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Bicomplex Hyperfunctions
and Bicomplex Microfunctions

by

Yutaka MATSUI

Abstract

In this paper, we study bicomplex hyperfunctions introduced by Colombo et al. (Ann.
Mat. Pura Appl. 190 (2011), 247-261) with functorial techniques and prove the idem-
potent representation theorem for them. Using the method of this paper, we can easily
reconstruct the theory of bicomplex hyperfunctions and develop it into the theory of
bicomplex microfunctions.
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§1. Introduction

The notion of hyperfunctions was introduced by Mikio Sato [10, 11] as a generaliza-
tion of functions. Let V' C R™ be an open set and 2 C C™ a complex neighborhood
of V satisfying V= R™" N Q. Let Ocr denote the sheaf of complex holomorphic
functions on C™. Sato proved that the relative cohomology group H{,(2; Ocn) of
Ocr supported in V' vanishes if p # n and defined a hyperfunction as an element
of the relative cohomology group

B((jn (V) = H‘T}(Q, O(Cn).

Intuitively, a hyperfunction is represented as a finite sum of boundary values of
complex holomorphic functions. He also proved that Bc- is a flabby sheaf on R™. Tt
is well known that hyperfunctions are more natural and useful than distributions
in studying linear partial differential equations with real analytic coefficients. In
particular, it is important to consider singularities of hyperfunctions in the cotan-
gent bundle T*R". The notion of microfunctions has been introduced in order to

Communicated by T. Mochizuki. Received August 30, 2024. Revised December 6, 2024.

Y. Matsui: Department of Mathematics, Kindai University, 3-4-1, Kowakae, Higashi-Osaka,
Osaka 577-8502, Japan;

e-mail: matsui@math.kindai.ac. jp

(© 2025 Research Institute for Mathematical Sciences, Kyoto University.
This work is licensed under a CC BY 4.0 license.


mailto:matsui@math.kindai.ac.jp
https://creativecommons.org/licenses/by/4.0/

788 Y. MATSUI

realize it and the theory of hyperfunctions and microfunctions has vastly developed
as algebraic analysis [12].

Bicomplex algebra was introduced by Segre, inspired by the work of Hamilton
and Clifford on quaternions. It is defined by

BC = {Z:,Zl-‘rZQj | 21, 22 E(C},

where j is another imaginary unit commuting with the imaginary unit ¢ of the field
of complex numbers C. Since BC is a commutative ring but has zero divisors, it
is more difficult to study bicomplex functions than complex functions. Neverthe-
less, we can define the notion of holomorphicity of bicomplex functions similarly
to that of complex functions. The study of bicomplex holomorphic functions is
called bicomplex analysis. References [3] and [7] are fundamental textbooks for
this subject. See Sections 2.1 and 2.2 for a quick review. See [5] and [6] for the
author’s recent works in this area.

In bicomplex analysis, the idempotent representation plays an important role.
Setting

e:l—"_lj7 eTzl—Zj’
2 2
e and el are the non-complex idempotent elements satisfying ee’ = 0. Then any
bicomplex number Z = z; + 22j € BC has the idempotent representation

Z = Zee + Zorel,

where we set Zo = 21 — 291, Zot = 21 + 291 € C. By the idempotent representa-
tion, for any bicomplex holomorphic function F', there exist locally two complex
holomorphic functions Fe and F,+ with respect to only the variables Ze and Zg:
respectively such that we have

(1.1) F(Zoe+ Zgie') = Fo(Zo)e + Fot (Zot e

The idempotent representation (1.1) is one of the strongest properties of bicomplex
holomorphic functions. After the idempotent representation (1.1), we can imme-
diately obtain several fundamental properties of bicomplex holomorphic functions
by applying properties of complex holomorphic functions to coefficient functions
Fe and FeT.

The notion of bicomplex hyperfunctions was introduced by Colombo et al. [1]
as a natural generalization of classical hyperfunctions to bicomplex analysis. Let
V C R™ be an open set and Q C BC™ a bicomplex neighborhood of V' satisfying
V = R"N Q. Let Ogcr denote the sheaf of bicomplex holomorphic functions on
BC". Colombo et al. proved that the relative cohomology group HY,(2; Opcn) of
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Opc~ supported in V' vanishes if p # 3n and defined a bicomplex hyperfunction
as an element of the relative cohomology group

Bgcn (V) = H(Q; Open ).

They also proved that Bgcn is a flabby sheaf on R™ and the duality theorem. See
also [9, 14] for further developments.

In this paper, we prove the idempotent representation theorem for bicomplex
hyperfunctions. In other words, we prove that a bicomplex hyperfunction corre-
sponds to a pair of two complex hyperfunctions. As a corollary of this principle,
we can immediately obtain several fundamental properties of bicomplex hyper-
functions, such as flabbiness and some fundamental operations. Note that via the
Cech cohomology it is not easy to compare two cohomology groups H3(Q; Open )
and H{}(92; Ocn) directly. The proof is based on the idempotent representation
(1.1) of bicomplex holomorphic functions and functorial techniques in the theory
of sheaves. By our method, we can easily reconstruct the theory of bicomplex
hyperfunctions in [1] and develop it into the theory of bicomplex microfunctions.
See Sections 3, 4 and 5 for the details.

Similarly, we can also develop the results into the theory of multicomplex
hyperfunctions introduced in [14], and furthermore that on real analytic manifolds.
We can define the notion of multicomplex hyperfunctions of several variables, prove
the idempotent representation theorem for them and develop it into the theory of
multicomplex microfunctions. See [4] for the details.

§2. Preliminaries
§2.1. Bicomplex numbers

In this subsection, we review the definition and fundamental properties of bicom-
plex numbers. See [3, 7] for more details.

Let C be the field of complex numbers with the imaginary unit ¢. We define
the set of bicomplex numbers by

BC = {Z:zl+22j | 21, %9 E(C}
= {Z = @1+ yri + 22j + y2ij | 21,91, 72,92 € R},

where j is another imaginary unit independent of and commuting with i:
j¢C, ij=ji, i¥=j"=-1

By defining addition and multiplication naturally, BC has a structure of a com-
mutative ring. The ring BC is neither a field nor an integral domain. The set of
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zero divisors of BC with 0 is described as
So={Z =21+ 2j €BC| 2]+ =0}.

Note that in BC a zero divisor is equivalent to a non-unit element. Setting

1445 i+ 1—idj
e= el =
2 2 7
e and ef are the non-complex idempotent elements satisfying ee’ = 0.
For
Z =z1+2) =21+ Y11+ 22j + y21j € BC,

we define the surjective ring homomorphisms ®.: BC — C and ®,+: BC — C by

Pe(2) = 21 — 221 = (21 + y2) + (Y1 — 72)1,
et (Z) = 21+ 221 = (x1 — y2) + (Y1 + 22)i

respectively. Also, setting Ze = ®o(Z) and Zgi = @1 (Z), any bicomplex number
Z has the idempotent representation

Z =0(Z)e+ Pgi (Z2)e! = Zee + Zgrel.
By the idempotent representation, the set of zero divisors with 0 is represented by
S ={Z = Zee+ Z,re' € BC | ZeZot =0} = CeUCe.

In the case of several bicomplex variables, for Z = (Z4,...,Z,) € BC", we
also define the maps ®o: BC" — C™ and &4 : BC™ — C™ by

Pe(Z) = (Pe(Z1), ..., Pe(Zn)), Dot (Z) = (Dot (Z1),- - -, Pet (Zn))
respectively. Then we have the idempotent representation of Z € BC™ as
Z =0 (Z)e+ Byt (Z)el.

In order to emphasize components, we may identify an image of a point by ®, (resp.
®.+) with a point of the e-axis C"e (resp. the ef-axis C"e’) in BC". Namely, we
may use the notation ®¢(BC") = C"e, ®.:(BC") = C"e! and so on.

§2.2. Bicomplex holomorphic functions

In this subsection, we review some definitions and fundamental results in bicomplex
analysis. See [3, 7, 8] for more details.
For any bicomplex number Z = z; + 295 € BC, we define the norm || Z|| of Z

121 = V=1l + |22

by
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It induces a topology on BC, which is isomorphic to the Euclidean space C2.
Moreover, the maps ®, and @, are continuous and open.

Let 2 C BC be an open set, F': 2 — BC a bicomplex function on {2 and
Zy € Q. We say that F' is bicomplex differentiable at Zj if the limit

b F(2) = F(Z)
Z—Zo Z — 7y
Z—Z0¢6

exists, which is denoted by F’(Z). We also say that F' is bicomplex holomorphic on
Q if F' is bicomplex differentiable at any point of {2. We denote the set of bicomplex
holomorphic functions on © by Opc(£2). Then Opc has a sheaf structure on BC.

The idempotent representation of bicomplex holomorphic functions plays an
important role in bicomplex analysis. Let I’ be a bicomplex function on 2. By the
idempotent representation, we have

F(Z) = Fe(Z)e"|'Fe1‘(Z)e]L
= Fe(Ze, Zef)e + Pt (Zea ZeT)eTv

where Fg, Fgi: {0 — C are considered as complex-valued functions of two complex
variables. The following theorem, called the Ringleb theorem, is one of the most
important results in bicomplex analysis.

Theorem 2.1. Assume that each fiber of Pelq and Pgi|q is connected. Then F is
bicomplex holomorphic on Q if and only if Fe (resp. Fgi ) is complex holomorphic on
D () (resp. Pei (Q)) of one variable with respect to Ze (resp. Zgi ). Moreover, any
bicomplex holomorphic function F on ) is analytically continued to ®51(Pe(2)) N
O Dot () and we have

et

F(Z) = Fe(Ze)e + FeT (Ze’f)eT'

By Theorem 2.1, we can immediately generalize fundamental properties of
complex holomorphic functions of one variable such as Taylor’s theorem, the
principle of analytic continuation and so on to those of bicomplex holomorphic
functions.

Let O¢ denote the sheaf of complex holomorphic functions of one variable. In
the terminology of sheaves, Theorem 2.1 can be described as an isomorphism of
sheaves on BC:

Oic ~ ®,'Ocee @ ' Ogere’.

In the case of several bicomplex variables, let 2 C BC" be an open set,
F: Q) — BC a bicomplex function on 2. We say that F' is bicomplex holomorphic
on (1 if and only if F' is partially holomorphic in each variable on Q. We denote
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the sheaf of bicomplex holomorphic functions of several variables by Opcn. Then
we also have an isomorphism of sheaves on BC™:

(21) OBC” ~ <I>;1(9<cnee D @;Jrlo(cnei eT,
where O¢» denotes the sheaf of complex holomorphic functions of several variables.

§2.3. Functorial study of classical hyperfunctions and microfunctions

In this subsection, we review a functorial study of classical hyperfunctions and
microfunctions in the derived category of sheaves. A reference for derived categories
is [2] and we follow the terminology in it. Moreover, [2] and [12] are fundamental
references for results in this subsection. For example, for a topological space X,
D?(X) denotes the derived category of bounded complexes of sheaves of Cx-
modules on X. Recall that for any morphism f: X — Y of topological manifolds
there exists a functor
f: DY) — Db(X)

as the right adjoint functor to Rfi: D*(X) — D’(Y). In the case where f is a
closed embedding, we have

(2.2) f'~ f'RIx.

In the case where X and Y are orientable and f is a topological submersion, we
have

(2.3) f e~ f7dim X — dim Y.

A (complex) hyperfunction is a generalized function, which is represented as
a finite formal sum of boundary values of complex holomorphic functions. We
explain the functorial description of the boundary value below. In the derived
category D?(R™), the sheaf of (complex) hyperfunctions Bcx corresponds to the
complex RT'gn(Ocn)|rn([n]. Here, Ocn denotes the sheaf of complex holomorphic
functions on C". The following properties are well known.

Theorem 2.2. The following properties hold:

(i) The complex RTUga(Ocn)|gn is concentrated in degree n.
(ii) The sheaf Ben = H™(RUgn (Oc¢n )|ge) is flabby on R™.

A (complex) microfunction is a microlocal object for a (complex) hyper-
function, which is described as the singularities of it in the conormal bundle
e TEnC" — R™ to R™ in C". Let us set Tﬁn C" = T3.C" \ R™ and denote by
fren the natural projection T3, C™ — R™. In the derived category D®(T;,.C™), the
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sheaf of (complex) microfunctions Cc» corresponds to the complex pgn(Ocn)[n].
Here, pgn: D?(C") — D®(T}3,.C") denotes the microlocalization functor along R™.
The following properties are well known.

Theorem 2.3. The following properties hold:

(i) The complex pgn(Ocn) is concentrated in degree n.
(i) Let us set Con = H™(pugn (Ocn)). Then the sheaf Cen
on Tﬁn(C”. Namely, its direct image on T*n(C”/]R‘F 1s flabby.

(iii) There exists an exact sequence of sheaves on R™:

v on 18 conically flabby
R

(iv) There ezists an isomorphism of sheaves on R™:
Sp: B(Cn = 7TC7L*C(Cn .

The exact sequence (2.4) is called Sato’s fundamental exact sequence and the
morphism sp is called the spectrum isomorphism.

For a detailed study of Sato’s fundamental exact sequence (2.4), let us consider
the normal bundle 7¢n: TrnC™ — R™ to R™ in C™ and the specialization functor
vgn : DP(C™) — D?(TRaC") along R™. The following property is well known.

Theorem 2.4. Let us set Acn = HO(vgn (Ocn)). Then there exists an ezact
sequence of sheaves on TrnC":

(2.5) 0 — Acn — 7! Ben — (pday )e(pdns) " Con,

where p&l (resp. p&Q) denotes the natural projection from
{(1.6) € o C" x TgC™ | (1,€) > 0}

to TrnC™ (resp. Tp.C™).

The distinguished triangle in D?(Tk.C") generalized (2.5) on the Fourier—
Sato transformation is called Uchida’s triangle. See [13] for the details. We call a
section of the specialization .ZEL a holomorphic function on an infinitesimal wedge.
The morphism b: .Zl;c/n — T(C_nlB(cn of (2.5), which is induced by id — 74, Rrcn,
is called the boundary value morphism. By the boundary value morphism b, a
hyperfunction is represented as a finite sum of boundary values of holomorphic
functions on infinitesimal wedges.
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§3. Functorial study of bicomplex hyperfunctions

In this section, we study bicomplex hyperfunctions by functorial techniques. Con-
sidering the classical case, it is natural to study the complex RI'gn(Opcn) of
sections of the sheaf Opcn supported in R in the derived category D’(BC™).
In order to study it, let us consider the following diagonal embedding:

R" — R"e + R"ef — C"e + C"e! = BC"

of the real space R™ into the bicomplex space BC". The idempotent representation
(2.1) of bicomplex holomorphic functions induces that of RI'gn(Opcr)|gn in the
derived category D?(R™).

Theorem 3.1. We have an isomorphism

RTgn (Opcn ) |rn = (Pe|rn) ' RIRne(Ocne)|rne€[—2n]
(3.1) & (Pet|rn) " Rlgnet (Ognet)|Rnet e’ [—2n]

in DY(R™).
Proof. By the idempotent representation (2.1), we have
RTr» (Opcr)|gn = RTgn (@5 ' Ogne)|rne ® RTgn (P! Ognet)|rne.

Let us consider the following commutative diagram where the square is Carte-

sian:
d
R?» —— R"e + C"ef —r BC"
38 O [0
¢E|R"
T Rre

R"e ——  C"e.

Here, d: R® — R"e+C"e' is the diagonal embedding and r: R"e+C"e! — BC" is
the natural embedding. Note that ®¢|g~ is an isomorphism. Since P is a projection
with fiber dimension 2n, we have the following isomorphisms:

gr = (10 d)' ®LOcne[—2n)]
~ (Delgn ) (rlrne) Ocne[—2n]
~ ((be R?L)ilRF]Rne(OCne)

RF]RTL (@; 1 O(Cne)

Rne[72n}
by (2.2) and (2.3). In the same way, we have

RTgn (D' Ognet) g =~ (Pet|rn) ™ Rl gnet (Ognet) lrnet [~2n]-
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Therefore we obtain (3.1). O

By Theorems 2.2(i) and 3.1, we can re-prove the vanishing theorem of the
complex RI'gn(Opcr)|rn first proved in [1].

Theorem 3.2. The complex RT'gn(Opcn)

Rr 1S concentrated in degree 3n.

By Theorem 3.2, we can redefine the notion of bicomplex hyperfunctions, first
introduced in [1].

Definition 3.3. We define the sheaf of bicomplex hyperfunctions on R™ by
Bgcr = H*"(RTgn (Opcr ) |re).
We call a section of Bgcr a bicomplex hyperfunction.

By Theorems 3.1 and 3.2, we obtain the idempotent representation theorem
for bicomplex hyperfunctions.

Theorem 3.4. We obtain an isomorphism of sheaves on R™:
(32) B]BC" ~ (q)e

R”)le(Cnee (&) (‘pef Rn)leCneTeT.

Proof. By taking the 3n-th cohomology of (3.1), we obtain (3.2). O

Theorem 3.4 gives us a new characterization of bicomplex hyperfunctions. It
says that any bicomplex hyperfunction is described as a linear combination of e and
el with classical complex hyperfunction coefficients. In other words, a bicomplex
hyperfunction corresponds to a pair of two classical complex hyperfunctions. As a
corollary of this principle, we immediately obtain several fundamental properties
of bicomplex hyperfunctions by applying properties of complex hyperfunctions to
coefficients of e and ef. For example, we can re-prove the flabbiness of the sheaf
Bpcn, first proved in [1], by that of the sheaf Ben.

Theorem 3.5. The sheaf Bgcn is flabby on R™.

Moreover, we can define several fundamental operations of bicomplex hyper-
functions such as linear differential operators with bicomplex real analytic coeffi-
cients, substitution, integration along fibers, products and so on. We omit detailed
studies of them here, but they will be studied in future works.

Note that, although via the Cech cohomology it is not easy to compare
two cohomology groups Hpm(BC"; Opcr) and Hy, (C"; Ocn) directly, thanks to
a functorial argument we can obtain the idempotent representation theorem for
bicomplex hyperfunctions.
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Remark 3.6. By Kashiwara’s vanishing result [12] and in the same way as The-
orem 3.1, we can obtain the following result. Let G € C" C BC"™ be a closed
convex subset and Zy € G. If there exists no complex affine linear subspace L of
dimension d through Zy, such that L N G is a neighborhood of Zj in L, then we
have HE (Opcn)z, = 0 for k < 3n —d.

§4. Bicomplex microfunctions

Let us consider microlocally the study in Section 3. In this section, we consider BC"
as a real analytic manifold and the conormal bundle 7: T3, BC" — R™ to R" in
BC". We set T3, BC™ = T3, BC™\R" and denote the natural projection T3, BC™ —
R™ by 7. Considering the classical case, it is natural to study the microlocalization
prn (Opcn) of Open along R™ in the derived category DY(73,BC™). In order to
study it, let us also consider the diagonal embedding

R"” — R"e + R"e! — C"e + C"e! = BC™

of the real space R™ into the bicomplex space BC™ and the following morphisms:

‘o, Per
T5.BC" <22 R" x Tg..Cle 2o T2, Ce,
R7e
* n tq):-ff n * n T q:'elfvr * n_t
TRnBC — R X T]Rneic e' —— TR"eTC e,

Rnref

induced by the maps ®, and ®.: respectively. The explicit descriptions of them
associated with two coordinates

Z = (71 + gri)e + (T2 + gai)e’ = w1 +yui + w2j + yaij
of BC" are given by

" (x, (ze; € dy)) =
Do (w, (ve; € iy
' (x, (wet € difa
Dy (2, (xeT; Edip

ze+ zel; Edyy) = (z;Edyy — € da),
ze; € dyn),
ze + zel; Ediy) = (x; € dyy + € das),
we'; € dy)

o~ o~ o~ o~

)
)
)
) =
for z,& € R™. Note that ®er and B, are isomorphisms and *®. and ‘®.; are

closed embeddings. Then the idempotent representation (2.1) of bicomplex holo-
morphic functions induces that of jgs (Opcn ) in the derived category D (T3, BC™).
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Theorem 4.1. We have an isomorphism
(4.1) pmn (Oncn) = '®q, B} pne(Ocne) [~2n]e &' i ! pignet (Ognet)[—2ne’
in DY(T3.BC™).
Proof. By the idempotent representation (2.1), we have
prn (Opcrn) = pimn (P ' Ocne)e ® pipn (B Ocnet e

Since @, is a projection with fiber dimension 2n, ®¢, is an isomorphism and t@;
is a closed embedding, we have the following isomorphisms:

/,[,]Rn (@;IOCne) ~ /,[/]Rn ((b’eO(C"ne[—Qn])
= t(b/e*q)!ewﬂR"e(OC"e)[_Qm
= t(b:e*q);wlUR"e(OC"e)[_Q”]

by (2.3) and [2, Prop. 4.3.5]. In the same way, we have
— !/ _
HRn ((I)e‘rl O(C"eﬁ) ~ tq)ef*éeflﬂ_,U/RneT (O(C”eT ) [—271]
Therefore we obtain (4.1). O

By Theorems 2.3(i) and 4.1, we can prove the vanishing theorem of the com-
pleX HUR™ (OIB(C")-

Theorem 4.2. The complex ugn (Opcn) is concentrated in degree 3n.

By Theorem 4.2, we can define the notion of bicomplex microfunctions.
Definition 4.3. We define the sheaf of bicomplex microfunctions on T3,.BC™ by
Cacn = H*" (pmn (Open)).-

We call a section of Cger a bicomplex microfunction.

By Theorems 4.1 and 4.2, we obtain the idempotent representation theorem
for bicomplex microfunctions.

Theorem 4.4. We obtain an isomorphism of sheaves on T§,BC":

(4.2) Coen ~ 'L, O Conce ® 10L; D! Congrel.

efr

Proof. Since @, and @i, are isomorphisms and t@; and t‘bgf are closed embed-
dings, by taking the 3n-th cohomology of (4.1), we obtain (4.2). O
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Theorem 4.4 says that any bicomplex microfunction is described as a lin-
ear combination of e and e! with classical complex microfunction coefficients. In
other words, a bicomplex microfunction corresponds to a pair of two classical
complex microfunctions. As a corollary of this principle, we immediately obtain
several fundamental properties of bicomplex microfunctions by applying proper-
ties of complex microfunctions to coefficients of e and ef. For example, we can
prove the flabbiness of the sheaf Cgc» by that of the sheaf Cen. In order to state
it explicitly, we note that the natural action of Rt to 75, C" induces an action of
(RT)? to Ty, BC™ via ‘@, and '®.;.

Theorem 4.5. The sheaf Cpcn

e men 08 bi-conically flabby on Ty, BC™.
T

Proof. Since the sheaf Ccn ‘Tgn,C” is conically flabby, the sheaves t@;*q);rlccne and
@ B! Cener are bi-conically flabby. By (4.1), we obtain the result. O

efr

Moreover, by Theorems 2.3 and 4.4, we also obtain the Sato-type fundamental
exact sequence and the spectrum isomorphism of bicomplex hyperfunctions and
microfunctions.

Theorem 4.6. The following properties hold:

(i) There exists an exact sequence of sheaves on R™:

(4.3) 0 — Oggr

R e B]BC" — ﬁ*C]B(CW — 0.
(ii) There exists the spectrum isomorphism on R™:
(4.4) Sp: B]Eg(cn = W*C]B(cn.

Proof. Let me: TpnC"e — R"e and e : Tﬂ’gneTC”eT — R”ef be the natural pro-
jections. Since ®g

Ry Pei|rn, Per and Dgi, are isomorphisms, we have

-1

((I)e‘R")_lﬂ-e* = 71->'<t(I)Ie>|<<I)¢;} and ((I)ei R"‘)_lﬂ-eT* = W*tq);T*q)e*ﬂ'

By Theorems 2.3 and 4.4, we obtain the results. O

Note that Theorem 4.6 can be also obtained directly by functorial properties
of the microlocalization functor pgn~ in [2]. However, we can understand the prop-
erties better by reducing to the classical complex case by using the idempotent
representations. As a corollary of the spectrum isomorphism (4.4), we obtain a
simpler description of the sheaf of bicomplex microfunctions.
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Corollary 4.7. Let us set
Acn = Ker(n ™ Bgen 25 Cyen ).
Then we obtain an isomorphism of sheaves on T, BC™:
Cocr =~ ' Bpen [ Afyen.

Proof. By the spectrum isomorphism (4.4) and 7~ !7, — id, we have the exact

sequence
(45) Trillg]g(cn — Cger — 0.
Therefore we obtain the result. O

Furthermore, we can define several fundamental operations of bicomplex
microfunctions such as linear differential operators with bicomplex real analytic
coefficients, substitution, integration along fibers, products and so on. We omit
detailed studies of them here, but they will be studied in future works.

Finally, we define the notion of the singularity spectrum of a bicomplex hyper-
function.

Definition 4.8. Let u be a bicomplex hyperfunction. We denote the support of
its spectrum sp(u) in Tg.BC™ by SS(u) and call it the singularity spectrum of w.
We say that u is micro-analytic at (z;Z) € Tp.BC" if (2;E) ¢ SS(u).

The sheaf Aj.. is considered as that of micro-analytic functions. By Theo-
rem 4.4, an estimate of the singularity spectrum of a bicomplex hyperfunction is
obtained.

Theorem 4.9. The following properties hold:

(i) The support of the sheaf Cpcn is equal to

"D (@, (T8 Ce)) U Der (B (T3, ei Cel))

in Tg.BC"™, which is described as
{(z;m dyr + & dxy + M dys) € T BC™ |y = £&o, 12 = 0}

associated with the coordinate Z = x1 + y1i + w2 + y21j of BC™.
(ii) Let u be a bicomplex hyperfunction and uece + ugre' its decomposition as in
(3.2). Then the singularity spectrum SS(u) of u is described as

(4.6) SS(u) = P, (05, (SS(ue))) U @i (D1 (SS(uer))),

elrn
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in TE.BC™, where SS(ue) (resp. SS(uet)) is the singularity spectrum of a com-
plex hyperfunction ue (resp. uet ). In particular, every bicomplex hyperfunction
is macro-analytic at each point of the outside of

l _ % n / — * n
tq)e(q)eﬂ} (T]R"e(c e)) U t(I)eT ((I)eflﬂ (T]R"e’f(c eT))'

§5. Boundary value morphism and bicomplex hyperfunctions

Let us describe the boundary value morphism for bicomplex holomorphic functions
explicitly. In this section, we also consider BC" as a real analytic manifold and
the normal bundle 7: TrR-BC" — R™ to R™ in BC". Considering the classical
case, it is natural to study the specialization vgn(Opcn) of Open along R™ in
the derived category D®(Tg-BC"). In order to study it, let us also consider the
diagonal embedding

R"™ — R"e + R"el — C"e + C"el = BC"
of the real space R™ into the bicomplex space BC™ and the following morphisms:

Trn e : TRnBCn — TRne(C"e,
Trn @t : TrnBC" — Traoi Cel

induced by the maps ®, and ®.; respectively. Note that they are smooth. Then
the idempotent representation (2.1) of bicomplex holomorphic functions induces
that of vgs(Opcn) in the derived category D®(Tg-BC").

Theorem 5.1. We have an isomorphism
(5.1)  vrn(Opcn) = (T o) ' vine(Ocne)e @ (Tin Pet) ™' Vinet (Ocnet el
in Db (Tg-BC").
Proof. By the idempotent representation (2.1), we have
vgn (Open ) ~ vgn (@5 Ocne)e @ vgn (@;1 Ocnet el

Since ¥, and ®; are projections, by [2, Prop. 4.2.5] we have the following isomor-

phisms:
VRn ((I);lo((:"e) >~ (T]R" ¢e)71VR" (O(C"e)a
VRrn ((I);Tl OC"eJr ) =~ (TR” (I)ef )_1VR" (OC"e’r )
Therefore we obtain (5.1). O

Let us define the notion of bicomplex holomorphic functions on infinitesimal
wedges.
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Definition 5.2. We define the sheaf of the specialization of bicomplex holomor-
phic functions by

Ascn = H (g (Open)).
We call a section of -ZEB;(_C/" a bicomplex holomorphic function on an infinitesimal
wedge.

By Theorem 5.1, we obtain the idempotent representation theorem for the
specialization of bicomplex holomorphic functions.

Theorem 5.3. We obtain an isomorphism of sheaves on TrnBC™:

(5.2) Apcn = (Trn ®e) "  Agnoe @ (Thn Byt )~ Acngre!.
Proof. By taking the 0-th cohomology of (5.1), we obtain (5.2). O

Theorem 5.3 says that any bicomplex holomorphic function on an infinitesi-
mal wedge is described as a linear combination of e and e! with classical complex
holomorphic functions on infinitesimal wedge coeflicients. In other words, a bicom-
plex holomorphic function on an infinitesimal wedge corresponds to a pair of two
classical complex holomorphic functions on infinitesimal wedges. As a corollary of
this principle, we immediately obtain several fundamental properties of bicomplex
holomorphic functions on infinitesimal wedges by applying properties of complex
holomorphic functions on infinitesimal wedges to coefficients of e and ef. For exam-
ple, we can easily generalize the Bochner-type tube theorem in [12] for bicomplex
holomorphic functions on infinitesimal wedges.

By Theorem 2.4, we obtain the Uchida-type fundamental exact sequence of
the bicomplex specialization and the sheaves of bicomplex hyperfunctions and
microfunctions. Let pi (resp. p3) be the natural projection from

Pt ={(H,E) € Tp-BC" X T#.BC" | (H,E) >0}
to TrnBC™ (resp. T.BC").
Theorem 5.4. There exists an exact sequence of sheaves on TrnBC™:
(5.3) 0 — Apcn —> 7 'Baen — (p1). (9F) " Cacn.

Proof. Let To: TrnoC"e — R™e be the natural projection and p}, (resp. pl,) the
natural projection from Pf = {(n,¢) € TrneC"e x T3..C"e | (n,&) > 0} to
R™e
TrneC"e (resp. Ti.,C"e). By Theorem 2.4, we have the exact sequence
0 — (Ton®e) *Acne — (Tpn®e) 175 1 (De|rn) " Bene
(5.4) — (Ton®e) ™ (pd)«(Pd2) ' Cone-
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Let us consider the following commutative diagram where the two squares are

Cartesian:
T3.BC™ — T§n.Cle

‘P
I © Pez
2 O s

+ P+
P Pt q2 €

qa O P

Tien @,
T]Rn B(C” — TRne(Cne.

Here, R™ x 1Tg.,C"e is identified with 7. ,C"e via the isomorphism ®¢, for the
]Rn

e
sake of simplicity. Furthermore, let us set

Pt=P" x Tp.,Cle=Tg:BC" x Pf
TanIBC" TrnoCre

and let g1, g2, ¢3, g4 denote the natural projections from Pt to P, Pr T, .Cle,
TrnBC" respectively. Since Tin®e, ply and pj are topological submersions with
fiber dimension 2n, n and 3n respectively and t@; is a closed embedding, we have
the following isomorphisms in D®(Tk-BC"):
(TR"(PE)_lR(p;)*(piz)_l,uR”E(OC“e) ~ (Tkn (I)e)IR(pil)*(p;rz)!NR”E(OC”e)[_?’n]

=~ RQ4*Q!2 (pZQ)IMR"e(OC"e)[_Sn]

~ R(p{ )« Rq1+q3imne(Ocne)[~3n]

~ R(p})w(pf) ("0, pimne (Ocne)[~3n]

~ R(p{)«(pf) ' (1g)ptzne(Ocne)
by [2, Prop. 3.1.9]. By (5.4), we have the exact sequence

0 — (Trn®e) " Acne — 7 (Relrn) ™" Bene — (p7)(p3) ™' (‘®e)<Cone-

In the same way, we have
00— (T]an)et)_lfl(cne’f — T_1(¢GT|RW)_1BCTLET — (pf)*(p;)_l(t(bgf)*CCneT.
By Theorems 3.4, 4.4 and 5.3, we obtain (5.3). O

Note that the exact sequence (5.3) can also be obtained directly by the
abstract Uchida triangle in [13]. However, we can understand the property better
by reducing to the classical complex case by using the idempotent representa-
tions. We call the morphism b: .:G;a — 77 'Bgcn of (5.3), which is induced by
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id — 7'Rn, the boundary value morphism. By the boundary value morphism b,

a bicomplex hyperfunction is represented as a finite sum of boundary values of

bicomplex holomorphic functions on infinitesimal wedges.
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