/k (cf. [22, Thm. 5.2]). It seems natural to seek an analogous

use of Theorem 1.2 for the tame fundamental group scheme πtame(U). However,

the author has no idea of how to reconstruct inertia subgroup schemes in a purely

group-scheme theoretic manner at present.

(4) The starting point of this work was the expectation that results known for

prime-to-p Galois coverings could be extended to finite linearly reductive torsors

in some form. However, lifting problems for µp-torsors already indicate that the

situation is quite different. When U = X, the Serre duality implies that there exists

a natural isomorphism H1
fppf(Xt̄, µp) ≃ H1

ét(Xt̄,Z/pZ)∨ for t ∈ {s, η}, which sug-

gests that the classification of µp-torsors is closely related to the classification of

Z/pZ-torsors. However, the geometries of them are different. Indeed, it is known
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that any µp-torsor over Xη̄ can be extended to a µp-torsor over X ×S S′ for

some finite extension S′ → S. On the other hand, the same does not hold for

Z/pZ-coverings. The non-existence of Z/pZ-models over X gives an obstruction

for the injectivity of the specialization map sp: πét
1 (Xη̄) ↠ πét

1 (Xs). Instead, any

Z/pZ-coverings over Xs can be uniquely lifted to a Z/pZ-covering over X, but

deformations of a µp-torsor of Xs̄ are far from unique. The non-uniqueness of

deformations of µp-torsors gives an obstruction for the surjectivity of the cospe-

cialization map cospD : πtame(Xs)
D ×k k(η̄) ↪→ πtame(Xη̄)

D .

We end this introduction section with the organization of the present paper.

In Section 2 we recall some basic notions which we freely use in the present paper.

In Section 2.1 we recall the definition of the Nori fundamental gerbe following [5]

(see also [13, Chap. II]). In Section 2.2 we recall the definition of root stacks in the

sense of [1]. In Section 3 we recall Grothendieck’s construction of the specialization

map for the tame fundamental group (cf. Section 3.1). We also recall the theorem

of Tamagawa (cf. Section 3.2). In the final subsection (cf. Section 3.3) we recall

a description of certain finite quotients of the étale fundamental groups of proper

smooth curves. In Section 4 we recall the definition of the tame fundamental

group scheme (cf. Section 4.1, Section 4.2) and discuss several structural results

(cf. Section 4.3, Section 4.4).

In Section 5 we prove the main results. First we recall a description of finite

quotients of the tame fundamental group scheme in Section 5.1. Next we settle a

certain lifting problem for finite linearly reductive torsors of curves in Section 5.2,

which is crucial for condition (i) in Theorem 1.3(1). In Section 5.3, we construct

the cospecialization map and prove Theorems 1.1 and 1.3. In the final Section 5.4,

we prove Theorem 1.2.

§2. Preliminaries

For a field k, we denote by Veck the category of finite-dimensional vector spaces

over k. For an affine k-group scheme G, we denote by Rep(G) the category of

finite-dimensional left k-linear representations of G. For an algebraic stack X over

a scheme S, we denote by QCoh(X ) (respectively Vect(X )) the category of quasi-

coherent sheaves on X (respectively the category of vector bundles on X ). For
a field k, we have Vect(Spec k) = Veck. If X is Noetherian, we also consider the

category Coh(X ) of coherent sheaves on X . If X = BSG is the classifying stack

of an affine flat and finitely presented S-group scheme G, then QCoh(BSG) is

nothing but the category of G-equivariant quasi-coherent sheaves on S. Namely,

it is the category of quasi-coherent sheaves F on S endowed with an action of G
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(cf. [2, §2.1]). In the case where S = Spec k is the spectrum of a field k, all

three categories Coh(BG), Vect(BG) and Rep(G) are canonically equivalent to

each other.

§2.1. The Nori fundamental gerbe

2.1.1. Let k be a field. A finite stack over k is an algebraic stack Γ over k

which has finite flat diagonal and admits a flat surjective morphism U → Γ for

some finite k-scheme U (cf. [5, Def. 4.1]). A finite gerbe over k is a finite stack

over k which is a gerbe in the fppf topology. A finite stack Γ is a finite gerbe

if and only if it is geometrically connected and geometrically reduced (cf. [5,

Prop. 4.3]). A profinite gerbe over k is a projective limit of finite gerbes over k

(cf. [5, Def. 4.6]).

2.1.2. Let X be an algebraic stack of finite type over k. Suppose that X is inflexible

in the sense of [5, Def. 5.3]. For example, if X is geometrically connected and

geometrically reduced, then it is inflexible (cf. [5, Prop. 5.5(b)]). Then there exists

a profinite gerbe Π over k together with a morphism X → Π such that, for any

finite stack Γ over k, the induced functor

Homk(Π,Γ)→ Homk(X ,Γ)

is an equivalence of categories (cf. [5, Thm. 5.7]). Such a gerbe Π is unique up to

unique isomorphism, so we denote it by ΠN
X/k, and call it the Nori fundamental

gerbe for X (cf. [5]). If G is a finite k-group scheme, then the associated classifying

stack BG is a finite gerbe and there exists a natural bijection

Homk(Π
N
X/k,BkG)

≃−→ Homk(X ,BkG) = H1
fppf(X , G).

2.1.3. If X admits a k-rational point x ∈ X (k), then the composition Spec k
x−→

X → ΠN
X/k defines a section ξ ∈ ΠN

X/k(k). We denote by πN(X , x) the automorph-

ism group scheme Autk(ξ), i.e. π
N(X , x) def

= Autk(ξ). Let X
N
x → X be the fpqc

πN(X , x)-torsor associated with the morphism X → ΠN
X/k

≃←− BkπN(X , x). By
definition, it admits a unique k-rational point xN ∈ XN

x (k) above x. The result-

ing triple (XN
x , π

N(X,x), xN) then recovers Nori’s construction of the fundamental

group scheme of (X,x) in [13, Chap. II]. Namely, for any finite k-group scheme G,

the set of homomorphisms Hom(πN(X , x), G) is naturally bijective onto the set of

isomorphism classes of pointed G-torsors (P, p)→ (X , x). More precisely, for each

homomorphism ϕ : πN(X , x)→ G into a finite k-group scheme, the corresponding

pointed G-torsor is given by (P, p)
def
= (XN

x , x
N)×πN(X ,x)ϕ G.
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2.1.4. Let X be an inflexible algebraic stack of finite type over k. A morphism

X → Γ into a finite gerbe Γ is said to be Nori-reduced (cf. [5, Def. 5.10]) if for any

factorization X → Γ′ → Γ where Γ′ is a finite gerbe and Γ′ → Γ is faithful, then

Γ′ → Γ is an isomorphism. According to [5, Lem. 5.12], for any morphism X → Γ

into a finite gerbe, there exists a unique factorization X → ∆ → Γ, where ∆ is

a finite gerbe, X → ∆ is Nori-reduced and ∆ → Γ is representable. A G-torsor

P → X is said to be Nori-reduced if the morphism X → BG is Nori-reduced.

2.1.5. Under the assumption that X is proper over k, the Nori fundamental gerbe

ΠN
X/k has a tannakian interpretation in terms of vector bundles on X . Indeed, the

pullback functor of the morphism X → ΠN
X/k induces a fully faithful tensor functor

Vect(ΠN
X/k)→ Vect(X )

whose essential image is the tannakian category EFin(X ) of essentially finite

bundles on X (cf. [5, §7]), i.e.

Vect(ΠN
X/k)

≃−→ EFin(X ) ⊂ Vect(X ).

§2.2. Root stacks

In this subsection, we will recall the definition of root stacks (cf. [1, Appx. B.2]).

Let S be a scheme and X a Noetherian S-scheme. Let D = (Di)
n
i=1 be an n-tuple

of reduced irreducible relative effective Cartier divisors Di on X/S. For each i, let

OX(Di) be the line bundle associated withDi and sDi ∈ Γ(X,OX(Di)) a canonical

section. Then the pair (OX(Di), sDi
) gives rise to a morphism ϕi : X → [A1

S/Gm,S ]
into the quotient stack [A1

S/Gm,S ] of the affine line A1
S with respect to the natural

action by the multiplicative group scheme Gm,S . By taking the fiber product over

S, we get the S-morphism

ϕ(X,D)
def
= (ϕi)

n
i=1 : X →

n∏
i=1

[A1
S/Gm,S ] = [AnS/Gnm,S ].

Here, each morphism ϕi does not depend on the choice of the canonical section

sDi and the morphism ϕ(X,D) is natural with respect to the pair (X,D).

2.2.1. Now for any n-tuple of positive integers r = (ri)
n
i=1, by taking the 2-fiber

product of the r-th power map θr : [AnS/Gnm,S ] → [AnS/Gnm,S ], we obtain the root

stack r
√
D/X associated with the data (X,D, r),

r
√
D/X

□

//

π

��

[An/Gnm]

θr

��

X // [An/Gnm].
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The root stack r
√
D/X is a tame stack over S in the sense of [2], where the

natural projection map π : r
√
D/X → X gives the coarse moduli space map. In

particular, the push-forward functor of the categories of quasi-coherent sheaves

π∗ : QCoh(
r
√
D/X)→ QCoh(X)

is exact.

As the coarse moduli space map π is proper by definition, if X is proper over

S, then so is the root stack r
√
D/X. Note that the map π : r

√
D/X → X is an

isomorphism over the open subscheme U
def
= X \D, where D

def
=

⋃n
i=1 Supp(Di)

and hence we have a natural open embedding U ↪→ r
√

D/X.

2.2.2. On the other hand, the local picture around a stacky point can be described

as follows. Namely, for any closed point x ∈ | r
√
D/X|0 = |X|0 with x ̸∈ |U |0, there

exists a closed immersion Bµrx,k(x) ↪→ r
√
D/X, where rx = (ri)x∈Di which fits

into the following commutative diagram:

Bµrx,k(x)
� � //

��

r
√
D/X

π

��

Spec k(x)
x // X.

The closed immersion Bµrx,k(x) ↪→ r
√
D/X is nothing but the residual gerbe at

the point x in the sense of [24, Def. 06MU]. In particular, the residual gerbes of

the root stacks are always neutral gerbes.

§3. The specialization map for the tame fundamental group

§3.1. Grothendieck’s specialization theorem

In this subsection, we will recall Grothendieck’s specialization theorem for the tame

fundamental group (cf. [9, Exp. XIII, 2.10]). Let S be a scheme. Let X be a proper

smooth relative S-curve of genus g with geometrically connected fibers and D a

relatively étale Cartier divisor on X/S of degree n. We set U
def
= X \Supp(D). For

each geometric point x̄ → U , we denote by πt
1(U, x̄) the tame fundamental group

of U with respect to x̄ (cf. [9, Exp. XIII, 2.1.3]). Note that if D = ∅ or S is the

spectrum of a field of characteristic 0, then the tame fundamental group πt
1(U, x̄)

coincides with the étale fundamental group πét
1 (U, x̄). Let s̄, t̄ be geometric points

of S such that s̄ is a specialization of t̄. Let S̃ be the strict henselization of S at s̄.
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Then we get the commutative diagram

Ut̄ //

��

Ũ

��

Us̄

��

oo

t̄ // S̃ s̄,oo

with the Cartesian squares, where Ũ
def
= U ×S S̃.

If we choose the geometric points x̄1 and x̄2 of Ut̄ and Us̄ respectively, then

we have canonical homomorphisms between the tame fundamental groups,

ϕ1 : π
t
1(Ut̄, x̄1) ↠ πt

1(Ũ , x̄1) and ϕ2 : π
t
1(Us̄, x̄2)

≃−→ πt
1(Ũ , x̄2),

where the first homomorphism ϕ1 is surjective and the second one ϕ2 is an iso-

morphism (cf. [9, Exp. XIII, 2.10]). Therefore, if we take any path ϕ12 : π
t
1(Ũ , x̄1)

≃−→
πt
1(Ũ , x̄2) from x̄1 to x̄2, then we get a surjective continuous homomorphism of

profinite groups

(3.1) spt
def
= ϕ−1

2 ϕ12ϕ1 : π
t
1(Ut̄, x̄1) ↠ πt

1(Us̄, x̄2),

which we call the specialization map for the tame fundamental group. By definition,

the map spt is canonically determined by the curve U together with the geometric

points s̄, t̄ of S up to inner automorphism of πt
1(Us̄, x̄2). Thus, we will often write

spt : πt
1(Ut̄)→ πt

1(Us̄)

without mentioning the base points.

In the case where D = ∅, i.e. X = U , we get the specialization map for the

étale fundamental group

(3.2) sp = spt : πét
1 (Xt̄, x̄1) ↠ πét

1 (Xs̄, x̄2).

Moreover, if the point s̄ has residue characteristic p > 0, then the special-

ization map (3.1) induces an isomorphism between the maximal pro-prime-to-p

quotients of the étale fundamental groups

(3.3) sp(p
′) : πét

1 (Ut̄, x̄1)
(p′) ≃−→ πét

1 (Us̄, x̄2)
(p′).

These are the contents of Grothendieck’s specialization theorem. As an applic-

ation, we have the following consequence.

Corollary 3.1 (cf. [9, Exp. XIII, Cor. 2.12]). Let k be an algebraically closed field

of characteristic p > 0. Let X0 be a proper smooth connected curve of genus g over

k together with a finite (possibly empty) set D0 of closed points of X0. We set
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n
def
= #S. Let X be a proper smooth relative curve of genus g over S

def
= SpecW (k)

and D a set of S-valued points of X such that (X,D) ×S Spec k ≃ (X0, D0). We

set U
def
= X \D and U0

def
= X0 \D0. Let η ∈ S be the generic point of S. Then

there exists a surjective continuous homomorphism

πét
1 (Uη̄) ↠ πt

1(U0)

which induces an isomorphism between the maximal pro-prime-to-p quotients

πét
1 (Uη̄)

(p′) ≃−→ πét
1 (U0)

(p′).

In particular, the tame fundamental group πt
1(U0) of the curve U0 is topologically

finitely generated and we have an isomorphism of pro-prime-to-p groups

πét
1 (U0)

(p′) ≃ Π(p′)
g,n ,

where we define

(3.4) Πg,n
def
=

〈
a1, b1, . . . , ag, bg,

δ1, . . . , δn

∣∣∣∣ g∏
i=1

[ai, bi]δ1 · · · δn = 1

〉
.

§3.2. Tamagawa’s specialization theorem

In this subsection we will recall use of the specialization maps in anabelian geo-

metry for hyperbolic curves over algebraically closed fields of positive characteristic

(cf. [19, 18, 23, 21]). In particular, we will recall Tamagawa’s specialization theor-

ems (see Theorems 3.2 and 3.4 below).

Let k0
def
= Fp. Let S be an Fp-scheme and U a smooth relative S-curve as in

Section 3.1. Recall that the curve U is said to be hyperbolic if 2 − 2g − n < 0.

Moreover, a curve over a field containing k0 is said to be constant if it is defined

over k0.

Theorem 3.2 (Cf. [23, Thm. 8.1]). Let U be a hyperbolic S-curve and s̄, t̄ ∈ S

two geometric points of S such that s̄ is a specialization of t̄. Suppose that Us̄ is

constant and that Ut̄ is not constant. Then the specialization map spt : πt
1(Ut̄) →

πt
1(Us̄) for the tame fundamental group (cf. (3.1)) is not an isomorphism.

As a corollary of the theorem, Tamagawa also obtained a non-constancy result

of the tame fundamental group on the moduli spaceMg,[n],Fp
of n-pointed genus

g curves (cf. [23, Thms. 8.3 and 8.6]).

For later use, let us reformulate the theorem for proper curves as follows.

Definition 3.3. Let C be the category of finite groups which has an elementary

abelian normal p-Sylow subgroup. For any profinite group Π, we define the quotient
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ΠC to be

(3.5) ΠC def
= lim←−

N∈C (Π)

Π/N,

where C (Π) is the set of open normal subgroups N of Π such that Π/N ∈ C .

Note that for any G ∈ C with P ◁ G the unique p-Sylow subgroup, the short

exact sequence

1→ P → G→ G/P → 1

splits, i.e. G ≃ (G/P )⋉ P .

Theorem 3.4 (Cf. [23, Thm. 6.1 and Rem. 6.3], [19, Prop. 2.2.4(2)]). Let S =

Spec k0[[t]] = {s, η}, where s (respectively η) is the closed point (respectively the

generic point) of S. Let X be a proper smooth relative S-curve of genus g ≥ 2

with geometrically connected fibers. Suppose that Xη̄ is not constant. Then the

map spC : πét
1 (Xt̄)

C ↠ πét
1 (Xs̄)

C induced by the specialization map for the étale

fundamental group (cf. (3.2)) is not an isomorphism.

Remark 3.5. In fact, the quotient considered in [19, Prop. 2.2.4(2)] or [23, Rem.

6.3] is not our πét
1 (X)C but a larger one π

(p,p′)
1 (X) (cf. [19, §2, p. 343]). Precisely,

if we set P
def
= Ker(π

(p,p′)
1 (X) ↠ πét

1 (X)(p
′)), we have

πét
1 (X)C = π

(p,p′)
1 (X)/[P, P ]P p.

The latter group is the maximal pro-C ′ quotient of πét
1 (X), i.e. π

(p,p′)
1 (X)

def
=

πét
1 (X)C

′
, where C ′ is the class of finite groups which has a normal p-Sylow sub-

group. Note that C ⊂ C ′ and that each groupG ∈ C ′ is isomorphic to a semi-direct

product G ≃ H ⋉ P , where H has prime-to-p order and P is a p-group (cf. [16,

Sect. 1.1]).

However, the isomorphism class of the profinite group π
(p,p′)
1 (X) = πét

1 (X)C
′

can be completely determined by the smaller quotient πét
1 (X)C . Indeed, as πét

1 (X)C
′

is topologically finitely generated (cf. Corollary 3.1), the isomorphism class of the

profinite group πét
1 (X)C

′
can be determined by the set πét

A (X)C
′
of finite quo-

tients of πét
1 (X)C

′
(cf. [23, Lem. 8.4]; see also Section 3.3). However, by the result

of Pacheco–Stevenson [16, Thm. 1.3] (see also [6, Prop. 2.5]), the set of finite quo-

tients πét
A (X)C

′
can be completely determined by the one πét

A (X)C of the maximal

pro-C quotient πét
1 (X)C . Therefore, Theorem 3.4 is a valid reinterpretation of

Tamagawa’s theorem [23, Thm. 6.1].
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§3.3. Finite quotients of the étale fundamental groups of proper curves

In the whole of this subsection, we fix an algebraically closed field k of characteristic

p > 0.

Let X be a proper smooth connected curve of genus g over k. As the étale

fundamental group πét
1 (X) is topologically finitely generated (cf. Corollary 3.1),

the isomorphism class of the profinite group πét
1 (X) can be completely determined

by the set πét
A (X) of isomorphism classes of finite quotients of πét

1 (X) (cf. [23,

Lem. 8.4]).

We denote by πét
A (X)C the set of isomorphism classes of finite quotients of

the profinite group πét
1 (X)C (cf. (3.5)). As Theorem 3.4 suggests, the set πét

A (X)C

of finite quotients is already complicated. This is in fact caused by the complexity

of the p-rank of prime-to-p Galois coverings over X (cf. [12, 20, 15, 6]).

Definition 3.6 (Cf. [15, §1], [6]). The p-rank γA of an abelian variety A over k

is defined to be γA
def
= dimFp

A[p](k). The p-rank γX of a proper smooth connected

curve X over k is defined as the p-rank γJ of the Jacobian variety J = JX of X.

The p-rank γX is also called the Hasse–Witt invariant for X.

Let X be a proper smooth connected curve of genus g over k. The Kummer

theory in the fppf topology gives an isomorphism

(3.6) H1
fppf(X,µp)

≃−→ J [p](k).

Moreover, according to [11, III, Prop. 4.14], we also have a natural isomorphism

H1
fppf(X,µp) ≃ H0(X,Ω1

X)C , where C is the Cartier operator and the right-hand

side is the Fp-subspace of H0(X,Ω1
X) consisting of regular differential forms ω ∈

H0(X,Ω1
X) satisfying C(ω) = ω. On the other hand, by the Artin–Schreier the-

ory, we have an isomorphism of Fp-vector spaces H1
ét(X,Z/pZ) ≃ H1(X,OX)F

def
=

Ker(H1(X,OX)
F -id−−−→ H1(X,OX)). Then the Serre duality H0(X,Ω1

X) ≃ H1(X,

OX)∨ induces an isomorphism of Fp-vector spaces

(3.7) H1
fppf(X,µp) ≃ H0(X,Ω1

X)C ≃ (H1(X,OX)F )∨ ≃ H1
ét(X,Z/pZ)∨.

Lemma 3.7 (Cf. [15, Prop. 2.5], [6, Lem. 2.3]). Let Y → X be a connected finite

étale Galois covering over X with Galois group H
def
= Gal(Y/X) having prime-

to-p order. Then there exists a bijection between the set of isomorphism classes

of connected finite étale Galois covering Z → X which dominates the covering

Y → X whose Galois group Gal(Z/X) is isomorphic to an extension of H by an

elementary abelian p-group and the set of H-submodules of Hom(πét
1 (Y ),Z/pZ).
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Note that the isomorphism (3.7) for the curve Y is compatible with the Galois

module structure, hence we have an isomorphism of H-modules (cf. [6, §2]),

(3.8) JY [p](k) ≃ Hom(πét
1 (Y ),Z/pZ)∨.

We now consider the problem describing the set of finite quotients πét
A (X)C

(cf. (3.5)). Recall that the maximal pro-prime-to-p quotient πét
1 (X)(p

′) is iso-

morphic to the profinite group Π
(p′)
g,0 (cf. Corollary 3.1). Therefore, Lemma 3.7 sug-

gests that it remains to determine the Gal(Y/X)-module structure of Hom(πét
1 (Y ),

Z/pZ) for every prime-to-p Galois covering Y → X. In fact, the Galois mod-

ule structure on Hom(πét
1 (Y ),Z/pZ) can be described in terms of the generalized

Hasse–Witt invariants. For the detail, see [15].

§4. The tame fundamental group scheme

§4.1. Finite linearly reductive group schemes

Let S be a scheme. For an affine flat S-group scheme G, we will denote by X(G)
the group of characters of G, i.e. X(G) def

= HomS-gr(G,Gm,S).
For any abelian group A, we denote by ∆S(A) the diagonalizable S-group

scheme associated with A [25, Sect. 2.2]. For example, we have ∆S(Z) = Gm,S
and ∆S(Z/mZ) = µm,S (m ∈ Z). An affine flat S-group scheme G is said to

be diagonalizable if it is isomorphic to the diagonalizable S-group scheme ∆S(A)

for some abelian group A. Then the correspondence A 7→ ∆S(A) gives an anti-

equivalence of categories between the category of abelian groups and the category

of diagonalizable S-group schemes. A quasi-inverse functor is given by taking the

groups of characters, G 7→ X(G). Furthermore, this equivalence of categories is

compatible with any base change. Namely, for any morphism T → S and any

abelian group A, we have ∆S(A) ×S T ≃ ∆T (A). Note that if A is finite, then

the Cartier dual GD = HomS(G,Gm,S) of the diagonalizable S-group scheme G =

∆S(A) is canonically isomorphic to the constant S-group scheme AS associated

with the finite abelian group A.

A finite flat S-group scheme G is said to be linearly reductive if the functor

QCoh(BSG) → QCoh(S); F 7→ FG is exact (cf. [2, Def. 2.2]), where FG denotes

the G-invariant subsheaf of F . If S = Spec k is the spectrum of a field k, then

the condition can be replaced by the condition that the category Rep(G) is semi-

simple. The class of linearly reductive group schemes is stable under any base

change S′ → S and admits faithfully flat descent (cf. [2, Prop. 2.4]). Moreover, the

class of linearly reductive group schemes is closed under taking subgroup schemes,

quotients and extensions (cf. [2, Prop. 2.5]).
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Now let us recall the following classification result.

Proposition 4.1 (Cf. [2, Lem. 2.17]). Let S be the spectrum of a strictly hensel-

ian local ring and G a finite linearly reductive S-group scheme. Then there exists

a diagonalizable normal subgroup scheme ∆ of G such that G/∆ is a constant

S-group scheme of order invertible in S.

Let S = Spec k be the spectrum of a field k. If k is of characteristic 0, then any

finite k-group scheme G is linearly reductive. So let us assume that k is of positive

characteristic p > 0. If k is algebraically closed, then the classification is quite

simple. Let G be a finite linearly reductive group scheme over an algebraically

closed field k of characteristic p > 0. Then the connected-to-étale exact sequence

(cf. [25, §6.7])

1→ G0 → G→ π0(G)→ 1

admits a unique section s : π0(G) → G, which is in fact induced by the reduced

closed subgroup scheme Gred of G, i.e. the composition Gred ↪→ G→ π0(G) is an

isomorphism of finite étale group schemes. As π0(G) is étale and linearly reductive,

it must be isomorphic to a constant k-group scheme H associated with a finite

group H of prime-to-p order. On the other hand, G0 is connected and linearly

reductive; it is isomorphic to the diagonalizable k group scheme ∆(A) for some

abelian p-group A. Therefore, G is isomorphic to a semi-direct product H⋉∆(A).

Thus, the isomorphism class of G is uniquely determined by the groups H, A and

the conjugacy action H → Aut(∆(A)) = Aut(A), where the last identification

is due to the fact that ∆(A)D = A. However, as k is algebraically closed, the

étale k-group scheme Aut(A) is constant and the homomorphism H → Aut(A)

is uniquely determined by the induced homomorphism between the groups of k-

valued points H → Aut(A). In particular, any finite linearly reductive k-group

scheme G is defined over an algebraic closure Fp of the prime field Fp.
As a consequence, we have the following.

Proposition 4.2. Let K/k be an extension of algebraically closed fields of charac-

teristic p > 0. Then there exists an equivalence of categories between the category of

finite linearly reductive k-group schemes and the category of finite linearly reductive

K-group schemes.

Now we introduce a subclass of finite linearly reductive group schemes.

Definition 4.3. Let k be an algebraically closed field of characteristic p > 0. A

finite linearly reductive k-group scheme G is said to be elementary if the character

group X(G0) of the connected part G0 is an elementary abelian p-group, or equi-

valently if G0 is isomorphic to a finite direct product of µp, i.e. G
0 ≃ µsp,k for some
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integer s ≥ 0. We denote by D the category of finite elementary linearly reductive

k-group schemes.

Then the above discussion implies the following result.

Proposition 4.4. There exists a canonical equivalence of categories between the

category C in Definition 3.3 and the category D of elementary linearly reductive

k-group schemes.

Proof. For any Γ ∈ C , we define the group scheme Ψ(Γ) ∈ D as follows. By

definition, there exists a unique elementary abelian normal p-Sylow subgroup P ◁G

so that G
≃−→ (G/P )⋉ P . Then we define Ψ(Γ)

def
= (G/P )⋉∆(P∨), which clearly

belongs to D . Then the correspondence C → D ; G 7→ Ψ(G) gives a desired

equivalence of categories Ψ: C
≃−→ D .

Finally, let us recall the following two results due to Olsson.

Proposition 4.5 (Cf. [14, Cor. 4.3]). Let S be the spectrum of a discrete valu-

ation ring with generic point η ∈ S, X a smooth S-scheme and G a finite linearly

reductive S-group scheme. Then for any Gη-torsor Pη → Xη, after taking a finite

extension S′ → S there exists an extension of Pη to a G-torsor P → X and such

an extension P → X is unique up to isomorphism.

Proposition 4.6 (Cf. [14, Prop. 4.5]). Let k be a separably closed field. Let X be

a smooth scheme over k and D = (Di)
n
i=1 a family of distinct reduced irreducible

effective Cartier divisors Di on X, and U
def
= X \D, where D =

⋃n
i=1 Supp(Di).

Let G be a finite linearly reductive k-group scheme. Then for any G-torsor P → U ,

there exists an n-tuple r = (ri)
n
i=1 of positive integers ri such that P → U extends

to a G-torsor P → r
√
D/X over the root stack associated with the data (X,D, r)

(cf. Section 2.2.1). Moreover, the extension over r
√
D/X is unique up to unique

isomorphism.

Note that if G is constant of order prime to the characteristic of k, then the

composite map P → r
√

D/X → X is nothing other than the normalization of the

étale covering P → U .

§4.2. The tame fundamental group scheme

In this subsection we recall the definition of the tame fundamental group scheme,

which is the main object in the present paper.

Definition 4.7 (Cf. [5, Def. 10.1]). A finite stack Γ over a field k (cf. Section 2.1.1)

is said to be tame if the global section functor Coh(Γ) → Veck; F 7→ H0(Γ, F ) is

exact.
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For example, if G is a finite k-group scheme, then the classifying stack BG is

tame if and only if G is linearly reductive (cf. Section 4.1).

Proposition 4.8 (Cf. [5, §10]). Let X be an inflexible algebraic stack of finite type

over a field k (cf. Section 2.1.2). Then there exists a profinite tame gerbe Π together

with a morphism X → Π such that for any finite tame stack Γ over k, the induced

functor

Homk(Π,Γ)→ Homk(X ,Γ)

is an equivalence of categories.

Definition 4.9 (Cf. [5, Def. 10.4]). With the above notation, the profinite tame

gerbe Π in Proposition 4.8 is unique up to unique isomorphism for X/k. We denote

it by Πtame
X/k and call it the tame fundamental gerbe for X over k. Moreover, if X

admits a k-rational point x : Spec k → X , then we denote by πtame(X , x) the

automorphism group scheme Autk(ξ) of the object ξ : Spec k
x−→ X → Πtame

X/k and

call it the tame fundamental group scheme for (X , x).

Remark 4.10. Let πN(X , x) be the fundamental group scheme for (X , x) (cf. Sec-
tion 2.1.3, see also [13, Chap. II]). Then the tame fundamental group scheme

πtame(X , x) is canonically isomorphic to the maximal pro-linearly reductive quo-

tient of πN(X , x).

As Πtame
X/k is a profinite gerbe, the morphism X → Πtame

X/k factors through the

Nori fundamental gerbe ΠN
X/k (cf. Section 2.1.2),

X //

  

ΠN
X/k

��

Πtame
X/k

and the resulting morphism ΠN
X/k → Πtame

X/k gives a gerbe. Recall that if X is proper

over k, then we have an equivalence of tannakian categories over k,

Vect(ΠN
X/k)

≃−→ EFin(X ),

where EFin(X ) is the full subcategory of Vect(X ) consisting of essentially finite

bundles (cf. Section 2.1.5). An essentially finite bundle E on X is said to be

tamely finite if all the indecomposable components of all the tensor powers E⊗n

are irreducible (cf. [5, Def. 12.1]). We now define the category TFin(X ) to be

the full tannakian subcategory of EFin(X ) which consists of tamely finite bundles
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on X . Then the fully faithful tensor functor

Vect(Πtame
X/k ) ↪→ Vect(ΠN

X/k)
≃−−→ EFin(X ) ⊂ Vect(X )

induces an equivalence of categories (cf. [5, Thm. 12.2])

(4.1) Vect(Πtame
X/k )

≃−−→ TFin(X ).

In particular, TFin(X ) is a tannakian category over k and it is the largest tannakian

semi-simple subcategory of EFin(X ).

§4.3. Structural results

In this subsection we will see several structural results for the tame fundamental

group schemes of curves. All the results should be well understood by the experts,

but we put them here for lack of references.

Let us begin with the following version of [3, Thm. I].

Proposition 4.11. Let X be a proper inflexible algebraic stack over a perfect

field k of characteristic p > 0. Let f : Y → X be a Nori-reduced G-torsor (cf. Sec-

tion 2.1.4), where G is a finite étale linearly reductive k-group scheme. Then all

the squares in the following diagram are 2-Cartesian:

Y //

f

��

Πtame
Y/k

//

f∗

��

Spec k

��

X // Πtame
X/k

// BG.

Proof. We will adapt the argument in the proof of [3, Thm. I]. We define a finite

stack Π over Πtame
X/k to be the 2-fiber product

Π

□

//

f⋆

��

Spec k

��

Πtame
X/k

// BG.

Hence, all the squares in the diagram

Y v //

f

��

Π //

f⋆

��

Spec k

��

X
u
// Πtame

X/k
// BG.
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are 2-Cartesian. It suffices to show that the morphism v : Y → Π gives the tame

fundamental gerbe of Y. First note that since f : Y → X is Nori-reduced, the

morphism Πtame
X/k → BG is a gerbe and so is Π → Spec k. Moreover, since Π →

Πtame
X/k is representable and Πtame

X/k is tame, the gerbe Π is tame as well. In particular,

by [5, Prop. 10.3], the category Vect(Π) is semi-simple.

Since X is proper over k, the pullback functor u∗ induces an equivalence of

tannakian categories (cf. (4.1))

u∗Vect(Πtame
X/k )

≃−−→ TFin(X ),

hence u∗OX ≃ OΠtame
X/k

(cf. [3, Lem. 1.22]). As f⋆ is faithfully flat, by the flat base

change theorem, we also have v∗OY ≃ OΠ, which implies that the pullback functor

(4.2) v∗ : Vect(Π)→ Vect(Y)

is fully faithful. However, as Vect(Π) is a semi-simple tannakian category, the

essential image of v∗ must be contained in TFin(Y). To prove that Y → Π gives

the tame fundamental gerbe of Y, it suffices to show that the functor (4.2) has

essential image TFin(Y).
By applying [3, Lem. 2.7] to the diagram

Vect(Y) TFin(Y)? _oo Vect(Π)? _oo

v∗

vv

Vect(X )

f∗

OO

TFin(X )? _oo

OO

Vect(Πtame
X/k ),

≃oo

OO

u∗
hh

we can conclude that for any V ∈ Vect(Y), it is contained in the essential image

of v∗ if and only if f∗V is tamely finite. Therefore, to complete the proof, we have

only to show that for any tamely finite bundle V ∈ TFin(Y), the pushforward sheaf

f∗V is tamely finite on X .
This is a consequence of the existence of Galois envelopes in the sense of

[3, Def. 3.8]. In our situation, this ensures that for any H-torsor Z → Y with

H linearly reductive, there exists a Γ-torsor P → X where Γ is linearly reductive

together with homomorphisms α : Γ→ G and β : Ker(α)→ H and a commutative

diagram
P

��
g
��

π

''Z
h
// Y

f
// X ,

where g : P → Y is Ker(α)-equivariant and P → Z is Ker(β)-equivariant.
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For any tamely finite bundle V ∈ TFin(Y), by definition, there exists an H-

torsor h : Z → Y, where H is a finite linearly reductive k-group scheme, such that

h∗V ≃ O⊕m
Z . Therefore, if π : P → X denotes the Galois envelope associated with

the tower Z → Y → X as above and g : P → Y the Ker(α)-equivariant morphism,

then V ⊆ g∗g
∗V ≃ g∗O

⊕m
P , hence f∗V ⊆ f∗g∗O

⊕m
P ≃ π∗O

⊕m
P , where the latter

vector bundle is tamely finite because π : P → X is a finite linearly reductive

torsor. This completes the proof.

Now we study the tame fundamental group schemes of curves. Let k be an

algebraically closed field k of characteristic p > 0. Let X be a projective smooth

curve over k. Let S be a finite (possibly empty) set of closed points of X with

n
def
= #S. Let U

def
= X \ S. We set D

def
= (x)x∈S . For any n-tuple r = (rx)x∈S of

positive integers, we define

(4.3) Xr def
= r

√
D/X

to be the root stack associated with the data (X,D, r) (cf. Section 2.2.1).

Proposition 4.12. With the above notation, there exists a natural isomorphism

of affine gerbes over k,

Πtame
U/k

≃−−→ lim←−
r

Πtame
Xr/k.

Proof. The morphisms into root stacks U → Xr induce morphisms between the

tame fundamental gerbes Πtame
U/k → Πtame

Xr/k, hence we obtain a morphism Πtame
U/k →

lim←−r
Πtame

Xr/k. This is surjective. The injectivity follows from Proposition 4.6.

Corollary 4.13. With the above notation, we further fix a k-rational point x0 ∈
U . Then for each x ∈ S, there exists a homomorphism δx : ∆(Q/Z)→ πtame(U, x0)

which is canonical up to conjugation so that the kernel of the surjective homo-

morphism πtame(U, x0) ↠ πtame(X,x0) is the normal subgroup generated by the

images of δx.

Proof. We will use the same notation as in Proposition 4.12. For each r = (rx)x∈S ,

let
∐
x∈S Bµrx → Xr be the coproduct of the maps from the residual gerbes into

the root stack Xr (cf. Section 2.2.2). By taking the limit, we get a sequence of

morphisms of pro-algebraic stacks,∐
x∈S
B∆(Q/Z)→ lim←−

r

Xr → lim←−
r

Πtame
Xr/k → Πtame

X/k .

If ξ : Spec k → Πtame
X/k is any section, then by Biswas–Borne’s theorem (cf. [4,

Cor. 3.6]), the map lim←−r
Πtame

Xr/k → Πtame
X/k is a relative gerbe whose fiber

(lim←−Πtame
Xr/k)×Πtame

X/k
ξ Spec k
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over ξ is generated by the image of the map
∐
x∈S B∆(Q/Z) → lim←−r

Πtame
Xr/k. The

assertion is then a consequence of Proposition 4.12.

Corollary 4.14. With the above notation, suppose that n > 0 and fix a point

x0 ∈ S. Then for any integer m > 0, there exists an exact sequence of Z/pmZ-
modules,

0→ H1
fppf(X,µpm)→ H1

fppf(U, µpm)→
⊕

x∈S\{x0}

Z/pmZ→ 0.

Proof. First consider the case n = 1. In this case, the natural restriction map

Pic(X) ↠ Pic(U) induces an isomorphism Pic(X)[pm]
≃−→ Pic(U)[pm]. Thus, by

the Kummer theory, we obtain a natural isomorphism H1
fppf(X,µpm)

≃−→ H1
fppf(U,

µpm). Therefore, the assertion is true for n = 1.

Next we will deal with the arbitrary case. Let us consider the one-punctured

curve X0
def
= X \{x0}. By the previous case n = 1, we are reduced to showing that

there exists an exact sequence of Z/pmZ-modules,

0→ H1
fppf(X0, µpm)→ H1

fppf(U, µpm)→
⊕

x∈S\{x0}

Z/pmZ→ 0.

Let pm
def
= (pm)x∈S\{x0}. By Proposition 4.6, we have an isomorphism of Z/pmZ-

modules,

H1
fppf(X

pm

0 , µpm)
≃−→ H1

fppf(U, µpm),

where Xpm

0 is the root stack associated with the data (X0, S\{x0},pm). Therefore,

it suffices to show that there exists an exact sequence of Z/pmZ-modules,

(4.4) 0→ H1
fppf(X0, µpm)→ H1

fppf(X
pm

0 , µpm)→
⊕

x∈S\{x0}

Z/pmZ→ 0.

Recall that there exists an exact sequence of abelian groups

0→ Pic(X0)→ Pic(Xpm

0 )→
⊕

x∈S\{x0}

Z/pmZ→ 0

(cf. [7, §5.4]). Therefore, by the Kummer theory together with the snake lemma,

we obtain the desired exact sequence (4.4). This completes the proof.

Finally, we notice the following fact.

Proposition 4.15. With the same notation as above, let f : V → U be a Nori-

reduced G-torsor (cf. Section 2.1.4), where G is a constant k-group scheme of
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prime-to-p order. Then all the squares in the following diagram are 2-Cartesian:

V //

f

��

Πtame
V/k

//

f∗

��

Spec k

��

U // Πtame
U/k

// BG.

Proof. The assertion is immediate from Propositions 4.11 and 4.12.

As a consequence, we obtain the following version of [8, Thm. 2.9].

Corollary 4.16. Let k be an algebraically closed field of characteristic p > 0. Let

U be a smooth connected curve over k with x ∈ U(k) a k-rational point. Let H

be a finite group of prime-to-p order. Suppose given a surjective homomorphism

ϕ : πtame(U, x) ↠ H onto the constant group scheme H. Let (V, y)→ (U, x) be the

corresponding pointed H-torsor. Then we have an exact sequence of affine k-group

schemes

1→ πtame(V, y)→ πtame(U, x)
ϕ−→ H → 1.

Proof. This directly follows from Proposition 4.15.

§4.4. The base change theorem

Let X be a proper connected and reduced scheme over an algebraically closed field

k and K an algebraically closed extension of k. Let x ∈ X(k) be a k-rational point.

By [9, Exp. X, Cor. 1.8], the natural homomorphism πét
1 (XK , xK)→ πét

1 (X,x) of

the étale fundamental groups is an isomorphism. However, it is known that the

natural map between Nori’s fundamental group schemes

(4.5) πN(XK , xK)→ πN(X,x)×k K

is not an isomorphism in general (cf. [10, 17]). In this subsection we will prove that

the homomorphism (4.5) induces an isomorphism of the tame fundamental group

schemes for smooth curves.

Let k be an algebraically closed field of characteristic p > 0. Let X be a proper

smooth curve over k and S ⊂ X a finite (possibly empty) set of closed points. Let

U
def
= X \ S and fix a k-rational point x ∈ U(k).

Proposition 4.17. With the above notation, let K/k be an extension of algebra-

ically closed fields. Then we have a natural isomorphism of affine K-group schemes

hK : πtame(UK , xK)
≃−→ πtame(U, x)×k K.
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Proof. First let us show the surjectivity of the natural homomorphism hK :

πtame(UK , xK)→ πtame(U, x)×kK. Let ϕ : πtame(U, x) ↠ G be any finite quotient

map. We have to show that the composition of the homomorphism

πtame(UK , xK)
hK−−→ πtame(U, x)×k K

ϕ×kK−−−−→ G×k K

is surjective. Let (P, p) → (U, x) be the pointed G-torsor associated with ϕ. We

set (V, y)
def
= (P, p)/G0, which is a pointed π0(G)-torsor. Thanks to Corollary 4.16,

we have the commutative diagram

1

��

1

��

1

��

πtame(VK , yK) //

��

πtame(V, y)×k K // //

��

G0 ×k K

��

πtame(UK , xK)
hK //

��

πtame(U, x)×k K
ϕ×kK // //

��

G×k K

��

π0(G)×k K

��

π0(G)×k K

��

π0(G)×k K,

��

1 1 1

where all the vertical sequences are exact. Therefore, the map (ϕ ×k K) ◦ hK is

surjective if and only if so is the map

πtame(VK , yK)→ πtame(V, y)×k K ↠ G0 ×k K.

The latter condition is valid because we have an isomorphism

(4.6) H1
fppf(V,G

0)
≃−→ H1

fppf(VK , G
0 ×k K),

which follows from Corollary 4.14 together with the isomorphism Pic0XK
≃ Pic0X×k

K. This completes the proof of the surjectivity of the map hK .

For the injectivity of the map hK , it suffices to notice that any finite quotient

map

ψ : πtame(UK , xK) ↠ G′

factors through the map hK . Indeed, by Proposition 4.1, we may assume that

G′ = G ×k K for some finite linearly reductive k-group scheme G. It suffices

to show that the pointed G ×k K-torsor (P, p) → (UK , xK) corresponding to ψ

is defined over (U, x). This is well known when G is étale, in which the torsor
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P → UK is a prime-to-p Galois covering, hence we are reduced to the connected

case G = G0, for which the claim immediately follows from the isomorphism (4.6).

This completes the proof of the proposition.

§5. The cospecialization map for the tame fundamental group scheme

§5.1. Finite quotients of the tame fundamental group scheme

Let k be an algebraically closed field of characteristic p > 0 and X a proper smooth

connected curve over k. Let S ⊂ X(k) be a finite (possibly empty) set of closed

points and set U
def
= X \ S. Fix a k-rational point x ∈ U(k). In this subsection,

we follow the argument in Section 3.3 to investigate finite quotients of the tame

fundamental group scheme πtame(U, x).

Let H be a fixed finite group of prime-to-p order. Suppose given a surjective

homomorphism

ϕ : πtame(U, x) ↠ H

and let (V, y)→ (U, x) be the corresponding pointed H-torsor.

Lemma 5.1. There exists a bijection between the set of isomorphism classes of

surjective homomorphisms πtame(V, y) ↠ µsp for some integer s ≥ 0 and the set of

subspaces of the Fp-vector space Hom(πtame(V, y), µp).

Here, any two surjective homomorphisms ψ1 : π
tame(V, y) ↠ µs1p and ψ2:

πtame(V, y) ↠ µs2p are said to be isomorphic if s1 = s2 and there exists an iso-

morphism of group schemes α ∈ Aut(µs1p ) such that ψ1 = α ◦ ψ2.

Proof of Lemma 5.1. Let S1(ϕ) be the set of isomorphism classes of surjective

homomorphisms πtame(V, y) ↠ µsp for some s ≥ 0. Let S2(ϕ) be the set of subspaces

of the Fp-vector space Hom(πtame(V, y), µp). Then the map M : S1(ϕ) → S2(ϕ);

ψ 7→M(ψ) defined by

(5.1) M(ψ)
def
= Im

(
Hom(µsp, µp)

ψ∗

−−→ Hom(πtame(V, y), µp)
)

gives the desired bijective map.

Note that the Fp-vector space Hom(πtame(V, y), µp) is canonically isomorphic

to the cohomology groupH1
fppf(V, µp) as an Fp[H]-module. LetM be a finitely gen-

erated Fp[H]-module. Then the corresponding action H → Aut(M)
def
= GLM (Fp)

induces a homomorphism of k-group schemes H → Aut(∆(M)). Hence, we obtain

a finite linearly reductive k-group scheme G
def
= H ⋉∆(M).
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Lemma 5.2. Suppose given a surjective homomorphism ψ : πtame(V, y) ↠ µsp
and let M(ψ) ⊂ Hom(πtame(V, y), µp) be the corresponding subspace (cf. Lemma

5.1 and (5.1)). Let Γψ ◁ πtame(V, y)ab be the kernel of the homomorphism ψab:

πtame(V, y)ab ↠ µsp induced by ψ. Then the following conditions are equivalent:

(a) The subspace M(ψ) is stable under the action by H on Hom(πtame(V, y), µp).

(b) The subgroup scheme Γψ < πtame(V, y)ab is stable under the conjugacy action

by H.

(c) The surjective homomorphism ψ : πtame(V, y) ↠ µsp extends to a surject-

ive homomorphism ψ̃ : πtame(U, x) ↠ G onto a semi-direct product G
def
=

H ⋉ µsp and the composition πtame(U, x)
ψ̃↠ G ↠ G/µsp = H coincides with

ϕ : πtame(U, x) ↠ H.

Proof. Thanks to Corollary 4.16, we have an exact sequence

1→ πtame(V, y)→ πtame(U, x)→ H → 1.

By the universality of the maximal abelian quotient πtame(V, y) ↠ πtame(V, y)ab,

the kernel of the quotient map is normal in the group scheme πtame(U, x). Hence,

we get the quotient

πtame(U, x)′
def
= πtame(U, x)/Ker(πtame(V, y) ↠ πtame(V, y)ab),

which fits into the commutative diagram with exact rows

1 // πtame(V, y) //

����

πtame(U, x) //

��

H // 1

1 // πtame(V, y)ab //

����

πtame(U, x)′ // H // 1.

µsp

Condition (c) is then equivalent to the existence of the pushout G as in the diagram

1 // πtame(V, y)ab //

����

πtame(U, x)′

��

// H // 1

1 // µsp // G // H // 1.

Now the equivalences among conditions (a), (b) and (c) clearly holds true.

The following is a version of Lemma 3.7.
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Lemma 5.3. Let H be a finite group of prime-to-p order. Let V → U be a con-

nected H-torsor. Then the set of isomorphism classes of Nori-reduced G-torsors

P → U (cf. Section 2.1.4) which dominate V → U , where G is an extension of H

by a diagonalizable group scheme ∆ with pX(∆) = 0 is in bijection with the set of

Fp[H]-submodules of Hom(πtame(V ), µp).

Proof. This is a consequence of Lemmas 5.1 and 5.2.

Proposition 5.4. Let X be a proper smooth connected curve over k and fix a

k-rational point x ∈ X(k). Let H be a finite group of prime-to-p order. Let M be

a finite-dimensional Fp[H]-module. Consider the finite group Γ
def
= H ⋉ (M∨) and

the finite linearly reductive k-group scheme G
def
= H ⋉∆(M). Then there exists a

surjective homomorphism πtame(X,x) ↠ G if and only if there exists a surjective

homomorphism πét
1 (X,x) ↠ Γ.

Proof. When M = 0, the assertion is straightforward from the fact that πtame(X,

x)(k) = πét
1 (X,x)(p

′). Let us consider the arbitrary case. Suppose given a sur-

jective homomorphism ψ : πtame(X,x) ↠ G = H ⋉ ∆(M). Let (Y, y) → (X,x)

be the Nori-reduced pointed H-torsor associated with the surjective homomorph-

ism πtame(X,x)
ψ
↠ G ↠ H. Then, by Lemma 5.3, the map ψ makes M an H-

submodule of Hom(πtame(Y, y), µp) = H1
fppf(Y, µp) = JY [p](k). As there exists a

natural isomorphism JY [p](k) ≃ Hom(πét
1 (Y ),Z/pZ)∨ of Fp[H]-modules (cf. (3.8)),

the dual M∨ can be embedded into Hom(πét
1 (Y ),Z/pZ) as an H-submodule. By

Lemma 3.7, this implies that Γ appears as a quotient of πét
1 (X,x). The dual argu-

ment proves that the converse is also true. This completes the proof.

Finally, we remark on the following finiteness result.

Proposition 5.5. Let U be a smooth connected curve over k together with a

k-rational point x ∈ U(k). Then for any G ∈ D (cf. Definition 4.3), the set

Hom(πtame(U, x), G) of homomorphisms into G is a finite set.

Proof. Let H
def
= G(k) = π0(G)(k), which is a finite group of prime-to-p order.

As the set of subgroup schemes of G is finite, it suffices to show that the set of

surjective homomorphisms is a finite set. However, by Lemma 5.3, this follows from

the finiteness of the set of H-submodules of any finite-dimensional H-module M .

This completes the proof.

§5.2. Lifting problems for linearly reductive torsors

Let k be an algebraically closed field of characteristic p > 0. Let R
def
= k[[t]] be the

ring of formal power series with coefficients in k and K
def
= FracR = k((t)) its field
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of fractions. Let us fix an algebraic closure K of K and R the integral closure of

R in K. Let S = SpecR.

Let f : X → S be a proper smooth S-curve with geometrically connected

fibers. Let XK (respectively Xk) be the geometrically generic fiber (respectively

the special fiber) of X/S. Let D be a relatively étale Cartier divisor on X/S of

degree n. We set U
def
= X \ Supp(D) and denote by UK (respectively by Uk) the

geometrically generic fiber (respectively the special fiber) of the S-curve U .

Lemma 5.6. There exists a canonical surjective homomorphism between the coho-

mology groups H1
fppf(UK , µp) ↠ H1

fppf(Uk, µp).

Proof. Thanks to Proposition 4.5 applied to the diagonalizable group scheme G =

µp, we get a natural map

H1
fppf(UK , µp)

≃←− H1
fppf(UR, µp)→ H1

fppf(Uk, µp).

It suffices to prove that it is surjective. By Corollary 4.14, one can reduce the

problem to the proper case X = U .

Let Pic0X/S be the connected component of the identity on the Picard scheme

PicX/S for X/S. As Pic0X/S is an abelian S-scheme, we have the surjective reduc-

tion map

Pic0(XK) = Pic0X/S(K) = Pic0X/S(R) ↠ Pic0X/S(k) = Pic0(Xk).

As both the groups Pic0(XK) and Pic0(Xk) are divisible, the reduction map

induces a surjective homomorphism

Pic0(XK)[p] ↠ Pic0(Xk)[p].

On the other hand, by the Kummer theory, we have the canonical isomorphisms

H1
fppf(XK , µp)

≃−→ Pic0(XK)[p] and H1
fppf(Xk, µp)

≃−→ Pic0(Xk)[p],

which implies that the map H1
fppf(XK , µp) → H1

fppf(Xk, µp) is surjective. This

completes the proof.

Proposition 5.7. Let G ∈ D (cf. Definition 4.3). Then any pointed G-torsor

(P, p)→ (Uk, xk) can be lifted to a pointed GK-torsor (PK , pK)→ (UK , xK).

Proof. Let H be a finite group of prime-to-p order and M a finitely generated

Fp[H]-module so that G ≃ H ⋉∆(M). Without loss of generality, we may assume

that (P, p)→ (Uk, xk) is a Nori-reduced G-torsor (cf. Section 2.1.4). Let (Vk, yk)
def
=

(P, p)/∆(M) be the induced pointed H-torsor, which can be uniquely lifted to a

pointed H-torsor (V, y)→ (U, x) with the geometrically generic fiber (VK , yK)→
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(UK , xK). By Lemma 5.6, we get a surjective homomorphism of finitely generated

Fp[H]-modules,

H1
fppf(VK , µp) ↠ H1

fppf(Vk, µp),

and the Fp[H]-module M can be embedded into H1
fppf(Vk, µp) as an Fp[H]-sub-

module. However, as the category Mod(Fp[H]) is semi-simple, M can be (non-

canonically) lifted to an Fp[H]-submodule of H1
fppf(VK , µp). By Lemma 5.2, this

amounts to saying that the pointed G-torsor (P, p) → (Uk, xk) can be lifted to a

pointed GK-torsor (PK , pK)→ (UK , xK). This completes the proof.

§5.3. The cospecialization map for the tame fundamental

group scheme

Let k be an algebraically closed field of characteristic p > 0. Let R
def
= k[[t]] and

K
def
= FracR = k((t)). Let us fix an algebraic closure K of K and R the integ-

ral closure of R in K. Let f : X → S
def
= SpecR be a smooth morphism with

geometrically connected fibers with an S-valued point x ∈ X(S). We denote by

(XK , xK) (respectively (Xk, xk)) the geometrically generic fiber (respectively the

special fiber) of (X,x)/S.

Let (Xtame
K

, xtame
K

)→ (XK , xK) be the universal pointed πtame(XK , xK)-tor-

sor. AsK is algebraically closed, by Proposition 4.2, there exists a profinite linearly

reductive k-group scheme πtame(XK , xK)k which is unique up to isomorphism such

that

πtame(XK , xK) ≃ πtame(XK , xK)k ×k K.
Then the base change πtame(XK , xK)R

def
= πtame(XK , xK)k ×k R is an R-model of

πtame(XK , xK). As X is smooth over S, by Proposition 4.5, the πtame(XK , xK)-

torsor Xtame
K

→ XK uniquely extends to a πtame(XK , xK)R-torsor (X
tame
R

, xtame
R

)

→ (XR, xR). By taking the special fiber, we get a pointed πtame(XK , xK)k-torsor

over (Xk, xk). As π
tame(XK , xK)k is a profinite linearly reductive k-group scheme,

by the universality of the tame fundamental group scheme πtame(Xk, xk) for the

pointed scheme (Xk, xk), there exists a unique homomorphism of k-group schemes

(5.2) πtame(Xk, xk)→ πtame(XK , xK)k.

Definition 5.8. We call the map (5.2) the cospecialization map associated with

the pointed smooth scheme (X,x) over S and denote it by cosp(X,x)/S or simply

by cosp.

We also consider a truncated version of the cospecialization map. Let ϕ : G→
G′ be a homomorphism of finite linearly reductive k-group schemes. As the connec-

ted component G0 of the identity is diagonalizable, we have a canonical isomorph-

ism G0 ≃−→ ∆(X(G0)). The p-torsion subgroup X(G0)[p] of the character group
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X(G0) is stable under the conjugacy action π0(G)→ Aut(G0)
≃−→ Aut(X(G0)) by

the étale quotient π0(G), hence the kernel of the quotient map G0 ↠ ∆(X(G0)[p])

is normal in the group scheme G. Therefore, we obtain the quotient

GD def
= G/Ker

(
G0 → ∆(X(G0)[p])

)
,

which belongs to the class D (cf. Definition 4.3). Moreover, any homomorphism

ϕ : G → G′ of finite linearly reductive group schemes induces a homomorphism

ϕD : GD → G′D . The construction can be generalized to an arbitrary homo-

morphism between pro-finite linearly reductive group schemes over k. Thus, the

cospecialization map in Definition 5.8 induces a homomorphism

(5.3) cospD
(X,x)/S : π

tame(Xk, xk)
D → πtame(XK , xK)Dk ,

which we call the truncated cospecialization map for the tame fundamental group

schemes. Now we prove Theorem 1.3(1).

Proposition 5.9. Let f : X → S be a proper smooth S-curve with geometrically

connected fibers. Let D be a relatively étale Cartier divisor on X/S of degree n.

We set U
def
= X \Supp(D) and denote by UK (respectively by Uk) the geometrically

generic fiber (respectively the special fiber) of U/S. Fix an S-valued point x ∈ U(S).

Then the truncated cospecialization map (cf. (5.3)),

cospD
(U,x)/S : π

tame(Uk, xk)
D → πtame(UK , xK)Dk ,

is injective.

Proof. Let πtame(Uk, xk)
D ↠ G be an arbitrary finite quotient, which corresponds

to some pointed G-torsor (P, p) → (Uk, xk). By Proposition 5.7, the pointed G-

torsor is lifted to a pointed GK-torsor over (UK , xK). This amounts to saying

that the surjective homomorphism ϕ factors through πtame(UK , xK)Dk . As G is

arbitrary, this immediately implies that the homomorphism cospD is injective.

Remark 5.10. With the same notation as in Proposition 5.9, thanks to the base

change property for the tame fundamental group schemes (cf. Proposition 4.17),

the (truncated) cospecialization map induces the map of affine K-group schemes

cospD
K
: πtame(Uk,K , xk,K)D → πtame(UK , xK)D ,

where (Uk,K , xk,K) is the trivial deformation, i.e. Uk,K = Uk × K and xk,K =

xk ×K. We also call this map the (truncated) cospecialization map.

Theorem 5.11. With the same notation as in Proposition 5.9, for the pointed

S-curve (U, x), the following conditions are equivalent to each other:
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(a) The truncated cospecialization map cospD
(U,x)/S is an isomorphism.

(b) For any G ∈ D (cf. Definition 4.3), we have

#Hom(πtame(Uk, xk)
D , G) = #Hom(πtame(UK , xK)D , GK).

(c) There exists an isomorphism of k-group schemes,

πtame(Uk, xk)
D ≃ πtame(UK , xK)Dk .

Proof. The implications (a) ⇒ (c) ⇒ (b) are clear. It suffices to show the implic-

ation (b) ⇒ (a) holds true. Indeed, by Propositions 5.5 and 5.7, condition (b)

implies that for any G ∈ D , the induced map

Hom(πtame(UK , xK)D , GK)
≃←−−−− Hom(πtame(UK , xK)Dk , G)

cospD∗

−−−−→ Hom(πtame(Uk, xk)
D , G)

is a bijection, which implies that the homomorphism cospD itself is an isomorph-

ism. Hence, condition (a) holds true. This completes the proof.

Now we can prove Theorem 1.1.

Corollary 5.12. Let k0 = Fp and S = Spec k0[[t]] = {s, η}, where s (respectively

η) is the closed point (respectively generic point) of S. Let X be a proper smooth

relative S-curve of genus g with geometrically connected fibers and D an étale

relative Cartier divisor on X of degree n. We set U
def
= X \ Supp(D) and fix

an S-valued point x ∈ U(S). Suppose that U is hyperbolic. If Uη̄ is not constant

(cf. Section 3.2), then πtame(Uη̄, xη̄) is not isomorphic to πtame(Us, xs)×k0 k0(η̄).

Proof. Suppose that Uη̄ is a non-constant hyperbolic curve. It suffices to show that

πtame(Uη̄, xη̄)
D is not isomorphic to πtame(Us, xs)

D ×k0 k0(η̄). By Theorem 5.11,

we have only to show that the truncated cospecialization map

cospD
U : πtame(Us, xs)

D → πtame(Uη̄, xη̄)
D
k0

is not an isomorphism. We will adapt the argument in the proof of [23, Thm. 8.1].

Suppose that the map cospD
U : πtame(Us, xs)

D → πtame(Uη̄, xη̄)
D
k0

is an isomorph-

ism. As 2 − 2g − n < 0, there exists a connected pointed H-torsor (Vη̄, yη̄) →
(Uη̄, xη̄), where H is a finite group of prime-to-p order such that the normalization

Yη̄ of Xη in Vη̄ has genus greater than or equal to 2. Moreover, we may assume

that Yη̄ → Xη̄ is ramified at every point in Supp(Dη̄). Then Grothendieck’s spe-

cialization theorem for the prime-to-p étale fundamental groups

sp
(p′)
U : πét

1 (Uη̄, xη̄)
(p′) ≃−→ πét

1 (Us, xs)
(p′)
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(cf. (3.3)) says that the prime-to-p covering (Vη̄, xη̄) → (Uη̄, xη̄) is isomorphic to

the geometrically generic fiber of the connected HS′ -torsor (V, y)→ (US′ , xS′) for

some finite extension S′ → S. Then by Corollary 4.16, we have the commutative

diagram of exact sequences

1 // πtame(Vs, ys)
D //

cospD
V

��

πtame(Us, xs)
D //

cospD
U
S′≃

��

H // 1

1 // πtame(Vη̄, yη̄)
D
k0

// πtame(Uη̄, xη̄)
D
k0

// H // 1.

This gives an isomorphism cospD
V : πtame(Vs, ys)

D ≃−→ πtame(Vη̄, yη̄)
D
k0

and hence,

by Corollary 4.13 (dividing by tame inertia), we get the isomorphism

cospD
Y : πtame(Ys, ys)

D ≃−→ πtame(Yη̄, yη̄)
D
k0 .

By Propositions 4.4 and 5.4, this implies that πét
A (Ys)

C = πét
A (Yη̄)

C . However, as

both the profinite groups πét
1 (Ys)

C and πét
1 (Yη̄)

C are topologically finitely gener-

ated (cf. Corollary 3.1), it turns out that the specialization map sp: πét
1 (Yη̄)

C →
πét
1 (Ys)

C is an isomorphism (cf. [23, Lem. 8.4]). By Theorem 3.4, we can con-

clude that Yη̄ is constant. Since Yη̄ is hyperbolic, Autk0(η̄)(Yη̄) is a constant group

scheme. Therefore, Uη̄ = (Yη̄/H) \ {ramification locus} is also constant, which is

a contradiction. This completes the proof.

§5.4. Reconstruction of numerical invariants

Let k be an algebraically closed field of characteristic p > 0. Let X be a proper

smooth connected curve over k of genus g and of p-rank γ (cf. Definition 3.6). Let

S be a finite (possibly empty) set of closed points of X and we set n
def
= #S. Let

U
def
= X\S. We denote by πtame(U) the isomorphism class of the tame fundamental

group scheme πtame(U, x) for some (any) k-rational point x ∈ U(k). We will discuss

reconstruction of numerical invariants (g, n, γ) from the tame fundamental group

scheme πtame(U). This is motivated by the work of Tamagawa [22], in which the

following result is established.

Theorem 5.13 (Cf. [22, Thm. 4.1]). For each i = 1, 2, let pi be a prime number,

ki an algebraically closed field of characteristic pi, Xi a proper smooth connected

curve of genus gi over ki, Si a finite (possibly empty) set of closed points of Xi

with ni
def
= #Si and Ui

def
= Xi \ Si. If πt

1(U1) ≃ πt
1(U2), then we have p1 = p2,

g1 = g2 and n1 = n2 unless gi = 0 and ni ≤ 1 for i = 1, 2.

Note that, as we have γi = dimFpHom(πét
1 (Xi),Z/pZ) = dimFpHom(πt

1(Ui),

Z/pZ) (cf. Section 3.3), the p-rank γi can be easily reconstructed from the tame
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fundamental group πt
1(Ui). The proof involves analysis of the behavior of the gen-

eralized Hasse–Witt invariants for prime-to-p cyclic coverings of curves.

It seems natural to ask whether or not the same result still holds true after

replacing the tame fundamental group πt
1(U) by the tame fundamental group

scheme πtame(U). We assume that k
def
= k1 = k2 and set p

def
= p1 = p2. We will

freely use the base field k and hence its characteristic p. Let Xi, Si, Ui, gi, ni
(i = 1, 2) be as in Theorem 5.13. For each i = 1, 2, let γi be the p-rank of the curve

Xi (cf. Definition 3.6).

Lemma 5.14. With the above notation, suppose that we have an isomorphism

πtame(U1) ≃ πtame(U2) as affine k-group schemes. Then we have the following:

(1) 2g1 + n1 − 1 + δ1 = 2g2 + n2 − 1 + δ2.

(2) γ1 + n1 − 1 + δ1 = γ2 + n2 − 1 + δ2.

Here we set

δi =

{
1 if ni = 0,

0 if ni > 0.

Proof. Both can be readily verified by considering abelian quotients of the tame

fundamental group schemes as follows:

(1) Let ℓ be a prime number with ℓ ̸= p. Then the assertion immediately follows

from

2gi + ni − 1 + δi = dimFℓ
Hom(πét

1 (Ui)
(p′), µℓ(k)) = dimFℓ

Hom(πtame(Ui), µℓ).

(2) By replacing µℓ with µp and by using Corollary 4.14 or the equation (3.6), the

same argument as in the proof of (1) implies the desired equality. This completes

the proof.

Example 5.15. The following examples illustrate immediate consequences of the

preceding lemma.

(1) Let us assume that n1 = 0, i.e. U1 = X1. Then the condition that πtame(X1) ≃
πtame(U2) implies (g1, n1, γ1) = (g1, 0, γ1) = (g2, n2, γ2) unless gi = 0 and ni ≤ 1

for i = 1, 2. By Lemma 5.14, the claim holds in the case n2 = 0. Suppose that

n2 > 0. Let us prove that g1 = g2 = 0 and n2 = 1. Indeed, by Corollary 3.1,

πét
1 (U2)

(p′) is a free pro-prime-to-p group of rank 2g2+n2−1. On the other hand, our

condition implies that πét
1 (U1)

(p′) = πtame(U1)(k) ≃ πtame(U2)(k) = πét
1 (U2)

(p′).

Hence πét
1 (U1)

(p′) must be a free pro-prime-to-p group. As πét
1 (U1)

(p′) ≃ Π
(p′)
g1,0

(cf. (3.4)), we must have g1 ≤ 1, in which the tame fundamental group scheme
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πtame(X1) is abelian. Hence, so is πtame(U2). As n2 > 0, this implies that g2 = 0.

By Lemma 5.14, we have

2g1 = n2 − 1 = γ1,

which is possible only when g1 = 0 as γ1 ≤ g1. In this case, we have n2 = 1.

(2) Let us suppose that g1 = 0, i.e. X1 ≃ P1
k. Then the condition that πtame(U1) ≃

πtame(U2) implies that (g1, n1, γ1) = (0, n1, 0) = (g2, n2, γ2). If n1 = 0 or n2 = 0,

by the first case (1), the assertion is obviously true. Thus, let us assume that

n1, n2 > 0. Then, by Lemma 5.14, we have 2g2 + n2 − 1 = n1 − 1 = γ2 + n2 − 1,

hence 2g2 = γ2. As γ2 ≤ g2, this only happens when g2 = γ2 = 0, in which case

we have n1 = n2.

Now we prove Theorem 1.2.

Theorem 5.16. Suppose that there exists an isomorphism of k-group schemes

πtame(U1) ≃ πtame(U2). Then we have (g1, n1, γ1) = (g2, n2, γ2) unless gi = 0 and

ni ≤ 1 for i = 1, 2.

Proof. To ease the notation, we set Π(Ui)
def
= πtame(Ui) for = 1, 2. By Example

5.15(1),(2), we may assume that gi, ni > 0 for i = 1, 2. In this case, by Lemma

5.14, we have

2g1 + n1 = 2g2 + n2, γ1 + n1 = γ2 + n2.

Hence, it suffices to show that the equality g1 = g2 holds true. We will apply the

results in [22, §4]. Fix i ∈ {1, 2}. For any positive integer N > 0 with p ∤ N ,

let Ui(N)→ Ui be the finite étale Galois covering corresponding to the surjective

homomorphism Π(Ui) ↠ (Π(Ui)
ét)ab/N = (πét

1 (Ui)
(p′))ab/N . We denote byXi(N)

the normalization of Xi in Ui(N). We set ni(N) := #(Xi(N) \Ui(N)) for i = 1, 2.

Then we have

dimFp
H1

fppf(Ui(N), µp) = dimFp
H1

fppf(Xi(N), µp) + ni(N)− 1

= dimFpH
1
ét(Xi(N),Z/pZ) + ni(N)− 1,(5.4)

where the first equality is due to Corollary 4.14 and the second one is due to the

Serre duality (3.7). Thanks to Corollary 4.16, we have

H1
fppf(Ui(N), µp) = Hom

(
Ker

(
Π(Ui) ↠ (Π(Ui)

ét)ab/N
)
, µp

)
.

Therefore, the assumption Π(U1) ≃ Π(U2) implies that

(5.5) dimFp
H1

fppf(U1(N), µp) = dimFp
H1

fppf(U2(N), µp)
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for any integer N > 0 with p ∤ N . By Tamagawa’s theorem [22, Cor. 4.11; see also

Rem. 4.8], we have

lim
N=pf−1
f→∞

dimFp
H1

ét(Xi(N),Z/pZ)
N2gi+ni−1

=

{
gi − 1 if ni = 1,

gi if ni > 1.

On the other hand, as

ni(N) =

{
N2gi+ni−1 if ni = 1,

N2gi+ni−2ni if ni > 1

(cf. proof of [22, Lem. 4.13]), we obtain

lim
N=pf−1
f→∞

ni(N)− 1

N2gi+ni−1
=

{
1 if ni = 1,

0 if ni > 1.

Therefore, by (5.4), we have

(5.6)

lim
N=pf−1
f→∞

dimFpH
1
fppf(Ui(N), µp)

N2gi+ni−1

= lim
N=pf−1
f→∞

(
dimFpH

1
ét(Xi(N),Z/pZ)
N2gi+ni−1

+
ni(N)− 1

N2gi+ni−1

)
= gi.

The equations (5.5) and (5.6) thus imply that g1 = g2. This completes the proof.

Remark 5.17. As a consequence of [22, Thm. 4.1] and [23, Thm. 8.1], Tamagawa

established the finiteness theorem [23, Thm. 8.6]. It is natural to ask whether we

can deduce our version of the finiteness theorem from Corollary 5.12 and Theorem

5.16. Thanks to Proposition 5.4, this is correct for proper hyperbolic curves. In

the following, we will see that we need more arguments for the general case. Let

k0 = Fp and U be a smooth connected hyperbolic curve over k0. Let Σ be the

set of k0-isomorphism classes of smooth connected curves U ′ over k0 such that

πtame(U) ≃ πtame(U ′). Let X
def
= U cpt be the smooth compactification of U . Let g

be the genus of X and n
def
= #(X \U)(k0) the cardinality of the complement of U .

By Theorem 5.16, we have Σ ⊂Mg,n,k0 , where Mg,n,k0 is the coarse moduli space

over k0 of smooth connected curves of type (g, n). Suppose that Σ is an infinite

set. Let C ⊂ Mg,n,k0 be an integral k0-curve with #(C ∩ Σ) = ∞. Let η̄ be a

geometric point over the generic point η of C. Let Uη̄ be the curve corresponding

to the geometric point η̄ →Mg,n,k0 . Therefore, the problem is reduced to proving

that πtame(U)D ×k0 k0(η̄) ≃ πtame(Uη̄)
D , which contradicts Corollary 5.12.
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In particular, it is necessary that they have the same set of isomorphism classes

of finite quotients. We denote by πtame
A (U)D (respectively by πtame

A (Uη̄)
D) the set

of isomorphism classes of finite quotients of πtame(U)D ×k0 k0(η̄) (respectively

finite quotients of πtame(Uη̄)
D). Thanks to Proposition 5.7, we have πtame

A (U)D ⊆
πtame
A (Uη̄)

D . It suffices to show that πtame
A (Uη̄)

D ⊆ πtame
A (U)D . Let G∈πtame

A (Uη̄)
D

be an arbitrary finite quotient of πtame(Uη̄)
D . By definition, there exists a Nori-

reduced G-torsor Pη̄ → Uη̄ (cf. Section 2.1.4). The problem is that the Nori-

reducedness does not mean that Pη̄ is reduced in general. If Pη̄ is reduced, we can

conclude that G ∈ πtame
A (U)D as follows. After shrinking C if necessary, there exist

a finite flat morphism between integral k0-curves C
′ → C and a G-torsor P → UC′

over a smooth model UC′ of Uη̄ over C ′ such that P |Uη̄ ≃ Pη̄ as G-torsors over Uη̄.

If Pη̄ is reduced, according to [24, Lem. 0578], by shrinking C if necessary, we may

assume that P → C ′ has geometrically reduced fibers. If s ∈ C ′(k0) is a closed

point of C ′ whose image in C belongs to Σ, we obtain a G-torsor P |Us
→ Us with

P |Us
reduced and connected. This implies that G ∈ πtame

A (Us)
D = πtame

A (U)D .
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