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Abstract

Given a vector bundle E on a smooth projective variety B, the flag bundle F l(1, 2, E)
admits two projective bundle structures over the Grassmann bundles Gr(1,E) and Gr(2,E).
The data of a general section of a suitably defined line bundle on F l(1, 2, E) defines two
varieties: a cover X1 of B, and a fibration X2 on B with general fiber isomorphic to a
smooth Fano variety. We construct a semiorthogonal decomposition of the derived cate-
gory of X2 which consists of a list of exceptional objects and a subcategory equivalent to
the derived category of X1. As a by-product, we obtain a new full exceptional collection
for the Fano fourfold of degree 12 and genus 7. Any birational map of smooth projective
varieties which is resolved by blowups with exceptional divisor F l(1, 2, E) is an instance
of a so-called Grassmann flip: we prove that the DK conjecture of Bondal–Orlov and
Kawamata holds for such flips. This generalizes a previous result of Leung and Xie to a
relative setting.

Mathematics Subject Classification 2020: 14F08 (primary); 14M15, 14E05 (secondary).
Keywords: derived category of coherent sheaves, semiorthogonal decompositions, DK
conjecture, birational geometry, fibrations.

§1. Introduction

The role of the derived category of coherent sheaves as an invariant has been an

object of study for decades: the remarkable properties it exhibits in the context

of Fano varieties [BO01] and K3 surfaces [Orl97] motivates the attempts to relate

it to other geometric data, such as the class in the Grothendieck ring of varieties

[BC09, KS18], the Hodge structure and the isomorphism/birational class [OT18,

BCP20]. Regarding the latter, several counterexamples rule out the possibility

that this can be true in general, but it is conjectured that the derived category

should behave like a birational invariant if we restrict our attention to a specific
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class of maps, called K-equivalences and K-inequalities. The conjecture, proposed

by Bondal–Orlov [BO02] and Kawamata [Kaw02], can be formulated as follows.

Conjecture 1.1 (DK conjecture). Consider a K-inequality µ : X1 99K X2, i.e. a

birational map resolved by two morphisms gi : X → Xi such that g∗2KX2
∼lin

g∗1KX1 + D, where D is an effective divisor. Then there is a fully faithful functor

Φ: Db(X1) ↪→ Db(X2). Moreover, assume that µ is a K-equivalence, i.e. D = 0.

Then Φ is an equivalence of categories.

Note that several authors call the “DK-conjecture” a statement about K-

equivalences, without considering K-inequalities.

Generalizing the work of Kanemitsu [Kan22] on the so-called simple K-equiv-

alences, Leung and Xie [LX24] introduced the notion of simple flips or simple

K-inequalities, i.e. K-inequalities as in Conjecture 1.1 such that g1 and g2 are

blowups of smooth centers with the same exceptional divisor. For all such flips,

the exceptional divisor is a family of special Fano varieties with two projective

bundle structures which we call generalized roofs: these varieties are classified in the

homogeneous case [FKMR23, LX24]. Flips associated to generalized homogeneous

roofs are called generalized Grassmann flips.

Evidence for the DK conjecture, for generalized Grassmann flips (and flops)

has been found in [BO95, Kaw02, Nam03, Seg16, Mor22, Ued19, Har21] for the flop

case, and [BO95, LX25, LX24] for the flip case. All generalized Grassmannian flips

which have been addressed (with D ̸= 0) are such that the exceptional divisor

is itself a generalized roof, i.e. the family is over a single point: in this paper,

instead, we focus on the class of simple flips with exceptional divisor isomorphic

to a partial flag bundle F l(1, 2, E) over an arbitrary smooth base B, i.e. a locally

trivial fibration with fiber isomorphic to F (1, 2, N) for some N . Our main result

is the following.

Theorem 1.2. Consider a Grassmann flip µ : X1 99K X2 such that the exceptional

divisor of the flip is isomorphic to a flag bundle F l(1, 2, E) over a smooth projective

base. Then Db(X1) ⊂ Db(X2), i.e. µ satisfies the DK-conjecture.

This is a generalization of the main result of [LX25] to the relative setting over

a smooth base. As in the original work, the proof is based on constructing fully

faithful embeddings of Db(X1) and Db(X2) in Db(X ), such that the semiorthog-

onal complements are generated by full exceptional collections of (pushforwards

of) vector bundles on the exceptional divisor, and then proving the existence of

an embedding of the semiorthogonal complements via mutations of exceptional

objects. This is done with a diagrammatic technique called the “chess game”,

which allows one to easily visualize the mutations, which are otherwise very cum-

bersome to write. This kind of approach first appeared in [Kuz07, Tho18], and then
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in the proof of the main results of [LX25, LX24]: instead of directly generalizing

the proof of [LX25], to the relative setting, we propose a modified and simplified

version of the chess game. Besides the Grassmann flip, the geometry of F l(1, 2, E)

allows one to introduce some interesting pairs of varieties, of which we describe

the relation at the level of derived categories, by means of the same kind of chess

game. Consider a general hyperplane section M ⊂ F(1, 2, E). Such a variety has

two contractions, with special fibers, respectively, over two smooth varieties X1

and X2. These are subvarieties of Grassmann bundles, and are zero loci of push-

forwards of the section defining M. Under the mild assumption of Condition 2.2,

by using the fact that the derived categories of Xi admit fully faithful embeddings

in Db(M), we prove the following.

Theorem 1.3. Let X1 and X2 be fibrations over B as above. Then there is a fully

faithful functor Ψ: Db(X1) ↪→ Db(X2).

The proof of Theorem 1.3, which is articulated in Propositions 3.5 and 3.7,

allows one to construct explicit semiorthogonal decompositions for Db(X2) con-

taining Db(X1) as an admissible subcategory, and to describe the semiorthogonal

complement in terms of pullbacks of Db(B) twisted by appropriate objects. If we

further assume Conditions 2.3 and 2.4, the varieties X1 and X2 can be described as

fibrations over B where X1 is a cover and the general fiber of X2 is a smooth Fano

variety. We provide an infinite series of examples of such embeddings, focusing on

the cases where B, the Xi and X are rational homogeneous varieties of type A, and

the Xi are cut by general sections of homogeneous vector bundles. In particular,

one such example provides an alternative full exceptional collection of length 16

for the Fano fourfold of degree 12 and genus 7.

Structure of the paper

In Section 2 we describe the exceptional divisor of the Grassmann flip and its

smooth hyperplane sections. We introduce the pairs of varieties X1, X2 of Theo-

rem 1.3 and we discuss their properties. Then the proof of Theorem 1.3 is explained

in Section 3, with examples in Section 4. The Grassmann flip construction, along

with the proof of Theorem 1.2, is addressed in Section 5. Finally, we gather all

Borel–Weil–Bott computations in the appendix.

§2. Flag bundles and fibrations

§2.1. Notation

We will work over the field of complex numbers. Given a general section s of a

vector bundle E on a variety X, we call Z(s) ⊂ X the zero locus of s.
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Moreover, for every x ∈ X, Ex denotes the fiber of E over the point x. We say

a variety Y has a projective bundle structure over X if there is an isomorphism

Y ≃ P(E) for some vector bundle E on some variety X, and sometimes the pro-

jective bundle will be denoted by P(E → X). We use Grothendieck’s convention

for projectivizations: given π : P(E) → X, there is a line bundle L on P(E) such

that L|π−1(x) ≃ Oπ−1(x)(1) and such that π∗L ≃ E. We denote by G(k, Vn) the

Grassmannian parametrizing k-linear spaces in a fixed vector space Vn ≃ Cn. To

unburden the notation, we sometimes use the expression G(k, n). Similarly, we call

F (k1, . . . , km, Vn) the (partial) flag variety parametrizing m-tuples (Vk1
, . . . , Vkm

)

such that Vk1
⊂ Vk2

⊂ · · · ⊂ Vkm
⊂ Vn. To denote cohomology of vector bundles,

we write a direct sum of vector spaces shifted by the negative of the appropriate

degree, e.g. H•(Pn,O⊕O(−n−1)) ≃ C[0]⊕C[−n]. The bounded derived category

of coherent sheaves of a smooth projective variety X will be indicated as Db(X).

§2.2. The flag bundle

Consider a vector bundle E → B of rank 2n+ ε over a smooth, projective base B,

for n ≥ 2 and ε ∈ {0, 1}, where the choice of notation is due to the fact that the

proofs of Propositions 3.5 and 3.7 depend on the parity of the rank of B. Then

call F l(1, 2, E) the associated flag bundle over B, i.e. the locally trivial fibration

with fiber F (1, 2, Eb) for every b ∈ B. Similarly, the associated Grassmann bundle

of k-subspaces in Eb for every b will be called Gr(k, E) (in particular, one has

Gr(1, E) = P(E)). We have the following commutative diagram, where all maps

are locally trivial:

(2.1)

F l(1, 2, E)

p1

xx

p2

&&

Gr(1, E)

r1
&&

Gr(2, E)

r2
xx

B.

Recall that Gr(k, E) comes with a relative tautological short exact sequence:

(2.2) 0 −→ Uk −→ r∗kE −→ Qk −→ 0.

Now, consider the line bundle L := p∗1U∨
1 ⊗ p∗2 ∧2 U∨

2 . Then one has p1∗L ≃
U∨
1 ⊗ ∧2n+ε−2Q1, and p2∗L ≃ U∨

2 ⊗ ∧2U∨
2 . Moreover,

F l(1, 2, E) ≃ P(p1∗L → Gr(1, E)) ≃ P(p2∗L → Gr(2, E)).
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One has
ωGr(k,E) = det(Uk ⊗Q∨

k )

= det(Uk)⊗(2n+ε−k) ⊗ det(Q∨
k )⊗k

= det(Uk)⊗2n+ε ⊗ det(E∨)⊗k.

Moreover, by combining the relative Euler sequence and the relative tangent bundle

sequence associated to pk, we find

ωFl(1,2,E) = U⊗2
1 ⊗ ∧2U⊗(2n+ε−1)

2 ⊗ det E⊗(2n+ε−3).

Remark 2.1. The fibration F l(1, 2, E) → B is an example of a family of gen-

eralized homogeneous roofs, i.e. rational homogeneous varieties of Picard rank

two which admit two projective bundle structures. These objects are generaliza-

tions of the homogeneous roofs introduced in [Kan22]: they have been classified

in [FKMR23] in the context of derived categories of Fano varieties and, indepen-

dently, in [LX24] in the context of flips, while a classification for nonhomogeneous

cases has yet to be found.

§2.3. Two fibrations over B

Consider now a general section s ∈ H0(F l(1, 2, E),L) and call M ∈ F l(1, 2, E) its

zero locus. Define Xk := Z(pk∗s) for k = 1, 2. By adjunction, one finds

ωM = U1 ⊗ ∧2U⊗(2n+ε−2)
2 ⊗ det E⊗(2n+ε−3),

ωX1
= (U∨

1 )⊗(2n+ε−3) ⊗ det(E)⊗(2n+ε−3),

ωX2 = (∧2U∨
2 )⊗(3−2n−ε) ⊗ det(E∨)⊗2.

In general, there is no guarantee that the general section of L cuts a smooth variety,

or even that L has global sections. However, L is defined up to pullbacks of line

bundles from B, and therefore we have some freedom to choose it so that it has

global sections (this choice, in light of equation (2.2), is a consequence of a choice

of a twist of E by a line bundle on B). By restricting r1 and r2, the varieties X1

and X2 inherit fibration structures over B. To achieve some control on the fibers,

we introduce the following conditions on our setup.

Condition 2.2. The bundle L is basepoint-free.

Condition 2.3. The restriction map

ρb : H0(F l(1, 2, E),L) −→ H0(F (1, 2, Eb),O(1, 1))

is surjective.

Condition 2.4. The dimension of B is smaller than
(
2n+ε+1

2

)
− 2n− ε.
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In fact, assuming that Conditions 2.2, 2.3 and 2.4 hold, one has the following

lemma.

Lemma 2.5. The variety X1 is a smooth N : 1 cover of B, where

(2.3) N =

2n+ε−1∑
i=0

(−3)2n+ε−i−12i
(

2n + ε

i

)
.

The variety X2 is a smooth fibration over B, with general fiber isomorphic to a

Fano variety of codimension two and coindex three in G(2, 2n + ε).

Proof. Take γi := ri|Xi
. Given any b ∈ B, the expected codimension of the fibers

γ−1
i (b), being zero loci of the restrictions U∨

1 ⊗∧2n+ε−2Q1|r−1
1 (b) ≃ Q∨

G(1,Eb)
(2) and

U∨
2 ⊗∧2U∨

2 |r−1
2 (b) ≃ U∨

G(2,Eb)
(1), is clear, along with the coindex of the general fiber

of γ2. In particular, by Condition 2.2 the generality of s implies that M, X1, X2

are smooth, and by Condition 2.3 we impose that the general fiber of γ2 is smooth

of expected dimension, and the general fiber of γ1 is a set of N distinct points.

To determine N , we just need to compute the degree of the top Chern class of

Q∨
G(1,Eb)

(2). Twisting the dual tautological sequence of G(1, Eb) one has

(2.4) 0 −→ Q∨
G(1,Eb)

(2) −→ Eb ⊗O(2) −→ O(3) −→ 0,

and therefore, if we call H the hyperplane class on G(1, Eb),

c(Q∨
G(1,Eb)

(2)) = (1 + 2H)2n+ε/(1 + 3H)

=

2n+ε∑
i=0

(
2n + ε

i

)
(2H)i

2n+ε−1∑
j=0

(−3H)j ,

where the polynomial is truncated at degree 2n + ε − 1 because H2n+ε = 0. The

degree of the top Chern class is precisely the coefficient of the term of maximal

degree, and it can be easily computed to be exactly N . Let us now rule out the

existence of positive-dimensional fibers for γ1. Call H the space of global sections

of Q∨
G(1,Eb)

(2). First, consider the variety

V =
{

(b, σ) ∈ B ×H : dim(Z(σb)) > 0
}
.

Then one has the obvious projections

V
pr1

��

pr2

  

B H.



Fano Fibrations and the DK Conjecture 833

Hence, by computing the dimension of V, one easily sees that for every b ∈ B

the codimension of the space of sections of Q∨
G(1,Eb)

(2) with positive-dimensional

zero loci is equal to the codimension in B of the subset over which γ1 has positive-

dimensional fibers. We can read from the sequence (2.4) that sections of Q∨
G(1,Eb)

(2)

are elements of the kernel of

f : H0(G(1, Eb), Eb ⊗O(2)) −↠ H0(G(1, Eb),O(3)),

(q1, . . . , q2n+ε) 7−→ x1q1 + · · · + x2n+εq2n+ε,

where (x1, . . . , x2n+ε) are linear maps on the coordinates. A higher-dimensional

zero locus appears only if the quadrics qi are either linearly dependent, or are

annihilated by a degree-one syzygy. The first case is represented by sections lying

in the kernel of a morphism

(f, λ) : H0(G(1, Eb), Eb ⊗O(2)) −→ H0(G(1, Eb),O(3) ⊕O(2)),

where f is the contraction with a vector of linear entries, and λ, evaluated on the

vector (q1, . . . , q2n+ε), gives a nonzero scalar multiple of the sum of its entries. The

dimension of the space of such sections, therefore, will be equal to the dimension

of the kernel of (f, λI) plus the dimension of the space of functions (f, λI). We

obtain

(2.5) dimH0(G(1, Eb),Q∨
G(1,Eb)

(2)) −
(

2n + ε + 1

2

)
+ 2n + ε.

On the other hand, sections which share a second linear syzygy are elements of

the kernel of

(f, f ′) : H0(G(1, Eb), Eb ⊗O(2)) −→ H0(G(1, Eb),O(3) ⊕O(3)),

where f , f ′ are both contractions with a vector of linear entries. Here, the dimen-

sion count gives

(2.6) dimH0(G(1, Eb),Q∨
G(1,Eb)

(2)) −
(

2n + ε + 2

3

)
+ 4n + 2ε− 1.

By comparing the parameter counts (2.5) and (2.6), we conclude that for dimB <(
2n+ε+1

2

)
− 2n − ε, the fibration γ1 cannot have positive-dimensional fibers, but

this is exactly Condition 2.4, which we assume to hold.

§3. A semiorthogonal decomposition for X2

In this section we produce a semiorthogonal decomposition for X2 containing

the derived category of X1. This is done by constructing two semiorthogonal
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decompositions for M containing, respectively, Db(X1) and Db(X2) as admis-

sible subcategories, and then mutating the semiorthogonal complements until one

has Db(X2)⊥ ⊂ Db(X1)⊥. To visualize the mutations, we use a modified version

of the “chess game” of [Tho18, LX25].

§3.1. Two semiorthogonal decompositions for M

Consider the morphism q1 : M → Gr(1, E) of relative dimension (generally) 2n +

ε−2, obtained by restricting p1 to M. This is an instance of the so-called “Cayley

trick”. Consider the following diagram:

E1

q̄1

��

� � i1 //M

q1

��

X1
� � // Gr(1, E),

where q̄1 is the base change of q1 to X1, and it is the projectivization of the normal

bundle of X1 in Gr(1, E). By [Orl06], we have a semiorthogonal decomposition

Db(M) = ⟨i1∗q̄∗Db(X1), q∗1D
b(Gr(1, E)) ⊗ L, . . . , Db(Gr(1, E)) ⊗ L⊗(2n+ε−2)⟩.

Now, since Gr(1, E) → B is a projective bundle with fiber P2n+ε−1, by [Orl93,

Sect. 2] we can write Db(Gr(1, E)) as follows:

(3.1) Db(Gr(1, E)) = ⟨r∗1Db(B), r∗1D
b(B) ⊗ U∨

1 , . . . , r
∗
1D

b(B) ⊗ (U∨
1 )⊗(2n+ε−1)⟩,

where we used the fact that the list of r1-relatively exceptional objects {O,U∨
1 , . . . ,

(U∨
1 )⊗(2n+ε−1)} restricts on each fiber to the full exceptional collection ⟨O,O(1),

. . . ,O(2n + ε− 1)⟩ of Db(P2n+ε−1). Summing all up, we have

Db(M) = ⟨i1∗q̄∗1Db(X1),

r∗1D
b(B) ⊗ L, . . . , r∗1Db(B) ⊗ L⊗ (U∨

1 )⊗(2n+ε−1),

r∗1D
b(B) ⊗ L⊗2, . . . , r∗1D

b(B) ⊗ L⊗2 ⊗ (U∨
1 )⊗(2n+ε−1),

...

r∗1D
b(B) ⊗ L⊗(2n+ε−2), . . . , r∗1D

b(B) ⊗ L⊗(2n+ε−2) ⊗ (U∨
1 )⊗(2n+ε−1)⟩.(3.2)

We can perform the same operations with p̄2 : M → Z2. First we use the result of

[Orl06] to write

(3.3) Db(M) = ⟨i2∗q̄∗2Db(X2), q∗2D
b(Gr(2, E)) ⊗ L⟩.
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Recall that one has the following semiorthogonal decompositions for Db(Gr(2, E)),

due to [Kuz08, Sam07]:

(3.4) Db(Gr(2, E)) =


⟨B, . . . ,B ⊗ (∧2U∨

2 )⊗(n−2),

A⊗ (∧2U∨
2 )⊗(n−1), . . . ,A⊗ (∧2U∨

2 )⊗(2n−1)⟩ (ε = 0),

⟨B, . . . ,B ⊗ (∧2U∨
2 )⊗2n⟩ (ε = 1),

where A = {O,U∨
2 , . . . ,Symn−2 U∨

2 } and B = {A,Symn−1 U∨
2 }. Summing all up,

we will find the following semiorthogonal decomposition for ε = 1:

Db(M) = ⟨i2∗q̄∗2Db(X2), q∗2B ⊗ L, . . . , q∗2B ⊗ (∧2U∨
2 )⊗(n−1) ⊗ L⟩,

and the following for ε = 0:

Db(M) = ⟨i2∗q̄∗2Db(X2), q∗2B ⊗ L, . . . , q∗2B ⊗ (∧2U∨
2 )⊗(n/2−1) ⊗ L,

q∗2A⊗ (∧2U∨
2 )⊗(n/2) ⊗ L, . . . , q∗2A⊗ (∧2U∨

2 )⊗(n−1) ⊗ L⟩.

Thus, we are ready to compare the semiorthogonal complements of Db(X1) and

Db(X2) inside Db(M). However, the number of components grows wildly with

n, and writing a sequence of mutations easily becomes a cumbersome task. For

this reason, in the next pages (Sections 3.2, 3.3) we introduce a “chess game”

representation of such lists of objects, i.e. a diagrammatic language which allows

one to visualize mutations in a simple way. The chess game (including its name) is

inspired by the works [Kuz07, Tho18, LX25], but with different rules and symbols.

§3.2. Extending bundles from the fibers

Before introducing our version of the chess game, we need some technical results

about mutations of subcategories of Db(M). We begin by recalling a different

description of the flag bundle. Consider a principal G-bundle V → B, where G =

SL(2n + ε). Call P1,2 ⊂ G the parabolic subgroup given by the elements of the

form

p =

λ1 × ×
0 λ2 ×
0 0 h

 ∈ SL(2n + ε)

where λ1, λ2 ∈ C∗, h ∈ GL(2n + ε) and the ×’s denote submatrices on which we

impose no condition. One has F (1, 2, 2n + ε) = G/P1,2. Then we can construct

a locally trivial fibration F → B with fiber F (1, 2, 2n + ε) (i.e. our flag bundle)

by taking F = V ×G G/P1,2, where the notation ×G denotes the quotient of the

product by the equivalence relation (g.t, v) ≃ (t, g.v) for all g ∈ G and (t, v) ∈
V ×G/P1,2. Note that the choice G = SL(2n + ε) is purely motivated by writing
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the explicit description of the parabolic subgroup of a flag variety of type A: on

the other hand, the construction of homogeneous vector bundles, together with

their extension to generalized flag bundles, works for any choice of G/P .

Let us call π : F → B the map induced by the structure map V → B. Then,

for every b ∈ B, we have π−1(b) ≃ F (1, 2, 2n+ε). Recall that, given a principal H-

bundle W over a variety X, there is the following exact functor from the category

of H-modules to the category of vector bundles over X (see [Nor82, Sect. 2.2], or

the survey [BN06, p. 8]):

H-Mod
W×H(−)−−−−−−→ Vect(X),

which sends the H-module R to the vector bundle W×HR. In our case, F = V×GG

is a principal P1,2-bundle over Z, because V → V/P1,2 is a principal P1,2-bundle

and V/P1,2 ≃ V ×GG/P1,2 ≃ F (see, for instance, [Mit06, Prop. 3.5]). This allows

one to construct the following exact functor:

P1,2-Mod
V×GG×P1,2 (−)−−−−−−−−−−→ Vect(F).

Moreover, it is well known that there exists an equivalence of categories

P1,2-Mod
VG,P1,2−−−−−→ VectP (G/P1,2),

which sends a P1,2-module H to the P1,2-homogeneous vector bundle VG,P1,2
(H) =

G ×P1,2 H. In particular, V−1
G,P1,2

is an exact functor. Summing all up we can

construct an exact functor F sending homogeneous vector bundles over G/P1,2 =

F (1, 2, 2n + ε) to vector bundles over F :

(3.5) VectP1,2(G/P )
F:=V×GG×P1,2 (−)◦V−1

G,P1,2
//

V−1
G,P1,2 ((

Vect(F)

P1,2-Mod.

V×GG×P1,2 (−)

77

In particular, we have O(xh1 + yh2) = F(O(x, y)) for all x, y. Moreover, since U∨

is homogeneous (although not irreducible), it is easy to see that Symm U∨(x, y) =

F(Symm U∨
G(2,2n+ε)(x, y)) for all x, y.

§3.3. The chess game – Rules

3.3.1. Mutations of blocks. Let us fix the following notation, where we omit

pullbacks: O(xh1+yh2) := (U∨
1 )⊗x⊗(∧2U∨

2 )⊗y. In particular, one has L = O(h1+
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h2). Let us also introduce the subcategories

Sm
x,y := Symm U∨

2 (xh1 + yh2) ⊗ q∗1r
∗
1D

b(B),

Am
x,y := ⟨S0

x,y,S
1
x,y, . . . ,S

m
x,y⟩.

In this language, we enunciate the following technical lemma.

Lemma 3.1. For 0 ≤ r ≤ min(t− 2, n− 1) and r ̸= t− 1 one has

LS0
t,0
Sr
−1,1 ≃ Sr

−1,1.

Moreover, for r = t− 1,

LS0
t,0
St−1
−1,1 ≃ St

0,0.

Proof. Let us start by considering the following adjoint pair of functors:

f : E 7−→ ρ∗E ⊗ ι∗O(th1),

f ! : R 7−→ ρ∗RHomM(ι∗O(th1), R),

where f is a fully faithful embedding of Db(B) in Db(M), the “!” symbol denotes

the right adjoint, ι : M → F l(1, 2, 2n+ ε) is the embedding as a hypersurface and

ρ := ri ◦pi|M. Now, any object in Sr
−1,1 has the form ι∗ Symr U∨

2 (−h1 +h2)⊗ρ∗E

for some E ∈ Db(B), and its mutation through S0
t,0is defined by the distinguished

triangle

ff !(ι∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E) −→ ι∗ Symr U∨

2 (−h1 + h2) ⊗ ρ∗E

−→ LS0
t,0

(ι∗ Symr U∨
2 (−h1 + h2)).(3.6)

Then, by adjunction,

f !(ι∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E)

≃ ρ∗RHomM(ι∗O(th1), ι∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E)

≃ ρ∗ι
∗RHomFl(1,2,E)(O(th1), ι∗ι

∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E)

≃ ri∗pi∗ι∗ι
∗RHomFl(1,2,E)(O(th1), ι∗ι

∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E).(3.7)

Let us focus our attention on the term RHomFl(1,2,E)(O(th1), ι∗ι
∗ Symr U∨

2 (−h1+

h2) ⊗ ρ∗E). For any b ∈ B one has(
ri∗pi∗RHomFl(1,2,E)(O(th1), ι∗ι

∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E)

)
b

≃ H•((ri ◦ pi)−1(b), ι∗ι
∗ Symr U∨

2 (−(1 + t)h1 + h2) ⊗ ρ∗E|(ri◦pi)−1(b)

)
≃ H•(F (1, 2, 2n + ε), i∗i

∗ Symr U∨
G(2,2n+ε)(−1 − t, 1))

≃ Hom•
M (O(t, 0),Symr U∨

G(2,2n+ε)(−1, 1)),
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where i is the embedding of M in F (1, 2, 2n + ε). If r ̸= t − 1 the latter is zero

by Lemma A.4, and hence RHomFl(1,2,E)(O(th1), ι∗ι
∗ Symr U∨

2 (−h1 + h2)⊗ ρ∗E)

vanishes identically. Therefore, the third term in the triangle (3.6) is the cone over

the zero map, and hence it will be isomorphic to the second one, proving the first

part of the claim. Let us now consider the case r = t− 1. Back to equation (3.7),

we can further manipulate this expression, obtaining

f !(ι∗ Symr U∨
2 (−h1 + h2) ⊗ ρ∗E) ≃ ri∗pi∗ι∗ι

∗ Symr U∨
2 (−(1 + t)h1 + h2) ⊗ ρ∗E.

Let us resolve ι∗ι
∗ Symr U∨

2 (−h1 + h2) ⊗ ρ∗E by the Koszul resolution of M (up

to twists by pullbacks from B):

0 −→ Symr U∨
2 (−(2 + t)h1) ⊗ ρ∗E −→ Symr U∨

2 (−(1 + t)h1 + h2) ⊗ ρ∗E

−→ ι∗ι
∗ Symr U∨

2 (−(1 + t)h1 + h2) ⊗ ρ∗E

−→ 0.

Here, by Lemma A.4 and the same argument as above, we have for all b,(
ri∗pi∗ Symt−1 U∨

2 (−(2 + t)h1) ⊗ ρ∗E
)
b

= 0,(
ri∗pi∗ Symt−1 U∨

2 (−(1 + t)h1 + h2) ⊗ ρ∗E
)
b
≃ C[−1],

which tells us that ri∗pi∗ι∗ι
∗ Symr U∨

2 (−(1 + t)h1 + h2) ⊗ ρ∗E is a line bundle

on B shifted by −1. Hence, up to twists by pullbacks of line bundles on B, one

has ff !(ι∗ Symr U∨
2 (−h1 + h2)⊗ ρ∗E) ≃ ρ∗E ⊗O(th1), and therefore the triangle

(3.6) reduces to a short exact sequence where LS0
t,0

(ι∗ Symr U∨
2 (−h1 + h2)) is the

extension. This sequence is a twist of (A.3), and hence we conclude the proof of

the claim.

Lemma 3.2. For 0 ≤ m ≤ r ≤ n− 2 one has

LSm
0,0

Sr
−1,1 ≃ Sr

−1,1,

RSr
−1,1

Sm
0,0 ≃ Sm

0,0.

Proof. The argument follows the exact same steps as the proof of Lemma 3.1. In

particular, with the same local analysis, we see that the relevant Ext computations

boil down to terms of the form

Ext•(Symm U∨
G(2,2n+ε),Symr U∨

G(2,2n+ε)),

which have no cohomology by Lemma A.6.

Corollary 3.3. For r + 1 ≤ t ≤ n − 2 there is a sequence of mutations realizing

the following equality:

(3.8) ⟨S0
0,0, . . . ,S

0
t,0,A

r−1
−1,1⟩ = ⟨Ar−1

−1,1,A
r−1
0,0 ,S0

r,0, . . . ,S
0
t,0⟩.
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Proof. By Lemma 3.1 we can move each block of the shape Sm
−1,1 immediately

to the right of S0
m+1,0. Then we apply Lemma 3.1 again, mutating the former a

further step to the left, where it becomes Sm+1
0,0 . The last step consists in reordering

the blocks so that we obtain the right-hand side of equation (3.8): this can be done

thanks to Lemma 3.2.

3.3.2. Arrangement of boxes and semiorthogonal decompositions. Here-

after we describe an exceptional collection made of blocks as above by means of

an arrangement of boxes, each of them containing a number. The number in a

box represents the maximum symmetric power appearing in the associated block,

while the position of the box in the table corresponds to the twist. To identify the

overall twist, the box corresponding to the twist by (0, 0) is grayed out. There are

no morphisms from the right to the left in the same row, and from the bottom to

the top regardless of the row. For example, one has

⟨Aa
0,0,A

b
1,0,A

c
2,0,A

d
3,0,A

e
1,1,A

f
2,1,A

g
3,1,A

h
4,1⟩ = a b c d

e f g h

.

The advantage of this notation is that it allows one to visualize useful muta-

tions, even if the semiorthogonal decomposition is exceptionally cumbersome to

write.

Lemma 3.4. Consider the following diagram:

0 0 · · · 0

r91
,

where the length l of the first row of zeros satisfies r ≤ l ≤ 2n−3+ε, and r ≤ n−2

holds. Then one has

0 0 · · · 0

r91

= r 0 · · · 0 .

Proof. The first diagram describes the following semiorthogonal decomposition:

⟨A0
0,0,A

0
1,0, . . . ,A

0
l,0,A

r−1
−1,1⟩ = ⟨S0

0,0,S
0
1,0, . . . . . . . . . . . . . . . ,S

0
l,0,

S0
−1,1,S

1
−1,1, . . . . . . . . . . . . ,S

r−1
−1,1⟩.(3.9)

In light of Lemma 3.1, S0
−1,1 can be moved to the immediate right of S0

1,0. Similarly,

for 1 ≤ m ≤ r − 1, we can move the subcategory Sm
−1,1 right after S0

m+1,0. What

we get is

⟨A0
0,0,A

0
1,0, . . . ,A

0
l,0,A

r−1
−1,1⟩ = ⟨S0

0,0,

S0
1,0,S

0
−1,1,S

0
2,0,S

1
−1,1, . . . . . . ,S

0
r,0,S

r−1
−1,1,

S0
r+1,0, . . . . . . . . . . . . . . . . . . . . . . . . . . . ,S

0
l,0⟩.(3.10)
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Let us now mutate Sm
−1,1 through the subcategory S0

m+1,0 for every m. We

obtain LS0
m+1,1

Sm
−1,1 = Sm+1

0,0 , and our decomposition becomes

⟨A0
0,0,A

0
1,0, . . . ,A

0
l,0,A

k−1
−1,1⟩ = ⟨S0

0,0,S
1
0,0,S

0
1,0,S

2
0,0, . . . ,S

k
0,0,S

0
k+1,0, . . . ,S

0
l,0⟩.

Observe that by Lemma A.5 and the same local computation we used for proving

Lemma 3.1, we can move all the blocks S0
x,y (except for the first one) to the right

of all blocks S>0
x′,y′ . This gives the decomposition

⟨A0
0,0,A

0
1,0, . . . ,A

0
l,0,A

k−1
−1,1⟩ = ⟨S0

0,0,S
1
0,0, . . . ,S

k
0,0,S

0
1,0, . . . ,S

0
l,0⟩,

which is the one depicted in the second diagram, concluding the proof.

§3.4. The chess game – Mutations for the even case

In this section we describe the mutations we need to perform to prove Theorem 1.3

for the “even” case, i.e. ε = 0. In the notation of Section 3.3.1, we can rewrite the

decomposition (3.2) as

Db(M) = ⟨i1∗q̄∗1Db(X1),A0
−n,1,A

0
−n+1,1, . . . . . . . . . ,A

0
n−1,1,

A0
−n+1,2,A

0
−n+3,2, . . . . . . ,A

0
n,2,

...
...

A0
n−2,2n−1,A

0
n−1,2n−1, . . . ,A

0
n,2n+3⟩.

As we discussed above in Section 3.3, Db(X1)⊥ can be rewritten as an arrange-

ment of blocks, or a “chessboard”. In the remainder of this section, we choose

n = 6 to depict the chessboard moves we perform, while the argument itself will

be presented in full generality:

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
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Observe that each row represents a different twist of the pullback of Db(Gr(1, E)):

hence, we can use the Serre functor of this category to “translate” the row horizon-

tally. We eventually get the following diagram, where some blocks are highlighted

for further convenience (the height of the yellow area is n − 2 and the length is

n− 1):

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

3.4.1. First upward phase. Let us apply the rule described in Lemma 3.4 to

the shortest yellow row, after moving it two steps to the right by mutating the

block it passes through. Since we are not interested in the explicit description of

such a subcategory, we will denote it (and the similar pieces we will produce in

the following) by ×. We find

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
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By applying the same step to each yellow row, progressively from the shortest to

the longest, we find the following “chessboard”:

0 0 1 2 3 4 4 0 0 0 0 0

× 0 0 0 0 0 0

× 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

where the last nonzero number in the first row, in the general case, is n−2. Let us

now apply the Serre functor to the segment of the first row terminating with the

two “n−2” blocks. We will introduce new colored areas to simplify the exposition

of the next phase:

4 0 0 0 0 0

× 0 0 0 0 0 0

× 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 2 3 4
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3.4.2. Second upward phase. Let us mutate, as in the first upward phase, the

first yellow row using the rule described in Lemma 3.4:

4 0 0 0 0 0

× 0 0 0 0 0 0

× 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 3 4 0 0 0 0 0

4

After iterating this operation until we erase all the yellow blocks, we obtain the

following final board:

5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 4 0 0 0 0 0

× 4 0 0 0 0 0

× 4 0 0 0 0 0

× 4 0 0 0 0 0

4

Note that the content of the upmost box is n− 1, and not n− 2. This is because

the subcategory denoted by the orange box, after all this process, gets mutated to

Sn−1
0,1 . Now let us apply Corollary 3.3 to the last “n− 2” block and the half-row of
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zeros immediately above. Finally, we apply the Serre functor to the resulting new

“n− 2” block, obtaining the final chessboard:

4

5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 4 0 0 0 0 0

× 4 0 0 0 0 0

× 4 0 0 0 0 0

× 4

4

The direct consequence of this sequence of mutations is the following, which

settles the construction of the derived embedding for the even case.

Proposition 3.5. Let X1 and X2 be as described in Section 2.3, for ε = 0. Then

there is a fully faithful functor Ψ: Db(X1) ↪→ Db(X2). Moreover, Db(X2) admits

a semiorthogonal decomposition as follows:

Db(X2) = ⟨Ψ(Db(X1)), F1, . . . , F2n2−n⟩,

where, for all i, Fi is an admissible subcategory given by the image of Db(B)

through a fully faithful functor.

Proof. In the notation of Section 3.3.1, the last chessboard essentially says that

Φi1∗q̄
∗
1D

b(X1)⊥ = ⟨ An−2
0,0 ,

An−1
0,1 ,A0

1,1, . . . . . . . . . ,A
0
n−1,1,

×,An−1
0,2 ,A0

1,2, . . . . . . . . . ,A
0
n−1,2,

...
...

×,An−1
0,n ,A0

1,n+1, . . . . . . ,A
0
n−1,n+1,

×,An−2
0,n+1,A

0
1,n+2, . . . . . . ,A

0
n−1,n+2,

...
...
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×,An−2
0,2n−2,A

0
1,2n−2, . . . . . . ,A

0
n−1,2n−2,

An−2
0,2n−1⟩,(3.11)

where Φ is the functor induced by mutations. On the other hand, by the Serre

functor, one has

q∗2D
b(Gr(2, E)) ⊗O(0, 1)

= ⟨An−1
0,1 , . . . ,An−1

0,n ,An−2
0,n+1, . . . ,A

n−2
0,2n−2,A

n−2
0,2n−1,A

n−2
0,2n⟩

= ⟨An−2
0,0 ,An−1

0,1 , . . . ,An−1
0,n ,An−2

0,n+1, . . . ,A
n−2
0,2n−2,A

n−2
0,2n−1⟩,

and the blocks in the second line all appear in the collection (3.11). Hence we can

move all of them to the end of the semiorthogonal decomposition (mutating the

blocks in between accordingly), and we finally find

(3.12) Db(M) = ⟨Φi1∗q̄
∗
1D

b(X1), F1, . . . , F2n2−n, q
∗
2D

b(Gr(2, E))⟩,

where Fi := p∗1r
∗
1D

b(B) ⊗ Ei, for Ei an exceptional object. The proof is complete

once we set Ψ := Φi1∗q̄
∗
1 .

Remark 3.6. A more explicit description of the Ei can be obtained by computing

the mutations which lead from the collection (3.11) to (3.12). However, these

mutations would be exceptionally cumbersome to write, burdening an already

heavy notation.

§3.5. The chess game – Mutations for the odd case

We now address the odd case, i.e. ε = 1. As above, we choose to write the chess-

boards for n = 6 while we describe the argument in general. We start with

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
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As above, we use the Serre functor of Gr(1, E) to translate the rows horizontally.

We find the following arrangement, where the yellow area, as usual, is for ease of

notation in the next steps:

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

3.5.1. First upward phase. We essentially proceed as in the even case, but with

a different yellow area. We mutate away all the objects in this area by mutating

the first line bundle (in the leftmost white column) through them, and then by

moving them through the row immediately above until they get canceled by the

rule of Lemma 3.4. The outcome is the following:

0 0 1 2 3 4 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0 0 0
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Let us now apply the Serre functor to the first n blocks of the first row, and

let us identify a new yellow area for the next upward phase:

5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0 0 0 0

0 0 1 2 3 4

3.5.2. Second upward phase. We apply the rule of Lemma 3.4 for the last

time, getting rid of the yellow boxes once again:

5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

× 5 0 0 0 0 0

Let us now move the second column of “n − 1” blocks to the end of the

collection (by mutating all the zeros at its right), and then let us send it to the
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beginning via the Serre functor. We find

5

5

5

5

5

5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

As for the even case, the last step consists in applying Corollary 3.3 to the last

“n− 1” block, and sending the new block to the beginning via the Serre functor.

Hence, we produce the final chessboard:

5

5

5

5

5

5

5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5 0 0 0 0 0 0

× 5

× 5 × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×
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Here, we finally recognize all the blocks composing Db(Gr(2, E)), although they

need to be mutated to the end of the collection. By the exact same approach as

the previous section we prove the following.

Proposition 3.7. Let X1 and X2 be as described in Section 2.3, for ε = 1. Then

there is a fully faithful functor Ψ: Db(X1) ↪→ Db(X2). Moreover, Db(X2) admits

a semiorthogonal decomposition as follows:

Db(X2) = ⟨Ψ(Db(X1)), F1, . . . , F2n2−n−1⟩,

where, for all i, Fi is an admissible subcategory given by the image of Db(B)

through a fully faithful functor.

Together with Proposition 3.5, Proposition 3.7 completes the proof of Theo-

rem 1.3.

Remark 3.8. Note that Theorem 1.3 holds without assuming Conditions 2.3 and

2.4. In fact, the sole Condition 2.2 is necessary to have smoothness of X1, X2

and M, which, in turn, allows one to write the semiorthogonal decompositions of

Section 3.1 and proceed with the chess game.

§3.6. A note on tilting bundles

In [FKMR23], the case B = {pt}, which had previously been addressed by [LX25],

has been revisited with a different approach, based on GLSM phase transitions

and the construction of a window category. The approach, inspired by [ADS15], is

the following:

(1) Observe that G(1, 2n + ε), G(2, 2n + ε), and the total spaces X+ and X−

respectively of QG(1,2n+ε)(−2) and of U∨
G(2,2n+ε)(−2) are GIT quotients, and

that X+ and X− are both birational to an Artin stack [V/GL(2n + ε − 2)],

where V is a vector space. There is a function f : V → C such that the zero

loci Y+ and Y− of general sections of the duals of QG(1,2n+ε)(−2) and of

U∨
G(2,2n+ε)(−2) can be realized as the critical loci of f restricted to X+ and

X−.

(2) There is a tilting bundle of X+ which, under the birational map X+ → X−,

is sent to a partially tilting bundle.

(3) By means of Knörrer periodicity [Shi12] and passing to a derived category of

matrix factorizations, one has a composition of functors:

Db(Y−) ≃ DMF(X−, f) ↪→ DMF(X+, f) ≃ Db(Y+).

This technique, in principle, could be used for the present setting, giving a simpler

and shorter proof of Theorem 1.3, which is also more suitable to generalization to
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the more complicated case of G(k, k+1, E). However, a tilting bundle on G(1, 2n+ε)

does not directly imply the existence of a tilting bundle on a Grassmann bundle

with fiber G(1, 2n + ε) on any smooth base: therefore, we opted for the argument

presented in Section 3.

§4. Examples

Let us discuss some concrete examples. We address the case where B, Gr(i, E)

and F l(1, 2, E) are flag varieties themselves: the outcome is an infinite series of

derived embeddings between covers of B and Fano fibrations over B, where both

the cover and the fibration are cut by general sections of irreducible, homogeneous

vector bundles. More precisely, fix n ≤ 2 and any strictly increasing partition

µ = {µ1, . . . , µr} of arbitrary length r. Then we choose the data of E → B so that

F l(1, 2, E) = F (µ1, . . . , µr, µr + 1, µr + 2, µr + 2n + ε). This variety has exactly

r + 2 extremal contractions to flag varieties of Picard rank r + 1, which in turn

have r + 1 extremal contractions to flag varieties of Picard rank r. This process

can obviously be iterated, and eventually defines locally trivial morphisms

F (µ1, . . . , µr, µr + 1, µr + 2, µr + 2n + ε)
ϕj−→ G(j, µr + 2n + ε),

(x1, . . . , xr+2) 7−→ xj ,

where j ∈ {µ1, . . . , µr, µr + 1, µr + 2}. Fibers of these maps are products of flag

varieties. We call Uj the pullback of the tautological bundle through ϕj , a vector

bundle of rank j, and we denote by Qj the rank µr+2n+ε−j vector bundle defined

as the quotient of O⊕(2n+ε) by the latter, via the tautological embedding. Let us

use the notation O(−hj) := detUj for line bundles. We will also use the shorthand

notation F (µ, µr+1, µr+2, µr+2n+ε) for F (µ1, . . . , µr, µr+1, µr+2, µr+2n+ε).

In this context, the diagram (2.1) specializes to

(4.1)

F (µ, µr + 1, µr + 2, µr + 2n + ε)

p1

xx

p2

&&

F (µ, µr + 1, µr + 2n + ε)

r1

&&

F (µ, µr + 2, µr + 2n + ε)

r2

xx

F (µ, µr + 2n + ε).
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Given any dominant weight ν = ν1ω1 + · · · + νrωr, we consider the line bundle

L := Eν+ωµr+1+ωµr+2
. Then one has

p1∗L ≃ Eν ⊗ ∧µr+2n+ε−µr−2Qµr+1(hµr+1) ≃ Eν ⊗Q∨
µr+1(2hµr+1),

p2∗L ≃ Eν ⊗ P(2hµr+2),

where P(hµr+2) is defined as (the pullback of) the homogeneous, irreducible, glob-

ally generated vector bundle of highest weight ωµr+1 on F (µr, µr + 2, µr + 2n+ ε).

The dominance condition on ν is required in order to have L satisfy Condition 2.2,

which, in turn, is necessary to have smoothness of X1 and X2. Note that one has

0 −→ Uµr
(hµr+2) −→ Uµr+2(hµr+2) −→ P(hµr+2) −→ 0.

By adjunction, one easily sees that for every x ∈ F (µ1, . . . , µr, µr + 2n + ε),

ωX1
|r−1

1 (x) = O(2n + ε− 3) ≃ ωX2
|∨
r−1
2 (x)

,

and therefore, for our assumptions on µ, r and n, we see that the general fiber of

X2 is a smooth Fano variety of index 2n + ε− 3.

§4.1. The case of n = 2, ε = 1

Let us briefly review the simplest case, which corresponds to considering a flag

bundle with fiber isomorphic to F (1, 2, 5).

4.1.1. A fibration in Fano fourfolds of degree 12. With this data, for any

µ we produce a fibration X2 → F (µ1, . . . , µr, µr + 5) with general fiber isomor-

phic to a smooth Fano fourfold Y of index 2, degree 12 and genus 7 in G(2, 5),

cut by a section of U∨
G(2,5)(1). This variety is case 14 in the classification [Isk78,

Table 6.5], and it is usually described as a codimension 6 linear section of the spinor

tenfold (i.e. a connected component of the orthogonal Grassmannian OG(5, 10)):

the fact that the description we use is equivalent is well known, and it can easily

be deduced by the argument presented in [CCGK16, Sect. 13]. In particular, the

argument there presented relates codimension 7 general hyperplane sections of a

connected component of OG(5, 10) to general sections of U∨
G(2,5)(1)⊕O(1), and it

can be adapted to our case verbatim. By Lemma 2.5 we immediately see that for

dim(F (µ, µr +5)) < 10 the map X1 → F (µ, µr +5) is an 11 : 1 cover. In particular,

by choosing µ = {1}, we get a cover of P5. Already by choosing µ = {2} we have

a generically 11 : 1 morphism to G(2, 7), with positive-dimensional fibers over a

zero-dimensional subset; by all other choices of µ there is a positive-dimensional

subvariety over which the morphism is not finite.
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4.1.2. Relation with Kuznetsov’s collection for Y . By Theorem 1.3, there

is a fully faithful functor Db(X1) ⊂ Db(X2) and a semiorthogonal decomposition

Db(X2) = ⟨ΨDb(X1), F1, . . . , F5⟩.

A full exceptional collection for the general fiber of Y of X2 can be found if we

consider the case B = {pt}:

(4.2) Db(Y ) = ⟨P1, . . . , P11, F1, . . . , F5⟩,

where P1, . . . , P11 are the objects coming from the derived category of a set of 11

distinct points. In [Kuz18] a different full exceptional collection for Y has been pro-

duced, using the fact that Y is a linear section of the spinor tenfold (which admits

a Lefschetz, rectangular full exceptional collection of vector bundles): if we call

U+ the tautological bundle of the spinor tenfold (the pullback of the tautological

bundle of G(5, 10)), one has

Db(Y ) = ⟨E1, . . . , E12,O,U∨
+,O(1),U∨

+(1)⟩,

where the Ei generate the derived category of a set of 12 distinct points (a codi-

mension 10 linear section of the homological projective dual of the spinor tenfold,

where the latter, remarkably, is isomorphic to the spinor tenfold itself). Note that

both collections have length 16. It would be interesting to understand whether

the two collections can be related by a sequence of mutations, or, more generally,

whether there is any geometric relation between the collections.

Remark 4.1. Note that the embedding of categories ⟨P1, . . . , P11⟩ ⊂ Db(Y ) is

already a consequence of [FKMR23]. However, proving that the right orthogonal

complement of ⟨P1, . . . , P11⟩ is itself generated by an exceptional collection (and

thus obtaining the collection (4.2)) is a consequence of the more explicit approach

we discussed in Section 3.

§5. Grassmann flips on a base

§5.1. Simple flips and flag bundles

Consider a birational map between two smooth, projective varieties X1 and X2,

resolved by two blowups π1 : X → X1 and π2 : X → X2. This is an instance of a

simple flip as described in [LX24, Def. 2.2]. Let us focus on the situation where

the centers of the blowups are respectively isomorphic to the Grassmann bundles

Gr(1, E) and Gr(2, E) for a suitable choice of a vector bundle E on a base B. The

geometry described in Section 2, together with [LX24, Prop. 2.3], allows one to
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draw the following diagram (cf. [LX24, Diagram 2.4]):

(5.1)

F l(1, 2, E)� _

σ

��p1

zz

p2

$$

X
π1

zz

π2

$$
Gr(1, E) �

�
//

r1

%%

X1
µ

// X2
oo ? _Gr(2, E)

r2

yy
B.

In particular, this is an instance of a simple flip of homogeneous type, as described

in [LX24]. Note that, for B = {pt}, we obtain the construction addressed by

[LX25]. In light of this, it is reasonable to expect a derived embedding Db(X1) ⊂
Db(X2). The goal of this section is to produce such embedding.

§5.2. Semiorthogonal decompositions for X

By applying a result of Orlov’s [Orl93] on semiorthogonal decompositions of blow-

ups, we can construct two different semiorthogonal decompositions for X :

Db(X ) ≃
〈
σ∗

(
p∗1D

b(Gr(1, E)) ⊗ L⊗(−2n−ε+3)
)
, . . . ,

σ∗
(
p∗1D

b(Gr(1, E)) ⊗ L⊗(−1)
)
, π∗

1D
b(X1)

〉
≃

〈
σ∗

(
p∗2D

b(Gr(2, E)) ⊗ L⊗(−1)
)
, π∗

2D
b(X2)

〉
.(5.2)

In light of the semiorthogonal decomposition (3.1) we can rewrite the above as

follows:

Db(X ) ≃ ⟨T0
−2n−ε+3,−2n−ε+3, . . . ,T

0
3,−2n−ε+3,

...
...

T0
−1,−1, . . . . . . . . . . . . ,T

0
2n+ε−1,−1, π

∗
1D

b(X1)⟩.(5.3)

Here we introduced the subcategories

Tm
x,y := σ∗(Symm Ũ∨

2 (xh1 + yh2) ⊗ τ∗Db(B)),

Bm
x,y := ⟨T0

x,y,T
1
x,y, . . . ,T

m
x,y⟩,

where τ := p1 ◦ r1 = p2 ◦ r2.
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Lemma 5.1. For 0 ≤ r ≤ min(t− 2, n− 1) and r ̸= t− 1 one has

LT0
t,0
Tr

−1,1 ≃ Tr
−1,1.

Moreover, for r = t− 1,

LT0
t,0
Tt−1

−1,1 ≃ Tt
0,0.

Proof. As for the similar claim in Section 3, let us start by observing that any

object in Tr
−1,1 has the form σ∗(Symr U∨

2 (−h1 + h2)⊗ τ∗E) for some E ∈ Db(B),

and its mutation through T0
t,0is defined by the distinguished triangle

gg!σ∗(Symr U∨
2 (−h1 + h2) ⊗ τ∗E) −→ σ∗(Symr U∨

2 (−h1 + h2) ⊗ τ∗E)

−→ LT0
t,0
σ∗(Symr U∨

2 (−h1 + h2)),(5.4)

where g and g! denote the following adjoint pair of functors:

g : E 7−→ σ∗(E ⊗O(th1)),

g! : R 7−→ τ∗RHomFl(1,2,E)(σ∗O(th1), R).

Therefore, we can compute the first term of the triangle (5.4) explicitly:

gg!σ∗(Symr U∨
2 (−h1 + h2) ⊗ τ∗E)

≃ gτ∗RHomFl(1,2,E)
(
σ∗O(th1), σ∗(Symr U∨

2 (−h1 + h2) ⊗ τ∗E)
)

≃ gτ∗RHomFl(1,2,E)
(
σ∗σ∗O(th1), (Symr U∨

2 (−h1 + h2) ⊗ τ∗E)
)

≃ gτ∗RHomFl(1,2,E)
(
σ∗σ∗O(th1), (Symr U∨

2 (−h1 + h2) ⊗ τ∗E)
)
.

Note that every fiber of this object has the form(
τ∗RHomFl(1,2,E)

(
σ∗σ∗O(th1), (Symr U∨

2 (−h1 + h2) ⊗ τ∗E)
))

b

≃ H•(τ−1(b), τ∗RHomFl(1,2,E)
(
σ∗σ∗O(th1), (Symr U∨

2 (−h1+h2)⊗τ∗E)
)∣∣

τ−1(b)

)
≃ HomF (1,2,Eb)(O(t, 0),Symr UG(2,Eb)∨(−1, 1)).

Then we conclude as in the proof of the claim inside the proof of Lemma 3.4.

We can now state the main theorem of this section.

Theorem 5.2 (Theorem 1.2). Consider a Grassmann flip µ : X1 99K X2 such that

the exceptional divisor is isomorphic to a flag bundle with fiber F (1, 2, N) over a

smooth projective base. Then Db(X1) ⊂ Db(X2), i.e. µ satisfies the DK-conjecture.

Proof. As for Theorem 1.3, the proof for the even and odd cases are essentially

the same: we will only describe the even case (i.e. ε = 0). In light of the decom-

position (5.3), the semiorthogonal complement ⊥π∗
1D

b(X1) can be described by
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the first chessboard of Section 3.4, where the box in position (x, y) containing a

number m now corresponds to the block Tm
x,y ⊂ Db(X ) By Lemma 5.1, all the

chessboards of Section 3.4 describe the semiorthogonal complements of categories

equivalent to π∗
1D

b(X1) ⊂ Db(X ), where the equivalence is described by a suitable

mutation functor. In particular, the last chessboard corresponds to the following

semiorthogonal decomposition:

⊥Ξπ∗
1D

b(X1) = ⟨ Tn−2
0,0 ,

Tn−1
0,1 ,T0

1,1, . . . . . . . . . ,T
0
n−1,1,

×,Tn−1
0,2 ,T0

1,2, . . . . . . . . . ,T
0
n−1,2,

...
...

×,Tn−1
0,n ,T0

1,n, . . . . . . ,T
0
n−1,n,

×,Tn−2
0,n+1,T

0
1,n+1, . . . . . . ,T

0
n−1,n+1,

...
...

×,Tn−2
0,2n−3,T

0
1,2n−3, . . . . . . ,T

0
n−1,2n−3,

Tn−2
0,2n−2

Tn−2
0,2n−1⟩,(5.5)

where Ξ is the mutation functor. Again, we observe that

σ∗(p∗1D
b(Gr(2, E)) ⊗O(0, 1))

= ⟨Tn−1
0,1 , . . . ,Tn−1

0,n ,Tn−2
0,n+1, . . . ,T

n−2
0,2n−2,T

n−2
0,2n−1,T

n−2
0,2n⟩

= ⟨Tn−2
0,0 ,Tn−1

0,1 , . . . ,Tn−1
0,n ,Tn−2

0,n+1, . . . ,T
n−2
0,2n−2,T

n−2
0,2n−1⟩.

This allows one to mutate the collection (5.5) so that the category of X can be

written as

Db(X ) =
〈
σ∗

(
p∗1D

b(Gr(2, E)) ⊗O(0, 2)
)
,Z,Ξπ∗

1D
b(X1)

〉
,

where Z is an admissible subcategory generated by (mutations of) blocks of the

form Tm
x,y. This concludes the proof.

Appendix. Computations on homogeneous vector bundles

Lemma A.1. One has the following short exact sequence on F (1, 2, n):

(A.1) 0 −→ Symk−1 U∨
G(2,n)(−1, 1) −→ Symk U∨

G(2,n) −→ O(k, 0) −→ 0.
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Proof. For k = 1, equation (A.1) reduces to the simple embedding of tautological

bundles. To prove the assertion for higher k, we recall that the Schur functor Symk

acts on a sequence 0 → A → B → C → 0 as follows:

0 −→ ∧kA −→ ∧k−1A⊗B −→ · · · −→ ∧k−lA⊗ Syml B −→ · · ·
−→ Symk B −→ Symk C −→ 0.(A.2)

The proof follows by applying equation (A.2) to the embedding of tautological

bundles: note that the first bundle has rank one, thus all its higher wedge powers

are zero, giving the expected short exact sequence.

The following corollary is immediate.

Corollary A.2. One has the following short exact sequence on F l(1, 2, E):

(A.3) 0 −→ Symk−1 U∨
2 (−h1 + h2) −→ Symk U∨

2 −→ O(kh1) −→ 0.

Proof. It is enough to apply the functor F of Section 3.2.

Another application is the following.

Corollary A.3. If

H•(F l(1, 2, E),O((a−m + 2k)h1 + (b + m− k)h2)
)

= H•(F l(1, 2, E),O((a−m)h1 + (b + m)h2)
)

= 0,

then Symm Ũ∨(ah1 + bh2) has no cohomology as well.

Proof. The proof follows by applying equation (A.3) iteratively, resolving all sym-

metric powers of U∨
2 as extensions of progressively lower symmetric powers.

Lemma A.4. For t ≤ 2n− 3 + ε one has

Ext•M (O(t, 0),Symr U∨
G(2,2n+ε)(−1, 1))

≃

{
C[−1], r = t− 1,

0, 0 ≤ r ≤ min(t− 2, n− 1), r ̸= t− 1,

where M is a (1, 1)-section in F (1, 2, 2n + ε).

Proof. By the Koszul resolution of M , the computation boils down to

Ext•F (1,2,2n+ε)(O(t, 0),Symr U∨
G(2,2n+ε)(−1, 1)),

Ext•F (1,2,2n+ε)(O(t, 0),Symr U∨
G(2,2n+ε)(−2, 0)),
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and hence to the cohomology of

Symr U∨
G(2,2n+ε)(−t− 1, 1) and Symr U∨

G(2,2n+ε)(−t− 2, 0).

In light of the iterate resolution of symmetric powers of Corollary A.3, we just

need to prove that, for 0 ≤ α ≤ r, the bundle O(−t− 1− r + 2α, 1 + r−α) has no

cohomology except for C[−1] for α = r = t−1, and O(−t−2−r+2α, r−α) has no

cohomology at all. We apply the Borel–Weil–Bott theorem: the weight associated

to the first bundle, once we add the sum of fundamental weights, can be expressed

as

ω + ρ = (−t− r + 2α, 2 + r − α, 1, . . . , 1),

where the number of 1’s is 2n + ε− 3. Observe that the first coordinate is always

negative and the second one is always positive or zero. If it is zero the bundle has

no cohomology; otherwise we proceed by applying the Weyl reflection associated

to the first simple root, finding

s1(ω + ρ) = (t + r − 2α, 2 − t + α, 1, . . . , 1).

The first coordinate is always positive, while the only way we can make the second

coordinate positive as well is to choose α = r = t − 1, and this leads to a C[−1]

term in the cohomology. Let us now assume α ≤ r ≤ t − 2. Then, applying the

Weyl reflection associated to the second simple root, we find

s2 ◦ s1(ω + ρ) = (2 + r − α,−2 + t− α, 3 − t + α, 1, . . . , 1).

Observe that if 3 − t + α ≤ 2n + ε − 4, we eventually obtain a weight with all

non-negative coordinates and a zero coordinate, by simply repeating the step of

applying the Weyl reflection which changes sign to the unique negative coordinate.

The inequality we want can be rewritten as t − α ≤ 2n + ε − 1. However, by our

assumptions we have t− α ≤ t ≤ 2n− 3 + ε.

Let us now turn our attention to O(−t− 2 − r + 2α, r − α). Its weight is

ω + ρ = (−t− 1 − r + 2α, 1 + r − α, 1, . . . , 1),

where the number of 1’s is 2n + ε − 3. Again, the first coordinate is always neg-

ative and the second one is always positive or zero. In the first case there is no

cohomology, otherwise we apply the Weyl reflection associated to the first simple

root:

s1(ω + ρ) = (t + 1 + r − 2α,−t + α, 1, . . . , 1).

We essentially proceed as above: there is no cohomology if we can prove that our

assumptions imply t−α ≤ 2n+ε−3, which is true because t−α ≤ t ≤ 2n−3+ε.

This proves the claim.
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Lemma A.5. For t ≤ 2n− 3 + ε and 0 ≤ r ≤ min(t− 1, n− 1) one has

Ext•M (O(t, 0),Symr U∨
G(2,2n+ε)(−1, 1)) ≃ 0.

Proof. The approach is the same as for the previous lemma, hence we will be

brief. By Corollary A.3, we need to show that the bundles O(t + 2α,−r − α) and

O(−1 + t + 2α,−1 − r − α) on F (1, 2, 2n + ε) have no cohomology for 0 ≤ α ≤ r.

If we add ρ to the weight of the first one, we have

ω + ρ = (1 + t + 2α, 1 − r − α, 1, . . . , 1),

where the first coordinate is positive and the second is negative. By applying the

second Weyl reflection (i.e. the one associated to the second simple root) we get

s2(ω + ρ) = (2 − r + t + α,−1 + r + α, 2 − r − α, 1, . . . , 1),

where the number of 1’s is 2n + ε − 4. As above, we see that there cannot be

cohomology if −2 + r +α ≤ 2n+ ε− 4, i.e. r +α ≤ 2n+ ε− 2. But by assumption

r + α ≤ 2r ≤ 2n− 2.

Now consider the second bundle: if we add ρ to its weight we have

ω + ρ = (t + 2α,−r − α, 1, . . . , 1),

and as above,

s2(ω + ρ) = (t− r + α, r + α, 1 − r − α, 1, . . . , 1),

where again the number of 1’s is 2n+ε−4. Hence we need to prove that −1+r+α ≤
2n + ε− 3, which holds by our assumptions.

Lemma A.6. For 0 ≤ m ≤ r ≤ n− 2 the following vanishing holds:

Ext•M (Symm U∨
G(2,2n+ε),Symr U∨

G(2,2n+ε)) = 0.

Proof. As usual, we start with

Ext•M (Symm U∨
G(2,2n+ε),Symr U∨

G(2,2n+ε)(−1, 1))

= H•(M,Symm U∨
G(2,2n+ε) ⊗ Symr U∨

G(2,2n+ε)(−1, 1 −m)).

The bundle in the right-hand side is resolved by the following bundles on F (1, 2,

2n + ε):

Symm U∨
G(2,2n+ε) ⊗ Symr U∨

G(2,2n+ε)(−1, 1 −m),

Symm U∨
G(2,2n+ε) ⊗ Symr U∨

G(2,2n+ε)(−2,−m).

The first has no cohomology because its pushforward to G(2, 2n+ε), by the projec-

tion formula, can be seen as a product of symmetric powers of U∨
G(2,2n+ε) times the
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pushforward of O(−1, 0), and the latter is identically zero. Let us now turn to the

second bundle. By Serre duality, up to shifting by the dimension of F (1, 2, 2n+ε),

computing its cohomology is equivalent to computing the cohomology of

Symm UG(2,2n+ε) ⊗ Symr UG(2,2n+ε)(2,m) ⊗ ωF (1,2,2n+ε)

= q∗HomG(2,2n+ε)(Symm U∨
G(2,2n+ε)(2n + ε− 1),Symr U∨

G(2,2n+ε)).

Hence, if the latter has no cohomology we are done, and this can easily be checked

by considering the semiorthogonality conditions of the full exceptional collection

for G(2, 2n + ε) of [Kuz08].
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