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Bicomplex Hyperfunctions
and Bicomplex Microfunctions

by

Yutaka Matsui

Abstract

In this paper, we study bicomplex hyperfunctions introduced by Colombo et al. (Ann.
Mat. Pura Appl. 190 (2011), 247–261) with functorial techniques and prove the idem-
potent representation theorem for them. Using the method of this paper, we can easily
reconstruct the theory of bicomplex hyperfunctions and develop it into the theory of
bicomplex microfunctions.
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§1. Introduction

The notion of hyperfunctions was introduced by Mikio Sato [10, 11] as a generaliza-

tion of functions. Let V ⊂ Rn be an open set and Ω ⊂ Cn a complex neighborhood

of V satisfying V = Rn ∩ Ω. Let OCn denote the sheaf of complex holomorphic

functions on Cn. Sato proved that the relative cohomology group Hp
V (Ω;OCn) of

OCn supported in V vanishes if p ̸= n and defined a hyperfunction as an element

of the relative cohomology group

BCn(V ) = Hn
V (Ω;OCn).

Intuitively, a hyperfunction is represented as a finite sum of boundary values of

complex holomorphic functions. He also proved that BCn is a flabby sheaf on Rn. It

is well known that hyperfunctions are more natural and useful than distributions

in studying linear partial differential equations with real analytic coefficients. In

particular, it is important to consider singularities of hyperfunctions in the cotan-

gent bundle T ∗Rn. The notion of microfunctions has been introduced in order to
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realize it and the theory of hyperfunctions and microfunctions has vastly developed

as algebraic analysis [12].

Bicomplex algebra was introduced by Segre, inspired by the work of Hamilton

and Clifford on quaternions. It is defined by

BC =
{
Z = z1 + z2j

∣∣ z1, z2 ∈ C
}
,

where j is another imaginary unit commuting with the imaginary unit i of the field

of complex numbers C. Since BC is a commutative ring but has zero divisors, it

is more difficult to study bicomplex functions than complex functions. Neverthe-

less, we can define the notion of holomorphicity of bicomplex functions similarly

to that of complex functions. The study of bicomplex holomorphic functions is

called bicomplex analysis. References [3] and [7] are fundamental textbooks for

this subject. See Sections 2.1 and 2.2 for a quick review. See [5] and [6] for the

author’s recent works in this area.

In bicomplex analysis, the idempotent representation plays an important role.

Setting

e =
1 + ij

2
, e† =

1− ij

2
,

e and e† are the non-complex idempotent elements satisfying ee† = 0. Then any

bicomplex number Z = z1 + z2j ∈ BC has the idempotent representation

Z = Zee+ Ze†e†,

where we set Ze = z1 − z2i, Ze† = z1 + z2i ∈ C. By the idempotent representa-

tion, for any bicomplex holomorphic function F , there exist locally two complex

holomorphic functions Fe and Fe† with respect to only the variables Ze and Ze†

respectively such that we have

(1.1) F (Zee+ Ze†e†) = Fe(Ze)e+ Fe†(Ze†)e†.

The idempotent representation (1.1) is one of the strongest properties of bicomplex

holomorphic functions. After the idempotent representation (1.1), we can imme-

diately obtain several fundamental properties of bicomplex holomorphic functions

by applying properties of complex holomorphic functions to coefficient functions

Fe and Fe† .

The notion of bicomplex hyperfunctions was introduced by Colombo et al. [1]

as a natural generalization of classical hyperfunctions to bicomplex analysis. Let

V ⊂ Rn be an open set and Ω ⊂ BCn a bicomplex neighborhood of V satisfying

V = Rn ∩ Ω. Let OBCn denote the sheaf of bicomplex holomorphic functions on

BCn. Colombo et al. proved that the relative cohomology group Hp
V (Ω;OBCn) of
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OBCn supported in V vanishes if p ̸= 3n and defined a bicomplex hyperfunction

as an element of the relative cohomology group

BBCn(V ) = H3n
V (Ω;OBCn).

They also proved that BBCn is a flabby sheaf on Rn and the duality theorem. See

also [9, 14] for further developments.

In this paper, we prove the idempotent representation theorem for bicomplex

hyperfunctions. In other words, we prove that a bicomplex hyperfunction corre-

sponds to a pair of two complex hyperfunctions. As a corollary of this principle,

we can immediately obtain several fundamental properties of bicomplex hyper-

functions, such as flabbiness and some fundamental operations. Note that via the

Čech cohomology it is not easy to compare two cohomology groups H3n
V (Ω;OBCn)

and Hn
V (Ω;OCn) directly. The proof is based on the idempotent representation

(1.1) of bicomplex holomorphic functions and functorial techniques in the theory

of sheaves. By our method, we can easily reconstruct the theory of bicomplex

hyperfunctions in [1] and develop it into the theory of bicomplex microfunctions.

See Sections 3, 4 and 5 for the details.

Similarly, we can also develop the results into the theory of multicomplex

hyperfunctions introduced in [14], and furthermore that on real analytic manifolds.

We can define the notion of multicomplex hyperfunctions of several variables, prove

the idempotent representation theorem for them and develop it into the theory of

multicomplex microfunctions. See [4] for the details.

§2. Preliminaries

§2.1. Bicomplex numbers

In this subsection, we review the definition and fundamental properties of bicom-

plex numbers. See [3, 7] for more details.

Let C be the field of complex numbers with the imaginary unit i. We define

the set of bicomplex numbers by

BC =
{
Z = z1 + z2j

∣∣ z1, z2 ∈ C
}

=
{
Z = x1 + y1i+ x2j + y2ij

∣∣ x1, y1, x2, y2 ∈ R
}
,

where j is another imaginary unit independent of and commuting with i:

j ̸∈ C, ij = ji, i2 = j2 = −1.

By defining addition and multiplication naturally, BC has a structure of a com-

mutative ring. The ring BC is neither a field nor an integral domain. The set of
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zero divisors of BC with 0 is described as

S0 =
{
Z = z1 + z2j ∈ BC

∣∣ z21 + z22 = 0
}
.

Note that in BC a zero divisor is equivalent to a non-unit element. Setting

e =
1 + ij

2
, e† =

1− ij

2
,

e and e† are the non-complex idempotent elements satisfying ee† = 0.

For

Z = z1 + z2j = x1 + y1i+ x2j + y2ij ∈ BC,

we define the surjective ring homomorphisms Φe : BC→ C and Φe† : BC→ C by

Φe(Z) = z1 − z2i = (x1 + y2) + (y1 − x2)i,

Φe†(Z) = z1 + z2i = (x1 − y2) + (y1 + x2)i

respectively. Also, setting Ze = Φe(Z) and Ze† = Φe†(Z), any bicomplex number

Z has the idempotent representation

Z = Φe(Z)e+Φe†(Z)e† = Zee+ Ze†e†.

By the idempotent representation, the set of zero divisors with 0 is represented by

S0 =
{
Z = Zee+ Ze†e† ∈ BC

∣∣ ZeZe† = 0
}
= Ce ∪ Ce†.

In the case of several bicomplex variables, for Z = (Z1, . . . , Zn) ∈ BCn, we

also define the maps Φe : BCn → Cn and Φe† : BCn → Cn by

Φe(Z) = (Φe(Z1), . . . ,Φe(Zn)), Φe†(Z) = (Φe†(Z1), . . . ,Φe†(Zn))

respectively. Then we have the idempotent representation of Z ∈ BCn as

Z = Φe(Z)e+Φe†(Z)e†.

In order to emphasize components, we may identify an image of a point by Φe (resp.

Φe†) with a point of the e-axis Cne (resp. the e†-axis Cne†) in BCn. Namely, we

may use the notation Φe(BCn) = Cne, Φe†(BCn) = Cne† and so on.

§2.2. Bicomplex holomorphic functions

In this subsection, we review some definitions and fundamental results in bicomplex

analysis. See [3, 7, 8] for more details.

For any bicomplex number Z = z1 + z2j ∈ BC, we define the norm ∥Z∥ of Z
by

∥Z∥ =
√
|z1|2 + |z2|2.
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It induces a topology on BC, which is isomorphic to the Euclidean space C2.

Moreover, the maps Φe and Φe† are continuous and open.

Let Ω ⊂ BC be an open set, F : Ω → BC a bicomplex function on Ω and

Z0 ∈ Ω. We say that F is bicomplex differentiable at Z0 if the limit

lim
Z→Z0

Z−Z0 /∈S0

F (Z)− F (Z0)

Z − Z0

exists, which is denoted by F ′(Z0). We also say that F is bicomplex holomorphic on

Ω if F is bicomplex differentiable at any point of Ω. We denote the set of bicomplex

holomorphic functions on Ω by OBC(Ω). Then OBC has a sheaf structure on BC.
The idempotent representation of bicomplex holomorphic functions plays an

important role in bicomplex analysis. Let F be a bicomplex function on Ω. By the

idempotent representation, we have

F (Z) = Fe(Z)e+ Fe†(Z)e†

= Fe(Ze, Ze†)e+ Fe†(Ze, Ze†)e†,

where Fe, Fe† : Ω→ C are considered as complex-valued functions of two complex

variables. The following theorem, called the Ringleb theorem, is one of the most

important results in bicomplex analysis.

Theorem 2.1. Assume that each fiber of Φe|Ω and Φe† |Ω is connected. Then F is

bicomplex holomorphic on Ω if and only if Fe (resp. Fe†) is complex holomorphic on

Φe(Ω) (resp. Φe†(Ω)) of one variable with respect to Ze (resp. Ze†). Moreover, any

bicomplex holomorphic function F on Ω is analytically continued to Φ−1
e (Φe(Ω))∩

Φ−1
e† (Φe†(Ω)) and we have

F (Z) = Fe(Ze)e+ Fe†(Ze†)e†.

By Theorem 2.1, we can immediately generalize fundamental properties of

complex holomorphic functions of one variable such as Taylor’s theorem, the

principle of analytic continuation and so on to those of bicomplex holomorphic

functions.

Let OC denote the sheaf of complex holomorphic functions of one variable. In

the terminology of sheaves, Theorem 2.1 can be described as an isomorphism of

sheaves on BC:
OBC ≃ Φ−1

e OCee⊕ Φ−1
e† OCe†e†.

In the case of several bicomplex variables, let Ω ⊂ BCn be an open set,

F : Ω→ BC a bicomplex function on Ω. We say that F is bicomplex holomorphic

on Ω if and only if F is partially holomorphic in each variable on Ω. We denote
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the sheaf of bicomplex holomorphic functions of several variables by OBCn . Then

we also have an isomorphism of sheaves on BCn:

(2.1) OBCn ≃ Φ−1
e OCnee⊕ Φ−1

e† OCne†e†,

where OCn denotes the sheaf of complex holomorphic functions of several variables.

§2.3. Functorial study of classical hyperfunctions and microfunctions

In this subsection, we review a functorial study of classical hyperfunctions and

microfunctions in the derived category of sheaves. A reference for derived categories

is [2] and we follow the terminology in it. Moreover, [2] and [12] are fundamental

references for results in this subsection. For example, for a topological space X,

Db(X) denotes the derived category of bounded complexes of sheaves of CX -

modules on X. Recall that for any morphism f : X → Y of topological manifolds

there exists a functor

f ! : Db(Y ) −→ Db(X)

as the right adjoint functor to Rf! : D
b(X) → Db(Y ). In the case where f is a

closed embedding, we have

(2.2) f ! ≃ f−1RΓX .

In the case where X and Y are orientable and f is a topological submersion, we

have

(2.3) f ! ≃ f−1[dimX − dimY ].

A (complex) hyperfunction is a generalized function, which is represented as

a finite formal sum of boundary values of complex holomorphic functions. We

explain the functorial description of the boundary value below. In the derived

category Db(Rn), the sheaf of (complex) hyperfunctions BCn corresponds to the

complex RΓRn(OCn)|Rn [n]. Here, OCn denotes the sheaf of complex holomorphic

functions on Cn. The following properties are well known.

Theorem 2.2. The following properties hold:

(i) The complex RΓRn(OCn)|Rn is concentrated in degree n.

(ii) The sheaf BCn = Hn(RΓRn(OCn)|Rn) is flabby on Rn.

A (complex) microfunction is a microlocal object for a (complex) hyper-

function, which is described as the singularities of it in the conormal bundle

πCn : T ∗
RnCn → Rn to Rn in Cn. Let us set Ṫ ∗

RnCn = T ∗
RnCn \ Rn and denote by

π̇Cn the natural projection Ṫ ∗
RnCn → Rn. In the derived category Db(T ∗

RnCn), the
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sheaf of (complex) microfunctions CCn corresponds to the complex µRn(OCn)[n].

Here, µRn : Db(Cn)→ Db(T ∗
RnCn) denotes the microlocalization functor along Rn.

The following properties are well known.

Theorem 2.3. The following properties hold:

(i) The complex µRn(OCn) is concentrated in degree n.

(ii) Let us set CCn = Hn(µRn(OCn)). Then the sheaf CCn |Ṫ∗
RnCn is conically flabby

on Ṫ ∗
RnCn. Namely, its direct image on Ṫ ∗

RnCn/R+ is flabby.

(iii) There exists an exact sequence of sheaves on Rn:

(2.4) 0 −→ OCn |Rn −→ BCn −→ π̇Cn∗CCn −→ 0.

(iv) There exists an isomorphism of sheaves on Rn:

sp: BCn
∼−→ πCn∗CCn .

The exact sequence (2.4) is called Sato’s fundamental exact sequence and the

morphism sp is called the spectrum isomorphism.

For a detailed study of Sato’s fundamental exact sequence (2.4), let us consider

the normal bundle τCn : TRnCn → Rn to Rn in Cn and the specialization functor

νRn : Db(Cn)→ Db(TRnCn) along Rn. The following property is well known.

Theorem 2.4. Let us set ÃCn = H0(νRn(OCn)). Then there exists an exact

sequence of sheaves on TRnCn:

(2.5) 0 −→ ÃCn −→ τ−1
Cn BCn −→ (p+Cn1)∗(p

+
Cn2)

−1CCn ,

where p+Cn1 (resp. p+Cn2) denotes the natural projection from{
(η, ξ) ∈ TRnCn ×

Rn
T ∗
RnCn

∣∣ ⟨η, ξ⟩ > 0
}

to TRnCn (resp. T ∗
RnCn).

The distinguished triangle in Db(TRnCn) generalized (2.5) on the Fourier–

Sato transformation is called Uchida’s triangle. See [13] for the details. We call a

section of the specialization ÃCn a holomorphic function on an infinitesimal wedge.

The morphism b : ÃCn → τ−1
Cn BCn of (2.5), which is induced by id → τ !CnRτCn!,

is called the boundary value morphism. By the boundary value morphism b, a

hyperfunction is represented as a finite sum of boundary values of holomorphic

functions on infinitesimal wedges.
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§3. Functorial study of bicomplex hyperfunctions

In this section, we study bicomplex hyperfunctions by functorial techniques. Con-

sidering the classical case, it is natural to study the complex RΓRn(OBCn) of

sections of the sheaf OBCn supported in Rn in the derived category Db(BCn).

In order to study it, let us consider the following diagonal embedding:

Rn ↪−→ Rne+ Rne† ↪−→ Cne+ Cne† = BCn

of the real space Rn into the bicomplex space BCn. The idempotent representation

(2.1) of bicomplex holomorphic functions induces that of RΓRn(OBCn)|Rn in the

derived category Db(Rn).

Theorem 3.1. We have an isomorphism

RΓRn(OBCn)|Rn ≃ (Φe|Rn)−1RΓRne(OCne)|Rnee[−2n]
⊕ (Φe† |Rn)−1RΓRne†(OCne†)|Rne†e†[−2n](3.1)

in Db(Rn).

Proof. By the idempotent representation (2.1), we have

RΓRn(OBCn)|Rn ≃ RΓRn(Φ−1
e OCne)|Rne⊕RΓRn(Φ−1

e† OCne†)|Rne†.

Let us consider the following commutative diagram where the square is Carte-

sian:

Rne Cne.

Rn Rne+ Cne† BCn

□

r|Rne

d r

Φe|Rn

Φe Φe

Here, d : Rn → Rne+Cne† is the diagonal embedding and r : Rne+Cne† → BCn is

the natural embedding. Note that Φe|Rn is an isomorphism. Since Φe is a projection

with fiber dimension 2n, we have the following isomorphisms:

RΓRn(Φ−1
e OCne)|Rn ≃ (r ◦ d)!Φ!

eOCne[−2n]
≃ (Φe|Rn)!(r|Rne)

!OCne[−2n]
≃ (Φe|Rn)−1RΓRne(OCne)|Rne[−2n]

by (2.2) and (2.3). In the same way, we have

RΓRn(Φ−1
e† OCne†)|Rn ≃ (Φe† |Rn)−1RΓRne†(OCne†)|Rne† [−2n].
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Therefore we obtain (3.1).

By Theorems 2.2(i) and 3.1, we can re-prove the vanishing theorem of the

complex RΓRn(OBCn)|Rn first proved in [1].

Theorem 3.2. The complex RΓRn(OBCn)|Rn is concentrated in degree 3n.

By Theorem 3.2, we can redefine the notion of bicomplex hyperfunctions, first

introduced in [1].

Definition 3.3. We define the sheaf of bicomplex hyperfunctions on Rn by

BBCn = H3n(RΓRn(OBCn)|Rn).

We call a section of BBCn a bicomplex hyperfunction.

By Theorems 3.1 and 3.2, we obtain the idempotent representation theorem

for bicomplex hyperfunctions.

Theorem 3.4. We obtain an isomorphism of sheaves on Rn:

(3.2) BBCn ≃ (Φe|Rn)−1BCnee⊕ (Φe† |Rn)−1BCne†e†.

Proof. By taking the 3n-th cohomology of (3.1), we obtain (3.2).

Theorem 3.4 gives us a new characterization of bicomplex hyperfunctions. It

says that any bicomplex hyperfunction is described as a linear combination of e and

e† with classical complex hyperfunction coefficients. In other words, a bicomplex

hyperfunction corresponds to a pair of two classical complex hyperfunctions. As a

corollary of this principle, we immediately obtain several fundamental properties

of bicomplex hyperfunctions by applying properties of complex hyperfunctions to

coefficients of e and e†. For example, we can re-prove the flabbiness of the sheaf

BBCn , first proved in [1], by that of the sheaf BCn .

Theorem 3.5. The sheaf BBCn is flabby on Rn.

Moreover, we can define several fundamental operations of bicomplex hyper-

functions such as linear differential operators with bicomplex real analytic coeffi-

cients, substitution, integration along fibers, products and so on. We omit detailed

studies of them here, but they will be studied in future works.

Note that, although via the Čech cohomology it is not easy to compare

two cohomology groups H3n
Rn(BCn;OBCn) and Hn

Rn(Cn;OCn) directly, thanks to

a functorial argument we can obtain the idempotent representation theorem for

bicomplex hyperfunctions.



796 Y. Matsui

Remark 3.6. By Kashiwara’s vanishing result [12] and in the same way as The-

orem 3.1, we can obtain the following result. Let G ⊂ Cn ⊂ BCn be a closed

convex subset and Z0 ∈ G. If there exists no complex affine linear subspace L of

dimension d through Z0, such that L ∩ G is a neighborhood of Z0 in L, then we

have Hk
G(OBCn)Z0

= 0 for k ≤ 3n− d.

§4. Bicomplex microfunctions

Let us consider microlocally the study in Section 3. In this section, we consider BCn

as a real analytic manifold and the conormal bundle π : T ∗
RnBCn → Rn to Rn in

BCn. We set Ṫ ∗
RnBCn = T ∗

RnBCn\Rn and denote the natural projection Ṫ ∗
RnBCn →

Rn by π̇. Considering the classical case, it is natural to study the microlocalization

µRn(OBCn) of OBCn along Rn in the derived category Db(T ∗
RnBCn). In order to

study it, let us also consider the diagonal embedding

Rn ↪−→ Rne+ Rne† ↪−→ Cne+ Cne† = BCn

of the real space Rn into the bicomplex space BCn and the following morphisms:

T ∗
RnBCn

tΦ
′
e←−− Rn ×

Rne
T ∗
RneCne

Φeπ−−→ T ∗
RneCne,

T ∗
RnBCn

tΦ
′
e†←−−− Rn ×

Rne†
T ∗
Rne†Cne†

Φ
e†π−−−→ T ∗

Rne†Cne†,

induced by the maps Φe and Φe† respectively. The explicit descriptions of them

associated with two coordinates

Z = (x̃1 + ỹ1i)e+ (x̃2 + ỹ2i)e
† = x1 + y1i+ x2j + y2ij

of BCn are given by

tΦ
′
e(x, (xe; ξ dỹ1)) = (xe+ xe†; ξ dỹ1) = (x; ξ dy1 − ξ dx2),

Φeπ(x, (xe; ξ dỹ1)) = (xe; ξ dỹ1),

tΦ
′
e†(x, (xe†; ξ dỹ2)) = (xe+ xe†; ξ dỹ2) = (x; ξ dy1 + ξ dx2),

Φe†π(x, (xe
†; ξ dỹ2)) = (xe†; ξ dỹ2)

for x, ξ ∈ Rn. Note that Φeπ and Φe†π are isomorphisms and tΦ
′
e and tΦ

′
e† are

closed embeddings. Then the idempotent representation (2.1) of bicomplex holo-

morphic functions induces that of µRn(OBCn) in the derived categoryDb(T ∗
RnBCn).
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Theorem 4.1. We have an isomorphism

(4.1) µRn(OBCn) ≃ tΦ
′
e∗Φ

−1
eπ µRne(OCne)[−2n]e⊕ tΦ

′
e†∗Φ

−1
e†π

µRne†(OCne†)[−2n]e†

in Db(T ∗
RnBCn).

Proof. By the idempotent representation (2.1), we have

µRn(OBCn) ≃ µRn(Φ−1
e OCne)e⊕ µRn(Φ−1

e† OCne†)e†.

Since Φe is a projection with fiber dimension 2n, Φeπ is an isomorphism and tΦ
′
e

is a closed embedding, we have the following isomorphisms:

µRn(Φ−1
e OCne) ≃ µRn(Φ!

eOCne[−2n])

≃ tΦ
′
e∗Φ

!
eπµRne(OCne)[−2n]

≃ tΦ
′
e∗Φ

−1
eπ µRne(OCne)[−2n]

by (2.3) and [2, Prop. 4.3.5]. In the same way, we have

µRn(Φ−1
e† OCne†) ≃ tΦ

′
e†∗Φ

−1
e†π

µRne†(OCne†)[−2n].

Therefore we obtain (4.1).

By Theorems 2.3(i) and 4.1, we can prove the vanishing theorem of the com-

plex µRn(OBCn).

Theorem 4.2. The complex µRn(OBCn) is concentrated in degree 3n.

By Theorem 4.2, we can define the notion of bicomplex microfunctions.

Definition 4.3. We define the sheaf of bicomplex microfunctions on T ∗
RnBCn by

CBCn = H3n(µRn(OBCn)).

We call a section of CBCn a bicomplex microfunction.

By Theorems 4.1 and 4.2, we obtain the idempotent representation theorem

for bicomplex microfunctions.

Theorem 4.4. We obtain an isomorphism of sheaves on T ∗
RnBCn:

(4.2) CBCn ≃ tΦ
′
e∗Φ

−1
eπ CCnee⊕ tΦ

′
e†∗Φ

−1
e†π
CCne†e†.

Proof. Since Φeπ and Φe†π are isomorphisms and tΦ
′
e and tΦ

′
e† are closed embed-

dings, by taking the 3n-th cohomology of (4.1), we obtain (4.2).
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Theorem 4.4 says that any bicomplex microfunction is described as a lin-

ear combination of e and e† with classical complex microfunction coefficients. In

other words, a bicomplex microfunction corresponds to a pair of two classical

complex microfunctions. As a corollary of this principle, we immediately obtain

several fundamental properties of bicomplex microfunctions by applying proper-

ties of complex microfunctions to coefficients of e and e†. For example, we can

prove the flabbiness of the sheaf CBCn by that of the sheaf CCn . In order to state

it explicitly, we note that the natural action of R+ to T ∗
RnCn induces an action of

(R+)2 to T ∗
RnBCn via tΦ

′
e and tΦ

′
e† .

Theorem 4.5. The sheaf CBCn |Ṫ∗
RnBCn is bi-conically flabby on Ṫ ∗

RnBCn.

Proof. Since the sheaf CCn |Ṫ∗
RnCn is conically flabby, the sheaves tΦ

′
e∗Φ

−1
eπ CCne and

tΦ
′
e†∗Φ

−1
e†π
CCne† are bi-conically flabby. By (4.1), we obtain the result.

Moreover, by Theorems 2.3 and 4.4, we also obtain the Sato-type fundamental

exact sequence and the spectrum isomorphism of bicomplex hyperfunctions and

microfunctions.

Theorem 4.6. The following properties hold:

(i) There exists an exact sequence of sheaves on Rn:

(4.3) 0 −→ OBCn |Rn −→ BBCn −→ π̇∗CBCn −→ 0.

(ii) There exists the spectrum isomorphism on Rn:

(4.4) sp: BBCn
∼−→ π∗CBCn .

Proof. Let πe : T
∗
RneCne→ Rne and πe† : T ∗

Rne†Cne† → Rne† be the natural pro-

jections. Since Φe|Rn , Φe† |Rn , Φeπ and Φe†π are isomorphisms, we have

(Φe|Rn)−1πe∗ = π∗
tΦ

′
e∗Φ

−1
eπ and (Φe† |Rn)−1πe†∗ = π∗

tΦ
′
e†∗Φ

−1
e†π

.

By Theorems 2.3 and 4.4, we obtain the results.

Note that Theorem 4.6 can be also obtained directly by functorial properties

of the microlocalization functor µRn in [2]. However, we can understand the prop-

erties better by reducing to the classical complex case by using the idempotent

representations. As a corollary of the spectrum isomorphism (4.4), we obtain a

simpler description of the sheaf of bicomplex microfunctions.
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Corollary 4.7. Let us set

A∗
BCn = Ker(π−1BBCn

sp−→ CBCn).

Then we obtain an isomorphism of sheaves on T ∗
RnBCn:

CBCn ≃ π−1BBCn/A∗
BCn .

Proof. By the spectrum isomorphism (4.4) and π−1π∗ → id, we have the exact

sequence

(4.5) π−1BBCn −→ CBCn −→ 0.

Therefore we obtain the result.

Furthermore, we can define several fundamental operations of bicomplex

microfunctions such as linear differential operators with bicomplex real analytic

coefficients, substitution, integration along fibers, products and so on. We omit

detailed studies of them here, but they will be studied in future works.

Finally, we define the notion of the singularity spectrum of a bicomplex hyper-

function.

Definition 4.8. Let u be a bicomplex hyperfunction. We denote the support of

its spectrum sp(u) in T ∗
RnBCn by SS(u) and call it the singularity spectrum of u.

We say that u is micro-analytic at (x; Ξ) ∈ T ∗
RnBCn if (x; Ξ) /∈ SS(u).

The sheaf A∗
BCn is considered as that of micro-analytic functions. By Theo-

rem 4.4, an estimate of the singularity spectrum of a bicomplex hyperfunction is

obtained.

Theorem 4.9. The following properties hold:

(i) The support of the sheaf CBCn is equal to

tΦ
′
e(Φ

−1
eπ (T

∗
RneCne)) ∪ tΦ

′
e†(Φ−1

e†π
(T ∗

Rne†Cne†))

in T ∗
RnBCn, which is described as{

(x; η1 dy1 + ξ2 dx2 + η2 dy2) ∈ T ∗
RnBCn

∣∣ η1 = ±ξ2, η2 = 0
}

associated with the coordinate Z = x1 + y1i+ x2j + y2ij of BCn.

(ii) Let u be a bicomplex hyperfunction and uee + ue†e† its decomposition as in

(3.2). Then the singularity spectrum SS(u) of u is described as

(4.6) SS(u) = tΦ
′
e

(
Φ−1

eπ (SS(ue))
)
∪ tΦ

′
e†

(
Φ−1

e†π
(SS(ue†))

)
,
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in T ∗
RnBCn, where SS(ue) (resp. SS(ue†)) is the singularity spectrum of a com-

plex hyperfunction ue (resp. ue†). In particular, every bicomplex hyperfunction

is micro-analytic at each point of the outside of

tΦ
′
e(Φ

−1
eπ (T

∗
RneCne)) ∪ tΦ

′
e†(Φ−1

e†π
(T ∗

Rne†Cne†)).

§5. Boundary value morphism and bicomplex hyperfunctions

Let us describe the boundary value morphism for bicomplex holomorphic functions

explicitly. In this section, we also consider BCn as a real analytic manifold and

the normal bundle τ : TRnBCn → Rn to Rn in BCn. Considering the classical

case, it is natural to study the specialization νRn(OBCn) of OBCn along Rn in

the derived category Db(TRnBCn). In order to study it, let us also consider the

diagonal embedding

Rn ↪−→ Rne+ Rne† ↪−→ Cne+ Cne† = BCn

of the real space Rn into the bicomplex space BCn and the following morphisms:

TRnΦe : TRnBCn −→ TRneCne,

TRnΦe† : TRnBCn −→ TRne†Cne†

induced by the maps Φe and Φe† respectively. Note that they are smooth. Then

the idempotent representation (2.1) of bicomplex holomorphic functions induces

that of νRn(OBCn) in the derived category Db(TRnBCn).

Theorem 5.1. We have an isomorphism

(5.1) νRn(OBCn) ≃ (TRnΦe)
−1νRne(OCne)e⊕ (TRnΦe†)−1νRne†(OCne†)e†

in Db(TRnBCn).

Proof. By the idempotent representation (2.1), we have

νRn(OBCn) ≃ νRn(Φ−1
e OCne)e⊕ νRn(Φ−1

e† OCne†)e†.

Since Φe and Φe† are projections, by [2, Prop. 4.2.5] we have the following isomor-

phisms:

νRn(Φ−1
e OCne) ≃ (TRnΦe)

−1νRn(OCne),

νRn(Φ−1
e† OCne†) ≃ (TRnΦe†)−1νRn(OCne†).

Therefore we obtain (5.1).

Let us define the notion of bicomplex holomorphic functions on infinitesimal

wedges.
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Definition 5.2. We define the sheaf of the specialization of bicomplex holomor-

phic functions by

ÃBCn = H0(νRn(OBCn)).

We call a section of ÃBCn a bicomplex holomorphic function on an infinitesimal

wedge.

By Theorem 5.1, we obtain the idempotent representation theorem for the

specialization of bicomplex holomorphic functions.

Theorem 5.3. We obtain an isomorphism of sheaves on TRnBCn:

(5.2) ÃBCn ≃ (TRnΦe)
−1ÃCnee⊕ (TRnΦe†)−1ÃCne†e†.

Proof. By taking the 0-th cohomology of (5.1), we obtain (5.2).

Theorem 5.3 says that any bicomplex holomorphic function on an infinitesi-

mal wedge is described as a linear combination of e and e† with classical complex

holomorphic functions on infinitesimal wedge coefficients. In other words, a bicom-

plex holomorphic function on an infinitesimal wedge corresponds to a pair of two

classical complex holomorphic functions on infinitesimal wedges. As a corollary of

this principle, we immediately obtain several fundamental properties of bicomplex

holomorphic functions on infinitesimal wedges by applying properties of complex

holomorphic functions on infinitesimal wedges to coefficients of e and e†. For exam-

ple, we can easily generalize the Bochner-type tube theorem in [12] for bicomplex

holomorphic functions on infinitesimal wedges.

By Theorem 2.4, we obtain the Uchida-type fundamental exact sequence of

the bicomplex specialization and the sheaves of bicomplex hyperfunctions and

microfunctions. Let p+1 (resp. p+2 ) be the natural projection from

P+ =
{
(H,Ξ) ∈ TRnBCn ×

Rn
T ∗
RnBCn

∣∣ ⟨H,Ξ⟩ > 0
}

to TRnBCn (resp. T ∗
RnBCn).

Theorem 5.4. There exists an exact sequence of sheaves on TRnBCn:

(5.3) 0 −→ ÃBCn −→ τ−1BBCn −→ (p+1 )∗(p
+
2 )

−1CBCn .

Proof. Let τe : TRneCne → Rne be the natural projection and p+e1 (resp. p+e2) the

natural projection from P+
e = {(η, ξ) ∈ TRneCne ×

Rne
T ∗
RneCne | ⟨η, ξ⟩ > 0} to

TRneCne (resp. T ∗
RneCne). By Theorem 2.4, we have the exact sequence

0 −→ (TRnΦe)
−1ÃCne −→ (TRnΦe)

−1τ−1
e (Φe|Rn)−1BCne

−→ (TRnΦe)
−1(p+e1)∗(p

+
e2)

−1CCne.(5.4)
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Let us consider the following commutative diagram where the two squares are

Cartesian:

TRnBCn TRneCne.

P+ P̃+ P+
e

T ∗
RnBCn T ∗

RneCne

□

□

TRnΦe

p+1

q1 q2

q3

q4 p+e1

p+2
p+e2

tΦ
′
e

Here, Rn ×
Rne

T ∗
RneCne is identified with T ∗

RneCne via the isomorphism Φeπ for the

sake of simplicity. Furthermore, let us set

P̃+ = P+ ×
T∗
RnBCn

T ∗
RneCne = TRnBCn ×

TRneCne
P+
e

and let q1, q2, q3, q4 denote the natural projections from P̃+ to P+, P+
e , T ∗

RneCne,

TRnBCn respectively. Since TRnΦe, p
+
e2 and p+2 are topological submersions with

fiber dimension 2n, n and 3n respectively and tΦ
′
e is a closed embedding, we have

the following isomorphisms in Db(TRnBCn):

(TRnΦe)
−1R(p+e1)∗(p

+
e2)

−1µRne(OCne) ≃ (TRnΦe)
!R(p+e1)∗(p

+
e2)

!µRne(OCne)[−3n]
≃ Rq4∗q

!
2(p

+
e2)

!µRne(OCne)[−3n]
≃ R(p+1 )∗Rq1∗q

!
3µRne(OCne)[−3n]

≃ R(p+1 )∗(p
+
2 )

!(tΦ
′
e)∗µRne(OCne)[−3n]

≃ R(p+1 )∗(p
+
2 )

−1(tΦ
′
e)∗µRne(OCne)

by [2, Prop. 3.1.9]. By (5.4), we have the exact sequence

0 −→ (TRnΦe)
−1ÃCne −→ τ−1(Φe|Rn)−1BCne −→ (p+1 )∗(p

+
2 )

−1(tΦ
′
e)∗CCne.

In the same way, we have

0 −→ (TRnΦe†)−1ÃCne† −→ τ−1(Φe† |Rn)−1BCne† −→ (p+1 )∗(p
+
2 )

−1(tΦ
′
e†)∗CCne† .

By Theorems 3.4, 4.4 and 5.3, we obtain (5.3).

Note that the exact sequence (5.3) can also be obtained directly by the

abstract Uchida triangle in [13]. However, we can understand the property better

by reducing to the classical complex case by using the idempotent representa-

tions. We call the morphism b : ÃBCn → τ−1BBCn of (5.3), which is induced by
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id → τ !Rτ!, the boundary value morphism. By the boundary value morphism b,

a bicomplex hyperfunction is represented as a finite sum of boundary values of

bicomplex holomorphic functions on infinitesimal wedges.
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