J. Spectr. Theory 15 (2025), 1503-1522 © 2025 European Mathematical Society
DOI 10.4171/JST/573 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Boundary spectral estimates for semiclassical Gevrey operators

Haoren Xiong

Abstract. We obtain the spectral and resolvent estimates for semiclassical pseudodifferential
operators with symbol of Gevrey-s regularity, near the boundary of the range of the prin-
cipal symbol. We prove that the boundary spectrum free region is of size O(hl_%) where the
resolvent is at most fractional exponentially large in A, as the semiclassical parameter # — 07,
This is a natural Gevrey analogue of a result by N. Dencker, J. Sjostrand, and M. Zworski in the
C°° and analytic cases.

1. Introduction and statement of results

In this work, we study the spectrum of a non-self-adjoint semiclassical Gevrey pseudo-
differential operator, as the semiclassical parameter 1 — 0. Unlike self-adjoint oper-
ators, it is well known that the spectrum of a non-self-adjoint operator may lie deep
inside the range of its leading symbol as 4 — 0. For instance, the complex har-
monic oscillator: —hzj—xzz + ix? on L?(R), which was used by Davies [5] as an
inspiring example of non-normal differential operators, has purely discrete spectrum
{e!™/*h(2k 4 1) : k € N}; while the range of its symbol £2 + ix2 on (x, £) € T*R
isthe sector{z € C : 0 < argz < 7 /2}.

More generally, Dencker, Sjostrand, and Zworski [6] considered spectral estimates
for quantizations of bounded functions, with all derivatives bounded,

p € CPR™) :={u € C¥(R*) : 3%u € L™(R*") forall @ € N>"}.

It has been pointed out in [6] that the case of functions whose values avoid a point
in C and tend to infinity as (x, £) — oo can be reduced to this case. Let us denote
the closure of range of p by X(p) := p(T*R"), and denote by X, (p) the set of
accumulation points of p at infinity. Let zg € X (p) and suppose the principal-type
condition:

dp(x.§) #0, if p(x,§) = zo. (x,§) € T*R". (1.1)
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For every p € p~1(zo) with zg € 3X(p), let & = 0(p) € R be such that e % dp is real
at p. Let us also assume a non-trapping condition on p and zy (see [6] or [30]):

for every p € p~1(z¢), the complete trajectory of Hye(e—i60) p)

that passes through p is not contained in p~!(zo), (1.2)

where Hy(p) = (fg’(p), —f1(p)), p € T*R", is the Hamilton vector field of f.
Under these conditions, it has been proved in [6] that for a semiclassical operator
P (h) whose principal part is given by the Weyl quantization of p € C;° (R2™):

p¥ (x.hD)u(x) =

/ e;&(x—y%@p(#,e)u(y)dy 46, u e SR,
R2n

1
Qrh)
(1.3)

if zg € 0X(p) \ Zoo(p) satisfies (1.1) and (1.2), then for any M > 0, there exists
ho(M) > 0 such that

{z €C:|z—1z| < Mhlog(%)} No(P(h) =0, 0<h<ho(M), (1.4

where o (P (h)) denotes the spectrum of P (h).
Furthermore, in the case where p is a bounded holomorphic function in a tubular
neighborhood of R?" C C?", then there exist 8¢, #o > 0 such that

{zeC:lz—2z¢| <o} Na(P(h)) =0, 0<h<h,. (1.5)

If we compare the size of the spectrum free region near the boundary of X(p) for
bounded smooth symbols p in (1.4) with that for bounded holomorphic symbols
in (1.5), we observe that the size improves from O (hlog(1/ h)) to O (1). Motivated by
that, the purpose of this work is to explore the spectrum free region near the bound-
ary of X(p) for bounded Gevrey symbols p (see the definition below), which can
be viewed as an interpolating case between the bounded smooth and holomorphic
symbols.

The consideration of Gevrey (pseudo)differential operators has a long-standing
tradition in the theory of PDEs, beginning with the seminal work [2], see also [20,25].
Gevrey regularity problems have been studied in various contexts, including quantum
theory [1,7,15,26,27], FBI transform in Gevrey classes [8, 19], propagation of Gevrey
singularities [17, 18, 31], and Gevrey pseudodifferential operators in the complex
domain [11, 12].

Let s > 1. The bounded (global) Gevrey-s class, denoted by &; (R?), consists of
all functions u € C°(R?) such that there exists C > 0 such that

|0%u(x)| < C' g, foralla € N7, x € RY.
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The Denjoy—Carleman theorem [ 14, Theorem 1.3.8] implies that the Gevrey-s class is
non-quasianalytic, i.e., 5 (R?) := G (R%) N C*®(R") # {0}, when s > 1. Therefore,
there are §* partitions of unity.

To study semiclassical Gevrey operators, we define Gevrey symbols as functions
in 5 (R") that may depend on the semiclassical parameter /1 € (0, 1]. More precisely,
we write a(; 1) € 5 (R?") if and only if for some C > 0 uniformly in /z € (0, 1] we
have

0298 a(x, 0;h) < 1Bl g1 forall o, f € N”, (x,6) € R*".

Let us then introduce semiclassical Gevrey pseudo-differential operators, which are
semiclassical Weyl quantizations of a(-; h) € §5(R?") acting on u € S(R"),

Lx—y)0 (X +y .
/ eh a(—2 ,Q,h)u(y)dyde.
R2n

1
a®(x,hD;h)u(x) = Qnhy

We recall that a® (x, i D; h) extends to a bounded operator on L2(R¢) uniformly in
h € (0, 1], see for instance [32, Section 4.5].

We say that an h-independent function ag € g5 (R?") is the principal symbol of
the semiclassical symbol a(-; h) € &5 (R?") if there exists r(-; h) € &5 (R?") such that

a(x,0:h) = ao(x,0) + hr(x,0;h) forall (x,0) € R*", h e (0,1].

Moreover, ag (x, h D) is called the principal part of a* (x, hD; h).
The following is the main result of this work.

Theorem 1. Let p € G} (R2%), s > 1, and let p¥ (x, hD) be the principal part of a
semiclassical Gevrey operator P(h) = P(x,hD;h). If p and zo € 0Z(p) \ Zoo(p)
satisfy conditions (1.1) and (1.2), then there exist hg > 0 and C > 0 such that

(zeC:|z—z| <C'M"SYNa(P(h) =0, 0<h < ho.
Furthermore, for z € C with |z — zo| < C~'h'=% we have the resolvent estimate
(P(h) —2)"' = O(1) exp(O(1)h~5): LAR™) — L2(R"), 0<h <ho. (1.6)

Remark 1. In the context of resonances, it has been shown in [26,27] that semiclas-
sical Schrodinger operators with §° potentials which are dilation analytic near infinity
have a resonance free region of size O (hl_%) near a non-trapping energy level in the
semiclassical limit # — 0% and that the exponent 1 — 1/s is optimal by constructing
a g% potential such that there exist resonances E near a non-trapping energy level
Ey>0withImE ~ —C hl_%, C > 0, for h sufficiently small [26]. We can therefore
infer that the exponent 1 — 1/s for the spectrum free region in Theorem 1 is optimal.
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Let us also highlight a special case of Theorem 1, which is commonly considered
for evolution equations or semigroups exp(—tP/ h), i.e., the case where

Rep >0 near p~1(0). 1.7
The principal-type condition (1.1) in this case implies that
dimp #0, dRep=0, onp 1 (0). (1.8)
In view of the non-trapping condition (1.2), we assume in this case that

forall p € p~1(0), the maximal trajectory of Hyn p passing through p

contains a point where Re p > 0. (1.9)
Under these conditions, we have the following.

Theorem 2. Let p € G, (R2™), s > 1, and let p¥ (x,hD) be the principal part of a
semiclassical Gevrey operator P(h) = P(x,hD;h). Suppose that 0 ¢ Yo (p) and
that p satisfies (1.7)—(1.9). Then there exist hg > 0 and C > 0 such that

1

|z < C Vand Rez < C7'h'™s = z ¢ o(P(h)), 0<h <h,.

Moreover; the estimate (1.6) holds for z € C with |z| < C™' and Rez < C—1h'=s.

In the case of analytic symbols, Dencker et al [6] proved (1.5) by studying the
action of P(h) on microlocally weighted spaces associated to a family of complex
IR manifolds distorted from the phase space 7*R", see [9] for the original method
and [29, Chapter 12] for a detailed presentation. For a broader context, we also men-
tion what we call the “Martinez’ method” [22]: one can use a non-holomorphic FBI
transform 7': L2(R") — L?(T*R") and impose exponential weights e€/"" directly
on T*R”". This approach was used to study the tunneling effects, for analytic oper-
ators [21,23], and for Gevrey operators [15]. In this paper, we adopt an approach
different from those mentioned above: one modifies the exponential weights for the
Bargmann space, working with a holomorphic FBI transform. A key ingredient in our
proof is a Toeplitz identity that connects the action of semiclassical operators on the
complex domain to the multiplication by the principal symbols. Such a result is essen-
tially well known, see [28] for the analytic case, [10] for the smooth case, and [27]
for the Gevrey case. Thanks to the techniques recently developed in [12], we will
use a straightforward argument to establish a more general Toeplitz identity than that
in [27], see Remark 3.

The paper is organized as follows. In Section 2, we review and introduce some
essential tools for semiclassical pseudodifferential operators with Gevrey symbols,
including a Toeplitz identity in the complex domain and a composition formula in
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the real domain. Section 3 is devoted to the proof of Theorem 2 by introducing small
complex deformations of R?” and working on the FBI transform side. In Section 4,
we introduce a Gevrey multiplier using a version of the Malgrange preparation the-
orem for Gevrey functions, which allows us to reduce Theorem 1 to the more special
Theorem 2, thus completing the proof of our main theorem.

2. Review of semiclassical Gevrey operators in the complex domain

Let @ be a strictly plurisubharmonic quadratic form on C” and let us set

Ao, = {(x,lzaa;(;o(x)), X € (C"} c C?m,

Let us also introduce the Bargmann space
Ha,(C™) = Hol(C™) N L2(C", e~ 2%/ [ (dx)), (2.1

where L(dx) is the Lebesgue measure on C” and 0 < & < 1 is the semiclassical
parameter. Using the projection map 7y: Ag, 3 (x,§) > x € C" =~ R?", we identify
A g, with C and define the Gevrey spaces 9 (Aa,), 95 (Aa,). Leta € G5 (Ag,) be
an h-independent symbol, for some s > 1, and let u € Hol(C”) be such that

u(x) = Op,n(1){x)™Ne®o@/h

for all N € N. We introduce the semiclassical Weyl quantization of a acting on u,

1 i
af (. hD () = // eﬁ(x_y)'ea(¥,9)u(y)dy/\d@. 2.2)
T'(x)

Here I'(x) c C 5’”9 is the natural integration contour given by

= 20002ty

n

Let next ®; € C11(C";R) be such that
[V (@1 — @) || Loo(cny < C'h", k=0,1,2, (2.3)
for some C > 0 sufficiently large. We set w = h'=5 and introduce the following

2n-dimensional Lipschitz contour for x € C”:

200
re(x): 6= —a—l(

i ox

X+y
2

) +ifole=y). yeC' @4
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where

Z, lz| < w,

fo)={" @.5)

wlz|7'Z, |z] > .
Leta € §,(C 2m) be an almost holomorphic extension of a such that suppa C A, +
Bc24(0, Cp), for some Cy > 0. We remark that the existence of such an almost holo-
morphic extension whose Gevrey order is the same as that of a is due to Carleson [4]
(see also [8]). It has been established in [12, Theorem 1.1] that for 1 < s < 2 (the
complementary range s > 2 will be discussed later),

@ (x,hDy) — %, (x,hDy) = O(1) exp(~C~'h™%) :
Lo (2.6)

Hg, (C") — L2(C", e 22/ L (dx)),

where C > 0 is a constant and we have set, similarly to (2.1),

Hg, (C") = Hol(C™) N L2(C", e 221/" L (dx)).

The realization

~ 1 Lx—y)0~ (X TV
w _ (x—y)-0
111,3, (x,hDx)u(x) = (Znh)"//eh a( 5 ,G)u(y)dy/\dG

o' ()
satisfies (see [12, Theorem. 1.1 and 1.2])

a%l (x,hDy) = O(1) : Hp,(C") — L3(C", e 2%/ [(dx)).

Let us also recall the following version of the Fourier inversion formula in the complex
domain, see for instance [13]. Let u € Hol(C") be such that

u(x) = Op(1)(x)Noe o)™,

for some Ny > 0. Then,

1 i
— 7 (x—y)-6
u(x) = i) //eh Y%u(y)dy A d6. 2.7

Tl (x)

In particular, (2.7) holds for v € He, (C") = Hg,(C") (they are equal as linear
spaces). Similarly, for such functions, we find by Stokes’ formula, writing Dy, :=
i~10,,

J b

1
Qrh)

hDy u(x) = //eli(x—y)'eeju(y) dyndf, 1<j<n. (2.8)

Il (x)
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Setting &1 (x) = L (x), we get by a Taylor expansion, when (y, 0) € T, 1(x)

zax

(X + - - -
a( 2y 0) = d(po) + 0:a(po) - Ay + doii(po) - MO +r(x,3,0),  (29)

with more compact notation: pg = (x,§1(x)), Ay = 5=, A6 = 6 — & (x), and
r(x,y,0) == dzd(po) - Ay + aéa(po)-EJr/a—z)ag”(x,y,e)dz. (2.10)

Here a,z)(x y.0) = O(1)|x — y|?, since, along the contour I, 1(x) we have
1A0] =10 — £1(0)] < IV2@il|zeoem|x — ¥ + [ fox = »)| < O(x = y)).
Let us recall from [8, Remark 1.7] that there exists C > 0 such that
0 (x, &) < Cexp (— Cdist((x, &), A%)—ﬁ), (x,£) e C?", (2.11)

We also note that

d d
dist(po. Aag) < |7 50 = 2020 ()|

_1
< 2| V(@1 — ®o)|lLoo(cny < O(1)A 5. (2.12)

Combing (2.10)—(2.12) we conclude

r(x,7.0) = O()|x — y|> + O(1) exp(-C'h~5), C > 0. (2.13)
Let us set
Ru(x) = o h)” // iG> Or(x,y,.0)u(y)dy A db,
Iy ()
we shall next check that
R = O(h): L3(C", e 2®/"L(dx)) — L*(C",e 22/ L(dx)). (2.14)

To this end, we consider the distribution kernel of R, writing

Ru(x) = / k(e y: bu(y) L(dy).

we infer from the proof of [12, Theorem 3.3] together with (2.13) that

Fo(x—y)
2h

D1(y) 1,1
< O (x = yP 4 e €T e
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provided that the constant in (2.3) is sufficiently large. Here, following [12], we set

{|z|2, 2] < o,
0 < Fyu(z) =Re(z- fp(2)) =

wl|z], |z| > w.
In view of Schur’s lemma, we only have to control the L! norm

X X2 w|X
h—"/|x|2e—F‘5z5 " L(dx) =h—"/|x|2e—'22L(dx)+h—"/|x|2e—z'h'L(dx)

|x|<w |x|>w
hn+1
< O(h +O(Dh—ss = O(h).

since % = h%_l < 1if 1 < s < 2. The estimate (2.14) therefore follows, and com-
bining it with (2.6), (2.9), (2.7), and (2.8), we get foru € Hg, (C"),

a® (x,hDx)u(x) = a(x, £1(x)u(x) + 0ga(x, £1(x)) - (hDyx — E1(x))u(x) + Ru,
(2.15)
with
R = 0O(h): Hp, (C") — L*(C", e 22/ L (dx)).

The discussion above, developed in the case 1 < s < 2, extends to the complementary
range s > 2. Indeed, in this case, an application of [12, Theorem 1.2] yields

af (x,hDx) =%, (x.hDx) = 0O(1) exp(—C 1 hmz=2),
nl/2

Hg (C") — L2(C", e 22" (dx)), C > 0.

Here I' 51

with  replaced by h'/2 > w. We have

‘/2 (x) is the 2n-dimensional Lipschitz contour defined as in (2.4) and (2.5),

@'y, (x.hDy) =0(1): He,(C") — L2(C", 7221/ L (dx)).

nl/2

It is then easy to see that we still get (2.15) for s > 2.
Using (2.15) and arguing as in [10, 28], we get the following result.

Proposition 2. Let a € §(Aa,), s > 1, and let &1 € C1'(C") be such that (2.3)
holds. Let a € G, (C2™) be an almost holomorphic extension of a such that supp a C
Ao, + Bc2n (0, Cp), for some Co > 0. Let y € WH®(C") < ¢ € L®(C"),
Vi € L*®(C"). We have foru,v € He, (C"),

(W a® (2 h D, V) gy, = f YA & ()u (v (e 21O L(dx)

+ O |ulle, lvlag, - (2.16)
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Letb € ;(Ag,), s > 1, and let us apply Proposition 2 with b* (x, h D )v repla-
cing v, for some v € Hg, (C"), using also (2.16) for b¥ (x, hD,). We obtain

f Y (x)a(x, £ (x))b(x, &1 (x)u(x)v(x)e 2®1/h L (dx)
= (¥ a” (x. hD)u.b* (x. kD)) g, + O ullgg, IVlHe, - (2.17)

Here b € glf (C 21 is an almost holomorphic extension of b, as above, and we have
also used the fact that b* (x, hDy) = O(1): He,(C") — Ho,(C"), see [11,12].

Remark 3. The Toeplitz identity (Proposition 2) we derived is more general than
[27, Proposition 4.1]. Notably, the weight ®, is only required to be C !:!-close to @y,
rather than close in ¥° This relaxation allows us to use just a C° escape function
(see Lemma 6) instead of a §° escape function. More importantly, the cutoff i is
only assumed to be W 1:* instead of C as required in [27]. This weaker assumption
makes it possible to derive elliptic estimates near infinity, such as Proposition 4.

As an application of Proposition 2 and (2.17), we derive an elliptic estimate for
future reference. Let us make an assumption on a € §;(Ag,) that there exists a
bounded open subset U C C” with a constant C > 0 such that

la(x,§)|>2/C, (x.§) € Ag,. x € C"\U. (2.13)
Under this assumption, we have the following.

Proposition 4. Suppose a € §; (A s,) satisfies (2.18) for some bounded open set U C
C" and some C > 0. Let a € §;(C 2) be an almost holomorphic extension of a as
in Proposition 2, and let ®, € CV1(C™) be such that (2.3) holds. Then there exists
ho > 0 such that for all0 < h < hg andu € Hg, we have

/IM(X)I2 S L(dx) < 0(1)a® (x, hD D7y, @y + OWIullF,
ci\U
(2.19)

Proof. , It follows from Proposition 2 and more specifically, equation (2.17) that for
u € Hg (C"),

[ GG 5 )P o) Pe =4 L(d)
= la® (x.hD)ullgy, cm + OWuly, ©n)- (2.20)

Recalling from (2.12) that dist((x, &1 (x)), Aa,) = (9(1)h1 , then for & sufficiently
small we have, in view of (2.18) and the fact thata € §; ((CZ”), d|Ag, =4,

la(x,&(x)] = 1/C, xeC"\U.

Combining this with (2.20) we obtain (2.19). ]
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We finish this section by discussing the composition of semiclassical Gevrey oper-
ators in the real domain. It has been proved in [17, 19] that for a, b € §5(R?") one
has a¥(x,hD) o b¥(x,hD) = ¢ (x,hD;h) where c(-;h) = a #b € §5(R*"). An
alternative proof of this result has been provided in [12, Section 3.3] using contour
deformations. For future reference, we note a slightly finer characterization of the
composed symbol ¢ = a # b than ¢ € §(R?") as follows.

Proposition 5. Let a,b € §§ (R?") be h-independent symbols for some s > 1, and let
c¥(x,hD;h) = a%(x,hD) o b¥(x,hD). Then the symbol c satisfies

c(x,0:h) = a(x,0)b(x,0) + hr(x,0;h), (x,0) e R*", (2.21)
for some r(; h) € G5 (R?").

Proof. Let us first recall the following oscillatory integral representation of the com-
posed symbol ¢ = a # b, see for instance [32, Chapter 4]:

c(x,0;h)
1 i )
= G /e—zhU(yl,m,yz,nz)a()c-f-yh O+n)b(x+y2, 0+n2) dyidnidyrdns.
R4n

(2.22)

Here o is the standard symplectic form on R?”". Let y € §5(R*") be a Gevrey cutoff
function such that y(Y) = 1 for |Y| < 1, Y € R*", with suppy C Bgax(0,2), and let

ry(x,0:h) = / RO (1 — y(yy, 1, y2, 72)
R4n

a(x + y1,0 + n)b(x 4+ y2,0 + n2) dyrdmdyzdn,.  (2.23)

1
(7‘[]’1)2”

It has been established in [12, Proposition 3.8] that for some C > 0 uniformly in
h € (0, 1] we have for all o, 8 € N” and (x, §) € R?",

1 1
0200 ry(x. 0: 1) < C1HIHBlg 1 g1s exp(—mh ) (2.24)

To analyze the term ¢ — r,,, we consider the following more general integral:
Ly = [ Oy ()ate + ) ay.
RN

where ¢(y) = %Ay - y is a real non-degenerate quadratic form on R¥, g I (RM)
and y € §5(RV) satisfies y(y) = 1 for |y| < 1.
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By Parseval’s formula, writing tya(y) = a(x + y) we have

. —N/2,i%sgn A
N i gl _ (2n) el
Li(x;h) = Cy / e 2 Txa(mdn, Cyq = et A[1/2

RN

where sgn A is the signature of A, y7ca(n) = [gn e y(ya(x + y)dy is the
Fourier transform. Using ¢'® = 1 +io fol e''9dt, o € R, we getby [pn 0i(n) dn =
2r)Vu(0),

L(x;h) = Ca(@m)Na(x) + hiy i (x;h)), (2.25)

i rl _ith

where L1 (xih) = —& [ fon e 847 00471y )y gva(n) dn de.
To derive Gevrey estimates for 1,1 (x; h), we observe that for every « € NV,

1
Iy (x;h) = %[/ e~ AT () iy d, (2.26)
0 RN

with
Ura(y) = (A710, - 0y) (x(»)%a(x + ¥)).

It follows that [0% 1, 1 (x; h)| < %H@

1/2 1/2
[ wian < ( / |a(n)|2<1+|n|2)"dn) ( / (1+|n|2)_kdn)
RN

RN RN

|1 (®~y- By the Cauchy-Schwarz inequality,

= Cillull g+ ®wn)y

for any k > N/2, k € N. We obtain therefore [051,1(x; h)| < Clluxqllgxgny for
some k € N and C > 0 depending only on the dimension N. Recalling the definition
of uyq given in (2.26) and the assumptions that y € §¢, a € §;, we conclude that
there exists C > O uniformly in 2 € (0, 1] such that

1091, 1 (x:h)| < C1Hlgts foralla € NV, x e RY. (2.27)

Combining (2.25) and (2.27), and applying the result to the integral representation of
¢ — ry, we obtain via a direct computation that

c(x,0;h) —ry(x,0:h) = a(x,0)b(x,0) + hri(x,0:h), (x,0) € R*",

for some ri(-; h) € &5 (R2™). This and (2.24), together with equations (2.22) and
(2.23), imply the desired result (2.21). [ ]
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3. Complex deformations and Proof of Theorem 2

Let p € §5(R?"), s > 1. Let zg € 92 (p) \ Soo(p) satisfy conditions (1.7)~(1.9). We
first recall from [6, Lemma 4.2] the existence of an escape function.

Lemma 6. Let p and zo be given as in Theorem 2 such that (1.7)—(1.9) hold. Then
there exists G € C2°(R?"; R) such that for some constant ¢ > 0 we have

Hin pG(p) < —c <0, pe p~(z0). 3.1

We now introduce small compactly supported deformations of the real space R?".
Let Hg(p) = (Gé (p), =G (p)) be the Hamilton vector field of G, and set

A :={p+itHg(p);p e T*R"} Cc C*", t eR, |t| small. (3.2)

We note that A,;¢ is I-Lagrangian and R-symplectic, in the sense that o4, is real
and non-degenerate, where 0 = d £ A dx is the complex symplectic form on C? x C g‘
Let p € §5(C?") be an almost holomorphic extension of p, which is supported in a
bounded tubular neighborhood of R?" C C2". We shall explore the behavior of p|4,
near some p € neigh(p~!(zg); R?").

For simplicity, we may assume zy = 0 by subtracting zy from p. Let us use
Taylor’s formula to expand p at p € neigh(p~'(0); R?*) and write

P(p+itHg(p)) = p(p) + itHg p(p) + O(t?)
= p(p) — itHre ,G(p) + tHim pG(p) + O(1?),

where we used the facts that §|g2n = p, dp|gen = 0. We obtain therefore
Re p(p + itHg(p)) = Re p(p) + tHim ,G(p) + O (7).

Letting Q C R2" be a sufficiently small neighborhood of p~!(0) which is compact in
R2" since 0 ¢ Too(p), we can infer from (1.7), (3.1), and the computation above that
there exist y > 0 and ¢ty > 0 such that

Rep(p+itHg(p)) = ylt], p€RQ, 1o <t <0. (3.3)

Let us now move to the FBI transform side. Let ¢(x, y) be a holomorphic quadratic
form on C} x C§ with Im ¢, > 0, dety,, # 0. To ¢ we associate the complex linear
canonical transformation

kg1 C2" 3 (v~} (x. 7)) > (x. B (x, ) € 2. (3.4)

Recalling for instance [32, Theorem 13.5], we have

Kkp(R*") = Aoy, Ao, 1= {(x %%(x));x € (C"} c C?,
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where
®o(x) = max —Im¢(x,y) (3.5)
yeR”?

is a strictly plurisubharmonic quadratic form on C”.
Let us also recall from [30, Section 2] that

200
ks(ArG) = Ao, = {<x lfa—x’(x));x c (C”} cc?, (3.6)
with
D (x) = veypecnxrr (—Im@p(x,y) —n-Imy + tG(Re y, n)). 3.7

Computing the critical value in (3.7) as a perturbation of t = 0, we obtain

@, (x) = Bo(x) + tG(Kgl(x, l%%(x))) + 0. (3.8)

To see this, we first observe by comparing (3.5) and (3.7) that ®;(x)|;=0 = Po(x)
since

V.C.(y,mecnxrr (—Im@(x, y) —n-Imy) = max - Im¢(x, y),
and that there is a single critical point (g, 79) = K;l (x, %%(x)) € R?" due to the
non-degeneracy of Im ¢, It follows that the critical value in (3.7) is also evaluated
at a single critical point when ¢ is small. Let us then differentiate the critical value
@, (x) in the parameter #; in view of (3.7), we get

(349, (Dlim0 = GRe yo.10) = G (i (x. 220 (1)) ).

where we noticed that yo € R”. We obtain therefore (3.8) by Taylor’s formula.
Let us introduce the FBI-Bargmann transform associated to ¢:

Tu(x;h) = C,h~3"/* / e PN My () dy, (3.9)

R~

where Cy, is chosen such that T: L?(R") — Hg,(C") is unitary, see [32, Theorem
13.7].Leta = po K;l €9, (Ao,),thena := po K(;l € ﬁg((CZ”) is an almost holo-
morphic extension of a such that suppa C Ag, + B2 (0, Cp) for some Cy > 0. The
exact Egorov theorem (see for example [32, Theorem 13.9]) implies that

a*(x,hDy)oT =T o p¥(x,hD), (3.10)

where a¥(x, hDy) is the semiclassical Weyl quantization of a € §;(Ag,) given
by (2.2) while p¥(x, hD) is the semiclassical Weyl quantization of p € & (R?*")
defined in (1.3).
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Letus setf = —eh!~5 for € > 0 small but independent of /. In view of (3.8), we
see that (2.3) holds with @, replacing @1, if € > 0 is small enough. Applying (2.16)
with ¢ = 1 and the weight ®;, we get

Re(@"™ (x,hDx)u, u)ng,

_ (. 200 2 _2®,(x)/h 2
_/Rea(x,lfg(x))|u(x)| e L(dx) + OW)|lull}y, . (.11)

Let @ C R?” be an open neighborhood of p~!(0) such that (3.3) holds. We set
U = nx(kg({p +itHg(p) : p € Q})) C C”, (3.12)

where 7x: Ag, 3 (x,§) — x € C” is the projection map, and kg is the canonical
transform defined in (3.4). We note that U is open and bounded since p~'(0) C R?"
is compact, which is due to the assumption 0 ¢ ¥, (p). Combing (3.3) with (3.2),
(3.6), and recallinga = p o K;l, we obtain for some y > 0, £y > 0 as in (3.3),

20
Red(x, T—t(x)> >ylt], xeU, —ty<t=<0. (3.13)
i Ox

We shall next show that a = p o k"

in (3.12). To this end, we first note that

satisfies the condition (2.18) with U given

Ko:={xeC":a(x,£) =0, (x,&) € Ag,} = 7x(kg(p~'(0))) C C" is compact.

Since mx: A, — C", —tp <t <0, K¢:R2" — Ao, or At;g — Ao, and gr:R?" >
p— p+itHg(p) € Asg are all diffeomorphisms between corresponding submani-
folds of C2", we get that Uy := 7y (k4 (€2)) C C" is an open neighborhood of K¢ and
that U defined in (3.12) is open. To see Ko C U, it suffices to show that dist(0U, K¢) >
0 (note that U is bounded). Let x; € U, x; = mx (kg (p + itHg (p))) for some p € 0Q2.
Since x = mx(ky(p)) € AUy and Ko C Uy, we have dist(x, Ko) > dist(dUyp, Ko) =:
8o > 0. Noting that |x; — x| = O(]¢]), we get therefore dist(x;, K¢) > §¢/2 for all
—tp <t < 0 by taking a smaller 7 if necessary. We conclude from the above discus-
sion that

2
la(x, &)| > ok (x,6) € Ap,, x € C"\U, —19<t=<0, (3.14)
for some C > 0 uniform in —#p < t < 0 (noting that U depends on ?).
We now let f = —eh'~% with € > 0 small but fixed, and let z € C be such that

—C7! <Rez < (%)hl—%, |Imz| < C™!, C > 0 sufficiently large. (3.15)
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Combining (3.11), (3.13), and (3.15), we get
Re((@” (x,hDx) — z)u, u) gy,

€ _1 B
= (50l = 0Nl =0 [ eoPe > ™/ L),
C"\U

In view of (3.14) and (3.15), we can apply Proposition 4 to the symbol a — z with &,
in place of @1, therefore, for 0 < & < hy we have

Re((a" (x,hDx) = 2)u,u)pg, + O(Dl(@” (x,hDx) — 2)ullf,,

= ((5)n=+ —ow)lul,, = ' ul,, -

Here hg, § > 0 are small constants. By the Peter—Paul inequality,
Re((@”(x,hDy) — z)u, u)Hg,
< IR iy, + o @ D — 2l
Combining the estimates above, we conclude that for some C > 0,

1@ (x,hDx) = Dl o, = C W5 |ullry, . u € Hay, 0 < h < ho. (3.16)
Writing P(h) = p¥(x,hD) + hp¥(x,hD; h) for some p1(-; h) € §5(R?"), we get
TP(h) = (a*(x,hDy) + hay (x,hDx; h))T: L*(R") — Hg,

with a;(-; h) € 5 (Ag,). We can infer from the proofs in [12] that
ai(h) € §(Ao,) = ai(x,hDyx;h) =0O(l): Hp, > Ho,.
Therefore, by (3.16), there exists C > 0 uniformly in 0 < 4 < hg such that

IT(P(h) = 2)vlle, = RC) W' "5 Tvlg,,. v e LAR™. (3.17)

. . 1
Here we note that Hp, = Ha, as linear spaces. Since ||®; — @ ||oo(cny < C 1Al 75,
we can change the norm || - || g, to || - || Hg,, in(3.17) and use the fact that the operator
T:L?(R") — Hg, is unitary, to obtain

_ _1 _ —1/s
I(P(h) = 2)vll 2@y = CT A5 e OO || 2 gy, v € L2(R™).

This implies that P(h) — z: L>(R") — L?(R") is injective. Since 0 ¢ oo (p), it has
been shown in the proof of [6, Proposition 3.3] that P(h) — z: L? — L? is a Fredholm
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operator with index O for z in an @ (1)-neighborhood of 0 and 4 sufficiently small. We
can therefore conclude that for some /o > 0 and for all z satisfying (3.15),

(P(h) —z)"' = @(1)e®DI™ . [2RM) 5 L2(RM), 0 < h < ho.
This completes the proof of Theorem 2.

Remark 7. It is worth noting that Theorem 2 can also be proved using Martinez’s
method [22], together with the main results of [15, Theorems 1 and 1’]. However,
we choose an alternative approach that makes use of the escape function in a more
geometric manner, involving complex I-Lagrangian manifolds and modification of the
exponential weights for the Bargmann space. Additionally, our proof highlights the
strength of the generalized Toeplitz-type identity (Proposition 2), which is expected
to be of independent interest and have further applications.

4. Proof of Theorem 1

We start with an adaption of [6, Lemma 4.1] to the Gevrey class, which can be
achieved by following the proof in [6] and using a division theorem for Gevrey func-
tions given in [3]. In fact, we only need a special case of [3, Theorem 5] (when m = 1).

Proposition 8. Let Q be a domain in R? and let feg R xQ;C). Let P(t,x) =
t +a(x)witha € §5(2; C). Then there exist Q € §5(R x Q;C)and R € §°(Q2;C)
such that

ft,x) =0, x)P(t,x)+ R(x), (t,x) e RxQ.

Following an argument in [24], we can deduce a preparation theorem for Gevrey
functions from the division theorem above.

Proposition 9. Ler f(t,x) € (R x R?; C). Suppose that £(0,0) =0, %(O, 0) #0.
Then in an open neighborhood of (0,0) € R x R4 we have the factorization

f(t,x) = q@. x)@ + A(x))
where q and A are §° complex-valued functions with ¢(0,0) # 0, A(0) = 0.

Proof. Let us introduce a generic complex variable A € C. We note that F(¢,x,A) :=
f(t,x) e 5R; x ng x C,), P(t,x,A) :=t + A, then by Proposition 8, we have

ft,x) = 0@, x,A)(t + L)+ R(x,7), 4.1)

for some Q € §°(R; x RY x C;), R € 9°(R¢ x C;). Since f(0,0) = 0 we must
have R(0,0) = 0, thus %—{(O, 0) # 0 implies Q(0,0,0) # 0. Moreover, applying 93
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to (4.1) and taking (¢, x,4) = (0,0,0), we get (0 0) =0, thus gf (0,0) =0. Suppose

(0, 0) = 0, we deduce from (4.1) by applymg d, and taking (¢, x,A) = (0,0, 0) that
Q(O 0,0) = 0, a contradiction. Therefore, we have gff (0,0) # 0. We conclude from
the discussion above that the Jacobian matrix %((Ii R)) (0,0) # 0. It follows from the
implicit function theorem in the Gevrey-s class by [16] that there exists an open neigh-
borhood U € R? of 0 and A(x) € €5(U: C) such that A(0) = 0, and R(x, A(x)) =0
for all x € U. The desired factorization follows by letting ¢ (¢, x) := Q(¢, x, A(x)) €
G5 (R, x Uy). ]

Following the proof of [6, Lemma 4.1] while replacing the Malgrange preparation
theorem used there by Proposition 9, and using a §° (Gevrey-s) partition of unity, we
obtain the following result.

Lemma 10. Let p € ﬁg(Rz”) and zg € 0X(p) such that (1.1) and (1.2) hold. Then
there exists q € Gy (R2™) such that ¢ # 0 on p~1(z¢) and

Im(q(p —z0)) >0 near p~'(z0);  |dRe(q(p —z0))| = ¢ >0 onp~'(zo).
(4.2)

We are now ready to prove Theorem 1. Let p € G} (R2%),s > 1,and let p¥ (x,hD)
be the principal part of the semiclassical Gevrey operator P (k). Suppose zg € 0% (p) \
Y o(p) satisfies conditions (1.1) and (1.2). Let g € &} (R2") be given in Lemma 10.
We can further assume that |¢| = 1 near p~!(z¢), as the inequalities in (4.2) still
hold with ¢ replaced by ¢/|q|. Since zo € dX(p), there exists a continuous branch of
argq(p), p € neigh(p~1(z); R?"), i.e., argq € (A, Oy + 2m) for some Hy € R. Oth-
erwise, we can construct a simple closed curve y C neigh(p~!(z0);: R?") \ p~!(z¢)
such that the winding number of ¢g(y) around 0 € C is non-zero, which implies that
the winding number of p(y) around zq is non-zero since Im(q(p — z¢)) > 0, in con-
tradiction with the assumption that zo € 9% (p). Therefore, we have ¢ = €' with
0 € §5(U;R), U = neigh(p~'(2z9); R?"). Let V C R?" be an open subset satisfying
p~Yzo) CV €U and let y € §5(R?") be such that y = 1 on V and suppy C U, we
then set

q(x,8) = exp(iy(x,£)0(x,£) € §S(R*;C) satisfies (4.2). 4.3)
Fixing z¢ as above, let us consider the semiclassical Gevrey operator
Pi(h) :==i"'q" (x,hD)(P(h) — zo) 4.4

whose principal part is p¥ (x, 2D) with p; :=i~'q(p — zo) by Proposition 5. We
next verify that p; satisfies conditions (1.7)—(1.9). Noting that p;7'(0) = p~!(zo)
by (4.3), it then follows from (4.2) that

Re p; >0 near p;'(0); d Imp; #0 on p;'(0). 4.5)
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Let po € p;'(0) = p~'(z0). By a direct computation, we see that one can obtain a

trajectory of Hpy,,—i6w) ,) passing through po that is contained in p~(z0) from a

e(e

trajectory of Hyy, p, passing through pg that is contained in P1_1 (0) simply by repara-
metrization. Therefore, condition (1.9) must hold for p; and 0, i.e.,

forall p € P1_1 (0), the maximal trajectory of Hyy p, passing through p
contains a point where Re p; > 0. (4.6)
Otherwise, condition (1.2) on p and zo would be contradicted. In view of (4.5) and

(4.6), repeating the steps to derive (3.17), we can conclude that there exist 19 > 0 and
C > 0 such that (with the unitary operator 7" defined in (3.9))

ITPL(W)llry, = CT0' "5 | Tollge,, veL*RY), 0<h<hy (47

Recalling (see (3.10)) that Tq™ (x,hD) = b* (x,hD,)T forb =g o x;l € G (Aoy),
and noting that b* (x,hDx) = O(1): He, — Hg, by [12, Theorems 1.1 and 1.2], we
get from (4.4) and (4.7) that for 0 < h < hy,

IT(P(h) = 20)vlltg, = CT R 3 Tollag,. v € LAR").
It follows that for z € C such that |z — zo| < (2C)~'h'~5 we have for 0 < h < hy,
IT(P(h) —2)vllHg, = (2C)_1h1_%||TU||H<p,7 v e L*R").
Arguing as in the proof of Theorem 2, we conclude from the above estimate that
(P(h) —2)"1 = O(1)e®Dh ™ [2(RM) 5 L2(RY), |z —zo| < C~1h1"5.

This completes the proof of Theorem 1.
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