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Quasiballistic transport for discrete one-dimensional
quasiperiodic Schrödinger operators

Lian Haeming

Abstract. For discrete one-dimensional quasiperiodic Schrödinger operators with frequencies
satisfying ˇ.˛/ >

�
3
ı

�
min� 
 , we obtain (up to logarithmic scaling) the power-law lower

bound Mp.Tk/ & T
.1�ı/p

k
on a subsequence Tk !1, where 
 is the associated Lyapunov

exponent and � is the spectrum. We achieve this by obtaining a quantitative ballistic lower
bound for the Abel-averaged entries of the time evolution operator associated with general
periodic Schrödinger operators in terms of the bandwidths. A similar result which assumes
ˇ.˛/ >

�
C
ı

�
min� 
 , was obtained earlier by Jitomirskaya and Zhang, for an implicit constant

C <1.

1. Introduction

Let T DR=Z be the unit circle. To each phase � 2T , frequency ˛ 2R, and Lipschitz
sampling function f WT ! R we associate a discrete Schrödinger operator

H˛;� W `
2.Z/! `2.Z/;

where
.H˛;� /.n/ D  .n � 1/C  .nC 1/C V˛;� .n/ .n/ (1.1)

where V˛;� .n/ D f .� C n˛/.
We are interested in the rate of spreading of the solution  t D e�itH˛;� ı0 of the

Schrödinger equation @t t D �iH˛;� t with initial condition given by the canonical
vector  0 D ı0 D .: : : ; 0; 1; 0; : : : /. One way to quantify the rate of spreading is
through the Abel-averaged moments of the position operator,

M˛;�;p.T / D
2

T

1Z
0

e�
2t
T

X
n2Z

jnjpjhın; e
�itH˛;� ı0ij

2 dt (1.2)
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for p > 0. The ballistic bound (see (4.5)) implies M˛;�;p.T / � C.T
p C 1/ for any

T > 0 and p > 0. Namely, the average distance from the particle to the origin �
M
1=p

˛;�;p
grows no faster than linearly in time.

Singular continuous spectra is encountered frequently in the quasiperiodic set-
ting, even for basic models such as the almost Mathieu operator (AMO) with cosine
sampling f .�/ D 2� cos.2��/, � > 0. The direct consequences of singular continu-
ous spectra on the dynamics is not well understood, but such models can manifest
surprising dynamical behaviour such as being almost ballistic on some time-scales
while almost localised on others.

The relationship between the arithmetic properties of the frequency (i.e., how well
approximable it is by rationals) and the Lyapunov exponent (1.3) determines where
the spectral measure is continuous. In the case of Liouville frequencies, Jitomirskaya
[11] introduced the rate of exponential growth of the denominators of the canonical
continued fraction approximants pm

qm
of the frequency ˛ 2 R nQ,

ˇ.˛/ D lim sup
m!1

log qmC1
qm

:

It is known (see below) that the spectrum is continuous (and hence singular continuous
if the Lyapunov exponent is positive minR 
 > 0) in the region where ˇ.˛/ is greater
than the Lyapunov exponent


.E/ D lim
n!1

1

n

Z
T

logkˆ˛;�;Œ0;n�1�.E/k d� (1.3)

for ˛ 2 R n Q, where ˆ˛;�;Œ0;n�1�.E/ D
�
E�V˛;� .n�1/ �1

1 0

�
: : :
�
E�V˛;� .0/ �1

1 0

�
2

SL2.C/ is the n-step transfer matrix associated to the operatorH˛;� . See for example
the lecture notes of Viana [25] for the existence of the limit (1.3).

The usual approach to obtain dynamical lower bounds is by obtaining suitable
continuity properties of the spectral measure. One example is the Guarneri–Combes–
Last bound [21, Theorem 6.1] which shows (roughly speaking) that the moments
grow polynomially with order given by the upper Hausdorff dimension of the spec-
tral measure. The construction of Last [21, Theorem 7.2] shows that the supercritical
(� > 1) AMO with certain extremely Liouville frequencies (i.e., with ˇ.˛/ D 1)
has purely zero Hausdorff dimensional spectrum yet the transport is almost ballistic
on some time-scales. Zero Hausdorff dimensional spectrum is a phenomena not lim-
ited to the supercritical AMO. A theorem of Simon [24] states that the support of the
spectral measure of an ergodic Schrödinger operator with positive Lyapunov expo-
nent (1.3) is of zero logarithmic capacity and therefore of zero Hausdorff dimen-
sion. The dynamical behaviour associated with quasiperiodic operators with positive
Lyapunov exponent therefore require a more nuanced description.
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In the regime of positive Lyapunov exponent, without any assumptions on the
arithmetic properties of the frequency ˛ 2 R n Q, the moments obey a sub-power-
law bound on an unbounded subsequence of times. If however, the frequency satis-
fies ˇ.˛/ D 0, then the moments obey a sub-power-law bound at all times. Both of
these facts were established for trigonometric polynomials by Damanik and Tcherem-
chantsev [5]. Combined with Last’s example, these results show that the transport of
the AMO is essentially localised (at all times) for frequencies satisfying ˇ.˛/ D 0,
while for other frequencies with ˇ.˛/ D 1, its transport is essentially ballistic on
some time-scales (but simultaneously, essentially localised on others). This suggests
a relationship between the size of ˇ.˛/ and the growth of the moments on such time-
scales.

Theorem 1.1. Let H˛;� be as in (1.1) with associated continuous Lyapunov expo-
nent 
 . Let �˛ denote the deterministic spectrum ofH˛;� . There exists c > 0 such that
for any 0 < ı < 1

2
, if ˇ.˛/ > 3

ı
min�˛ 
 , then there exists a sequence Tk !1 such

that for each k � 1 we have

min
�2T

M˛;�;p.Tk/ >
cT

.1�ı/p

k

log10 Tk

for every p > 0.

The relationship between the exponent ˇ.˛/ and the upper transport exponent was
previously investigated by Jitomirskaya and Zhang [17, Theorem 7]. They showed
that if the potential V is a bounded, real-valued sequence that is ˇ-almost periodic
and, for some implicit constant C <1 and any 0 < ı < 1, satisfies ˇ > Cƒ

ı
, where

ƒ is the maximal local (logarithmic) growth rate of the norm of the transfer matrices,
then the packing dimension of the spectral measure is at least 1 � ı. By the result of
Guarneri and Schulz-Baldes [8], which provides a lower bound for the upper trans-
port exponent in terms of the packing dimension of the spectral measure, the upper
transport exponent is also at least 1� ı for each � 2 T and p > 0. In our setting (qua-
siperiodic with the Lyapunov exponent continuous at its minimum), the assumption in
[17, Theorem 7] translates into ˇ.˛/ > C min�



ı

. Furthermore, in the quasiperiodic
case, with Lipschitz sampling function, [17, Theorem 3] shows that the dynamics is
quasiballistic provided ˇ.˛/ > 0 if min� 
 D 0. This result also follows Theorem 1.1.
Indeed, if min� 
 D 0, then the Lyapunov exponent is continuous at the minimum by
upper semicontinuity. Theorem 1.1 then implies that it suffice to take positive ˇ.˛/ in
order for ı to be taken arbitrarily small. Lower bounds on the upper transport exponent
for models with singular continuous spectrum does not provide a significant phys-
ical distinction against models with pure point spectrum in light of the example by
del Rio, Jitomirskay, Last, and Simon [6], who constructed an operator with upper
transport exponent equal to 1, despite having pure point spectrum. Our lower bound
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therefore offers a stronger characterisation of particle behaviour than that of [17], as
it is a lower bound on the moments themselves, rather than on the transport expo-
nent. Our approach requires continuity of the Lyapunov exponent at a minimum on
the spectrum and Lipschitz continuous sampling functions, whereas [17] explored a
much broader setting. However, if ˇ.˛/ is to be bounded from below by the min-
imum of the Lyapunov exponent, then [17] also requires continuity at a minimum.
Bourgain–Jitomirskaya [3, Theorem 1] show that the Lyapunov exponent associated
with quasiperiodic Schrödinger operators with real analytic f is jointly continuous in
the energy E 2 R and irrational frequency ˛ 2 R nQ.

Last’s example uses the fact that the transport associated with periodic operators is
ballistic and then shows that the limit captures ballisticity on some time-scales, since
the frequency is Liouville. We draw inspiration from Last’s construction in that we
obtain a quantitative ballistic lower bound on the entries of the time evolution of gen-
eral periodic operators (see Lemma 2.3), in terms of the bandwidths. We then extend
this to the limit on a subsequence of times. The theorem then follows from Propos-
ition 3.2 which lower-bounds the bandwidths in terms of the Lyapunov exponent of
the limiting operator.

Absence of pure point spectrum for extremely Liouville frequencies ˇ.˛/ D 1
was established by Gordon [7]. Avron and Simon [2] used Gordon’s theorem to show
that the supercritical AMO has singular continuous spectrum. In the regime of positive
Lyapunov exponent, Kotani [19] and Gordon [7] imply singular continuous spectrum
for extremely Liouville frequencies. By repeating the arguments of Gordon in the
usual way for finite ˇ.˛/, one obtains that the spectral measure is continuous on the set
¹E W ˇ.˛/ > 2
.E/º – the factor of 2 arising from the fact that one has to approximate
the solution along double periods. Avila, You, and Zhou [1] showed that for 0 <
ˇ.˛/ <1, the spectrum of the AMO is purely singular continuous for all � 2 T if
1 � j�j < eˇ.˛/ and pure point with exponentially decaying eigenfunctions for a.e.
� 2 T , if j�j > eˇ.˛/.

Jitomirskaya and Liu [12] established that there is an absence of pure point spec-
trum in the region ¹E W ˇ.˛/ > 
.E/º. Although their work was tailored to the Mary-
land model, its robust argument (see the comments after [12, Theorem 1.7]) extends
to a large class of potentials. In fact, [16, Theorem 1.1] generalised the result to poten-
tials of the form f

g
, where g is analytic and f is Lipschitz – this includes (but is not

limited to) meromorphic sampling functions. In particular, the case g D 1 covers the
setting needed for our purposes (see Lemma 4.1). See also [26] for an extension of
these results to an even larger class of sampling functions.

Various upper bounds on the transport have been established since the work of
Damanik and Tcheremchantsev [5]. Jitomirskaya and Mavi [14] extended their result
to piecewise Hölder sampling functions, and subsequently, Han and Jitomirskaya [10]
extended it to a wider class of ergodic potentials in the multi-frequency setting. These
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results are limited to transport exponents. Jitomirskaya and Powell [15] derived power-
logarithmic upper bounds on the transport for any fixed � 2 T , which was later
improved by Jitomirskaya and Liu [13] to long-range operators, and then by Shamis
and Sodin [23], followed by Liu [22], to long-range operators in arbitrary dimensions,
uniformly across phase � 2 T .

2. Time evolution of periodic operators

Our general strategy for the proof of the theorem is the following. The main ingredient
is Lemma 2.3, which provides a lower bound on the Abel-average (2.2) of the sum of
two entries of the time evolution operator e�itHq associated with a general periodic
operator

HqW `
2.Z/! `2.Z/; Hq D �C Vq

where Vq is a periodic sequence of period q � 1. Lemma 2.1 provides the explicit
expression describing the averaged entries in terms of the resolvent operator asso-
ciated with Hq , which is to be lower bounded in Lemma 2.3. The expression (2.3)
contains as a factor the canonical spectral measure (2.4) associated with the Floquet
matrix. The only assumption of Lemma 2.3 is therefore a uniform (over the Floquet
number ~ 2

�
0; �

q

�
) lower bound on the spectral measure evaluated at an interval. In

Section 4 we show that this assumption holds (also uniformly in phase and period) for
the Floquet matrix associated with the periodic operator H˛m;� for ˛m ! ˛ where
˛ 2 R nQ satisfies the assumptions in the theorem. The proof of the theorem mainly
involves showing that a similar lower bound to Lemma 2.3 also holds for the limiting
quasiperiodic operator.

It is well known (see the proof of Lemma 2.1) that periodic operators Hq are
unitarily equivalent to a multiplication operator

MqWL
2.Tq 7! Cq/! L2.Tq 7! Cq/; Tq D R=

2�

q
Z;

which acts as a multiplication by the matrix-valued function

Aq W Tq ! Cq�q; Aq.~/ D

0BBBB@
Vq.�

q
2
/ 1 eiq~

1
: : :

: : :

: : :
: : : 1

e�iq~ 1 Vq.
q
2
/

1CCCCA (2.1)

known as the Floquet matrix.
Let �j .~/2R denote the j -th eigenvalue ofAq.~/, counting from the left �j .~/�

�jC1.~/. By unitary equivalence, the spectrum of the periodic operator Hq is given
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by the spectrum of the multiplication operator Mq which itself is the union of the
spectrum of the Floquet matrix over all ~ 2

�
0; �

q

�
. The spectrum of Hq is the union

of q closed intervals (which are called bands) B.j /q ,

�.Hq/ D

q[
jD1

B.j /q ; B.j /q D
[

~2Œ0;�=q�

¹�j .~/º

with mutually disjoint interiors. By characteristic polynomial (2.29) considerations,
the eigenvalues �j are easily seen to be monotonic as functions of ~ 2

�
0; �
q

�
, whose

derivatives alternate in sign according to parity of 1 � j � q. Our lower bound of
Lemma 2.3 is given in terms of the bandwidths

j̀ D j̀;q D jB
.j /
q j D

ˇ̌̌
�j

��
q

�
� �j .0/

ˇ̌̌
:

Most of the effort in this paper goes into estimating the right-hand side of (2.3),
which is an explicit expression for the Abel-averaged entries (2.2) in terms of the
eigen-pairs .�j .~/;‰

.j /
~ / of the Floquet matrix (2.1),

Pq;T .n/ D
2

T

1Z
0

.jhın; e
�itHqı0ij

2
C jhınC1; e

�itHqı1ij
2/e�2t=T dt: (2.2)

Note that the entries (2.2) differ from (1.2). The theorem is actually proved for the
summed entries (2.2) as opposed to as stated in (1.2). Summing the two entries .0;nq/
and .1; nq C 1/ allows us to express the quantum probability Pq;T .nq/ in terms of
the canonical spectral measure (2.4), whose support coincides with the spectrum.

Lemma 2.1. LetHq be a periodic Schrödinger operator of period q � 1. Let .�j .~/;
‰
.j /
~ / denote the j -th eigenpair of the associated Floquet matrix (2.1). Let Pq;T be

the quantity defined in (2.2). For any n 2 Z,

Pq;T .nq/ D
1

�T

Z
R

ˇ̌̌̌ qX
jD1

�=qZ
0

� cos.nq~/'j .~/
�j .~/ �E � iT �1

� d~
�=q

ˇ̌̌̌2
dE (2.3)

where 'j .~/ D jh‰
.j /
~ ; e0ij

2 C jh‰
.j /
~ ; e1ij

2 and ek 2 Cq is the k-th canonical basis
vector for Cq .

Lemma 2.1 is obtained in the usual way (see the end of this section) by express-
ing the probabilities Pq;T .nq/ in terms of the corresponding entries of the resolvent
operator associated with Hq , followed by diagonalizing the periodic operator Hq in
the Fourier space and then changing to the eigenbasis of the Floquet matrix.
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In general, there are no suitable lower bounds on each individual function 'j other
than the usual exponential lower bound. For our purposes, an exponential lower bound
on 'j does not suffice. One way around this, however, is that the functions ¹'j .~/ºj
do define the canonical spectral measure

�~;q D

qX
jD1

'j .~/ı�j .~/ (2.4)

associated with the Floquet matrix Aq.~/, where ı�j .~/ is the Dirac measure at the
eigenvalue �j .~/.

The only assumption of Lemma 2.3 is for the measures �~;q evaluated at an inter-
val I � R to be uniformly (in ~ 2

�
0; �
q

�
) bounded from below by a positive number

� > 0.

Lemma 2.2. If inf~ �~;q.I / > �, then there exists 1 � j � q such that B.j /q \ I ¤¿
and ˇ̌̌°

~ W 'j .~/ >
�

q

±ˇ̌̌
>

�

2q2
:

In the proof of the theorem, we shall choose the interval I D B".E0/ � R to be
the vicinity of the minimum of the Lyapunov exponent, where B".E0/ denotes a ball
of radius " > 0 centred at the point in the spectrum E0 2 �˛ where 
.E0/D min�˛ 
 .

Lemma 2.3. Let Hq be a periodic Schrödinger operator of period q � 1 and let
B
.j /
q denote the j -th band in its spectrum with width j̀ . Let �~;q be the canonical

spectral measure (2.4) and Pq;T the probabilities (2.2). Let I � R be an interval and
suppose inf~2Œ0;�=q��~;q.I / > � > 0. There exist a band B.j /q \ I ¤¿ and constants
0 < c; c1; C <1 such that for T > C

c1
��2q8`�2j C 1,

Pq;T .nq/ >
c�2

q6 j̀T

provided C��1q4`�1j < n < c1�q
�4

j̀T .

Proof. The imaginary part of the function inside the modulus in (2.3) is given by the
function q

�T
h, where

h.E/ D

qX
iD1

�=qZ
0

gi .~/ d~; gi .~/ D
cos.nq~/'i .~/

.�i .~/ �E/2 C T �2
:

Since the squared modulus is at least the squared imaginary part j � j2 � =2, we have

Pq;T .nq/ �
q2

�3T 3

Z
R

.h.E//2 dE; (2.5)



L. Haeming 1484

having factored out the coefficient q
�T

of the imaginary part. Now, for an indexing set
K � N, for a certain eigenvalue �j and for a subinterval zIk �

�
0; 0; �

q

�
, all of which

we shall define in the next paragraph, the problem is reduced toZ
R

.h.E//2 dE >
X
k2K

Z
�j .zIk/

.h.E//2 dE � #K min
k2K
j�j . zIk/j min

E2�j .zIk/

.h.E//2 (2.6)

where the set �j . zIk/ D ¹�j .~/ W ~ 2 zIkº � B
.j /
q is the image of the interval zIk

under �j .
The eigenvalue �j in (2.6) is chosen specifically to be the one given by Lemma 2.2,

for which B.j /q \ I ¤ ¿ andˇ̌̌°
~ W 'j .~/ >

�

q

±ˇ̌̌
>

�

2q2
: (2.7)

The subinterval zIk D
�
k�
nq
�

3�
8nq

; k�
nq
C

3�
8nq

�
is chosen so as to lower bound the cosine

by min~2zIk j cos.nq~/j > 1
�

. The indexing set K � N is the set of indices k 2 K for
which the interior int.Ik/ intersects with the set

®
~ W 'j .~/>

�
q

¯
, where the subinterval

Ik D
�
k�
nq
�

�
2nq

; k�
nq
C

�
2nq

�
contains zIk which partitions the half-torus

�
0; �
q

�
by the

roots of the cosine: cos
�
nq
�
k�
nq
˙

�
2nq

��
D 0. The idea is to place the location ��1j .E/

of the main peak of the j -th function gj inside the interval zIk where we have a lower
bound on both the cosine and on the function 'j .

The quantities #K and j�j . zIk/j can easily be estimated using the lower bounds
(2.7) and (2.11), respectively. Therefore, the bulk of the problem lies in estimating the
factor minE2�j .zIk/.h.E//

2 in (2.6), for which the main idea is to split h.E/ as in (2.8)

and estimate the three terms separately. Note that the centres of the subintervals Ik; zIk
were chosen so that cos

�
nq
�
k�
nq

��
D .�1/k , so the cosine cos.nq~/ is positive on the

even subintervals ~ 2 zI2k , and negative on the odd ones. Since h is being squared, we
could either place E 2 �j . zI2k/ and bound h.E/ from below or place E 2 �j . zI2kC1/
and bound h.E/ from above. The two procedures are similar, so we only consider the
former. We shall assume from now on that the energy E 2 �j . zI2k/ is fixed, for some
2k 2 K. Writing

h.E/ D

Z
zI2k

gj .~/ d~ C

Z
zI c
2k

gj .~/ d~ C
X
i¤j

�=qZ
0

gi .~/ d~; (2.8)

our aim is to show that the (positive) area obtained from the first term outweighs the
negative area obtained from the second two terms.

Let us start bounding the first term in (2.8), from below. The first task is to bound
gj .~/ from below for each ~ 2 zI2k . For each ~ 2 zI2k , the denominator of gj .~/ will
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be bounded from above by

j�j .~/ �Ej � max
~02zI2k

j�0j .~
0/jj~ � ��1j .E/j (2.9)

whereas the numerator will be bounded from below by the constant 1
�

min~2zI2k 'j .~/.
We shall argue, below, that

2q sin.q~/ j̀

4e
� j�0j .~/j �

2q sin.q~/
1 � j cos.q~/j

j̀

1C
p
5
; for all ~ 2

�
0;
�

q

�
I (2.10)

hence, the estimates on the derivative of the eigenvalue �j deteriorates near the edges
of the half-torus, so we deal with this issue by removing the edges of the half-torus
in the following way. Define the interval ƒ D

�
�

16q2
; �
q
�

�
16q2

�
and its subset zƒ D�

�
8q2
; �
q
�

�
8q2

�
and impose the additional condition on the indexing setK that Ik � zƒ

for each k 2K and from now on assume zI2k � zƒ. In particular, there exists constants
0 < d�; dC <1 such that

d� j̀ � j�
0
j .~/j � dCq

2
j̀ ; for all ~ 2 ƒ: (2.11)

The upper bound will be used on the first term in (2.8) and the lower bound on the
other two.

We have ��1j .E/ D 2k�
nq
C s for some � 3�

8nq
� s � 3�

8nq
, since ��1j .E/ 2 zI2k .

Moreover, by assumption, we have ~ 2 zI2k � zƒ � ƒ so (2.11) and (2.9) imply

j�j .~/ �Ej � dCq
2
j̀

ˇ̌̌
~ �

2k�

nq
� s

ˇ̌̌
I

therefore,

gj .~/ >
1

�.dCq2 j̀ /2
1

.~ � 2k�
nq
� s/2 C .dCq2 j̀T /�2

min
~2zI2k

'j .~/ for all ~ 2 zI2k;

(2.12)
and thusZ

zI2k

gj .~/d~ >
1

�

T

dCq2 j̀

�
arctan

�
dCq

2
j̀T
� 3�
8nq
� s

��
C arctan

�
dCq

2
j̀T
� 3�
8nq
C s

���
min
~2zI2k

'j .~/

>
1

�

T

dCq2 j̀

��
2
�

4n

3�dCq j̀T

�
min
~2zI2k

'j .~/

>
1

4dC

T

q2 j̀

min
~2zI2k

'j .~/: (2.13)
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In the first inequality, we used oddness of the arctangent. In the second inequality, we
lower-bounded the arctangents by their minima over� 3�

8nq
� s � 3�

8nq
, which happens

to be minimal at the edges s D ˙ 3�
8nq

, and then we applied the lower bound in

�

2
�
1

x
< arctan.x/ <

�

2
�
1

x
C

1

3x3
; for all x > 0: (2.14)

The third inequality follows from the upper bound assumption on n < c1�q�4 j̀T .
Now, let us estimate the second quantity in (2.8). Indeed, first recall that the func-

tion gj is positive in the even subintervals I2kC2l and negative in the odd subintervals
I2kC2l�1. We shall ignore the positive area obtained over the even intervals I2kC2l
and shall only estimate all of the negative area obtained over the odd subintervals
I2kC2l�1. Namely, we shall only estimate the right-hand side ofZ

zI c
2k

gj .~/ d~ >
X
l

Z
I2kC2l�1

gj .~/ d~:

Furthermore, we shall consider only the odd subintervals I2kC2l�1 to the right (l � 1)
of I2k , the argument for the intervals to the left of I2k is very similar. In particular,
we shall estimate the quantity X

l�1

Z
I2kC2l�1

gj .~/ d~

from below. We have the lower bound on the derivative (2.11) when I2kC2l�1 � ƒ,
but do not have it when I2kC2l�1 6� ƒ, so we treat both cases separately. Let us start
with the former.

The lower bound (2.11) gives min~2I2kC2l�1 j�
0
j .~/j � d� j̀ , since I2kC2l�1�ƒ.

And since ��1j .E/ � zb2k where zb2k D 2k�
nq
C

3�
8nq

is the right edge of the subinterval
zI2k D Œza2k; zb2k�, we have

j�j .~/ �Ej � j~ � �
�1
j .E/jmin

~2ƒ
j�0j .~/j � d� j̀ j~ � zb2kj (2.15)

which implies

gj .~/ �
2

.d� j̀ /2
1

.~ � zb2k/2 C .d� j̀T /�2
for all ~ 2 I2kC2l�1 (2.16)

for any l � 1 such that I2kC2l�1 � ƒ, having used 'j � 2 and j cos j � 1. The upper
bound (2.16) implies Z

I2kC2l�1

gj .~/ d~ > �
2T

d� j̀

A2kC2l�1 (2.17)
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where

A2kC2l�1 D arctan
��d� j̀T

nq

�
2l �

7

8

��
� arctan

��d� j̀T

nq

�
2l �

15

8

��
having computed the definite integral, substituted the limits of integration, and then
simplified the resulting expression using

.2k C 2l � 1/
�

nq
˙

�

2nq
� zb2k D

�
2l �

11

8
˙
4

8

� �
nq
:

We now apply both of the estimates on the arctangent in (2.14) to A2kC2l�1, to
obtain

A2kC2l�1 <
nq

�d� j̀T

� 1

.2l � 15
8
/.2l � 7

8
/
C

� nq

�d� j̀T

�2 1

3.2l � 7
8
/3

�
<

c1�

�q3d�
R.l/ (2.18)

having substituted nq
�d� j̀T

< 1 (which follows from n < c1�q
�4

j̀T , where c1 will
be explicitly chosen later on) inside the bracket (to get the rational function R.l/) and
substituted n < c1�q�4 j̀T outside the bracket to get the coefficient in the right-hand
side. Since R.l/ decays quadratically, we have

P
l�1R.l/ <1, so (2.17) and (2.18)

give X
l�1II2kC2l�1�ƒ

Z
I2kC2l�1

gj .~/ d~ > �
c1�T

q3 j̀

C2: (2.19)

We now turn to the more straightforward case that I2kC2l�1 6� ƒ for l � 1.
Indeed, we must estimate the quantity j�j .~/�Ej, from below, in an alternative way
to (2.15). Indeed, the lower bound (2.11) implies

j�j .~/�Ej �

ˇ̌̌̌
�j

��
q
�

�

16q2

�
� �j

��
q
�

�

8q2

�ˇ̌̌̌
�
d� j̀�

16q2
; for all ~ 2 I2kC2l�1

(2.20)
since the eigenvalue �j is monotonic, since ��1j .E/� �

q
�

�
8q2

and since I2kC2l�1 ��
�
q
�

�
16q2

; �
q

�
(in the case that I2kC2l�1 sits on the edge of ƒ, one need only scale

(2.20), slightly); therefore,

gj .~/ � �
2�d� j̀�

16q2

�2
C T �2

> �2
162q4

.d� j̀�/2
; for all ~ 2 I2kC2l�1 (2.21)

for each l � 1 for which I2kC2l�1 6� ƒ, having used 'j � 2 and j cos j � 1. (2.21)
impliesX
l�1II2kC2l�1 6�ƒ

Z
I2kC2l�1

gj .~/d~ >�2njI2kC2l�1j
162q4

.d� j̀�/2
D�2

162q3

.d� j̀ /2�
; (2.22)

since there are less than n intervals satisfying I2kC2l�1 6� ƒ and jI2kC2l�1j D �
nq

.
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For the third term in (2.8), we argue as follows. Since ��1j .E/ 2 zI2k � zƒ, by
monotonicity of the eigenvalues we need only compare the eigenvalue at either of the
two edges of ƒ; zƒ, to obtain

min
i¤j
j�i .~/�Ej �min

�
j�j .0/�Ej;

ˇ̌̌
�j

��
q

�
�E

ˇ̌̌�
�
d� j̀�

16q2
; for all ~ 2

h
0;
�

q

i
;

(2.23)
where we may indeed have equality in the first inequality since we make no assump-
tion on eigenvalue separation. Then, 'j � 2, j cos j � 1, and (2.23) imply

gi .~/ > �2
162q4

.d� j̀�/2
; for all ~ 2

h
0;
�

q

i
(2.24)

for each i ¤ j , which implies

X
i¤j

�=qZ
0

gi .~/ d~ > �2
162q4

.d� j̀ /2�
(2.25)

since the sum on the left-hand side has q � 1 terms.
Finally, let us combine the estimates (2.13)–(2.25) to obtain a lower bound on

jh.E/j. First, multiply (2.19) and (2.22) by a factor of 2 to account for the subintervals
to the left of the 2k-th one. All of the estimates (2.13)–(2.25) also hold forE 2 �j . zIk/
for odd k 2 K, with opposite signs (as mentioned previously, we are squaring h.E/
so it makes no difference). Combining all of the lower bounds (2.13)–(2.25), we have
that, for sufficiently small c1 > 0 (e.g., c1 D 1

32dCC2
) and sufficiently large C <1,

for any E 2 �j . zIk/ and k 2 K, if T > C
c1
��2q8`�2j C 1, then

jh.E/j >
T

q2 j̀

� 1

4dC
min
~2zIk

'j .~/ � 2c1C2
�

q
� 6

162q6

�d2� j̀T

�
>
c2�T

q3 j̀

(2.26)

for C��1q4`�1j < n < c1�q
�4

j̀T . In (2.26), we used min~2zIk 'j .~/ >
�
2q

, which
follows from the lower bound assumption on n > C��1q4`�1j : Indeed, recall that
max~2Ik 'j .~/ >

�
q

and we shall argue below, that

max
~2ƒ
j'0j .~/j �

C3q
4

j̀

I (2.27)

thus, (2.26) follows for large C <1:

j min
~2zIk

'j .~/ � max
~2Ik

'j .~/j � jIkjmax
~2ƒ
j'0j .~/j �

�C3q
3

j̀n
<
�C3�

Cq
:
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Recalling (2.5) and (2.6),

Pq;T .nq/ >
q2

�3T 3
#K min

k2K
j�j . zIk/j min

E2�j .zIk/

.h.E//2; (2.28)

then Lemma 2.2 gives

#K �
.j¹~ W 'j .~/ > �=qºj � j zƒ

cj/

jIkj
>

n

4q

and (2.11) gives

j�j . zIk/j � j zIkjmin
~2ƒ
j�0j .~/j �

3�d� j̀

4nq

with which the lemma follows from (2.26) and (2.28).

Sketch of the proof of estimates (2.10) and (2.11). The characteristic polynomial of
the Floquet matrix (2.1) is given by

D~;q.E/ D det.Aq.~/ �E/ D �q.E/C 2.�1/q�1 cos.q~/ (2.29)

where the discriminant �q.E/ is a polynomial of degree q with real coefficients.
Last, [20, Lemma 1] proves (2.30) for the discriminantD �

2q ;q
. The arguments of Last

can also be repeated for the characteristic polynomials D~;q , for each ~ 2
�
0; �
q

�
. By

doing so, one obtains

.1C
p
5/.1 � j cos.q~/j/ � j̀ jD

0
~;q.�j .~//j � e

ˇ̌̌
D~;q.�j .0// �D~;q

�
�j

��
q

��ˇ̌̌
;

(2.30)
which holds for every ~ 2

�
0; �

q

�
and j D 1; : : : ; q. Evaluating the characteristic

polynomial (2.29) at the eigenvalue �j .~/ and then differentiating with respect to
~ 2 Tq gives

j�0q.�j .~//jj�
0
j .~/j D 2qj sin.q~/j

and since d
dE
�q D

d
dE
D~;q for any ~ 2 Tq , (2.30) also holds for j�0q.�j .~//j; there-

fore, (2.10) follows. By evaluating the left-hand side and right-hand side of the estim-
ates (2.10) at the edge ~ D �

16q2
, one obtains (2.11).

Proof of (2.27). Expressing the function 'j as a sum of the squares of its real and ima-
ginary part, taking the derivative followed by an application of the Cauchy–Schwarz
inequality provides

j'0j .~/j � 2j
P‰.j /~ .0/jj‰.j /~ .0/j C 2j P‰.j /~ .1/jj‰.j /~ .1/j (2.31)

where P‰.j / denotes the component-wise derivative of the eigenvector ‰.j /, with
respect to ~.
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The eigenvalues of the Floquet matrix Aq.~/ are simple in the interior ~ 2
�
0; �
q

�
;

therefore, by perturbation theory one obtains the formula for the derivative

P‰.j /~ D �
X
k¤j

h‰
.k/
~ ; PAq.~/‰

.j /
~ i

�k.~/ � �j .~/
‰.k/~ : (2.32)

The estimate (2.27) follows from (2.10)–(2.32) by an application of the Cauchy–
Schwarz inequality, followed by estimating the absolute value of the denominator
of (2.32) from below by integrating the lower bound of (2.10) from either edge 0; �

q

of the half-torus until the point ~ 2
�
0; �
q

�
, combined with (2.31), yielding

j'0j .~/j �
8eq2`�1j

1 � j cos.q~/j

the right-hand side of which is to be evaluated at the edge ~ D �
16q2

, to get (2.27).

Proof of Lemma 2.2. First, note that

�~;q.I / D
X

�j .~/2I

'j .~/ �
X
j2J

'j .~/

where J D ¹j W B.j /q \ I ¤ ¿º. Towards a contradiction, let us suppose that the
conclusion of the present lemma is false. Then for every j 2 J , we haveˇ̌̌°

~ W 'j .~/ �
�

q

±ˇ̌̌
�
�

q
�

�

2q2
;

so #J � q implies ˇ̌̌\
j2J

°
~ W 'j .~/ �

�

q

±ˇ̌̌
�
�

q
�
�#J
2q2

�
�

2q
:

Then, \
j2J

°
~ W 'j .~/ �

�

q

±
�

°
~ W

X
j2J

'j .~/ � �
±

contradicts inf~2Œ0;�q � �~;q.I / > �.

On Lemma 2.1. For any bounded Schrödinger operator H W `2.Z/! `2.Z/, for any
 ; � 2 `2.Z/ and T > 0, one obtains the identity

2

T

1Z
0

jh�; e�itH ij2e�
2t
T dt D

1

�T

Z
R

jh�; .H �E � iT �1/�1 ij2 dE
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by applying Plancherel’s theorem,Z
R

j Og.�/j2 d� D

Z
R

jg.t/j2 dt; where Og.�/ D
Z
R

g.t/e�2�i�t dt;

for any g 2L1.R/\L2.R/ to the function g.t/D h�;e�itH�tT
�1
 i�Œ0;1/.t/, while

applying the identity (for a more precise definition of the spectral measures, see,
e.g., (3.1), below)

h�; e�itH�tT
�1�2i�t� i D

Z
R

e�it��tT
�1�2i�t�d��; .�/

and scaling � appropriately.
The periodic operator Hq is diagonalizable in the Fourier space L2.Tq 7! Cq;

h‰;ˆiL2/where TqDR=2�
q

Z and h‰;ˆiL2 D
P
jlj� q2

R
Tq
‰~.l/ˆ~.l/

d~
2�=q

. Indeed,
let U1;qW `2.Z/! `2.Z 7! Cq/ be the unitary operator taking blocks (of length q) of
the sequence of Fourier coefficients O 2 `2.Z/ to a single component y‰n 2 Cq of a
vector-valued sequence y‰ 2 `2.Z 7! Cq/ of Fourier coefficients. Namely,

U1;q O D y‰ D ..y‰n.l//jlj� q2
/n2Z D .. O .nq C l//jlj� q2

/n2Z

where y‰n.l/ D O .nq C l/ 2 C denotes the l-th component of the vector y‰n 2 Cq ,
which is itself the n-th component of the sequence y‰ 2 `2.Z 7! Cq/.

Let U2;qW `2.Z 7! Cq/ ! L2.Tq 7! Cq/ be the Fourier transform taking the
vector-valued sequence of Fourier coefficients y‰ 2 `2.Z 7! Cq/ to its correspond-
ing function in the vector-valued Fourier space L2.Tq 7! Cq/. Namely,

U2;q y‰ D ‰ D
X
n2Z

y‰nen;q:

The function ‰ 2 L2.Tq 7! Cq/ is vector-valued. We adopt the notation ‰~ to mean
the function ‰ evaluated at the point ~ 2 Tq . ‰~ is a vector in Cq which has com-
ponents which we denote by ‰~.l/ and satisfy ‰~.l/ D

P
n2Z
y‰n.l/e

inq~ .
The unitary operator Uq D U2;qU1;qW `2.Z/! L2.Tq 7! Cq/ satisfies

UqHq DMqUq

where Uq is referred to as the block Fourier transform and Mq the multiplication
operator acting as a point-wise (in ~ 2 Tq) multiplication by the Floquet matrix (2.1).

For e0 D .0; : : : ; 1; : : : ; 0/ 2 Cq , unitary equivalence and Uqınq D e0en;q 2

L2.Tq 7! Cq/ imply

hınq; .Hq �E � iT
�1/�1ı0i D he0en;q; .Mq �E � iT

�1/�1e0e0;qi;
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where en;q.~/ D einq~ is the n-th canonical basis vector for the Fourier space
L2.Tq 7!C/. Then, expressing the vector e0 in terms of the orthonormal eigenvectors
¹‰

.j /
~ º

q
jD1 of the Floquet matrix gives

he0en;q; .Mq �E � iT
�1/�1e0e0;qi D

qX
jD1

2�
qZ
0

�e�inq~ jh‰.j /~ ; e0ij
2

�j .~/ �E � iT �1

� d~

2�=q

D

qX
jD1

�=qZ
0

�cos.nq~/jh‰.j /~ ; e0ij
2

�j .~/ �E � iT �1

� d~
�=q

since .�j .�~/;‰
.j /
�~ / D .�j .~/;‰

.j /
~ /, seen by transposing the Floquet matrix.

3. Proof of the theorem

Lemma 3.1, below, verifies the assumption of Lemma 2.3 by ensuring that the canon-
ical spectral measures of the Floquet matrix evaluated at the vicinity of a minimum of
the Lyapunov exponent on the spectrum are uniformly bounded from below in both
the period and the phase. The general idea is to approximate the canonical spectral
measure �˛;� associated with the limiting quasiperiodic Schrödinger operator H˛;�
by the canonical spectral measures of the Floquet matrix �.~/

˛m;�
where ˛m D pm

qm
! ˛

and combine this with the fact that the topological support of the canonical spectral
measure coincides with the spectrum of the operator supp.�˛;� / D �˛ .

The spectral measure associated with a discrete self-adjoint one-dimensional
bounded Schrödinger operatorH W`2.Z/! `2.Z/ is the complex Borel measure��; 
for which

h�; g.H/ i D

Z
R

g.�/ d��; .�/ (3.1)

holds for all compactly supported, bounded Borel measurable functions gWR! C.
The spectral measures ��; are positive probability measures in the case that  D �.
The topological support of a Borel measure � on the real line is defined as

supp.�/ D ¹� 2 R W �..� � "; �C "// > 0 for all " > 0º:

Let ık 2 `2.Z/ denote the k-th canonical basis vector of `2.Z/. In general, it is not true
that supp.�ık ;ık / D �.H/, but indeed the canonical spectral measure � D �ı0;ı0 C
�ı1;ı1 associated with H satisfies

�.H/ D supp.�/:
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Lemma 3.1. Let H˛;� be as in (1.1) with associated continuous Lyapunov exponent

 . Let ˛m D

pm
qm
! ˛ be a sequence of rationals and let B".E0/ � R denote a ball

of radius " > 0 centred at E0 2 R. Fix " > 0, E0 2 �˛ , let ˇ > supE2B".E0/ 
 and
suppose j˛ � ˛mj < e�ˇqm for every m � 1, then

(i) limm!1 sup�2T sup~2Œ0;�=qm� j�
.~/

˛m;�
.B".E0// � �˛;� .B".E0//j D 0;

(ii) �˛;� .B".E0// is continuous in � 2 T .

The proof of Lemma 3.1 requires upgrading weak convergence to convergence on
intervals. This requires that the limiting measure be non-atomic on the boundary of
the interval (see Lemma 4.1). The proof of Lemma 3.1 is provided in Section 4.

Another key ingredient in the proof of the theorem is Proposition 3.2, which
bounds the bandwidths of the periodic operator H˛m;� , from below, in terms of the
Lyapunov exponent associated with the limiting quasiperiodic operator H˛;� .

Proposition 3.2 ([9]). Let H˛;� be a bounded discrete one-dimensional Schrödinger
operator (1.1) with � 2 T , ˛ 2 R n Q and associated continuous Lyapunov expo-
nent 
 . Let ˛m D

pm
qm
! ˛ be a sequence of rationals. Let B.j /

˛m;�
denote the j -th

band in the spectrum of the periodic operator H˛m;� . We have

lim inf
m!1

min
j2Œ1;qm�;�2T

.q�1m log jB.j /
˛m;�
j C 
.b

.j /

˛m;�
// � 0;

where b.j /
˛m;�

is the centre of the band B.j /
˛m;�

.

Proof of Theorem 1.1. Let us first show that Lemma 3.1 implies the conclusion of
the Lemma 2.3 in the current setting. Let ˛m D pm

qm
be the sequence of canonical

convergents associated with ˛ 2 R nQ. Fix a point in the spectrum E0 2 �˛ which
minimises the Lyapunov exponent 
0 D 
.E0/ D min�˛ 
 . If ˇ.˛/ > 3ı�1
0, then
ˇ
3
D ı�1.
0 C 2"

0/ (for sufficiently small "0 > 0) satisfies ˇ.˛/ > ˇ > 3ı�1
0 and
there exists a subsequence mk for which q�1mk log qmkC1 > ˇ and hence j˛ � ˛mk j <

1
qmk qmkC1

< e�qmkˇ for all sufficiently large k. Note also that ˇ > supB".E0/ 
 , for
sufficiently small " > 0, by continuity of the Lyapunov exponent 
 . It follows from
Lemma 3.1 (i) that there exists k0.E0; "/ such that for all k > k0,

inf
�2T

inf
~2Œ0; �

qmk
�
�
.~/

˛mk ;�
.B".E0// >

1

2
min
�2T

�˛;� .B".E0//I

then, E0 2 �˛ and Lemma 3.1 (ii) imply that �˛;� .B".E0// is a strictly positive con-
tinuous function of � 2 T so for every " > 0 there exists � D �."; E0/ > 0 such that
min�2T �˛;� .B".E0// > 2�, hence

inf
�2T

inf
~2Œ0; �

qmk
�
�
.~/

˛mk ;�
.B".E0// > � (3.2)
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for k > k0. Assuming k > k0, the uniform lower bound (3.2) is precisely the assump-
tion of Lemma 2.3 so for 0 < c; c1; C <1 as in the conclusion of Lemma 2.3: For
each � 2 T , there exists a band B.j� /

˛mk ;�
\ B".E0/ ¤ ¿ with length `� D jB

.j� /

˛mk ;�
j,

such that for T > C
c1
��2q8mk`

�2
�
C 1,

P˛mk ;�;T .qmkn/ >
c�2

q6mk`�T
; for C��1q4mk`

�1
� < n < c1�q

�4
mk
`�T; (3.3)

where P˛mk ;�;T is as in (2.2).
The term `� can be controlled uniformly by Proposition 3.2 and continuity of the

Lyapunov exponent. Indeed, the index j� is chosen so that the j� -th band B.j� /
˛mk ;�

intersects with the ball B".E0/. Then, maxj jB
.j /

˛mk ;�
j �

2�
qmk

(see, e.g., [9]) implies

that for all sufficiently large k, we have B.j� /
˛mk ;�

� B2".E0/ for all � 2 T , and con-

sequently, denoting the centre of this band by b.j� /
˛m;�

, we have jb.j� /
˛m;�
� E0j < 2". By

continuity of the Lyapunov exponent, the difference j
.b.j� /
˛m;�

/� 
.E0/j can be made
arbitrarily small. Proposition 3.2 then implies

1

inf� `�
< e.
0C"

00/qmk ; (3.4)

where we ensure that 0 < "00 < "0.
We shall show below that on the subsequence Tmk D eı

�1.
0C"
0/qmk , we have,

for any � 2 T ,

P˛;�;Tmk .qmkn/ >
1

2

c�2

q6mk`�Tmk
; (3.5a)

C��1q4mk`
�1
� <

1

2
c1�q

�4
mk
`�Tmk < n < c1�q

�4
mk
`�Tmk (3.5b)

from which the conclusion of the theorem follows, for sufficiently large k:

min
�2T

M˛;�;p.Tmk /

> inf
�2T

X
c1�q

�4
mk
`�Tmk =2<n<c1�q

�4
mk
`�Tmk

.qmkn/
pP˛;�;Tmk .qmkn/

>
c1c�

3

4q10mk

�1
2
c1�q

�3
mk
Tmk inf

�
`�

�p
>
c1c�

3

4q10mk
T .1�ı/pmk

for all p > 0;

having used (3.4) on the final inequality.
We now return to (3.5). Indeed, first note that for any bounded self-adjoint oper-

ators H1;H2,

jjhın; e
�itH1ı0ij

2
� jhın; e

�itH2ı0ij
2
j � 2jhın; e

�itH1ı0i � hın; e
�itH2ı0ij: (3.6)
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LetL denote the Lipschitz constant of f ; we show that the right-hand side of (3.6)
is bounded above by

jhıqmkn; .e
�itH˛;� � e

�itH˛mk ;� /ı0ij

< "1.t/ D C
0Lt2e�ˇqmk C 2C1e

�c3 max.jqmknj;t/ (3.7)

and in particular,

jhıqmkn; e
�itH˛;� ı0ij

2 > jhıqmkn; e
�itH˛mk ;� ı0ij

2
� 2"1.t/: (3.8)

Indeed, for any bounded Schrödinger operator H W `2.Z/ ! `2.Z/, there exist
constants C 0; C1; c3, depending only on the norm kHk such that if N D C 0t , then

jhın; e
�itH ı0i � hın; e

�itHN ı0ij < C1e
�c3 max.jnj;t/; for all n 2 Z; t � 0 (3.9)

whereHN denotes the restriction of the operatorH to the finite interval Œ�N;N ��Z,
with Dirichlet boundary condition. The proof of (3.9) is standard and we provide it
Section 4, for completeness. It follows from the triangle inequality as well as (3.9),
that

jhıqmkn; .e
�itH˛;� � e

�itH˛mk ;� /ı0ij

< jhıqmkn; .e
�itH˛;�;N � e

�itH˛mk ;�;N /ı0ij C 2C1e
�c3 max.jqmknj;t/:

For Hermitian matrices A and B , one obtains ke�itA � e�itBk � min.2; tkA � Bk/
by computing d

dt
.I � eitBe�itA/ (e.g., by series expansion one shows d

dt
eitB D

iBeitB D ieitBB) and subsequently applying the fundamental theorem of calcu-
lus. (3.7) follows from the Cauchy–Schwarz inequality and kH˛;�;N �H˛mk ;�;N k D
kV˛;�;N � V˛mk ;�;N k D maxjnj�N jf .n˛ C �/ � f .n˛mk C �/j � LNe

�ˇqmk .
(3.8) also holds for the entry .1; qmkn C 1/. Summing the entries and Abel-

averaging then gives

P˛;�;T .qmkn/ > P˛mk ;�;T .qmkn/ �
2

T

1Z
0

4"1.t/e
�2t=T dt: (3.10)

By direct computation of the integral in (3.10) and assuming n > 1
2
c1�q

�4
mk
`�T , we

obtain

P˛;�;T .qmkn/ > P˛mk ;�;T .qmkn/ � "2.T /;

"2.T / D C3e
�ˇqmkT 2 C C3e

� 12 c1�c3q
�3
mk
`�T :
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In order to get (3.5), we need to show that the error "2 is less than half of our
lower bound (3.3) on P˛mk ;�;T .qmkn/, uniformly in � 2 T , on the subsequence Tmk ,
namely,

sup
�2T

"2.Tmk / <
1

2
inf
�2T

c�2

q6mk`�Tmk
: (3.11)

We shall first show that the second term of "2.Tmk / is less than the first term, then we
show that the first term is bounded by the infimum in (3.11).

Rewrite

"2.Tmk / D C3e
�ˇqmkT 2mk C C3e

� 12 c1�c3q
�3
mk
`�Tmk ;

we claim that (3.11) follows from the fact that the subsequence Tmk D e
ı�1.
0C"

0/qmk

satisfies
2ˇ

c1c3�

q4mk
inf� `�

< Tmk <
�c�2eˇqmk
4C3q6mk

� 1
3

: (3.12)

Indeed, the lower bound in (3.12) implies that the second term of "2.Tmk / is less than
the first. The upper bound in (3.12) is the second inequality in

sup
�2T

"2.Tmk / < 2C3e
�ˇqmkT 2mk <

c�2

2q6mkTmk
<
1

2
inf
�2T

c�2

q6mk`�Tmk
:

Now, let us obtain the bounds (3.12), on the subsequence Tmk . For the upper
bound, we need to check that eı

�1.
0C"
0/qmk <

�
c�2e

ˇqmk

4C3q
6
mk

�1=3,, which requires ˇ
3
>

ı�1.
0C "
0/ (and sufficiently large k). This holds automatically since we had initially

fixed ˇ
3
D ı�1.
0 C 2"

0/. For the lower bound, we need to check that 2ˇ
c1c3�

q4mk
inf� `�

<

eı
�1.
0C"

0/qmk . Indeed, (3.4) states that 1
inf� `�

< e.
0C"
00/qmk , so comparing the expo-

nents, we require "00 < "0 (which we have already fixed) and ı < 1, which follows
automatic from our assumption that ı < 1

2
, in the statement of the theorem.

For (3.5) to hold, we must also ensure that C��1q4mk`
�1
�
< 1

2
c1�q

�4
mk
`�Tmk ,

which simply follows from ı < 1
2

and 1
inf� `�

< e.
0C"
00/qmk .

4. Proof of Lemma 3.1

Gordon’s lemma (see e.g., [4, Theorem 10.3]) rules out `2-solutions to the eigenvalue
equation of H˛;� for any energy E 2 �˛ in the case that the frequency ˛ 2 R nQ is
extremely Liouville, in the sense that there exists a sequence of rationals ˛m D pm

qm

for which j˛ � ˛mj < Ce�ˇqm where ˇ D ˇm D log.m/!1 (and hence ˇ.˛/ D
C1). Their proof can be modified to show that H˛;� D E has no `2-solution if
2
.E/ < ˇ. This fact was later refined by Jitomirskaya and Liu [12] who established
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that there is an absence of pure point spectrum in the region ¹E W ˇ.˛/ > 
.E/º, for
a broad class of potentials. We state a corollary of [16, Theorem 1.1].

Lemma 4.1. Let H˛;� be a bounded discrete one-dimensional Schrödinger oper-
ator (1.1) with � 2T , ˛ 2R nQ and associated continuous Lyapunov exponent 
 . Let
˛m D

pm
qm
! ˛ be a sequence of rationals. Fix ˇ > 0 and assume j˛ � ˛mj < e�ˇqm

for all m � 1. If 
.E/ < ˇ, then sup�2T �˛;� .¹Eº/ D 0.

Proof of Lemma 3.1. Let Cb.R/ denote the set of bounded continuous functions
gWR! C. For simplicity of notation, denote B" D B".E0/. For any l � 1, define
the set Fl D

®
E 2 R W dist.E;B"/ � 1

l

¯
and

gl.E/ D
dist.E; Fl/

dist.E;B"/C dist.E; Fl/

which coincides with the characteristic function �B" on the set B" [ Fl and coincides
with linear functions on both the left and the right interval of the set Bc

" \ F
c
l

. Define
the triangle functions

gl;˙.E/ D .1 � l jE � .E0 ˙ "/j/�B1=l .E0˙"/.E/

centred at either edge E0 ˙ " of the ball. Clearly, gl ; gl;˙ 2 Cb.R/. For any g 2
Cb.R/, we have

lim
� 0!�

Z
R

g d�˛;� 0 D

Z
R

g d�˛;� (4.1a)

and

lim
m!1

sup
�2T

sup
~2Œ0;�=qm�

ˇ̌̌̌ Z
R

g d�
.~/

˛m;�
�

Z
R

g d�˛;�

ˇ̌̌̌
D 0 (4.1b)

the proof of weak convergence (4.1) is standard and is provided at the end of this
section.

It follows from j�B" � gl j � gl;� C gl;C, that

j�˛;� .B"/ � �˛;� 0.B"/j �

Z
R

gl;� C gl;C d.�˛;� C �˛;� 0/C

Z
R

gl d.�˛;� � �˛;� 0/

and by weak convergence that

lim sup
� 0!�

j�˛;� .B"/ � �˛;� 0.B"/j � 2

Z
R

gl;� C gl;C d�˛;�
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and

lim sup
m!1

sup
�2T

sup
~2Œ0;�=qm�

j�
.~/

˛m;�
.B"/ � �˛;� .B"/j � 2 sup

�2T

Z
R

gl;C C gl;� d�˛;� :

So the claim follows from

lim sup
l!1

sup
�2T

Z
R

gl;˙ d�˛;� D 0: (4.2)

Let us show that Lemma 4.1 implies (4.2). Indeed, if not, then there exists � 2 T

and lj !1, �j ! � 2 T such thatZ
R

glj ;˙ d�˛;�j > ı > 0

for all j � 1. Since l � lj implies gl;˙ � glj ;˙, it follows that for any l <1 there
exists j0 D j0.l/ <1 such that lj � l for all j > j0 and hence

R
R gl;˙ d�˛;�j > ı

for all j > j0. Weak convergence implies

ı < lim
j!1

Z
R

gl;˙ d�˛;�j D

Z
R

gl;˙ d�˛;�

for every l <1, yet since by continuity we have 
.E0 ˙ "/ < ˇ, Lemma 4.1 implies

lim sup
l!1

Z
R

gl;˙ d�˛;� � lim sup
l!1

�˛;� .B1=l.E0 ˙ "// D �˛;� .¹E0 ˙ "º/ D 0

since �˛;� is finite.

Weak convergence, ballistic bound and (3.9). All of which follow from the Com-
bes–Thomas estimate (see e.g., [18, Theorem 11.2]); there exists c > 0 such that for
any bounded Schrödinger operator H W `2.Z/! `2.Z/,

jhın; .H � z/
�1ımij �

2

dist.z; �.H//
e�cmin.dist.z;�.H//;1/jn�mj (4.3)

for any n;m 2 Z and z 2 C n �.H/, which also holds true for the restrictions of the
operator H to a finite interval with Dirichlet boundary conditions. This version (4.3)
of the Combes–Thomas estimate is not written in the most general or optimal way.
The constant c > 0 is universal in the sense that it does not depend on the potential.

Let us briefly comment on the weak convergence of the spectral measures stated
in (4.1). For the first statement of (4.1), we need to check that the spectral measure of
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the infinite volume operator H˛;� 0 (with phase � 0 2 T ) converges weakly to the spec-
tral measure of the infinite volume operatorH˛;� (with phase � 2 T ) as � 0! � . It is a
standard fact from the theory of weak convergence of measures that weak convergence
is equivalent to the pointwise convergence of the associated characteristic functions.
Namely, it suffice to show that hı0; eitH˛;�0 ı0i ! hı0; eitH˛;� ı0i as � 0 ! � for each
t 2 R. For similar reasons to (4.7), it suffice to show convergence of the .0; 0/-entry
of the resolvents, via the second resolvent identity and the Combes–Thomas estim-
ate (4.3).

Let us turn to the proof of the second limit in (4.1) in which we require the weak
convergence of the spectral measure of the Floquet matrix uniformly in � 2 T and
~ 2 Œ0; �

qm
�. By the Stone–Weierstrass theorem, it is enough to check that the uniform

limit holds for the function gz.E/ D .E � z/�1 for any fixed z 2 C outside of the
real line =.z/ ¤ 0. Take =.z/ ¤ 0 and denote

R˛;�;z D .H˛;� � z/
�1 and R.~/

˛m;�;z
D .A˛m;� .~/ � z/

�1:

The second resolvent identity gives

j.R
.~/

˛m;�;z
�R˛;�;z/.0; 0/j

�

X
n2ZIjj j�qm=2

jR
.~/

˛m;�;z
.0; j /jj.H˛;� � A˛m;� .~//.j; n/jjR˛;�;z.n; 0/j;

which is bounded by Czq2m.e
�cz

qm
2 C e�ˇqm/. Indeed, first use jR.~/

˛m;�;z
.0; j /j �

1
j=.z/j

, then split
P
n2ZIjj j� qm2

D
P
jnj� qm2 �1Ijj j�

qm
2
C
P
jnj< qm2 �1Ijj j�

qm
2

and apply
the Combes–Thomas estimate to the term jR˛;�;z.n; 0/j, and for the second sum note
that j.H˛;� � A˛m;� .~//.j; n/j is the difference between the two potentials.

The ballistic bound follows from the Combes–Thomas estimate (4.3) and ensures
that the moments (1.2) exist. Indeed, by applying the spectral theorem (3.1) followed
by the Cauchy integral formula, we get

hın; e
�itH ı0i D �

1

2�i

I
C

e�itzhın; .H � z/
�1ı0i dz (4.4)

where the contour C encircles the spectrum counterclockwise. To obtain the ballistic
bound, let us take the contour C to be the boundary of the rectangle with j=.z/j � 1
and j<.z/j � kHk C 1. The Combes–Thomas implies jhın; .H � z/�1ı0ij � 2e�cjnj

for any z 2 C . Formula (4.4) then gives jhın; e�itH ı0ij � et�cjnj 1�
H

C
jdzj which

implies the ballistic bound

jhın; e
�itH ı0ij � Ce

� 12 cjnj for all jnj > 2c�1t (4.5)
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where �C D 4.kHk C 2/ is the circumference of the rectangle C . The ballistic
bound (4.5) also holds for the restriction ofH to a finite interval with Dirichlet bound-
ary conditions.

Proof of (3.9). Let C denote the same rectangle as above. Let HN denote the mat-
rix given by the restriction of H to the finite interval Œ�N; N � � Z for N � 0. To
obtain (3.9), we split the problem into two separate cases, jnj > 2c�1t and jnj �
2c�1t .

The first case follows from the ballistic bound. Indeed, the ballistic bound (4.5)
also holds for the matrix HN : jhın; e�itHN ı0ij � Ce�cjnj=2, for every jnj > 2c�1t

and N � 0, with the same constants c > 0 and �C D 4.kHk C 2/, since we have
kHN k � kHk for every N � 0. The triangle inequality then gives

jhın; e
�itH ı0i � hın; e

�itHN ı0ij � 2Ce
� 12 cjnj D 2Ce�max. 12 cjnj;t/ (4.6)

for every N � 0.
In the second case, we use (4.4) again to deduce

jhın; e
�itH ı0i � hın; e

�itHN ı0ij

�
Cet

2
max
z2C
jhın; .H � z/

�1ı0i � hın; .HN � z/
�1ı0ijI (4.7)

then, the second resolvent identity and the Combes–Thomas estimate show that the
maximum is bounded by C1et�cN D C1e

.1�cC 0/t , since N D C 0t . For sufficiently
large C 0,

jhın; e
�itH ı0i � hın; e

�itHN ı0ij � C2e
�c1t D C2e

�c1 max.cjnj=2;t/

which, combined with (4.6), implies (3.9).
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