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Boundary spectral estimates for semiclassical Gevrey operators

Haoren Xiong

Abstract. We obtain the spectral and resolvent estimates for semiclassical pseudodifferential
operators with symbol of Gevrey-s regularity, near the boundary of the range of the prin-
cipal symbol. We prove that the boundary spectrum free region is of size O.h1�

1
s / where the

resolvent is at most fractional exponentially large in h, as the semiclassical parameter h! 0C.
This is a natural Gevrey analogue of a result by N. Dencker, J. Sjöstrand, and M. Zworski in the
C1 and analytic cases.

1. Introduction and statement of results

In this work, we study the spectrum of a non-self-adjoint semiclassical Gevrey pseudo-
differential operator, as the semiclassical parameter h! 0C. Unlike self-adjoint oper-
ators, it is well known that the spectrum of a non-self-adjoint operator may lie deep
inside the range of its leading symbol as h ! 0C. For instance, the complex har-
monic oscillator: �h2 d

2

dx2
C ix2 on L2.R/, which was used by Davies [5] as an

inspiring example of non-normal differential operators, has purely discrete spectrum
¹ei�=4h.2k C 1/ W k 2 Nº; while the range of its symbol �2 C ix2 on .x; �/ 2 T �R
is the sector ¹z 2 C W 0 � arg z � �=2º.

More generally, Dencker, Sjöstrand, and Zworski [6] considered spectral estimates
for quantizations of bounded functions, with all derivatives bounded,

p 2 C1b .R
2n/´ ¹u 2 C1.R2n/ W @˛u 2 L1.R2n/ for all ˛ 2 N2n

º:

It has been pointed out in [6] that the case of functions whose values avoid a point
in C and tend to infinity as .x; �/!1 can be reduced to this case. Let us denote
the closure of range of p by †.p/´ p.T �Rn/, and denote by †1.p/ the set of
accumulation points of p at infinity. Let z0 2 @†.p/ and suppose the principal-type
condition:

dp.x; �/ ¤ 0; if p.x; �/ D z0; .x; �/ 2 T �Rn: (1.1)

Mathematics Subject Classification 2020: 35S05 (primary); 35P05 (secondary).
Keywords: pseudospectra, resolvent, Gevrey classes, semiclassical operators.

https://creativecommons.org/licenses/by/4.0/


H. Xiong 1504

For every � 2 p�1.z0/ with z0 2 @†.p/, let � D �.�/ 2 R be such that e�i�dp is real
at �. Let us also assume a non-trapping condition on p and z0 (see [6] or [30]):

for every � 2 p�1.z0/, the complete trajectory of HRe.e�i�.�/p/

that passes through � is not contained in p�1.z0/; (1.2)

where Hf .�/ D .f 0� .�/;�f
0
x.�//, � 2 T

�Rn, is the Hamilton vector field of f .
Under these conditions, it has been proved in [6] that for a semiclassical operator

P.h/ whose principal part is given by the Weyl quantization of p 2 C1
b
.R2n/:

pw.x; hD/u.x/ D
1

.2�h/n

Z
R2n

e
i
h
.x�y/��p

�x C y
2

; �
�
u.y/ dy d�; u 2 S.Rn/;

(1.3)
if z0 2 @†.p/ n †1.p/ satisfies (1.1) and (1.2), then for any M > 0, there exists
h0.M/ > 0 such that°

z 2 C W jz � z0j < Mh log
�1
h

�±
\ �.P.h// D ;; 0 < h < h0.M/; (1.4)

where �.P.h// denotes the spectrum of P.h/.
Furthermore, in the case where p is a bounded holomorphic function in a tubular

neighborhood of R2n � C2n, then there exist ı0; h0 > 0 such that

¹z 2 C W jz � z0j < ı0º \ �.P.h// D ;; 0 < h < h0: (1.5)

If we compare the size of the spectrum free region near the boundary of †.p/ for
bounded smooth symbols p in (1.4) with that for bounded holomorphic symbols
in (1.5), we observe that the size improves from O.h log.1=h// to O.1/. Motivated by
that, the purpose of this work is to explore the spectrum free region near the bound-
ary of †.p/ for bounded Gevrey symbols p (see the definition below), which can
be viewed as an interpolating case between the bounded smooth and holomorphic
symbols.

The consideration of Gevrey (pseudo)differential operators has a long-standing
tradition in the theory of PDEs, beginning with the seminal work [2], see also [20,25].
Gevrey regularity problems have been studied in various contexts, including quantum
theory [1,7,15,26,27], FBI transform in Gevrey classes [8,19], propagation of Gevrey
singularities [17, 18, 31], and Gevrey pseudodifferential operators in the complex
domain [11, 12].

Let s > 1. The bounded (global) Gevrey-s class, denoted by G sb .R
d /, consists of

all functions u 2 C1.Rd / such that there exists C > 0 such that

j@˛u.x/j � C 1Cj˛j˛Šs; for all ˛ 2 Nd ; x 2 Rd :
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The Denjoy–Carleman theorem [14, Theorem 1.3.8] implies that the Gevrey-s class is
non-quasianalytic, i.e., G sc .R

d /´ G sb .R
d /\C1c .Rn/¤ ¹0º, when s > 1. Therefore,

there are G s partitions of unity.
To study semiclassical Gevrey operators, we define Gevrey symbols as functions

in G sb .R
2n/ that may depend on the semiclassical parameter h2 .0;1�. More precisely,

we write a.�I h/ 2 G sb .R
2n/ if and only if for some C > 0 uniformly in h 2 .0; 1� we

have

j@˛x@
ˇ

�
a.x; � Ih/j � C 1Cj˛jCjˇ j˛ŠsˇŠs for all l˛; ˇ 2 Nn; .x; �/ 2 R2n:

Let us then introduce semiclassical Gevrey pseudo-differential operators, which are
semiclassical Weyl quantizations of a.�Ih/ 2 G sb .R

2n/ acting on u 2 S.Rn/,

aw.x; hDIh/u.x/ D
1

.2�h/n

Z
R2n

e
i
h
.x�y/��a

�x C y
2

; � Ih
�
u.y/ dy d�:

We recall that aw.x; hDI h/ extends to a bounded operator on L2.Rd / uniformly in
h 2 .0; 1�, see for instance [32, Section 4.5].

We say that an h-independent function a0 2 G sb .R
2n/ is the principal symbol of

the semiclassical symbol a.�Ih/ 2 G sb .R
2n/ if there exists r.�Ih/ 2 G sb .R

2n/ such that

a.x; � Ih/ D a0.x; �/C hr.x; � Ih/ for all .x; �/ 2 R2n; h 2 .0; 1�:

Moreover, aw0 .x; hD/ is called the principal part of aw.x; hDIh/.

The following is the main result of this work.

Theorem 1. Let p 2 G s
b
.R2n/, s > 1, and let pw.x; hD/ be the principal part of a

semiclassical Gevrey operator P.h/ D P.x; hDI h/. If p and z0 2 @†.p/ n†1.p/
satisfy conditions (1.1) and (1.2), then there exist h0 > 0 and C > 0 such that

¹z 2 C W jz � z0j < C
�1h1�

1
s º \ �.P.h// D ;; 0 < h < h0:

Furthermore, for z 2 C with jz � z0j < C�1h1�
1
s we have the resolvent estimate

.P.h/ � z/�1 D O.1/ exp.O.1/h�
1
s /WL2.Rn/! L2.Rn/; 0 < h < h0: (1.6)

Remark 1. In the context of resonances, it has been shown in [26, 27] that semiclas-
sical Schrödinger operators with G s potentials which are dilation analytic near infinity
have a resonance free region of size O.h1�

1
s / near a non-trapping energy level in the

semiclassical limit h! 0C and that the exponent 1 � 1=s is optimal by constructing
a G s potential such that there exist resonances E near a non-trapping energy level
E0 > 0 with ImE � �Ch1�

1
s , C > 0, for h sufficiently small [26]. We can therefore

infer that the exponent 1 � 1=s for the spectrum free region in Theorem 1 is optimal.
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Let us also highlight a special case of Theorem 1, which is commonly considered
for evolution equations or semigroups exp.�tP=h/, i.e., the case where

Rep � 0 near p�1.0/: (1.7)

The principal-type condition (1.1) in this case implies that

d Imp ¤ 0; d Rep D 0; on p�1.0/: (1.8)

In view of the non-trapping condition (1.2), we assume in this case that

for all � 2 p�1.0/; the maximal trajectory of HImp passing through �

contains a point where Rep > 0: (1.9)

Under these conditions, we have the following.

Theorem 2. Let p 2 G s
b
.R2n/, s > 1, and let pw.x; hD/ be the principal part of a

semiclassical Gevrey operator P.h/ D P.x; hDI h/. Suppose that 0 … †1.p/ and
that p satisfies (1.7)–(1.9). Then there exist h0 > 0 and C > 0 such that

jzj < C�1 and Re z < C�1h1�
1
s H) z … �.P.h//; 0 < h < h0:

Moreover, the estimate (1.6) holds for z 2 C with jzj < C�1 and Re z < C�1h1�
1
s .

In the case of analytic symbols, Dencker et al [6] proved (1.5) by studying the
action of P.h/ on microlocally weighted spaces associated to a family of complex
IR manifolds distorted from the phase space T �Rn, see [9] for the original method
and [29, Chapter 12] for a detailed presentation. For a broader context, we also men-
tion what we call the “Martinez’ method” [22]: one can use a non-holomorphic FBI
transform T WL2.Rn/! L2.T �Rn/ and impose exponential weights eg=h

˛
directly

on T �Rn. This approach was used to study the tunneling effects, for analytic oper-
ators [21, 23], and for Gevrey operators [15]. In this paper, we adopt an approach
different from those mentioned above: one modifies the exponential weights for the
Bargmann space, working with a holomorphic FBI transform. A key ingredient in our
proof is a Toeplitz identity that connects the action of semiclassical operators on the
complex domain to the multiplication by the principal symbols. Such a result is essen-
tially well known, see [28] for the analytic case, [10] for the smooth case, and [27]
for the Gevrey case. Thanks to the techniques recently developed in [12], we will
use a straightforward argument to establish a more general Toeplitz identity than that
in [27], see Remark 3.

The paper is organized as follows. In Section 2, we review and introduce some
essential tools for semiclassical pseudodifferential operators with Gevrey symbols,
including a Toeplitz identity in the complex domain and a composition formula in
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the real domain. Section 3 is devoted to the proof of Theorem 2 by introducing small
complex deformations of R2n and working on the FBI transform side. In Section 4,
we introduce a Gevrey multiplier using a version of the Malgrange preparation the-
orem for Gevrey functions, which allows us to reduce Theorem 1 to the more special
Theorem 2, thus completing the proof of our main theorem.

2. Review of semiclassical Gevrey operators in the complex domain

Let ˆ0 be a strictly plurisubharmonic quadratic form on Cn and let us set

ƒˆ0 D
°�
x;
2

i

@ˆ0

@x
.x/
�
; x 2 Cn

±
� C2n:

Let us also introduce the Bargmann space

Hˆ0.C
n/ D Hol.Cn/ \ L2.Cn; e�2ˆ0=hL.dx//; (2.1)

where L.dx/ is the Lebesgue measure on Cn and 0 < h � 1 is the semiclassical
parameter. Using the projection map �x Wƒˆ0 3 .x; �/ 7! x 2 Cn

x Š R2n, we identify
ƒˆ0 with Cn

x and define the Gevrey spaces G sb .ƒˆ0/, G sc .ƒˆ0/. Let a 2 G s
b
.ƒˆ0/ be

an h-independent symbol, for some s > 1, and let u 2 Hol.Cn/ be such that

u.x/ D Oh;N .1/hxi
�N eˆ0.x/=h;

for all N 2 N. We introduce the semiclassical Weyl quantization of a acting on u,

aw� .x; hDx/u.x/ D
1

.2�h/n

Z Z
�.x/

e
i
h
.x�y/��a

�x C y
2

; �
�
u.y/ dy ^ d�: (2.2)

Here �.x/ � C2n
y;�

is the natural integration contour given by

� D
2

i

@ˆ0

@x

�x C y
2

�
; y 2 Cn:

Let next ˆ1 2 C 1;1.CnIR/ be such that

kr
k.ˆ1 �ˆ0/kL1.Cn/ � C

�1h1�
1
s ; k D 0; 1; 2; (2.3)

for some C > 0 sufficiently large. We set ! D h1�
1
s and introduce the following

2n-dimensional Lipschitz contour for x 2 Cn:

�ˆ1! .x/ W � D
2

i

@ˆ1

@x

�x C y
2

�
C if!.x � y/; y 2 Cn; (2.4)
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where

f!.z/ D

´
Nz; jzj � !;

!jzj�1 Nz; jzj > !:
(2.5)

Let Qa 2 G s
b
.C2n/ be an almost holomorphic extension of a such that supp Qa �ƒˆ0 C

BC2n.0; C0/, for some C0 > 0. We remark that the existence of such an almost holo-
morphic extension whose Gevrey order is the same as that of a is due to Carleson [4]
(see also [8]). It has been established in [12, Theorem 1.1] that for 1 < s � 2 (the
complementary range s > 2 will be discussed later),

aw� .x; hDx/ � Qa
w

�
ˆ1
!

.x; hDx/ D O.1/ exp.�C�1h�
1
s / W

Hˆ1.C
n/! L2.Cn; e�2ˆ1=hL.dx//;

(2.6)

where C > 0 is a constant and we have set, similarly to (2.1),

Hˆ1.C
n/ D Hol.Cn/ \ L2.Cn; e�2ˆ1=hL.dx//:

The realization

Qaw
�
ˆ1
!

.x; hDx/u.x/ D
1

.2�h/n

Z Z
�
ˆ1
! .x/

e
i
h
.x�y/��

Qa
�x C y

2
; �
�
u.y/ dy ^ d�

satisfies (see [12, Theorem. 1.1 and 1.2])

Qaw
�
ˆ1
!

.x; hDx/ D O.1/ W Hˆ1.C
n/! L2.Cn; e�2ˆ1=hL.dx//:

Let us also recall the following version of the Fourier inversion formula in the complex
domain, see for instance [13]. Let u 2 Hol.Cn/ be such that

u.x/ D Oh.1/hxi
N0eˆ0.x/=h;

for some N0 � 0. Then,

u.x/ D
1

.2�h/n

Z Z
�
ˆ1
! .x/

e
i
h
.x�y/��u.y/ dy ^ d�: (2.7)

In particular, (2.7) holds for u 2 Hˆ1.C
n/ D Hˆ0.C

n/ (they are equal as linear
spaces). Similarly, for such functions, we find by Stokes’ formula, writing Dxj ´
i�1@xj ,

hDxj u.x/ D
1

.2�h/n

Z Z
�
ˆ1
! .x/

e
i
h
.x�y/���ju.y/ dy ^ d�; 1 � j � n: (2.8)
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Setting �1.x/ D 2
i
@ˆ1
@x
.x/, we get by a Taylor expansion, when .y; �/ 2 �ˆ1! .x/,

Qa
�x C y

2
; �
�
D Qa.�0/C @x Qa.�0/ ��y C @� Qa.�0/ ��� C r.x; y; �/; (2.9)

with more compact notation: �0 D .x; �1.x//, �y D
y�x
2

, �� D � � �1.x/, and

r.x; y; �/´ @ Nx Qa.�0/ ��y C @ N� Qa.�0/ ��� C

1Z
0

.1 � t / Qa
.2/
t .x; y; �/ dt: (2.10)

Here Qa.2/t .x; y; �/ D O.1/jx � yj2, since, along the contour �ˆ1! .x/, we have

j�� j D j� � �1.x/j � kr
2ˆ1kL1.Cn/jx � yj C jf!.x � y/j � O.jx � yj/:

Let us recall from [8, Remark 1.7] that there exists C > 0 such that

jN@ Qa.x; �/j � C exp
�
� C�1dist..x; �/;ƒˆ0/

� 1
s�1

�
; .x; �/ 2 C2n: (2.11)

We also note that

dist.�0; ƒˆ0/ �
ˇ̌̌2
i

@ˆ1

@x
.x/ �

2

i

@ˆ0

@x
.x/
ˇ̌̌

� 2kr.ˆ1 �ˆ0/kL1.Cn/ � O.1/h1�
1
s : (2.12)

Combing (2.10)–(2.12) we conclude

r.x; y; �/ D O.1/jx � yj2 CO.1/ exp
�
�C�1h�

1
s

�
; C > 0: (2.13)

Let us set

Ru.x/ D
1

.2�h/n

Z Z
�
ˆ1
! .x/

e
i
h
.x�y/��r.x; y; �/ u.y/dy ^ d�;

we shall next check that

R D O.h/WL2.Cn; e�2ˆ1=hL.dx//! L2.Cn; e�2ˆ1=hL.dx//: (2.14)

To this end, we consider the distribution kernel of R, writing

Ru.x/ D

Z
k.x; yIh/u.y/L.dy/;

we infer from the proof of [12, Theorem 3.3] together with (2.13) that

e�
ˆ1.x/

h jk.x; yIh/je
ˆ1.y/

h � O.1/h�n.jx � yj2 C e�C
�1h�

1
s
/e�

F!.x�y/
2h
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provided that the constant in (2.3) is sufficiently large. Here, following [12], we set

0 � F!.z/ D Re.z � f!.z// D

´
jzj2; jzj � !;

!jzj; jzj > !:

In view of Schur’s lemma, we only have to control the L1 norm

h�n
Z
jxj2e�

F!.x/
2h L.dx/ D h�n

Z
jxj�!

jxj2e�
jxj2

2h L.dx/C h�n
Z
jxj�!

jxj2e�
!jxj
2h L.dx/

� O.1/hCO.1/h
hnC1

!2nC2
D O.h/;

since h
!2
D h

2
s�1 � 1 if 1 < s � 2. The estimate (2.14) therefore follows, and com-

bining it with (2.6), (2.9), (2.7), and (2.8), we get for u 2 Hˆ1.C
n/,

aw.x; hDx/u.x/ D Qa.x; �1.x//u.x/C @� Qa.x; �1.x// � .hDx � �1.x//u.x/C zRu;

(2.15)
with

zR D O.h/WHˆ1.C
n/! L2.Cn; e�2ˆ1=hL.dx//:

The discussion above, developed in the case 1 < s � 2, extends to the complementary
range s > 2. Indeed, in this case, an application of [12, Theorem 1.2] yields

aw� .x; hDx/ � Qa
w

�
ˆ1

h1=2

.x; hDx/ D O.1/ exp.�C�1h�
1

2s�2 /;

Hˆ1.C
n/! L2.Cn; e�2ˆ1=hL.dx//; C > 0:

Here �ˆ1
h1=2

.x/ is the 2n-dimensional Lipschitz contour defined as in (2.4) and (2.5),
with ! replaced by h1=2 � !. We have

Qaw
�
ˆ1

h1=2

.x; hDx/ D O.1/WHˆ1.C
n/! L2.Cn; e�2ˆ1=hL.dx//:

It is then easy to see that we still get (2.15) for s > 2.
Using (2.15) and arguing as in [10, 28], we get the following result.

Proposition 2. Let a 2 G s
b
.ƒˆ0/, s > 1, and let ˆ1 2 C 1;1.Cn/ be such that (2.3)

holds. Let Qa 2 G s
b
.C2n/ be an almost holomorphic extension of a such that supp Qa �

ƒˆ0 C BC2n.0; C0/, for some C0 > 0. Let  2 W 1;1.Cn/ ()  2 L1.Cn/,
r 2 L1.Cn/. We have for u; v 2 Hˆ1.C

n/,

. aw.x; hDx/u; v/Hˆ1 D

Z
 .x/ Qa.x; �1.x//u.x/v.x/e

�2ˆ1.x/=hL.dx/

CO.h/kukHˆ1kvkHˆ1 : (2.16)
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Let b 2 G s
b
.ƒˆ0/, s > 1, and let us apply Proposition 2 with bw.x; hDx/v repla-

cing v, for some v 2 Hˆ1.C
n/, using also (2.16) for bw.x; hDx/. We obtainZ

 .x/ Qa.x; �1.x// Qb.x; �1.x//u.x/v.x/e
�2ˆ1.x/=hL.dx/

D . aw.x; hDx/u; b
w.x; hDx/v/Hˆ1 CO.h/kukHˆ1kvkHˆ1 : (2.17)

Here Qb 2 G s
b
.C2n/ is an almost holomorphic extension of b, as above, and we have

also used the fact that bw.x; hDx/ D O.1/WHˆ1.C
n/! Hˆ1.C

n/, see [11, 12].

Remark 3. The Toeplitz identity (Proposition 2) we derived is more general than
[27, Proposition 4.1]. Notably, the weight ˆ1 is only required to be C 1;1-close to ˆ0,
rather than close in G s This relaxation allows us to use just a C1 escape function
(see Lemma 6) instead of a G s escape function. More importantly, the cutoff  is
only assumed to beW 1;1 instead of C1c as required in [27]. This weaker assumption
makes it possible to derive elliptic estimates near infinity, such as Proposition 4.

As an application of Proposition 2 and (2.17), we derive an elliptic estimate for
future reference. Let us make an assumption on a 2 G sb .ƒˆ0/ that there exists a
bounded open subset U � Cn with a constant C > 0 such that

ja.x; �/j � 2=C; .x; �/ 2 ƒˆ0 ; x 2 Cn
n U: (2.18)

Under this assumption, we have the following.

Proposition 4. Suppose a 2 G sb .ƒˆ0/ satisfies (2.18) for some bounded open setU �
Cn and some C > 0. Let Qa 2 G s

b
.C2n/ be an almost holomorphic extension of a as

in Proposition 2, and let ˆ1 2 C 1;1.Cn/ be such that (2.3) holds. Then there exists
h0 > 0 such that for all 0 < h < h0 and u 2 Hˆ1 we haveZ

CnnU

ju.x/j2e�
2ˆ1.x/

h L.dx/ � O.1/kaw.x; hDx/uk
2
Hˆ1 .C

n/ CO.h/kuk2Hˆ1 .C
n/:

(2.19)

Proof. , It follows from Proposition 2 and more specifically, equation (2.17) that for
u 2 Hˆ1.C

n/, Z
j Qa.x; �1.x//j

2
ju.x/j2e�

2ˆ1.x/

h L.dx/

� kaw.x; hDx/uk
2
Hˆ1 .C

n/ CO.h/kuk2Hˆ1 .C
n/: (2.20)

Recalling from (2.12) that dist..x; �1.x//;ƒˆ0/ D O.1/h1�
1
s , then for h sufficiently

small we have, in view of (2.18) and the fact that Qa 2 G sb .C
2n/, Qajƒˆ0 D a,

j Qa.x; �1.x//j � 1=C; x 2 Cn
n U:

Combining this with (2.20) we obtain (2.19).
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We finish this section by discussing the composition of semiclassical Gevrey oper-
ators in the real domain. It has been proved in [17, 19] that for a; b 2 G sb .R

2n/ one
has aw.x; hD/ ı bw.x; hD/ D cw.x; hDI h/ where c.�I h/ D a # b 2 G sb .R

2n/. An
alternative proof of this result has been provided in [12, Section 3.3] using contour
deformations. For future reference, we note a slightly finer characterization of the
composed symbol c D a # b than c 2 G sb .R

2n/ as follows.

Proposition 5. Let a; b 2 G sb .R
2n/ be h-independent symbols for some s > 1, and let

cw.x; hDIh/ D aw.x; hD/ ı bw.x; hD/. Then the symbol c satisfies

c.x; � Ih/ D a.x; �/b.x; �/C hr.x; � I h/; .x; �/ 2 R2n; (2.21)

for some r.�I h/ 2 G sb .R
2n/.

Proof. Let us first recall the following oscillatory integral representation of the com-
posed symbol c D a # b, see for instance [32, Chapter 4]:

c.x; � Ih/

D
1

.�h/2n

Z
R4n

e�
2i
h
�.y1;�1Iy2;�2/a.xCy1; �C�1/b.xCy2; �C�2/ dy1d�1dy2d�2:

(2.22)

Here � is the standard symplectic form on R2n. Let � 2 G sc .R
4n/ be a Gevrey cutoff

function such that �.Y / D 1 for jY j � 1, Y 2 R4n, with supp� � BR4n.0; 2/, and let

r�.x; � Ih/ D
1

.�h/2n

Z
R4n

e�
2i
h
�.y1;�1Iy2;�2/.1 � �.y1; �1; y2; �2//

a.x C y1; � C �1/b.x C y2; � C �2/ dy1d�1dy2d�2: (2.23)

It has been established in [12, Proposition 3.8] that for some C > 0 uniformly in
h 2 .0; 1� we have for all ˛; ˇ 2 Nn and .x; �/ 2 R2n,

j@˛x@
ˇ

�
r�.x; � Ih/j � C

1Cj˛jCjˇ j˛ŠsˇŠs exp
�
�

1

O.1/
h�

1
s

�
: (2.24)

To analyze the term c � r�, we consider the following more general integral:

I�.xI h/ D h
�N=2

Z
RN

eiq.y/=h�.y/a.x C y/ dy;

where q.y/ D 1
2
Ay � y is a real non-degenerate quadratic form on RN , a 2 G sb .R

N /

and � 2 G sc .R
N / satisfies �.y/ D 1 for jyj � 1.
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By Parseval’s formula, writing �xa.y/ D a.x C y/ we have

I�.xI h/ D CA

Z
RN

e�
ih
2 A
�1���1��xa.�/ d�; CA D

.2�/�N=2ei
�
4 sgnA

j detAj1=2

where sgnA is the signature of A, 1��xa.�/ D
R

RN e
�iy���.y/a.x C y/ dy is the

Fourier transform. Using ei� D 1C i�
R 1
0
eit�dt , � 2 R, we get by

R
RN Ou.�/ d� D

.2�/Nu.0/,
I�.xI h/ D CA..2�/

Na.x/C hI�;1.xI h//; (2.25)

where I�;1.xI h/ D � i2
R 1
0

R
RN e

� ith2 A
�1���.A�1� � �/1��xa.�/ d� dt .

To derive Gevrey estimates for I�;1.xI h/, we observe that for every ˛ 2 NN ,

@˛xI�;1.xI h/ D
i

2

1Z
0

Z
RN

e�
ith
2 A
�1���bux;˛.�/ d� dt; (2.26)

with
ux;˛.y/ D .A

�1@y � @y/.�.y/@
˛a.x C y//:

It follows that j@˛xI�;1.xI h/j �
1
2
kbux;˛kL1.RN /. By the Cauchy–Schwarz inequality,Z

RN

jbu.�/j d� � � Z
RN

j Ou.�/j2.1C j�j2/kd�

�1=2� Z
RN

.1C j�j2/�kd�

�1=2
D CkkukHk.RN /

for any k > N=2, k 2 N. We obtain therefore j@˛xI�;1.xI h/j � Ckux;˛kHk.RN / for
some k 2 N and C > 0 depending only on the dimension N . Recalling the definition
of ux;˛ given in (2.26) and the assumptions that � 2 G sc , a 2 G sb , we conclude that
there exists C > 0 uniformly in h 2 .0; 1� such that

j@˛xI�;1.xI h/j � C
1Cj˛j˛Šs for all ˛ 2 NN ; x 2 RN : (2.27)

Combining (2.25) and (2.27), and applying the result to the integral representation of
c � r�, we obtain via a direct computation that

c.x; � Ih/ � r�.x; � Ih/ D a.x; �/b.x; �/C hr1.x; � Ih/; .x; �/ 2 R2n;

for some r1.�I h/ 2 G sb .R
2n/. This and (2.24), together with equations (2.22) and

(2.23), imply the desired result (2.21).
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3. Complex deformations and Proof of Theorem 2

Let p 2 G sb .R
2n/, s > 1. Let z0 2 @†.p/ n†1.p/ satisfy conditions (1.7)–(1.9). We

first recall from [6, Lemma 4.2] the existence of an escape function.

Lemma 6. Let p and z0 be given as in Theorem 2 such that (1.7)–(1.9) hold. Then
there exists G 2 C1c .R2nIR/ such that for some constant c > 0 we have

HImpG.�/ < �c < 0; � 2 p�1.z0/: (3.1)

We now introduce small compactly supported deformations of the real space R2n.
Let HG.�/ D .G0�.�/;�G

0
x.�// be the Hamilton vector field of G, and set

ƒtG ´ ¹�C i tHG.�/I � 2 T
�Rnº � C2n; t 2 R; jt j small: (3.2)

We note that ƒtG is I-Lagrangian and R-symplectic, in the sense that � jƒtG is real
and non-degenerate, where � D d� ^ dx is the complex symplectic form on Cn

x �Cn
�

.
Let zp 2 G s

b
.C2n/ be an almost holomorphic extension of p, which is supported in a

bounded tubular neighborhood of R2n �C2n. We shall explore the behavior of zpjƒtG
near some � 2 neigh.p�1.z0/IR2n/.

For simplicity, we may assume z0 D 0 by subtracting z0 from p. Let us use
Taylor’s formula to expand zp at � 2 neigh.p�1.0/IR2n/ and write

zp.�C i tHG.�// D p.�/C i tHG zp.�/CO.t2/

D p.�/ � i tHRepG.�/C tHImpG.�/CO.t2/;

where we used the facts that zpjR2n D p, N@ zpjR2n D 0. We obtain therefore

Re zp.�C i tHG.�// D Rep.�/C tHImpG.�/CO.t2/:

Letting� � R2n be a sufficiently small neighborhood of p�1.0/ which is compact in
R2n since 0 … †1.p/, we can infer from (1.7), (3.1), and the computation above that
there exist 
 > 0 and t0 > 0 such that

Re zp.�C i tHG.�// � 
 jt j; � 2 �; �t0 < t � 0: (3.3)

Let us now move to the FBI transform side. Let �.x; y/ be a holomorphic quadratic
form on Cn

x �Cn
y with Im�00yy > 0, det�00xy ¤ 0. To � we associate the complex linear

canonical transformation

�� WC
2n
3 .y;��0y.x; y// 7! .x; �0x.x; y// 2 C2n: (3.4)

Recalling for instance [32, Theorem 13.5], we have

��.R
2n/ D ƒˆ0 ; ƒˆ0 ´

°�
x;
2

i

@ˆ0

@x
.x/
�
I x 2 Cn

±
� C2n;
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where
ˆ0.x/ D max

y2Rn
� Im�.x; y/ (3.5)

is a strictly plurisubharmonic quadratic form on Cn.
Let us also recall from [30, Section 2] that

��.ƒtG/ D ƒˆt D
°�
x;
2

i

@ˆt

@x
.x/
�
I x 2 Cn

±
� C2n; (3.6)

with

ˆt .x/ D v.c..y;�/2Cn�Rn.� Im�.x; y/ � � � Imy C tG.Rey; �//: (3.7)

Computing the critical value in (3.7) as a perturbation of t D 0, we obtain

ˆt .x/ D ˆ0.x/C tG
�
��1�

�
x;
2

i

@ˆ0

@x
.x/
��
CO.t2/: (3.8)

To see this, we first observe by comparing (3.5) and (3.7) that ˆt .x/jtD0 D ˆ0.x/

since
v.c..y;�/2Cn�Rn.� Im�.x; y/ � � � Imy/ D max

y2Rn
� Im�.x; y/;

and that there is a single critical point .y0; �0/ D ��1�
�
x; 2

i
@ˆ0
@x
.x/
�
2 R2n due to the

non-degeneracy of Im �00yy . It follows that the critical value in (3.7) is also evaluated
at a single critical point when t is small. Let us then differentiate the critical value
ˆt .x/ in the parameter t ; in view of (3.7), we get

.@tˆt .x//jtD0 D G.Rey0; �0/ D G
�
��1�

�
x;
2

i

@ˆ0

@x
.x/
��
;

where we noticed that y0 2 Rn. We obtain therefore (3.8) by Taylor’s formula.
Let us introduce the FBI-Bargmann transform associated to �:

T u.xI h/ D Cnh
�3n=4

Z
Rn

ei�.x;y/=hu.y/dy; (3.9)

where Cn is chosen such that T WL2.Rn/! Hˆ0.C
n/ is unitary, see [32, Theorem

13.7]. Let a D p ı ��1� 2 G s
b
.ƒˆ0/, then Qa´ Qp ı ��1� 2 G s

b
.C2n/ is an almost holo-

morphic extension of a such that supp Qa �ƒˆ0 CBC2n.0;C0/ for some C0 > 0. The
exact Egorov theorem (see for example [32, Theorem 13.9]) implies that

aw.x; hDx/ ı T D T ı p
w.x; hD/; (3.10)

where aw.x; hDx/ is the semiclassical Weyl quantization of a 2 G sb .ƒˆ0/ given
by (2.2) while pw.x; hD/ is the semiclassical Weyl quantization of p 2 G sb .R

2n/

defined in (1.3).
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Let us set t D ��h1�
1
s for � > 0 small but independent of h. In view of (3.8), we

see that (2.3) holds with ˆt replacing ˆ1, if � > 0 is small enough. Applying (2.16)
with  � 1 and the weight ˆt , we get

Re.aw.x; hDx/u; u/Hˆt

D

Z
Re Qa

�
x;
2

i

@ˆt

@x
.x/
�
ju.x/j2e�2ˆt .x/=hL.dx/CO.h/kuk2Hˆt

: (3.11)

Let � � R2n be an open neighborhood of p�1.0/ such that (3.3) holds. We set

U D �x.��.¹�C i tHG.�/ W � 2 �º// � Cn; (3.12)

where �x Wƒˆt 3 .x; �/ 7! x 2 Cn is the projection map, and �� is the canonical
transform defined in (3.4). We note that U is open and bounded since p�1.0/ � R2n

is compact, which is due to the assumption 0 … †1.p/. Combing (3.3) with (3.2),
(3.6), and recalling Qa D Qp ı ��1� , we obtain for some 
 > 0, t0 > 0 as in (3.3),

Re Qa
�
x;
2

i

@ˆt

@x
.x/
�
� 
 jt j; x 2 U; �t0 < t � 0: (3.13)

We shall next show that a D p ı ��1� satisfies the condition (2.18) with U given
in (3.12). To this end, we first note that

K0´ ¹x 2 Cn
W a.x; �/ D 0; .x; �/ 2 ƒˆ0º D �x.��.p

�1.0/// � Cn is compact:

Since �x Wƒˆt ! Cn, �t0 < t � 0, �� WR2n ! ƒˆ0 or ƒtG ! ƒˆt , and gt WR2n 3
� 7! �C i tHG.�/ 2 ƒtG are all diffeomorphisms between corresponding submani-
folds of C2n, we get that U0´ �x.��.�//� Cn is an open neighborhood ofK0 and
thatU defined in (3.12) is open. To seeK0�U , it suffices to show that dist.@U;K0/ >
0 (note thatU is bounded). Let xt 2 @U , xt D�x.��.�C i tHG.�/// for some � 2 @�.
Since x D �x.��.�// 2 @U0 and K0 � U0, we have dist.x;K0/ � dist.@U0; K0/µ
ı0 > 0. Noting that jxt � xj D O.jt j/, we get therefore dist.xt ; K0/ � ı0=2 for all
�t0 < t � 0 by taking a smaller t0 if necessary. We conclude from the above discus-
sion that

ja.x; �/j �
2

C
; .x; �/ 2 ƒˆ0 ; x 2 Cn

n U; �t0 < t � 0; (3.14)

for some C > 0 uniform in �t0 < t � 0 (noting that U depends on t ).

We now let t D ��h1�
1
s with � > 0 small but fixed, and let z 2 C be such that

�C�1 < Re z �
�
�
2

�
h1�

1
s ; j Im zj < C�1; C > 0 sufficiently large: (3.15)
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Combining (3.11), (3.13), and (3.15), we get

Re..aw.x; hDx/ � z/u; u/Hˆt

�

�
�
2

�
h1�

1
s kuk2Hˆt

�O.h/kuk2Hˆt
�O.1/

Z
CnnU

ju.x/j2e�2ˆt .x/=hL.dx/:

In view of (3.14) and (3.15), we can apply Proposition 4 to the symbol a � z with ˆt
in place of ˆ1, therefore, for 0 < h < h0 we have

Re..aw.x; hDx/ � z/u; u/Hˆt CO.1/k.aw.x; hDx/ � z/uk
2
Hˆt

�

��
�
2

�
h1�

1
s �O.h/

�
kuk2Hˆt

� ıh1�
1
s kuk2Hˆt

:

Here h0; ı > 0 are small constants. By the Peter–Paul inequality,

Re..aw.x; hDx/ � z/u; u/Hˆt

�
ı

2
h1�

1
s kuk2Hˆt

C
1

2ı
h
1
s�1k.aw.x; hDx/ � z/uk

2
Hˆt

:

Combining the estimates above, we conclude that for some C > 0,

k.aw.x; hDx/ � z/ukHˆt � C
�1h1�

1
s kukHˆt ; u 2 Hˆt ; 0 < h < h0: (3.16)

Writing P.h/ D pw.x; hD/C hpw1 .x; hDIh/ for some p1.�I h/ 2 G sb .R
2n/, we get

TP.h/ D .aw.x; hDx/C ha
w
1 .x; hDxI h//T WL

2.Rn/! Hˆ0

with a1.�I h/ 2 G sb .ƒˆ0/. We can infer from the proofs in [12] that

a1.�I h/ 2 G sb .ƒˆ0/ H) aw1 .x; hDxI h/ D O.1/ W Hˆt ! Hˆt :

Therefore, by (3.16), there exists C > 0 uniformly in 0 < h < h0 such that

kT .P.h/ � z/vkHˆt � .2C /
�1h1�

1
s kT vkHˆt ; v 2 L2.Rn/: (3.17)

Here we note thatHˆt DHˆ0 as linear spaces. Since kˆt �ˆ0kL1.Cn/�C�1h1�
1
s ,

we can change the norm k � kHˆt to k � kHˆ0 in (3.17) and use the fact that the operator
T WL2.Rn/! Hˆ0 is unitary, to obtain

k.P.h/ � z/vkL2.Rn/ � C
�1h1�

1
s e�O.1/h�1=s

kvkL2.Rn/; v 2 L2.Rn/:

This implies that P.h/ � zWL2.Rn/! L2.Rn/ is injective. Since 0 … †1.p/, it has
been shown in the proof of [6, Proposition 3.3] that P.h/� zWL2!L2 is a Fredholm



H. Xiong 1518

operator with index 0 for z in an O.1/-neighborhood of 0 and h sufficiently small. We
can therefore conclude that for some h0 > 0 and for all z satisfying (3.15),

.P.h/ � z/�1 D O.1/eO.1/h�1=s
W L2.Rn/! L2.Rn/; 0 < h < h0:

This completes the proof of Theorem 2.

Remark 7. It is worth noting that Theorem 2 can also be proved using Martinez’s
method [22], together with the main results of [15, Theorems 1 and 10]. However,
we choose an alternative approach that makes use of the escape function in a more
geometric manner, involving complex I-Lagrangian manifolds and modification of the
exponential weights for the Bargmann space. Additionally, our proof highlights the
strength of the generalized Toeplitz-type identity (Proposition 2), which is expected
to be of independent interest and have further applications.

4. Proof of Theorem 1

We start with an adaption of [6, Lemma 4.1] to the Gevrey class, which can be
achieved by following the proof in [6] and using a division theorem for Gevrey func-
tions given in [3]. In fact, we only need a special case of [3, Theorem 5] (whenmD 1).

Proposition 8. Let � be a domain in Rd and let f 2 G s.R ��IC/. Let P.t; x/ D
t C a.x/ with a 2 G s.�IC/. Then there existQ 2 G s.R ��IC/ and R 2 G s.�IC/

such that
f .t; x/ D Q.t; x/P.t; x/CR.x/; .t; x/ 2 R ��:

Following an argument in [24], we can deduce a preparation theorem for Gevrey
functions from the division theorem above.

Proposition 9. Let f .t;x/ 2 G s.R�Rd IC/. Suppose that f .0;0/D 0, @f
@t
.0;0/¤ 0.

Then in an open neighborhood of .0; 0/ 2 R �Rd we have the factorization

f .t; x/ D q.t; x/.t C �.x//

where q and � are G s complex-valued functions with q.0; 0/ ¤ 0, �.0/ D 0.

Proof. Let us introduce a generic complex variable � 2 C. We note that F.t; x; �/´
f .t; x/ 2 G s.Rt �Rdx �C�/, P.t; x; �/´ t C �, then by Proposition 8, we have

f .t; x/ D Q.t; x; �/.t C �/CR.x; �/; (4.1)

for some Q 2 G s.Rt � Rdx � C�/, R 2 G s.Rdx � C�/. Since f .0; 0/ D 0 we must
have R.0; 0/ D 0, thus @f

@t
.0; 0/ ¤ 0 implies Q.0; 0; 0/ ¤ 0. Moreover, applying @ N�
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to (4.1) and taking .t;x;�/D .0;0;0/, we get @R
@ N�
.0;0/D 0, thus @ xR

@�
.0;0/D 0. Suppose

@R
@�
.0; 0/D 0, we deduce from (4.1) by applying @� and taking .t; x;�/D .0; 0; 0/ that

Q.0; 0; 0/ D 0, a contradiction. Therefore, we have @R
@�
.0; 0/ ¤ 0. We conclude from

the discussion above that the Jacobian matrix @.R; xR/

@.�; N�/
.0; 0/ ¤ 0. It follows from the

implicit function theorem in the Gevrey-s class by [16] that there exists an open neigh-
borhood U � Rd of 0 and �.x/ 2 G s.U IC/ such that �.0/ D 0, and R.x; �.x// D 0
for all x 2 U . The desired factorization follows by letting q.t; x/´ Q.t; x; �.x// 2

G s.Rt � Ux/.

Following the proof of [6, Lemma 4.1] while replacing the Malgrange preparation
theorem used there by Proposition 9, and using a G s (Gevrey-s) partition of unity, we
obtain the following result.

Lemma 10. Let p 2 G s
b
.R2n/ and z0 2 @†.p/ such that (1.1) and (1.2) hold. Then

there exists q 2 G s
b
.R2n/ such that q ¤ 0 on p�1.z0/ and

Im.q.p � z0// � 0 near p�1.z0/I jd Re.q.p � z0//j � c > 0 on p�1.z0/:
(4.2)

We are now ready to prove Theorem 1. Let p 2 G s
b
.R2n/, s > 1, and let pw.x;hD/

be the principal part of the semiclassical Gevrey operatorP.h/. Suppose z0 2 @†.p/ n
†1.p/ satisfies conditions (1.1) and (1.2). Let q 2 G s

b
.R2n/ be given in Lemma 10.

We can further assume that jqj D 1 near p�1.z0/, as the inequalities in (4.2) still
hold with q replaced by q=jqj. Since z0 2 @†.p/, there exists a continuous branch of
arg q.�/, � 2 neigh.p�1.z0/IR2n/, i.e., arg q 2 .�0; �0 C 2�/ for some �0 2 R. Oth-
erwise, we can construct a simple closed curve 
 � neigh.p�1.z0/IR2n/ n p�1.z0/
such that the winding number of q.
/ around 0 2 C is non-zero, which implies that
the winding number of p.
/ around z0 is non-zero since Im.q.p � z0// � 0, in con-
tradiction with the assumption that z0 2 @†.p/. Therefore, we have q D ei� with
� 2 G s.U IR/, U D neigh.p�1.z0/IR2n/. Let V � R2n be an open subset satisfying
p�1.z0/ � V b U and let � 2 G sc .R

2n/ be such that �D 1 on xV and supp� � U , we
then set

q.x; �/ D exp.i�.x; �/�.x; �// 2 G sb .R
2n
IC/ satisfies (4.2): (4.3)

Fixing z0 as above, let us consider the semiclassical Gevrey operator

P1.h/´ i�1qw.x; hD/.P.h/ � z0/ (4.4)

whose principal part is pw1 .x; hD/ with p1 ´ i�1q.p � z0/ by Proposition 5. We
next verify that p1 satisfies conditions (1.7)–(1.9). Noting that p�11 .0/ D p�1.z0/

by (4.3), it then follows from (4.2) that

Rep1 � 0 near p�11 .0/I d Imp1 ¤ 0 on p�11 .0/: (4.5)
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Let �0 2 p�11 .0/ D p�1.z0/. By a direct computation, we see that one can obtain a
trajectory of HRe.e�i�.�0/p/ passing through �0 that is contained in p�1.z0/ from a
trajectory of HImp1 passing through �0 that is contained in p�11 .0/ simply by repara-
metrization. Therefore, condition (1.9) must hold for p1 and 0, i.e.,

for all � 2 p�11 .0/; the maximal trajectory of HImp1 passing through �

contains a point where Rep1 > 0: (4.6)

Otherwise, condition (1.2) on p and z0 would be contradicted. In view of (4.5) and
(4.6), repeating the steps to derive (3.17), we can conclude that there exist h0 > 0 and
C > 0 such that (with the unitary operator T defined in (3.9))

kTP1.h/vkHˆt � C
�1h1�

1
s kT vkHˆt ; v 2 L2.Rn/; 0 < h < h0: (4.7)

Recalling (see (3.10)) that Tqw.x;hD/D bw.x;hDx/T for b D q ı ��1� 2 G sb .ƒˆ0/,
and noting that bw.x; hDx/D O.1/WHˆt !Hˆt by [12, Theorems 1.1 and 1.2], we
get from (4.4) and (4.7) that for 0 < h < h0,

kT .P.h/ � z0/vkHˆt � C
�1h1�

1
s kT vkHˆt ; v 2 L2.Rn/:

It follows that for z 2 C such that jz � z0j < .2C/�1h1�
1
s we have for 0 < h < h0,

kT .P.h/ � z/vkHˆt � .2C /
�1h1�

1
s kT vkHˆt ; v 2 L2.Rn/:

Arguing as in the proof of Theorem 2, we conclude from the above estimate that

.P.h/ � z/�1 D O.1/eO.1/h�1=s
W L2.Rn/! L2.Rn/; jz � z0j < C

�1h1�
1
s :

This completes the proof of Theorem 1.
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