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The Calderón problem revisited:
Reconstruction with resonant perturbations

Ahcene Ghandriche and Mourad Sini

Abstract. The original Calderón problem consists in recovering the potential (or the conduct-
ivity) from the knowledge of the related Neumann to Dirichlet map (or Dirichlet to Neumann
map). Here, we first perturb the medium by injecting small-scaled and highly heterogeneous
particles. Such particles can be bubbles or droplets in acoustics or nanoparticles in electromag-
netism. They are distributed, periodically for instance, in the whole domain where we want to
do reconstruction. Under critical scales between the size and contrast, these particles resonate
at specific frequencies that can be well computed. Using incident frequencies that are close to
such resonances, we show that (1) the corresponding Neumann to Dirichlet map of the com-
posite converges to the one of the homogenised medium. In addition, the equivalent coefficient,
which consists in the sum of the original potential and the effective coefficient, is negative val-
ued with a controllable amplitude; (2) as the equivalent coefficient is negative valued, then we
can linearise the corresponding Neumann to Dirichlet map using the effective coefficient’s amp-
litude; (3) from the linearised Neumann to Dirichlet map, we reconstruct the original potential
using explicit complex geometrical optics solutions (CGOs).
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1. Introduction and statement of the results

1.1. General introduction

The original Calderón problem stated in the acoustic framework reads as follows. Let
n´ c�1 be the index of refraction, where c stands for the speed of acoustic sound. In

turn, this speed of sound is given by c´
q
k
�

where � is the mass density and k is the
bulk modulus. In the time-harmonic regime, the propagation of the acoustic waves is
modelled by ´

.�C !2n2.�//pf D 0 in �;

@�p
f D f on @�:

(1.1)

where pf is the acoustic pressure generated by the applied source f . The Neumann
to Dirichlet (NtD) operator ƒc corresponds to any f 2 H�1=2.@�/, the trace on @�
of the induced pressure pf , i.e.,ƒc.f /´ pf j@�. The Calderón problem consists in
recovering the sound speed c from the knowledge of the NtD map ƒc . According to
the model (1.1), the mass density � is assumed to be a constant, while the bulk modu-
lus k is variable in a smooth domain�. We assume k to be a1 W 1;1.�/ and positive
function and � of class C 2. In addition, we assume that (1.1) has a unique solution,
i.e., !2 is not an eigenvalue of �n�2� with zero Neumann boundary condition on
@�.

The Calderón problem was the object of an intensive study since the early 1980s.
The reader can see the following references for more information [17, 26, 38, 45].
A model of particular interest is the electrical impedance tomography (EIT) prob-
lem, also called Calderón’s problem, which consists in identifying the conductivity

 using Cauchy data .uj@�; 
ru � �j@�/ of the solution of equation r � 
ru D 0, in
� � R3, where � is the outward unit normal vector to @�. The uniqueness question
of this problem is reduced to the construction of the so-called complex geometrical
optics solutions (in short CGOs), see [44], where 
 is a positive C 2-smooth function.
The regularity of 
 is reduced to C 3=2C"; " > 0, in [8], then to W 3=2;1 in [37] and to
W 3=2;p; p > 6 in [10]. Finally, in [14,24] this condition is reduced to W 1;1 and then
to W 1;3 in [23]. The corresponding Calderón problem in the 2D-setting was solved
in [35]. In [12] the author shows, for the Schrödinger equation given by�uC quD 0,
in � � R2, the uniqueness of a reconstruction of the potential q.�/ 2 Lp.�/; p > 2,
from the Cauchy data, i.e., .uj@�I @�uj@�/, see [12, Theorem 3.5]. In [35], we find
a justification of the uniquely determination, from the knowledge of the Dirichlet-
to-Neumann map, of the coefficient 
 of the elliptic equation2 r � .
ru/ D 0 in

1This condition can be replace by an L1-regularity.
2The substitution QuD

p

u in r � .
ru/D 0 yields� QuC q QuD 0, with qD� 1p



�.
p

/.
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a two-dimensional domain. In [16], it is proved that if for all cubes Q � Rn the
condition on the smallness of supQkQk

.2p�n/=.np/kqkLp.Q/, p >
.n�1/
2

, is satis-
fied, or q 2 Lp with p > n

2
, then the Dirichlet-to-Neumann map determines the

potential q. Let us also cite [13, 30] regarding Dirac-type singular potentials. For
more details, and without being exhaustive, we refer the readers to the following
works [1,2,9,11,28,34,37,41,44] and the references therein. Let us mention, however,
that apart from few works, like [34], where we find a reconstruction algorithm, most
of these works are devoted to unique identifiability questions or stability estimates.

In this work, we propose a different approach for solving constructively this prob-
lem. The motivation of this approach comes from the engineering literature, see for
instance [4, 6, 15, 29, 32, 36, 40] and many more, where it is suggested to inject small-
scaled contrast agents into the region of interest to create the contrasts that are missing
to generate clearer images. Such contrast agents could be injected in isolation, as
single (or isolated), Dimers, or in general as designed Polymers. They can also be
injected as a cluster “distributed” in the region of interest. Based on these ideas, we
proposed in our recent works to use resonant contrast agents for solving inverse prob-
lems appearing in some imaging modalities, as ultrasound, optics or photo-acoustic
imaging modalities, [19–22,42,43]. In those works, we use the measurements created
after injecting single contrast agents (acoustic bubbles or nano-particles) as follows:

(1) in the time-harmonic regime, we recover the induced resonances (as the Min-
naert or plasmonic ones) from which, we could recover the wave speeds (or
related coefficients), see [19–21];

(2) in the time-domain regime, we recover the internal values of the travel time
function. From the Eikonal equation, we extract the values of the speed, see
[22, 42, 43].

In those works, we use contrast agents injected in isolation. This means, for each
single injected agent we collect the generated measurements. However, it is of import-
ance to emphasise that we measure only on one single point. In terms of dimension-
ality, this is advantageous.

In the current work, we inject all the contrast agents at once and then collect the
measurements for multiple incident waves. In short, we collect the NtD mapping after
injecting the collection of contrast agents all at once. With such measurements, we
propose an approach to perform the reconstruction of the index of refraction n2.�/.
This approach is divided into two steps.

(1) In the first step, we show that the NtD map generated by the coefficient
n2.�/ and the collection of contrast agents converges to the one generated
by a sum of n2.�/ and an effective coefficient. This effective coefficient is
negative-valued and one can tune its amplitude. The negativity of the effect-
ive coefficient, which is key, is due to the resonant character of the injected
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contrast agents. Therefore, we can tune these injected agents so that the sum
of n2.�/ and the effective coefficients is negative valued with a controllable
amplitude.

(2) From the effective NtD map, we reconstruct the coefficient n2.�/. To do so, we
show that, due to the negativity of the effective coefficients, mentioned above,
we can linearise the effective NtD map. Finally, from this linearised map,
we derive an explicit formula to recover n2.�/ in terms of (explicit) CGO-
solutions.

To go further into details, let us take as contrast agents droplets, which are bubbles
filled in with water, having the following properties. They are modelled as Dj ,
j D 1; : : : ; M , of the form Dj D zj C aB with B as a smooth domain contain-
ing the origin and maximum radius as unity, such that D �

SM
jD1Dj . Their mass

density �j are equal and estimated as �j D �0, for 1 � j �M , with �0 is a constant
independent on the parameter a, while their bulk modulus are very small and of order

kj D k0a
2; (1.2)

with k0 being as fixed constant independent of a. The maximum radius a of this
droplet is of order micrometer, therefore we take

a� 1:

We introduce the Newtonian operator NDj .�/WL
2.Dj /! L2.Dj /, with the image in

H2.Dj /, given by the expression

NDj .f /.x/´

Z
Dj

ˆ0.xIy/f .y/ dy; x 2 Dj ; (1.3)

where ˆ0.�I �/ is the fundamental solution of the free-space Laplacian operator, i.e.,

�xˆ0.xIy/ D � ıy.x/; with x; y 2 R3; (1.4)

given by

ˆ0.xIy/´
1

4�jx � yj
; x ¤ y: (1.5)

This operator is self-adjoint and compact, therefore it enjoys a positive sequence
of eigenvalues ¹�Djn ºn2N and they scale as �Djn D a2�Bn , where ¹�Bn ºn2N is the
sequence of eigenvalues associated to the operator NB.�/, see [5, 39]. We fix any
n0 2N; j 2 ¹1I � � � IM º and we consider the eigenvalue �Djn0 . The incident frequency
! that we use, in this acoustic model, is taken of the form

!2

!20
D 1 �

cn0a
h

k0
; (1.6)
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where the parameter h is positive, and cn0 2R satisfies cn0 < 0; is a parameter which
is independent of a. The quantity !0 is defined as

!0´

s
kj

�
Dj
n0

D

s
k0

�Bn0
;

where the last equality is a consequence of the eigenvalues scales and (1.2).

Next, we make the following necessary assumption about the distribution of the
Dm-s to derive the first main result of this work, i.e., Theorem 1.1.

Assumption 1. The droplets are distributed periodically inside �. More precisely,
let � be a bounded domain of unit volume, containing the droplets Dj , with j D
1; : : : ;M . We divide � as

� � �cube [�r (1.7)

with

�cube �

M[
jD1

�j and �r �

@[
jD1

�?j ; M DM.a/; @ D @.a/ 2 N;

where �j -s are cubes located strictly within the interior of the domain �, i.e., they
do not intersect with @� (�cube ¨�). Each subdomain�j contains oneDj such that
zj 2Dj ��j and j�j j D a1�h, for j D 1; : : : ;M and 0 � h < 1, while the�?j -s do
not contain any, see Figure 1 for a schematic representation. Therefore, by denoting
a reference subdomain as �0, the distribution of �j -s is constructed by appropriate
translations of�0. In a concise manner, the distribution of the droplets can be written
as

D � �cube \ d
�
Z3 C

�
z C

a

d
B
��
; (1.8)

where d is the minimal distance given by (1.12), z is a point contained in unit cell
domain, and B is a Lipschitz domain in R3, such that diam.B/ � 1. Besides, we
assume that �cube is away from the boundary @�, such that

dist.@�cubeI @�/ � �.a/ � a
.1�h/=3; with a� 1 and 0 < h < 1: (1.9)

Hence, from (1.8) and (1.9), the dropletsD are away from the boundary @�, such that

dist.DI @�/ � �.a/ � a.1�h/=3; with a� 1 and 0 < h < 1: (1.10)

We are concerned with the case where we have the number M of droplets of the
order

M � ah�1; a� 1 with 0 � h < 1; (1.11)



A. Ghandriche and M. Sini 1414

�
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n Dj

�.a/

Figure 1. An illustration of how the droplets are distributed in �.

and, then, the minimum distance between the droplets is

d ´ min
i¤j

1�i;j�M

jzi � zj j � a
.1�h/=3; a� 1; with 0 � h < 1; (1.12)

asM � d�3. The choice in (1.11) is dictated by the behavior of scattering coefficient
(or the polarisation tensor) in (A.32) which is of the order a1�h and M should be
inversely proportional to it. This behavior allows to generate a non-trivial effective
medium in the homogenisation process.

With these notations at hand, let us state the perturbed problem as follows:´ �
�C !2n2.�/.1 � �

D
/C !2 �1

k1
�
D

�
vg D 0 in �;

@�v
g D g on @�:

(1.13)

Under the condition that !2 is not an eigenvalue of �n�2� with zero Neumann
boundary condition on @� and that cn0 and a are small enough, the problem (1.13)
is well posed. Indeed, it is clear that the operator solution of the problem in (1.13)
is a compact perturbation of the problem (1.1) which is well posed. By Lemma 4.1,
we deduce the uniqueness of the solution of (1.13). Actually, by Lemma 4.1 we also
derive the related estimate of the well-posedness for problem (1.13).
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1.2. From the original NtD map ƒD to the effective NtD map ƒP : Theorem 1.1

Let vg.�/ be the solution of the problem (1.13). Multiplying (1.13) by pf .�/ (the
solution of (1.1)) and integrating over �, we obtain

hƒ0.f /IgiH1=2.@�/�H�1=2.@�/

D hrvg I rpf iL2.�/ � !
2
hn2vg Ipf iL2.�/ � !

2
D��1
k1
� n2

�
vg Ipf

E
L2.D/

;

(1.14)

where ƒ0.�/ is the NtD map defined from H�1=2.@�/ to H1=2.@�/ by

hƒ0.f /IgiH1=2.@�/�H�1=2.@�/´

Z
@�

pf .x/g.x/d�.x/

where we use integrals to simplify notations. We set ƒD.�/ to be the NtD map of
the background after injecting a cluster of droplets, i.e., the problem (1.13). Multiply-
ing (1.1) by vg.�/ and integrating over�, using the self-adjointness ofƒD and (1.14),
we end up with the coming formula

hƒD.f /IgiH1=2.@�/�H�1=2.@�/ � hƒ0.f /IgiH1=2.@�/�H�1=2.@�/

D !2
D��1
k1
� n2

�
vg Ipf

E
L2.D/

; (1.15)

In a similar way, we define ug.�/ to be the solution of´
.�C !2n2.�/ � P 2/ug D 0 in �;

@�u
g D g on @�:

(1.16)

Here3

P 2´
�k0.h1I Nen0iL2.B//

2

�Bn0cn0
; (1.17)

where Nen0.�/ is the eigenfunction associated to the eigenvalue �Bn0 related to the New-
tonian operator, given by (1.3), defined in the domain B . We set ƒP .�/ to be the NtD
map of the equivalent background, then we obtain

hƒP .f /IgiH1=2.@�/�H�1=2.@�/ � hƒ0.f /IgiH1=2.@�/�H�1=2.@�/

D �P 2hug Ipf iL2.�/; (1.18)

3The assumption that h1I Nen0iL2.B/ ¤ 0 is reasonable. When B is a ball, we have
an infinite sequence of eigenvalues �Bn0 for which the corresponding eigenfunctions satisfy
h1I Nen0iL2.B/ ¤ 0, see [27] for instance.
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From (1.15) and (1.18), we see that

h.ƒD �ƒP /.f /IgiH1=2.@�/�H�1=2.@�/

D !2
D��1
k1
� n2

�
vg Ipf

E
L2.D/

C P 2hug Ipf iL2.�/: (1.19)

In the sequel, we prove that when M is large, or a is small, the perturbed medium,
after injecting a cluster of M droplets, behaves like the equivalent background. In
other words, the map ƒD.�/ converges to ƒP .�/.

Theorem 1.1. Let the domain� be C 2-regular. Supposed that the index of refraction
n2.�/ 2W 1;1.�/, the used frequency ! satisfying (1.6), the parameter h be such that
1
3
< h < 1, and the dropletsDm-s are distributed as explained in Assumption 1. Then,

we have the following convergence:

hƒD.f /IgiH1=2.@�/�H�1=2.@�/
a!0
���! hƒP .f /IgiH1=2.@�/�H�1=2.@�/;

uniformly in terms of .f; g/ 2 H�1=2.@�/ �H�1=2.@�/. Precisely, we have the fol-
lowing rate:4

kƒD �ƒP kL.H�1=2.@�/;H1=2.@�// . a.1�h/.9�5ı/=.18.3�ı//P 6; a� 1; (1.20)

where ı a sufficiently small but arbitrarily positive number.

Remark 1.2. Two comments are in order.

(1) Since M � ah�1 and ı is very small, we can rewrite (1.20) as

kƒD �ƒP kL.H�1=2.@�/;H1=2.@�// . M .5ı�9/=.18.3�ı//P 6; M � 1:

We can choose M , i.e., a, such that

M .5ı�9/=.18.3�ı//P 6 � 1: (1.21)

(2) The parameter ı in (1.20) is linked to the L3�ı.�/-integrability of the funda-
mental solution ˆ0.�I �/, given by (1.5).

As we assume to know the NtD map ƒD.�/, for M large, the previous theorem
suggests the following result.

Corollary 1.3. Under the condition of Theorem 1.1, the NtD map ƒP .�/ is approx-
imately known.

4The W 1;1-regularity of k, and hence n, is used to derive the rate in (1.20). The
L1.�/-regularity is enough to derive the convergence (without rates).
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The proof of Theorem 1.1 is based on the point-interaction approximation, or the
so-called Foldy–Lax approximation. We first approximate the left part in (1.20) by
a linear combination of elements of a vector which is the solution of an algebraic
system. This algebraic system captures the multiple scattering between the injected
droplets through an interaction matrix where the interaction coefficients, that are also
called scattering coefficients, are all positive due to the choice made in (1.6) of the
sign of cn0 . To prove the invertibility of this algebraic system, uniformly of the large
numberM of droplets, we first justify the invertibility of the related continuous integ-
ral equation and then, we show, with quite tedious computations, that the algebraic
equation is “a discrete form” of this continuous integral equation.

Remark 1.4. Two remarks are in order.
(1) In (1.17), we take the constant cn0 < 0 and the parameter P 2 such that

P 2 > !20kn
2
kL1.�/´ Pmin;

where, we recall that, !20 D
k0
�Bn0

. This is possible if we choose the parameter cn0 to
satisfy5

���1 inf
y2�
jk.y/j.h1I Nen0iL2.B//

2 < cn0 < 0 and cn0 ! 0�:

We recall that the parameter cn0 appears in (1.6) and we have (1.17). The coefficient
cn0 is taken small, and hence P large, but satisfies (1.21).

(2) The parameter h appearing in (1.6) and (1.11) models how dilute, or dense,
is the distribution of the injected droplets in �. If h is close to 0, we have a dense
distribution and when h is close to 1 we have a light distribution.

1.3. The linearisation of the effective NtD map ƒP.�/: Theorem 1.5

Theorem 1.5. We have the following linearisation of ƒP .�/, in the H1=2.@�/ sense:

ƒP .f / � q
f
D !2
.W qf /CO

�
kf kH�1=2.@�/

1

P 4

�
; f .�/ 2 H�1=2.@�/;

(1.22)
where 
.�/ is the trace operator defined from Hs.�/ to Hs�1=2.@�/, s � 1

2
, qf .�/ is

the solution of ´
.� � P 2/qf D 0 in �;

@�q
f D f on @�;

(1.23)

5We assume that we have an a priori information on infy2�jk.y/j.
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and W qf .�/ satisfies ´
.� � P 2I /W qf D �n2qf in �;

@�W
qf D 0 on @�:

Therefore, knowing ƒP .f / allows us to construct W qf , for f 2 H�1=2.@�/.

The proof of Theorem 1.5 is based on the observation that the solution operator
(i.e., the Lippmann–Schwinger operator) of the problem (1.16) can be seen as the
one of the problem (1.23) plus a “small” perturbation. The smallness of this perturb-
ation permits us to justify the related linearisation. The arguments of the analysis are
based on the spectral and scaling properties of the Newtonian operator of the solution
operator of (1.23) via Calderón–Zygmund-type estimates.

1.4. Construction of n2.�/ from the linearisation of ƒP.�/: Theorem 1.6

The next theorem describes a way how we can reconstruct the sound speed from the
linearised part of ƒP .�/.

Theorem 1.6. For every l ´ .l1I l2I l3/ 2 Z3, we choose

� D
P 2C& jl j2C&

p
2

q
l22 C l

2
3

0B@ �i.l22 C l23 /�jl jl3 C i l1l2

�jl jl2 C i l1l3

1CA ; with & 2 RC: (1.24)

Hence,
j�j D P 2C& jl j3C& : (1.25)

We set qf .�/´ ql;� the function defined by

ql;�.x/´ ei��x.eix�l C r1.x//; x 2 R3;

and r1.�/ is such that

.�C 2i� � r � P 2/r1.x/ D .jl j
2
C P 2/eix�l ; in �: (1.26)

In the same manner, we set qg.�/´ q�.�/ to be the function defined by

q�.x/´ e�i��x.1C r2.x//; x 2 R3;

where r2.�/ is such that

.��C 2i� � r C P 2/r2.x/ D �P
2; in �: (1.27)
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Then we have the following approximate reconstruction formula:

n2.x/ D .2�/�3
X
`2Z3

hW ql;�
I @�q

�
iei`�x CO.P�& /; (1.28)

in the L2.�/ sense.

The justification of the existence and uniqueness of solutions corresponding to
the problems (1.26) and (1.27) can be found in [41, Section 3.2]. More precisely,
in [41, Theorem 3.7] the result is proved first for the free case equation, i.e., equa-
tion of the form .� C 2i� � r/r D f , where r.�/ is a correction term and f is the
source data. Then, in [41, Theorem 3.8] the general case, i.e., equation of the form
.� C 2i� � r C q/r D f , where q is a potential, was proved under the conditions
� � � D 0 and j�j � max.C0kqkL1.�/I 1/, where C0 is a constant depending on the
domain � and the space dimension. These nicely re-derived estimates were initially
proved in the seminal work [44, Theorem 1.1, Proposition 2.1].

The key observation here is that these CGOs are solutions of fully explicit equa-
tions, see (1.26) and (1.27), which make the representation in (1.28) constructive.

Remark 1.7. In Theorem 1.6, we have shown how to construct n2.�/ using a discrete
series expansion. Actually, we can also use the classical Calderón idea to construct
the Fourier transform of n2.�/. Indeed, choosing any v which solves .� � P 2/v D 0
and multiplying it with the PDE for W qf .�/, we haveZ

�

n2.x/qf .x/v.x/ dx D

Z
@�

@�v.x/W
qf .x/ds.x/: (1.29)

Now, for 0¤ � 2 R3, let us consider an orthonormal family
®
e1´

�
j�j
; e2; e3

¯
of R3.

Using this basis, we take

�1 D
j�j

2
e1 C ie2

r
P 2 C

j�j2

4
; �2 D

j�j

2
e1 � ie2

r
P 2 C

j�j2

4

and then consider the two functions qf .x/´ ei�1�x and v.x/´ ei�2�x . We see that
.��P 2/qf D 0 and .��P 2/v D 0 since �1 � �1 D �2 � �2 D�P 2. We also see that
�1 C �2 D j�je1 D �. With this choice, it is immediate thatZ

�

n2.x/qf .x/v.x/ dx D

Z
�

ei��xn2.x/ dx; � 2 R3:

which allows to construct the Fourier transform of n2.�/ from (1.29).

The remaining parts of the paper are organised as follows. In Section 2, we discuss
and justify the linearisation step and in Section 3 we deal with the reconstruction of
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n2.�/ from the linearised NtD map. The justification for the effective NtD is stated
in Section 4. This choice is taken because this step is technically the most involved
part. Finally, we postpone several technical steps to be developed and justified in
Appendix A.

2. Proof of Theorem 1.5

The goal of this section is to derive a linearisation, up to a first order term, of the
NtD map of the equivalent background, i.e., ƒP .�/. Let uf .�/ be the solution of the
following Lippmann–Schwinger equation (LSE in short):

uf .x/ � !2N p.n2uf /.x/ D qf .x/; x 2 �; (2.1)

where qf .�/ is the solution of (1.23), and N p.�/ is the Newtonian operator defined,
from L2.�/ to H2.�/, by

N p.f /.x/´

Z
�

Gp.x; y/f .y/ dy; x 2 �; (2.2)

with Gp.�; �/ is the solution of´
.�x � P

2/Gp.x; y/ D �ıy.x/ in �;

@�xGp.x; y/ D 0 on @�:
(2.3)

In effortless manner we can check that uf .�/ (the solution of (2.1)) is also the solution
of (1.16). Moreover, by an induction process on the LSE, given by (2.1), we prove that

uf .x/ � qf .x/ D !2
N p.n2qf /.x/C
X
j�2

.Kj
j
˝ .n2//.x/; x 2 @�; (2.4)

where

.K2
2
˝ .n2//.x/ D .!2/2
N p.n2N p.n2qf //.x/

.K3
3
˝ .n2//.x/ D .!2/3
N p.n2N p.n2N p.n2qf ///.x/

:::

.Kj
j
˝ .n2// D .!2/j 


Z
�

� � �

Z
�

Gp � � �Gpn
2
� � �n2qf dy1 � � � dyj ;

where N p.�/ is the Newtonian operator defined by (2.2), and 
.�/ is the trace operator
defined from Hs.�/ to Hs�1=2.@�/, s � 1

2
, with � a smooth domain. The coming
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lemma is useful to study the convergence of the previous series with respect to the
H1=2.@�/-norm.

Lemma 2.1. The Newtonian operator given by (2.2) admits the following estima-
tions:

kN p
kL.L2.�/IL2.�// D O

� 1

P 2

�
; (2.5)

and

k
N p
kL.L2.�/IH1=2.@�// D O

� 1
P

�
: (2.6)

Proof. See Section A.2.

For the convergence of the series given into (2.4), we have


X
j�2

.Kj
j
˝ .n2//





H1=2.@�/

�

X
j�2

kKj
j
˝ .n2/kH1=2.@�/: (2.7)

Now, we estimate the terms appearing in the previous series.
(1) For j D 2,

kK2
2
˝ .n2/kH1=2.@�/

D .!2/2k
N p.n2N p.n2qf //kH1=2.@�/

� .!2/2k
N p
kL.L2.�/IH1=2.@�//kn

2
k
2
L1.�/kN

p
kL.L2.�/IL2.�//kq

f
kL2.�/:

(2) For j D 3,

kK3
3
˝ .n2/kH1=2.@�/

D .!2/3k
N p.n2N p.n2N p.n2qf ///kH1=2.@�/

� .!2/3k
N p
kL.L2.�/IH1=2.@�//kn

2
k
3
L1.�/kN

p
k
2
L.L2.�/IL2.�//kq

f
kL2.�/:

(3) For an arbitrary j , by induction, we can prove that

kKj
j
˝ .n2/kH1=2.@�/ � „kn

2
kL1.�/.!

2
kN p
kL.L2.�/IL2.�//kn

2
kL1.�//

j�1;

(2.8)
where

„´ !2kqf kL2.�/k
N
p
kL.L2.�/IH1=2.@�//: (2.9)

Therefore, by going back to (2.7) and using the estimation (2.8), we obtain


X
j�2

.Kj

jX
˝.n2//





H1=2.@�/

�

X
j�2

„kn2kL1.�/.!
2
kN p
kL.L2.�/IL2.�//kn

2
kL1.�//

j�1

D „kn2k2L1.�/!
2
kN p
kL.L2.�/IL2.�//j�0�

j ; (2.10)
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where � is the parameter given by �´ !2kn2kL1.�/kN
pkL.L2.�/IL2.�//. Under

the condition
� < 1; (2.11)

the previous series converges. Now, because kN pkL.L2.�/IL2.�// D O.P�2/, see
(2.5), then with P large enough; knowing that !2kn2kL1.�/ is a bounded term, we
deduce that the condition (2.11) is satisfied. In addition, from (2.10), we have


X

j�2

.Kj
j
˝ .n2//





H1=2.@�/

D O.„kN p
kL.L2.�/IL2.�///

(2.9)
D O.kN p

kL.L2.�/IL2.�//kq
f
kL2.�/k
N

p
kL.L2.�/IH1=2.@�///

Lemma 2.1
D O

�
kqf kL2.�/

1

P 3

�
: (2.12)

The coming lemma is important to get an estimation of


X
j�2

.Kj
j
˝ .n2//





H1=2.@�/

;

with respect to the data f .�/ and the parameter P .

Lemma 2.2. The function qf .�/ (the solution of (1.23)) satisfies

kqf kL2.�/ D O
�
kf kH�1=2.@�/

1

P

�
: (2.13)

Proof. The solution qf .�/ to the problem (1.23) can be represented as qf .x/ D
SLp.f /.x/, for x 2 �, where SLp.�/ is the single-layer operator defined, from
H�1=2.@�/ to H1.�/, by

SLp.f /.x/´
Z
@�

Gp.x; y/f .y/d�.y/; x 2 �; (2.14)

withGp.�; �/ being the Green’s kernel solution of (2.3). It is clear that .��P 2/qf D0
in �. In Section A.8, we show that @� SLp.f / D f on @�. Multiplying the previous
equation by qf .�/ and integrating over �, gives us

kqf k2L2.�/ D hq
f
I SLp.f /iL2.�/

D hf I 
N p.qf /iH�1=2.@�/�H1=2.@�/

� kf kH�1=2.@�/k
N
p.qf /kH1=2.@�/

� kf kH�1=2.@�/k
N
p
kL.L2.�/IH1=2.@�//kq

f
kL2.�/:
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Then,

kqf kL2.�/ � kf kH�1=2.@�/k
N
p
kL.L2.�/IH1=2.@�//

(2.6)
D O

�
kf kH�1=2.@�/

1

P

�
:

This concludes the proof of Lemma 2.2.

Using (2.13), the estimation (2.12) becomes


X
j�2

.Kj
j
˝ .n2//





H1=2.@�/

D O
�
kf kH�1=2.@�/

1

P 4

�
:

Hence, from (2.4), we get

uf .x/ � qf .x/ D !2
.W qf /.x/CO
�
kf kH�1=2.@�/

1

P 4

�
; x 2 @�; (2.15)

where W qf D N p.n2qf / is the function satisfying´
.� � P 2I /W qf D �n2qf in �;

@�W
qf D 0 on @�:

(2.16)

Because on the boundary @�, we have uf DƒP .@�uf /
(1.16)
D ƒP .f / and by plugging

it into (2.15) we derive (1.22). This concludes the proof of Theorem 1.5.

3. Proof of Theorem 1.6

The purpose of this section is to explain how the linearised NtD map (measured on
the boundary @�) can be utilised with CGO solutions to reconstruct the Fourier coef-
ficients associated with the unknown refraction index n2.�/. Hence, we reconstruct
the refraction index of n2.�/ inside � as a discrete series expansion using the recon-
structed Fourier coefficients. From the previous section, we deduce that measuring
uf .�/ � qf .�/ means measuring, approximately, W qf .�/, on the boundary @�. We
set qg.�/ to be the solution of´

.� � P 2I /qg D 0 in �;

@�q
g D g on @�:

(3.1)

Multiplying the first equation of (2.16) with qg.�/ (the solution of (3.1)), and integrat-
ing over �, we get

hrW qf
I rqgiL2.�/ C P

2
hW qf

I qgiL2.�/ D hn
2qf I qgiL2.�/:
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Moreover, by multiplying (3.1) with W qf (the solution of (2.16)), and integrating
over �, we get

hrW qf
I rqgiL2.�/ C P

2
hW qf

I qgiL2.�/ D hW
qf
IgiH1=2.@�/�H�1=2.@�/:

Then, by subtracting the two previous equations we end up with

hW qf
IgiH1=2.@�/�H�1=2.@�/ D hn

2qf I qgiL2.�/; (3.2)

for all .f; g/ 2 H�1=2.@�/ �H�1=2.@�/. Knowing that W qf can be measured, on
the boundary @�, and g is a data function, we deduce that the left-hand side is a
known term. The goal is then to reconstruct n2.�/, inside �. To achieve this, we start
by fixing � 2 R3 and choosing � 2 C3 such that

� � � D 0: (3.3)

We set qf .�/ the function defined by

qf .x/´ ei��x.eix�� C r1.x//; x 2 R3; (3.4)

where � is chosen such that6

� � � D 0; (3.5)

and r1.�/ is such that

.�C 2i� � r � P 2/r1.x/ D .k�k
2
C P 2/eix�� in �: (3.6)

Observe that the right-hand side is depending on � and P , then r1.�/ will also depends
on both � and P . Later, to mark this dependence, we note r1;�;p.�/ instead of r1.�/.
Thanks to [41, Theorem 3.8], we know that under the condition

j�j � max.C0P 2I 1/ D C0P 2; (3.7)

where the last equality is a consequence of the fact that P � 1, and C0 is a constant
depending on �, equation (3.6) has a solution r1;�;p.�/ 2 H1.�/ satisfying

kr1;�;pkL2.�/ �
C0

j�j
.j�j2 C P 2/j�j1=2 (3.8a)

and

krr1;�;pkL2.�/ � C0.j�j
2
C P 2/j�j1=2: (3.8b)

6For every fixed � 2 R3, we choose � 2 C3 such that (3.3) and (3.5) will be fulfilled. Such
� exists, see (1.24).
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In the same manner, we set qg.�/ to be the function defined by

qg.x/´ e�i��x.1C r2.x//; x 2 R3; (3.9)

where r2.�/ is such that

.��C 2i� � r C P 2/r2.x/ D �P
2 in �: (3.10)

Because the right-hand side is depending on P , a solution r2.�/ will also depends
on P . Later, to mark this dependence, we note r2;p.�/ instead of r2.�/. Again, thanks
to [41, Theorem 3.8], we know that under the condition (3.7), equation (3.10) has a
solution r2;p.�/ 2 H1.�/, satisfying

kr2;pkL2.�/ �
C0

j�j
P 2j�j1=2 and krr2;pkL2.�/ � C0P

2
j�j1=2: (3.11)

Now, we take unit vectors !1 and !2 in R3 such that ¹!1I!2I �º is an orthogonal set.
In addition, we choose � D s.!1 C i!2/, so that j�j D s

p
2 and � � � D 0. Using the

fact that P � 1 and taking the parameter s sufficiently large, such that (3.7) will be
satisfied, we reduce the estimation of the L2.�/�norm of r1;�;p.�/ and r2;p.�/ to

kr1;�;pkL2.�/ D O
�P 2
s

�
and kr2;pkL2.�/ D O

�P 2
s

�
: (3.12)

Next, by taking the product between qf .�/, given by (3.4), and qg.�/, given by (3.9),
we obtain

.qf � qg/.x/ D eix�� C r1;�;p.x/C e
ix��r2;p.x/C r1;�;p.x/r2;p.x/; (3.13)

and we would like to choose the solution in such a way that .qf � qg/.�/ is close to
ei ��� , since the functions ¹ei ���º form a dense set, see [25, Theorem 1.1], in L1.�/. By
going back to (3.2), we have

hW qf
IgiH1=2.@�/�H�1=2.@�/ D

Z
�

n2.x/qf .x/qg.x/ dx

D

(3.13)Z
�

n2.x/eix�� dx C Error.�; p/;

where

Error.�; p/´
Z
�

n2.x/r1;�;p.x/ dx C

Z
�

n2.x/eix��r2;p.x/ dx

C

Z
�

n2.x/r1;�;p.x/r2;p.x/ dx;
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which can be estimated as

jError.�; p/j � kn2kL1.�/kr1;�;pkL2.�/j�j
1=2
C kn2kL1.�/kr2;pkL2.�/j�j

1=2

C kn2kL1.�/kr1;�;pkL2.�/kr2;pkL2.�/;

which, based on (3.8) and (3.11), can be reduced to

jError.�; p/j .
.j�j2 C P 2/

j�j

(3.12)
D O

�P 2
s

�
D O

�P 2
j�j

�
: (3.14)

Moreover, based on its construction, see (3.4), the function qf .�/ depends on � and
this implies the dependency of W qf .�/ with respect to �. We mark explicitly this
dependence and we write

hW qf

� IgiH1=2.@�/�H�1=2.@�/ � Error.�; p/ D
Z
�

n2.x/eix�� dx; (3.15)

which is valid in ƒ� ´ ¹� 2 C3 such that j�j � 1; � � � D 0 and � � � D 0º, where �
is fixed in R3. The setƒ� is not empty, see (1.24). By restricting � to Z3, i.e., �D �`
with ` 2 Z3, we rewrite (3.15) as

hW
qf

�`
IgiH1=2.@�/�H�1=2.@�/ � Error.�`; p/ D

Z
�

n2.x/e�ix�` dx

D .2�/3F .n2�
�
.`//; (3.16)

where F .�/ is the 3D-Fourier transform operator.7 Now, thanks to [41, Theorem 2.3],
we know that

n2.x/ D
X
`2Z3

F .n2�
�
/.`/ei`�x; x 2 �;

with convergence in the L2.�/-norm. Then, by gathering the previous expression
and (3.16), we end up with

n2.x/ D .2�/�3
X
`2Z3

Z
@�

W
qf

�`
.x/g.x/d�.x/ei`�x C Error.x; p/; (3.17)

7We recall that we have

F .f /.`/´ .2�/�3
Z

R3

f .x/e�i`�x dx; ` 2 Z3:
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in the L2.�/ sense, where Error.x; p/ is a trigonometric series given by

Error.x; p/´ �.2�/�3
X
`2Z3

Error.�`; p/ei`�x; x 2 �:

Next, we estimate the L2.�/ norm of Error.�; p/. We have

kError.�; p/kL2.�/ .
X
`2Z3

jError.�`; p/j
(3.14)
.

X
`2Z3

.j`j2 C P 2/

j�j
:

At this stage, we recall that for every fixed ` 2 Z3, we choose � 2 C3 such that

� � � D 0; ` � � D 0 and j�j � 1:

Such � exists, see (1.24). Without loss of generality, we take � satisfying (1.25), hence
j�j D P 2C& j`j3C& , with & 2 RC. Then,

kError.�; p/kL2.�/ .
X
`2Z3

.j`j2 C P 2/

P 2C& j`j3C&
D P�2�&

X
`2Z3

1

j`j1C&
C P�&

X
`2Z3

1

j`j3C&
:

After that, we use the convergence of the two previous series to reduce the last estim-
ation to

kError.�; p/kL2.�/ D O.P�& /:

Hence, (3.17) becomes

n2.x/ D .2�/�3
X
`2Z3

hW
qf

�`
IgiH1=2.@�/�H�1=2.@�/e

i`�x
CO.P�& /;

in the L2.�/ sense. This ends the proof of Theorem 1.6.

4. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. To ensure easy reading of the
proof, we have divided this section into four subsections. The goal of the first subsec-
tion is to extract the dominant term of

I1´ !2
D��1
k1
� n2

�
vg Ipf

E
L2.D/

;

where we prove that

I1 D !
2 �1

k1

MX
jD1

pf .zj /

Z
Dj

v
g
j .x/ dx C Error;
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see (4.14). In the second subsection we derive and we justify the invertibility of the
discrete algebraic system satisfied by the vector

�R
Dj
v
g
j .x/ dx

�
jD1;:::;M

, contained
in I1, see (4.31) and Lemma 4.3. The third subsection consists in writing down the
LSE, satisfied by ug.�/, where ug.�/ is the function appearing in

I2´ �P
2
hug Ipf iL2.�/;

see (4.34). Then, we prove that the discrete algebraic system can approximate the
continuous LSE, see (4.57). The goal of the last subsection lies in the justification of
the convergence of I1 to I2 for a large number of droplets, that is, M � 1.

To avoid making this section heavy and cumbersome, we have noted six lemmas
without proofs. The proof of each lemma can be found in Section A.

4.1. Extraction of the dominant term of I1

We set

I1´ !2
�1

k1
hvg Ipf iL2.D/ � !

2
hn2vg Ipf iL2.D/

D !2
�1

k1

MX
jD1

Z
Dj

v
g
j .x/p

f .x/ dx � !2hn2vg Ipf iL2.D/;

where vg.�/ satisfies (1.13), pf .�/ is the solution of (1.1), and we have used the nota-
tion vgj .�/´ vg jDj .�/, for j D 1; : : : ; M . In addition, as the coefficients n2.�/ is
W 1;1-regular, then pf .�/, which is in H1.�/, enjoys a W 2;1-interior regularity.
Based on this, we use Taylor expansion near the centres, zj , to get

I1 D !
2 �1

k1

MX
jD1

pf .zj /

Z
Dj

v
g
j .x/ dx C J1; (4.1)

where

J1´ !2
�1

k1

MX
jD1

Z
Dj

v
g
j .x/

1Z
0

rpf .zj C t .x � zj // � .x � zj / dt dx

� !2hn2vg Ipf iL2.D/:

We estimate the term J1 as

kJ1k . a�2
MX
jD1

kv
g
j kL2.Dj /





 1Z
0

rpf .zj C t .� � zj // � .� � zj / dt






L2.Dj /

C kvgkL2.D/kp
f
kL2.D/
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� a�2kvgkL2.D/

� MX
jD1





 1Z
0

rpf .zj C t .� � zj // � .� � zj / dt





2
L2.Dj /

�1=2
C kvgkL2.D/kp

f
kL2.D/

D O.kvgkL2.D/Œa
�1
krpf kL2.D/ C kp

f
kL2.D/�/: (4.2)

Moreover, based on (1.1) we deduce that pf .�/ can be represented as a single-layer
with density f .�/, i.e.,

pf .x/ D S.f /.x/

´

Z
@�

G.x; y/f .y/d�.y/ D hG.x; �/I f iH1=2.@�/�H�1=2.@�/; x 2 �;

(4.3)

where G.�; �/ is Green’s kernel defined by´
�xG.x; y/C !

2n2.x/G.x; y/ D � ıy.x/ in �;

@�xG.x; y/ D 0 on @�:
(4.4)

The existence and the uniqueness of G.�; �/ and its singularity analysis, with point-
wise estimates, can be found in [31]. Based on (4.3), we have

kpf kL2.D/ � kf kH�1=2.@�/

� Z
D

kG.x; �/k2
H1=2.@�/

dx

�1=2
: (4.5)

In addition, we have

kG.x; �/kH1=2.@�/ D inf
G.x;�/2H1.�/

G.x;�/j@�DG.x;�/

kG.x; �/kH1.�/:

Let�˘ �� n xD, and let G.x; �/´ G.x; �/��˘.�/. Thus, by its construction G.x; �/ 2
H1.�/, for x 2 D, and 
.G.x; �// D G.x; �/j@�, on @�, where 
.�/ is the trace oper-
ator. This implies that

kG.x; �/kH1=2.@�/ � kG.x; �/��˘.�/kH1.�/ D kG.x; �/kH1.�˘/: (4.6)

Then, by plugging (4.6) into (4.5), we deduce

kpf kL2.D/ � kf kH�1=2.@�/

� Z
D

kG.x; �/k2H1.�˘/ dx

�1=2
:
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Recalling that

kG.x; �/k2H1.�˘/´ krG.x; �/k
2
L2.�˘/ C kG.x; �/k

2
L2.�˘/;

we deduce, since jrG.x; y/j D O.jx � yj�2/, that

kpf kL2.D/ . kf kH�1=2.@�/
� Z
D

krG.x; �/k2L2.�˘/ dx

�1=2
. kf kH�1=2.@�/

� Z
D

Z
�˘

1

jx � yj4
dy dx

�1=2
: (4.7)

We have, for x 2 D and y 2 �˘, see Assumption 1, that

jx � yj � dist.D; @�˘/ D dist.D; @�/ � �.a/; (4.8)

which implies

kpf kL2.D/ . kf kH�1=2.@�/ŒjDj.�.a//�4�1=2

D kf kH�1=2.@�/ŒjDm0 jM.�.a//�4�1=2

(1.10)
D O.kf kH�1=2.@�/a

.2C7h/=6/: (4.9)

Similarly, using (4.3), the vector function rpf .�/ can be expressed as

rpf .x/ D

Z
x

r@�G.x; y/f .y/d�.y/

D hrG.x; �/I f iH1=2.@�/�H�1=2.@�/; x 2 �; (4.10)

Then, by repeating the same computations as (4.5)–(4.7), we obtain

krpf kL2.D/ . kf kH�1=2.@�/
� Z
D

Z
�˘

1

jx � yj6
dy dx

�1=2
D O.a3h=2kf kH�1=2.@�//: (4.11)

Hence, by returning to (4.2), using (4.9) and (4.11),

J1 D O.a3h=2�1kf kH�1=2.@�/kv
g
kL2.D//: (4.12)

The following lemma gives us an a priori estimate satisfied by vg.�/.

Lemma 4.1. We have the following a priori estimate:

kvgkL2.D/ . a.5�2h/=6kgkH�1=2.@�/: (4.13)
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Proof. See Section A.4.

Thanks to the previous lemma, the estimation of J1 given by (4.12), we reduce
the estimation of I1, given by (4.1), to

I1 D !
2 �1

k1

MX
jD1

pf .zj /

Z
Dj

v
g
j .x/ dx CO.a.5h�2/=3kf kH�1=2.@�/kgkH�1=2.@�//:

(4.14)
The goal of the following subsection is to derive the algebraic system satisfied by the
vector

�R
Dj
v
g
j .x/ dx

�
jD1;:::;M

and justify its invertibility.

4.2. Algebraic system

We start with the following LSE, with vg.�/ as the solution of (1.13),

vg.x/ � !2
Z
D

G.x; y/vg.y/
��1
k1
� n2.y/

�
dy D S.x/; x 2 �; (4.15)

where S.�/ is the solution of´
�S C !2n2.�/S D 0 in �;

@�S D g on @�:
(4.16)

and G.�; �/ is the Green’s kernel solution of (4.4). Now, by restricting (4.15) into D,
we obtain

vg.x/ � !2
Z
D

G.x; y/vg.y/
��1
k1
� n2.y/

�
dy D S.x/; x 2 D: (4.17)

The coming lemma, on the decomposition of Green’s kernel G.�I �/, is useful for the
next step.

Lemma 4.2. Green’s kernelG.�I �/ (the solution of (4.4)) admits the following decom-
position:

G.x; y/ D ˆ0.x; y/CR.x; y/; x ¤ y; (4.18)

where ˆ0.�; �/ is given by (1.5), and the remainder term R.�; �/ satisfies´
�x.R.x; y//C !

2n2.x/R.x; y/ D � !2n2.x/ˆ0.x; y/ in �;

@�x .R.x; y// D � @�x .ˆ0.x; y// on @�:
(4.19)
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For x; y 2 �, the term R.�; �/ is such that8

jR.x; y/j .
� 1

dist.x; @�/

�1=3� 1

dist.y; @�/

�2=3
: (4.20)

Proof. See Section A.3.

For x 2 Dm, we rewrite (4.17) as�
I � !2

�1

k1
NDm

�
.vgm/.x/ � !

2 �1

k1

MX
j¤m

Z
Dj

G.x; y/v
g
j .y/ dy

D Sm.x/C !
2 �1

k1

Z
Dm

R.x; y/vgm.y/ dy � !
2

Z
D

G.x; y/vg.y/n2.y/ dy;

(4.21)

where Sm.�/´ S.�/jDm , R.�; �/ is the solution of (4.19), and NDm.�/ is the New-
tonian operator defined, from L2.Dm/ to L2.Dm/, by (1.3). In both sides of (4.21),
successively, we multiply by k1

!2�1
, we take the inverse operator of

�
k1
!2�1

I � NDm
�

and integrate over Dm, the obtained equation, to get

ˇm

Z
Dm

vgm.x/ dx �

MX
jD1
j¤m

Z
Dm

Wm.x/

Z
Dj

G.xIy/v
g
j .y/ dy dx

D
k1

!2�1

Z
Dm

Wm.x/Sm.x/ dx

C

Z
Dm

Wm.x/

Z
Dm

1Z
0

ryR.x; zm C t .y � zm// � .y � zm/ dt v
g
m.y/ dy dx

�
k1

�1

Z
Dm

Wm.x/

Z
D

G.x; y/vg.y/n2.y/ dy dx; (4.22)

where Wm.�/ is the solution of

k1

!2�1
Wm.x/ �NDm.Wm/.x/ D 1; x 2 Dm; (4.23)

8In general, we can prove that

jR.x; y/j .
� 1

dist.x; @�/

�q� 1

dist.y; @�/

�p

; x; y 2 �;

where p and q are positive real numbers such that pC q D 1.
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and ˇm 2 C is the constant given by

ˇm´

�
1 �

Z
Dm

Wm.x/R.x; zm/ dx

�
: (4.24)

We haveˇ̌̌̌ Z
Dm

Wm.x/R.x; zm/ dx

ˇ̌̌̌
� kWmkL2.Dm/kR.�; zm/kL2.Dm/

(4.20)
.

(4.78)

a.1�h/

dist.DmI @�/
(1.10)
D O.a2.1�h/=3/: (4.25)

Hence,
ˇm D 1CO.a2.1�h/=3/ for m D 1; : : : ;M: (4.26)

Next, to derive the desired algebraic system, we expand in equation (4.22) Green’s
kernel G.�; �/ and the source term S.�/, near the centres, to obtain

ˇm

Z
Dm

vgm.x/ dx � ˛m

MX
jD1
j¤m

G.zmI zj /

Z
Dj

v
g
j .x/ dx D

k1

!2�1
˛mS.zm/C Restm;

(4.27)
where ˛m is the scattering coefficient given by

˛m´

Z
Dm

Wm.x/ dx; (4.28)

and

Restm´
MX
jD1
j¤m

Z
Dm

Wm.x/

1Z
0

rG.zm C t .x � zm/I zj / � .x � zm/ dt dx

Z
Dj

v
g
j .y/ dy

C

MX
jD1
j¤m

Z
Dm

Wm.x/

Z
Dj

1Z
0

rG.xI zj C t .y � zj // � .y � zj / dtv
g
j .y/ dy dx

C
k1

!2�1

Z
Dm

Wm.x/

1Z
0

rSm.zm C t .x � zm// � .x � zm/ dt dx

C

Z
Dm

Wm.x/

Z
Dm

1Z
0

ryR.x; zm C t .y � zm// � .y � zm/ dtv
g
m.y/ dy dx

�
k1

�1

Z
Dm

Wm.x/

Z
D

G.x; y/vg.y/n2.y/ dy dx: (4.29)
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As Dj -s are translations and scales of the same domain B , i.e., Dj D zj C aB and
�j D �i with kj D ki for i; j D 1; : : : ;M „ we deduce that ˛m D ˛, formD 1; : : : ;M .
In addition, by multiplying its both sides by !2�1

k1˛
and then, setting9

Ym´
ˇm!

2�1

˛k1

Z
Dm

vgm.x/ dx (4.30)

with ˛ D � P 2a1�h, we obtain

Ym C

MX
jD1
j¤m

G.zmI zj /P
2a1�h

1

ǰ

Yj D S.zm/C
!2�1

k1

Restm
˛

: (4.31)

The next lemma ensures the invertibility of the previous algebraic system.

Lemma 4.3. The algebraic system (4.31) is invertible from `2 to itself. In addition,
the following estimation holds:� MX

mD1

jYmj
2
�1=2

.
� MX
mD1

jS.zm/j
2
�1=2
C a.h�3/

� MX
mD1

jRestmj2
�1=2

:

In particular, � MX
mD1

jYmj
2
�1=2

. a2.h�1/=3kgkH�1=2.@�/: (4.32)

Proof. See Section A.1.

4.3. The LSE satisfied by ug.�/

We define . zY1; : : : ; zYM / as the solution of the unperturbed algebraic system related
to (4.31). More precisely,

zYm C

MX
jD1
j¤m

G.zmI zj /P
2a1�h zYj

1

ǰ

D S.zm/: (4.33)

We set the following LSE:

Y.z/C P 2
Z
�

G.zIy/Y.y/ dy D S.z/; z 2 �; (4.34)

where G.�; �/ is the solution of (4.4) and S.�/ is the solution of (4.16). We need the
following lemma.

9In the equation ˛ D � P 2a1�h, the term a1�h comes from the estimation of ˛, see
Lemma 4.7.
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Lemma 4.4. There exists one and only one solution Y.�/ of the LSE (4.34), and it
satisfies the estimate

kY kH1.�/ . P 2kSkH1.�/: (4.35)

Proof. Equation (4.34) is invertible from L2.�/ to L2.�/ and this gives us the estim-
ation

kY kL2.�/ . kSkL2.�/ � kSkH1.�/: (4.36)

Now, by taking the H1.�/-norm in both sides of (4.34), we get

kY kH1.�/ . kSkH1.�/ C P 2kN.Y /kH1.�/;

where N.�/ is the Newtonian operator defined by

N.f /.x/´

Z
�

G.x; y/f .y/ dy; x 2 �: (4.37)

Then, using the continuity of the Newtonian operator, from L2.�/ to H1.�/, we
obtain

kY kH1.�/ . kSkH1.�/ C P 2kY kL2.�/
(4.36)
. P 2kSkH1.�/:

This ends the proof of Lemma 4.4.

Remark 4.5. The function S.�/ (the solution of (4.16)) can be represented as a single
layer potential with density function given by g.�/, i.e.,

S.x/ D S.g/.x/´

Z
@�

G.x; y/g.y/d�.y/; x 2 �; (4.38)

with G.�; �/ is the Green’s kernel solution of (4.4). Then, from (4.35), we obtain

kY kH1.�/ . kS.g/kH1.�/;

and using the continuity of the single layer operator, from H�1=2.@�/ to H1.�/, we
end up with the following estimation:

kY kH1.�/ . kgkH�1=2.@�/: (4.39)

Based on the introduced notations in Assumption 1, in particular (1.7) and the fact
that j�j j D a1�h, for 1 � j �M and 0 � h < 1,10 we can rewrite (4.34) as

Y.zm/C P
2

MX
jD1
j¤m

G.zmI zj /a
1�h 1

ǰ

Y.zj / D S.zm/ � P
2zI.zm/; (4.40)

10We have j�j j D a1�h and j�?
j
j � a1�h but, as these �?

j
-s intersect @�, we cannot

necessarily replace � withD.
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where

zI.zm/´

Z
�

G.zmIy/Y.y/ dy �

MX
jD1
j¤m

G.zmI zj /Y.zj /
1

ǰ

j�j j: (4.41)

To estimate zI.zm/, we first consider the termZ
�

G.zmIy/Y.y/ dy ´

Z
�cube

G.zmIy/Y.y/ dy C

Z
�r

G.zmIy/Y.y/ dy: (4.42)

and show that the second term is negligible. In fact, for the domains �?j , which are
not necessarily cubes, they have the property of non-empty intersection with @�, i.e.,
@�?n \ @� ¤ ¹;º, for 1 � n � @. Since each �j has volume equal to a1�h, and then
its maximum radius is of the order a.1�h/=3, then intersecting surfaces with @� have
a volume of the order a2.1�h/=3. As the volume of @� is of order one, we conclude
that the number of such cubes will not exceed the order a�

2
3 .1�h/. Hence, the volume

of �r will not exceed the order a.1�h/=3
a!0
���! 0, i.e.,

j�r j D O.a.1�h/=3/: (4.43)

Regarding the second term on the right-hand side of (4.42), we have11ˇ̌̌̌ Z
�r

G.zmIy/Y.y/ dy

ˇ̌̌̌
� kY kL2.�r /kG.zmI �/kL2.�r /

� j�r j
1=3
kY kL6.�r /kG.zmI �/kL2.�r /

� j�r j
1=3
kY kL6.�/kG.zmI �/kL2.�r /:

Thanks to Lemma 4.4, we know that Y.�/ 2 H1.�/ � L6.�/. Then,ˇ̌̌̌ Z
�r

G.zmIy/Y.y/ dy

ˇ̌̌̌
. j�r j1=3kY kH1.�/kG.zmI �/kL2.�r /

(4.35)
. P 2j�r j

1=3
kSkH1.�/kG.zmI �/kL2.�r /;

which, by using equation (4.38) and the continuity of the single-layer operator from
H�1=2.@�/ to H1.�/, can be reduced toˇ̌̌̌ Z
�r

G.zmIy/Y.y/ dy

ˇ̌̌̌
. P 2j�r j

1=3
kgkH�1=2.@�/kG.zmI �/kL2.�r /

. P 2j�r j
.9�5ı/=.6.3�ı//

kgkH�1=2.@�/kG.zmI �/kL3�ı.�r /:

11We recall from Lemma 4.2 that G.zmI �/ 2 L3�ı.�/, with zm fixed, where ı is an arbit-
rarily and sufficiently small positive number.
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Next, using the fact that G.zmI �/ 2 L3�ı.�r/, hence kG.zmI �/kL3�ı.�r / � 1, we
reduce the previous estimation toˇ̌̌̌ Z

�r

G.zmIy/Y.y/ dy

ˇ̌̌̌
. P 2j�r j

.9�5ı/=.6.3�ı//
kgkH�1=2.@�/

(4.43)
D O.P 2kgkH�1=2.@�/a

.1�h/.9�5ı/=.18.3�ı///: (4.44)

Therefore, by gathering (4.41), (4.42), and the estimation (4.44), we deduce

zI.zm/ D I.zm/CO.P 2kgkH�1=2.@�/a
.1�h/.9�5ı/=.18.3�ı/// as a� 1; (4.45)

where

I.zm/´

MX
`D1

Z
�`

G.zmIy/Y.y/ dy �

MX
jD1
j¤m

G.zmI zj /Y.zj /
1

ǰ

j�j j:

Let us now estimate I.zm/. We write

I.zm/ D

MX
`D1
`¤m

Z
�`

h
G.zmIy/Y.y/ �G.zmI z`/Y.z`/

1

ˇ`

i
dy C

Z
�m

G.zmIy/Y.y/ dy

(4.24)
D

MX
`D1
`¤m

Z
�`

ŒG.zmIy/Y.y/ �G.zmI z`/Y.z`/� dy C

Z
�m

G.zmIy/Y.y/ dy

�

MX
`D1
`¤m

G.zmI z`/Y.z`/j�`j

R
D`
W`.x/R.x; z`/ dx

1 �
R
D`
W`.x/R.x; z`/ dx

;

and, by using Taylor expansion for the function G.zm; �/Y.�/ near the point z`, we get

I.zm/ D

MX
`D1
`¤m

Z
�`

1Z
0

G.zmI z` C t .y � z`//rY.z` C t .y � z`// � .y � z`/ dt dy

C

MX
`D1
`¤m

Z
�`

1Z
0

Y.z` C t .y � z`//rG.zmI z` C t .y � z`// � .y � z`/ dt dy

C

Z
�m

G.zmIy/Y.y/ dy

�

MX
`D1
`¤m

G.zmI z`/Y.z`/j�`j

R
D`
W`.x/R.x; z`/ dx

1 �
R
D`
W`.x/R.x; z`/ dx

: (4.46)
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From Lemma 4.2, we know that G.x; y/ D ˆ0.x; y/CR.x; y/, for x ¤ y, where
the dominant part ˆ0.�; �/ is given by (1.5). In the sequel, we keep only the dominant
part of G.�; �/. More precisely, we have

jG.x; y/j .
1

jx � yj
and jrG.x; y/j .

1

jx � yj2
; for x ¤ y: (4.47)

By taking the modulus in both sides of (4.46) and using (4.47), we deduce

jI.zm/j . a.1�h/=3
MX
`D1
`¤m

Z
�`

1Z
0

1

jzm � z` � t .y � z`/j
jrY.z` C t .y � z`//j dt dy

C a.1�h/=3
MX
`D1
`¤m

Z
�`

1Z
0

jY.z` C t .y � z`//j

jzm � z` � t .y � z`/j2
dt dy

C

Z
�m

jG.zmIy/jjY.y/j dy C jL.zm/j; (4.48)

where L.zm/ is the term given by

L.zm/´

MX
`D1
`¤m

G.zmI z`/Y.z`/j�`j

R
D`
W`.x/R.x; z`/ dx

1 �
R
D`
W`.x/R.x; z`/ dx

: (4.49)

Next, we delay the estimation of I.zm/ until we estimate first L.zm/. To do this, by
taking the absolute value on both sides of (4.49), using the fact that j�`j D a1�h, the
estimation (4.47), with the estimation given by (4.25), gives us

jL.zm/j . a5.1�h/=3
MX
`D1
`¤m

1

jzm � z`j
jY.z`/j

� a5.1�h/=3
� MX
`D1
`¤m

1

jzm � z`j2

�1=2� MX
`D1
`¤m

jY.z`/j
2
�1=2

:

Besides, by applying a Cauchy–Schwarz inequality, we obtain

jL.zm/j

� a5.1�h/=3
� MX
`D1
`¤m

1

jzm � z`j2

�1=2h� MX
`D1

jY.z`/ � zY`j
2
�1=2
C

� MX
`D1

j zY`j
2
�1=2i

;
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where . zY1I � � � I zYM / is the solution of (4.33). In addition, by using (4.32), it can be
reduced to

jL.zm/j .
� MX
`D1
`¤m

1

jzm � z`j2

�1=2h
a5.1�h/=3

� MX
`D1

jY.z`/ � zY`j
2
�1=2

C a7.1�h/=3kgkH�1=2.@�/

i
: (4.50)

Now, by making again use of the Cauchy–Schwarz inequality in (4.48) and using
(4.50), we obtain

jI.zm/j . a5.1�h/=6krY kL2.�/

� MX
`D1
`¤m

1

jzm � z`j2

�1=2

C a5.1�h/=6kY kL2.�/

� MX
`D1
`¤m

1

jzm � z`j4

�1=2

C kY kL2.�/

� Z
�m

1

jzm � yj2
dy

�1=2

C a5.1�h/=3
� MX
`D1
`¤m

1

jzm � z`j2

�1=2� MX
`D1

jY.z`/ � zY`j
2
�1=2

C a7.1�h/=3
� MX
`D1
`¤m

1

jzm � z`j2

�1=2
kgkH�1=2.@�/:

The use of the lemma below allows for the estimation of the discrete sum of the
inverse power-weighted distance between the centre of the droplets, and the discrete
sum of the inverse power-weighted distance at the boundary.

Lemma 4.6. Let ¹Dm D zmC aBºMmD1 ��. Then, we have the following estimates.

(1) Inverse distance between the droplets centres,

MX
jD1
j¤m

jzm � zj j
�k
D

´
O.d�3/ for k < 3,

O.d�k/ for k > 3.
(4.51)

(2) Inverse distance to the boundary,

MX
jD1

1

distk.Dj I @�/
D

´
O.d�3/ for k < 3,

O.d�k/ for k > 3.
(4.52)
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Proof. See Section A.7.

Thanks to (4.51) and the estimation (1.12), we have

jI.zm/j . a5.1�h/=6krY kL2.�/d
� 32 C a5.1�h/=6kY kL2.�/d

�2

C kY kL2.�/

� Z
�m

1

jzm � yj2
dy

�1=2

C a7.1�h/=6
� MX
`D1

jY.z`/ � zY`j
2
�1=2
C a11.1�h/=6kgkH�1=2.@�/: (4.53)

To achieve the estimation of I.zm/, we set and estimate the third term appearing on
the right-hand side of the above equation

I3.zm/´

Z
B.zmIr/

1

jzm � yj2
dy C

Z
�mnB.zmIr/

1

jzm � yj2
dy;

where B.zmI r/ is the ball of centre zm and radius r , where r is such that r 2 I4 ´�
0I
p
3
2
a.1�h/=3

�
. Then,

I3.zm/ .
rZ
0

Z
@B.zmIs/

1

jzm � yj2
d�.y/ds C

1

r2
j�m n B.zmI r/j

D

rZ
0

1

s2
j@B.zmI s/jds C

1

r2
j�m n B.zmI r/j

D
8�r

3
C
1

r2
a1�h � max

r2I4
�.r; a/;

where
�.r; a/´

8�

3
r C

1

r2
a1�h:

We have that maxr2I4 �.r; a/ D �.rsol; a/, where rsol is such that @r�.rsol; a/ D 0.
Straightforward computations gives us rsol D

�
3
4�
a1�h

�1=3. Consequently,

max
r2I4

�.r; a/ D .48�2/1=3a.1�h/=3:

Hence,
I3.zm/ D O.a.1�h/=3/: (4.54)
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Finally, by gathering (4.54) and (4.53) and using the fact that d � a1�h=3, we end up
with

jI.zm/j . a.1�h/=3krY kL2.�/ C a
.1�h/=6

kY kL2.�/

C a7.1�h/=6
� MX
`D1

jY.z`/ � zY`j
2
�1=2
C a11.1�h/=6kgkH�1=2.@�/

(4.39)
. a.1�h/=6kgkH�1=2.@�/ C a

7.1�h/=6
� MX
`D1

jY.z`/ � zY`j
2
�1=2

:

Hence, plugging the above estimation into (4.45), we get

zI.zm/ D O
�
P 2a.9�5ı/.1�h/=.18.3�ı//kgkH�1=2.@�/

C a7.1�h/=6
� MX
`D1

jY.z`/ � zY`j
2
�1=2�

: (4.55)

Finally, by going back to (4.40) and making use of the estimation (4.55), we obtain

Y.zm/ � ˛

MX
jD1
j¤m

G.zmI zj /
1

ǰ

Y.zj /

D S.zm/CO.P 4a.9�5ı/.1�h/=18.3�ı/kgkH�1=2.@�//

CO
�
a7.1�h/=6P 2

� MX
`D1

jY.z`/ � zY`j
2
�1=2�

: (4.56)

Taking the difference between (4.33) and (4.56) gives us the following algebraic sys-
tem:

. zYm � Y.zm//C

MX
jD1
j¤m

G.zmI zj /P
2a1�h

1

ǰ

. zYj � Y.zj //

D O.P 4a.9�5ı/.1�h/=18.3�ı/kgkH�1=2.@�//

CO
�
a7.1�h/=6P 2

� MX
`D1

kY.z`/ � zY`k
2
�1=2�

:

Consequently, using Lemma 4.3, we have� MX
mD1

j zYm � Y.zm/j
2
�1=2

. P 4a�.1�h/.9�2ı/=.9.3�ı//kgkH�1=2.@�/

C a2.1�h/=3P 2
� MX
`D1

jY.z`/ � zY`j
2
�1=2

;
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which, by knowing that h < 1, can be reduced to� MX
mD1

j zYm � Y.zm/j
2
�1=2
D O.P 4a�.1�h/.9�2ı/=.9.3�ı//kgkH�1=2.@�//: (4.57)

The previous estimation confirm the convergence of the discrete algebraic system to
the continuous LSE.

4.4. Finishing the proof of Theorem 1.1

We define J as

J ´ !2
�1

k1
hvg Ipf iL2.D/ C P

2
hug Ipf iL2.�/ � !

2
hn2vg Ipf iL2.D/

D

MX
jD1

h
!2
�1

k1
hv
g
j Ip

f
iL2.Dj /

C P 2hu
g
j Ip

f
iL2.�j /

i
� !2hn2vg Ipf iL2.D/:

(4.58)

Then, by using the Taylor expansion for the function pf .�/ near the centres, we get

J D

MX
jD1

pf .zj /

�
!2
�1

k1

Z
Dj

v
g
j .x/ dx C P

2

Z
�j

u
g
j .x/ dx

�
C Errj ; (4.59)

where

Errj ´ !2
�1

k1

MX
jD1

Z
Dj

v
g
j .x/

1Z
0

rpf .zj C t .x � zj // � .x � zj / dt dx

C P 2
MX
jD1

Z
�j

u
g
j .x/

1Z
0

rpf .zj C t .x � zj // � .x � zj / dt dx

� !2hn2vg Ipf iL2.D/;

which can be estimated, by recalling that �1 � 1I k1 � a2 and j�j j � a1�h, as

kErrj k . a�1
MX
jD1

kv
g
j kL2.Dj /

krpf kL2.Dj /

C a.1�h/=3P 2
MX
jD1

ku
g
j kL2.�j /

krpf kL2.�j /

C kvgkL2.D/kp
f
kL2.D/
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. a�1kvgkL2.D/krp
f
kL2.D/ C a

.1�h/=3P 2kugkL2.�/krp
f
kL2.�/

C kvgkL2.D/kp
f
kL2.D/

(4.11)
.

(4.9)
a.3h�2/=2kvgkL2.D/kf kH�1=2.@�/

C a.1�h/=3P 2kugkL2.�/krp
f
kL2.�/: (4.60)

Next, we estimate krpf kL2.�/. To do this, we recall from (4.10) thatrpf DrS.f /,
in �, where S.�/ is the single-layer operator defined by (4.38). Hence, as

S.�/WH�1=2.@�/! H1.�/;

we have
krpf kL2.�/ D O.kf kH�1=2.@�//: (4.61)

Then, by using (4.13) and (4.61) into (4.60), we have

jErrj j . kf kH�1=2.@�/ŒkgkH�1=2.@�/a.7h�1/=6 C a.1�h/=3P 2kugkL2.�/�: (4.62)

Let us now estimate ug.�/ in terms of g.�/. As ug.�/ is the solution of (1.16), then it
satisfies the following integral equation:

ug.�/C P 2N.ug/.�/ D S.g/.�/ in �; (4.63)

where N.�/ is the Newtonian operator defined by (4.37). Hence, by gathering (4.34),
(4.63), and (4.39), we deduce that

kugkL2.�/ . kgkH�1=2.@�/: (4.64)

Then, by plugging (4.64) into (4.62), and using the fact that h > 1
3

, we deduce that

jErrj j . a.1�h/=3P 2kgkH�1=2.@�/kf kH�1=2.@�/:

Going back to (4.59), we obtain

J D

MX
jD1

pf .zj /

�
!2
�1

k1

Z
Dj

v
g
j .x/ dx C P

2

Z
�j

u
g
j .x/ dx

�
CO.a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�//:

Remark that ug.�/ (the solution of (1.16)), is the solution of the LSE given by (4.34),
i.e., ug.�/ D Y.�/, in �. Using this, we obtainZ
�j

u
g
j .x/ dxD

Z
�j

Y.x/ dxDY.zj /j�j j C

Z
�j

1Z
0

.x � zj / � rY.zj C t .x � zj // dt dx:
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Then,

J D

MX
jD1

pf .zj /

�
!2
�1

k1

Z
Dj

v
f
j .x/ dx C P

2Y.zj /j�j j

�

C P 2
MX
jD1

pf .zj /

Z
�j

1Z
0

.x � zj / � rY.zj C t .x � zj // dt dx

CO.a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�//: (4.65)

We estimate the second term on the right-hand side as

T2´ P 2
MX
jD1

pf .zj /

Z
�j

1Z
0

.x � zj / � rY.zj C t .x � zj // dt dx

jT2j . P 2
MX
jD1

jpf .zj /j

ˇ̌̌̌ Z
�j

1Z
0

.x � zj / � rY.zj C t .x � zj // dt dx

ˇ̌̌̌

� P 2
� MX
jD1

jpf .zj /j
2
�1=2� MX

jD1

j

Z
�j

1Z
0

.x � zj / � rY.zj C t .x � zj // dt dxj
2
�1=2

D O
�
P 2
� MX
jD1

jpf .zj /j
2
�1=2

a5.1�h/=6krY kL2.�/

�
: (4.66)

At this stage, we need first to estimate
PM
jD1jp

f .zj /j
2. To achieve this, we recall that

pf .�/ is the solution of (1.1) and we introduce Qpf .�/ as the solution of´
.�C !2/ Qpf D 0 in �;

@� Qp
f D f on @�:

(4.67)

Now, by subtracting (1.1) from (4.67), we get´
.�C !2n2/.pf � Qpf / D !2.�n2 C 1/ Qpf in �;

@�.p
f � Qpf / D 0 on @�:

Its solution takes the following form:

.pf � Qpf /.z/ D !2
Z
�

G.z; y/.�n2 C 1/.y/ Qpf .y/ dy; z 2 �;

where G.�; �/ is the Green’s kernel solution of (4.4). By taking the modulus, we get

j.pf � Qpf /.z/j � k!2.�n2 C 1/kL1.�/kG.z; �/kL2.�/k Qp
f
kL2.�/ . k Qpf kL2.�/;

(4.68)
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where the last estimation is a consequence of the L2.�/-integrability of Green’s ker-
nel G.z; �/, uniformly on z 2 �, and the boundedness of kn2kL1.�/. In addition, we
use the fact that (4.67) is a well-posed problem to derive

k Qpf kL2.�/ . kf kH�1=2.@�/: (4.69)

Then, by gathering (4.68) and (4.69), we obtain

j.pf � Qpf /.z/j . kf kH�1=2.@�/: (4.70)

As Qpf .�/ satisfies a Helmholtz equation in �, see (4.67), then we have the following
mean value integral formula:

sin.!r 0/
!r 0

Qpf .zj / D
1

j@Bj .r 0/j

Z
@Bj .r

0/

Qpf .x/d�.x/; (4.71)

where Bj .r
0/ is the ball, centreed at zj with radius r 0, contained in the cube �j . See

[18, formula (36), p. 288]. Now, by integrating both sides of (4.71) with respect to the
variable r 0, from 0 to r , where r is such that Bj ´ Bj .r/ is the largest ball, centreed
at zj with radius r 0, contained in the cube �j , we obtain

Qpf .zj / D
!3

4�.sin.!r/ � !r cos.!r//

Z
Bj

Qpf .x/ dx: (4.72)

In addition, because r is small, the following approximation holds:

4�.sin.!r/ � !r cos.!r// D
4�

3
!3r3 CO.r5/ D !3jBj j CO.r5/: (4.73)

Then, by plugging (4.73) into (4.72), we obtain

Qpf .zj / D
1

jBj j CO.r5/

Z
Bj

Qpf .x/ dx:

We observe that, for 1 � j �M , we have jBj j D jBj0 j � a
1�h �M�1. Then, using

the Cauchy–Schwarz inequality, in the above formula, we deduce that

j Qpf .zj /j . jBj j�1=2k Qpf kL2.Bj /: (4.74)

Therefore,

MX
jD1

jpf .zj /j
2
D

MX
jD1

j Qpf .zj /C .p
f .zj / � Qp

f .zj //j
2
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.
MX
jD1

j Qpf .zj /j
2
C

MX
jD1

jpf .zj / � Qp
f .zj /j

2:

By making use of (4.74) and (4.70), we obtain

MX
jD1

jpf .zj /j
2 .

MX
jD1

jBj j
�1
k Qpf k2L2.Bj /

CMkf k2
H�1=2.@�/

. jBj0 j
�1
k Qpf k2

L2.
SM
jD1Bj /

CMkf k2
H�1=2.@�/

:

As jBj0 j
�1 �M and

SM
jD1 Bj � �, we obtain

MX
jD1

jpf .zj /j
2 . M.k Qpf k2L2.�/ C kf k

2
H�1=2.@�/

/
(4.69)
. Mkf k2

H�1=2.@�/
: (4.75)

We continue with our estimation of (4.66) by using (4.75) to get

kT2k . P 2M 1=2
kf kH�1=2.@�/a

5.1�h/=6
krY kL2.�/

(4.39)
D O.P 2a.1�h/=3kf kH�1=2.@�/kgkH�1=2.@�//:

Then, using the above estimation of the term J , given by (4.65), becomes

J D

MX
jD1

pf .zj /

�
!2
�1

k1

Z
Dj

v
g
j .x/ dx C P

2Y.zj /j�j j

�
CO.a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�//: (4.76)

To see how the parameter P 2 is related to the scattering coefficient ˛, we set the
following lemma.

Lemma 4.7. The scattering coefficient ˛, given by (4.28), admits the following estim-
ation

˛ D � P 2a1�h CO.a/; (4.77)

where 0 < h < 1, and

P 2´
�k0.h1I Nen0iL2.B//

2

�Bn0cn0
:

In addition, the following estimation holds:

kWmkL2.Dm/ . a�.2Ch/k1kL2.Dm/; (4.78)

where Wm.�/ is the solution of (4.23).
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Proof. See Section A.5.

Knowing that j�j j D a1�h and using (4.77), we deduce that P 2Y.zj /j�j j D
�˛Y.zj /. In addition, from (4.30), we have

!2�1 ǰ

k1

Z
Dj

v
g
j .x/ dx D ˛Yj :

Hence, equation (4.76) becomes

J D

MX
jD1

pf .zj /˛
h 1
ǰ

Yj � Y.zj /
i
CO.a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�//

J D

MX
jD1

pf .zj /˛Œ zYj � Y.zj /�C

MX
jD1

pf .zj /˛
h 1
ǰ

Yj � zYj

i
CO.a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�//: (4.79)

Next, we set and estimate the second term on the right-hand side. To do this, we have

Q´

MX
jD1

pf .zj /˛
h 1
ǰ

Yj � zYj

i (4.24)X
D
M
jD1p

f .zj /˛ŒYj � zYj �

C

MX
jD1

pf .zj /˛

R
Dj
Wj .x/R.x; zj / dx

ǰ

Yj :

Then, using (4.77), (4.25), and (4.26), we obtain

jQj . P 2a1�h
� MX
jD1

jpf .zj /j
2
�1=2h� MX

jD1

jYj � zYj j
2
�1=2
C a2.1�h/=3

� MX
jD1

jYj j
2
�1=2i

(4.75)
. P 2a1�hM 1=2

kf kH�1=2.@�/

h� MX
jD1

jYj � zYj j
2
�1=2
C a2.1�h/=3

� MX
jD1

jYj j
2
�1=2i

(4.32)
. P 2a1�hM 1=2

kf kH�1=2.@�/

h� MX
jD1

jYj � zYj j
2
�1=2
C a4.1�h/=3kgkH�1=2.@�/

i
:

(4.80)

In addition, by subtracting (4.31) from (4.33), we derive the following algebraic sys-
tem

.Ym � zYm/C

MX
jD1
j¤m

G.zmI zj /P
2a1�h

1

ǰ

.Yj � zYj / D
!2�1

k1

Restm
˛

:
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Then, thanks to Lemma 4.3, the fact that k1 � a2 and ˛ � a1�h, the following estim-
ation holds:� MX

jD1

jYj � zYj j
2
�1=2

. ah�3
� MX
jD1

jRestj j2
�1=2 (A.43)

. a3ChkgkH�1=2.@�/:

Hence, by plugging the above estimation into (4.80) and using the fact thatM � ah�1,
we obtain

jQj . P 2a11.1�h/=6kf kH�1=2.@�/kgkH�1=2.@�/:

Taking the modulus in both sides of (4.79), using the above estimation, we get

jJ j . j˛j
� MX
jD1

j zYj � Y.zj /j
2
�1=2� MX

jD1

jpf .zj /j
2
�1=2

C a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�/

(4.75)
. j˛jM 1=2

� MX
jD1

j zYj � Y.zj /j
2
�1=2
kf kH�1=2.@�/

C a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�/:

Noticing that M � ah�1, using the fact that ˛ � P 2a1�h, see (4.77), and taking into
account the estimation derived in (4.57), we obtain

jJ j . a.1�h/.9�5ı/=.18.3�ı//P 6kf kH�1=2.@�/kgkH�1=2.@�/ (4.81)

C a.1�h/=3P 2kf kH�1=2.@�/kgkH�1=2.@�/

D O.a.1�h/.9�5ı/=.18.3�ı//P 6kf kH�1=2.@�/kgkH�1=2.@�//: (4.82)

Now, by gathering (1.19), (4.58), and the estimation (4.81), we obtain

jh.ƒD �ƒP /.f /IgiH1=2.@�/�H�1=2.@�/j

D jJ j
(4.81)
. a.1�h/.9�5ı/=.18.3�ı//P 6kf kH�1=2.@�/kgkH�1=2.@�/:

This suggest,

kƒD �ƒP kL.H�1=2.@�/IH1=2.@�// . a.1�h/.9�5ı/=.18.3�ı//P 6:

This proves (1.20) and ends the proof of Theorem 1.1.
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A. Appendix – Proofs of auxiliary results

This section is organised as follows. We start by proving Lemma 4.3 related to the
invertibility of the algebraic system (4.31). Then, we prove Lemma 2.1 related to the
smallness of the Newtonian operator N p.�/ with respect to the parameter P . Next, it
is important to first examine the proof of Lemma 4.2, on the analysis of the Green’s
kernel decomposition G.�I �/ D ˆ0.�I �/ CR.�I �/, before moving on to the proof of
Lemma 4.1, giving us an a priori estimation satisfied by the acoustic field vg.�/. Later,
we examine the proof of Lemma 4.7, which gives us an estimation of the scattering
coefficient ˛. Finally, we conclude this section by proving Lemma A.1.

A.1. Proof of Lemma 4.3

The goal of this subsection is to prove the invertibility of the algebraic system (4.31).
To accomplish this, we link it to a continuous integral equation, for which we demon-
strate its invertibility through variational formulation techniques. As a result, the
algebraic system (4.31) can be inverted. From (4.31), we have

Ym C P
2

MX
jD1
j¤m

G.zmI zj /a
1�h 1

ǰ

Yj D S.zm/C
!2�1

k1˛
Restm :

where Ym is defined by (4.30) and Restm is given by (4.29). Then, by using the fact
that j�j j D a1�h, for 1 � j �M , we rewrite the previous equation as

Ym C P
2

MX
jD1
j¤m

G.zmI zj /j�j j
1

ǰ

Yj D S.zm/C
!2�1

k1˛
Restm

Ym C P
2

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx D S.zm/C
!2�1

k1˛
Restm :

Multiplying the two sides of the previous equation with ��m.�/ and summing up with
respect to the index m, we get

MX
mD1

��m.�/Ym C P
2

MX
mD1

��m.�/

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx

D

MX
mD1

��m.�/S.zm/C
!2�1

k1˛

MX
mD1

��m.�/Restm :
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which can be rewritten using the notations

Y .�/´

MX
mD1

��m.�/Ym;S.�/´
MX
mD1

��m.�/S.zm/ and R.�/´

MX
mD1

��m.�/Restm;

(A.1)
as

Y .�/C P 2
MX
mD1

��m.�/

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx D S.�/C
!2�1

k1˛
R.�/:

(A.2)
The goal of the next lemma is to prove that the second term on the left-hand side
converges, in L2.�/, to a function which belongs to the range of the Newtonian oper-
ator N.�/, see (4.37) for its definition.

Lemma A.1. We set

T1.�/´ N.Y /.�/ �

MX
mD1

��m.�/

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx in �; (A.3)

where N.�/ is the Newtonian operator defined by (4.37). Then, we have the following
estimation:

kT1kL2.�/ . a.1�h/=6kYkL2.�/: (A.4)

Proof. See Section A.6.

Thanks to the previous lemma, we rewrite (A.2) as

.I C P 2N/.Y /.�/ D S.�/C r.�/ in �; (A.5)

where S.�/ is the function given by (A.1), and r.�/ is the function defined by

r.�/´
!2�1

k1˛
R.�/C P 2T1.�/; (A.6)

with R.�/ as the function given by (A.1), and T1.�/ is the function defined by (A.3).
Then, in the distributional sense, we have from (A.5)

.�C !2n2 � P 2/.Y / D .�C !2n2/.SC r/µ f in �: (A.7)

As by construction, see (A.1), we have Y .�/ D 0 near @�, then equation (A.7) can be
stated in R3 by extending Y .�/ and f.�/ by zero in R3 n�. Keeping the same notations
for Y .�/ and f.�/ with their extensions to R3, we have

�.Y / D .�!2n2 C P 2/.Y /C f in R3;
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with f 2 H�2comp.R
3/. Therefore,

Y CNR3..P
2
� !2n2/.Y // D �NR3.f/ in L2.R3/; (A.8)

with NR3.�/ is the Newtonian operator defined by (1.3). To study the existence and
uniqueness of the solution corresponding to (A.8), we start by multiplying its both
sides by the function .P 2 � !2n2/ > 0, for P � 1, to get

.P 2 � !2n2/Y C .P 2 � !2n2/NR3..P
2
� !2n2/.Y // D �.P 2 � !2n2/NR3.f/;

(A.9)
in L2.R3/. Next, by taking the L2.R3/-inner product on both sides of (A.9), we get

Ç1.Y IZ/ D Ç2.Z/; (A.10)

where the bilinear form Ç1.�I �/ is given by

Ç1.Y IZ/´ h
p

P 2 � !2n2Y I
p

P 2 � !2n2ZiL2.R3/

C hNR3..P
2
� !2n2/Y /I .P 2 � !2n2/ZiL2.R3/;

and the bilinear form Ç2.�/ is given by

Ç2.Z/´ � hNR3.f/I .P
2
� !2n2/ZiL2.R3/:

We see that Ç1.�; �/ is continuous and admits the following estimation:

jÇ1.Y ;Z/j � kYkL2.R3/kZkL2.R3/kP 2 � !2n2kL1.R3/
C kYkL2.R3/kZkL2.R3/kP

2
� !2n2k2L1.R3/ kNR3kL:

Besides, Ç1.�; �/ is coercive satisfying

Ç1.Y ;Y / D k
p

P 2 � !2n2Yk2L2.R3/

C hNR3..P
2
� !2n2/Y /I .P 2 � !2n2/ZiL2.R3/

� k

p

P 2 � !2n2Yk2L2.R3/

� inf
R3
.P 2 � !2n2/kYk2L2.R3/; (A.11)

where the before last estimation is due to the positivity of the Newtonian operator. In
addition, the linear form Ç2.�/ is continuous and satisfy the following estimation:

jÇ2.Z/j � kNR3.f/kL2.R3/kP
2
� !2n2kL1.R3/kZkL2.R3/: (A.12)

Hence, thanks to Lax–Milgram theorem, we deduce the existence and uniqueness
of the solution corresponding to (A.8). Furthermore, by gathering (A.10), (A.11),
and (A.12), we derive the following estimation:

inf
R3
.P 2 � !2n2/kYkL2.R3/ � kNR3.f/kL2.R3/kP

2
� !2n2kL1.R3/: (A.13)
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Besides, as P 2 � 1, we have

inf
R3
.P 2 � !2n2/ � P 2 and kP 2 � !2n2kL1.R3/ � P

2;

which, by plugging it into (A.13), gives us

kYkL2.R3/ � kNR3.f/kL2.R3/ . kfkH�2.R3/;

where we have used the continuity of the Newtonian operator to derive the last estim-
ation. Knowing that Y .�/ D 0, in R3 n x�, and f.�/ D 0, in R3 n x�, we deduce

kYkL2.�/ . kfkH�2.�/
(A.7)
´ k.�C !2n2/.SC r/kH�2.�/;

which, by keeping the dominant part on the right-hand side, can be reduced to

kYkL2.�/ . k�.SC r/kH�2.�/ � k�kL.L2.�/IH�2.�//kSC rkL2.�/:

Thus, the following inequalities hold:

kYkL2.�/ . kSkL2.�/ C krkL2.�/
(A.6)
. kSkL2.�/ C

1

kk1˛k
kRkL2.�/ C P

2
kT1kL2.�/

(A.4)
. kSkL2.�/ C

1

kk1˛k
kRkL2.�/ C P

2a.1�h/=6kYkL2.�/;

which, under the fact that P 2a.1�h/=6 � 1, as a � 1, which is satisfied because
of (1.20) (or (1.21)), can be reduced to

kYkL2.�/ . kSkL2.�/ C
1

jk1˛j
kRkL2.�/:

Now, using the fact that k1 � a2, see (1.2), and the estimation of ˛ � a1�h, see (4.77),
we deduce

kYkL2.�/ . kSkL2.�/ C a.h�3/kRkL2.�/
(A.44)
. kSkL2.�/ C a

.1Ch/=2
kgkH�1=2.@�/;

which, by using (A.1) and (4.38), can be reduced to

kYkL2.�/ . a.1�h/=2

p
MX
mD1

jS.g/.zm/j
2
C a.1Ch/=2kgkH�1=2.@�/: (A.14)

Let us estimate
MX
mD1

jS.g/.zm/j
2:
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To do this, we have

MX
mD1

jS.g/.zm/j
2
� kgk2

H�1=2.@�/

MX
mD1

kG.zm; �/k
2
H1=2.@�/

(4.6)
� kgk2

H�1=2.@�/

MX
mD1

kG.zm; �/k
2
H1.�˘/

. kgk2
H�1=2.@�/

MX
mD1

1

dist4.DmI @�/
(4.52)
. kgk2

H�1=2.@�/
d�4

(1.12)
D O.kgk2

H�1=2.@�/
a�4.1�h/=3/:

Then, plugging the above estimation into (A.14),

kYkL2.�/ . a.h�1/=6kgkH�1=2.@�/:

In addition, as by construction,

kYk2L2.�/ D

MX
mD1

jYmj
2
j�mj D j�m0 j

MX
mD1

jYmj
2; (A.15)

we deduce the estimate� MX
mD1

jYmj
2
�1=2

. a2.h�1/=3kgkH�1=2.@�/: (A.16)

This implies the injectivity of (A.5). In addition, it is known that any injective linear
map between two finite-dimensional vector spaces of the same dimension is surject-
ive. This proves the surjectivity and, consequently, the bijectivity of (A.5). Hence, we
have also the invertibility of the algebraic system (4.31). This concludes the proof of
Lemma 4.3.

A.2. Proof of Lemma 2.1

From the spectral theory, we have

kN p
kL.L2.�/IL2.�// D kR.P

2
I�/kL.L2.�/IL2.�// �

1

dist.P 2I �.�//
;

where �.�/ stands for the spectrum of the Neumann Laplacian operator in L2.�/. It
is known that �.�/´ ¹�nºn�1 such that 0 D �1 > �2 > �3 > � � � ! �1. Hence,
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we get dist.P 2I �.�// D P 2. Consequently,

kN p
kL.L2.�/IL2.�// �

1

P 2
:

This proves (2.5). To prove (2.6), we start by remarking that for an arbitrary function
f 2 L2.�/, the function N p.f / satisfies the problem´

.� � P 2I /N p.f / D �f in �;

@�N
p.f / D 0 on @�:

Multiplying both sides of the first equation by N p.f / and integrating in �, we get

krN p.f /k2L2.�/ � P
2
kN p.f /k2L2.�/ C kf kL2.�/kN

p.f /kL2.�/

� P 2kN p
k
2
L.L2.�/IL2.�//kf k

2
L2.�/

C kf k2L2.�/kN
p
kL.L2.�/IL2.�//:

Hence,

krN p
k
2
L.L2.�/IL2.�// � P

2
kN p
k
2
L.L2.�/IL2.�// C kN

p
kL.L2.�/IL2.�//

(2.5)
D O

� 1

P 2

�
: (A.17)

Then,

kN p
kL.L2.�/IH1.�//´ ŒkN p

k
2
L.L2.�/IL2.�// C krN

p
k
2
L.L2.�/IL2.�//�

1=2;

which, using (2.5) and (A.17), becomes kN pkL.L2.�/IH1.�// D O
�
1
P

�
and, by taking

the trace operator, we end up with the following estimation:

k
N p
kL.L2.�/IH1=2.@�// D O

� 1
P

�
:

This proves (2.6) and ends the proof of Lemma 2.1.

A.3. Proof of Lemma 4.2

Multiplying both sides of (4.19) byˆ0.�; �/ (the solution of (1.4)), integrating by parts
over the domain �, and using the fact that

@�x .R.x; y// D � @�x .ˆ0.x; y//; x 2 @� and y 2 �;

we obtain

R.x; y/ D � DL@�.R.�; y//.x/C !2N�.n2.�/R.�; y//.x/

C !2N�.n
2.�/ˆ0.�; y//.x/ � SL@�.@�.ˆ0.�; y///.x/; x 2 �;

(A.18)
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where y 2� is taken as a parameter,N�.�/ is the Newtonian operator defined by (1.3),
SL@�.�/ is the single-layer operator defined by

SL@�.f /.x/´
Z
@�

ˆ0.x; y/f .y/d�.y/; x 2 �;

and DL@�.�/ is the double-layer operator defined by

DL@�.f /.x/´
Z
@�

@ˆ0.x; y/

@�.y/
f .y/d�.y/; x 2 �;

Besides, thanks to [33, Proposition 4.3], we have the following singularity analysis:

jG.x; y/j .
1

jx � yj
; x ¤ y;

which by plugging it into the right-hand side of (A.18), and up to an additive uni-
formly bounded part, gives us

R.x; y/ ' � SL@�.@�.ˆ0.�; y///.x/; x 2 �:

As near the boundary @�, i.e., dist.y; @�/ ' �.a/ and dist.x; @�/ ' �.a/, we have

jR.x; y/j .
Z
@�

1

jt � xj

1

jt � yj2
d�.t/;

which, by using the Holder inequality, gives us

jR.x; y/j .
� Z
@�

1

jt � xj3
d�.t/

�1=3� Z
@�

1

jt � yj3
d�.t/

�2=3
.
� 1

dist.x; @�/

�1=3� 1

dist.y; @�/

�2=3
; (A.19)

see [46, Lemma 4.6]. This concludes the proof of Lemma 4.2.

A.4. Proof of Lemma 4.1

We start by recalling, from (4.17), that vg.�/ is the solution of

vg.x/ � !2
Z
D

G.x; y/vg.y/
��1
k1
� n2.y/

�
dy D S.x/; x 2 D: (A.20)

In the sequel, we divide the proof into two steps.



A. Ghandriche and M. Sini 1456

(1) The case of one droplet. Using the decomposition (4.18), of Green’s kernelG.�; �/,
we rewrite (A.20) as

vg.x/ � !2
�1

k1

Z
D

ˆ0.x; y/v
g.y/ dy

D S.x/C !2
�1

k1

Z
D

R.x; y/vg.y/ dy � !2
Z
D

G.x; y/vg.y/n2.y/ dy:

Next, we denote by .�Dn I en/n2N the eigensystem associated to the Newtonian oper-
ator ND.�/ in L2.D/. Then, after taking the inner product with respect to en.�/ and
the square modulus in both sides of the previous equation, we get

jhvg I eniL2.D/j
2 .

jk1j
2

jk1 � !2�1�Dn j
2

�
jhS I eniL2.D/j

2

C

ˇ̌̌̌� Z
D

G.�; y/n2.y/vg.y/ dyI en

�
L2.D/

ˇ̌̌̌2
C jk1j

�2

ˇ̌̌̌� Z
D

R.�; y/vg.y/ dyI en

�
L2.D/

ˇ̌̌̌2�
:

Then, by summing up with respect to the index n and taking into account the rela-
tions (A.31) and (1.2) we obtain

kvgk2L2.D/ . a�2h
�
kSk2L2.D/ C a

�4





 Z
D

R.�; y/vg.y/ dy





2
L2.D/

C





 Z
D

G.�; y/n2.y/vg.y/ dy





2
L2.D/

�
: (A.21)

Next, we estimate the second term and the third term on the right-hand-side as

R1´





 Z
D

R.�; y/vg.y/ dy





2
L2.D/

�

Z
D

Z
D

jR.x; y/j2 dy dxkvgk2L2.D/:

Thanks to (A.19), we haveZ
D

Z
D

jR.x; y/j2 dy dx .
Z
D

1

dist2=3.x; @�/
dx

Z
D

1

dist4=3.y; @�/
dy;
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which, by using the fact that dist.x; @�/ � �.a/ and dist.y; @�/ � �.a/, gives us12Z
D

Z
D

jR.x; y/j2 dy dx .
�
jDj

�.a/

�2 (1.10)
D O.a2.8Ch/=3/: (A.22)

Hence,

R1´





 Z
D

R.�; y/vg.y/ dy





2
L2.D/

. a2.8Ch/=3kvgk2L2.D/: (A.23)

Furthermore,

R2´





 Z
D

G.�; y/n2.y/vg.y/ dy





2
L2.D/

(4.18)
. kND.n2vg/k2L2.D/ C





 Z
D

R.�; y/n2.y/vg.y/ dy





2
L2.D/

� ŒkNDk
2
L.L2.D/IL2.D// C

Z
D

Z
D

jR.x; y/j2 dy dx�kn2k2L1.D/kv
g
k
2
L2.D/;

which, by using the fact that kn2kL1.D/ DO.1/, kNDkL.L2.D/IL2.D// DO.a2/, and
the estimation (A.22), can be reduced to

R2 . a4kvgk2L2.D/: (A.24)

Then, by plugging (A.23) and (A.24) into (A.21), we obtain

kvgk2L2.D/ . a�2hkSk2L2.D/ C a
4.1�h/=3

kvgk2L2.D/

. a�2hkSk2L2.D/; (A.25)

as 0 < h < 1 and a� 1. Besides, thanks to (4.38) we know that S D S.g/. Hence,

kvgk2L2.D/ . a�2h
Z
D

jS.g/.x/j2 dx: (A.26)

12If the droplet D is away from the boundary @�, the estimation (A.22), will be reduced toZ
D

Z
D

jR.x; y/j2 dy dx D O.a6/:

Thus, the estimation (A.22) corresponds to the worst case.
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Now, by using the continuity of the single-layer operator from H�1=2.@�/ to H1.�/,
the continuous embedding of H1.�/ into L6.�/, see [7, Corollary 9.14], and the
Hölder inequality, we deduce that

kvgk2L2.D/ . a�2h
�Z
D

jS.g/.x/j6 dx

�1=3
jDj2=3

D a2�2h
�Z
D





 Z
@�

G.x; y/g.y/d�.y/





6 dx�1=3
D a2�2h

�Z
D

khG.x; �/IgiH1=2.@�/�H�1=2.@�/k
6 dx

�1=3
� a2�2hkgk2

H�1=2.@�/

�Z
D

kG.x; �/k6
H1=2.@�/

dx

�1=3
: (A.27)

Repeating the same computations done in (4.5)–(4.7), we derive the following estim-
ation:

kvgk2L2.D/ . a2�2hkgk2
H�1=2.@�/

�Z
D

Z
�˘

1

jx � yj12
dy dx

�1=3
(4.8)
. a2�2hkgk2

H�1=2.@�/
.�.a/�12jDj/1=3

(1.10)
D O.a.5�2h/=3kgk2

H�1=2.@�/
/: (A.28)

Finally,
kvgkL2.D/ . a.5�2h/=6kgkH�1=2.@�/:

(2) The case of multiple droplets. From (A.20), by taking x 2 Dm, we get

.I �
!2�1

k1
NDm/.v

g
m/.x/ D Sm.x/C

!2�1

k1

MX
jD1
j¤m

Z
Dj

G.x; y/v
g
j .y/ dy

C
!2�1

k1

Z
Dm

R.x; y/vgm.y/ dy

� !2
Z
Dm

G.x; y/n2.y/vgm.y/ dy

� !2
MX
jD1
j¤m

Z
Dj

G.x; y/n2.y/v
g
j .y/ dy
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where NDm.�/ is the Newtonian operator given by (1.3). Besides, taking a Taylor
expansion for the functions G.x; �/ and G.x; �/n2.�/, and inverting the operator�
I � !2�1

k1
NDm

�
, we derive

vgm D
�
I �

!2�1

k1
NDm

��1
�

�
Sm C

!2�1

k1

MX
jD1
j¤m

G.�; zj /

Z
Dj

v
g
j .y/ dy

C
!2�1

k1

MX
jD1
j¤m

Z
Dj

1Z
0

ryG.�; zj C t .y � zj // � .y � zj / dt v
g
j .y/ dy

C
!2�1

k1

Z
Dm

R.�; y/vgm.y/ dy � !
2

Z
Dm

G.�; y/n2.y/vgm.y/ dy

� !2
MX
jD1
j¤m

G.�; zj /n
2.zj /

Z
Dj

v
g
j .y/ dy

� !2
MX
jD1
j¤m

Z
Dj

1Z
0

r.G.�; �/n2.�//.zj C t .y � zj // � .y � zj / dtv
g
j .y/ dy

�
;

in Dm. Introducing the notation (4.30), the above equation can be rewritten as

vgm D
�
I �

!2�1

k1
NDm

��1
�

�
Sm C ˛

MX
jD1
j¤m

G.�; zj /Yj

C
!2�1

k1

MX
jD1
j¤m

Z
Dj

1Z
0

ryG.�; zj C t .y � zj // � .y � zj / dt v
g
j .y/ dy

C
!2�1

k1

Z
Dm

R.�; y/vgm.y/ dy � !
2

Z
Dm

G.�; zm/n
2.y/vgm.y/ dy

�
˛k1

�1

MX
jD1
j¤m

G.�; zj /n
2.zj /Yj

� !2
MX
jD1
j¤m

Z
Dj

1Z
0

r.G.�; �/n2.�//.zj C t .y � zj // � .y � zj / dtv
g
j .y/ dy

�
;
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in Dm. Taking the L2.Dm/-norm, using (A.23), as well as �1 � 1; k1 � a2, and


�I � !2�1
k1

NDm

��1



L.L2.Dm/IL2.Dm//

. a�h;

proved for the case of one droplet, see (A.25), we get

kvgmkL2.Dm/

. a�hkSmkL2.Dm/ C a
�h
j˛j

MX
jD1
j¤m

kG.�; zj /kL2.Dm/jYj j

C a�2�h
MX
jD1
j¤m





 Z
Dj

1Z
0

ryG.�; zj C t .y � zj // � .y � zj / dt v
g
j .y/ dy






L2.Dm/

C a2.1�h/=3kvgmkL2.Dm/ C a
�h





 Z
Dm

G.�; y/n2.y/vgm.y/ dy






L2.Dm/

C a2�hj˛j

MX
jD1
j¤m

kG.�; zj /kL2.Dm/jYj j

C a�h
MX
jD1
j¤m





 Z
Dj

1Z
0

r.G.�; �/n2.�//.zjCt .y � zj // � .y�zj / dtv
g
j .y/ dy






L2.Dm/

:

Now, by estimating the terms containing Green’s kernelG.�; �/ appearing on the right-
hand side of the above inequality, and using the fact that h < 1, the previous inequality
can be reduced to

kvgmkL2.Dm/

(4.47)
. a�hkSmkL2.Dm/ C a

3=2�h
j˛j
� MX
jD1
j¤m

1

jzm � zj j2

�1=2� MX
jD1
j¤m

jYj j
2
�1=2

C a2�h
� MX
jD1
j¤m

1

jzm � zj j4

�1=2� MX
jD1
j¤m

kv
g
j k

2
L2.Dj /

�1=2

C a2�hkvgmkL2.Dm/ C a
7=2�h

j˛j
� MX
jD1
j¤m

1

jzm � zj j2

�1=2� MX
jD1
j¤m

jYj j
2
�1=2

C a4�h
� MX
jD1
j¤m

1

jzm � zj j4

�1=2� MX
jD1
j¤m

kv
g
j k

2
L2.Dj /

�1=2
;
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which, by using (4.51), can be reduced to

kvgmkL2.Dm/ . a�hkSmkL2.Dm/ C a
1=2�h

j˛jd�
3
2

� MX
jD1

jYj j
2
�1=2

C a2�hd�2
� MX
jD1
j¤m

kv
g
j k

2
L2.Dj /

�1=2
:

Besides, taking the square in both sides of the above equation, using the fact that
d � a.1�h/=3, see (1.12), and the estimation ˛ � a1�h, see (4.77), we deduce

kvgmk
2
L2.Dm/

. a�2hkSmk
2
L2.Dm/

C a4�3h
MX
jD1

jYj j
2
C a2.4�h/=3

MX
jD1

kv
g
j k

2
L2.Dj /

;

which, by summing up with respect to the index m gives us

MX
mD1

kvgmk
2
L2.Dm/

. a�2h
MX
mD1

kSmk
2
L2.Dm/

C a4�3hM

MX
jD1

jYj j
2

C a2.4�h/=3M

MX
jD1

kv
g
j k

2
L2.Dj /

:

Since M � ah�1, see (1.11), we obtain

MX
mD1

kvgmk
2
L2.Dm/

. a�2h
MX
mD1

kSmk
2
L2.Dm/

C a3�2h
MX
jD1

jYj j
2

C a5.1�h/=3
MX
jD1

kv
g
j k

2
L2.Dj /

;

which, by knowing that h < 1, can be reduced to

MX
mD1

kvgmk
2
L2.Dm/

. a�2h
MX
mD1

kSmk
2
L2.Dm/

C a3�2h
MX
jD1

jYj j
2;

kvgk2L2.D/

(A.16)
.

(4.38)
a�2hkS.g/k2L2.D/ C a

.5�2h/=3
kgk2

H�1=2.@�/
: (A.29)

Let us estimate kS.g/k2
L2.D/

. To do this, as done for the case of a single droplet,
see (A.26)–(A.28), by using the Holder inequality, we can derive the following
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inequalities:

kS.g/k2L2.D/ �

MX
mD1

kS.g/k2L6.Dm/
k1k2L3.Dm/

. a2
MX
mD1

� Z
Dm





 Z
@�

G.x; y/g.y/ dy





6 dx�1=3

� a2kgk2
H�1=2.@�/

MX
mD1

� Z
Dm

kG.x; �/k6
H1=2.@�/

dx

�1=3
(A.27)
�

(A.28)
a2kgk2

H�1=2.@�/

MX
mD1

� Z
Dm

Z
�˘

1

jx � yj12
dy dx

�1=3

. a3kgk2
H�1=2.@�/

MX
mD1

1

dist4.DmI @�/
(4.52)
. a3kgk2

H�1=2.@�/
d�4

D .a.5C4h/=3kgk2
H�1=2.@�/

/:

Thus, by plugging the above estimation into (A.29), we obtain

kvgkL2.D/ . a.5�2h/=6kgkH�1=2.@�/: (A.30)

This ends the proof of Lemma 4.1.

A.5. Proof of Lemma 4.7

We know that, for m fixed,

˛´

Z
Dm

Wm.x/ dx D

Z
Dm

� k1

!2�1
I �NDm

��1
.1/.x/ dx:

By expanding the constant function 1 over the basis of the Newtonian operatorNDm.�/,
we obtain

˛ D
X
n

h1I eniL2.Dm/

Z
Dm

� k1

!2�1
I �NDm

��1
.en/.x/ dx

D

X
n

.h1I eniL2.Dm//
2 !2�1

.k1 � !2�1�
Dm
n /

:
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We choose ! the solution of following coming dispersion equation:

k1 � !
2�1�

Dm
n0
D cn0a

2Ch; cn0 2 R:

By solving the previous quadratic equation, we obtain

!2 D
k1 � cn0a

2Ch

�1�
Dm
n0

:

Hence,

jk1 � !
2�1�

Dm
n j D

´
a2Ch if n D n0,

a2 otherwise.
(A.31)

Then,

˛ D .h1I en0iL2.Dm//
2 !2�1

.k1 � !2�1�
Dm
n0 /
C

X
n¤n0

.h1I eniL2.Dm//
2 !2�1

.k1 � !2�1�
Dm
n /

:

We estimate the second term on the right-hand side as

kTRHSk .
X
n¤n0

jh1I eniL2.Dm/j
2

jk1 � !2�1�
Dm
n j

(A.31)
. a�2k1k2L2.Dm/

D O.a/;

then

˛ D .h1I en0iL2.Dm//
2 !2�1

.k1 � !2�1�
Dm
n0 /
CO.a/:

Knowing that h1I en0iL2.Dm/ D a
3=2h1I Nen0iL2.B/, and using the fact that k1 D a2k0,

�
Dm
n0 D a

2�Bn0 , we rewrite the previous equation like

˛ D
.k0 � cn0a

h/

�Bn0cn0
.h1I Nen0iL2.B//

2a1�h CO.a/

D
k0

�Bn0cn0
.h1I Nen0iL2.B//

2a1�h CO.a/: (A.32)

We define P 2 as be the scaled dominant part of ˛, i.e.,

P 2´
�k0.h1I Nen0iL2.B//

2

�Bn0cn0
;

and we end up with the following formula:

˛ D � P 2a1�h CO.a/:

To estimate kWmkL2.Dm/, we use the same above arguments to derive

kWmk
2
L2.Dm/

D

X
n

j!2�1j
2

jk1 � !2�1�
Dm
n j

2
jh1I eniL2.Dm/j

2
(A.31)
. a�2.2Ch/k1k2L2.Dm/

:
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Hence,
kWmkL2.Dm/ . a�.2Ch/k1kL2.Dm/ D O.a�.

1
2Ch//:

This concludes the proof of Lemma 4.7.

A.6. Proof of Lemma A.1

We compute the L2.�/-norm of the term T1.�/ defined by (A.3):

kT1k
2
L2.�/´

Z
�

ˇ̌̌̌ Z
�

G.y; x/Y .x/ dx

�

MX
mD1

��m.y/

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx

ˇ̌̌̌2
dy:

In contrast to Section 4.3, where the cutting of � onto
SM
jD1�j and

S@
jD1�

?
j was

critically important to derive the exact dominant term related to
R
�j
ug.x/ dx, for

1 � j � M , here we need only to estimate functions (not to extract dominant term)
defined in �, thus involving both

SM
jD1 �j and

S@
jD1 �

?
j . Because, for every 1 �

j � M and 1 � k � @, we have j�j j � a1�h � j�?kj, we do not need to specify, in
our comping computations, if we are dealing with ¹�j ºMjD1 or ¹�?j º

@
jD1. Moreover, to

write short, we use the notation �j for the domains �?j . Then,

kT1k
2
L2.�/ D

Z
�

ˇ̌̌̌ MX
mD1

�Z
�

G.y; x/Y .x/ dx

�

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx

�
��m.y/

ˇ̌̌̌2
dy

D

MX
mD1

Z
�m

ˇ̌̌̌Z
�

G.y; x/Y .x/ dx�

MX
jD1
j¤m

Z
�

G.zmI zj /��j .x/
1

ǰ

Yj dx

ˇ̌̌̌2
dy:

Using the definition of Y .�/, see (A.1), and the triangular inequality, we rewrite the
previous equation as

kT1k
2
L2.�/ .

MX
mD1

jYmj
2
j�mj

Z
�m

Z
�m

jG.y; x/j2 dx dy

C

MX
mD1

MX
jD1
j¤m

jYj j
2

MX
jD1
j¤m

j�j j

Z
�m

Z
�j

ˇ̌̌
G.y; x/ �G.zmI zj /

1

ǰ

ˇ̌̌2
dx dy:

(A.33)
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Furthermore, by using (4.26), we have

jG.y; x/ �G.zmI zj /
1

ǰ

j
2 . jG.y; x/ �G.zmI zj /j2 C a4.1�h/=3jG.zmI zj /j2:

Hence, by plugging the above estimation into (A.33), we obtain

kT1k
2
L2.�/ �

MX
mD1

jYmj
2

�
max

1�m�M

�
j�mj

Z
�m

Z
�m

jG.y; x/j2 dx dy

�

C

MX
mD1

MX
jD1
j¤m

j�j j

Z
�m

Z
�j

jG.y; x/ �G.zmI zj /j
2 dx dy

�

C a10.1�h/=3
MX
jD1

jYj j
2

MX
jD1
j¤m

jG.zmI zj /j
2:

Using Taylor expansion for the function G.�I �/, near the centres, we get

G.y; x/ �G.zmI zj / D

1Z
0

rG.zmI zj C t .x � zj // � .x � zj / dt

C

1Z
0

rG.zm C t .y � zm/I x/ � .y � zm/ dt:

We plug the previous expansion into the previous estimation and we use (4.47) to
reduce the previous estimation to

kT1k
2
L2.�/ .

MX
mD1

jYmj
2

�
max

1�m�M

�
j�mj

Z
�m

Z
�m

1

jy � xj2
dx dy

�

C

MX
mD1

MX
jD1
j¤m

j�j j

Z
�m

Z
�j

jx � zj j
2

jy � zj j4
dx dy

�

C a10.1�h/=3
MX
jD1

jYj j
2

MX
jD1
j¤m

1

jzm � zj j2
:

Besides, by knowing that j�mj D a1�h, with 1 � m � M , we deduce the following
estimation:

max
1�m�M

�
j�mj

Z
�m

Z
�m

1

jy � xj2
dx dy

�
. a7.1�h/=3:
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Then,

kT1k
2
L2.�/

.
MX
mD1

jYmj
2

�
a7.1�h/=3C max

1�j�M
.j�j j/

MX
mD1

MX
jD1
j¤m

Z
�m

1

jy � zj j4
dy

Z
�j

jx � zj j
2 dx

�

C a10.1�h/=3
MX
jD1

jYj j
2

MX
jD1
j¤m

1

jzm � zj j2
:

In addition, by Taylor expansion, we haveZ
�m

1

jy � zj j4
dy

D
1

jzm � zj j4
j�mj C

Z
�m

1Z
0

r.j� � zj j
�4/.zm C t .y � zm// � .y � zm/ dt dy;

hence

kT1k
2
L2.�/

.
MX
mD1

jYmj
2

�
a7.1�h/=3 C a.1�h/ max

1�j�M

� Z
�j

jx � zj j
2 dx

�
�

MX
mD1

j�mj

MX
jD1
j¤m

1

jzm � zj j4

�
C a10.1�h/=3

MX
jD1

jYj j
2

MX
jD1
j¤m

1

jzm � zj j2
:

The following estimations hold:

max
1�j�M

� Z
�j

jx � zj j
2 dx

�
D O.a5.1�h/=3/

MX
mD1

j�mj

MX
jD1
j¤m

1

jzm � zj j4

(4.51)
.

MX
mD1

d�4j�mj D O.d�4/

MX
jD1
j¤m

1

jzm � zj j2
(4.51)
D O.d�3/I
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then, by recalling that d � a.1�h/=3 and using the fact that j�m0 j D a
1�h, we obtain

kT1k
2
L2.�/ .

MX
mD1

jYmj
2Œa7.1�h/=3 C a4.1�h/=3�

D O
�
a4.1�h/=3

MX
mD1

jYmj
2
�

(A.15)
D O.a.1�h/=3kYk2L2.�//:

Finally,
kT1kL2.�/ D O.a.1�h/=6kYkL2.�//:

This concludes the proof of Lemma A.1.

A.7. Proof of Lemma 4.6

To prove (4.51) we refer the readers to [3, Section 3.3]. To justify (4.52), we define
�n as

�n´ ¹x 2 �; .n � 1/d � dist.x; @�/ � ndº; for n D 1; : : : ; Œd�1�;

where d is the minimum distance given by (1.12). Then, � �
SŒd�1�
nD1 �n, and

j�nj . .nd/2d D O.n2d3/:

Then, the number of droplets in�n is of order n2. Hence,

MX
jD1

1

distk.Dj I @�/
D

Œd�1�X
nD1

X
Dj��n

1

distk.Dj I @�/

.
Œd�1�X
nD1

n2
1

..n � 1/d/k
'

1

dk

Œd�1�X
nD1

1

nk�2
:

Therefore,
MX
jD1

1

distk.Dj I @�/
D

´
O.d�3/ for k < 3,

O.d�k/ for k > 3.

This ends the proof of Lemma 4.6.

A.8. Normal derivative of SLp.�/.

We recall, from (2.14), the following definition of the single-layer operator SLp.�/:

SLp.f /.x/´
Z
@�

Gp.x; y/f .y/d�.y/; x 2 �; (A.34)
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where Gp.�; �/ is the solution of (2.3). The goal of this subsection is to compute the
jumping coefficient of the normal derivative related to (A.34). To do this, we define
ˆip.�; �/ as the fundamental solution of .��P 2/ˆip.�; �/D � ı�.�/, in R3. Multiply-
ing (2.3) by ˆip.�; �/ and integrating over � allows us to deduce that

Gp.�; y/CD
ip.Gp.�; y//.�/ D ˆip.�; y/ in �; (A.35)

where y 2 � is taken as a parameter, and Dip.�/ is the double-layer operator associ-
ated to ˆip.�; �/. Besides, from (A.35), we deduce that

Gp.�; y/ D
�1
2
I CKip

��1
.ˆip.�; y// on @�; (A.36)

where y 2 � is taken as a parameter, and Kip.�/ is the Neumann–Poincaré oper-
ator associated to ˆip.�; �/. Furthermore, by denoting S ip.�/ the single-layer operator
associated to ˆip.�; �/ and using (A.36), we deduce that, for x 2 �,

S ip.f /.x/´

Z
@�

ˆip.x; y/f .y/d�.y/

(A.36)
D

Z
@�

�1
2
I CKip

�
.Gp.�; y//.x/f .y/d�.y/

D

Z
@�

Gp.x; y/
�1
2
I CKip

�?
.f /.y/d�.y/

D

Z
@�

Gp.x; y/
�1
2
I CK�ip

�
.f /.y/d�.y/

(A.34)
D SLp

��1
2
I CK�ip

�
.f /

�
.x/:

As f .�/ is an arbitrary function, we deduce the resulting relation

SLp.f / D S ip
��1
2
I CK�ip

��1
.f /

�
in �I

hence by taking the normal derivative on both sides of the above equation, we obtain

@

@�
ŒSLp.f /� D

@

@�

h
S ip

��1
2
I CK�ip

��1
.f /

�i
I

by using on the right-hand side the jumping properties for the single-layer operator
S ip.�/, we deduce

@

@�
ŒSLp.f /� D

�1
2
CKip

�?��1
2
I CK�ip

��1
.f /

�
D

�1
2
CK�ip

���1
2
I CK�ip

��1
.f /

�
D f; on @�:
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A.9. Estimating kRkL2.�/

We recall from (A.1) that

R.�/´

MX
mD1

��m.�/Restm;

with Restm is given by (4.29). Then, using the fact that �m-s are disjoint sets, we
obtain

kRk2L2.�/ D

MX
mD1

j�mjjRestmj2 D j�m0 j
MX
mD1

jRestmj2 D a.1�h/
MX
mD1

jRestmj2:

(A.37)
Besides, by taking the absolute value in both sides of (4.29), we obtain

jRestmj

.
MX
jD1
j¤m

ˇ̌̌̌ Z
Dm

Wm.x/

1Z
0

rG.zm C t .x � zm/I zj / � .x � zm/ dt dx

ˇ̌̌̌ˇ̌̌̌ Z
Dj

v
g
j .y/ dy

ˇ̌̌̌

C

MX
jD1
j¤m

ˇ̌̌̌ Z
Dm

Wm.x/

Z
Dj

1Z
0

rG.xI zj C t .y � zj // � .y � zj / dt v
g
j .y/ dy dx

ˇ̌̌̌

C a2
ˇ̌̌̌ Z
Dm

Wm.x/

1Z
0

rSm.zm C t .x � zm// � .x � zm/ dt dx

ˇ̌̌̌

C

ˇ̌̌̌ Z
Dm

Wm.x/

Z
Dm

1Z
0

ryR.x; zm C t .y � zm// � .y � zm/ dt v
g
m.y/ dy dx

ˇ̌̌̌
C a2

ˇ̌̌̌ Z
Dm

Wm.x/

Z
D

G.x; y/vg.y/n2.y/ dy dx

ˇ̌̌̌
: (A.38)

In addition, for the third term on the right-hand side, we have

�3´ a2
ˇ̌̌̌ Z
Dm

Wm.x/

1Z
0

rSm.zm C t .x � zm// � .x � zm/ dt dx

ˇ̌̌̌

� a2kWmkL2.Dm/





 1Z
0

rSm.zm C t .� � zm// � .� � zm/ dt






L2.Dm/

� a2kWmkL2.Dm/

� 1Z
0

1

t

Z
B.zm;ta/

jrSm.y/j
2
jy � zmj

2 dy dt

�1=2
;
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where B.zm; ta/ is a ball of centre zm and radius ta. Then,

�3 � a
3
kWmkL2.Dm/

� 1Z
0

Z
B.zm;ta/

jrSm.y/j
2 dy dt

�1=2

� a3kWmkL2.Dm/

� 1Z
0

Z
Dm

jrSm.y/j
2 dy dt

�1=2
;

as B.zm; ta/ � Dm. Then,

�3 D O.a3kWmkL2.Dm/krSmkL2.Dm//: (A.39)

Now, by using (4.38), (4.47), and (A.39), we derive from the inequality (A.38)

jRestmj . kWmkL2.Dm/
�
a4

MX
jD1
j¤m

1

jzm � zj j2
kv
g
j kL2.Dj /

C a3krS.g/kL2.Dm/

C a

� Z
Dm

Z
Dm

jrR.x; y/j2 dy dx

�1=2
kvgmkL2.Dm/

C a4kvgmkL2.Dm/

�
C a.9=2�h/

MX
jD1
j¤m

1

jzm � zj j
kv
g
j kL2.Dj /

:

Using the Cauchy–Schwarz inequality and the estimation given by (4.51), we deduce

jRestmj . kWmkL2.Dm/Œa
.10C2h/=3

kvgkL2.D/ C a
3
krS.g/kL2.Dm/�

C kWmkL2.Dm/

�
a

� Z
Dm

Z
Dm

jrR.x; y/j2 dy dx

�1=2
C a4

�
kvgmkL2.Dm/

C a.8�h/=2kvgkL2.D/: (A.40)

The following estimation holds:

krS.g/kL2.Dm/ � kgkH�1=2.@�/

� Z
Dm

krG.x; �/k2
H1=2.@�/

dx

�1=2
(4.6)
� kgkH�1=2.@�/

� Z
Dm

krG.x; �/k2H1.�˘/ dx

�1=2
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. kgkH�1=2.@�/
� Z
Dm

1

dist6.x; @�/
dx

�1=2
(1.10)
. kgkH�1=2.@�/

a3=2

dist3.DmI @�/
: (A.41)

Besides, similarly to (4.20), for the rR.�; �/, we can prove that

jryR.x; y/j .
� 1

dist.x; @�/

�2=3� 1

dist.y; @�/

�4=3
for x ¤ y:

Then,Z
Dm

Z
Dm

jrR.x; y/j2 dy dx .
Z
Dm

Z
Dm

1

dist4=3.x; @�/

1

dist8=3.y; @�/
dy dx

.
jDmj

2

dist4.Dm; @�/
: (A.42)

Hence, by returning to (A.40), and using (A.41) and (A.42), we derive the following
estimation:

jRestmj . kWmkL2.Dm/
h
a.10C2h/=3kvgkL2.D/ C kgkH�1=2.@�/

a9=2

dist3.DmI @�/

i
C kWmkL2.Dm/a

4 1

dist2.DmI @�/
kvgmkL2.Dm/ C a

.8�h/=2
kvgkL2.D/

(4.78)
. k1kL2.Dm/

h
a.4�h/=3kvgkL2.D/ C kgkH�1=2.@�/

a.5�2h/=2

dist3.DmI @�/

i
C k1kL2.Dm/

a.2�h/

dist2.DmI @�/
kvgmkL2.Dm/ C a

.8�h/=2
kvgkL2.D/:

Thus, by using (4.52), we obtain

MX
mD1

jRestmj2 . a.14Ch/=3kvgk2L2.D/ C a
6
kgk2

H�1=2.@�/

(A.30)
. a6kgk2

H�1=2.@�/
:

(A.43)
Then, by plugging the above estimation into (A.37), we obtain

kRkL2.�/ D O.a.7�h/=2kgkH�1=2.@�//: (A.44)
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