Boundary spectral estimates for semiclassical Gevrey operators

Haoren Xiong

Abstract. We obtain the spectral and resolvent estimates for semiclassical pseudodifferential operators with symbol of Gevrey-s regularity, near the boundary of the range of the principal symbol. We prove that the boundary spectrum free region is of size $\mathcal{O}(h^{1-\frac{1}{s}})$ where the resolvent is at most fractional exponentially large in h, as the semiclassical parameter $h \to 0^+$. This is a natural Gevrey analogue of a result by N. Dencker, J. Sjöstrand, and M. Zworski in the C^{∞} and analytic cases.

1. Introduction and statement of results

In this work, we study the spectrum of a non-self-adjoint semiclassical Gevrey pseudo-differential operator, as the semiclassical parameter $h \to 0^+$. Unlike self-adjoint operators, it is well known that the spectrum of a non-self-adjoint operator may lie deep inside the range of its leading symbol as $h \to 0^+$. For instance, the complex harmonic oscillator: $-h^2\frac{d^2}{dx^2}+ix^2$ on $L^2(\mathbb{R})$, which was used by Davies [5] as an inspiring example of non-normal differential operators, has purely discrete spectrum $\{e^{i\pi/4}h(2k+1): k \in \mathbb{N}\}$; while the range of its symbol $\xi^2 + ix^2$ on $(x,\xi) \in T^*\mathbb{R}$ is the sector $\{z \in \mathbb{C}: 0 \le \arg z \le \pi/2\}$.

More generally, Dencker, Sjöstrand, and Zworski [6] considered spectral estimates for quantizations of bounded functions, with all derivatives bounded,

$$p \in C_h^{\infty}(\mathbb{R}^{2n}) := \{ u \in C^{\infty}(\mathbb{R}^{2n}) : \partial^{\alpha} u \in L^{\infty}(\mathbb{R}^{2n}) \text{ for all } \alpha \in \mathbb{N}^{2n} \}.$$

It has been pointed out in [6] that the case of functions whose values avoid a point in $\mathbb C$ and tend to infinity as $(x,\xi)\to\infty$ can be reduced to this case. Let us denote the closure of range of p by $\Sigma(p):=\overline{p(T^*\mathbb R^n)}$, and denote by $\Sigma_\infty(p)$ the set of accumulation points of p at infinity. Let $z_0\in\partial\Sigma(p)$ and suppose the principal-type condition:

$$dp(x,\xi) \neq 0$$
, if $p(x,\xi) = z_0$, $(x,\xi) \in T^*\mathbb{R}^n$. (1.1)

Mathematics Subject Classification 2020: 35S05 (primary); 35P05 (secondary). *Keywords:* pseudospectra, resolvent, Gevrey classes, semiclassical operators.

For every $\rho \in p^{-1}(z_0)$ with $z_0 \in \partial \Sigma(p)$, let $\theta = \theta(\rho) \in \mathbb{R}$ be such that $e^{-i\theta}dp$ is real at ρ . Let us also assume a non-trapping condition on p and z_0 (see [6] or [30]):

for every
$$\rho \in p^{-1}(z_0)$$
, the complete trajectory of $H_{\text{Re}(e^{-i\theta(\rho)}p)}$ that passes through ρ is not contained in $p^{-1}(z_0)$, (1.2)

where $H_f(\rho) = (f'_{\xi}(\rho), -f'_{\chi}(\rho)), \rho \in T^*\mathbb{R}^n$, is the Hamilton vector field of f.

Under these conditions, it has been proved in [6] that for a semiclassical operator P(h) whose principal part is given by the Weyl quantization of $p \in C_h^{\infty}(\mathbb{R}^{2n})$:

$$p^{w}(x,hD)u(x) = \frac{1}{(2\pi h)^{n}} \int_{\mathbb{R}^{2n}} e^{\frac{i}{h}(x-y)\cdot\theta} p\left(\frac{x+y}{2},\theta\right) u(y) \, dy \, d\theta, \quad u \in \mathbb{S}(\mathbb{R}^{n}),$$
(1.3)

if $z_0 \in \partial \Sigma(p) \setminus \Sigma_{\infty}(p)$ satisfies (1.1) and (1.2), then for any M > 0, there exists $h_0(M) > 0$ such that

$$\left\{ z \in \mathbb{C} : |z - z_0| < Mh \log\left(\frac{1}{h}\right) \right\} \cap \sigma(P(h)) = \emptyset, \quad 0 < h < h_0(M), \quad (1.4)$$

where $\sigma(P(h))$ denotes the spectrum of P(h).

Furthermore, in the case where p is a bounded holomorphic function in a tubular neighborhood of $\mathbb{R}^{2n} \subset \mathbb{C}^{2n}$, then there exist δ_0 , $h_0 > 0$ such that

$$\{z \in \mathbb{C} : |z - z_0| < \delta_0\} \cap \sigma(P(h)) = \emptyset, \quad 0 < h < h_0.$$
 (1.5)

If we compare the size of the spectrum free region near the boundary of $\Sigma(p)$ for bounded smooth symbols p in (1.4) with that for bounded holomorphic symbols in (1.5), we observe that the size improves from $\mathcal{O}(h\log(1/h))$ to $\mathcal{O}(1)$. Motivated by that, the purpose of this work is to explore the spectrum free region near the boundary of $\Sigma(p)$ for bounded Gevrey symbols p (see the definition below), which can be viewed as an interpolating case between the bounded smooth and holomorphic symbols.

The consideration of Gevrey (pseudo)differential operators has a long-standing tradition in the theory of PDEs, beginning with the seminal work [2], see also [20,25]. Gevrey regularity problems have been studied in various contexts, including quantum theory [1,7,15,26,27], FBI transform in Gevrey classes [8,19], propagation of Gevrey singularities [17, 18, 31], and Gevrey pseudodifferential operators in the complex domain [11,12].

Let s > 1. The bounded (global) Gevrey-s class, denoted by $\mathcal{G}_b^s(\mathbb{R}^d)$, consists of all functions $u \in C^{\infty}(\mathbb{R}^d)$ such that there exists C > 0 such that

$$|\partial^{\alpha} u(x)| \le C^{1+|\alpha|} \alpha!^{s}$$
, for all $\alpha \in \mathbb{N}^{d}$, $x \in \mathbb{R}^{d}$.

The Denjoy–Carleman theorem [14, Theorem 1.3.8] implies that the Gevrey-s class is non-quasianalytic, i.e., $\mathcal{G}_{c}^{s}(\mathbb{R}^{d}) := \mathcal{G}_{b}^{s}(\mathbb{R}^{d}) \cap C_{c}^{\infty}(\mathbb{R}^{n}) \neq \{0\}$, when s > 1. Therefore, there are \mathcal{G}^{s} partitions of unity.

To study semiclassical Gevrey operators, we define Gevrey symbols as functions in $\mathcal{G}_b^s(\mathbb{R}^{2n})$ that may depend on the semiclassical parameter $h \in (0, 1]$. More precisely, we write $a(\cdot; h) \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ if and only if for some C > 0 uniformly in $h \in (0, 1]$ we have

$$|\partial_x^{\alpha}\partial_{\beta}^{\beta}a(x,\theta;h)| \leq C^{1+|\alpha|+|\beta|}\alpha!^{s}\beta!^{s}$$
 for all $l\alpha,\beta\in\mathbb{N}^n$, $(x,\theta)\in\mathbb{R}^{2n}$.

Let us then introduce semiclassical Gevrey pseudo-differential operators, which are semiclassical Weyl quantizations of $a(\cdot; h) \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ acting on $u \in \mathcal{S}(\mathbb{R}^n)$,

$$a^w(x,hD;h)u(x) = \frac{1}{(2\pi h)^n} \int_{\mathbb{R}^{2n}} e^{\frac{i}{h}(x-y)\cdot\theta} a\left(\frac{x+y}{2},\theta;h\right) u(y) \, dy \, d\theta.$$

We recall that $a^w(x, hD; h)$ extends to a bounded operator on $L^2(\mathbb{R}^d)$ uniformly in $h \in (0, 1]$, see for instance [32, Section 4.5].

We say that an h-independent function $a_0 \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ is the *principal symbol* of the semiclassical symbol $a(\cdot;h) \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ if there exists $r(\cdot;h) \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ such that

$$a(x,\theta;h) = a_0(x,\theta) + hr(x,\theta;h)$$
 for all $(x,\theta) \in \mathbb{R}^{2n}$, $h \in (0,1]$.

Moreover, $a_0^w(x, hD)$ is called the principal part of $a^w(x, hD; h)$.

The following is the main result of this work.

Theorem 1. Let $p \in \mathcal{G}_b^s(\mathbb{R}^{2n})$, s > 1, and let $p^w(x, hD)$ be the principal part of a semiclassical Gevrey operator P(h) = P(x, hD; h). If p and $z_0 \in \partial \Sigma(p) \setminus \Sigma_{\infty}(p)$ satisfy conditions (1.1) and (1.2), then there exist $h_0 > 0$ and C > 0 such that

$$\{z \in \mathbb{C} : |z - z_0| < C^{-1}h^{1 - \frac{1}{s}}\} \cap \sigma(P(h)) = \emptyset, \quad 0 < h < h_0.$$

Furthermore, for $z \in \mathbb{C}$ with $|z - z_0| < C^{-1}h^{1-\frac{1}{s}}$ we have the resolvent estimate

$$(P(h) - z)^{-1} = \mathcal{O}(1) \exp(\mathcal{O}(1)h^{-\frac{1}{s}}) : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n), \quad 0 < h < h_0. \quad (1.6)$$

Remark 1. In the context of resonances, it has been shown in [26,27] that semiclassical Schrödinger operators with \mathcal{G}^s potentials which are dilation analytic near infinity have a resonance free region of size $\mathcal{O}(h^{1-\frac{1}{s}})$ near a non-trapping energy level in the semiclassical limit $h \to 0^+$ and that the exponent 1 - 1/s is optimal by constructing a \mathcal{G}^s potential such that there exist resonances E near a non-trapping energy level $E_0 > 0$ with $\text{Im } E \approx -Ch^{1-\frac{1}{s}}$, C > 0, for h sufficiently small [26]. We can therefore infer that the exponent 1 - 1/s for the spectrum free region in Theorem 1 is optimal.

Let us also highlight a special case of Theorem 1, which is commonly considered for evolution equations or semigroups $\exp(-tP/h)$, i.e., the case where

Re
$$p \ge 0$$
 near $p^{-1}(0)$. (1.7)

The principal-type condition (1.1) in this case implies that

$$d \text{ Im } p \neq 0, \quad d \text{ Re } p = 0, \quad \text{on } p^{-1}(0).$$
 (1.8)

In view of the non-trapping condition (1.2), we assume in this case that

for all
$$\rho \in p^{-1}(0)$$
, the maximal trajectory of $H_{\text{Im }p}$ passing through ρ contains a point where Re $p > 0$. (1.9)

Under these conditions, we have the following.

Theorem 2. Let $p \in \mathcal{G}_b^s(\mathbb{R}^{2n})$, s > 1, and let $p^w(x, hD)$ be the principal part of a semiclassical Gevrey operator P(h) = P(x, hD; h). Suppose that $0 \notin \Sigma_{\infty}(p)$ and that p satisfies (1.7)–(1.9). Then there exist $h_0 > 0$ and C > 0 such that

$$|z| < C^{-1}$$
 and Re $z < C^{-1}h^{1-\frac{1}{s}} \implies z \notin \sigma(P(h)), \quad 0 < h < h_0$.

Moreover, the estimate (1.6) holds for $z \in \mathbb{C}$ with $|z| < C^{-1}$ and $\operatorname{Re} z < C^{-1}h^{1-\frac{1}{s}}$.

In the case of analytic symbols, Dencker et al [6] proved (1.5) by studying the action of P(h) on microlocally weighted spaces associated to a family of complex IR manifolds distorted from the phase space $T^*\mathbb{R}^n$, see [9] for the original method and [29, Chapter 12] for a detailed presentation. For a broader context, we also mention what we call the "Martinez' method" [22]: one can use a non-holomorphic FBI transform $T: L^2(\mathbb{R}^n) \to L^2(T^*\mathbb{R}^n)$ and impose exponential weights $e^{g/h^{\alpha}}$ directly on $T^*\mathbb{R}^n$. This approach was used to study the tunneling effects, for analytic operators [21, 23], and for Gevrey operators [15]. In this paper, we adopt an approach different from those mentioned above: one modifies the exponential weights for the Bargmann space, working with a holomorphic FBI transform. A key ingredient in our proof is a Toeplitz identity that connects the action of semiclassical operators on the complex domain to the multiplication by the principal symbols. Such a result is essentially well known, see [28] for the analytic case, [10] for the smooth case, and [27] for the Gevrey case. Thanks to the techniques recently developed in [12], we will use a straightforward argument to establish a more general Toeplitz identity than that in [27], see Remark 3.

The paper is organized as follows. In Section 2, we review and introduce some essential tools for semiclassical pseudodifferential operators with Gevrey symbols, including a Toeplitz identity in the complex domain and a composition formula in

the real domain. Section 3 is devoted to the proof of Theorem 2 by introducing small complex deformations of \mathbb{R}^{2n} and working on the FBI transform side. In Section 4, we introduce a Gevrey multiplier using a version of the Malgrange preparation theorem for Gevrey functions, which allows us to reduce Theorem 1 to the more special Theorem 2, thus completing the proof of our main theorem.

2. Review of semiclassical Gevrey operators in the complex domain

Let Φ_0 be a strictly plurisubharmonic quadratic form on \mathbb{C}^n and let us set

$$\Lambda_{\Phi_0} = \left\{ \left(x, \frac{2}{i} \frac{\partial \Phi_0}{\partial x}(x) \right), x \in \mathbb{C}^n \right\} \subset \mathbb{C}^{2n}.$$

Let us also introduce the Bargmann space

$$H_{\Phi_0}(\mathbb{C}^n) = \operatorname{Hol}(\mathbb{C}^n) \cap L^2(\mathbb{C}^n, e^{-2\Phi_0/h}L(dx)), \tag{2.1}$$

where L(dx) is the Lebesgue measure on \mathbb{C}^n and $0 < h \le 1$ is the semiclassical parameter. Using the projection map π_x : $\Lambda_{\Phi_0} \ni (x, \xi) \mapsto x \in \mathbb{C}^n_x \cong \mathbb{R}^{2n}$, we identify Λ_{Φ_0} with \mathbb{C}^n_x and define the Gevrey spaces $\mathcal{G}^s_b(\Lambda_{\Phi_0})$, $\mathcal{G}^s_c(\Lambda_{\Phi_0})$. Let $a \in \mathcal{G}^s_b(\Lambda_{\Phi_0})$ be an h-independent symbol, for some s > 1, and let $u \in \text{Hol}(\mathbb{C}^n)$ be such that

$$u(x) = \mathcal{O}_{h,N}(1)\langle x \rangle^{-N} e^{\Phi_0(x)/h}$$

for all $N \in \mathbb{N}$. We introduce the semiclassical Weyl quantization of a acting on u,

$$a_{\Gamma}^{w}(x,hD_{x})u(x) = \frac{1}{(2\pi h)^{n}} \iint_{\Gamma(x)} e^{\frac{i}{h}(x-y)\cdot\theta} a\left(\frac{x+y}{2},\theta\right) u(y) \, dy \wedge d\theta. \tag{2.2}$$

Here $\Gamma(x) \subset \mathbb{C}^{2n}_{\nu,\theta}$ is the natural integration contour given by

$$\theta = \frac{2}{i} \frac{\partial \Phi_0}{\partial x} \left(\frac{x+y}{2} \right), \quad y \in \mathbb{C}^n.$$

Let next $\Phi_1 \in C^{1,1}(\mathbb{C}^n;\mathbb{R})$ be such that

$$\|\nabla^k(\Phi_1 - \Phi_0)\|_{L^{\infty}(\mathbb{C}^n)} \le C^{-1}h^{1-\frac{1}{s}}, \quad k = 0, 1, 2, \tag{2.3}$$

for some C > 0 sufficiently large. We set $\omega = h^{1-\frac{1}{s}}$ and introduce the following 2n-dimensional Lipschitz contour for $x \in \mathbb{C}^n$:

$$\Gamma_{\omega}^{\Phi_1}(x): \quad \theta = \frac{2}{i} \frac{\partial \Phi_1}{\partial x} \left(\frac{x+y}{2} \right) + i f_{\omega}(x-y), \quad y \in \mathbb{C}^n,$$
 (2.4)

where

$$f_{\omega}(z) = \begin{cases} \bar{z}, & |z| \le \omega, \\ \omega |z|^{-1} \bar{z}, & |z| > \omega. \end{cases}$$
 (2.5)

Let $\tilde{a} \in \mathcal{G}_b^s(\mathbb{C}^{2n})$ be an almost holomorphic extension of a such that supp $\tilde{a} \subset \Lambda_{\Phi_0} + B_{\mathbb{C}^{2n}}(0, C_0)$, for some $C_0 > 0$. We remark that the existence of such an almost holomorphic extension whose Gevrey order is the same as that of a is due to Carleson [4] (see also [8]). It has been established in [12, Theorem 1.1] that for $1 < s \le 2$ (the complementary range s > 2 will be discussed later),

$$a_{\Gamma}^{w}(x, hD_{x}) - \tilde{a}_{\Gamma_{\omega}^{\Phi_{1}}}^{w}(x, hD_{x}) = \mathcal{O}(1) \exp(-C^{-1}h^{-\frac{1}{s}}) :$$

$$H_{\Phi_{1}}(\mathbb{C}^{n}) \to L^{2}(\mathbb{C}^{n}, e^{-2\Phi_{1}/h}L(dx)), \tag{2.6}$$

where C > 0 is a constant and we have set, similarly to (2.1),

$$H_{\Phi_1}(\mathbb{C}^n) = \text{Hol}(\mathbb{C}^n) \cap L^2(\mathbb{C}^n, e^{-2\Phi_1/h}L(dx)).$$

The realization

$$\tilde{a}_{\Gamma_{\omega}^{\Phi_{1}}}^{w}(x,hD_{x})u(x) = \frac{1}{(2\pi h)^{n}} \int_{\Gamma_{\omega}^{\Phi_{1}}(x)} e^{\frac{i}{h}(x-y)\cdot\theta} \tilde{a}\left(\frac{x+y}{2},\theta\right) u(y) \, dy \wedge d\theta$$

satisfies (see [12, Theorem. 1.1 and 1.2])

$$\tilde{a}^{w}_{\Gamma^{\Phi_1}_{\omega}}(x, hD_x) = \mathcal{O}(1) : H_{\Phi_1}(\mathbb{C}^n) \to L^2(\mathbb{C}^n, e^{-2\Phi_1/h}L(dx)).$$

Let us also recall the following version of the Fourier inversion formula in the complex domain, see for instance [13]. Let $u \in \text{Hol}(\mathbb{C}^n)$ be such that

$$u(x) = \mathcal{O}_h(1) \langle x \rangle^{N_0} e^{\Phi_0(x)/h},$$

for some $N_0 \ge 0$. Then,

$$u(x) = \frac{1}{(2\pi h)^n} \int \int e^{\frac{i}{h}(x-y)\cdot\theta} u(y) \, dy \wedge d\theta. \tag{2.7}$$

In particular, (2.7) holds for $u \in H_{\Phi_1}(\mathbb{C}^n) = H_{\Phi_0}(\mathbb{C}^n)$ (they are equal as linear spaces). Similarly, for such functions, we find by Stokes' formula, writing $D_{x_j} := i^{-1}\partial_{x_j}$,

$$hD_{x_j}u(x) = \frac{1}{(2\pi h)^n} \int \int_{\Gamma_\alpha^{\Phi_1}(x)} e^{\frac{i}{h}(x-y)\cdot\theta} \theta_j u(y) \, dy \wedge d\theta, \quad 1 \le j \le n.$$
 (2.8)

Setting $\xi_1(x) = \frac{2}{i} \frac{\partial \Phi_1}{\partial x}(x)$, we get by a Taylor expansion, when $(y, \theta) \in \Gamma^{\Phi_1}_{\omega}(x)$,

$$\tilde{a}\left(\frac{x+y}{2},\theta\right) = \tilde{a}(\rho_0) + \partial_x \tilde{a}(\rho_0) \cdot \Delta y + \partial_\theta \tilde{a}(\rho_0) \cdot \Delta \theta + r(x,y,\theta), \tag{2.9}$$

with more compact notation: $\rho_0 = (x, \xi_1(x)), \Delta y = \frac{y-x}{2}, \Delta \theta = \theta - \xi_1(x), \text{ and}$

$$r(x, y, \theta) := \partial_{\tilde{x}} \tilde{a}(\rho_0) \cdot \overline{\Delta y} + \partial_{\tilde{\theta}} \tilde{a}(\rho_0) \cdot \overline{\Delta \theta} + \int_0^1 (1 - t) \, \tilde{a}_t^{(2)}(x, y, \theta) \, dt. \quad (2.10)$$

Here $\tilde{a}_t^{(2)}(x, y, \theta) = \mathcal{O}(1)|x - y|^2$, since, along the contour $\Gamma_{\omega}^{\Phi_1}(x)$, we have

$$|\Delta \theta| = |\theta - \xi_1(x)| \le ||\nabla^2 \Phi_1||_{L^{\infty}(\mathbb{C}^n)} |x - y| + |f_{\omega}(x - y)| \le \mathcal{O}(|x - y|).$$

Let us recall from [8, Remark 1.7] that there exists C > 0 such that

$$|\bar{\partial}\tilde{a}(x,\xi)| \le C \exp\left(-C^{-1}\operatorname{dist}((x,\xi),\Lambda_{\Phi_0})^{-\frac{1}{s-1}}\right), \quad (x,\xi) \in \mathbb{C}^{2n}. \tag{2.11}$$

We also note that

$$\operatorname{dist}(\rho_{0}, \Lambda_{\Phi_{0}}) \leq \left| \frac{2}{i} \frac{\partial \Phi_{1}}{\partial x}(x) - \frac{2}{i} \frac{\partial \Phi_{0}}{\partial x}(x) \right|$$

$$\leq 2 \|\nabla(\Phi_{1} - \Phi_{0})\|_{L^{\infty}(\mathbb{C}^{n})} \leq \mathcal{O}(1)h^{1 - \frac{1}{s}}. \tag{2.12}$$

Combing (2.10)–(2.12) we conclude

$$r(x, y, \theta) = \mathcal{O}(1)|x - y|^2 + \mathcal{O}(1) \exp(-C^{-1}h^{-\frac{1}{s}}), \quad C > 0.$$
 (2.13)

Let us set

$$Ru(x) = \frac{1}{(2\pi h)^n} \int_{\Gamma_{\alpha}^{\Phi_1}(x)} e^{\frac{i}{h}(x-y)\cdot\theta} r(x,y,\theta) u(y) dy \wedge d\theta,$$

we shall next check that

$$R = \mathcal{O}(h): L^{2}(\mathbb{C}^{n}, e^{-2\Phi_{1}/h}L(dx)) \to L^{2}(\mathbb{C}^{n}, e^{-2\Phi_{1}/h}L(dx)). \tag{2.14}$$

To this end, we consider the distribution kernel of R, writing

$$Ru(x) = \int k(x, y; h)u(y) L(dy),$$

we infer from the proof of [12, Theorem 3.3] together with (2.13) that

$$e^{-\frac{\Phi_1(x)}{h}}|k(x,y;h)|e^{\frac{\Phi_1(y)}{h}} \le \mathcal{O}(1)h^{-n}(|x-y|^2 + e^{-C^{-1}h^{-\frac{1}{s}}})e^{-\frac{F_{\omega}(x-y)}{2h}}$$

provided that the constant in (2.3) is sufficiently large. Here, following [12], we set

$$0 \le F_{\omega}(z) = \operatorname{Re}(z \cdot f_{\omega}(z)) = \begin{cases} |z|^2, & |z| \le \omega, \\ \omega|z|, & |z| > \omega. \end{cases}$$

In view of Schur's lemma, we only have to control the L^1 norm

$$\begin{split} h^{-n} \int |x|^2 e^{-\frac{F_{\omega}(x)}{2h}} L(dx) &= h^{-n} \int_{|x| \le \omega} |x|^2 e^{-\frac{|x|^2}{2h}} L(dx) + h^{-n} \int_{|x| \ge \omega} |x|^2 e^{-\frac{\omega|x|}{2h}} L(dx) \\ &\leq \mathcal{O}(1)h + \mathcal{O}(1)h \frac{h^{n+1}}{\omega^{2n+2}} = \mathcal{O}(h), \end{split}$$

since $\frac{h}{\omega^2} = h^{\frac{2}{s}-1} \le 1$ if $1 < s \le 2$. The estimate (2.14) therefore follows, and combining it with (2.6), (2.9), (2.7), and (2.8), we get for $u \in H_{\Phi_1}(\mathbb{C}^n)$,

$$a^{w}(x, hD_{x})u(x) = \tilde{a}(x, \xi_{1}(x))u(x) + \partial_{\theta}\tilde{a}(x, \xi_{1}(x)) \cdot (hD_{x} - \xi_{1}(x))u(x) + \tilde{R}u,$$
(2.15)

with

$$\widetilde{R} = \mathcal{O}(h): H_{\Phi_1}(\mathbb{C}^n) \to L^2(\mathbb{C}^n, e^{-2\Phi_1/h}L(dx)).$$

The discussion above, developed in the case $1 < s \le 2$, extends to the complementary range s > 2. Indeed, in this case, an application of [12, Theorem 1.2] yields

$$a_{\Gamma}^{w}(x, hD_{x}) - \tilde{a}_{\Gamma_{h^{1/2}}^{\Phi_{1}}}^{w}(x, hD_{x}) = \mathcal{O}(1) \exp(-C^{-1}h^{-\frac{1}{2s-2}}),$$

$$H_{\Phi_{1}}(\mathbb{C}^{n}) \to L^{2}(\mathbb{C}^{n}, e^{-2\Phi_{1}/h}L(dx)), \quad C > 0.$$

Here $\Gamma_{h^{1/2}}^{\Phi_1}(x)$ is the 2n-dimensional Lipschitz contour defined as in (2.4) and (2.5), with ω replaced by $h^{1/2} \ge \omega$. We have

$$\tilde{a}_{\Gamma_{h1/2}^{\Phi_1}}^w(x, hD_x) = \mathcal{O}(1): H_{\Phi_1}(\mathbb{C}^n) \to L^2(\mathbb{C}^n, e^{-2\Phi_1/h}L(dx)).$$

It is then easy to see that we still get (2.15) for s > 2.

Using (2.15) and arguing as in [10,28], we get the following result.

Proposition 2. Let $a \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$, s > 1, and let $\Phi_1 \in C^{1,1}(\mathbb{C}^n)$ be such that (2.3) holds. Let $\tilde{a} \in \mathcal{G}_b^s(\mathbb{C}^{2n})$ be an almost holomorphic extension of a such that supp $\tilde{a} \subset \Lambda_{\Phi_0} + B_{\mathbb{C}^{2n}}(0, C_0)$, for some $C_0 > 0$. Let $\psi \in W^{1,\infty}(\mathbb{C}^n) \iff \psi \in L^{\infty}(\mathbb{C}^n)$, $\nabla \psi \in L^{\infty}(\mathbb{C}^n)$. We have for $u, v \in H_{\Phi_1}(\mathbb{C}^n)$,

$$(\psi \, a^w(x, hD_x)u, v)_{H_{\Phi_1}} = \int \psi(x)\tilde{a}(x, \xi_1(x))u(x)\overline{v(x)}e^{-2\Phi_1(x)/h} \, L(dx) + \mathcal{O}(h)\|u\|_{H_{\Phi_1}} \|v\|_{H_{\Phi_1}}. \tag{2.16}$$

Let $b \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$, s > 1, and let us apply Proposition 2 with $b^w(x, hD_x)v$ replacing v, for some $v \in H_{\Phi_1}(\mathbb{C}^n)$, using also (2.16) for $b^w(x, hD_x)$. We obtain

$$\int \psi(x)\tilde{a}(x,\xi_{1}(x))\overline{\tilde{b}(x,\xi_{1}(x))}u(x)\overline{v(x)}e^{-2\Phi_{1}(x)/h}L(dx)$$

$$= (\psi \, a^{w}(x,hD_{x})u,b^{w}(x,hD_{x})v)_{H_{\Phi_{1}}} + \mathcal{O}(h)\|u\|_{H_{\Phi_{1}}}\|v\|_{H_{\Phi_{1}}}. \tag{2.17}$$

Here $\tilde{b} \in \mathcal{G}_b^s(\mathbb{C}^{2n})$ is an almost holomorphic extension of b, as above, and we have also used the fact that $b^w(x, hD_x) = \mathcal{O}(1)$: $H_{\Phi_1}(\mathbb{C}^n) \to H_{\Phi_1}(\mathbb{C}^n)$, see [11, 12].

Remark 3. The Toeplitz identity (Proposition 2) we derived is more general than [27, Proposition 4.1]. Notably, the weight Φ_1 is only required to be $C^{1,1}$ -close to Φ_0 , rather than close in \mathcal{G}^s This relaxation allows us to use just a C^{∞} escape function (see Lemma 6) instead of a \mathcal{G}^s escape function. More importantly, the cutoff ψ is only assumed to be $W^{1,\infty}$ instead of C_c^{∞} as required in [27]. This weaker assumption makes it possible to derive elliptic estimates near infinity, such as Proposition 4.

As an application of Proposition 2 and (2.17), we derive an elliptic estimate for future reference. Let us make an assumption on $a \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$ that there exists a bounded open subset $U \subset \mathbb{C}^n$ with a constant C > 0 such that

$$|a(x,\xi)| \ge 2/C, \quad (x,\xi) \in \Lambda_{\Phi_0}, \ x \in \mathbb{C}^n \setminus U.$$
 (2.18)

Under this assumption, we have the following.

Proposition 4. Suppose $a \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$ satisfies (2.18) for some bounded open set $U \subset \mathbb{C}^n$ and some C > 0. Let $\tilde{a} \in \mathcal{G}_b^s(\mathbb{C}^{2n})$ be an almost holomorphic extension of a as in Proposition 2, and let $\Phi_1 \in C^{1,1}(\mathbb{C}^n)$ be such that (2.3) holds. Then there exists $h_0 > 0$ such that for all $0 < h < h_0$ and $u \in H_{\Phi_1}$ we have

$$\int_{\mathbb{C}^n \setminus U} |u(x)|^2 e^{-\frac{2\Phi_1(x)}{h}} L(dx) \le \mathcal{O}(1) \|a^w(x, hD_x)u\|_{H_{\Phi_1}(\mathbb{C}^n)}^2 + \mathcal{O}(h) \|u\|_{H_{\Phi_1}(\mathbb{C}^n)}^2.$$
(2.19)

Proof., It follows from Proposition 2 and more specifically, equation (2.17) that for $u \in H_{\Phi_1}(\mathbb{C}^n)$,

$$\int |\tilde{a}(x,\xi_{1}(x))|^{2} |u(x)|^{2} e^{-\frac{2\Phi_{1}(x)}{h}} L(dx)$$

$$\leq \|a^{w}(x,hD_{x})u\|_{H_{\Phi_{1}}(\mathbb{C}^{n})}^{2} + \mathcal{O}(h)\|u\|_{H_{\Phi_{1}}(\mathbb{C}^{n})}^{2}. \tag{2.20}$$

Recalling from (2.12) that $\operatorname{dist}((x, \xi_1(x)), \Lambda_{\Phi_0}) = \mathcal{O}(1)h^{1-\frac{1}{s}}$, then for h sufficiently small we have, in view of (2.18) and the fact that $\tilde{a} \in \mathcal{G}_b^s(\mathbb{C}^{2n}), \tilde{a}|_{\Lambda_{\Phi_0}} = a$,

$$|\tilde{a}(x,\xi_1(x))| \ge 1/C, \quad x \in \mathbb{C}^n \setminus U.$$

Combining this with (2.20) we obtain (2.19).

We finish this section by discussing the composition of semiclassical Gevrey operators in the real domain. It has been proved in [17, 19] that for $a, b \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ one has $a^w(x, hD) \circ b^w(x, hD) = c^w(x, hD; h)$ where $c(\cdot; h) = a \# b \in \mathcal{G}_b^s(\mathbb{R}^{2n})$. An alternative proof of this result has been provided in [12, Section 3.3] using contour deformations. For future reference, we note a slightly finer characterization of the composed symbol c = a # b than $c \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ as follows.

Proposition 5. Let $a, b \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ be h-independent symbols for some s > 1, and let $c^w(x, hD; h) = a^w(x, hD) \circ b^w(x, hD)$. Then the symbol c satisfies

$$c(x,\theta;h) = a(x,\theta)b(x,\theta) + hr(x,\theta;h), \quad (x,\theta) \in \mathbb{R}^{2n}, \tag{2.21}$$

for some $r(\cdot; h) \in \mathcal{G}_h^s(\mathbb{R}^{2n})$.

Proof. Let us first recall the following oscillatory integral representation of the composed symbol c = a # b, see for instance [32, Chapter 4]:

$$c(x,\theta;h) = \frac{1}{(\pi h)^{2n}} \int_{\mathbb{R}^{4n}} e^{-\frac{2i}{h}\sigma(y_1,\eta_1;y_2,\eta_2)} a(x+y_1,\theta+\eta_1) b(x+y_2,\theta+\eta_2) dy_1 d\eta_1 dy_2 d\eta_2.$$
(2.22)

Here σ is the standard symplectic form on \mathbb{R}^{2n} . Let $\chi \in \mathcal{G}^s_{\mathrm{c}}(\mathbb{R}^{4n})$ be a Gevrey cutoff function such that $\chi(Y) = 1$ for $|Y| \leq 1$, $Y \in \mathbb{R}^{4n}$, with supp $\chi \subset B_{\mathbb{R}^{4n}}(0,2)$, and let

$$r_{\chi}(x,\theta;h) = \frac{1}{(\pi h)^{2n}} \int_{\mathbb{R}^{4n}} e^{-\frac{2i}{h}\sigma(y_1,\eta_1;y_2,\eta_2)} (1 - \chi(y_1,\eta_1,y_2,\eta_2))$$
$$a(x+y_1,\theta+\eta_1)b(x+y_2,\theta+\eta_2) dy_1 d\eta_1 dy_2 d\eta_2. \quad (2.23)$$

It has been established in [12, Proposition 3.8] that for some C > 0 uniformly in $h \in (0, 1]$ we have for all $\alpha, \beta \in \mathbb{N}^n$ and $(x, \theta) \in \mathbb{R}^{2n}$,

$$|\partial_x^{\alpha} \partial_{\theta}^{\beta} r_{\chi}(x,\theta;h)| \le C^{1+|\alpha|+|\beta|} \alpha!^{s} \beta!^{s} \exp\left(-\frac{1}{\mathcal{O}(1)} h^{-\frac{1}{s}}\right). \tag{2.24}$$

To analyze the term $c - r_{\chi}$, we consider the following more general integral:

$$I_{\chi}(x;h) = h^{-N/2} \int_{\mathbb{R}^N} e^{iq(y)/h} \chi(y) a(x+y) \, dy,$$

where $q(y) = \frac{1}{2}Ay \cdot y$ is a real non-degenerate quadratic form on \mathbb{R}^N , $a \in \mathcal{G}_b^s(\mathbb{R}^N)$ and $\chi \in \mathcal{G}_c^s(\mathbb{R}^N)$ satisfies $\chi(y) = 1$ for $|y| \leq 1$.

By Parseval's formula, writing $\tau_x a(y) = a(x + y)$ we have

$$I_{\chi}(x;h) = C_A \int_{\mathbb{R}^N} e^{-\frac{ih}{2}A^{-1}\eta \cdot \eta} \widehat{\chi \tau_x a}(\eta) \, d\eta, \quad C_A = \frac{(2\pi)^{-N/2} e^{i\frac{\pi}{4} \operatorname{sgn} A}}{|\det A|^{1/2}}$$

where sgn A is the signature of A, $\widehat{\chi \tau_x a}(\eta) = \int_{\mathbb{R}^N} e^{-iy \cdot \eta} \chi(y) a(x+y) \, dy$ is the Fourier transform. Using $e^{i\sigma} = 1 + i\sigma \int_0^1 e^{it\sigma} dt$, $\sigma \in \mathbb{R}$, we get by $\int_{\mathbb{R}^N} \hat{u}(\eta) \, d\eta = (2\pi)^N u(0)$,

$$I_{\chi}(x;h) = C_A((2\pi)^N a(x) + hI_{\chi,1}(x;h)), \tag{2.25}$$

where $I_{\chi,1}(x;h) = -\frac{i}{2} \int_0^1 \int_{\mathbb{R}^N} e^{-\frac{ith}{2}A^{-1}\eta\cdot\eta} (A^{-1}\eta\cdot\eta) \widehat{\chi\tau_x a}(\eta) \,d\eta\,dt$.

To derive Gevrey estimates for $I_{\chi,1}(x;h)$, we observe that for every $\alpha \in \mathbb{N}^N$,

$$\partial_x^{\alpha} I_{\chi,1}(x;h) = \frac{i}{2} \int_{0}^{1} \int_{\mathbb{R}^N} e^{-\frac{ith}{2}A^{-1}\eta \cdot \eta} \widehat{u_{x,\alpha}}(\eta) \, d\eta \, dt, \qquad (2.26)$$

with

$$u_{x,\alpha}(y) = (A^{-1}\partial_y \cdot \partial_y)(\chi(y)\partial^{\alpha}a(x+y)).$$

It follows that $|\partial_x^{\alpha} I_{\chi,1}(x;h)| \leq \frac{1}{2} \|\widehat{u_{x,\alpha}}\|_{L^1(\mathbb{R}^N)}$. By the Cauchy–Schwarz inequality,

$$\int_{\mathbb{R}^{N}} |\widehat{u}(\eta)| \, d\eta \leq \left(\int_{\mathbb{R}^{N}} |\widehat{u}(\eta)|^{2} (1 + |\eta|^{2})^{k} d\eta \right)^{1/2} \left(\int_{\mathbb{R}^{N}} (1 + |\eta|^{2})^{-k} d\eta \right)^{1/2} \\
= C_{k} \|u\|_{H^{k}(\mathbb{R}^{N})}$$

for any k > N/2, $k \in \mathbb{N}$. We obtain therefore $|\partial_x^{\alpha} I_{\chi,1}(x;h)| \leq C \|u_{x,\alpha}\|_{H^k(\mathbb{R}^N)}$ for some $k \in \mathbb{N}$ and C > 0 depending only on the dimension N. Recalling the definition of $u_{x,\alpha}$ given in (2.26) and the assumptions that $\chi \in \mathcal{G}_c^s$, $a \in \mathcal{G}_b^s$, we conclude that there exists C > 0 uniformly in $h \in (0,1]$ such that

$$|\partial_x^{\alpha} I_{\chi,1}(x;h)| \le C^{1+|\alpha|} \alpha!^{s} \quad \text{for all } \alpha \in \mathbb{N}^N, \ x \in \mathbb{R}^N.$$
 (2.27)

Combining (2.25) and (2.27), and applying the result to the integral representation of $c - r_{\chi}$, we obtain via a direct computation that

$$c(x,\theta;h) - r_{\chi}(x,\theta;h) = a(x,\theta)b(x,\theta) + hr_1(x,\theta;h), \quad (x,\theta) \in \mathbb{R}^{2n},$$

for some $r_1(\cdot; h) \in \mathcal{G}_b^s(\mathbb{R}^{2n})$. This and (2.24), together with equations (2.22) and (2.23), imply the desired result (2.21).

3. Complex deformations and Proof of Theorem 2

Let $p \in \mathcal{G}_b^s(\mathbb{R}^{2n})$, s > 1. Let $z_0 \in \partial \Sigma(p) \setminus \Sigma_{\infty}(p)$ satisfy conditions (1.7)–(1.9). We first recall from [6, Lemma 4.2] the existence of an escape function.

Lemma 6. Let p and z_0 be given as in Theorem 2 such that (1.7)–(1.9) hold. Then there exists $G \in C_c^{\infty}(\mathbb{R}^{2n};\mathbb{R})$ such that for some constant c > 0 we have

$$H_{\text{Im }p}G(\rho) < -c < 0, \quad \rho \in p^{-1}(z_0).$$
 (3.1)

We now introduce small compactly supported deformations of the real space \mathbb{R}^{2n} . Let $H_G(\rho) = (G'_{\xi}(\rho), -G'_{\chi}(\rho))$ be the Hamilton vector field of G, and set

$$\Lambda_{tG} := \{ \rho + itH_G(\rho); \rho \in T^* \mathbb{R}^n \} \subset \mathbb{C}^{2n}, \quad t \in \mathbb{R}, |t| \text{ small.}$$
 (3.2)

We note that Λ_{tG} is I-Lagrangian and R-symplectic, in the sense that $\sigma|_{\Lambda_{tG}}$ is real and non-degenerate, where $\sigma = d\xi \wedge dx$ is the complex symplectic form on $\mathbb{C}_x^n \times \mathbb{C}_\xi^n$. Let $\tilde{p} \in \mathcal{G}_b^s(\mathbb{C}^{2n})$ be an almost holomorphic extension of p, which is supported in a bounded tubular neighborhood of $\mathbb{R}^{2n} \subset \mathbb{C}^{2n}$. We shall explore the behavior of $\tilde{p}|_{\Lambda_{tG}}$ near some $\rho \in \text{neigh}(p^{-1}(z_0); \mathbb{R}^{2n})$.

For simplicity, we may assume $z_0 = 0$ by subtracting z_0 from p. Let us use Taylor's formula to expand \tilde{p} at $\rho \in \text{neigh}(p^{-1}(0); \mathbb{R}^{2n})$ and write

$$\widetilde{p}(\rho + itH_G(\rho)) = p(\rho) + itH_G\widetilde{p}(\rho) + \mathcal{O}(t^2)
= p(\rho) - itH_{\text{Re }p}G(\rho) + tH_{\text{Im }p}G(\rho) + \mathcal{O}(t^2),$$

where we used the facts that $\tilde{p}|_{\mathbb{R}^{2n}} = p$, $\bar{\partial} \tilde{p}|_{\mathbb{R}^{2n}} = 0$. We obtain therefore

Re
$$\tilde{p}(\rho + itH_G(\rho))$$
 = Re $p(\rho) + tH_{\text{Im }p}G(\rho) + \mathcal{O}(t^2)$.

Letting $\Omega \subset \mathbb{R}^{2n}$ be a sufficiently small neighborhood of $p^{-1}(0)$ which is compact in \mathbb{R}^{2n} since $0 \notin \Sigma_{\infty}(p)$, we can infer from (1.7), (3.1), and the computation above that there exist $\gamma > 0$ and $t_0 > 0$ such that

Re
$$\tilde{p}(\rho + itH_G(\rho)) \ge \gamma |t|, \quad \rho \in \Omega, -t_0 < t \le 0.$$
 (3.3)

Let us now move to the FBI transform side. Let $\phi(x, y)$ be a holomorphic quadratic form on $\mathbb{C}^n_x \times \mathbb{C}^n_y$ with $\operatorname{Im} \phi''_{yy} > 0$, $\det \phi''_{xy} \neq 0$. To ϕ we associate the complex linear canonical transformation

$$\kappa_{\phi} \colon \mathbb{C}^{2n} \ni (y, -\phi'_{v}(x, y)) \mapsto (x, \phi'_{x}(x, y)) \in \mathbb{C}^{2n}. \tag{3.4}$$

Recalling for instance [32, Theorem 13.5], we have

$$\kappa_{\phi}(\mathbb{R}^{2n}) = \Lambda_{\Phi_0}, \quad \Lambda_{\Phi_0} := \left\{ \left(x, \frac{2}{i} \frac{\partial \Phi_0}{\partial x}(x) \right); x \in \mathbb{C}^n \right\} \subset \mathbb{C}^{2n},$$

where

$$\Phi_0(x) = \max_{y \in \mathbb{R}^n} -\operatorname{Im} \phi(x, y) \tag{3.5}$$

is a strictly plurisubharmonic quadratic form on \mathbb{C}^n .

Let us also recall from [30, Section 2] that

$$\kappa_{\phi}(\Lambda_{tG}) = \Lambda_{\Phi_{t}} = \left\{ \left(x, \frac{2}{i} \frac{\partial \Phi_{t}}{\partial x}(x) \right); x \in \mathbb{C}^{n} \right\} \subset \mathbb{C}^{2n}, \tag{3.6}$$

with

$$\Phi_t(x) = \text{v.c.}_{(y,\eta) \in \mathbb{C}^n \times \mathbb{R}^n} (-\operatorname{Im} \phi(x,y) - \eta \cdot \operatorname{Im} y + tG(\operatorname{Re} y,\eta)). \tag{3.7}$$

Computing the critical value in (3.7) as a perturbation of t = 0, we obtain

$$\Phi_t(x) = \Phi_0(x) + tG\left(\kappa_\phi^{-1}\left(x, \frac{2}{i}\frac{\partial\Phi_0}{\partial x}(x)\right)\right) + \mathcal{O}(t^2). \tag{3.8}$$

To see this, we first observe by comparing (3.5) and (3.7) that $\Phi_t(x)|_{t=0} = \Phi_0(x)$ since

$$v.c._{(y,\eta)\in\mathbb{C}^n\times\mathbb{R}^n}(-\operatorname{Im}\phi(x,y)-\eta\cdot\operatorname{Im}y)=\max_{y\in\mathbb{R}^n}-\operatorname{Im}\phi(x,y),$$

and that there is a single critical point $(y_0, \eta_0) = \kappa_{\phi}^{-1}(x, \frac{2}{i} \frac{\partial \Phi_0}{\partial x}(x)) \in \mathbb{R}^{2n}$ due to the non-degeneracy of Im ϕ_{yy}'' . It follows that the critical value in (3.7) is also evaluated at a single critical point when t is small. Let us then differentiate the critical value $\Phi_t(x)$ in the parameter t; in view of (3.7), we get

$$(\partial_t \Phi_t(x))|_{t=0} = G(\operatorname{Re} y_0, \eta_0) = G\left(\kappa_\phi^{-1}\left(x, \frac{2}{i} \frac{\partial \Phi_0}{\partial x}(x)\right)\right),$$

where we noticed that $y_0 \in \mathbb{R}^n$. We obtain therefore (3.8) by Taylor's formula.

Let us introduce the FBI-Bargmann transform associated to ϕ :

$$Tu(x;h) = C_n h^{-3n/4} \int_{\mathbb{R}^n} e^{i\phi(x,y)/h} u(y) dy,$$
 (3.9)

where C_n is chosen such that $T: L^2(\mathbb{R}^n) \to H_{\Phi_0}(\mathbb{C}^n)$ is unitary, see [32, Theorem 13.7]. Let $a = p \circ \kappa_{\phi}^{-1} \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$, then $\tilde{a} := \tilde{p} \circ \kappa_{\phi}^{-1} \in \mathcal{G}_b^s(\mathbb{C}^{2n})$ is an almost holomorphic extension of a such that supp $\tilde{a} \subset \Lambda_{\Phi_0} + B_{\mathbb{C}^{2n}}(0, C_0)$ for some $C_0 > 0$. The exact Egorov theorem (see for example [32, Theorem 13.9]) implies that

$$a^{w}(x, hD_{x}) \circ T = T \circ p^{w}(x, hD), \tag{3.10}$$

where $a^w(x, hD_x)$ is the semiclassical Weyl quantization of $a \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$ given by (2.2) while $p^w(x, hD)$ is the semiclassical Weyl quantization of $p \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ defined in (1.3).

Let us set $t = -\epsilon h^{1-\frac{1}{s}}$ for $\epsilon > 0$ small but independent of h. In view of (3.8), we see that (2.3) holds with Φ_t replacing Φ_1 , if $\epsilon > 0$ is small enough. Applying (2.16) with $\psi \equiv 1$ and the weight Φ_t , we get

$$\operatorname{Re}(a^{w}(x, hD_{x})u, u)_{H_{\Phi_{t}}} = \int \operatorname{Re}\tilde{a}\left(x, \frac{2}{i} \frac{\partial \Phi_{t}}{\partial x}(x)\right) |u(x)|^{2} e^{-2\Phi_{t}(x)/h} L(dx) + \mathcal{O}(h) ||u||_{H_{\Phi_{t}}}^{2}.$$
(3.11)

Let $\Omega \subset \mathbb{R}^{2n}$ be an open neighborhood of $p^{-1}(0)$ such that (3.3) holds. We set

$$U = \pi_{\mathcal{X}}(\kappa_{\phi}(\{\rho + itH_{G}(\rho) : \rho \in \Omega\})) \subset \mathbb{C}^{n}, \tag{3.12}$$

where π_x : $\Lambda_{\Phi_t} \ni (x, \xi) \mapsto x \in \mathbb{C}^n$ is the projection map, and κ_{ϕ} is the canonical transform defined in (3.4). We note that U is open and bounded since $p^{-1}(0) \subset \mathbb{R}^{2n}$ is compact, which is due to the assumption $0 \notin \Sigma_{\infty}(p)$. Combing (3.3) with (3.2), (3.6), and recalling $\tilde{a} = \tilde{p} \circ \kappa_{\phi}^{-1}$, we obtain for some $\gamma > 0$, $t_0 > 0$ as in (3.3),

$$\operatorname{Re} \tilde{a}\left(x, \frac{2}{i} \frac{\partial \Phi_t}{\partial x}(x)\right) \ge \gamma |t|, \quad x \in U, -t_0 < t \le 0.$$
(3.13)

We shall next show that $a = p \circ \kappa_{\phi}^{-1}$ satisfies the condition (2.18) with U given in (3.12). To this end, we first note that

$$K_0 := \{x \in \mathbb{C}^n : a(x,\xi) = 0, (x,\xi) \in \Lambda_{\Phi_0}\} = \pi_x(\kappa_{\phi}(p^{-1}(0))) \subset \mathbb{C}^n \text{ is compact.}$$

Since $\pi_x \colon \Lambda_{\Phi_t} \to \mathbb{C}^n$, $-t_0 < t \leq 0$, $\kappa_\phi \colon \mathbb{R}^{2n} \to \Lambda_{\Phi_0}$ or $\Lambda_{tG} \to \Lambda_{\Phi_t}$, and $g_t \colon \mathbb{R}^{2n} \ni \rho \mapsto \rho + itH_G(\rho) \in \Lambda_{tG}$ are all diffeomorphisms between corresponding submanifolds of \mathbb{C}^{2n} , we get that $U_0 := \pi_x(\kappa_\phi(\Omega)) \subset \mathbb{C}^n$ is an open neighborhood of K_0 and that U defined in (3.12) is open. To see $K_0 \subset U$, it suffices to show that $\mathrm{dist}(\partial U, K_0) > 0$ (note that U is bounded). Let $x_t \in \partial U$, $x_t = \pi_x(\kappa_\phi(\rho + itH_G(\rho)))$ for some $\rho \in \partial \Omega$. Since $x = \pi_x(\kappa_\phi(\rho)) \in \partial U_0$ and $K_0 \subset U_0$, we have $\mathrm{dist}(x, K_0) \geq \mathrm{dist}(\partial U_0, K_0) =: \delta_0 > 0$. Noting that $|x_t - x| = \mathcal{O}(|t|)$, we get therefore $\mathrm{dist}(x_t, K_0) \geq \delta_0/2$ for all $-t_0 < t \leq 0$ by taking a smaller t_0 if necessary. We conclude from the above discussion that

$$|a(x,\xi)| \ge \frac{2}{C}, \quad (x,\xi) \in \Lambda_{\Phi_0}, \ x \in \mathbb{C}^n \setminus U, \quad -t_0 < t \le 0,$$
 (3.14)

for some C > 0 uniform in $-t_0 < t \le 0$ (noting that U depends on t).

We now let $t = -\epsilon h^{1-\frac{1}{s}}$ with $\epsilon > 0$ small but fixed, and let $z \in \mathbb{C}$ be such that

$$-C^{-1} < \operatorname{Re} z \le \left(\frac{\gamma \epsilon}{2}\right) h^{1-\frac{1}{s}}, \quad |\operatorname{Im} z| < C^{-1}, \quad C > 0 \text{ sufficiently large.} \quad (3.15)$$

Combining (3.11), (3.13), and (3.15), we get

$$\operatorname{Re}((a^{w}(x, hD_{x}) - z)u, u)_{H_{\Phi_{t}}} \\ \geq \left(\frac{\gamma\epsilon}{2}\right)h^{1-\frac{1}{s}}\|u\|_{H_{\Phi_{t}}}^{2} - \mathcal{O}(h)\|u\|_{H_{\Phi_{t}}}^{2} - \mathcal{O}(1)\int_{\mathbb{C}^{n}\setminus U}|u(x)|^{2}e^{-2\Phi_{t}(x)/h}L(dx).$$

In view of (3.14) and (3.15), we can apply Proposition 4 to the symbol a - z with Φ_t in place of Φ_1 , therefore, for $0 < h < h_0$ we have

$$\operatorname{Re}((a^{w}(x, hD_{x}) - z)u, u)_{H_{\Phi_{t}}} + \mathcal{O}(1) \| (a^{w}(x, hD_{x}) - z)u \|_{H_{\Phi_{t}}}^{2} \\ \geq \left(\left(\frac{\gamma \epsilon}{2} \right) h^{1 - \frac{1}{s}} - \mathcal{O}(h) \right) \| u \|_{H_{\Phi_{t}}}^{2} \geq \delta h^{1 - \frac{1}{s}} \| u \|_{H_{\Phi_{t}}}^{2}.$$

Here h_0 , $\delta > 0$ are small constants. By the Peter–Paul inequality,

$$\operatorname{Re}((a^{w}(x, hD_{x}) - z)u, u)_{H_{\Phi_{t}}} \\ \leq \frac{\delta}{2} h^{1 - \frac{1}{s}} \|u\|_{H_{\Phi_{t}}}^{2} + \frac{1}{2\delta} h^{\frac{1}{s} - 1} \|(a^{w}(x, hD_{x}) - z)u\|_{H_{\Phi_{t}}}^{2}.$$

Combining the estimates above, we conclude that for some C > 0,

$$\|(a^w(x, hD_x) - z)u\|_{H_{\Phi_t}} \ge C^{-1}h^{1-\frac{1}{s}}\|u\|_{H_{\Phi_t}}, \quad u \in H_{\Phi_t}, \ 0 < h < h_0.$$
 (3.16)

Writing $P(h) = p^w(x, hD) + hp_1^w(x, hD; h)$ for some $p_1(\cdot; h) \in \mathcal{G}_b^s(\mathbb{R}^{2n})$, we get

$$TP(h) = (a^{w}(x, hD_{x}) + ha_{1}^{w}(x, hD_{x}; h))T: L^{2}(\mathbb{R}^{n}) \to H_{\Phi_{0}}$$

with $a_1(\cdot; h) \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$. We can infer from the proofs in [12] that

$$a_1(\cdot;h) \in \mathcal{G}_b^s(\Lambda_{\Phi_0}) \implies a_1^w(x,hD_x;h) = \mathcal{O}(1): H_{\Phi_t} \to H_{\Phi_t}.$$

Therefore, by (3.16), there exists C > 0 uniformly in $0 < h < h_0$ such that

$$||T(P(h)-z)v||_{H_{\Phi_t}} \ge (2C)^{-1}h^{1-\frac{1}{s}}||Tv||_{H_{\Phi_t}}, \quad v \in L^2(\mathbb{R}^n).$$
 (3.17)

Here we note that $H_{\Phi_t} = H_{\Phi_0}$ as linear spaces. Since $\|\Phi_t - \Phi_0\|_{L^{\infty}(\mathbb{C}^n)} \le C^{-1}h^{1-\frac{1}{s}}$, we can change the norm $\|\cdot\|_{H_{\Phi_t}}$ to $\|\cdot\|_{H_{\Phi_0}}$ in (3.17) and use the fact that the operator $T: L^2(\mathbb{R}^n) \to H_{\Phi_0}$ is unitary, to obtain

$$\|(P(h)-z)v\|_{L^2(\mathbb{R}^n)}\geq C^{-1}h^{1-\frac{1}{s}}e^{-\mathcal{O}(1)h^{-1/s}}\|v\|_{L^2(\mathbb{R}^n)},\quad v\in L^2(\mathbb{R}^n).$$

This implies that $P(h) - z: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is injective. Since $0 \notin \Sigma_{\infty}(p)$, it has been shown in the proof of [6, Proposition 3.3] that $P(h) - z: L^2 \to L^2$ is a Fredholm

operator with index 0 for z in an $\mathcal{O}(1)$ -neighborhood of 0 and h sufficiently small. We can therefore conclude that for some $h_0 > 0$ and for all z satisfying (3.15),

$$(P(h)-z)^{-1} = \mathcal{O}(1)e^{\mathcal{O}(1)h^{-1/s}} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n), \quad 0 < h < h_0.$$

This completes the proof of Theorem 2.

Remark 7. It is worth noting that Theorem 2 can also be proved using Martinez's method [22], together with the main results of [15, Theorems 1 and 1']. However, we choose an alternative approach that makes use of the escape function in a more geometric manner, involving complex I-Lagrangian manifolds and modification of the exponential weights for the Bargmann space. Additionally, our proof highlights the strength of the generalized Toeplitz-type identity (Proposition 2), which is expected to be of independent interest and have further applications.

4. Proof of Theorem 1

We start with an adaption of [6, Lemma 4.1] to the Gevrey class, which can be achieved by following the proof in [6] and using a division theorem for Gevrey functions given in [3]. In fact, we only need a special case of [3, Theorem 5] (when m = 1).

Proposition 8. Let Ω be a domain in \mathbb{R}^d and let $f \in \mathcal{G}^s(\mathbb{R} \times \Omega; \mathbb{C})$. Let P(t, x) = t + a(x) with $a \in \mathcal{G}^s(\Omega; \mathbb{C})$. Then there exist $Q \in \mathcal{G}^s(\mathbb{R} \times \Omega; \mathbb{C})$ and $R \in \mathcal{G}^s(\Omega; \mathbb{C})$ such that

$$f(t,x) = Q(t,x)P(t,x) + R(x), \quad (t,x) \in \mathbb{R} \times \Omega.$$

Following an argument in [24], we can deduce a preparation theorem for Gevrey functions from the division theorem above.

Proposition 9. Let $f(t,x) \in \mathcal{G}^s(\mathbb{R} \times \mathbb{R}^d; \mathbb{C})$. Suppose that f(0,0) = 0, $\frac{\partial f}{\partial t}(0,0) \neq 0$. Then in an open neighborhood of $(0,0) \in \mathbb{R} \times \mathbb{R}^d$ we have the factorization

$$f(t, x) = q(t, x)(t + \lambda(x))$$

where q and λ are \mathcal{G}^s complex-valued functions with $q(0,0) \neq 0$, $\lambda(0) = 0$.

Proof. Let us introduce a generic complex variable $\lambda \in \mathbb{C}$. We note that $F(t, x, \lambda) := f(t, x) \in \mathcal{G}^s(\mathbb{R}_t \times \mathbb{R}_x^d \times \mathbb{C}_\lambda)$, $P(t, x, \lambda) := t + \lambda$, then by Proposition 8, we have

$$f(t,x) = Q(t,x,\lambda)(t+\lambda) + R(x,\lambda), \tag{4.1}$$

for some $Q \in \mathcal{G}^s(\mathbb{R}_t \times \mathbb{R}_x^d \times \mathbb{C}_{\lambda})$, $R \in \mathcal{G}^s(\mathbb{R}_x^d \times \mathbb{C}_{\lambda})$. Since f(0,0) = 0 we must have R(0,0) = 0, thus $\frac{\partial f}{\partial t}(0,0) \neq 0$ implies $Q(0,0,0) \neq 0$. Moreover, applying $\partial_{\bar{\lambda}}$

to (4.1) and taking $(t, x, \lambda) = (0, 0, 0)$, we get $\frac{\partial R}{\partial \bar{\lambda}}(0, 0) = 0$, thus $\frac{\partial \bar{R}}{\partial \lambda}(0, 0) = 0$. Suppose $\frac{\partial R}{\partial \bar{\lambda}}(0, 0) = 0$, we deduce from (4.1) by applying ∂_{λ} and taking $(t, x, \lambda) = (0, 0, 0)$ that Q(0, 0, 0) = 0, a contradiction. Therefore, we have $\frac{\partial R}{\partial \lambda}(0, 0) \neq 0$. We conclude from the discussion above that the Jacobian matrix $\frac{\partial (R, \bar{R})}{\partial (\lambda, \bar{\lambda})}(0, 0) \neq 0$. It follows from the implicit function theorem in the Gevrey-s class by [16] that there exists an open neighborhood $U \subset \mathbb{R}^d$ of 0 and $\lambda(x) \in \mathcal{G}^s(U; \mathbb{C})$ such that $\lambda(0) = 0$, and $R(x, \lambda(x)) = 0$ for all $x \in U$. The desired factorization follows by letting $q(t, x) := Q(t, x, \lambda(x)) \in \mathcal{G}^s(\mathbb{R}_t \times U_x)$.

Following the proof of [6, Lemma 4.1] while replacing the Malgrange preparation theorem used there by Proposition 9, and using a \mathcal{G}^s (Gevrey-s) partition of unity, we obtain the following result.

Lemma 10. Let $p \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ and $z_0 \in \partial \Sigma(p)$ such that (1.1) and (1.2) hold. Then there exists $q \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ such that $q \neq 0$ on $p^{-1}(z_0)$ and

$$\operatorname{Im}(q(p-z_0)) \ge 0 \quad near \ p^{-1}(z_0); \qquad |d \operatorname{Re}(q(p-z_0))| \ge c > 0 \quad on \ p^{-1}(z_0).$$
(4.2)

We are now ready to prove Theorem 1. Let $p \in \mathcal{G}_b^s(\mathbb{R}^{2n})$, s > 1, and let $p^w(x,hD)$ be the principal part of the semiclassical Gevrey operator P(h). Suppose $z_0 \in \partial \Sigma(p) \setminus \Sigma_{\infty}(p)$ satisfies conditions (1.1) and (1.2). Let $q \in \mathcal{G}_b^s(\mathbb{R}^{2n})$ be given in Lemma 10. We can further assume that |q| = 1 near $p^{-1}(z_0)$, as the inequalities in (4.2) still hold with q replaced by q/|q|. Since $z_0 \in \partial \Sigma(p)$, there exists a continuous branch of arg $q(\rho)$, $\rho \in \text{neigh}(p^{-1}(z_0); \mathbb{R}^{2n})$, i.e., arg $q \in (\theta_0, \theta_0 + 2\pi)$ for some $\theta_0 \in \mathbb{R}$. Otherwise, we can construct a simple closed curve $\gamma \subset \text{neigh}(p^{-1}(z_0); \mathbb{R}^{2n}) \setminus p^{-1}(z_0)$ such that the winding number of $q(\gamma)$ around $0 \in \mathbb{C}$ is non-zero, which implies that the winding number of $p(\gamma)$ around $p(\gamma)$ be an open subset satisfying $p(\gamma)$ and let $p(\gamma)$ and let $p(\gamma)$ and let $p(\gamma)$ and supp $p(\gamma)$ and supp $p(\gamma)$ and supp $p(\gamma)$ and supp $p(\gamma)$ we then set

$$q(x,\xi) = \exp(i\chi(x,\xi)\theta(x,\xi)) \in \mathcal{G}_b^s(\mathbb{R}^{2n};\mathbb{C}) \quad \text{satisfies (4.2)}.$$

Fixing z_0 as above, let us consider the semiclassical Gevrey operator

$$P_1(h) := i^{-1}q^w(x, hD)(P(h) - z_0)$$
(4.4)

whose principal part is $p_1^w(x, hD)$ with $p_1 := i^{-1}q(p-z_0)$ by Proposition 5. We next verify that p_1 satisfies conditions (1.7)–(1.9). Noting that $p_1^{-1}(0) = p^{-1}(z_0)$ by (4.3), it then follows from (4.2) that

Re
$$p_1 \ge 0$$
 near $p_1^{-1}(0)$; $d \text{ Im } p_1 \ne 0$ on $p_1^{-1}(0)$. (4.5)

Let $\rho_0 \in p_1^{-1}(0) = p^{-1}(z_0)$. By a direct computation, we see that one can obtain a trajectory of $H_{\text{Re}(e^{-i\theta(\rho_0)}p)}$ passing through ρ_0 that is contained in $p^{-1}(z_0)$ from a trajectory of $H_{\text{Im }p_1}$ passing through ρ_0 that is contained in $p_1^{-1}(0)$ simply by reparametrization. Therefore, condition (1.9) must hold for p_1 and 0, i.e.,

for all
$$\rho \in p_1^{-1}(0)$$
, the maximal trajectory of $H_{\text{Im }p_1}$ passing through ρ contains a point where Re $p_1 > 0$. (4.6)

Otherwise, condition (1.2) on p and z_0 would be contradicted. In view of (4.5) and (4.6), repeating the steps to derive (3.17), we can conclude that there exist $h_0 > 0$ and C > 0 such that (with the unitary operator T defined in (3.9))

$$||TP_1(h)v||_{H_{\Phi_t}} \ge C^{-1}h^{1-\frac{1}{s}}||Tv||_{H_{\Phi_t}}, \quad v \in L^2(\mathbb{R}^n), \ 0 < h < h_0.$$
 (4.7)

Recalling (see (3.10)) that $Tq^w(x,hD) = b^w(x,hD_x)T$ for $b = q \circ \kappa_{\phi}^{-1} \in \mathcal{G}_b^s(\Lambda_{\Phi_0})$, and noting that $b^w(x,hD_x) = \mathcal{O}(1)$: $H_{\Phi_t} \to H_{\Phi_t}$ by [12, Theorems 1.1 and 1.2], we get from (4.4) and (4.7) that for $0 < h < h_0$,

$$||T(P(h)-z_0)v||_{H_{\Phi_t}} \ge C^{-1}h^{1-\frac{1}{s}}||Tv||_{H_{\Phi_t}}, \quad v \in L^2(\mathbb{R}^n).$$

It follows that for $z \in \mathbb{C}$ such that $|z - z_0| < (2C)^{-1}h^{1-\frac{1}{s}}$ we have for $0 < h < h_0$,

$$||T(P(h)-z)v||_{H_{\Phi_t}} \ge (2C)^{-1}h^{1-\frac{1}{s}}||Tv||_{H_{\Phi_t}}, \quad v \in L^2(\mathbb{R}^n).$$

Arguing as in the proof of Theorem 2, we conclude from the above estimate that

$$(P(h)-z)^{-1} = \mathcal{O}(1)e^{\mathcal{O}(1)h^{-1/s}} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n), \quad |z-z_0| < C^{-1}h^{1-\frac{1}{s}}.$$

This completes the proof of Theorem 1.

Acknowledgements. The author would like to thank Michael Hitrik for many valuable insights and helpful discussions and for encouraging us to pursue the Gevrey case. The author would also like to thank Alix Deleporte for pointing out the reference [3]. Finally, the author is profoundly grateful to the anonymous referee for many valuable suggestions that enhanced the presentation of our paper. In particular, the author would like to thank the anonymous referee for identifying a gap in the construction of a globally non-vanishing microlocal multiplier q in (4.3) in the original manuscript and for kindly providing an argument to address it.

References

[1] C. Bardos, G. Lebeau, and J. Rauch, Scattering frequencies and Gevrey 3 singularities. *Invent. Math.* 90 (1987), no. 1, 77–114 Zbl 0723.35058 MR 0906580

- [2] L. Boutet de Monvel and P. Krée, Pseudo-differential operators and Gevrey classes. *Ann. Inst. Fourier (Grenoble)* **17** (1967), no. fasc. 1, 295–323 Zbl 0195.14403 MR 0226170
- [3] M. D. Bronshtein, Division with a remainder in spaces of smooth functions (in Russian). Trudy Moskov. Mat. Obshch. 52 (1989), 110–137, 247. English translation: Trans. Moscow Math. Soc. 1990, 109–138 Zbl 0736.46019 MR 1056467
- [4] L. Carleson, On universal moment problems. *Math. Scand.* 9 (1961), 197–206 Zbl 0114.05903 MR 0142012
- [5] E. B. Davies, Pseudo-spectra, the harmonic oscillator and complex resonances. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1982, 585–599 Zbl 0931.70016 MR 1700903
- [6] N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators. *Comm. Pure Appl. Math.* 57 (2004), no. 3, 384–415 Zbl 1054.35035 MR 2020109
- [7] J. Galkowski and M. Zworski, Outgoing solutions via Gevrey-2 properties. *Ann. PDE* 7 (2021), no. 1, article no. 5 Zbl 1478.34093 MR 4235800
- [8] Y. Guedes Bonthonneau and M. Jézéquel, FBI transform in Gevrey classes and Anosov flows. Astérisque (2025), no. 456, 233 Zbl 08037414 MR 4896580
- [9] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique. Mém. Soc. Math. France (N.S.) (1986), no. 24-25 Zbl 0631.35075 MR 0871788
- [10] F. Hérau, J. Sjöstrand, and C. C. Stolk, Semiclassical analysis for the Kramers–Fokker– Planck equation. *Comm. Partial Differential Equations* 30 (2005), no. 4-6, 689–760 Zbl 1083.35149 MR 2153513
- [11] M. Hitrik, R. Lascar, J. Sjöstrand, and M. Zerzeri, Semiclassical Gevrey operators and magnetic translations. J. Spectr. Theory 12 (2022), no. 1, 53–82 Zbl 1486.30104 MR 4404807
- [12] M. Hitrik, R. Lascar, J. Sjöstrand, and M. Zerzeri, Semiclassical Gevrey operators in the complex domain. *Ann. Inst. Fourier (Grenoble)* 73 (2023), no. 3, 1269–1318 Zbl 1523.32008 MR 4588974
- [13] M. Hitrik and J. Sjöstrand, Two minicourses on analytic microlocal analysis. In *Algebraic and analytic microlocal analysis*, pp. 483–540, Springer Proc. Math. Stat. 269, Springer, Cham, 2018 Zbl 1418.32003 MR 3903325
- [14] L. Hörmander, The analysis of linear partial differential operators. IV. Classics in Mathematics, Springer, Berlin, 2009 Zbl 1178.35003 MR 2512677
- [15] K. Jung, Phase space tunneling for operators with symbols in a Gevrey class. J. Math. Phys. 41 (2000), no. 7, 4478–4496 Zbl 0974.35136 MR 1765611
- [16] H. Komatsu, The implicit function theorem for ultradifferentiable mappings. *Proc. Japan Acad. Ser. A Math. Sci.* **55** (1979), no. 3, 69–72 Zbl 0467.26004 MR 0531445
- [17] B. Lascar, Propagation des singularités Gevrey pour des opérateurs hyperboliques. *Amer. J. Math.* **110** (1988), no. 3, 413–449 Zbl 0653.35085 MR 0944323
- [18] B. Lascar and R. Lascar, Propagation des singularités Gevrey pour la diffraction. Comm. Partial Differential Equations 16 (1991), no. 4-5, 547–584 Zbl 0734.35166 MR 1113098

- [19] B. Lascar and R. Lascar, FBI transforms in Gevrey classes. J. Anal. Math. 72 (1997), 105–125 Zbl 0898.35069 MR 1482991
- [20] G. Lebeau, Régularité Gevrey 3 pour la diffraction. Comm. Partial Differential Equations 9 (1984), no. 15, 1437–1494 Zbl 0559.35019 MR 0767870
- [21] A. Martinez, Estimates on complex interactions in phase space. *Math. Nachr.* 167 (1994), 203–254 Zbl 0836.35135 MR 1285313
- [22] A. Martinez, An introduction to semiclassical and microlocal analysis. Universitext, Springer, New York, 2002 Zbl 0994.35003 MR 1872698
- [23] S. Nakamura, On Martinez' method of phase space tunneling. Rev. Math. Phys. 7 (1995), no. 3, 431–441 Zbl 0842.35145 MR 1326141
- [24] L. Nirenberg, A proof of the Malgrange preparation theorem. In *Proceedings of Liverpool Singularities Symposium*, I (1969/70), pp. 97–105, Lecture Notes in Math. 192, Springer, Berlin etc., 1971 Zbl 0212.10702 MR 0412460
- [25] L. Rodino, Linear partial differential operators in Gevrey spaces. World Scientific Publishing Co., Inc., River Edge, NJ, 1993 Zbl 0869.35005 MR 1249275
- [26] M. Rouleux, Resonances for a semi-classical Schrödinger operator near a non-trapping energy level. *Publ. Res. Inst. Math. Sci.* 34 (1998), no. 6, 487–523 Zbl 0947.34070 MR 1666975
- [27] M. Rouleux, Absence of resonances for semiclassical Schrödinger operators with Gevrey coefficients. *Hokkaido Math. J.* 30 (2001), no. 3, 475–517 Zbl 0995.35043 MR 1865424
- [28] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems. *Duke Math. J.* **60** (1990), no. 1, 1–57 Zbl 0702.35188 MR 1047116
- [29] J. Sjöstrand, Lectures on Resonances, Version préliminaire. Preprint, 2002 https://sjostrand.perso.math.cnrs.fr/Coursgbg.pdf visited on 27 July 2025
- [30] J. Sjöstrand, Resolvent estimates for non-selfadjoint operators via semigroups. In *Around the research of Vladimir Maz'ya*. III, pp. 359–384, Int. Math. Ser. (N. Y.) 13, Springer, New York, 2010 Zbl 1198.47068 MR 2664715
- [31] V. Sordoni, On Gevrey singularities of microhyperbolic operators. *J. Anal. Math.* **121** (2013), 383–399 Zbl 1293.35375 MR 3127390
- [32] M. Zworski, Semiclassical analysis. Grad. Stud. Math. 138, American Mathematical Society, Providence, RI, 2012 Zbl 1252.58001 MR 2952218

Received 24 August 2024; revised 15 April 2025.

Haoren Xiong

Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, 90095, USA; haorenxiong@math.ucla.edu