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The Calderon problem revisited:
Reconstruction with resonant perturbations

Ahcene Ghandriche and Mourad Sini

Abstract. The original Calderén problem consists in recovering the potential (or the conduct-
ivity) from the knowledge of the related Neumann to Dirichlet map (or Dirichlet to Neumann
map). Here, we first perturb the medium by injecting small-scaled and highly heterogeneous
particles. Such particles can be bubbles or droplets in acoustics or nanoparticles in electromag-
netism. They are distributed, periodically for instance, in the whole domain where we want to
do reconstruction. Under critical scales between the size and contrast, these particles resonate
at specific frequencies that can be well computed. Using incident frequencies that are close to
such resonances, we show that (1) the corresponding Neumann to Dirichlet map of the com-
posite converges to the one of the homogenised medium. In addition, the equivalent coefficient,
which consists in the sum of the original potential and the effective coefficient, is negative val-
ued with a controllable amplitude; (2) as the equivalent coefficient is negative valued, then we
can linearise the corresponding Neumann to Dirichlet map using the effective coefficient’s amp-
litude; (3) from the linearised Neumann to Dirichlet map, we reconstruct the original potential
using explicit complex geometrical optics solutions (CGOs).
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1. Introduction and statement of the results

1.1. General introduction

The original Calderén problem stated in the acoustic framework reads as follows. Let
n := ¢! be the index of refraction, where ¢ stands for the speed of acoustic sound. In

turn, this speed of sound is given by ¢ := \/g where p is the mass density and k is the
bulk modulus. In the time-harmonic regime, the propagation of the acoustic waves is
modelled by

2,2 pf =0 i
{(A+a)n())p 0 in€, (1)

3vpf=f on 092.

where p/ is the acoustic pressure generated by the applied source f. The Neumann
to Dirichlet (NtD) operator A, corresponds to any f € H™/2(3Q), the trace on 9
of the induced pressure p/, i.e., Ac(f) := p/|sq. The Calderén problem consists in
recovering the sound speed ¢ from the knowledge of the NtD map A.. According to
the model (1.1), the mass density p is assumed to be a constant, while the bulk modu-
lus k is variable in a smooth domain 2. We assume k to be a' W1-°°(Q2) and positive
function and € of class C2. In addition, we assume that (1.1) has a unique solution,

2 is not an eigenvalue of —n~2A with zero Neumann boundary condition on

1.e.,
0L2.
The Calderén problem was the object of an intensive study since the early 1980s.
The reader can see the following references for more information [17, 26, 38, 45].
A model of particular interest is the electrical impedance tomography (EIT) prob-
lem, also called Calderén’s problem, which consists in identifying the conductivity
y using Cauchy data (u|yq, Yy Vu - v|yq) of the solution of equation V - yVu = 0, in
Q C R3, where v is the outward unit normal vector to dQ. The uniqueness question
of this problem is reduced to the construction of the so-called complex geometrical
optics solutions (in short CGOs), see [44], where y is a positive C2-smooth function.
The regularity of y is reduced to C3/2%¢ & > 0, in [8], then to W3/2:% in [37] and to
W?3/2:P p > 6in [10]. Finally, in [14,24] this condition is reduced to W ! and then
to W3 in [23]. The corresponding Calderén problem in the 2D-setting was solved
in [35]. In [12] the author shows, for the Schrodinger equation given by Au + qu =0,
in Q@ C R?, the uniqueness of a reconstruction of the potential g(-) € L?(RQ), p > 2,
from the Cauchy data, i.e., (u|yq; dvu|yq), see [12, Theorem 3.5]. In [35], we find
a justification of the uniquely determination, from the knowledge of the Dirichlet-
to-Neumann map, of the coefficient y of the elliptic equation’ V - (yVu) = 0 in

IThis condition can be replace by an LL°°-regularity.
o ~ . . ~ ~ . 1
2The substitution i = Jyuin V- (yVu) = 0yields Aii + qit = 0, with g = _WA(W)'
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a two-dimensional domain. In [16], it is proved that if for all cubes Q C R” the

(n—1)
2

then the Dirichlet-to-Neumann map determines the

, 1s satis-

condition on the smallness of supQ||Q||(2P_”)/(”p)||q||]Lp(Q), p >
fied, or g € L? with p > %
potential g. Let us also cite [13, 30] regarding Dirac-type singular potentials. For
more details, and without being exhaustive, we refer the readers to the following
works [1,2,9,11,28,34,37,41,44] and the references therein. Let us mention, however,
that apart from few works, like [34], where we find a reconstruction algorithm, most
of these works are devoted to unique identifiability questions or stability estimates.
In this work, we propose a different approach for solving constructively this prob-
lem. The motivation of this approach comes from the engineering literature, see for
instance [4,6, 15,29,32,36,40] and many more, where it is suggested to inject small-
scaled contrast agents into the region of interest to create the contrasts that are missing
to generate clearer images. Such contrast agents could be injected in isolation, as
single (or isolated), Dimers, or in general as designed Polymers. They can also be
injected as a cluster “distributed” in the region of interest. Based on these ideas, we
proposed in our recent works to use resonant contrast agents for solving inverse prob-
lems appearing in some imaging modalities, as ultrasound, optics or photo-acoustic
imaging modalities, [19-22,42,43]. In those works, we use the measurements created
after injecting single contrast agents (acoustic bubbles or nano-particles) as follows:

(1) in the time-harmonic regime, we recover the induced resonances (as the Min-
naert or plasmonic ones) from which, we could recover the wave speeds (or
related coefficients), see [19-21];

(2) in the time-domain regime, we recover the internal values of the travel time
function. From the Eikonal equation, we extract the values of the speed, see
[22,42,43].

In those works, we use contrast agents injected in isolation. This means, for each
single injected agent we collect the generated measurements. However, it is of import-
ance to emphasise that we measure only on one single point. In terms of dimension-
ality, this is advantageous.

In the current work, we inject all the contrast agents at once and then collect the
measurements for multiple incident waves. In short, we collect the NtD mapping after
injecting the collection of contrast agents all at once. With such measurements, we
propose an approach to perform the reconstruction of the index of refraction n2(-).
This approach is divided into two steps.

(1) In the first step, we show that the NtD map generated by the coefficient
n2(-) and the collection of contrast agents converges to the one generated
by a sum of n2(-) and an effective coefficient. This effective coefficient is
negative-valued and one can tune its amplitude. The negativity of the effect-
ive coefficient, which is key, is due to the resonant character of the injected
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contrast agents. Therefore, we can tune these injected agents so that the sum
of n%(-) and the effective coefficients is negative valued with a controllable
amplitude.

(2) From the effective NtD map, we reconstruct the coefficient n2(-). To do so, we
show that, due to the negativity of the effective coefficients, mentioned above,
we can linearise the effective NtD map. Finally, from this linearised map,
we derive an explicit formula to recover n?(-) in terms of (explicit) CGO-
solutions.

To go further into details, let us take as contrast agents droplets, which are bubbles
filled in with water, having the following properties. They are modelled as D;,
Jj=1,...,M, of the form D; = z; 4+ aB with B as a smooth domain contain-
ing the origin and maximum radius as unity, such that D = UJM: | Dj. Their mass
density p; are equal and estimated as p; = pg, for 1 < j < M, with pg is a constant
independent on the parameter a, while their bulk modulus are very small and of order

kj =k0a2, (1-2)

with ko being as fixed constant independent of a. The maximum radius a of this
droplet is of order micrometer, therefore we take

a < 1.

We introduce the Newtonian operator Np, (-): L2(D;) — L?(D;), with the image in
H?2(D;), given by the expression

Np, (f)(x) = / o(x1y) /() dy.x € D;, (13)

Dj
where ®g(+; -) is the fundamental solution of the free-space Laplacian operator, i.e.,
Ax@o(x;y) = —68,(x), withx,y € R3, (1.4)

given by

Do (x;y) = x #y. (1.5)

drrlx —y|’
This operator is self-adjoint and compact, therefore it enjoys a positive sequence
218, where {AB},en is the

n:-
sequence of eigenvalues associated to the operator Np(-), see [5,39]. We fix any

no € N; j €{l;---; M} and we consider the eigenvalue )t,?(f . The incident frequency

w that we use, in this acoustic model, is taken of the form

of eigenvalues {Arl? /Ynen and they scale as )L,,D I =a

2 Cngd”

, (1.6)
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where the parameter / is positive, and ¢, € R satisfies ¢,, < 0, is a parameter which
is independent of a. The quantity wy is defined as

K, [k
wo = - = —
AL A%

where the last equality is a consequence of the eigenvalues scales and (1.2).

Next, we make the following necessary assumption about the distribution of the
D,,-s to derive the first main result of this work, i.e., Theorem 1.1.

Assumption 1. The droplets are distributed periodically inside 2. More precisely,
let 2 be a bounded domain of unit volume, containing the droplets D;, with j =
1,..., M. Wedivide Q2 as

Q= chbe U Qr (17)
with
M 13
Qube = (J Q@ and @, = ]JQ). M=M@).X=8a) €N,
j=1 Jj=1

where 2;-s are cubes located strictly within the interior of the domain €2, i.e., they
do not intersect with 02 (Qcupe & €2). Each subdomain €2 contains one D; such that
zj € Dj C Q; and Q)| :al_h,forj =1,...,M and 0 < h < 1, while the Q;—sdo
not contain any, see Figure | for a schematic representation. Therefore, by denoting
a reference subdomain as 29, the distribution of €2;-s is constructed by appropriate
translations of €2¢. In a concise manner, the distribution of the droplets can be written
as

D = Qupe N d<Z3 + (z + %B)), (1.8)

where d is the minimal distance given by (1.12), z is a point contained in unit cell
domain, and B is a Lipschitz domain in R3, such that diam(B) ~ 1. Besides, we
assume that Q... is away from the boundary 02, such that

dist(d2eupe; 02) ~ k(@) ~ a3 witha <« 1and0 < h < 1. (1.9)
Hence, from (1.8) and (1.9), the droplets D are away from the boundary 9€2, such that
dist(D; 02) ~ k(a) ~ a3 witha < 1and0 < h < 1. (1.10)

We are concerned with the case where we have the number M of droplets of the
order
M~ad"'a<1 witho<h<l, (1.11)
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Figure 1. An illustration of how the droplets are distributed in 2.

and, then, the minimum distance between the droplets is

d:= min |z —zj|~a"™M3 4«1, witho<h<]1, (1.12)
1< Em
as M ~ d 3. The choice in (1.11) is dictated by the behavior of scattering coefficient
(or the polarisation tensor) in (A.32) which is of the order a'~" and M should be
inversely proportional to it. This behavior allows to generate a non-trivial effective
medium in the homogenisation process.
With these notations at hand, let us state the perturbed problem as follows:

2,20\(1 — 201 =0 i
{(A+w PO = xp) + 0 frx,)vF =0 inQ, (1.13)

a8 =g on 992.

Under the condition that w? is not an eigenvalue of —n~2A with zero Neumann
boundary condition on 02 and that c,, and a are small enough, the problem (1.13)
is well posed. Indeed, it is clear that the operator solution of the problem in (1.13)
is a compact perturbation of the problem (1.1) which is well posed. By Lemma 4.1,
we deduce the uniqueness of the solution of (1.13). Actually, by Lemma 4.1 we also
derive the related estimate of the well-posedness for problem (1.13).
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1.2. From the original NtD map A p to the effective NtD map A p: Theorem 1.1
Let v2(-) be the solution of the problem (1.13). Multiplying (1.13) by p/(-) (the
solution of (1.1)) and integrating over €2, we obtain
(Ao(f): g)m1/2ae)xH-1/2(30)
— (V& VS —w2(n208&- S —2(PL 2\ e oS
= (Vv&;Vp/ )2 — 0 (n"v¥; p/ )2 — @ <(k1 n )U P >L2(D),
(1.14)

where Ag(-) is the NtD map defined from H~/2(32) to H'/2(3Q) by
(A():ghuav2apess-12s i= [ P/ (g(x)do ()
02

where we use integrals to simplify notations. We set Ap(-) to be the NtD map of
the background after injecting a cluster of droplets, i.e., the problem (1.13). Multiply-
ing (1.1) by v&(-) and integrating over €2, using the self-adjointness of A p and (1.14),
we end up with the coming formula

(Ap(f): &) /2 pa)xm-1/200) — (Ao(f): &)mi2a)xH-1/2009)
= (2= n)ve: p7) 115
@ <<k1 )P Ly (119

In a similar way, we define u# (-) to be the solution of

(A + 0?n?()— PHuf =0 inQ, (L16)
hus =g on 092. '
Here®
—ko((1; € 2
pr .= Kol (1.17)

B
)LnOCnO

where e, () is the eigenfunction associated to the eigenvalue )Lfo related to the New-
tonian operator, given by (1.3), defined in the domain B. We set A p(:) to be the NtD
map of the equivalent background, then we obtain

(Ap(f):&)m2pa)xa-1/200) — (Ao(f): &) m1/200)xH-1/2(09)
= —P>(uf: p/ 2. (1.18)

3The assumption that (1; &,,)p2(p) # O is reasonable. When B is a ball, we have
an infinite sequence of eigenvalues Afo for which the corresponding eigenfunctions satisfy
(1: eny)2(p) # 0, see [27] for instance.
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From (1.15) and (1.18), we see that

((Ap — ApP)(f); &) m2p0)xH-1/2(3%)
22&_ 2)8- f> p2 g. ,f 1.19
1) <(k1 n-jv¥;p ]L2(D)+ % p’ )2 @)- (1.19)
In the sequel, we prove that when M is large, or a is small, the perturbed medium,

after injecting a cluster of M droplets, behaves like the equivalent background. In
other words, the map Ap(-) converges to Ap(-).

Theorem 1.1. Let the domain Q be C?-regular. Supposed that the index of refraction
n2(-) € Whoo(Q), the used frequency w satisfying (1.6), the parameter h be such that
% < h < 1, and the droplets D,,-s are distributed as explained in Assumption 1. Then,
we have the following convergence:

a—0
(Ap(f): &lmizpe)xu-1/200) — (AP (f): &) m1/200)xH-1/2009)

uniformly in terms of (£, g) € H~Y2(3Q) x H~Y2(3Q). Precisely, we have the fol-
lowing rate:*

||AD —Ap ||.§C(H—1/2(BQ),H1/2(8Q)) < a(l_h)(9_58)/(18(3_8))P6, a <1, (1.20)

where & a sufficiently small but arbitrarily positive number.

Remark 1.2. Two comments are in order.

(1) Since M ~ a"~1 and § is very small, we can rewrite (1.20) as

”AD — AP ||$(H_1/2(39),H1/2(BQ)) < M(58_9)/(18(3_8))P6, M > 1.

We can choose M, i.e., a, such that
M=/ ABG=M p6 « 1. (1.21)

(2) The parameter § in (1.20) is linked to the L3-8 (R2)-integrability of the funda-
mental solution @ (-; -), given by (1.5).

As we assume to know the NtD map Ap(-), for M large, the previous theorem
suggests the following result.

Corollary 1.3. Under the condition of Theorem 1.1, the NtD map Ap(-) is approx-
imately known.

4The Wl’oo—regularity of k, and hence n, is used to derive the rate in (1.20). The
IL°°(2)-regularity is enough to derive the convergence (without rates).
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The proof of Theorem 1.1 is based on the point-interaction approximation, or the
so-called Foldy-Lax approximation. We first approximate the left part in (1.20) by
a linear combination of elements of a vector which is the solution of an algebraic
system. This algebraic system captures the multiple scattering between the injected
droplets through an interaction matrix where the interaction coefficients, that are also
called scattering coefficients, are all positive due to the choice made in (1.6) of the
sign of ¢,,. To prove the invertibility of this algebraic system, uniformly of the large
number M of droplets, we first justify the invertibility of the related continuous integ-
ral equation and then, we show, with quite tedious computations, that the algebraic
equation is “a discrete form” of this continuous integral equation.

Remark 1.4. Two remarks are in order.
(1) In (1.17), we take the constant ¢,, < 0 and the parameter P2 such that

P? > wi||n*||Lee@) = Pmin,

ko

where, we recall that, a)g = E' This is possible if we choose the parameter ¢, to

satisfy’

_,0—1yigsf2|k(J’)|((1;éno)L2(B))2 <Cpy <0 and cp, — 0.

We recall that the parameter c,,, appears in (1.6) and we have (1.17). The coefficient
Cny is taken small, and hence P large, but satisfies (1.21).

(2) The parameter / appearing in (1.6) and (1.11) models how dilute, or dense,
is the distribution of the injected droplets in 2. If % is close to 0, we have a dense
distribution and when # is close to 1 we have a light distribution.

1.3. The linearisation of the effective NtD map A p(-): Theorem 1.5

Theorem 1.5. We have the following linearisation of Ap (-), in the H/?(dS2) sense:

r 1 _
Ap(f) =" =0y W)+ O(If lu1200 53 ). /0 € H2(2).
(1.22)
. _ 1 .
where y(-) is the trace operator defined from H () to HS~1/2(3Q), s > 3 g’ () is
the solution of

—_ Py = i
{(A P*)q 0 inQ, (123)

8,,qf =f on 092,

SWe assume that we have an a priori information on infyeq |k (y)|.
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and Wi’ (+) satisfies
(A—P2)W? = —n2¢/ inQ,
BUqu =0 on 092.
Therefore, knowing A p( f) allows us to construct W’ for f e HY2(3Q).

The proof of Theorem 1.5 is based on the observation that the solution operator
(i.e., the Lippmann—Schwinger operator) of the problem (1.16) can be seen as the
one of the problem (1.23) plus a “small” perturbation. The smallness of this perturb-
ation permits us to justify the related linearisation. The arguments of the analysis are
based on the spectral and scaling properties of the Newtonian operator of the solution
operator of (1.23) via Calder6n—Zygmund-type estimates.

1.4. Construction of n2(-) from the linearisation of A p(-): Theorem 1.6

The next theorem describes a way how we can reconstruct the sound speed from the
linearised part of Ap ().

Theorem 1.6. For every | := (I1;1;13) € Z3, we choose

P2ts|[|2ts —i(l3 +13)
f=—— "1 | Jllls+ilil,|. withc e R™. (1.24)
V2 I3+ B\l + ilyds

Hence,
§| = PPHs|IPFe. (1.25)

We set qf(-) = ql’S the function defined by
g (x) == ¥ (@ i (x)), x eR3,
and rq(+) is such that
(A +2i6-V—P)ri(x) = (I]> + P2e*, inQ. (1.26)
In the same manner, we set % (-) := ¢ (-) to be the function defined by
¢ (x) = e E (L4 ra(x), x € R?,
where 1 (-) is such that

(A +2i£-V + P?)ry(x) = —P?, inQ. (1.27)



The Calder6n problem revisited: Reconstruction with resonant perturbations 1419

Then we have the following approximate reconstruction formula:

n2(x) = 2m) 7 Y (W5 8,65) et + 0(P79), (1.28)
Lez3

in the L?(Q2) sense.

The justification of the existence and uniqueness of solutions corresponding to
the problems (1.26) and (1.27) can be found in [41, Section 3.2]. More precisely,
in [41, Theorem 3.7] the result is proved first for the free case equation, i.e., equa-
tion of the form (A + 2i& - V)r = f, where r(-) is a correction term and f is the
source data. Then, in [41, Theorem 3.8] the general case, i.e., equation of the form
(A +2i&-V +q)r = f, where q is a potential, was proved under the conditions
£-& =0and |§] > max(Co|lq|loo(); 1), Where Cy is a constant depending on the
domain €2 and the space dimension. These nicely re-derived estimates were initially
proved in the seminal work [44, Theorem 1.1, Proposition 2.1].

The key observation here is that these CGOs are solutions of fully explicit equa-
tions, see (1.26) and (1.27), which make the representation in (1.28) constructive.

Remark 1.7. In Theorem 1.6, we have shown how to construct n2(-) using a discrete
series expansion. Actually, we can also use the classical Calderdn idea to construct
the Fourier transform of n2(-). Indeed, choosmg any v which solves (A — P2)v = 0
and multiplying it with the PDE for wa’ (), we have

/ n2(x)q’ (x)v(x) dx = / v ()W (x)ds(x). (1.29)
Q IR
Now, for0 # £ € R3, let us consider an orthonormal family {61 = % e, 63} of R3.

Using this basis, we take

&= —e +iex\/ P2+ |E|2 = @ e —iex\| P2+ |E|2

and then consider the two functions qf (x) := €1% and v(x) := e'%2*. We see that
(A — P?)g/ =0and (A — P?)v =0since &y - & = & - & = —P2. We also see that
{1 + & = |€]er = &. With this choice, it is immediate that

/nz(x)qf(x)v(x) dx = / xp2(x)dx, & eR3.
Q Q
which allows to construct the Fourier transform of n2(-) from (1.29).

The remaining parts of the paper are organised as follows. In Section 2, we discuss
and justify the linearisation step and in Section 3 we deal with the reconstruction of
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n2(-) from the linearised NtD map. The justification for the effective NtD is stated
in Section 4. This choice is taken because this step is technically the most involved
part. Finally, we postpone several technical steps to be developed and justified in
Appendix A.

2. Proof of Theorem 1.5

The goal of this section is to derive a linearisation, up to a first order term, of the
NtD map of the equivalent background, i.e., Ap(-). Let u/ (-) be the solution of the
following Lippmann—Schwinger equation (LSE in short):

ul (x) — NP (n*u’)(x) = ¢/ (x), xeQ, 2.1

where ¢/ (-) is the solution of (1.23), and N?(-) is the Newtonian operator defined,
from L2(2) to H?(Q), by

NP(f)(x) = / Gy ) f(0) dy. x €. 2.2)
Q

with G (-, -) is the solution of

{ (Ax — PH)Gp(x,y) = —8,(x) inQ, (2.3)

0,,Gp(x,y) =0 on 0L2.

In effortless manner we can check that u”/ (+) (the solution of (2.1)) is also the solution
of (1.16). Moreover, by an induction process on the LSE, given by (2.1), we prove that

u! () — g7 (x) = PN (02g7)(x) + Y (K; & (2)(x), x€dR,  (24)
j=2
where
(K2 ® (12)(x) = (@ yN? (02N (n%q”))(x)

(K3 @ (1)(x) = (@2 *yN? (NP (0> N” (ng7 ) (x)

j .
(K; & 02) = @y [ [ Gy Gon®eeon! - .
Q Q

where N7 (-) is the Newtonian operator defined by (2.2), and y(-) is the trace operator
defined from H*(Q) to H*~1/2(dQ), s > 1, with @ a smooth domain. The coming
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lemma is useful to study the convergence of the previous series with respect to the
H'/2(3€2)-norm.

Lemma 2.1. The Newtonian operator given by (2.2) admits the following estima-
tions:

1
IN?llg@2@yL2@) = (9(ﬁ> (2.5)
and
1
Iy NPl w2 @)mi2 o) = (9(;)- (2.6)
Proof. See Section A.2. ]

For the convergence of the series given into (2.4), we have
J J
| K @ D] o = DMK ® 020, @7
Jj=2 Jj=2

Now, we estimate the terms appearing in the previous series.
(1) For j =2,
2 2
K2 ® (n9)[|lm1/2 90
= (@*)?[lyN?(* NP (n*q”)) 1200
< (w2)2”VNP||$(L2(Q);H1/2(8Q))||n2||112}>0(9)”Np”:t(]Lz(Q);]Lz(Q))||qf||]L2(S2)-

(2) For j =3,

3
1K3 ® (n*)|Ig1/2 002
= (@?)?|lyN? > NP (>N (nq" ) lg1/2 00
< (@) IyN? |l z@2@ym200) 171 0@ 1IN Iz @2@r2@ld” 2@

(3) For an arbitrary j, by induction, we can prove that

j _ .
I1K; ® (n®) 120y < Eln? L@ (@ IN?ll g @2@yrz@yln’ @)’
(2.8)
where

[

E = 0’ll¢” 2@ IV N ll g2y 2o0)- 2.9)
Therefore, by going back to (2.7) and using the estimation (2.8), we obtain

J
H ;(Kj > ®n?) ”Hl/z(m)

< Z E||n?|Leo@) (@’ IN? | e @22 @y 177 Lo @)’ ™
j=2

=E ””2”1%00(9)‘02”]\/1]||;£(L2(Q);L2(Q))120Kj’ (2.10)
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where k is the parameter given by k := @?||n?|Leo(@)|N? || £ 12(@):L2(0))- Under
the condition
k<1, 2.11)

the previous series converges. Now, because ||N 7| ¢1.2(Q):L2(0) = O(P72), see
(2.5), then with P large enough; knowing that w?||n?||Leo(g) is a bounded term, we
deduce that the condition (2.11) is satisfied. In addition, from (2.10), we have

J 2 —
H;(Kj ® (n7)) HH1/2(8SZ) = O(EIN?llgw2@)L2@))

.9
= O(IN?lle@2@)12@) llg” IL2@) IYN? e @2 @):m7209))

L 2.1 1
emma (9(”qf“L2(mﬁ)_ (2.12)

The coming lemma is important to get an estimation of
Y ewy]
, H1/2(3Q)
Jj=2

with respect to the data f(-) and the parameter P.

Lemma 2.2. The function q7 (-) (the solution of (1.23)) satisfies

1
47 2@ = O (1f w1200 )- @13)

Proof. The solution ¢/ (-) to the problem (1.23) can be represented as ¢/ (x) =
SLP(f)(x), for x € Q, where SL?(-) is the single-layer operator defined, from
H~1/2(3$2) to H'(R), by

SL?(f)(x) = [ Gp(x. ) f(D)do(y). x €9, 2.14)

0

with G, (-, -) being the Green’s kernel solution of (2.3). It is clear that (A — P2)gq/ =0
in €. In Section A.8, we show that 3, SL”(f) = f on d<2. Multiplying the previous
equation by ¢/ (-) and integrating over £, gives us
lg” 122 = (@ :SL” (M2
= (f1YN? @ u-1200)m1208)
< fllg-1/20a lYN? @ )la2@a)

= ||f||]1-11*1/2(3$2)”VNPHSC(Lz(SZ);Hl/z(aQ))”qf”]LZ(Q)-
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Then,

(2.6) 1
lg” 2@y < I/ la-1202) VN2 leaz@qm 200y = (9<||f||H—1/2(8§2)F>'

This concludes the proof of Lemma 2.2. ]

Using (2.13), the estimation (2.12) becomes
K; & (n? =0 1
H;( 1 )| 1 aog = O (1S 1200 57):
Hence, from (2.4), we get
s s 2, wa' 1
w/ (1) =¢/ (0) = 0y W)@ + O(If 120y 53): X €99 215

where W4’ = NP (n2q7) is the function satisfying

(A _ PZI)Wq_/' _ _n2qf in Q,
(2.16)

8,,qu =0 on 9€2.
Because on the boundary 92, we have u/ = Ap (3,u”) (L9 A p(f) and by plugging
it into (2.15) we derive (1.22). This concludes the proof of Theorem 1.5.

3. Proof of Theorem 1.6

The purpose of this section is to explain how the linearised NtD map (measured on
the boundary d€2) can be utilised with CGO solutions to reconstruct the Fourier coef-
ficients associated with the unknown refraction index n2(-). Hence, we reconstruct
the refraction index of n2(-) inside 2 as a discrete series expansion using the recon-
structed Fourier coefficients. From the previous section, we deduce that measuring
u’ (-) — ¢/ (-) means measuring, approximately, wa’ (), on the boundary 9€2. We
set g% (-) to be the solution of

_ p2 g — i
{(A P21)q8 =0 inQ, A

avqg =4 on 0%2.

Multiplying the first equation of (2.16) with ¢# () (the solution of (3.1)), and integrat-
ing over 2, we get

S S
(VW : Vg8 2y + PHWT g% )12y = (%07 :4%)12()-
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Moreover, by multiplying (3.1) with wa’ (the solution of (2.16)), and integrating
over 2, we get

0 s s
(VW Vg8 ) 129y + P2IWT 1¢%)12@) = (W 1 @) m2pa)<H-1/2(00)-
Then, by subtracting the two previous equations we end up with
i
(W9 &) m/2gayxm—1/200) = (1747 14%)12(9)- (3.2)

for all (£, g) € H-1/2(3Q) x H~/2(3R). Knowing that W7’ can be measured, on
the boundary 0€2, and g is a data function, we deduce that the left-hand side is a
known term. The goal is then to reconstruct n2(-), inside Q. To achieve this, we start
by fixing 7 € R3 and choosing £ € C3 such that

E.£=0. (3.3)

We set g7 (-) the function defined by

g7 (x) i= 5% (™ 4+ 1 (x)), x € R, (3.4)
where £ is chosen such that®
n-§=0, (3.5)
and rq(+) is such that
(A +2iE-V —P>ri(x) = (n]*> + PHe* inQ. (3.6)

Observe that the right-hand side is depending on 7 and P, then r; () will also depends
on both n and P. Later, to mark this dependence, we note ri 5, ,(-) instead of r{(:).
Thanks to [41, Theorem 3.8], we know that under the condition

|€] > max(CoP?;1) = CoP?, (3.7

where the last equality is a consequence of the fact that P > 1, and Cy is a constant
depending on 2, equation (3.6) has a solution rq 5 ,(-) € H!(Q) satisfying

Co
71302 < E('”'Z + P2)|Q|!/? (3.82)
and
IVrim 2@ < Collnl* + P22, (3.8b)

®For every fixed n € R3, we choose £ € €3 such that (3.3) and (3.5) will be fulfilled. Such
& exists, see (1.24).
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In the same manner, we set g€ (-) to be the function defined by
g% (x) := e ¥ (1 4+ rp(x)), x €R3, (3.9)
where r,(+) is such that
(=A +2i£-V + P?)ry(x) = —P? inQ. (3.10)

Because the right-hand side is depending on P, a solution r,(-) will also depends
on P. Later, to mark this dependence, we note r; ,(-) instead of r>(-). Again, thanks
to [41, Theorem 3.8], we know that under the condition (3.7), equation (3.10) has a
solution 2, (-) € H!(), satisfying

Co
|L2(Q)5mp2|sz|l/2 and || Vra,pllp2) < CoP?Q|Y2. (3.11)

[72.p

Now, we take unit vectors w; and w, in R? such that {w1; w7;n} is an orthogonal set.
In addition, we choose £ = s(w; + iw>), so that |§| = s+/2 and £ - £ = 0. Using the
fact that P > 1 and taking the parameter s sufficiently large, such that (3.7) will be
satisfied, we reduce the estimation of the L.2(Q)—norm of rq . ,(-) and r5 ,(-) to

P2 P?
Irsliog =0(=) and lrplee=0(=). G2

Next, by taking the product between ¢/ (), given by (3.4), and ¢4 (), given by (3.9),
we obtain

(qf ' qg)(x) = eix»n + rl,n,p(x) + eix'nrz,p(x) + rl,n,p(x)rz,p(x)v (3.13)

and we would like to choose the solution in such a way that (g7 - ¢%)(-) is close to
e!"" since the functions {e’""} form a dense set, see [25, Theorem 1.1], in L1 (). By
going back to (3.2), we have

S
(W5 ghmi2 o) xa-1/2(00) = /nz(x)qf(x)qg(x) dx
Q
(.13)

= / n?(x)e'™" dx + Error(n, p).
Q

where

Error(n, p) := /nz(x)rl,,,,p(x) dx + /nz(x)eix'"rz,p(x) dx
Q Q

+/n2(x)r1,,7,p(x)r2’p(x) dx,
Q
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which can be estimated as

[Error(y, p)| < [1n* [Los@l1r1,0.p IL2(@) 1R + 02 oo (@) Ir2,p L2 ()| 21

2
+ In°lLoe@) 1710, p l2 @) 172, IL2(02)»

which, based on (3.8) and (3.11), can be reduced to

w (.12) O(PTZ) _ @(%) (3.14)

Moreover, based on its construction, see (3.4), the function qf () depends on 1 and
this implies the dependency of W4 / (-) with respect to 1. We mark explicitly this
dependence and we write

|Error(n, p)| <

/' -
(Wi 8) 2 ae)xa-1/2(9e) — Brror(n, p) = /nz(x)elx" dx, (3.15)
Q

which is valid in A, := {§ € C3 such that [§| > 1, £-&§ = 0 and £ - n = 0}, where 7
is fixed in R3. The set Ay is not empty, see (1.24). By restricting 7 to Z3,ie,n=—{
with £ € Z3, we rewrite (3.15) as

S .
(W, gy paxm-1/299) — Error(—¢, p) = /ﬂz(x)e_’x'z dx
Q
= 2n)’F (n?x, (),  (3.16)

where  (-) is the 3D-Fourier transform operator.” Now, thanks to [41, Theorem 2.3],
we know that

nx) =Y ﬁ(nzxﬂ)(zz)ei“, xeQ,
LezZ3

with convergence in the I.2(2)-norm. Then, by gathering the previous expression
and (3.16), we end up with

n2x) =202 Y [ WY (0g(x)do(x)e't™ + Error(x, p),  (3.17)
Lez3 Yol

7We recall that we have

F(HK) :=2rn)3 / Fx)e % dx, tez’.
RrR3
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in the L?(2) sense, where Error(x, p) is a trigonometric series given by

Error(x. p) := —(2m) > ) _Error(—L. p)e'*™, x € Q.
LeZ3

Next, we estimate the L.2(£2) norm of Error(:, p). We have

M (L2 + P2
[Error(-, p)ll12q) < Z|Error( 2l 5 ZT
Lez3 tez?

At this stage, we recall that for every fixed £ € Z3, we choose £ € C3 such that
£-£=0,-£=0and |§] > 1.

Such £ exists, see (1.24). Without loss of generality, we take £ satisfying (1.25), hence
|E| = P2TS|£)>FS, with ¢ € RT. Then,

wer+ry -
|Error(, p)lL2) S ) P2rs|g3ts ap3
(ez3 LeZ3

P~
|g|1+§ Z |g|3+§

Lez3

After that, we use the convergence of the two previous series to reduce the last estim-
ation to
[Error(-, p)llp2@) = O(P°).

Hence, (3.17) becomes
n2(x) = 2n) 7 Y (WY ) w2 gayn-1/260)e  + O(P5),
LeZ3

in the IL2(R2) sense. This ends the proof of Theorem 1.6.

4. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. To ensure easy reading of the
proof, we have divided this section into four subsections. The goal of the first subsec-
tion is to extract the dominant term of

I, := w2<<& —nz)vg;pf>

kq L2(D)’

where we prove that

I, :wZ&pr(Z])/ vf (x) dx + Error,
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see (4.14). In the second subsection we derive and we justify the invertibility of the
discrete algebraic system satisfied by the vector ( /, D, vJ’." (x) dx)j:l,..., 2> contained
in Iy, see (4.31) and Lemma 4.3. The third subsection consists in writing down the
LSE, satisfied by u# (-), where u®(-) is the function appearing in

12 = —PZ(Mg; pf)]Lz(Q),

see (4.34). Then, we prove that the discrete algebraic system can approximate the
continuous LSE, see (4.57). The goal of the last subsection lies in the justification of
the convergence of I to I, for a large number of droplets, that is, M > 1.

To avoid making this section heavy and cumbersome, we have noted six lemmas
without proofs. The proof of each lemma can be found in Section A.

4.1. Extraction of the dominant term of 1
We set
7y

01
I, .= a)zk_1<vg;Pf)]L2(D) —w*(n*v¥: p L2(D)

0?2 Z [ eFeop’ o) dx = @2 w2et s p Yy,
_1DJ

where v¥ () satisfies (1.13), p/ (-) is the solution of (1.1), and we have used the nota-
tion v¥(-) 1= v¥|p,(-), for j = 1,..., M. In addition, as the coefficients n*(-) is
W 1% _regular, then p/(-), which is in H'(2), enjoys a W2 ®-interior regularity.
Based on this, we use Taylor expansion near the centres, z;, to get

I =ow —pr(z,)/ g(x) dx + Jy, 4.1
where

7 _wz&zf g(x)/fo(zj—f—t(x—Zj)) (x — ;) dt dx
j 1

—w*(n vg;pf)]Lz(D).

We estimate the term J; as

M 1
ARSI H ||Lz(p,)H / Vol (2 +16—2) (—zp) dt
= , L2(D;)

+ 1108 2oy 177 2oy



The Calder6n problem revisited: Reconstruction with resonant perturbations 1429

M ! 2 1/2
f a—2||vg||]L2(D)(Z /fo(Z] +Z(—Z])) '('_Zj) dl )
0

j=1 L2(Dj)

+ ||Ug||L2(D)||Pf||L2(D)
= (9(||Ug||L2(D)[a_l||VPf||]L2(D) + ||pf||]l_,2(D)])- 4.2)

Moreover, based on (1.1) we deduce that pf () can be represented as a single-layer
with density f(-), i.e.,

pT(x) = 8(f)(x)
= f G(x. ) (D)o () = (GG, ): fmtr2 a1 200y, X € 2.

Q
4.3)
where G (-, -) is Green’s kernel defined by
AxG(x,y) + 0*n*(x)G(x,y) = —§y(x) inQ, 44)
0y, G(x,y) =0 on 0L2. .

The existence and the uniqueness of G(-,-) and its singularity analysis, with point-
wise estimates, can be found in [31]. Based on (4.3), we have

1/2
127 o) < ||f||H—u2(am[ / 1GG B2 dx} L@
D

In addition, we have

G (x, ')||H1/2(ag) = inf 1G(x, ')||Hl(sz)-
6(x,)eH (Q)
6(x,)p=G(x,)

Let Q° = Q\ D, and let G(x, -) := G(x,-) yqo (-). Thus, by its construction G(x,-) €
H! (), for x € D, and y(G(x,-)) = G(x,)|sq, on IR, where y(-) is the trace oper-
ator. This implies that

1G(x, )m2pe) < 1G(x, ) xeeOllm @ = G, ) @) (4.6)

Then, by plugging (4.6) into (4.5), we deduce

1/2
||Pf||]L2(D) < ||f||H—1/2(aQ)|:[||G(x")||%[1(Q<>) dx:| -
D
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Recalling that
||G(x, )H%I](QO) = ||VG(X, )”]IZJZ(QO) + ||G(X, ')||]12J2(Q<>)3

we deduce, since [VG(x, y)| = O(|x — y|~2), that

1/2
Ip7 2oy S ||f||H—1/2(aQ)|:/||VG(X,')||iz(90) dx]

D
1 1/2
snqu-m(m)[ [] mdydx] |
D Q°

We have, for x € D and y € Q°, see Assumption 1, that
|x — y| > dist(D, 0Q°) = dist(D, 0Q2) > «(a),
which implies

Ip7 L2y < 1/ 1200 1D 1(@) ]2

= £ ls=1296)[| Do | M (ke (a))™*]"/2

(1.10)
= O(f ||H—1/2(89)a(2+7h)/6)'

Similarly, using (4.3), the vector function V p/ (-) can be expressed as

Vo (x) = / VaaG(x. ) f(1)do(y)

X

= (VG(x,): flmzpexm-1/200) X €2,

Then, by repeating the same computations as (4.5)—(4.7), we obtain

1 1/2
e el e
D Q<

= 0@"?| flg-120))-
Hence, by returning to (4.2), using (4.9) and (4.11),
Ji = (9(a3h/2_1||f||]I-I[—1/2(BQ)”vg”]LZ(D))-

The following lemma gives us an a priori estimate satisfied by v&(-).

Lemma 4.1. We have the following a priori estimate:

—2n
108 IL2py < a® 720l glg-1/23g2)-

1430

@.7)

(4.8)

4.9)

(4.10)

A.11)

(4.12)

(4.13)
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Proof. See Section A 4. [

Thanks to the previous lemma, the estimation of J; given by (4.12), we reduce
the estimation of I, given by (4.1), to

M
I = wzl[;—i pr(zj) / U]g(x) dx + (9(0(5h_2)/3||f||H—l/2(asz)||g||H—l/2(asz))-
7=t D;
(4.14)
The goal of the following subsection is to derive the algebraic system satisfied by the

vector ( D, vf (x) dx) s and justify its invertibility.

i=1,..

4.2. Algebraic system
We start with the following LSE, with v (-) as the solution of (1.13),
vt =0? [ Gt ) (=2 0) dy =S, xe@ @19
4 1
where S(-) is the solution of

(4.16)

AS + 0*n?()S =0 inQ,
0,S =g on 992.

and G(-, -) is the Green’s kernel solution of (4.4). Now, by restricting (4.15) into D,
we obtain

v (x) — w? / G(x,y)vg(y)(% - nz(y)> dy =S(x), xeD. 4.17)
D

The coming lemma, on the decomposition of Green’s kernel G (-; -), is useful for the
next step.

Lemma 4.2. Green’s kernel G(-;-) (the solution of (4.4)) admits the following decom-
position:
G(x,y) = Po(x,y) + R(x.y), xF#y, (4.18)

where @ (-, -) is given by (1.5), and the remainder term R (-, ) satisfies

{Ax(ﬂ(x,y)) TR, y) = — P )@o(xy) Q.

O (R(x,y)) = — 0y, (Po(x,y)) on 02
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For x,y € Q, the term R(-,-) is such that®

1 1/3 1 2/3
m(x’y)'S(dist(x,BQ)) (dist(y,aﬂ)) .

Proof. See Section A.3.

For x € D,,, we rewrite (4.17) as

(1 - @£ Np,, )05 (0) — 0P ;/G(x E () dy
J mD

1432

(4.20)

= Snl) + 0?7t / R(x. y)E (7) dy — f G(x. 70 (In*(y) dy.

D

4.21)

where Sy, (1) := S()|p,,,» R(,-) is the solution of (4.19), and Np,,(-) is the New-
tonian operator defined, from LL2(D,,) to L?(D,,), by (1.3). In both sides of (4.21),

successively,

k
(wz;lol

and integrate over D,,, the obtained equation, to get

A EIOTEESS / Win () / Gx: y)v8 (7) dy dx

Dm J#m

Np,,)

/W (x)[/v Rz 10— zm)) - (v — 2m) d1 V5 () dy dx

Dy, 0

_ID/ Win () D/ G(x. y)ve (n)n(y) dy dx.

where W, (+) is the solution of

k
——Wn(x) = Np,, (W) (x) = 1. x € Dp,
w=p1

8In general, we can prove that

RIS (dist(xl,asz))q(dist(yl,asz))p’ X,y €8,

where p and g are positive real numbers such that p + g = 1.

(4.22)

(4.23)
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and B,, € C is the constant given by

B = (1— / Wi (X) R (X, Zm) dx). (4.24)

We have

‘ [ Rz x| < Wl IR 2200,

D 420 (1-h)
T U0 g20-m5) (405)
(4.78) dlSt(Dm; 852)
Hence,
Bm=1+0G> M3 form=1,....M. (4.26)

Next, to derive the desired algebraic system, we expand in equation (4.22) Green’s
kernel G (-, -) and the source term S(-), near the centres, to obtain

Bm / vE (x) dx — am Z G(zm,zj)/ vi(x)dx = kplamS(zm) + Rest,,,

Dy ]#m .I
(4.27)
where o, is the scattering coefficient given by
Oy 1= / Wi (x) dx, (4.28)

and

Rest,, 1= Z / Win (x)[VG(Zm+t(x—Zm) zj) - (x —zpm) dt dx/ g(y) dy

j=1p D;

J#m " /

" Z/W (x)//VG<x 21— 2)) - (v — 27) divE (v) dy dx
J#m

(x)/VSm(Zm +t(x —zm)) - (x —z;) dt dx

[ Wi () / /v Rz + 10— zm) - (7 — 2m) d105, () dy dx
Dy O

al / Win () / G(x. y)v8 (n2(y) dy dox. (4.29)
PlD i
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As Dj-s are translations and scales of the same domain B, i.e., D; = z; + aB and
p; = pi withk; =k; fori,j =1,...,M, wededuce thata,, =, form=1,.... M.

w?pi P
Tia and then, setting

In addition, by multiplying its both sides by

2
Y, = Pmo P / vE (x) dx (4.30)
Olk]
Dim
withae = — P2a'™", we obtain
M
1 w?p; Rest
. —h 1
Ym + ; G(zm:zj)P2a’ IB—ij = S(zm) + a a”’. 4.31)
Jj#m

The next lemma ensures the invertibility of the previous algebraic system.

Lemma 4.3. The algebraic system (4.31) is invertible from £, to itself. In addition,
the following estimation holds:

()" = (L1semr) ™ a0 Lironar)”
m=1 m=1

m=1

In particular,
g N\Y2 _ -1y
(Y 1ul?) " sa lgls-1/200)- (4.32)
m=1

Proof. See Section A.1. ]

4.3. The LSE satisfied by u?% (-)

We define (?1, LY M) as the solution of the unperturbed algebraic system related
to (4.31). More precisely,
ul 1
Y+ Y Gzmizj)P?a' Y- = S(zm). (4.33)
ot * B
Jj#m
We set the following LSE:
Y(z) + P2/G(z;y)Y(y) dy = S(z), zeQ, (4.34)
Q

where G (-, ) is the solution of (4.4) and S(-) is the solution of (4.16). We need the
following lemma.

1-h

91n the equation « = — P 2411 the term a comes from the estimation of «, see

Lemma 4.7.
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Lemma 4.4. There exists one and only one solution Y(-) of the LSE (4.34), and it
satisfies the estimate
1Y Iy < P21l o- (4.35)

Proof. Equation (4.34) is invertible from L.2(2) to IL2(2) and this gives us the estim-
ation

1Y 2y < ISz < ISl @)- (4.36)
Now, by taking the H' (£2)-norm in both sides of (4.34), we get
1Y i@y S ISl @ + PPN g @)
where N(-) is the Newtonian operator defined by
N =[Gy ve @37)
Q

Then, using the continuity of the Newtonian operator, from L2(Q2) to H!(), we
obtain

(4.36)
1Y iy S IS @ + P2IY ez S P2ISIa @)-
This ends the proof of Lemma 4.4. |

Remark 4.5. The function S(-) (the solution of (4.16)) can be represented as a single
layer potential with density function given by g(-), i.e.,

S(x) = 8(g)(x) := /G(Ly)g(y)dﬁ(y), x €, (4.38)
il

with G (-, -) is the Green’s kernel solution of (4.4). Then, from (4.35), we obtain
1Y lm @) < 18 Im1 )-

and using the continuity of the single layer operator, from H~'/2(3Q) to H!($2), we
end up with the following estimation:

1Y @) < lgllm—17200)- (4.39)

Based on the introduced notations in Assumption 1, in particular (1.7) and the fact
that || = a'™",for 1 < j < M and 0 < h < 1,'° we can rewrite (4.34) as

M
1 =
Y(zm) + P* ) G(zmizj)a' " =Y (zj) = S(zm) — P?L(zm), (4.40)
j=1 /
J#m
'We have || = a' =" and |Q;‘| ~ al™" but, as these Q;’—s intersect d€2, we cannot

necessarily replace ~ with =.
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where
- M 1
Tew) = [ GGmin)Y(3) dy - 3 GlemzYEglal
J
2 Hém

To estimate T(Zm), we first consider the term

[ Gam: WY (y) dy = / Gem: MY () dy + / Glam: Y () dy.  (442)
Q Qcube Q

and show that the second term is negligible. In fact, for the domains Q}' which are
not necessarily cubes, they have the property of non-empty intersection with 02, i.e.,
092, NI # {@}, for 1 <n < N. Since each Q; has volume equal to a'™", and then
its maximum radius is of the order a"~")/3  then intersecting surfaces with 2 have
a volume of the order a2="/3_ Ag the volume of 9S2 is of order one, we conclude

that the number of such cubes will not exceed the order a~3(1=M. Hence, the volume
0
of 2, will not exceed the order a(1=h/3 a7 0,1i.e.,

19| = 0@ 7/3). (4.43)

Regarding the second term on the right-hand side of (4.42), we have'!

' [ Gm: 1Y () dy| < ¥ 216G GEmi 2@,

Qp .
<12A1Y Lo, 1GEmi iz,
<12 1Y Lo 1GEm: )lL2(a,)-

Thanks to Lemma 4.4, we know that Y(-) € H'(R2) c L®(Q). Then,

S 1QAPIY @ |G Gms Lz,

‘ / Gam: 1Y () dy
Q,

(4.35)
< PRSI @ 1G Em: L2,

which, by using equation (4.38) and the continuity of the single-layer operator from
H~/2(39) to H' (), can be reduced to

‘/G(zm,y)Y(y) dy| < P22 " gllm-1/20) |G Zm: )llL2 ()
@ < P2Q, | O30 CC=N | olly 1250y |G (Zm: ) |L3-5(q,)-

'We recall from Lemma 4.2 that G(z,,,;-) € L37%(Q), with z,, fixed, where § is an arbit-
rarily and sufficiently small positive number.
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Next, using the fact that G(z,;-) € L37%(Q,), hence |G (zm; Mps-s,) ~ 1, we
reduce the previous estimation to

‘ / G(zm: Y)Y (y) dy| S P?|Q, |07 CC=Dg|l 11250,

443)

=" O(P?lglls-1200)a " VOTVICT) - @dd)

Therefore, by gathering (4.41), (4.42), and the estimation (4.44), we deduce
1(zm) = L(zm) + O(P?|gllg-1/2330)atPED/MEC=)) a5 q « 1, (4.45)

where

M M 1

1w i= Y [ GGV 0) dy = Y- Glemiz)¥ )51
t=1q, j=1 J

Jj#Em

Let us now estimate I1(z,,). We write

il 1
G = 3 [[6Gnin¥0) = Gemizo¥eog ] dv+ [ Geminvo) dy

(=1
#m Sk Qn

4.24 M

“24 3 /[G(Zm§y)Y(y)—G(Zm;Zz)Y(ZZ)] dy +/G(zm;y)Y(y) dy
{=1 o

Jp, We)R(x, 2¢) dx

M
=D Glemiz)Y (z0) || S, We()R(x, z¢) dx”

(=1
{#m

and, by using Taylor expansion for the function G(z,, -) Y (-) near the point z;, we get

M 1
1w = Y. [ [ GGmize+ 10 =200 V¥t 10=20)- (v =20 dr dy

{=1
Z#nggo

M 1
#30 [ [¥Cor i -20096Gmz + 10 =200 0 =z dr dy

(=1
K#HQZO

+ [ Gemnroa

Qm

fDe Wi (x)R(x,z¢) dx
- fDe Wi (x)R(x,z¢) dx

M
=Y Glzmiz0)Y (20| (4.46)

{=1
{#m
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From Lemma 4.2, we know that G(x, y) = Pg(x, y) + R(x, y), for x # y, where
the dominant part ®q (-, -) is given by (1.5). In the sequel, we keep only the dominant
part of G (-, -). More precisely, we have

1
|G(x, )| <
lx =yl

By taking the modulus in both sides of (4.46) and using (4.47), we deduce

1
and |VG(x,y)| < | 2 for x # y. (4.47)
X—y

()] < a3 /[ VY (e + 1y — z0)| di dy
Z |zm—z£—t(y 20l
Z;ﬁm

M 1
+ a0 Y [[ 1Y (z¢ + 1(y — z¢))| dt dy
|z

m—ze—t(y —z¢)|?

+ [ 1G (s Y] dy + Lz, (4.48)
Qm

where L(z,,) is the term given by

fDé We(x)R(x, z¢) dx
L= fp, We(x)R(x,z¢) dx’

M
L(zm) = Y _ Gzm:z0)Y(z0)|Q|

{=1
L#m

(4.49)

Next, we delay the estimation of I1(z,,) until we estimate first L.(z,,). To do this, by
taking the absolute value on both sides of (4.49), using the fact that |Q;| = a' ™", the
estimation (4.47), with the estimation given by (4.25), gives us

M
_ 1
LGl £a™ 0Py )
=1 '™

— — z¢|
Z;ém
< ¢50-h)/3 Y
a (Z = —mz) (D oP)"”
(faém E;ém
Besides, by applying a Cauchy—Schwarz inequality, we obtain
IL(zm)|
M M M
1 1/2 ~ N1/2 ~ N\1/2
<a® A ) (e - Rr) T+ (D IFR) .
= lzm =2l (=1 (=1

L#m
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where (Yl; cee s ?M) is the solution of (4.33). In addition, by using (4.32), it can be
reduced to

M 1 1/2 N M ~ \1/2
Ll 5 (Y ——5) [P (XIreo - TiP)
= |zm =2l (=1
{#m
+ a7(l_h)/3||g||H—1/z(3Q)]. (4.50)

Now, by making again use of the Cauchy—Schwarz inequality in (4.48) and using
(4.50), we obtain

5(1—h)/6 I 1/2
1) 5 @O/ VY ey DN Eet)
=1 m

7ém
M
1/2
1 g5a-n/e)y ( )
a 1 ) Z|Zm e
;é
1/2
+||Y||Lz<m( / - dy)
M
1 1/2 - 1/2
5(1—h)/3( ) ( Y(z,) — 7, 2)
+a Z o — 2 D 1Y (ze) - Tl
(=1 =1
L#m
M
1 1/2
—h
+a’" m(Zm) lglla-1230)-
=1 1“m 2
{#m

The use of the lemma below allows for the estimation of the discrete sum of the
inverse power-weighted distance between the centre of the droplets, and the discrete
sum of the inverse power-weighted distance at the boundary.

Lemma 4.6. Let {D,, = z,,, + aB} —1 C . Then, we have the following estimates.

(1) Inverse distance between the droplets centres,

i” Lk OWd3) fork <3, wsh)
o OWd*) fork > 3. '

J#m
(2) Inverse distance to the boundary,

M 1 Od=3) fork <3,
e

= (4.52)
— dist*(D;: 0Q) Od>*) fork > 3.
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Proof. See Section A.7. [
Thanks to (4.51) and the estimation (1.12), we have

X(zm)| < a®0~ ">/6||VY||L2(Q>d 2 4+ @O Y ||y d T
1/2
+||Y||Lz(m( [ = y|2 dy)

— \1/2
+ a7(1‘h)/6( Z|Y(Z‘f) - Y5|2) +a " gl pq). (453)
=1

To achieve the estimation of I(z,,), we set and estimate the third term appearing on
the right-hand side of the above equation

1
Lewi= [ orsde [
|zZm — ¥l |Zm — ¥l
B(zm;r) Qi \B(zm;r)

where B(z,,; r) is the ball of centre z,, and radius r, where r is such that r € I :=
[0 %ga(l_h)”]. Then,

r

1
I3(z) < / / ﬁda(y)ds + — |Qm \ B(zm;1)|

0 9B(zm;s)
r

:/ 0B (i 5)lds + L 19\ Blzmir)]

0
nr 1 |,
=5t a s gg{:p(r,a),
where g |
._ o7 1-h
p(r,a) := ?r + r—za .

We have that max,cyr, o(r. a) = p(rso1. a), where 7 is such that 9, p(rso1, a) = 0.

Straightforward computations gives us ryo = ( yrll al~ h) .Consequently,

max p(r,a) = (48712)1/3a(1_h)/3.
rely

Hence,
I3(zm) = O(a1=773). (4.54)
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Finally, by gathering (4.54) and (4.53) and using the fact that d ~ a'~"/3, we end up
with

L1(zm)| < aVP3|VY pagy + a0 Y |20

M
~ 1/2
+ @SN () = Tul?) T+ @ O gl 2
=1

M
4.39) v 1/2
< @S gllg-12ag) + "I (DY) - Tul?)
(=1

(

Hence, plugging the above estimation into (4.45), we get

[(zm) = O P2aO~ DU/ g0 0,

M o \1/2
+ a0y - Tl?) ). (4.55)

{=1

Finally, by going back to (4.40) and making use of the estimation (4.55), we obtain

M 1
Y(zm) — Z G(Zm2Zj)FY(Zj)
j

j=1
jm
= S(zm) + O(P*a®DUWASGE= o)1 50)
70=h)/6 p2 w = 2\ 1/2
+(9(a P (Zw(z@)—m ) ) (4.56)
=1

Taking the difference between (4.33) and (4.56) gives us the following algebraic sys-
tem:

M
(= Y + 3 Glamiz) P20 (T = ¥ ()
j=1 I
J#Em

— (9(P4a(9_58)(1_h)/18(3_8) ||g||H—l/2(asz))

M 1/2
+ (9(a7(1_h)/6P2(Z||Y(25) - ?gnz) )

=1

Consequently, using Lemma 4.3, we have

Mo 2\ /2 4 —(1-h)(9-28)/(9(3-8))
( Z |Ym _ Y(Zm)| ) s P%a ||g||H71/2(3Q)
m=1
M

~ 1/2
+ a2 0PNy () - Til?)
=1
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which, by knowing that 4 < 1, can be reduced to

M
~ 1/2 1 _ _
(DT =YEmP) " = 0(P*a=0PODIOCD o)1) (457)
m=1

The previous estimation confirm the convergence of the discrete algebraic system to
the continuous LSE.

4.4. Finishing the proof of Theorem 1.1
We define J as

P1
J = wzk_l(vg;Pf)]LZ(D) + P2 p’ o) — @ (0708 pT Yo

M
Pl
Z[ 2= (v )ILZ(D )+ P2 (uf Pf)JL2(Qj)] — *(n*v%; p7 Yoy
(4.58)

Then, by using the Taylor expansion for the function p/ (-) near the centres, we get

J = pr(z |: 21 /vf(x) dx + PZ/uf(x) dx] + Err;, (4.59)
i Q@

where

Err; ;= w2p1 Z/ g(x)/fo(zJ +1(x —z)) - (x —z;) dt dx

_1D

+P22/ g(x)/vpf(z, +t(x —zj)) - (x —z;) dt dx

_IQ
— ?(n*v€; p )2y,

which can be estimated, by recalling that p; ~ 1;k; ~ a2 and |2;] ~ a'™", as

M
[Err; || S a™! Z”v;g“]Lz(Dj)”fo”]L2(D_,-)
j=1

M
+a" B P2y N 2@ IV P k)
j=1

+ ||vg||]L2(D)||Pf”]L2(D)



The Calder6n problem revisited: Reconstruction with resonant perturbations 1443

(1-h)/3 p2

<a! ||Ug||L2(D)||VPf||L2(D) +a ”ug”]L2(Q)”vpf”]L2(Q)

+ v 2oyl 2oy
@.11) B
< aGh 2)/2||vg”LZ(D)”f“]HI*l/Z(aQ)
(4.9)

+ a(l_h)/3P2||”g”ILZ(Q)”vpf”]L2(Q)' (4.60)

Next, we estimate ||V p/ [l.2(g)- To do this, we recall from (4.10) that Vpl =VS(f),
in 2, where 8(-) is the single-layer operator defined by (4.38). Hence, as

SC):H™Y2(0Q) - HY(Q),

we have
||fo||L2(SZ) = O f llm-1200))- (4.61)
Then, by using (4.13) and (4.61) into (4.60), we have

Err;| < 11 f la-1/20o) g la-1260a 7" "0 + a3 P2 ug |2 g)]. (4.62)

Let us now estimate u##(-) in terms of g(-). As u8(-) is the solution of (1.16), then it
satisfies the following integral equation:

ub () + P>Nw®)(-) = 8(g)() inQ, (4.63)

where N(-) is the Newtonian operator defined by (4.37). Hence, by gathering (4.34),
(4.63), and (4.39), we deduce that

¥ 20y < N8lm-1/200)- (4.64)
Then, by plugging (4.64) into (4.62), and using the fact that 4 > % we deduce that
Err;| < a3 P2 gllg-1200) | f la-1/200)-

Going back to (4.59), we obtain

M
J :pr(zj)[wzl'z-i/vf(x) dx + PZ/uf(x) dx:|
j=1

D, Q;

+ O(Q(l_h)/SPZHf||H—1/2(39)||g||H—l/2(asz))~

Remark that u& (-) (the solution of (1.16)), is the solution of the LSE given by (4.34),
ie., u8(-) = Y(), in Q. Using this, we obtain

. Q; Q;

1
/uf(x)dx:/Y(x)dx:Y(Zj)|Qj|+//(x—zj)-VY(Zj +1t(x—zj))dtdx.
0



A. Ghandriche and M. Sini 1444

Then,

M
J = pr(zj)[a)zz—i / v/ (x) dx + P2Y(Zj)|§2j|]
j=1

D;
M 1
+ P2y p () / /(x ) VY 4t — 2)) di dx
j=1 Q; 0

+ O(G(I_hmpz||f||H—1/2(asz)||g||H—1/2(asz))- (4.65)

We estimate the second term on the right-hand side as

M 1
Ty = P2pr(z,~)//(x—zj)-w(zj + t(x — zj)) dt dx
J=1 Q; 0

M
T2] < P2 1p7 (z))]
Jj=1

1
//(x —zj)-VY(zj +t(x —zj)) dt dx
Q; 0

. 1
< Pz(%lpf(zj‘)lz)l/z(%M /(x =2)) - VY (zj +1(x = 2))) dt dx|2)1/2
j=1

=1q; 0

M
— (9<P2( Z|pf(zj)|2)1/2a5(1—h)/6”VY ||L2(Q)) (466)
j=1

At this stage, we need first to estimate Z]M=1 Ip7 (z 7). To achieve this, we recall that
p7 () is the solution of (1.1) and we introduce 5 () as the solution of

(4.67)

(A+w?)p/ =0 inQ,
8vﬁf :f on 9€2.

Now, by subtracting (1.1) from (4.67), we get
(A + 020 (p! — pF) = 0?2 (=02 + )p/ i Q,
wipr —phH=0 on 9.
Its solution takes the following form:
(r” = )(2) = 0? / G(z.y)(—n*+ (M () dy, zeQ,

Q

where G (-, -) is the Green’s kernel solution of (4.4). By taking the modulus, we get

I(p” = p7)(@)| < [0*(=n* + DlLeo@lG . )2 |77 2@ < 157 2@
(4.68)
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where the last estimation is a consequence of the IL2(£2)-integrability of Green’s ker-
nel G(z,-), uniformly on z € €2, and the boundedness of 12|00 (g). In addition, we
use the fact that (4.67) is a well-posed problem to derive

157 2@y < 1f la-1200)- (4.69)
Then, by gathering (4.68) and (4.69), we obtain
(! = )@ < I f lu-1200)- (4.70)

As p/ (-) satisfies a Helmholtz equation in €, see (4.67), then we have the following
mean value integral formula:

sin(wr’) Py _ 1 < r
b ) = ey [P o), @7

08, (r')

where 8B;(r’) is the ball, centreed at z; with radius 7/, contained in the cube 2. See
[18, formula (36), p. 288]. Now, by integrating both sides of (4.71) with respect to the
variable 7/, from O to r, where r is such that B; := 8B;(r) is the largest ball, centreed
at z; with radius r/, contained in the cube €27, we obtain

0)3

77 (x) dx. (4.72)

,..f .
Pl (zj) = 47 (sin(wr) — wr COS(COV))

In addition, because r is small, the following approximation holds:

4
47 (sin(wr) — wr cos(wr)) = Tna)3r3 +0(r°) = 0*|B;| + O(r°). (4.73)

Then, by plugging (4.73) into (4.72), we obtain
1
5/ (z; =—/~fx dx.
P’ (z)) Bro05 )7 (x)
B

We observe that, for | < j < M, we have |B;| = |8,,| ~ a'™" ~ M~!. Then, using
the Cauchy—Schwarz inequality, in the above formula, we deduce that

157 )1 S 185172157 lLacs;)- (4.74)

Therefore,

Z|pf<z,>|2 Z|pf<z,)+(pf(z,)—~f<zj>)|2
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M M
SY NP+ Y 107 ) = 5 P
j=1 =1
By making use of (4.74) and (4.70), we obtain

M M
SIp P < SIS Raga,) + M 1200,
j=1 j=1

_1 ~
S 1Bl N I g, + MU Ni1200)

As |8Bj,|7! ~ M and U]M=1 B; C 22, we obtain

M

_ (4.69)
SUp R S MU BRaggy + 1/ B mg0) S MISizgn, G75)
j=1

We continue with our estimation of (4.66) by using (4.75) to get
ITall S P2MY2| fllg-1200)@> N VY 12(g)

(4.39) _
=’ o(P*a" h)/3||f||H—1/2(8S2)”g||]I-]I—1/2(BQ))~

Then, using the above estimation of the term J, given by (4.65), becomes

M
J= pr(z»[wz,% f v (x) dx + PzY(z»qu
Jj=1 )

+ 0@ PP flg-1200) 18 lH-1208))- (4.76)

To see how the parameter P2 is related to the scattering coefficient &, we set the
following lemma.

Lemma 4.7. The scattering coefficient o, given by (4.28), admits the following estim-
ation
a=—P2%'"" + 0(), (4.77)

where 0 < h < 1, and

P2 —ko((1:eny)12(8))*
/\focno

In addition, the following estimation holds:
WnllL2 (o, < @~ P2, (4.78)

where Wy, (+) is the solution of (4.23).
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Proof. See Section A.5. [

Knowing that |Q;| = a'™" and using (4.77), we deduce that P2Y(z;)|Q;| =
—aY(zj). In addition, from (4.30), we have

a)zplﬁj g
k—lfvj (x) dx = aY;.

D,

Hence, equation (4.76) becomes

M
1 _
1= p (zj)a[ﬂ—jY,- — Y]+ 0@ P2 1200 I8 ls-1200)
=1

M M
3= 300 Gpall) ~ Y+ 3 p Gl 5y - T)]
j=1 j=1 J

+ O(Q(I_h)/3P2”f||]I-]I—1/2(aQ)||g||H—1/2(3Q))- 4.79)

Next, we set and estimate the second term on the right-hand side. To do this, we have
M 1 (4.24)
Qi= Y0 G| 5% = 1] 30 =/ el - 7))
j=1 J
fD_,- Wi(x)R(x, zj) dx y

M
+ > pl (e 5 -
J

j=1

Then, using (4.77), (4.25), and (4.26), we obtain

M 12, M _ \1/2 M 1/2
QI s P2 M (YIp ) (X1 - BP) T+ @AY ) ]
j=1

j=1 Jj=1

M M
(4.75) ~ 1/2 1/2
< Pzal_hMl/ZHf||H71/2(asz)[( |Y] _ Y]|2) + a2(1—h)/3( E :|Y]|2) ]
j=1 j=1

M

“32) _ ~ \1/2 B

< P2 M e | (X1 = F2) 4+ @ P gl |
j=1

(4.80)

In addition, by subtracting (4.31) from (4.33), we derive the following algebraic sys-
tem
w?p; Rest,,

M
~ 1 ~
(Y — Y) + E:G(zm;zj)Pzal h— (v, —71)) = )
= Bi ki o

J#m
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Then, thanks to Lemma 4.3, the fact that k; ~ a% and @ ~ a'™", the following estim-
ation holds:

M M

- 1/2 1/2 (A43)
h— h
(X =7P) " sd 2 (LResti ) 5 @ glg-1200).
j=1 j=1

Hence, by plugging the above estimation into (4.80) and using the fact that M ~ a1,

we obtain
Q| < P2a" ' =MIS| fllg-1200)lgllu-1200)-

Taking the modulus in both sides of (4.79), using the above estimation, we get

Mo 12, M 1/2
aEslal( 1T =venlR) (X @)
j=1 Jj=1

+a " MBP2| fllg-1200)lglu-1200)

M
(4.75) = 1z
a2 (35, 1) o
j=1
+a"PBP2| fllg-100) Igla-1/200)-

Noticing that M ~ a1, using the fact that @ ~ P2a'~" see (4.77), and taking into
account the estimation derived in (4.57), we obtain

1J] < aWO=D/ABC=N PO £1l4 11590y 18 ll-1/2002) (4.81)
+a"BP2| flg-1200) g l-1200)
= (9(0(1_h)(9_58)/(18(3_8))P6||f||H—1/2(aQ)||g||H—1/2(asz))- (4.82)
Now, by gathering (1.19), (4.58), and the estimation (4.81), we obtain

[{(Ap — AP)(f); &) m1/2pa)xH-1/2(02)|
@81

—h)(9—58 -8
=|J| < aUWOSD/AEC=N PO £y 11290y IgllE-1/2000)-
This suggest,

IAD = Apllga-12@aym 2aay S alPO-S/18G=5) p6,

This proves (1.20) and ends the proof of Theorem 1.1.
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A. Appendix — Proofs of auxiliary results

This section is organised as follows. We start by proving Lemma 4.3 related to the
invertibility of the algebraic system (4.31). Then, we prove Lemma 2.1 related to the
smallness of the Newtonian operator N 7 (-) with respect to the parameter P. Next, it
is important to first examine the proof of Lemma 4.2, on the analysis of the Green’s
kernel decomposition G(-;-) = Pg(;-) + R(:; ), before moving on to the proof of
Lemma 4.1, giving us an a priori estimation satisfied by the acoustic field v¥ (-). Later,
we examine the proof of Lemma 4.7, which gives us an estimation of the scattering
coefficient «. Finally, we conclude this section by proving Lemma A.1.

A.l. Proof of Lemma 4.3

The goal of this subsection is to prove the invertibility of the algebraic system (4.31).
To accomplish this, we link it to a continuous integral equation, for which we demon-
strate its invertibility through variational formulation techniques. As a result, the
algebraic system (4.31) can be inverted. From (4.31), we have

2

M
Y, + P25 G ;~1h—Y_S Pl Rest,, .
mt ; (i)™ - (m) + 7" Resty
J#m

where Yy, is defined by (4.30) and Rest,, is given by (4.29). Then, by using the fact
that | j| = al_h, for 1 < j < M, we rewrite the previous equation as

M 2
Y, +P212_:1 G(zm: 2))| ',9 Y; = S(m) + kp Resty
J#m
2
Y + P2 Z/G(zm,zj))(g (x)/8 Y, dx = S(zm) + k,o Resty, .

j=1

J #m 2
Multiplying the two sides of the previous equation with yg,, (-) and summing up with
respect to the index m, we get

me()Y £ P25 gm0 Z/G(zm,z])m (x>ﬂ Y dx

m=1 j=1
Q
J#m

2
w1

X2 ()S(Zm) + s ,,;1 X, () Resty, .

I
M
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which can be rewritten using the notations

M M M
YO =D 40, OYmiSO) =) x2,()S(zm) and R():= ) g, ()Resty,

m=1 m=1 m=1

(A.1)
as
M M ! 0%y
YO+P2 Y 10,0 Y [ Glamizre, (150 dx = S0 + TERO).
N A :
(A.2)

The goal of the next lemma is to prove that the second term on the left-hand side
converges, in IL.2(2), to a function which belongs to the range of the Newtonian oper-
ator N(-), see (4.37) for its definition.

Lemma A.1. We set

M
Z/G(Zm;zj)xgj(x)ﬁil’j dx inQ, (A3)
J

j=19
Jj#m

M
Ti() :=NY)() = Y x2,()
m=1

where N(-) is the Newtonian operator defined by (4.37). Then, we have the following
estimation:
IT1 112 < a"™78)Y|L2 0 (A4

Proof. See Section A.6. |

Thanks to the previous lemma, we rewrite (A.2) as
(I + PPN)(Y)() =S() +r() inQ, (A.5)

where S() is the function given by (A.1), and r(-) is the function defined by

2
_ wp1
10

r(): R() + P2Ty ("), (A.6)

with R(-) as the function given by (A.1), and T7(-) is the function defined by (A.3).
Then, in the distributional sense, we have from (A.5)

(A4 0?*n*> = P?)(Y) = (A+0?*n*)(S+1)=f inQ. (A7)

As by construction, see (A.1), we have Y (-) = 0 near d€2, then equation (A.7) can be
stated in R3 by extending Y (-) and () by zero in R3 \ Q. Keeping the same notations
for Y (-) and f(-) with their extensions to R3, we have

A(Y) = (—0*n®> + P?)(Y)+f inR3,
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with f € H_2 (R?). Therefore,

comp

Y + Np3((P? —0*n?)(Y)) = — Ng3(f) inL?(R?), (A.8)

with Np3(-) is the Newtonian operator defined by (1.3). To study the existence and
uniqueness of the solution corresponding to (A.8), we start by multiplying its both
sides by the function (P2 — w?n?) > 0, for P > 1, to get

(P? — w?n®)Y 4 (P? — 0?n?)Ng3 ((P? — 0?’n?)(Y)) = —(P? — 0*n?)Ngs(f),
(A.9)
in LZ(IR3). Next, by taking the L% (R3)-inner product on both sides of (A.9), we get

WY:Z) =22(2), (A.10)

where the bilinear form J; (+; -) is given by

1(Y:Z) = (VP2 — 0n2Y; vV P2 — 02n2Z) > g3
+ (NRS ((P2 —w I/lz)Y) (P2 —w HZ)Z)LZ(R3),
and the bilinear form J,(-) is given by
12(2) = — (Np3(D): (P? = 0*n*)Z) 2 g3).
We see that 31 (-, -) is continuous and admits the following estimation:
131(Y. 2)| < | YlL2@3) 1 Z 2@ |1 P? — 00?0 @3)
1Y 2@ 12 2@ P2 — 0?0?12 g, |1 Vg3 L2
Besides, 11 (-, ) is coercive satisfying
(YY) = ” vV P2 _a)znzY”IzLZ(RS)
+ (Ng3((P? = 0*n®)Y); (P? — 0’n®) L)1 2 r3)
” vV P2 — w2n2Y||£2(R3)
g(f’z — 0’ 1) Y 2@ (A.11)

%

v

where the before last estimation is due to the positivity of the Newtonian operator. In
addition, the linear form 1, (-) is continuous and satisfy the following estimation:

132(Z)| < |Ng3(D)llL2@ |1 P? — 0?0 Loy | Z ]2 w3)- (A.12)

Hence, thanks to Lax—Milgram theorem, we deduce the existence and uniqueness
of the solution corresponding to (A.8). Furthermore, by gathering (A.10), (A.11),
and (A.12), we derive the following estimation:

}g(PZ —0®1?)|YllL2ws) < INg3(DllL2@s) |1 P? — 0?1 [peoms).  (A.13)
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Besides, as P2 > 1, we have

insf(Pz —?’n®) ~P* and |P?—o*n®|peomsy ~ P2
R
which, by plugging it into (A.13), gives us

1Y llL2®s) = N3 (D llLzws) < 1T ln-2®@3).

where we have used the continuity of the Newtonian operator to derive the last estim-
ation. Knowing that Y(-) = 0, in R3\ Q, and f(-) = 0, in R? \ Q, we deduce

(A7)
IYllL2@) S Ifllg-—2@) = (A + 0*n?)(S + 1)llg—2(q).

which, by keeping the dominant part on the right-hand side, can be reduced to

1YllL2@) < IAGS + ) llm—2@) = IAlew2@):m—2@) IS + rlLz@)-

Thus, the following inequalities hold:

1YllL2@) < ISz + Irllnz@)
(A6 1
< ISl + 75— Tral IRlIL2@) + P21 T1 L2

(A4

< ISlee@ + 7 IRIL2@) + P2a" 0¥ IL2(q),

[l eell

which, under the fact that P2a1="/6 « 1, as a <« 1, which is satisfied because
of (1.20) (or (1.21)), can be reduced to
1
1YllL2¢2) < ISIL2@) + % ||| l2@)-

Now, using the fact that k; ~ a?, see (1.2), and the estimation of & ~ a 1=h gee “4.77),
we deduce

(h—3) “2 (1+h)/2
1Yllr2@) < ISlL2@) +a IRI2@) < ISl +a lgllm-1200)

which, by using (A.1) and (4.38), can be reduced to

M
S I8 Em) P + a2 gy gy (A4

m=1

1Y g2 S a2

Let us estimate
M

> 18() Em) 2.

m=1
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To do this, we have

M M
Y181 < llgl-1200) 2 1GEm: 200,
m=1 m=1

46) M
= ||g||]12.]1—l/2(ag) Z ”G(va ')”]12.]11(90)

m=1

M 1
< lglf-12 —
H™/209) m; dist*(D,,; 392)

(4.52) 2 —a
S ”g ”H—I/Z(ag)d

(1.12)

= 01131720000,

Then, plugging the above estimation into (A.14),

1Y l12e) < a® Y lglu-1200)-

In addition, as by construction,

M M
Y120y = D 1Y 1Qm] = 1Qmo| Y ¥, (A.15)
m=1 m=1
we deduce the estimate

u N2 _ a3
(X 1nlP) " sa lglla-1200)- (A.16)

m=1

This implies the injectivity of (A.5). In addition, it is known that any injective linear
map between two finite-dimensional vector spaces of the same dimension is surject-
ive. This proves the surjectivity and, consequently, the bijectivity of (A.5). Hence, we
have also the invertibility of the algebraic system (4.31). This concludes the proof of
Lemma 4.3.

A.2. Proof of Lemma 2.1

From the spectral theory, we have
IN?eqa@nz@y = IRPE Al gaz@uiz@y < —aa—
LL2@)L2(R) Alew2@12@) = g P2 (a))’

where o (A) stands for the spectrum of the Neumann Laplacian operator in L2(2). It
is known that 0(A) := {itn}n>1 such that O = py > o > u3 > --- — —oo. Hence,
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we get dist(P2;0(A)) = P2. Consequently,

1
IN?le@2@yr2@) < Pz

This proves (2.5). To prove (2.6), we start by remarking that for an arbitrary function
f € L%(Q), the function N?( f) satisfies the problem

(A= P2I)NP(f)=—f inQ,
WNP(f)=0 on 0L2.
Multiplying both sides of the first equation by N?( f) and integrating in 2, we get
IVN? (2@ < PEINT (N2 + 1 2@ IN? ()l
2 2 2
= P ||Np||x(]L2(Q);]L2(Q))”f”]Lz(Q)
+ ||f||]2L2(Q)||Np||$(L2(Q);L2(sz))-
Hence,
||VNP||§(L2(Q);L2(Q)) = PZHNPH?C(]Lz(Q);]LZ(Q)) + ||Np”:£(L2(SZ);L2(Q))
2.5) 1
20 (ﬁ) (A.17)
Then,
||Np||$(L2(Q);H1(S2)) = [”Np”?t(]LZ(Q);]LZ(Q)) + ”VNP”?g(LZ(Q);LZ(Q))]l/z’
which, using (2.5) and (A.17), becomes || N? || ¢ r.2().m1 (@) = O(F) and, by taking
the trace operator, we end up with the following estimation:
1
lYN? e @2@:mi/209) = (9(;)«

This proves (2.6) and ends the proof of Lemma 2.1.

A.3. Proof of Lemma 4.2

Multiplying both sides of (4.19) by ®¢ (-, -) (the solution of (1.4)), integrating by parts
over the domain €2, and using the fact that

0y, (R(x,y)) = — 0, (Do(x,y)), xe€0dQandy € Q,
we obtain

R(x,y) = = DLya(R(, »)(x) + 0> No(n?>(YR(, y))(x)

+ @?Na(n?()@o(-, y)) (x) = SLag (3 (Po (-, ¥))(x),  x € Q,
(A.18)
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where y € Q is taken as a parameter, Ng (-) is the Newtonian operator defined by (1.3),
SLjq (+) is the single-layer operator defined by

&mumr=/%wwﬂwww,xam

02

and DLy (+) is the double-layer operator defined by

o (x, y)

00) fdo(y), xeQ,

DMMﬂ@%=/
I

Besides, thanks to [33, Proposition 4.3], we have the following singularity analysis:

1
IG(x,y)| S ——, x#y,
lx — vl

which by plugging it into the right-hand side of (A.18), and up to an additive uni-
formly bounded part, gives us

R(x,y) = — SLaa(9,(Po(-, y))(x). x € Q.

As near the boundary 0%, i.e., dist(y, 02) >~ «(a) and dist(x, 0R2) >~ k(a), we have

o(1),

—d
|t —x[ |t —yI?

ReI 5 [
9
which, by using the Holder inequality, gives us
1 1/3 2/3
R 5 ([ i gdon) (/v 5do(0)
aQ

1 1/3 1 2/3
s(dist(x,BQ)) (dist(y,BQ)) ’ (A19)

see [46, Lemma 4.6]. This concludes the proof of Lemma 4.2.

A 4. Proof of Lemma 4.1
We start by recalling, from (4.17), that v& (-) is the solution of

V8 (x) — w? / G(x,y)vg(y)(Z—i — nz(y)) dy =S(x), xe€D. (A.20)
D

In the sequel, we divide the proof into two steps.
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(1) The case of one droplet. Using the decomposition (4.18), of Green’s kernel G (-, -),
we rewrite (A.20) as

v () = [ @0, y)vF () dy
1D
= 50 + 0?0 [ R e () dy—wZ/G(x,y)vg(y)nz(y) dy.

ki
D D

Next, we denote by ()L,? ;en)neN the eigensystem associated to the Newtonian oper-
ator Np(-) in L2(D). Then, after taking the inner product with respect to e, (-) and
the square modulus in both sides of the previous equation, we get

|k1]?

. 2
|k1 _ w2p1AD|2 [|(S7 en)]Lz(D)|
n

(V8 en) L2y |* S

2
L2(D)

2
< / R y)E () dy;en> }
n L2(D)

Then, by summing up with respect to the index »n and taking into account the rela-
tions (A.31) and (1.2) we obtain

+ K/G(-,y)nz(y)vg(y) dy;en>
D

+ k1|72

2
e [ R O
D L2(D)
2
+” [ 6emr oo ay } (A21)
D L2(D)

Next, we estimate the second term and the third term on the right-hand-side as

2

< [ [1RGP @y axlot o,

D D

R, = H [ RepvE ay
D L2(D)

Thanks to (A.19), we have

1 1

R )2 d de/ dx/ 4
//l (el dy distP (.02 ) distR (.02
DD D b
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which, by using the fact that dist(x, Q) > «(a) and dist(y, 9Q) > «(a), gives us'?

D
//I«ﬂ(x Y dydx < ( |( |)) (19 9 (q2B+0/3) (A22)
Hence,
R, = :R( y)vE () dy < GBIy 2, (A.23)
20 (D)
Furthermore,
R, = H / G ot ) dy|
L2(D)
2

< INp () 2, ) + H / RC > () dy |
L2(D)
D

< UINp I @2yezmy + [ / R )P dy dx)n?Z o0 1V 122 .
D D

which, by using the fact that |12 ||Leo(py = O(1), [Np | e@2(py1.2(py) = ©@(a?), and
the estimation (A.22), can be reduced to

Rz < a*v¥IEap)- (A.24)
Then, by plugging (A.23) and (A.24) into (A.21), we obtain
1951220y S @IS 1122 p) +a* PP 0E |2, )
S a8 p): (A.25)

as0 < h < landa < 1. Besides, thanks to (4.38) we know that S = 8(g). Hence,

1125y < a2 [ 1800 v (A.26)

12If the droplet D is away from the boundary <2, the estimation (A.22), will be reduced to

[ [1®ep dvax = o).

D D

Thus, the estimation (A.22) corresponds to the worst case.
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Now, by using the continuity of the single-layer operator from H~'/2(3Q) to H'(Q),
the continuous embedding of H!(£2) into L8(2), see [7, Corollary 9.14], and the
Holder inequality, we deduce that

1/3
I ooy < a ([ 1560000 dx) D
D

_ aHh( / H [ G(x.1)g()do(y)
D 0Q

1/3
_ aHh( / G Ce. ) €/t 200 I dx)
D

6 1/3
dx)

1/3
<@ Mgl 166N 0m dx) - A2D
D
Repeating the same computations done in (4.5)—(4.7), we derive the following estim-
ation:
2 2—2h 2 1 13
”Ug”]Lz(D) s a ”g”H—l/Z(ag)(/ / m dy dx)
D Q°
“@8) 3
<@gl 12 gy (K@D
(1.10) _
=" 0@ glE-1 200 (A.28)
Finally,

—2h
18 L2y < a0 g 120 -

(2) The case of multiple droplets. From (A.20), by taking x € D,,, we get

a)2 CUZ M
(1 = 2P N, 05 = () + 220 3 [ Gl () dy
! ! J'=1DA
jmP
wz
+ 20 [ Reg 0y
D’Tl
~o? [ G0 &
D

M
—0* ) /G(x,y)nz(y)vf(y) dy
:le
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where Np,, (-) is the Newtonian operator given by (1.3). Besides, taking a Taylor
expansmn for the functions G(x,-) and G(x, -)n?(-), and inverting the operator
(I - “’ PLNp,,), we derive

w?py -1
=<I_ ki ND’”)
[S +”’”ZG( z,)/ vE () dy
Hﬁm b;
w pl Z //V G(zj +1(y —z))) - (y — zj) dt v§ (y) dy
I=lp, o
R Jj#m
+ 22 / R () dy—szf Gy () (v) dy
—wzzG( Zjm (z,)/ v () dy
laém
2 2 g
—w Z //V(G( WOz + 13— 2) - (7 — 27) s (y)dyi|
I=lp; o
J#m

in D,,. Introducing the notation (4.30), the above equation can be rewritten as

2
w1

kq "
X [S,,, +a Y G(.z))Y;

J’ZL
> ffv Gz 1= 2)) - (v = 2) di v () dy

j=1
D; 0
Hém

s m / R EY) dy — o / G (-r2m)n? (D)VE (v) dy
Dm Dy

ak1 Z G(-, z))n*(z))Y;
Jsﬁm

> /[V(G( WG 10 =20 0 =) dref 0 dy |

i=lp. o
j#Em

N,;,m)_1
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in Dy,. Taking the L2(D,,)-norm, using (A.23),as well as p; ~ 1,k1 ~ a?, and

w?p -1
I— N ) H <a™t
H ( ki Pm) e meomy ~°

proved for the case of one droplet, see (A.25), we get

g
52D, ”

a_h||5m||L2(Dm) +a"af Z 1GCz) L2, Y]

=1
1 Hém

VyG(ozj +t(y —z)) - (v — zj) dt v§ (y) dy

= L2(Dyn)

J#m D;

+ B |2 p,y a7

[ G- )2 (1), (7) dy

m

L2(Dm)

M

a* el > 1GCz) Inz2(p Y]
j=1
J#m

V(G( Iz +1(y = 2)) - (v—z;) dtvf (y) dy

1L2(Dm)'
j #m b

Now, by estimating the terms containing Green’s kernel G (-, -) appearing on the right-

hand side of the above inequality, and using the fact that & < 1, the previous inequality

can be reduced to

v L2,
M M
(447) B 1 1/2 1/2
" Smllzao,,) +a¥* h|a|(2—|z ) (XImP)
J j=1
ném jm
M
1 1/2 1/2
2—h g112
4 ( Z |Zm —Z'|4> ( Z Iv; ”]LZ(D/‘))
j=1 J j=1
J#m JF#m

08 2o,y + a3 h|a|(Z |Z—) (D ve)

J#m J#m

M M
_ 1 1/2 1/2
MY ) (X))
— |Zm_Zj| — j
Jj= Jj=1
J#m

j#m
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which, by using (4.51), can be reduced to

M
_ _ 3 1/2
105,120y S @ ISl oy +a > ald 2 (Y17 12)
j=1

2—h j—2 < g2 12
+a™d ( 21y ”JL2(D,~)) :
j=1
j#m
Besides, taking the square in both sides of the above equation, using the fact that
d ~ al=M/3 gee (1.12), and the estimation & ~ a'™", see (4.77), we deduce

M M

—2h —3h —h
1051220,y S @ 2 Sml2a(p,,, +a* ™ SNV P + @23 E 2,
j=1 j=1

which, by summing up with respect to the index m gives us

M M M
2 —2h 2 4-3h 2
S g2,y S a7 Y Sml2agp,, +at M Y 1Y)]
m=1 m=1 =1
M

—h
IS 1 g,
j=1

Since M ~ a1, see (1.11), we obtain

M M M
2 —2h 2 3—-2h 2
Z”v;g””]LZ(Dm) 5 a Z”S’””]Lz(Dm) +a Z|Y]|
m=1 m=1 j=1

M

5(1—h)/3 g2
tTa D 0f 120,
j=1

which, by knowing that 4 < 1, can be reduced to

M M M

2 —2h 2 3—-2h 2
Z”U;g’l”]Lz(Dm) Sa Z”Sm”]LZ(Dm)—l_a Z|Yj| ’
m=1 m=1 j=1

A.16

( ) _
10122y 5, 4 I8N0 + 4 g2y (429

Let us estimate ||S(g)||i2(D
see (A.26)—-(A.28), by using the Holder inequality, we can derive the following

) To do this, as done for the case of a single droplet,
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inequalities:

M
18@) 12200 < SIS 6, 111250,

m=1

M
a® Zl[/ H/G(x,y)g(y) dy
m= Q

D

A

6 1/3
dx:|

1/3
<@g Bvagn X | [ 166 Muzga ]
D’n

1 1/3
(//Ix—yl12 dydx)

Dy Q

(A.27)
< az

2
(AEB) ”g”H—l/z(BQ

M
2.
m=1
M
)2
m=1
il 1

3 2
5 a ”g”H*IQ(aﬂ) Z diSt4(D R BQ)
m=1 m»

(4.52) 3 5 —a
5 a ”g”H—l/Z(ag)d

= (a(5+4h)/3”g”]lz.]lfl/z(ag))-

Thus, by plugging the above estimation into (A.29), we obtain
¥ 2oy S a®72 8 gllg-1/2(a0)- (A.30)

This ends the proof of Lemma 4.1.

A.5. Proof of Lemma 4.7

‘We know that, for m fixed,

@ = [ Wi (x) dx = /(wlzjoll—NDm)_l(l)(x) dx.
Dy,

Dm

By expanding the constant function 1 over the basis of the Newtonian operator Np,, (-),
we obtain

o = Z <1, en)]LZ(Dm) / (a)lzlpl I — NDm)_l(en)(x) dx
=> " ({Lzen)r2(p,)’

w?py
(ki — @2p1An"™)
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We choose w the solution of following coming dispersion equation:
ki — wzpll,ll)o’" = cn0a2+h, cno € R.

By solving the previous quadratic equation, we obtain

2 _ ki — cpga?th
Mrl;)om
Hence,
24+h _
a if n = ny,
k1 — w?piALm| = ° (A31)
n 2 .
a otherwise.
Then,
2 2
w”p1 w~P1
@ = (s eny)L2(D,))° ({Lien)L2(p,,)” :
(ki — w2 p1 A" ; (k1 — w?p1Ax"™)

We estimate the second term on the right-hand side as

(1:en)p2(p,yl* A3D _
Tl 5 32 W20 00 2y, o),
n#ng |k1 w 101A |

then
w’p
(k1 — 0?1 Am")

Knowing that (1: eno)12(p,,) = a*/?(1: @ny)12(5), and using the fact that k; = a2k,

o= ((17 en())]Lz(Dm))z + (9(“)

AP = az)t,lfo, we rewrite the previous equation like
(ko —cnga”) _
= %((heno)Lz(B))zal "+ 0()
no-no
ko > 2 _1-h
= 1 o (el ™ +0@. (A.32)
no

We define P2 as be the scaled dominant part of o, i.e.,

—ko((1: eny)1.2(5))?

P2 =
B
)Lnocno

El

and we end up with the following formula:
= — P2 + 9(a).
To estimate ||Wp [lp2(p,,)» We use the same above arguments to derive

lw?p1]? B30 oan
5 ADm|2|<1§en>]L2(Dm)|2 < a0t )HIHIZLZ(D,”)'
—WP1A,

IWnllZ 20,y = b
n |k1
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Hence, 1
WnllL2o,) < a P lL2p,, = 0@ GHM).

This concludes the proof of Lemma 4.7.

A.6. Proof of Lemma A.1

We compute the IL2(£2)-norm of the term T (-) defined by (A.3):

1711250, = / ‘ / G(y, )Y (x) dx
Q Q

M M | 2
- Y X2, ) /G(zm;ZJ)ij (¥)5-Y; dx| d.
m=1 1;1 Q J
Jj#m

In contrast to Section 4.3, where the cutting of £2 onto U]M=1 Q2; and U?:l Q7 was
critically important to derive the exact dominant term related to -/Qj ué(x) dx, for
1 < j < M, here we need only to estimate functions (not to extract dominant term)
defined in €, thus involving both Uj‘il Q; and U?zl QJ* Because, for every 1 <
J<Mandl <k <R, we have |Q2;| ~ al=h ~ |27 |, we do not need to specify, in
our comping computations, if we are dealing with {€2; }jle or {€27 }?=1- Moreover, to
write short, we use the notation €2; for the domains Q7. Then,

M

730 = [| 2 ([ 600¥ e ax
Q m=1"g
M 1 2
- Z/G(Zm;Zj)XQj(X)FYj a’X)stm(y) dy
i=1g /
J#m
M M 1 2
= G(y,x)Y dx— G(zm:zi . —Y:d dy.
mZZIQéLf (. )Y (x) dx ;Qf G219, (1) Y, dx| dy

j#m
Using the definition of Y(-), see (A.1), and the triangular inequality, we rewrite the
previous equation as

M
1T < Y EnP120l [ [ 1600 dx dy
m=1

Qm Qm
M M M 12
£ P Y I [ [[60.0 - 6wz [ dxay
m=1 j=1 j=1 Bi
Qm Qj
j#m j#m /

(A.33)
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Furthermore, by using (4.26), we have
1 _
G(y.X) = Gm:z)) 21> S |G(y.x) — Glzm: z)I* + a*PB|G (2 z)) .
J

Hence, by plugging the above estimation into (A.33), we obtain

M
1711320 < Z|Ym|2[1$§M(|szm|/ /IG(y,x)I2 dx dy)
m=1 - Qo

M M
+ X 20 [ 16000 -6z dx o]

m=1 j=1 .
jEm S

M M
+a DB (G2
j=1 j=1
Ji#

Using Taylor expansion for the function G(-; -), near the centres, we get

1

Gy, x)—G(zm:zj) = /VG(zm;zj +1(x—zj)) (x —zj)dt
0
1

4 /VG(zm 1 = zm)i0) - (3 — ) d.
0

We plug the previous expansion into the previous estimation and we use (4.47) to
reduce the previous estimation to

M
1
”Tl ”]%42(9) 5 Z |Ym|2|:1<12132(M(|Qm| / / m dx dy)
m=1 - = Qo O

M M X_Zj|2d )

22l | S dy

m=1 j=1 G 2 J
J#m 7

M M |
D D D
=1 j=1 ™M J
Jj#m

Besides, by knowing that |2,,| = a'™" with 1 <m < M, we deduce the following

1
max |Qm|//—dxdy < a3,
l<m<M |y — x|?
Qi 2m

estimation:
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Then,

”Tl “]i2(g)

M

M M
< Z|Ym|2|:a7(l_h)/3+ max (€251 Z Z / |4 y/|x—zj|2dx]
m=1 m=1 j=1 J
j#m

J
M

1
10(1—h)/3 Y 2
ey
j=1 j=1
J#m

In addition, by Taylor expansion, we have

dy
/ |)’_ZJ|4

- = |4|s2m|+ //va ) Cm 1 — ) - (5 — zm) dit d.

hence
”Tl ”]%JZ(Q)
M
—h —h 2
Sm2=21|Ym|2|:a7(1 )/3+a(1 )lg}ixM(/lx—Z]| dX)
x Zlﬂml Z 3
|Zm _Z]|
M M 1 ];ém
10(1—h)/3 VAL
+a ]Z;l” ;—|Zm—2'|2‘

J#m

The following estimations hold:

max (/|x —zj)? dx) = 9(a°0~M/3)
I<j<M

Q;

451) M
Z|9m|2|z s Z Q| = 0™

1
Y o oW
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then, by recalling that d ~ a!~"/3 and using the fact that |Q,,,| = a'~", we obtain
M
IT1 13 2y S D 1YmPla”@ M3 4 a*=P3)
m=1
il (A.15)
= 0(a* 0P 317 ) 2 0 @Y ).

m=1

Finally,
ITil2@) = 0@ 4NY [IL2(g))-

This concludes the proof of Lemma A.1.

A.7. Proof of Lemma 4.6

To prove (4.51) we refer the readers to [3, Section 3.3]. To justify (4.52), we define
Q, as

R, ={xeQ, (n—1d < dist(x,dQ) <nd}, forn=1,....[d7"],
where d is the minimum distance given by (1.12). Then, Q C ULdz_ll] ,,and
1R,] < (nd)?d = O(n*d?).

Then, the number of droplets in ,, is of order n2. Hence,

M

Zdlst (D],E)Q) Z Z distk (D],8§2)

n=1 D;CQy
[

]
1 1 1
< 2 -~ -
~ Z n ((n—l)d)k - dk ’; nk—z‘

n=1

Therefore,
% 1 _fowE?) fork <3,
= dist“ (D;; 9Q) Od*) fork > 3.

This ends the proof of Lemma 4.6.

A.8. Normal derivative of SL? (-).

We recall, from (2.14), the following definition of the single-layer operator SL? (-):

SLP(f)(x) = /Gp(x7y)f(Y)dU(J’)7 x €, (A.34)
a2
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where G, (-, ) is the solution of (2.3). The goal of this subsection is to compute the
jumping coefficient of the normal derivative related to (A.34). To do this, we define
®; (-, ) as the fundamental solution of (A — P2)®;,(-,-) = — §.(-), in R3. Multiply-
ing (2.3) by ®;,(-,-) and integrating over 2 allows us to deduce that

Gp(,y) + DP(Gp(-, 1)) = Pip(-,y) InQ, (A.35)

where y € Q is taken as a parameter, and D*?(-) is the double-layer operator associ-
ated to ®;, (+,-). Besides, from (A.35), we deduce that

Gp(-.y) = ( I+K”’) (®i,(-y)) ondL, (A.36)

where y € Q is taken as a parameter, and K'?(-) is the Neumann—Poincaré oper-
ator associated to ®;, (-, -). Furthermore, by denoting S*?(-) the single-layer operator
associated to ®;, (-, -) and using (A.36), we deduce that, for x € €2,

SIP(f)(x) = / iy (x. ) f()do(y)

Q2

<A-=36>/ (% I+ K'7)(Gp y)() f(1)do ()

Q2

= [Gown(31 + K7) (o)

Q2

=/ (X, y)( I +K~ ”’)(f)(y)dff(y)

aQ
A3t p (l _ip
SL ( I+ K )(f))(x).
As f(-) is an arbitrary function, we deduce the resulting relation
1 -1
p —gir((Z —ip in Q-
SL?(f) =S ((21+K ) (f)) in Q:

hence by taking the normal derivative on both sides of the above equation, we obtain

1 -1
SIS = 5[5 ((50 + K77) )]
by using on the right-hand side the jumping properties for the single-layer operator
SiP(.), we deduce

0

= (4 k) (b5 )

(R x) )= men
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A.9. Estimating [|R[|p2(g)
We recall from (A.1) that

M
R() = ) X, ()Restn,

m=1

with Rest,, is given by (4.29). Then, using the fact that €2,,-s are disjoint sets, we
obtain

M M
IR 2q) = Z |l Rest > = [Qmg| D [Restm|* = a ™ " [Resty|*.
m=1 =

(A.37)
Besides, by taking the absolute value in both sides of (4.29), we obtain
|Restm|
/ W (x)/VG(Zm + (X —zZm);zj) - (x — zp) dt dx / vE(y) dy’
/_1 D;
jaém D J

VG(x zj +1(y —2j)) - (v — z;) dt v§ (y) dy dx

J#m

2 /Wm(x)/VSm(zm +t(x —zm)) - (x —zp) dt dx

'/W (x)//v Rz 41— 2m) - (5 — 2m) di V5 () dy dx

ITI.O

o / Win () / G(x. )08 (y)n*(y) dy dx|.
Dy, D

(A.38)

In addition, for the third term on the right-hand side, we have

1
2 /Wm(x)/VSm(zm +t(x —zm)) - (x —zp) dt dx
0

1
/ VS (zm + 1 — zm)) - (- — z) dt

0

< &*[|WnllL2(p,,)
L2(Dm)

1
1 1/2
< a2”Wm”]L2(Dm)|:/ ;/|V5m(J/)|2|)/ —zm|*dy dl] ,

0 B(zm,ta)
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where B(z,,,ta) is a ball of centre z,, and radius ta. Then,

1

1/2
{3 < a3||Wm||]L2(Dm)[/ /|VSm(J’)|2 dy dl]

0 B(zm,ta)

1 1/2
< a3||Wm||Lz<Dm>[ / [ VSm()I dy dz] ,

0 Dy,

as B(zy,ta) C Dyy,. Then,
¢3 = 0@ W2l VSmliL2o,.)- (A.39)

Now, by using (4.38), (4.47), and (A.39), we derive from the inequality (A.38)

IResty | < ||Wm||Lz(Dm)[ Z [ ¥ L2,y + @IV lL2(p,m)

Hém
1/2
+a[ / / VR, y>|2dydx} AT

+ a4||v;‘:z||]L2(Dm)]

4 gO/2 Z

Hém

|Zm — |U lL2p;)-

Using the Cauchy—Schwarz inequality and the estimation given by (4.51), we deduce
IRestn| S | WinllL2(p,, a2 108 IL2(p) + @ IVS(@)lIL2(p,)]

1/2
+ ||Wm||Lz(Dm)[a[ / / VRx. )2 dy dx} +a4] AT

m &m

+a® 28| . (A.40)

The following estimation holds:

1/2
IVS@)ll2(p, < ||g||H-m(m>[ / IVG G 2230 dx}

m

“.6) 5 1/2
lglsvzom)| [ IV6CNy gy d
Dy
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: 1/2
< ||g||]HI—1/2(3Q)|:/ dist®(x, 9Q) dx]
D 9,

(1.10) a3/2
< _ S — A4l
&Il 1/2(3Q)dist3(Dm;8Q) ( )
Besides, similarly to (4.20), for the VR (-, -), we can prove that
1 2/3 1 4/3
VR )| < (= (< f .
Vy R ) (dlst(x,BQ)) d1st(y,3£2)) orx 7y
Then,
1
VR(x,y)|*dy dx < // dy dx
//' VI dy dist*/3(x, 9Q) dist®3(y, 99) Y
m Dm Dy, Dy
D 2
< —_|Dnl (A42)

~ dist*(Dyn, 0Q)

Hence, by returning to (A.40), and using (A.41) and (A.42), we derive the following
estimation:

(10+2h)/3 a®/?
Rest,, | < | W, [a vé + - —]
IRestu| < (W2, V¥ l2py + 8 lm-172000) 4sC (D 99)

+ [ Wllr2(p,,)a* 108 2D, + a® 208 |2 (p)

dist?(Dp; 0K2)
(4.78) B
< 2, [a“ ™10 2o + gl-

(2—h)

Flheom Gz b, a0)
m»

a5—2h)/2

o]

20 dist®>(D,n; 0Q)
—h

108 lIr2p,,) + a® 208 L2y

Thus, by using (4.52), we obtain

M
30)
Y IRestn [ < a2, 4 aClglfinpe) = @ClglFopa)
m=1
(A.43)
Then, by plugging the above estimation into (A.37), we obtain
IRlz2@) = 0@ 2lgla-1/20)- (A44)
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