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Fano Fibrations and the DK Conjecture
for Relative Grassmann Flips
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Abstract

Given a vector bundle £ on a smooth projective variety B, the flag bundle FI(1,2,&)
admits two projective bundle structures over the Grassmann bundles Gr(1,£) and Gr(2,£).
The data of a general section of a suitably defined line bundle on Fi(1,2,&) defines two
varieties: a cover X of B, and a fibration X2 on B with general fiber isomorphic to a
smooth Fano variety. We construct a semiorthogonal decomposition of the derived cate-
gory of X2 which consists of a list of exceptional objects and a subcategory equivalent to
the derived category of Xi. As a by-product, we obtain a new full exceptional collection
for the Fano fourfold of degree 12 and genus 7. Any birational map of smooth projective
varieties which is resolved by blowups with exceptional divisor FI(1,2,£) is an instance
of a so-called Grassmann flip: we prove that the DK conjecture of Bondal-Orlov and
Kawamata holds for such flips. This generalizes a previous result of Leung and Xie to a
relative setting.

Mathematics Subject Classification 2020: 14F08 (primary); 14M15, 14E05 (secondary).
Keywords: derived category of coherent sheaves, semiorthogonal decompositions, DK
conjecture, birational geometry, fibrations.

§1. Introduction

The role of the derived category of coherent sheaves as an invariant has been an
object of study for decades: the remarkable properties it exhibits in the context
of Fano varieties [BO01] and K3 surfaces [Orl97] motivates the attempts to relate
it to other geometric data, such as the class in the Grothendieck ring of varieties
[BC09, KS18], the Hodge structure and the isomorphism /birational class [OT18,
BCP20]. Regarding the latter, several counterexamples rule out the possibility
that this can be true in general, but it is conjectured that the derived category
should behave like a birational invariant if we restrict our attention to a specific
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class of maps, called K-equivalences and K-inequalities. The conjecture, proposed
by Bondal-Orlov [BO02] and Kawamata [Kaw02], can be formulated as follows.

Conjecture 1.1 (DK conjecture). Consider a K-inequality p: Xy --+ Xo, ie. a
birational map resolved by two morphisms ¢;: X — &; such that g5Kx, ~iin
91 Kx, + D, where D is an effective divisor. Then there is a fully faithful functor
®: D(X)) — Db(Ay). Moreover, assume that y is a K-equivalence, i.e. D = 0.
Then @ is an equivalence of categories.

Note that several authors call the “DK-conjecture” a statement about K-
equivalences, without considering K-inequalities.

Generalizing the work of Kanemitsu [Kan22] on the so-called simple K-equiv-
alences, Leung and Xie [LX24] introduced the notion of simple flips or simple
K-inequalities, i.e. K-inequalities as in Conjecture 1.1 such that g; and go are
blowups of smooth centers with the same exceptional divisor. For all such flips,
the exceptional divisor is a family of special Fano varieties with two projective
bundle structures which we call generalized roofs: these varieties are classified in the
homogeneous case [FKMR23, 1.X24]. Flips associated to generalized homogeneous
roofs are called generalized Grassmann flips.

Evidence for the DK conjecture, for generalized Grassmann flips (and flops)
has been found in [BO95, Kaw02, Nam03, Seg16, Mor22, Ued19, Har21] for the flop
case, and [BO95, 1L.X25, L.X24] for the flip case. All generalized Grassmannian flips
which have been addressed (with D # 0) are such that the exceptional divisor
is itself a generalized roof, i.e. the family is over a single point: in this paper,
instead, we focus on the class of simple flips with exceptional divisor isomorphic
to a partial flag bundle FI(1,2,£) over an arbitrary smooth base B, i.e. a locally
trivial fibration with fiber isomorphic to F'(1,2, N) for some N. Our main result
is the following.

Theorem 1.2. Consider a Grassmann flip p: X1 --+ Xo such that the exceptional
divisor of the flip is isomorphic to a flag bundle FI(1,2,E) over a smooth projective
base. Then D®(Xy) C D*(X,), i.e. u satisfies the DK-conjecture.

This is a generalization of the main result of [LX25] to the relative setting over
a smooth base. As in the original work, the proof is based on constructing fully
faithful embeddings of D*(X}) and D?(X,) in D?(X), such that the semiorthog-
onal complements are generated by full exceptional collections of (pushforwards
of) vector bundles on the exceptional divisor, and then proving the existence of
an embedding of the semiorthogonal complements via mutations of exceptional
objects. This is done with a diagrammatic technique called the “chess game”,
which allows one to easily visualize the mutations, which are otherwise very cum-
bersome to write. This kind of approach first appeared in [Kuz07, Tho18], and then



FANO FIBRATIONS AND THE DK CONJECTURE 829

in the proof of the main results of [LX25, LX24]: instead of directly generalizing
the proof of [LX25], to the relative setting, we propose a modified and simplified
version of the chess game. Besides the Grassmann flip, the geometry of Fi(1,2,€)
allows one to introduce some interesting pairs of varieties, of which we describe
the relation at the level of derived categories, by means of the same kind of chess
game. Consider a general hyperplane section M C F(1,2,€). Such a variety has
two contractions, with special fibers, respectively, over two smooth varieties X3
and Xs. These are subvarieties of Grassmann bundles, and are zero loci of push-
forwards of the section defining M. Under the mild assumption of Condition 2.2,
by using the fact that the derived categories of X; admit fully faithful embeddings
in D®(M), we prove the following.

Theorem 1.3. Let X7 and X5 be fibrations over B as above. Then there is a fully
faithful functor W: D*(X;) — D®(Xs).

The proof of Theorem 1.3, which is articulated in Propositions 3.5 and 3.7,
allows one to construct explicit semiorthogonal decompositions for D?(X5) con-
taining D®(X) as an admissible subcategory, and to describe the semiorthogonal
complement in terms of pullbacks of D?(B) twisted by appropriate objects. If we
further assume Conditions 2.3 and 2.4, the varieties X; and X5 can be described as
fibrations over B where X is a cover and the general fiber of X5 is a smooth Fano
variety. We provide an infinite series of examples of such embeddings, focusing on
the cases where B, the X; and X" are rational homogeneous varieties of type A, and
the X; are cut by general sections of homogeneous vector bundles. In particular,
one such example provides an alternative full exceptional collection of length 16
for the Fano fourfold of degree 12 and genus 7.

Structure of the paper

In Section 2 we describe the exceptional divisor of the Grassmann flip and its
smooth hyperplane sections. We introduce the pairs of varieties X1, X5 of Theo-
rem 1.3 and we discuss their properties. Then the proof of Theorem 1.3 is explained
in Section 3, with examples in Section 4. The Grassmann flip construction, along
with the proof of Theorem 1.2, is addressed in Section 5. Finally, we gather all
Borel-Weil-Bott computations in the appendix.

§2. Flag bundles and fibrations
§2.1. Notation

We will work over the field of complex numbers. Given a general section s of a
vector bundle E on a variety X, we call Z(s) C X the zero locus of s.
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Moreover, for every x € X, E, denotes the fiber of F over the point x. We say
a variety Y has a projective bundle structure over X if there is an isomorphism
Y ~ P(FE) for some vector bundle F on some variety X, and sometimes the pro-
jective bundle will be denoted by P(E — X). We use Grothendieck’s convention
for projectivizations: given 7: P(E) — X, there is a line bundle L on P(F) such
that L[;-1(;) ~ Or-1(;)(1) and such that 7.L ~ E. We denote by G(k,V,,) the
Grassmannian parametrizing k-linear spaces in a fixed vector space V,, ~ C™. To
unburden the notation, we sometimes use the expression G(k, n). Similarly, we call
F(ky,...,km, Vy,) the (partial) flag variety parametrizing m-tuples (Vi,,..., Vi, )
such that Vi, C Vi, C --- C V4
we write a direct sum of vector spaces shifted by the negative of the appropriate
degree, e.g. H*(P",O®O(—n—1)) ~ C[0]® C[—n]. The bounded derived category
of coherent sheaves of a smooth projective variety X will be indicated as D°(X).

C Vi, To denote cohomology of vector bundles,

m

§2.2. The flag bundle

Consider a vector bundle £ — B of rank 2n + ¢ over a smooth, projective base B,
for n > 2 and € € {0, 1}, where the choice of notation is due to the fact that the
proofs of Propositions 3.5 and 3.7 depend on the parity of the rank of B. Then
call FI(1,2,€) the associated flag bundle over B, i.e. the locally trivial fibration
with fiber F(1,2,&,) for every b € B. Similarly, the associated Grassmann bundle
of k-subspaces in &, for every b will be called Gr(k,&) (in particular, one has
Ggr(1,€) = P(£)). We have the following commutative diagram, where all maps
are locally trivial:

e

(2.1) Gr(1,€) Gr(2,€
\ i /

Recall that Gr(k, &) comes with a relative tautological short exact sequence:

FU(1,2,€)
p1
)

(2.2) 0 — Uy — 1€ — Qp — 0.

Now, consider the line bundle £ := pjlUy’ ® p5 A Uy. Then one has p1.L ~
Uy @ N"*te72Q, and po. L ~ Uy ® AUy . Moreover,

Fl(1,2,E) ~P(p1L — Gr(1,E)) =~ P(pa. L — Gr(2,E)).
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One has
Wgr(k,e) = det(Uy, ® Q)

= det(Uy) 2R @ det(QY )Pk

= det(Uy,)®*"*° @ det(EV)®F.
Moreover, by combining the relative Euler sequence and the relative tangent bundle
sequence associated to py, we find

Wri12.6) =UTT @ A2US P @) det £2(2nte—3)

Remark 2.1. The fibration FI(1,2,£) — B is an example of a family of gen-
eralized homogeneous roofs, i.e. rational homogeneous varieties of Picard rank
two which admit two projective bundle structures. These objects are generaliza-
tions of the homogeneous roofs introduced in [Kan22]: they have been classified
in [FKMR23] in the context of derived categories of Fano varieties and, indepen-
dently, in [L.X24] in the context of flips, while a classification for nonhomogeneous
cases has yet to be found.

§2.3. Two fibrations over B

Consider now a general section s € H°(FI(1,2,€),L) and call M € FI(1,2,€) its
zero locus. Define Xy, = Z(py.s) for k = 1,2. By adjunction, one finds

W = Uy @ /\Quég)(2n+€72) @ det 5@(27;,—&-5—3)’

wx, = (ul\/)®(2n+573) ® det(€)®(2n+573)’

wx, = (/\21/{2v)®(3_2"_5) ® det(EY)®2.
In general, there is no guarantee that the general section of £ cuts a smooth variety,
or even that £ has global sections. However, L is defined up to pullbacks of line
bundles from B, and therefore we have some freedom to choose it so that it has
global sections (this choice, in light of equation (2.2), is a consequence of a choice
of a twist of £ by a line bundle on B). By restricting 1 and ra, the varieties X;

and X5 inherit fibration structures over B. To achieve some control on the fibers,
we introduce the following conditions on our setup.

Condition 2.2. The bundle £ is basepoint-free.
Condition 2.3. The restriction map

po: HO(FI(1,2,€), L) — H°(F(1,2,&),0(1,1))
is surjective.

Condition 2.4. The dimension of B is smaller than (2"+2€+1) —2n —e.
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In fact, assuming that Conditions 2.2, 2.3 and 2.4 hold, one has the following
lemma.

Lemma 2.5. The variety X1 is a smooth N : 1 cover of B, where

2n+e—1 O+ e
(2.3) N= ) (—3)2”“—1'—121( , )

X 1
=0

The variety Xo is a smooth fibration over B, with general fiber isomorphic to a
Fano variety of codimension two and coindez three in G(2,2n + ¢).

Proof. Take v; = r;|x,. Given any b € B, the expected codimension of the fibers
;1 (b), being zero loci of the restrictions Uy @ A2"+e=2Q, |T1_1(b) ~ Qé(l £,)(2) and
Uy ®/\2M§/|rz_1(b) ~ L{é(z 5b)(1), is clear, along with the coindex of the general fiber

of 5. In particular, by Condition 2.2 the generality of s implies that M, X, X5
are smooth, and by Condition 2.3 we impose that the general fiber of 7, is smooth
of expected dimension, and the general fiber of v, is a set of NV distinct points.
To determine N, we just need to compute the degree of the top Chern class of
Q\é(17gb)(2)' Twisting the dual tautological sequence of G(1,&,) one has

(2.4) 0— Qb1,6,)(2) — E®0O(2) — O(3) — 0,
and therefore, if we call H the hyperplane class on G(1, &),

(Qb(1,6,)(2)) = (1 +2H)*" /(1 + 3H)
2n—+e 2n+e—1

= (2”Z+ 6) (2H) > (-3H),
=0 7=0

where the polynomial is truncated at degree 2n + & — 1 because H?"*¢ = 0. The
degree of the top Chern class is precisely the coefficient of the term of maximal
degree, and it can be easily computed to be exactly N. Let us now rule out the
existence of positive-dimensional fibers for ;. Call H the space of global sections
of Qé(l,é‘b)(2)' First, consider the variety

V ={(b0) € BxH:dim(Z(0;)) > 0}.
Then one has the obvious projections

1%

I\)I‘/\Y

B H.
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Hence, by computing the dimension of V, one easily sees that for every b € B
the codimension of the space of sections of Q\C’;(L gb)(2) with positive-dimensional
zero loci is equal to the codimension in B of the subset over which ~; has positive-
dimensional fibers. We can read from the sequence (2.4) that sections of Qé(L &) (2)
are elements of the kernel of

f: HO(G(lvgb)vgb & 0(2)) - HO(G(lagb)a 0(3))a
(q15- s @onte) — T1q1 + -+ + TontecGone,

where (z1,...,2Za,4e) are linear maps on the coordinates. A higher-dimensional
zero locus appears only if the quadrics ¢; are either linearly dependent, or are
annihilated by a degree-one syzygy. The first case is represented by sections lying
in the kernel of a morphism

(f7 A) HO(G(lvgb)7gb ® 0(2)) — HO(G(lagb)a 0(3) D 0(2))a

where f is the contraction with a vector of linear entries, and A, evaluated on the
vector (qi, ..., Gante), gives a nonzero scalar multiple of the sum of its entries. The
dimension of the space of such sections, therefore, will be equal to the dimension
of the kernel of (f, AI) plus the dimension of the space of functions (f, AI). We
obtain

2n+e+1

25 dmAG0.E) @) - (7T,

) +2n + €.
On the other hand, sections which share a second linear syzygy are elements of
the kernel of

(f7 fl): HO(G(Lgb)?gb ® 0(2)> — HO(G(lagb)v 0(3) D 0(3))7

where f, f’ are both contractions with a vector of linear entries. Here, the dimen-
sion count gives

2n+e+2

(2.6)  dimH(G(L, &), Qe (2) — ( ;

>+4n+25—1.

By comparing the parameter counts (2.5) and (2.6), we conclude that for dim B <
(2"28+1) — 2n — ¢, the fibration ; cannot have positive-dimensional fibers, but

this is exactly Condition 2.4, which we assume to hold. O

8§3. A semiorthogonal decomposition for X,

In this section we produce a semiorthogonal decomposition for X, containing
the derived category of X;j. This is done by constructing two semiorthogonal
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decompositions for M containing, respectively, D’(X;) and D°(X,) as admis-
sible subcategories, and then mutating the semiorthogonal complements until one
has D?(X,)t C DP(X;)t. To visualize the mutations, we use a modified version
of the “chess game” of [Thol8, LX25].

§3.1. Two semiorthogonal decompositions for M

Consider the morphism ¢;: M — Gr(1,E) of relative dimension (generally) 2n +
€ — 2, obtained by restricting p; to M. This is an instance of the so-called “Cayley
trick”. Consider the following diagram:

Elci—l) M
lql th
X,1——3gr(1,8),

where ¢ is the base change of ¢; to X7, and it is the projectivization of the normal
bundle of X; in Gr(1, ). By [Orl06], we have a semiorthogonal decomposition

D" (M) = (i1.q"D"(X1),¢i D*(Gr(1,€)) @ L,..., D*(Gr(1,€)) @ LICM72)),

Now, since Gr(1,€) — B is a projective bundle with fiber P2"+¢~1 by [Or]93,
Sect. 2] we can write D?(Gr(1,£)) as follows:

(31) DY(Gr(1,€)) = (riD"(B),riD"(B) @ Uy, ...,riD"(B) @ (Uy)*Cr+=1),

where we used the fact that the list of ri-relatively exceptional objects {O, Uy, ...,
Uy )2Cnte=11 restricts on each fiber to the full exceptional collection (O, O(1),
..., 0@2n + ¢ — 1)) of D°(P2"*~1). Summing all up, we have

DY(M) = (i1.q; D" (X1),
rDY(BY® L,...,riDY(B) ® L ® (Uy )21,
7“TDb(B) QL ... ,rbe(B) ® L2 & (ui/)®(2n+571),

(3.2) riDY(B) @ LT piDY(B) @ LOCM T @ (uy ) tEmh)

We can perform the same operations with py: M — Z5. First we use the result of
[Orl06] to write

(3.3) D(M) = (iz.q5 D" (X2), 5 D" (Gr(2,€)) © L).
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Recall that one has the following semiorthogonal decompositions for D*(Gr(2, £)),
due to [Kuz08, Sam07]:

(B,...,B& (AU )¥"2),
(3.4) DGr(2,€))={ A (AUY)®=D A (AUY)PCD) (e =0),
(B,...,B® (NUy)®*") (e=1),

where A = {O,Uy,...,Sym" ?Uy'} and B = {A,Sym" ' Uy}. Summing all up,
we will find the following semiorthogonal decomposition for € = 1:

D*(M) = (i2 g5 D"(X2), 3B& L,.... 3B ® (NU)*" "V @ L),
and the following for € = 0:

DP(M) = (i0. 3 D*(X2), 3B L, ..., 3B & (NUy)*"2 D @ L,
GAR (NUNHED oL, g AR (NUY)ED @ L),

Thus, we are ready to compare the semiorthogonal complements of D?(X;) and
D*(X5) inside D®(M). However, the number of components grows wildly with
n, and writing a sequence of mutations easily becomes a cumbersome task. For
this reason, in the next pages (Sections 3.2, 3.3) we introduce a “chess game”
representation of such lists of objects, i.e. a diagrammatic language which allows
one to visualize mutations in a simple way. The chess game (including its name) is
inspired by the works [Kuz07, Thol8, LX25], but with different rules and symbols.

§3.2. Extending bundles from the fibers

Before introducing our version of the chess game, we need some technical results
about mutations of subcategories of D?(M). We begin by recalling a different
description of the flag bundle. Consider a principal G-bundle ¥V — B, where G =
SL(2n + €). Call P, 2 C G the parabolic subgroup given by the elements of the
form

AL X X

p=10 X x| € SL(2n+¢)
00h

where A1, Ay € C*, h € GL(2n + €) and the x’s denote submatrices on which we
impose no condition. One has F(1,2,2n + ¢) = G/P; 2. Then we can construct
a locally trivial fibration F — B with fiber F'(1,2,2n + ¢) (i.e. our flag bundle)
by taking F =V x% G/ Py 5, where the notation x¢ denotes the quotient of the
product by the equivalence relation (g.t,v) ~ (t,g.v) for all ¢ € G and (t,v) €
V x G/P; 5. Note that the choice G = SL(2n + ¢) is purely motivated by writing
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the explicit description of the parabolic subgroup of a flag variety of type A: on
the other hand, the construction of homogeneous vector bundles, together with
their extension to generalized flag bundles, works for any choice of G/P.

Let us call 7: F — B the map induced by the structure map V — B. Then,
for every b € B, we have 7~1(b) ~ F(1,2,2n+¢). Recall that, given a principal H-
bundle W over a variety X, there is the following exact functor from the category
of H-modules to the category of vector bundles over X (see [Nor82, Sect. 2.2], or
the survey [BNOG, p. 8]):

H(_
H-Mod 7, veet(x),

which sends the H-module R to the vector bundle Wx R. In our case, F = Vx“G
is a principal P o-bundle over Z, because V — V/P; 5 is a principal P; o-bundle
and V/P1 2~V x% G /Py 5 ~ F (see, for instance, [Mit06, Prop. 3.5]). This allows
one to construct the following exact functor:

G P , _
P1o-Mod ), vt (F).

Moreover, it is well known that there exists an equivalence of categories

Vg,
Py 5-Mod RN VectP(G/PLz)7

which sends a P; o-module H to the P; >-homogeneous vector bundle Vg p, ,(H) =
G xPr2 H. In particular, Va}Pm is an exact functor. Summing all up we can
construct an exact functor § sending homogeneous vector bundles over G/P; o =
F(1,2,2n + €) to vector bundles over F:

F=VvxGaxF12(=)ov !

(3.5) Vect?2(G/P) T2 Vect(F)
Vale Am,z()

PLQ—MOd.

In particular, we have O(zhy + yh2) = F(O(z,y)) for all x,y. Moreover, since U
is homogeneous (although not irreducible), it is easy to see that Sym™ U" (z,y) =

F(Sym™ Z/ICV;(Q,QH%) (z,y)) for all z, y.
§3.3. The chess game — Rules

3.3.1. Mutations of blocks. Let us fix the following notation, where we omit
pullbacks: O(zhy +yhs) = (UY)®* @ (A2UY)®Y. In particular, one has £ = O(h; +
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hs). Let us also introduce the subcategories

S, = Sym™ Uy (xhy + yh2) ® ¢iri D°(B),
. 0 1 m
A;’fy = (S S . Szly>

Ty LYt

In this language, we enunciate the following technical lemma.
Lemma 3.1. For 0 <r <min(t —2,n—1) and r #t— 1 one has
Lsgosr—m ~87, .

Moreover, forr =t —1,
t—1 . qt
Lsg’,osfm ~ S0

Proof. Let us start by considering the following adjoint pair of functors:

fr Evr— p"E® " O(thy),

f's R p.RHompm (t*O(thy), R),
where f is a fully faithful embedding of D*(B) in D®(M), the “!” symbol denotes
the right adjoint, ¢: M — Fl(1,2,2n + ¢) is the embedding as a hypersurface and
p = riopi|m. Now, any object in 8", | has the form +* Sym" Uy (=hy +ho) ® p*E
for some E € Db(B), and its mutation through S,?’Ois defined by the distinguished
triangle

ff!(L* Sym" Uy (—hy + ho) @ p*E) — o* Sym” Uy (—hy + hy) ® p*E
(3.6) — ]Lsgyo (¢* Sym” UQ\/(—}U + hg))

Then, by adjunction,

£ (" Sym" Uy (—hy + hy) © p* E)
~ p. RHom (1 O(thy), " Sym™ Uy (—hy + ha) ® p*E)
~ put* RHomzy1,2,6)(O(thy), 1™ Sym™ Uy (—hy + ho) ® p*E)
(3.7) ~ TiuDistet "  RHom gy 2,6)(O(thy), t4t™ Sym” Uy (—hy + ho) @ p*E).

Let us focus our attention on the term RHom z(1,2,6)(O(th1), t«t* Sym” Uy (—hy1+
he) ® p*E). For any b € B one has

(rispis RHOMF(1,2,6)(O(thy), tat* Sym" Uy (—hy + he) @ p*E)),
~ H*((r; op;) " (b), et Sym" Uy (—(1 + t)hy + ho) ® p*E
~ H*(F(1,2,2n + €),i.4" Sym" Ugy g pp e (—1 — 1, 1))
~ Hom3,(O(t,0), Sym" UCV,(Q_’%JFE)(—L 1)),

(riop)-1(b))
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where i is the embedding of M in F(1,2,2n + ¢). If r # ¢ — 1 the latter is zero
by Lemma A.4, and hence RHomr;1,2.¢)(O(thy), st* Sym”" Uy (—h1 + ho) @ p*E)
vanishes identically. Therefore, the third term in the triangle (3.6) is the cone over
the zero map, and hence it will be isomorphic to the second one, proving the first
part of the claim. Let us now consider the case r =t — 1. Back to equation (3.7),
we can further manipulate this expression, obtaining

fH (" Sym™ Uy (—hy + ha) @ p*E) ~ ripistet” Sym” Uy (—(1 4 t)hy + ha) @ p*E.
Let us resolve ¢v,.0* Sym” Uy (—hy + h2) ® p*E by the Koszul resolution of M (up
to twists by pullbacks from B):

0 — Sym" Uy (—(2+t)h1) ® p*E — Sym" Uy (—(1 +t)hy + he) ® p*E
— 10" Sym" Uy (—(1 4+ t)hy + ho) ® p*E
— 0.
Here, by Lemma A.4 and the same argument as above, we have for all b,
(rispin Sym" ™ U (—(2 + t)h1) ® p*E), =0,
(Ti*pi* Symtill/{;/(f(l —+ t)hl + h2) ® p*E)b ~ (C[*].],
which tells us that rupi«tee* Sym" Uy (—(1 + t)hy + ha) ® p*E is a line bundle
on B shifted by —1. Hence, up to twists by pullbacks of line bundles on B, one
has ff'(v* Sym” Uy (—hy + ha) @ p*E) ~ p*E ® O(thy), and therefore the triangle
(3.6) reduces to a short exact sequence where Lgo (v* Sym" Uy (=hi + h2)) is the

extension. This sequence is a twist of (A.3), and hence we conclude the proof of
the claim. O

Lemma 3.2. fFor0<m <r <n-—2 one has

T T
LSZ{”OS—Ll ~ST, .,

moo.Qm
RSZMSO,O ~ Si'o-

Proof. The argument follows the exact same steps as the proof of Lemma 3.1. In
particular, with the same local analysis, we see that the relevant Ext computations
boil down to terms of the form

Ext*(Sym™ ué(2,2n+a)v Sym" ug(272n+s))’
which have no cohomology by Lemma A.6. O

Corollary 3.3. Forr+1 <t <n— 2 there is a sequence of mutations realizing
the following equality:

(3.8) (S0.05---+ 800, A7) = (AT AT, S0, ST ).
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Proof. By Lemma 3.1 we can move each block of the shape S™; ; immediately
to the right of SY m+1,0- Then we apply Lemma 3.1 again, mutating the former a
further step to the left, where it becomes S":LH. The last step consists in reordering
the blocks so that we obtain the right-hand side of equation (3.8): this can be done
thanks to Lemma 3.2. O

3.3.2. Arrangement of boxes and semiorthogonal decompositions. Here-
after we describe an exceptional collection made of blocks as above by means of
an arrangement of boxes, each of them containing a number. The number in a
box represents the maximum symmetric power appearing in the associated block,
while the position of the box in the table corresponds to the twist. To identify the
overall twist, the box corresponding to the twist by (0,0) is grayed out. There are
no morphisms from the right to the left in the same row, and from the bottom to
the top regardless of the row. For example, one has

c a|bl|c
< 00’A107 2,05A307 115A217A317A > 7
€ g

The advantage of this notation is that it allows one to visualize useful muta-
tions, even if the semiorthogonal decomposition is exceptionally cumbersome to

write.

Lemma 3.4. Consider the following diagram:

)

where the length | of the first row of zeros satisfiesT <1 < 2n—3+¢, andr < n—2

holds. Then one has
ol o] [o] = ELe] o],

Proof. The first diagram describes the following semiorthogonal decomposition:

r-1

r-1

(AD 0, Al g, AL, AT =(S00.80 gs v ,SP0s
(3.9) S 4,8t ,STTh).
In light of Lemma 3.1, 8° | | can be moved to the immediate right of 7 ;. Similarly,

for 1 <m <r -1, we can move the subcategory S™; ; right after S?,l+170. What
we get is
0 -1 0
<A0 0’ A1 05> Al,07 AT—1,1> = <So 0>
0 1 0 -1
SlO7S 11782078—1,17 """" 7STO7ST1,17

(3.10) S .0 e .S70)-
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Let us now mutate S™, ; through the subcategory S?ﬂ-‘rl,o for every m. We
obtain Lgo S™ 1 =S !, and our decomposition becomes
m+1,1 ’ ’

0 0 0 k—=1\ __ 0 1 0 2 k 0 0
<AO,Ov Al,O? ) Al,O? A71,1> - <SO,07 SO,07 Sl,Oa SO,07 ) S0,07 Sk+1,07 e Sl,0>'

Observe that by Lemma A.5 and the same local computation we used for proving
Lemma 3.1, we can move all the blocks ngy (except for the first one) to the right
of all blocks S;,?y,. This gives the decomposition

(A0, Al g, AT, ARTY) = (800,805 --+S6.0,80.05- - ST,
which is the one depicted in the second diagram, concluding the proof. O
§3.4. The chess game — Mutations for the even case

In this section we describe the mutations we need to perform to prove Theorem 1.3
for the “even” case, i.e. ¢ = 0. In the notation of Section 3.3.1, we can rewrite the
decomposition (3.2) as

b Y 8 14 0 0 0
D (M) - <ll*q1D (X1)7A—n,1aA—n+1,17 """""" aAn—l,la
0 0 0
A7n+1,27 A7n+3’27 """" 7An,2a
0 0 0
An—2,2n—17 An—1,2n—17 e ’An,2n+3>'

As we discussed above in Section 3.3, D’(X;)* can be rewritten as an arrange-
ment of blocks, or a “chessboard”. In the remainder of this section, we choose
n = 6 to depict the chessboard moves we perform, while the argument itself will
be presented in full generality:
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Observe that each row represents a different twist of the pullback of Db(Gr(1,£)):
hence, we can use the Serre functor of this category to “translate” the row horizon-
tally. We eventually get the following diagram, where some blocks are highlighted
for further convenience (the height of the yellow area is n — 2 and the length is
n—1):

3.4.1. First upward phase. Let us apply the rule described in Lemma 3.4 to
the shortest yellow row, after moving it two steps to the right by mutating the
block it passes through. Since we are not interested in the explicit description of
such a subcategory, we will denote it (and the similar pieces we will produce in
the following) by x. We find
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By applying the same step to each yellow row, progressively from the shortest to
the longest, we find the following “chessboard”:

X ojofofoOofOfoO
T ojofofofoOofO0OfoO
T ojofofofofO0O|0]O
T ojojofofofofo|0]|O

where the last nonzero number in the first row, in the general case, is n — 2. Let us
now apply the Serre functor to the segment of the first row terminating with the
two “n —2” blocks. We will introduce new colored areas to simplify the exposition
of the next phase:

X ojofofofoO0foO
T o(fofofoOfOfOfO
T o|jofofOfOfO|O0O]|O
T ojojofofOfO|O|O]|O
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3.4.2. Second upward phase. Let us mutate, as in the first upward phase, the
first yellow row using the rule described in Lemma 3.4:

X ojofofofo0OfoO
T ofofjfofoOfOfOfO
T o|jofofoOfO|O|O0O]|O
T ojojofoOofOfO|O|O]|O

After iterating this operation until we erase all the yellow blocks, we obtain the
following final board:

51]0[0[0fO0fO
j 51]0[0[0fO0fO
T 51]0[0[0fO0fO
T 51]0[0[0fO0fO
T 51]0[0[0fO0fO
T 5/1]0[0[0fO0fO
T 410[0f[O0fO0OfO
T 410[0[0fO0OfO
T 410[0[O0fO0OfO
T 410[0[O0fO0OfO
o 4

Note that the content of the upmost box is n — 1, and not n — 2. This is because
the subcategory denoted by the orange box, after all this process, gets mutated to
Sg;l. Now let us apply Corollary 3.3 to the last “n — 2” block and the half-row of
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zeros immediately above. Finally, we apply the Serre functor to the resulting new
“n — 2” block, obtaining the final chessboard:

4]

51]0[0[0fO0fO
j 5/1]0[0[0fO0fO
T 5/1]0[0[0fO0fO
T 510000} O
T 51]0[0[0fO0fO
T 51]0[0[0fO0(fO
T 410[0[O0fO0OfO
T 410[0[O0fOfO
T 410[0[O0fOfO
| s
o 4|

The direct consequence of this sequence of mutations is the following, which
settles the construction of the derived embedding for the even case.

Proposition 3.5. Let X; and Xo be as described in Section 2.3, for e = 0. Then
there is a fully faithful functor ¥: D*(X;) < D®(X3). Moreover, D*(Xs) admits
a semiorthogonal decomposition as follows:

DY(Xy) = (B(D(X1)), Fu,..., Fap2_y),

where, for all i, F; is an admissible subcategory given by the image of D®(B)
through a fully faithful functor.

Proof. In the notation of Section 3.3.1, the last chessboard essentially says that

®iqi D' (X1)" = Af%

n—1 0 0
AGT AT AL 11
n—1 0 0
< AR A JAO L,
n—1 0 0
><7‘A0,n 7A1,n+1v ~~~~~ aAn—l,n+17

n—2 0 0
X, AG 1 AT s s AL 1t
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n—2 0
X, Ag oy 27A12n 25 AL 1 22

(3.11) Afzn-1):

where ® is the functor induced by mutations. On the other hand, by the Serre
functor, one has

;D" (Gr(2,€)) ® 0(0,1)

<A01 )’ AOn 7A0n+17" A02n 27A02n 17A02n>
_ n—2 n—1 n—1 n—2 n—2 n—2
- <A0,0 7A0,1 ’ AOn 7A0 n+17-- '7A0,2n—27A0,2n—1>a

and the blocks in the second line all appear in the collection (3.11). Hence we can
move all of them to the end of the semiorthogonal decomposition (mutating the
blocks in between accordingly), and we finally find

(312) Db(M) = <‘I’Zl*fﬁ b(Xl)a Fla ceey F2n2—n7 q;Db(gr(Qag)»a

where F; == pi{riD®(B) ® E;, for E; an exceptional object. The proof is complete
once we set ¥ = ®iy,.q7. ]

Remark 3.6. A more explicit description of the E; can be obtained by computing
the mutations which lead from the collection (3.11) to (3.12). However, these
mutations would be exceptionally cumbersome to write, burdening an already
heavy notation.

§3.5. The chess game — Mutations for the odd case

We now address the odd case, i.e. ¢ = 1. As above, we choose to write the chess-
boards for n = 6 while we describe the argument in general. We start with
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As above, we use the Serre functor of Gr(1,£) to translate the rows horizontally.
We find the following arrangement, where the yellow area, as usual, is for ease of
notation in the next steps:

3.5.1. First upward phase. We essentially proceed as in the even case, but with
a different yellow area. We mutate away all the objects in this area by mutating
the first line bundle (in the leftmost white column) through them, and then by
moving them through the row immediately above until they get canceled by the
rule of Lemma 3.4. The outcome is the following:

0|0 | 1 | 2 | 3 | 41510000 |0]O

X 51]0[0[0[0fO0fO
T 51]0[0[0[0fO0(fO
T 5/]0[0[0f[O0fO0OfO
T 5/]0[0[0f[O0fO0OfO
T 5/]0[0[0f[O0fO0OfO
T ojofjfofofoOfOfoO
T ojfofofofoOofO|O0O]O
T ojofofofofofO|O]|O
T ojojofofofofo|lO|O0O]|O
T ojojojofofofofo|lO|O0O]|O
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Let us now apply the Serre functor to the first n blocks of the first row, and
let us identify a new yellow area for the next upward phase:

5/]0[0[0f[O0fO0OfO
j 5/1]0(0[0f[O0fO0fO
T 5/1]0[0[0f[O0fO0fO
T 5/1]0[0[0f[O0fO0fO
T 5/1]0[0[0f[O0fO0fO
T 51]0[0[0f[O0fO0fO
T ojofofofoOofO0OfoO
T ofofofoOoOfOfO|O0O]O
T ojofofofofO|O|O0O]|O
T ojojofofofofoOo|lO|O0]|O
T ofojofofofojo|loOfO]O]|O

Ojo0|1|2]|3]|4

3.5.2. Second upward phase. We apply the rule of Lemma 3.4 for the last
time, getting rid of the yellow boxes once again:

5/1]0[0[0f[O0fO0fO
j 51]0[0[0f[O0fO0fO
T 51]0[0[0f[0fO0fO
T 51]0[0[0f[O0fO0fO
T 51]0[0[0[0fO0fO
T 510000 O0{|O
T 5(/5(0[0f[0fO0f0O
T 5/]0[0[0fO0f0O
T 5/]0[0[0fO0fO
T 5/1]0[0[0fO0f0O
T 5/1]0[0[0fO0fO

Let us now move the second column of “n — 1”7 blocks to the end of the
collection (by mutating all the zeros at its right), and then let us send it to the
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beginning via the Serre functor. We find

5]

B

B

B

5

5/0({0l0f0]|0OfO
T 5/0({0[0[0]O0[O
7 5/0({0l0f0]0OfO
7 5/0({0[0f0]OfO
7 5/0({0[0[0]O0[O0
7 5/0({0[0f0]0OfO
7 5 X[ X | X | X | X
7 o X | X | X | X |[X
7 X[ X[ X[ X|[X
T X[ X | X | XX
7 X | X | X | X|[X

As for the even case, the last step consists in applying Corollary 3.3 to the last
“n — 1”7 block, and sending the new block to the beginning via the Serre functor.
Hence, we produce the final chessboard:

5]

B

B

B

5 |

5

5/0[{0|0[0O|O0fO
7 5/0[{0|]0[0|0fO
7 5/0[{0]0[0|0]O
7 5/0[0|0[0O|O0fO
T 5/0[0]0[O0|0fO
[ x| 5
7 T X | X | x| x| X
T o X[ X | X |x]|X
7 X | x| x| x]|x
T X | X[ x| x| X
7 X | x| x| x]|x




FANO FIBRATIONS AND THE DK CONJECTURE 849

Here, we finally recognize all the blocks composing D®(Gr(2,&)), although they
need to be mutated to the end of the collection. By the exact same approach as
the previous section we prove the following.

Proposition 3.7. Let Xy and Xs be as described in Section 2.3, for e = 1. Then
there is a fully faithful functor ¥: D*(X;) < D®(X3). Moreover, D*(X3) admits
a semiorthogonal decomposition as follows:

Db(XQ) = <\Ij(Db(X1))7F15 R F2n2—n—1>7

where, for all i, F; is an admissible subcategory given by the image of D®(B)
through a fully faithful functor.

Together with Proposition 3.5, Proposition 3.7 completes the proof of Theo-
rem 1.3.

Remark 3.8. Note that Theorem 1.3 holds without assuming Conditions 2.3 and
2.4. In fact, the sole Condition 2.2 is necessary to have smoothness of X7, X5
and M, which, in turn, allows one to write the semiorthogonal decompositions of
Section 3.1 and proceed with the chess game.

§3.6. A note on tilting bundles

In [FKMR23], the case B = {pt}, which had previously been addressed by [L.X25],
has been revisited with a different approach, based on GLSM phase transitions
and the construction of a window category. The approach, inspired by [ADS15], is
the following:

(1) Observe that G(1,2n + ¢), G(2,2n + ), and the total spaces X, and X_
respectively of Qa(1,2n4¢)(—2) and of Mé<2’2n+€)(—2) are GIT quotients, and
that X, and X_ are both birational to an Artin stack [V/GL(2n 4 ¢ — 2)],
where V is a vector space. There is a function f: V' — C such that the zero
loci Yy and Y_ of general sections of the duals of Qg1 2n+4c)(—2) and of
ucv;(2,2n+g)(_2> can be realized as the critical loci of f restricted to X and
X_.

(2) There is a tilting bundle of X which, under the birational map X, — X_|
is sent to a partially tilting bundle.

(3) By means of Knorrer periodicity [Shil2] and passing to a derived category of
matrix factorizations, one has a composition of functors:

DY(Y_) ~DMF(X_, f) — DMF (X, f) ~ D*(Y,).

This technique, in principle, could be used for the present setting, giving a simpler
and shorter proof of Theorem 1.3, which is also more suitable to generalization to
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the more complicated case of G(k, k+1, E). However, a tilting bundle on G(1, 2n+e¢)
does not directly imply the existence of a tilting bundle on a Grassmann bundle
with fiber G(1,2n + €) on any smooth base: therefore, we opted for the argument
presented in Section 3.

§4. Examples

Let us discuss some concrete examples. We address the case where B, Gr(i, &)
and FI(1,2,€) are flag varieties themselves: the outcome is an infinite series of
derived embeddings between covers of B and Fano fibrations over B, where both
the cover and the fibration are cut by general sections of irreducible, homogeneous
vector bundles. More precisely, fix n < 2 and any strictly increasing partition
w={p1,...,u-} of arbitrary length r. Then we choose the data of £ — B so that
Fl(1,2,E) = F(u1, .-ty b + 1, i + 2, gt + 2n + €). This variety has exactly
r + 2 extremal contractions to flag varieties of Picard rank r + 1, which in turn
have r + 1 extremal contractions to flag varieties of Picard rank r. This process
can obviously be iterated, and eventually defines locally trivial morphisms

Fins s firs i+ 1, fir + 2, pir + 204 ) 25 Gy pr + 20+ ),

(@1, Trg2) — 5,

where j € {u1,..., tr, pr + 1, + 2}. Fibers of these maps are products of flag
varieties. We call U{; the pullback of the tautological bundle through ¢;, a vector
bundle of rank j, and we denote by Q; the rank u, +2n+e—j vector bundle defined
as the quotient of O®(27+¢) by the latter, via the tautological embedding. Let us
use the notation O(—h;) = det; for line bundles. We will also use the shorthand
notation F'(u, p+1, ptr +2, pr+2n+¢) for F(ua, ..., ey por + 1, por +2, gt +2n+-¢).
In this context, the diagram (2.1) specializes to

F(ps pir + 1, o + 2, pir + 20 +€)

27

(4.1) F(u,pbr + 1, pur +2n+¢) F(p,pr + 2,10 +2n+¢)

o

F(u, pr +2n+¢).
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Given any dominant weight v = vjw; + - -+ + vyw,, we consider the line bundle
L:=CE 1w, 11+w,,+2- Then one has

Pl > & @ NP 2Q ) (hyi1) = £, © Q41 (2hy, 41),
pa L~ E @ P(2hy, 42),

where P(h,, +2) is defined as (the pullback of) the homogeneous, irreducible, glob-
ally generated vector bundle of highest weight w,,, +1 on F(ur, ptr +2, pir +2n+¢).
The dominance condition on v is required in order to have £ satisfy Condition 2.2,
which, in turn, is necessary to have smoothness of X; and X5. Note that one has

0 — Uy, (P, +2) — Uy, 2(hp,12) — Py, 42) — 0.
By adjunction, one easily sees that for every @ € F(pu1, ..., lr, fir + 2n + €),
wX1|T;1($) =0(2n+¢e—3) ~ sz\;/;l(x),

and therefore, for our assumptions on y, r and n, we see that the general fiber of
X5 is a smooth Fano variety of index 2n 4 ¢ — 3.

8§4.1. Thecaseof n =2,e =1

Let us briefly review the simplest case, which corresponds to considering a flag
bundle with fiber isomorphic to F(1,2,5).

4.1.1. A fibration in Fano fourfolds of degree 12. With this data, for any
u we produce a fibration Xo — F(u1, ..., ty, i + 5) with general fiber isomor-
phic to a smooth Fano fourfold Y of index 2, degree 12 and genus 7 in G(2,5),
cut by a section of Z/l(\g(275)(1). This variety is case 14 in the classification [Isk78,
Table 6.5], and it is usually described as a codimension 6 linear section of the spinor
tenfold (i.e. a connected component of the orthogonal Grassmannian OG(5,10)):
the fact that the description we use is equivalent is well known, and it can easily
be deduced by the argument presented in [CCGK16, Sect. 13]. In particular, the
argument there presented relates codimension 7 general hyperplane sections of a
connected component of OG(5,10) to general sections of Z/{g(%)(l) @ 0O(1), and it
can be adapted to our case verbatim. By Lemma 2.5 we immediately see that for
dim(F (u, pir- +5)) < 10 the map X1 — F(u, pir-+5) is an 11 : 1 cover. In particular,
by choosing p = {1}, we get a cover of P°. Already by choosing u = {2} we have
a generically 11 : 1 morphism to G(2,7), with positive-dimensional fibers over a
zero-dimensional subset; by all other choices of p there is a positive-dimensional
subvariety over which the morphism is not finite.
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4.1.2. Relation with Kuznetsov’s collection for Y. By Theorem 1.3, there
is a fully faithful functor D°(X;) C D®(X2) and a semiorthogonal decomposition

Db(Xy) = (UD%(X,), Fy,...,Fs).

A full exceptional collection for the general fiber of Y of X5 can be found if we
consider the case B = {pt}:

(4.2) DY(Y)=(P,,...,Py, F,..., F5),

where Py,..., P;; are the objects coming from the derived category of a set of 11
distinct points. In [Kuz18] a different full exceptional collection for Y has been pro-
duced, using the fact that Y is a linear section of the spinor tenfold (which admits
a Lefschetz, rectangular full exceptional collection of vector bundles): if we call
U, the tautological bundle of the spinor tenfold (the pullback of the tautological
bundle of G(5,10)), one has

DY) = (Ey,..., E12,0,UY,0(1),UY (1)),

where the E; generate the derived category of a set of 12 distinct points (a codi-
mension 10 linear section of the homological projective dual of the spinor tenfold,
where the latter, remarkably, is isomorphic to the spinor tenfold itself). Note that
both collections have length 16. It would be interesting to understand whether
the two collections can be related by a sequence of mutations, or, more generally,
whether there is any geometric relation between the collections.

Remark 4.1. Note that the embedding of categories (P,..., Pi;) C Db(Y) is
already a consequence of [FKMR23]. However, proving that the right orthogonal
complement of (Py,..., P1p) is itself generated by an exceptional collection (and
thus obtaining the collection (4.2)) is a consequence of the more explicit approach
we discussed in Section 3.

§5. Grassmann flips on a base
§5.1. Simple flips and flag bundles

Consider a birational map between two smooth, projective varieties A7 and A,
resolved by two blowups m: X — A and 7mp: X — As. This is an instance of a
simple flip as described in [LX24, Def. 2.2]. Let us focus on the situation where
the centers of the blowups are respectively isomorphic to the Grassmann bundles
Gr(1,€) and Gr(2,&) for a suitable choice of a vector bundle £ on a base B. The
geometry described in Section 2, together with [L.X24, Prop. 2.3], allows one to
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draw the following diagram (cf. [LX24, Diagram 2.4]):

Fl(1,2,€)
p1 X P2
(5.1) / " \
gr(l,&)—— X — — - - - — — — — 5> Xy +—Gr(2,€)
B.

In particular, this is an instance of a simple flip of homogeneous type, as described
in [LX24]. Note that, for B = {pt}, we obtain the construction addressed by
[LX25]. In light of this, it is reasonable to expect a derived embedding D?(X;) C
DP(X,). The goal of this section is to produce such embedding.

§5.2. Semiorthogonal decompositions for X

By applying a result of Orlov’s [Orl93] on semiorthogonal decompositions of blow-
ups, we can construct two different semiorthogonal decompositions for X':

DM(X) = (0. (p DV(Gr(1,€)) @ L3214
0. (piD"(Gr(1,€)) ® LEV) 71 D (A1)

(5.2) ~ (0. (p3D"(Gr(2,€)) ® L&), 13 DY (Xs)).
In light of the semiorthogonal decomposition (3.1) we can rewrite the above as
follows:
Db(X) = <Tg2n—a+3,—2n—a+3’ cees Tg,—2n—6+37
(5.3) T, Ty 1, T DO (X)),

Here we introduced the subcategories

T, = 0.(Sym™ Uy (xhy + yhy) @ 7 D*(B)),
moo._ 0 1 m
By, = (T0,, TL ..., T,

T,y T XY

where 7 := pj ory = pyora.
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Lemma 5.1. For 0 <r <min(t —2,n—1) and r #t—1 one has
IL4T9_’OTT;1,1 ~TZ, .

Moreover, forr =t —1,
H—dTgoTt:lh ~ T 0.

Proof. As for the similar claim in Section 3, let us start by observing that any
object in T7 | has the form o, (Sym" Uy (—hy + hy) © 7*E) for some E € D*(B),
and its mutation through T¢ is defined by the distinguished triangle
99'0.(Sym" Uy (—hy + hy) @ T°E) — 0. (Sym" Uy (—hy + ha) @ 7°E)
(5.4) — Lyo o« (Sym” Uy (—hy + ha)),
where g and ¢' denote the following adjoint pair of functors:
g: E— 0.(E® O(thy)),
gt R— 1. RHomz(1,2.6)(0.0(th1), R).
Therefore, we can compute the first term of the triangle (5.4) explicitly:
99'0. (Sym" Uy (—hy + hy) ® T*E)
~ gr.RHomz12.¢) (0.0 ,0.(Sym" Uy (—hy + ho) ® T*E))
~ gr. RHomr12,¢) (a 0.0 th1 (Sym" Uy (—hy + h2) ® T*E))
~ gr. RHomr1 2,¢) (O’ 0.O(thy), (Sym" Uy (—hy + he) ® T*E))

Note that every fiber of this object has the form

(reRHomzi(1 2.6) (070, O(thy), (Sym" Uy (=h1 + ho) @ T*E))),
~ H* (T_l(b), T RHomz1 2.¢) (07 0. O(thy), (Sym" Uy (—h1+h2) QT E)) ‘rl(b))
= HomF(l,Z,Sb)(O(tv 0), Sym” Uc(2,e,)v (—1,1)).

Then we conclude as in the proof of the claim inside the proof of Lemma 3.4. [

We can now state the main theorem of this section.

Theorem 5.2 (Theorem 1.2). Consider a Grassmann flip p: Xy --+ Xa such that
the exceptional divisor is isomorphic to a flag bundle with fiber F(1,2, N) over a
smooth projective base. Then D*(Xy) C D*(X»), i.e. u satisfies the DK-conjecture.

Proof. As for Theorem 1.3, the proof for the even and odd cases are essentially
the same: we will only describe the even case (i.e. ¢ = 0). In light of the decom-
position (5.3), the semiorthogonal complement 7§ D?(X;) can be described by
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the first chessboard of Section 3.4, where the box in position (z,y) containing a
number m now corresponds to the block T3, C D’(X) By Lemma 5.1, all the
chessboards of Section 3.4 describe the semiorthogonal complements of categories
equivalent to w3 D®(Xy) C D(X), where the equivalence is described by a suitable
mutation functor. In particular, the last chessboard corresponds to the following
semiorthogonal decomposition:

TETDY(X) = Tgg’

n—1 0 0
To LT i
n—1 0 0
SO Ve N T o,
n—1 0 0
A i I s o1 ns
n—2 0 0
X’T07n+1’T1,n+17 """ 7Tn—1,n+1a
n—2 0 0
X, T6on—3:T7 on—5:- - s Th1 2n—3
n—2
T0,2n72
n—2
(55) TO,2n—1>’

where = is the mutation functor. Again, we observe that

0. (piD°(Gr(2,€)) ® 0(0,1))

_ n—1 n—1 n—2 n—2 n—2 n—2
- <TO,1 1t TO,n 7T0,n+17 ce ’T0,2n—2’ T072n—17 TO,2n>
o n—2 n—1 n—1 n—2 n—2 n—2

- <TO,O vTO,l rrr TO,n 7T0,n+1v R T0,2n727 TO,2n71>'

This allows one to mutate the collection (5.5) so that the category of X can be
written as

D*(X) = (o (piD"(Gr(2,€)) ® 0(0,2)), Z,Er; D* (X)),

where Z is an admissible subcategory generated by (mutations of) blocks of the
form T7",. This concludes the proof. O

Appendix. Computations on homogeneous vector bundles

Lemma A.1. One has the following short exact sequence on F(1,2,n):
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Proof. For k = 1, equation (A.1) reduces to the simple embedding of tautological
bundles. To prove the assertion for higher k, we recall that the Schur functor Sym”
acts on a sequence 0 - A — B — C — 0 as follows:

0—A*A— AF1"A@B— .. — A" 4@ Sym'B — - --
(A.2) — Sym" B — Sym"* ¢ — 0.

The proof follows by applying equation (A.2) to the embedding of tautological
bundles: note that the first bundle has rank one, thus all its higher wedge powers
are zero, giving the expected short exact sequence. O]

The following corollary is immediate.
Corollary A.2. One has the following short exact sequence on FI(1,2,E):
(A.3) 0 — Sym* ' Uy (—hy + hy) — Sym" Uy — O(khy) — 0.
Proof. Tt is enough to apply the functor § of Section 3.2. O

Another application is the following.
Corollary A.3. If

H*(F1(1,2,€),0((a — m + 2k)hy + (b+m — k)h))
= H*(FI(1,2,£),0((a — m)hy + (b + m)ha)) =0,

then Sym™ ﬁv(ahl + bha) has no cohomology as well.

Proof. The proof follows by applying equation (A.3) iteratively, resolving all sym-
metric powers of Uy as extensions of progressively lower symmetric powers. O

Lemma A.4. Fort <2n—3-+¢ one has
Ext3,(O(t,0), Sym" Ugyz 2p 1) (—1,1))
{(C[—l], r=t—1,

0, 0<r<min(t—2,n—1), r#t¢t—1,
where M is a (1,1)-section in F(1,2,2n + ¢).
Proof. By the Koszul resolution of M, the computation boils down to

EXt;‘(172,2n+5)(0(t7 0)7 Symr ug(Z,Zn-&—e)(_l? 1))’
EXt;?(l,z,szrs) (O(t,0), Sym” ug(2,2n+5) (=2,0)),
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and hence to the cohomology of
Sym” ué(272n+5)(7t —1,1) and Sym" L{é(zgn_ﬁ)(ft —2,0).

In light of the iterate resolution of symmetric powers of Corollary A.3, we just
need to prove that, for 0 < a < r, the bundle O(—t —1 —r +2a,1+r — «) has no
cohomology except for C[—1] for o = r =t—1, and O(—t—2—r+2a,r—a) has no
cohomology at all. We apply the Borel-Weil-Bott theorem: the weight associated
to the first bundle, once we add the sum of fundamental weights, can be expressed
as
wHp=(-t—r+20,24+r—a,1,...,1),

where the number of 1’s is 2n + e — 3. Observe that the first coordinate is always
negative and the second one is always positive or zero. If it is zero the bundle has
no cohomology; otherwise we proceed by applying the Weyl reflection associated
to the first simple root, finding

siflw+p)=0t+r—20,2—t+a,1,...,1).

The first coordinate is always positive, while the only way we can make the second
coordinate positive as well is to choose & = r = ¢t — 1, and this leads to a C[—1]
term in the cohomology. Let us now assume o < r < t — 2. Then, applying the
Weyl reflection associated to the second simple root, we find

spsos1(w+p)=2+r—a,—24+t—a,3—t+a,1,...,1).

Observe that if 3 —t + a < 2n + € — 4, we eventually obtain a weight with all
non-negative coordinates and a zero coordinate, by simply repeating the step of
applying the Weyl reflection which changes sign to the unique negative coordinate.
The inequality we want can be rewritten as t — a < 2n 4+ ¢ — 1. However, by our
assumptions we have t —a <t <2n —3 +e¢.

Let us now turn our attention to O(—t — 2 — r + 2a, 7 — ). Its weight is

w+p:(—t—1—T+20[,1+T_a;17'~'31)7

where the number of 1’s is 2n + ¢ — 3. Again, the first coordinate is always neg-
ative and the second one is always positive or zero. In the first case there is no
cohomology, otherwise we apply the Weyl reflection associated to the first simple
root:
siflw4+p)=0t+14+7r—2a,—t+a,1,...,1).

We essentially proceed as above: there is no cohomology if we can prove that our
assumptions imply ¢t — «a < 2n+¢ — 3, which is true because t —a <t < 2n—3+¢.
This proves the claim. O
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Lemma A.5. Fort <2n—3+¢ and 0 <r <min(t —1,n — 1) one has
Ext,(O(t,0), Sym" Uiz 0n4)(—1,1)) = 0.

Proof. The approach is the same as for the previous lemma, hence we will be
brief. By Corollary A.3, we need to show that the bundles O(¢ + 2o, —r — «) and
O(-1+t+2a,—1 —r —a) on F(1,2,2n + ) have no cohomology for 0 < a < 7.
If we add p to the weight of the first one, we have

w+p=1+t+20,1—r—a,1,...,1),

where the first coordinate is positive and the second is negative. By applying the
second Weyl reflection (i.e. the one associated to the second simple root) we get

solw+p)=Q2—-r+t+a,-14+r+a,2—r—a,1,...,1),

where the number of 1’s is 2n + ¢ — 4. As above, we see that there cannot be
cohomology if —2+7r+a <2n+ec—4,i.e r+a < 2n+¢e— 2. But by assumption
r+a<2r<2n-—2.

Now consider the second bundle: if we add p to its weight we have

wH+p=(t+20,-1r—al,..., 1),
and as above,
saslwH+p)=t—r+a,r+a,l—r—al, ... 1),

where again the number of 1’s is 2n+c—4. Hence we need to prove that —1+r+a <
2n + ¢ — 3, which holds by our assumptions. O

Lemma A.6. For 0 <m <r <n—2 the following vanishing holds:
Ext}, (Sym™ ug(272n+£)7 Sym" Mé(272n+5)) =0.
Proof. As usual, we start with

Ext} (Sym™ ué(2,2n+5)7 Sym” ué(2,2n+a)(_17 1))
=H* (M7 Symm Z/[é(2,2n+s) ® Symr ué(2,2n+6) (_1’ 1- m))

The bundle in the right-hand side is resolved by the following bundles on F(1,2,
2n +¢e):

Symm ué(2,2n+s) & Symr ué(?,Qn-&-s)(il? 1- m)?

Sym™ Ugi( ante) © SYm” Ugia 9,42y (=2, —m).
The first has no cohomology because its pushforward to G(2,2n+-¢), by the projec-

tion formula, can be seen as a product of symmetric powers of Z/{g( ) times the

2,2n+¢
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pushforward of O(—1,0), and the latter is identically zero. Let us now turn to the
second bundle. By Serre duality, up to shifting by the dimension of F(1,2,2n+¢),
computing its cohomology is equivalent to computing the cohomology of

Sym™ Ug(2,2n+¢) @ Sym” Ug(2,2n+¢)(2,Mm) @ Wp(1,2,2n+e)

— q*’Homg(ggn_H) (Symm Z/[é(2,2n+5) (2n +e— ].)7 SymT Z/{g(272n+€)).

Hence, if the latter has no cohomology we are done, and this can easily be checked
by considering the semiorthogonality conditions of the full exceptional collection
for G(2,2n + ¢) of [Kuz08]. O
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